FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Mazzoldi, A Hill, T Colls, JJ AF Mazzoldi, Alberto Hill, Tim Colls, Jeremy J. TI Assessing the risk for CO2 transportation within CCS projects, CFD modelling SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; CO2 transportation; Joule-Thomson effect; Jet-mixing effect; Risk Assessment ID PERFORMANCE EVALUATION; GAS DISPERSION; KIT FOX AB Surface transportation of carbon dioxide will be a critical issue in the developing field of carbon capture and storage (CCS). A leak from a high-pressure transportation facility can result in damage to the environment and hazard to people, depending on the total amount of carbon dioxide released to the atmosphere and the concentrations achieved in the proximity of the leakage. Generic Risk Assessments for CO2 transportation to date have relied on various assumptions about the behaviour of carbon dioxide after a severe pressure drop. In this study, simulations by two classes of atmospheric dispersion model (Gaussian and computational fluid dynamics, CFD) have been compared, taking representative input parameters concerning high-pressure CO2 releases from the literature. The CFD model was used to simulate a high-speed release with specified velocities with the aim of evaluating the effect of initial gas dispersion on the downwind length reached by toxic concentrations of the pollutant. Results of this investigation depict a lowering of the Risk involved in the transportation of CO2 by up to one order of magnitude, when modelling the same releases with a CFD tool, compared to the more widespread Gaussian models. The EU used results from Gaussian modelling for drawing up an Impact Assessment on the CO2 transportation within CCS. In this paper, suggestions for future preparation of CCS Risk Assessments are presented. (C) 2011 Published by Elsevier B.V. C1 [Mazzoldi, Alberto] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Hill, Tim] E ON UK Plc, Power Technol, Ratcliffe On Soar, Notts, England. [Colls, Jeremy J.] Univ Nottingham, Sch Biosci, Nottingham NG7 2RD, England. RP Mazzoldi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM AMazzoldi@lbl.gov FU E.ON, UK FX AM has been supported by a studentship from E.ON, UK. NR 37 TC 34 Z9 34 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 816 EP 825 DI 10.1016/j.ijggc.2011.01.001 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900023 ER PT J AU Birkholzer, JT Nicot, JP Oldenburg, CM Zhou, QL Kraemer, S Bandilla, K AF Birkholzer, Jens T. Nicot, Jean Philippe Oldenburg, Curtis M. Zhou, Quanlin Kraemer, Stephen Bandilla, Karl TI Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Brine leakage; Pressure increase; Area of Review ID CO2 STORAGE; LEAKAGE; BASIN; DEPLOYMENT; INJECTION; AQUIFERS AB Industrial-scale storage of CO2 in saline sedimentary basins will cause zones of elevated pressure, larger than the CO2 plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer. Published by Elsevier Ltd. C1 [Birkholzer, Jens T.; Oldenburg, Curtis M.; Zhou, Quanlin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nicot, Jean Philippe] Univ Texas Austin, Bur Econ Geol, Austin, TX 78713 USA. [Kraemer, Stephen; Bandilla, Karl] US EPA, Off Res & Dev, Athens, GA 30605 USA. RP Birkholzer, JT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jtbirkholzer@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011; Nicot, Jean-Philippe/A-3954-2009; Oldenburg, Curtis/L-6219-2013 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912; Oldenburg, Curtis/0000-0002-0132-6016 FU US Environmental Protection Agency, Office of Water and Office of Air and Radiation, under U.S. Department of Energy at the Lawrence Berkeley National Laboratory; Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U.S. Department of Energy FX The authors wish to thank two anonymous reviewers as well as Lehua Pan of Lawrence Berkeley National Laboratory for a careful review of the manuscript and the suggestion of improvements. This paper has also been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This work was funded in part by the US Environmental Protection Agency, Office of Water and Office of Air and Radiation, under an Interagency Agreement with the U.S. Department of Energy at the Lawrence Berkeley National Laboratory. Supplementary funding was provided by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory, of the U.S. Department of Energy. This research was performed while Karl Bandilla held a National Research Council Research Associateship Award at US EPA's Ecosystems Research Division of the National Exposure Research Laboratory. NR 25 TC 47 Z9 47 U1 1 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 850 EP 861 DI 10.1016/j.ijggc.2011.01.003 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900026 ER PT J AU Kutchko, BG Strazisar, BR Hawthorne, SB Lopano, CL Miller, DJ Hakala, JA Guthrie, GD AF Kutchko, Barbara G. Strazisar, Brian R. Hawthorne, Steven B. Lopano, Christina L. Miller, David J. Hakala, J. Alexandra Guthrie, George D. TI H2S-CO2 reaction with hydrated Class H well cement: Acid-gas injection and CO2 Co-sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; Acid-gas; Oilwell cement; CO2; H2S ID PYRITE FORMATION; PURE WATER; ETTRINGITE; CRYSTALLIZATION; 100-DEGREES-C; MONOSULFIDE; DEGRADATION; TEMPERATURE; SOLUBILITY; OXIDATION AB Laboratory experiments were performed in order to determine the alteration in cement exposed to acid gas (H2S-CO2) and pure CO2 under simulated reservoir conditions. Cement samples were exposed for a period of 28 days at a temperature of 50 degrees C and a pressure of 15 MPa using pure CO2 and H2S-CO2 (21 mol% H2S) to simulate acid gas. The cement samples were partially submerged in aqueous solutions to include both saturated aqueous and supercritical CO2 phases. The cement exposed to pure CO2 was identical in alteration to those previously tested and described in that they exhibited the typical carbonation rims which result from the CO2/cement interaction. The H2S-CO2 exposed cement exhibited a carbonated zone similar to the CO2-only samples and underwent an additional sequence of oxidation-reduction and sulfidation reactions. Ettringite was observed in the interior region of the cement, and pyrite in the carbonated rim of the cement exposed to H2S-CO2. The mineralogical changes and alteration front are believed to be controlled by local porewater pH buffering. Although the process of secondary ettringite formation subsequent to the hardening of cement can lead to strength loss and degradation, ettringite induced mechanical damage was not observed in the samples. Published by Elsevier Ltd. C1 [Kutchko, Barbara G.; Strazisar, Brian R.; Lopano, Christina L.; Hakala, J. Alexandra; Guthrie, George D.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hawthorne, Steven B.; Miller, David J.] Univ N Dakota, Energy & Environm Res Ctr, Grand Forks, ND 58202 USA. RP Kutchko, BG (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM barbara.kutchko@netl.doe.gov FU U.S. DOE National Energy Technology Laboratory; Department of Energy National Energy Technology Laboratory [DE-FC26-05NT42592] FX This work was supported by the Carbon Sequestration Program of the U.S. DOE National Energy Technology Laboratory. SBH and DJM appreciate the support of work performed at EERC under the Plains CO2 Reduction Partnership (PCOR), which is supported by the Department of Energy National Energy Technology Laboratory under Award Number DE-FC26-05NT42592. The authors appreciate the technical assistance of Doug Allen of Salem State College and Bret Howard of NETL. Any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the sponsors. Reference in this report to any specific commercial product or service is to facilitate understanding and does not imply endorsement by the United States Department of Energy. NR 38 TC 18 Z9 20 U1 1 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 880 EP 888 DI 10.1016/j.ijggc.2011.02.008 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900028 ER PT J AU Kobos, PH Cappelle, MA Krumhansl, JL Dewers, TA McNemar, A Borns, DJ AF Kobos, Peter H. Cappelle, Malynda A. Krumhansl, Jim L. Dewers, Thomas A. McNemar, Andrea Borns, David J. TI Combining power plant water needs and carbon dioxide storage using saline formations: Implications for carbon dioxide and water management policies SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon dioxide storage; Water treatment costs; Saline formation assessment; Power generating station cooling water ID CO2 STORAGE; AQUIFERS; SEQUESTRATION; SIMULATION; SANDSTONE; INJECTION; DISPOSAL; PROGRAM; USA; TRANSPORT AB Research involving management of carbon dioxide has increased markedly over the last decade as it relates to concerns over climate change. Capturing and storing carbon dioxide (CO2) in geological formations is one of many proposed methods to manage, and likely reduce, CO2 emissions from burning fossil fuels in the electricity sector. Saline formations represent a vast storage resource, and the waters they contain could be managed for beneficial use. To address this issue, a methodology was developed to test the feasibility of linking coal-fired power plants, deep saline formations for CO2 storage, and extracting and treating saline waters for use as power plant cooling water. An illustrative hypothetical case study examines a representative power plant and saline formation in the south-western United States. A regional assessment methodology includes analysis of injection-induced changes in subsurface groundwater chemistry and fate and transport of supercritical CO2. Initial water-CO2-formation reactions include dissolution of carbonate minerals as expected, and suggest that very little CO2 will be stored in mineral form within the first few centuries. Reservoir simulations provide direct input into a systems-level economic model, and demonstrate how water extraction can help manage injection-induced overpressure. Options for treatment of extracted water vary depending upon site specific chemistry. A high efficiency reverse osmosis system (HERO (TM)) shows promise for economical desalination at the volumes of recovered water under consideration. Results indicate a coupled use CO2 storage and water extraction and treatment system may be feasible for tens to hundreds of years. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kobos, Peter H.] Sandia Natl Labs, Earth Syst Dept, Albuquerque, NM 87185 USA. [Cappelle, Malynda A.] Univ Texas El Paso, Ctr Inland Desalinat Syst, El Paso, TX 79968 USA. [Krumhansl, Jim L.] Sandia Natl Labs, Dept Geochem, Albuquerque, NM 87185 USA. [Dewers, Thomas A.] Sandia Natl Labs, Geomech Dept, Albuquerque, NM 87185 USA. [McNemar, Andrea] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Borns, David J.] Sandia Natl Labs, Geotechnol & Engn Dept, Albuquerque, NM 87185 USA. RP Kobos, PH (reprint author), Sandia Natl Labs, Earth Syst Dept, POB 5800,MS 0749, Albuquerque, NM 87185 USA. EM phkobos@sandia.gov; macappelle@utep.edu; jlkrumh@sandia.gov; tdewers@sandia.gov; Andrea.McNemar@netl.doe.gov; djborns@sandia.gov FU National Energy Technology Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors wish to thank Tom Feeley, Jared Ciferno and Lynn Brickett of the National Energy Technology Laboratory for initiating and funding this study. The authors also thank Geoffrey T. Klise for his assistance in developing the Geographic Information Systems maps and Jesse D. Roach for related analyses. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 59 TC 12 Z9 15 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 899 EP 910 DI 10.1016/j.ijggc.2011.03.015 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900030 ER PT J AU Underschultz, J Boreham, C Dance, T Stalker, L Freifeld, B Kirste, D Ennis-King, J AF Underschultz, Jim Boreham, Chris Dance, Tess Stalker, Linda Freifeld, Barry Kirste, Dirk Ennis-King, Jonathan TI CO2 storage in a depleted gas field: An overview of the CO2CRC Otway Project and initial results SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Otway basin; Carbon dioxide storage; Depleted gas field; Dynamic modeling; Geochemistry; Hydrogeology; Monitoring and verification; Tracer compounds AB The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway Project in Australia is the first heavily monitored pilot site for CO2 storage in a depleted natural gas reservoir. With the site characterisation and risk analysis complete, the new CRC-1 injection well was drilled in April 2007. An updated static and dynamic model forecast an injected gas transit time of between 4 and 8 months between CRC-1 injection and Naylor-1 observation wells. Injection began on March 18th 2008 and was halted on August 29th 2009 with 65,445 tonnes of CO2 mixed gas stored. Two pulses of tracer compounds were added to help identify the injected CO2 from other naturally occurring CO2 and to track dispersion and diffusion. Assurance monitoring included surveillance of the atmosphere, soil gas and shallow groundwater. To date, no tracer compounds have been detected above background levels in samples taken as part of the assurance monitoring system. Monitoring of the reservoir has been accomplished with a combined geophysical and geochemical approach. Formation fluids are sampled at pressure with the multilevel U-Tube system. The transient geochemistry at the observation well has: (1) recorded injected gas arrival at the Naylor-1 observation well; (2) recorded tracer compound arrival at Naylor-1; (3) shown a mixing trend between the isotopic signature of the Naylor indigenous CO2 and that of the injection supply gas: and (4) provided an estimate for the dynamic storage capacity for a portion of the Naylor reservoir. The data collected are compared with the pre-injection dynamic model forecasts and provide a means of calibration. The CO2CRC Otway Project has successfully demonstrated the storage of CO2 in a depleted gas field. Geochemical assurance monitoring and reservoir surveillance will continue post injection. Continued analysis of the data will serve to reduce uncertainty in forecasting long term fate of the injected CO2 mixed gas. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Underschultz, Jim; Dance, Tess; Stalker, Linda] CSIRO Earth Sci & Resource Engn, Bentley, WA 6102, Australia. [Underschultz, Jim; Boreham, Chris; Dance, Tess; Stalker, Linda; Kirste, Dirk; Ennis-King, Jonathan] CO2CRC, Canberra, ACT 2601, Australia. [Boreham, Chris] Geosci Australia, Canberra, ACT 2601, Australia. [Freifeld, Barry] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kirste, Dirk] Simon Fraser Univ, Dept Earth Sci, Burnaby, BC V5A 1S6, Canada. [Ennis-King, Jonathan] CSIRO Earth Sci & Resource Engn, Clayton, Vic 3169, Australia. RP Underschultz, J (reprint author), CSIRO Earth Sci & Resource Engn, POB 1130, Bentley, WA 6102, Australia. EM james.underschultz@csiro.au RI Underschultz, Jim/N-1496-2013; Freifeld, Barry/F-3173-2010; OI Underschultz, Jim/0000-0003-2151-1478; Ennis-King, Jonathan/0000-0002-4016-390X FU Australian government; CO2CRC member organizations; United States Department of Energy FX The authors would like the significant contributions of a large interdisciplinary team working on the CO2CRC Otway Project. These include the project manager Sandeep Sharma, M&V manager Charles Jenkins, dynamic modeling by Josh Xu and Lincoln Paterson, assurance monitoring by Allison Hortle, Ulrike Schacht, Patrice de Caritat, Zoe Loh and David Etheridge, aqueous geochemistry by Ernie Perkins, geophysics M&V by Tom Daley and Milovan Urosevic and field sampling by Kate Hill, Toby Kidd, Leon Meggs and Giorgio Palmeri. The paper was improved from the technical review of Mark Bunch at the CO2CRC and two unnamed technical reviews from the IJGGC. The research described in this paper was funded by the Australian government through its CRC program and the CO2CRC member organizations. The United States Department of Energy also provided funding for research presented here, through Lawrence Berkeley National Laboratory. NR 24 TC 34 Z9 35 U1 3 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 922 EP 932 DI 10.1016/j.ijggc.2011.02.009 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900032 ER PT J AU Goodman, A Hakala, A Bromhal, G Deel, D Rodosta, T Frailey, S Small, M Allen, D Romanov, V Fazio, J Huerta, N McIntyre, D Kutchko, B Guthrie, G AF Goodman, Angela Hakala, Alexandra Bromhal, Grant Deel, Dawn Rodosta, Traci Frailey, Scott Small, Mitchell Allen, Doug Romanov, Vyacheslav Fazio, Jim Huerta, Nicolas McIntyre, Dustin Kutchko, Barbara Guthrie, George TI US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2; Geologic storage; Saline formations; Oil and gas reservoirs; Unmineable coal seams; Resource estimates ID COALBED METHANE PRODUCTION; ARGONNE PREMIUM COALS; DEEP SALINE AQUIFERS; CO2 STORAGE; CAPACITY ESTIMATION; BASIN-SCALE; SORPTION; ISOTHERMS; SEQUESTRATION; INJECTION AB A detailed description of the United States Department of Energy (US-DOE) methodology for estimating CO2 storage potential for oil and gas reservoirs, saline formations, and unmineable coal seams is provided. The oil and gas reservoirs are assessed at the field level, while saline formations and unmineable coal seams are assessed at the basin level. The US-DOE methodology is intended for external users such as the Regional Carbon Sequestration Partnerships (RCSPs), future project developers, and governmental entities to produce high-level CO2 resource assessments of potential CO2 storage reservoirs in the United States and Canada at the regional and national scale: however, this methodology is general enough that it could be applied globally. The purpose of the US-DOE CO2 storage methodology, definitions of storage terms, and a CO2 storage classification are provided. Methodology for CO2 storage resource estimate calculation is outlined. The Log Odds Method when applied with Monte Carlo Sampling is presented in detail for estimation of CO2 storage efficiency needed for CO2 storage resource estimates at the regional and national scale. CO2 storage potential reported in the US-DOE's assessment are intended to be distributed online by a geographic information system in NatCarb and made available as hard-copy in the Carbon Sequestration Atlas of the United States and Canada. US-DOE's methodology will be continuously refined, incorporating results of the Development Phase projects conducted by the RCSPs from 2008 to 2018. Estimates will be formally updated every two years in subsequent versions of the Carbon Sequestration Atlas of the United States and Canada. Published by Elsevier Ltd. C1 [Goodman, Angela; Hakala, Alexandra; Romanov, Vyacheslav; Fazio, Jim; Huerta, Nicolas; Kutchko, Barbara; Guthrie, George] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Bromhal, Grant; Deel, Dawn; Rodosta, Traci; McIntyre, Dustin] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Frailey, Scott] Illinois State Geol Survey, Midwest Geol Sequestrat Consortium, Champaign, IL 61820 USA. [Small, Mitchell] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Allen, Doug] Salem State Univ, Salem, MA 01970 USA. RP Goodman, A (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM angela.goodman@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 NR 74 TC 56 Z9 56 U1 1 U2 16 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 952 EP 965 DI 10.1016/j.ijggc.2011.03.010 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900035 ER PT J AU Yamamoto, H Doughty, C AF Yamamoto, Hajime Doughty, Christine TI Investigation of gridding effects for numerical simulations of CO2 geologic sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage; Geologic carbon sequestration; Parallel computation; Large-scale simulation; Gridding effects; Westcarb ID POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; INJECTION; RESERVOIR; CODE AB Potential errors caused by grid shape and resolution are investigated for numerical simulations of CO2 geologic sequestration. The spatial orientation of finite difference grids can strongly influence the calculated shapes of CO2 fronts due to so-called "grid orientation effect". A coarse vertical discretization of a reservoir can impede gravity override (i.e., less-dense CO2 flows over denser groundwater) of CO2 plumes, resulting in underestimation of the maximum plume size. It is known that injection of CO2 into a saline aquifer may cause formation dry-out and precipitation of solid salt near the injection well, which may reduce porosity and permeability of the aquifer. Numerical simulation of salt precipitation may require very fine grid size near the injection well, because dry-out would be greatly underestimated in a large grid block containing a large amount of water. In this study, these gridding effects are demonstrated using one-dimensional and two-dimensional idealized models as well as a three-dimensional field-scale simulation model of a large-volume CO2 injection in a saline formation in California's Central Valley. For the field-scale modeling, we generated a high-resolution grid model utilizing Voronoi tessellation. To solve the high-resolution model efficiently TOUGH-MP, a parallelized version of general purpose multiphase flow simulator TOUGH2, was used. Our results indicate that (1) the use of higher-order Voronoi tessellation significantly reduces the "grid-orientation effects"; (2) coarse grids considerably underestimate gravity override, and thus the maximum lateral extent of a CO2 plume is also underestimated to a few tens of percent; (3) a fine gridding in the vicinity of the injection well may be needed to simulate near-well phenomena accurately, especially when the capillary-driven backflow to the well is significant. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yamamoto, Hajime] Taisei Corp, Totsuka Ku, Yokohama, Kanagawa 2450051, Japan. [Doughty, Christine] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yamamoto, H (reprint author), Taisei Corp, Totsuka Ku, 344-1 Nase Cho, Yokohama, Kanagawa 2450051, Japan. EM hajime.yamamoto@sakura.taisei.co.jp RI Doughty, Christine/G-2389-2015 FU Lawrence Berkeley National Laboratory; Satoshi Imamura and Tomoyuki Aoki of Taisei Corporation; Taisei Corporation; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors appreciate Jeff Wagoner of Lawrence Livermore National Laboratory for providing the geological model of the Kimberlina site. We thank Keni Zhang for the extensive support on the use of TOUGH2-MP code. Thanks are also due to Larry Myer and Curt Oldenburg of Lawrence Berkeley National Laboratory, and Satoshi Imamura and Tomoyuki Aoki of Taisei Corporation for encouragement and support. Our sincere thanks also to two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This work is partly supported by Taisei Corporation, and in part by the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 28 TC 16 Z9 16 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 975 EP 985 DI 10.1016/j.ijggc.2011.02.007 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900037 ER PT J AU Daley, TM Ajo-Franklin, JB Doughty, C AF Daley, Thomas M. Ajo-Franklin, Jonathan B. Doughty, Christine TI Constraining the reservoir model of an injected CO2 plume with crosswell CASSM at the Frio-II brine pilot SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2; Seismic; Crosswell; Reservoir model; Petrophysics ID PARTIAL GAS SATURATION; GEOLOGIC STORAGE; ATTENUATION; AQUIFER; ROCKS AB Crosswell CASSM (continuous active-source seismic monitoring) data was acquired as part of the Frio-II brine pilot CO2 injection experiment. To gain insight into the CO2 plume evolution, we have integrated the 3D multiphase flow modeling code TOUGH2 with seismic simulation codes via a petrophysical model that predicts seismic velocity for a given CO2 saturation. Results of forward seismic modeling based on the CO2 saturation distribution produced by an initial TOUGH2 model compare poorly with the CASSM data, indicating that the initial flow model did not capture the actual CO2 plume dynamics. Updates to the TOUGH2 model required to better match the CASSM field data indicate vertical flow near the injection well, with increased horizontal plume growth occurring at the top of the reservoir sand. The CASSM continuous delay time data are ideal for constraining the modeled spatiotemporal evolution of the CO2 plume and allow improvement in reservoir model and estimation of CO2 plume properties. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Daley, Thomas M.; Ajo-Franklin, Jonathan B.; Doughty, Christine] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Daley, TM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM tmdaley@lbl.gov RI Daley, Thomas/G-3274-2015; Doughty, Christine/G-2389-2015; Ajo-Franklin, Jonathan/G-7169-2015; OI Daley, Thomas/0000-0001-9445-0843; Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy, under contract No. DE-AC02-05CH11231. NR 23 TC 17 Z9 17 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 1022 EP 1030 DI 10.1016/j.ijggc.2011.03.002 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900042 ER PT J AU Boreham, C Underschultz, J Stalker, L Kirste, D Freifeld, B Jenkins, C Ennis-King, J AF Boreham, Chris Underschultz, Jim Stalker, Linda Kirste, Dirk Freifeld, Barry Jenkins, Charles Ennis-King, Jonathan TI Monitoring of CO2 storage in a depleted natural gas reservoir: Gas geochemistry from the CO2CRC Otway Project, Australia SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Otway Basin; Carbon dioxide; Methane; Geosequestration; Depleted natural gas reservoir; Gas geochemistry; Carbon isotopes; Tracers; Waxy hydrocarbons; Monitoring ID EQUATION-OF-STATE; ISOTOPIC FRACTIONATION; CARBON-DIOXIDE; SITE; HYDROCARBONS; TEMPERATURES; PREDICTIONS; INJECTION; SYSTEMS; WATER AB The CO2CRC Otway Project in southwestern Victoria, Australia has injected over 17 months 65,445 tonnes of a mixed CO2-CH4 fluid into the water leg of a depleted natural gas reservoir at a depth of similar to 2 km. Pressurized sub-surface fluids were collected from the Naylor-1 observation well using a tri-level U-tube sampling system located near the crest of the fault-bounded anticlinal trap, 300 m up-dip of the CRC-1 gas injection well. Relative to the pre-injection gas-water contact (GWC), only the shallowest U-tube initially accessed the residual methane gas cap. The pre-injection gas cap at Naylor-1 contains CO2 at 1.5 mol% compared to 75.4 mol% for the injected gas from the Buttress-1 supply well and its CO2 is depleted in C-13 by 4.5 parts per thousand VPDB compared to the injected supercritical CO2. Additional assurance of the arrival of injected gas at the observation well is provided by the use of the added tracer compounds, CD4, Kr and SF6 in the injected gas stream. The initial breakthrough of the migrating dissolved CO2 front occurs between 100 and 121 days after CO2 injection began, as evidenced by positive responses of both the natural and artificial tracers at the middle U-tube, located an average 2.3 m below the pre-injection GWC. The major CO2 increase to similar to 60 mol% and transition from sampling formation water with dissolved gas to sampling free gas occurred several weeks after the initial breakthrough. After another similar to 3 months the CO2 content in the lowest U-tube, a further average 4.5 m deeper, increased to similar to 60 mol%, similarly accompanied by a transition to sampling predominantly gases. Around this time, the CO2 content of the upper U-tube, located in the gas cap and an average 10.4 m above the pre-injection GWC, increased to similar to 20 mol%. Subsequently, the CO2 content in the upper U-tube approaches 30 mol% while the lower two U-tubes show a gradual decrease in CO2 to similar to 48 mol%, resulting from mixing of injected and indigenous fluids and partitioning between dissolved and free gas phases. Lessons learnt from the CO2CRC Otway Project have enabled us to better anticipate the challenges for rapid deployment of carbon storage in a commercial environment at much larger scales. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved. C1 [Boreham, Chris] Geosci Australia, Canberra, ACT 2601, Australia. [Boreham, Chris; Underschultz, Jim; Stalker, Linda; Kirste, Dirk; Jenkins, Charles; Ennis-King, Jonathan] CO2CRC, Canberra, ACT 2601, Australia. [Underschultz, Jim; Stalker, Linda] CSIRO Earth Sci & Resource Engn, Bentley, WA 6102, Australia. [Kirste, Dirk] Simon Fraser Univ, Dept Earth Sci, Burnaby, BC V5A 1S6, Canada. [Freifeld, Barry] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jenkins, Charles] CSIRO Earth Sci & Resource Engn, Canberra, ACT 2601, Australia. [Ennis-King, Jonathan] CSIRO Earth Sci & Resource Engn, Clayton, Vic 3169, Australia. RP Boreham, C (reprint author), Geosci Australia, POB 378, Canberra, ACT 2601, Australia. EM chris.boreham@ga.gov.au RI Underschultz, Jim/N-1496-2013; Freifeld, Barry/F-3173-2010; OI Underschultz, Jim/0000-0003-2151-1478; Ennis-King, Jonathan/0000-0002-4016-390X NR 47 TC 33 Z9 35 U1 3 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 1039 EP 1054 DI 10.1016/j.ijggc.2011.03.011 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900044 ER PT J AU Kwak, JH Hu, JZ Turcu, RVF Rosso, KM Ilton, ES Wang, CM Sears, JA Engelhard, MH Felmy, AR Hoyt, DW AF Kwak, Ja Hun Hu, Jian Zhi Turcu, Romulus V. F. Rosso, Kevin M. Ilton, Eugene S. Wang, Chongmin Sears, Jesse A. Engelhard, Mark H. Felmy, Andrew R. Hoyt, David W. TI The role of H2O in the carbonation of forsterite in supercritical CO2 SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon sequestration; CO2; NMR; XPS; Forsterite; Water threshold ID HIGH-RESOLUTION; GEOLOGICAL MEDIA; SEQUESTRATION REACTIONS; DISSOLUTION KINETICS; CLIMATE-CHANGE; DIOXIDE; OLIVINE; TEMPERATURE; MINERALS; AQUIFER AB The effect of variable H2O content on the carbonation of forsterite in supercritical CO2 (scCO(2)) at 80 degrees C and 76 bars (7.6 MPa) was investigated by a combination of NMR, XRD, TEM and XPS. When trace amounts of H2O were included, limited reaction was observed. Below H2O saturation in scCO2, reaction products were a mixture of partially hydrated/hydroxylated magnesium carbonates and hydroxylated silica species that were mainly in an amorphous state, forming a non-resolved layer on the forsterite surface. At H2O content above saturation, where forsterite was in contact with both a CO2-saturated aqueous fluid and H2O-saturated scCO(2), solid reaction products were magnesite (MgCO3) and an amorphous polymerized SiO2. Formation of these anhydrous phases implies H2O initially bound in precursor hydrated/hydroxylated reaction products was liberated, inducing further reaction. Hence, for a given fluid/mineral ratio there is a H2O threshold above which a significant portion of the H2O serves in a catalytic role where more extensive carbonation reaction occurs. Defining the role of H2O, even in low H2O content environments, is therefore critical to determining the long term impact of CO2 reactivity in the subsurface. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hu, Jian Zhi] Pacific NW Natl Lab, Dept Fundamental & Computat Sci, Richland, WA 99352 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Dept Fundamental & Computat Sci, 902 Battelle Blvd,POB 999,MS K8-98, Richland, WA 99352 USA. EM Jianzhi.Hu@pnl.gov; david.hoyt@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Engelhard, Mark/F-1317-2010; Hoyt, David/H-6295-2013; Kwak, Ja Hun/J-4894-2014; Turcu, Flaviu/B-3555-2015; OI Turcu, Flaviu/0000-0002-0857-9868; Engelhard, Mark/0000-0002-5543-0812 FU Carbon Sequestration Initiative; Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy (DOE), Office of Basic Energy Sciences through a Single Investigator Small Group Research (SISGR); Department of Energy's DOE Office of Biological and Environmental Research; DOE by Battelle Memorial Institute [DE-AC06-76RLO-1830] FX This work was supported by the Carbon Sequestration Initiative funded by Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL), and the U.S. Department of Energy (DOE), Office of Basic Energy Sciences through a Single Investigator Small Group Research (SISGR) grant. All the experiments were performed using at the Environmental Molecular Science Laboratory, EMSL, a national scientific user facility sponsored by the Department of Energy's DOE Office of Biological and Environmental Research, and located at PNNL. PNNL is operated for DOE by Battelle Memorial Institute under Contract# DE-AC06-76RLO-1830. NR 44 TC 45 Z9 45 U1 5 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2011 VL 5 IS 4 BP 1081 EP 1092 DI 10.1016/j.ijggc.2011.05.013 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 817UA UT WOS:000294700900048 ER PT J AU Moored, KW Dewey, PA Leftwich, MC Bart-Smith, H Smits, AJ AF Moored, Keith W. Dewey, Peter A. Leftwich, Megan C. Bart-Smith, Hilary Smits, Alexander J. TI Bioinspired Propulsion Mechanisms Based on Manta Ray Locomotion SO MARINE TECHNOLOGY SOCIETY JOURNAL LA English DT Article DE mobuliform; manta ray; unsteady; swimming; flexible actuators ID INERTIAL FLOW REGIMES; ENERGY ECONOMY; WAKE STRUCTURE; HYDRODYNAMICS; PERFORMANCE; EFFICIENCY; FOILS; FIN AB Mobuliform swimmers are inspiring novel approaches to the design of underwater vehicles. These swimmers, exemplified by manta rays, present a model for new classes of efficient, highly maneuverable, autonomous undersea vehicles. To improve our understanding of the unsteady propulsion mechanisms used by these swimmers, we report detailed studies of the performance of robotic swimmers that mimic aspects of the animal propulsive mechanisms. We highlight the importance of the undulatory aspect of producing efficient manta ray propulsion and show that there is a strong interaction between the propulsive performance and the flexibility of the actuating surfaces. C1 [Moored, Keith W.; Dewey, Peter A.; Smits, Alexander J.] Princeton Univ, Princeton, NJ 08544 USA. [Leftwich, Megan C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Bart-Smith, Hilary] Univ Virginia, Charlottesville, VA 22903 USA. RP Smits, AJ (reprint author), Princeton Univ, Princeton, NJ 08544 USA. EM asmits@princeton.edu RI Smits, Alexander/B-4083-2016 OI Smits, Alexander/0000-0002-3883-8648 FU Office of Naval Research [N0001408-1-0642]; David and Lucille Packard Foundation; National Science Foundation [CMS-0384884]; Virginia Space Grant Consortium FX The authors would like to thank Daphne Rein-Weston, Dan Quinn, and Dr. Melissa Green for their aid in developing the low-friction carriage experiment. We would also like to thank Professor Frank Fish for correspondence regarding manta rays in nature. The authors would like to acknowledge funding from the Office of Naval Research through the MURI program on Biologically-Inspired Autonomous Sea Vehicles (grant N0001408-1-0642), the David and Lucille Packard Foundation, the National Science Foundation (grant CMS-0384884), and the Virginia Space Grant Consortium. NR 25 TC 12 Z9 12 U1 2 U2 20 PU MARINE TECHNOLOGY SOC INC PI COLUMBIA PA 5565 STERRETT PLACE, STE 108, COLUMBIA, MD 21044 USA SN 0025-3324 J9 MAR TECHNOL SOC J JI Mar. Technol. Soc. J. PD JUL-AUG PY 2011 VL 45 IS 4 BP 110 EP 118 PG 9 WC Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 818GD UT WOS:000294738700013 ER PT J AU Xu, YM Richard, P Nakayama, K Kawahara, T Sekiba, Y Qian, T Neupane, M Souma, S Sato, T Takahashi, T Luo, HQ Wen, HH Chen, GF Wang, NL Wang, Z Fang, Z Dai, X Ding, H AF Xu, Y. -M. Richard, P. Nakayama, K. Kawahara, T. Sekiba, Y. Qian, T. Neupane, M. Souma, S. Sato, T. Takahashi, T. Luo, H. -Q. Wen, H. -H. Chen, G. -F. Wang, N. -L. Wang, Z. Fang, Z. Dai, X. Ding, H. TI Fermi surface dichotomy of the superconducting gap and pseudogap in underdoped pnictides SO NATURE COMMUNICATIONS LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; NORMAL-STATE; BA0.6K0.4FE2AS2; BI2SR2CACU2O8+DELTA; ANISOTROPY AB High-temperature superconductivity in iron-arsenic materials (pnictides) near an anti-ferromagnetic phase raises the possibility of spin-fluctuation-mediated pairing. However, the interplay between antiferromagnetic fluctuations and superconductivity remains unclear in the underdoped regime, which is closer to the antiferromagnetic phase. Here we report that the superconducting gap of underdoped pnictides scales linearly with the transition temperature, and that a distinct pseudogap coexisting with the superconducting gap develops on under-doping. This pseudogap occurs on Fermi surface sheets connected by the antiferromagnetic wavevector, where the superconducting pairing is stronger as well, suggesting that antiferromagnetic fluctuations drive both the pseudogap and superconductivity. Interestingly, we found that the pseudogap and the spectral lineshape vary with the Fermi surface quasi-nesting conditions in a fashion that shares similarities with the nodal-antinodal dichotomous behaviour observed in underdoped copper oxide superconductors. C1 [Richard, P.; Qian, T.; Luo, H. -Q.; Wen, H. -H.; Chen, G. -F.; Wang, N. -L.; Fang, Z.; Dai, X.; Ding, H.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Richard, P.; Qian, T.; Luo, H. -Q.; Wen, H. -H.; Chen, G. -F.; Wang, N. -L.; Fang, Z.; Dai, X.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Xu, Y. -M.; Neupane, M.; Wang, Z.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Richard, P.; Souma, S.; Takahashi, T.] Tohoku Univ, Adv Inst Mat Res, WPI Res Ctr, Sendai, Miyagi 9808577, Japan. [Xu, Y. -M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Nakayama, K.; Kawahara, T.; Sekiba, Y.; Qian, T.; Sato, T.; Takahashi, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Sato, T.] Japan Sci & Technol Agcy, TRiP, Kawaguchi, Saitama 3320012, Japan. [Chen, G. -F.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Ding, H (reprint author), Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM dingh@aphy.iphy.ac.cn RI Nakayama, Kosuke/F-7897-2011; Takahashi, Takashi/E-5080-2010; Richard, Pierre/F-7652-2010; Sato, Takafumi/E-5094-2010; 石, 源/D-5929-2012; Luo, Huiqian/F-4049-2012; ruc, phy/E-4170-2012; souma, seigo/A-4858-2010; Xu, Yiming/B-3966-2011; Fang, Zhong/D-4132-2009; OI Richard, Pierre/0000-0003-0544-4551; Ding, Hong/0000-0003-4422-9248 FU Chinese Academy of Sciences; NSF [DMR-0537588]; Ministry of Science and Technology of China; TRiP-JST; CREST-JST; JSPS; MEXT of Japan; DOE of US FX We thank J.H. Bowen for proofreading our manuscript. We acknowledge the support through grants from the Chinese Academy of Sciences, NSF, Ministry of Science and Technology of China, TRiP-JST, CREST-JST, JSPS and MEXT of Japan, and NSF, DOE of US. This work was based on research conducted at the Synchrotron Radiation Center supported by NSF No. DMR-0537588. NR 33 TC 46 Z9 46 U1 2 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD JUL PY 2011 VL 2 AR 392 DI 10.1038/ncomms1394 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819DJ UT WOS:000294805300019 PM 21750547 ER PT J AU Chevanan, N Womac, AR Bitra, VS Sokhansanj, S AF Chevanan, N. Womac, A. R. Bitra, V. S. Sokhansanj, S. TI EFFECT OF PARTICLE SIZE DISTRIBUTION ON LOOSE-FILLED AND TAPPED DENSITIES OF SELECTED BIOMASS AFTER KNIFE MILL SIZE REDUCTION SO APPLIED ENGINEERING IN AGRICULTURE LA English DT Article DE Biomass; Loose-filled bulk density; Tapped bulk density; 'S' curve; Particle size distribution ID PHYSICAL-PROPERTIES; SWITCHGRASS; WHEAT AB Unique particle size distributions were created with a knife mill using four different classifying screen sizes ranging from 12.7 to 50.8 mm, plus other mill operating conditions. Mathematical descriptors of these distributions were then correlated with loose-filled and tapped densities. A forage size distribution standard (ASABE Standard S424.1) was used to determine the mass fractions on five sizes of sieves and a pan. Weakness of the forage standard was noted for coarse particle distributions that were not normally distributed across sieve sizes. Resulting particle distributions were modeled using both unconstrained and constrained Sigmoid (('S') curves. A wider range of increased sieve sizes for the standard would aide particle distribution modeling. Mass fractions retained on the bottom sieve and pan correlated significantly with biomass densities, likely due to packing of fine particles in void space. Fitting of the cumulative particle size distributions using unconstrained 'S' curves indicated a strong linear correlation between curve fit parameters such as asymptote value and slope factor with densities of biomass. Asymptote values correlated significantly with loose-filled and tapped bulk densities with Pearson correlation coefficients ranging from -0.668 to -0.765 for chopped switch grass, wheat straw, and corn stover Slope factors correlated significantly with loose-filled and tapped bulk densities with correlation coefficients ranging from -0.712 to -0.879. Regression models developed using slope factor predicted the loose filled and tapped bulk density with greater accuracy than a regression model using asymptote value. Mean loose-filled bulk densities were 67.5 +/- 18.4 kg/m(3) for switch grass, 36.1 +/- 8.6 kg/m(3) for wheat straw, and 52.1 +/- 10.8 kg/m(3) for corn stover Mean tapped bulk densities were 81.8 +/- 26.2 kg/m(3) for switchgrass, 42.8 +/- 11.7 kg/m(3) for wheat straw, and 58.9 +/- 13.4 kg/m(3) for corn stover On average, tapping increased bulk density by 21.2% for switchgrass, 18.7% for wheat straw, and 13.0% for corn stover. These results can be used to design efficient size reduction, handling, storage, and transportation systems for chopped biomass. C1 [Womac, A. R.; Bitra, V. S.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. [Chevanan, N.] Altex Technol Corp, Sunnyvale, CA USA. [Sokhansanj, S.] Oak Ridge Natl Lab, Bioenergy Resource & Engn Syst Grp, Div Environm Studies, Oakridge, TN USA. RP Womac, AR (reprint author), Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA. EM awomac@utk.edu FU USDA-NRCS [68-3A75-4-136]; USDA-DOE Biomass Research and Development Initiative [DE-PA36-04GO94002] FX We thankfully acknowledge the funding support provided through the USDA-NRCS Grant Agreement 68-3A75-4-136 and USDA-DOE Biomass Research and Development Initiative DE-PA36-04GO94002 for carrying out this project work. NR 27 TC 3 Z9 3 U1 1 U2 10 PU AMER SOC AGRICULTURAL & BIOLOGICAL ENGINEERS PI ST JOSEPH PA 2950 NILES RD, ST JOSEPH, MI 49085-9659 USA SN 0883-8542 J9 APPL ENG AGRIC JI Appl. Eng. Agric. PD JUL PY 2011 VL 27 IS 4 BP 631 EP 644 PG 14 WC Agricultural Engineering SC Agriculture GA 812WB UT WOS:000294322500015 ER PT J AU Krug, PW Lee, LJ Eslami, AC Larson, CR Rodriguez, L AF Krug, Peter W. Lee, Laura J. Eslami, Angelique C. Larson, Christopher R. Rodriguez, Luis TI Chemical disinfection of high-consequence transboundary animal disease viruses on nonporous surfaces SO BIOLOGICALS LA English DT Article DE Transboundary disease; Foot-and-mouth; Swine fever; Surface disinfection ID CLASSICAL SWINE-FEVER; MOUTH-DISEASE; VIRUCIDAL ACTIVITY; GREAT-BRITAIN; INACTIVATION; EPIDEMIC; PH; NETHERLANDS; SURVIVAL; OUTBREAK AB Disinfection is a critical part of the response to transboundary animal disease virus (TADV) outbreaks by inactivating viruses on fomites to help control infection. To model the inactivation of TADV on fomites, we tested selected chemicals to inactivate Foot and Mouth Disease virus (FMDV), African Swine Fever virus (ASFV), and Classical Swine Fever virus (CSFV) dried on steel and plastic surfaces. For each of these viruses, we observed a 2 to 3 log reduction of infectivity due to drying alone. We applied a modified surface disinfection method to determine the efficacy of selected disinfectants to inactivate surface-dried high-titer stocks of these three structurally different TADV. ASFV and FMDV were susceptible to sodium hypochlorite (500 and 1000 ppm, respectively) and citric acid (1%) resulting in complete disinfection. Sodium carbonate (4%), while able to reduce FMDV infectivity by greater than 4-log units, only reduced ASFV by 3 logs. Citric acid (2%) did not totally inactivate dried CSFV, suggesting it may not be completely effective for disinfection in the field. Based on these data we recommend disinfectants be formulated with a minimum of 1000 ppm sodium hypochlorite for ASFV and CSFV disinfection, and a minimum of 1% citric acid for FMDV disinfection. Published by Elsevier Ltd on behalf of The International Alliance for Biologicals. C1 [Krug, Peter W.; Rodriguez, Luis] ARS, Foreign Anim Dis Res Unit, USDA, Plum Isl Anim Dis Ctr, Greenport, NY 11944 USA. [Lee, Laura J.; Eslami, Angelique C.; Larson, Christopher R.] Oak Ridge Inst Sci & Educ, Plum Isl Anim Dis Ctr Res Participat Program, Oak Ridge, TN USA. RP Krug, PW (reprint author), ARS, Foreign Anim Dis Res Unit, USDA, Plum Isl Anim Dis Ctr, POB 848, Greenport, NY 11944 USA. EM peter.krug@ars.usda.gov FU EPA-USDA [60-1940-8-055]; Oak Ridge Institute for Science and Education at the Plum Island Animal Disease Center FX This work was funded by EPA-USDA Interagency Agreement number 60-1940-8-055. LJL, CRL and ACE were funded by the Oak Ridge Institute for Science and Education as part of the Research Participation Program at the Plum Island Animal Disease Center. We thank Jeff Kempter (EPA) and Nathan Birnbaum (USDA/APHIS) for helpful comments during the revision of this manuscript. NR 28 TC 5 Z9 5 U1 0 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 1045-1056 J9 BIOLOGICALS JI Biologicals PD JUL PY 2011 VL 39 IS 4 BP 231 EP 235 DI 10.1016/j.biologicals.2011.06.016 PG 5 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Pharmacology & Pharmacy SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Pharmacology & Pharmacy GA 815NG UT WOS:000294531700006 PM 21798759 ER PT J AU Korber, B AF Korber, Bette TI Building on the past to define an efficient path to an HIV vaccine SO EXPERT REVIEW OF VACCINES LA English DT Editorial Material DE CD8(+) T cells; HIV vaccines; neutralizing antibodies ID RECOMBINANT GLYCOPROTEIN-120 VACCINE; HUMAN-IMMUNODEFICIENCY-VIRUS; EFFICACY TRIAL; ANTIBODY-RESPONSE; RHESUS-MONKEYS; GP120 VACCINE; AIDS RESEARCH; T-CELLS; INFECTION; MACAQUES C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Korber, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM btk@lanl.gov OI Korber, Bette/0000-0002-2026-5757 NR 26 TC 3 Z9 3 U1 0 U2 0 PU EXPERT REVIEWS PI LONDON PA UNITEC HOUSE, 3RD FL, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON N3 1QB, ENGLAND SN 1476-0584 J9 EXPERT REV VACCINES JI Expert Rev. Vaccines PD JUL PY 2011 VL 10 IS 7 BP 929 EP 931 DI 10.1586/ERV.11.81 PG 3 WC Immunology SC Immunology GA 813UD UT WOS:000294394800002 PM 21806390 ER PT J AU Vogt, R AF Vogt, R. TI Predicting the total charm cross section SO INDIAN JOURNAL OF PHYSICS LA English DT Article DE Heavy ion collisions; particle production AB We discuss the energy dependence of the total charm cross section and some of its theoretical uncertainties including the quark mass, scale choice and the parton densities. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM vogt2@llnl.gov FU US Department of Energy by Lawrence Livermore National Security, LLC; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [NSF PHY-0555660] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The work was also supported in part by the National Science Foundation Grant NSF PHY-0555660. NR 9 TC 0 Z9 0 U1 0 U2 1 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD JUL PY 2011 VL 85 IS 7 BP 1075 EP 1078 DI 10.1007/s12648-011-0136-1 PG 4 WC Physics, Multidisciplinary SC Physics GA 804ER UT WOS:000293637600013 ER PT J AU Megias, E Arriola, ER Salcedo, LL AF Megias, E. Arriola, E. R. Salcedo, L. L. TI Trace anomaly and dimension two gluon condensate above the phase transition SO INDIAN JOURNAL OF PHYSICS LA English DT Article DE QCD; Gluodynamic ID FINITE-TEMPERATURE; ENERGY; QCD; MASS; LOOP AB The dimension two gluon condensate has been used previously within a simple phenomenological model to describe power corrections from available lattice data for the renormalized Polyakov loop and the heavy quark-antiquark free energy in the deconfined phase of QCD [1,2]. The QCD trace anomaly of gluodynamics also shows unequivocal inverse temperature power corrections which may be encoded as dimension two gluon condensate. We analyze lattice data of the trace anomaly and compare with other determinations of the condensate from previous references, yielding roughly similar numerical values. C1 [Megias, E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Arriola, E. R.; Salcedo, L. L.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain. RP Megias, E (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM emegias@quark.phy.bnl.gov RI Salcedo, Lorenzo Luis/A-8845-2008; Ruiz Arriola, Enrique/A-9388-2015; OI Salcedo, Lorenzo Luis/0000-0002-3575-0341; Ruiz Arriola, Enrique/0000-0002-9570-2552; Megias, Eugenio/0000-0002-6735-9013 NR 19 TC 4 Z9 5 U1 0 U2 1 PU INDIAN ASSOC CULTIVATION SCIENCE PI KOLKATA PA INDIAN J PHYSICS, JADAVPUR, KOLKATA 700 032, INDIA SN 0973-1458 J9 INDIAN J PHYS JI Indian J. Phys. PD JUL PY 2011 VL 85 IS 7 BP 1191 EP 1196 DI 10.1007/s12648-011-0120-9 PG 6 WC Physics, Multidisciplinary SC Physics GA 804ER UT WOS:000293637600033 ER PT J AU Adloff, C Blaha, J Blaising, JJ Drancourt, C Espargiliere, A Gaglione, R Geffroy, N Karyotakis, Y Prast, J Vouters, G Francis, K Repond, J Smith, J Xia, L Baldolemar, E Li, J Park, ST Sosebee, M White, AP Yu, J Buanes, T Eigen, G Mikami, Y Watson, NK Goto, T Mavromanolakis, G Thomson, MA Ward, DR Yan, W Benchekroun, D Hoummada, A Khoulaki, Y Benyamna, M Carloganu, C Fehr, F Gay, P Manen, S Royer, L Blazey, GC Dyshkant, A Lima, JGR Zutshi, V Hostachy, JY Morin, L Cornett, U David, D Fabbri, R Falley, G Gadow, K Garutti, E Gottlicher, P Gunter, C Karstensen, S Krivan, F Lucaci-Timoce, AI Lu, S Lutz, B Marchesini, I Meyer, N Morozov, S Morgunov, V Reinecke, M Sefkow, F Smirnov, P Terwort, M Vargas-Trevino, A Wattimena, N Wendt, O Feege, N Haller, J Richter, S Samson, J Eckert, P Kaplan, A Schultz-Coulon, HC Shen, W Stamen, R Tadday, A Bilki, B Norbeck, E Onel, Y Wilson, GW Kawagoe, K Uozumi, S Dauncey, PD Magnan, AM Wing, M Salvatore, F Alamillo, EC Fouz, MC Puerta-Pelayo, J Balagura, V Bobchenko, B Chadeeva, M Danilov, M Epifantsev, A Markin, O Mizuk, R Novikov, E Rusinov, V Tarkovsky, E Kirikova, N Kozlov, V Soloviev, Y Buzhan, P Dolgoshein, B Ilyin, A Kantserov, V Kaplin, V Karakash, A Popova, E Smirnov, S Frey, A Kiesling, C Seidel, K Simon, F Soldner, C Weuste, L Bonis, J Bouquet, B Callier, S Cornebise, P Doublet, P Dulucq, F Giannelli, MF Fleury, J Li, H Martin-Chassard, G Richard, F de la Taille, C Poschl, R Raux, L Seguin-Moreau, N Wicek, F Anduze, M Boudry, V Brient, JC Jeans, D de Freitas, PM Musat, G Reinhard, M Ruan, M Videau, H Bulanek, B Zacek, J Cvach, J Gallus, P Havranek, M Janata, M Kvasnicka, J Lednicky, D Marcisovsky, M Polak, I Popule, J Tomasek, L Tomasek, M Ruzicka, P Sicho, P Smolik, J Vrba, V Zalesak, J Belhorma, B Ghazlane, H Takeshita, T AF Adloff, C. Blaha, J. Blaising, J. -J. Drancourt, C. Espargiliere, A. Gaglione, R. Geffroy, N. Karyotakis, Y. Prast, J. Vouters, G. Francis, K. Repond, J. Smith, J. Xia, L. Baldolemar, E. Li, J. Park, S. T. Sosebee, M. White, A. P. Yu, J. Buanes, T. Eigen, G. Mikami, Y. Watson, N. K. Goto, T. Mavromanolakis, G. Thomson, M. A. Ward, D. R. Yan, W. Benchekroun, D. Hoummada, A. Khoulaki, Y. Benyamna, M. Carloganu, C. Fehr, F. Gay, P. Manen, S. Royer, L. Blazey, G. C. Dyshkant, A. Lima, J. G. R. Zutshi, V. Hostachy, J. -Y. Morin, L. Cornett, U. David, D. Fabbri, R. Falley, G. Gadow, K. Garutti, E. Goettlicher, P. Guenter, C. Karstensen, S. Krivan, F. Lucaci-Timoce, A. -I. Lu, S. Lutz, B. Marchesini, I. Meyer, N. Morozov, S. Morgunov, V. Reinecke, M. Sefkow, F. Smirnov, P. Terwort, M. Vargas-Trevino, A. Wattimena, N. Wendt, O. Feege, N. Haller, J. Richter, S. Samson, J. Eckert, P. Kaplan, A. Schultz-Coulon, H. -Ch. Shen, W. Stamen, R. Tadday, A. Bilki, B. Norbeck, E. Onel, Y. Wilson, G. W. Kawagoe, K. Uozumi, S. Dauncey, P. D. Magnan, A. -M. Wing, M. Salvatore, F. Alamillo, E. Calvo Fouz, M. -C. Puerta-Pelayo, J. Balagura, V. Bobchenko, B. Chadeeva, M. Danilov, M. Epifantsev, A. Markin, O. Mizuk, R. Novikov, E. Rusinov, V. Tarkovsky, E. Kirikova, N. Kozlov, V. Soloviev, Y. Buzhan, P. Dolgoshein, B. Ilyin, A. Kantserov, V. Kaplin, V. Karakash, A. Popova, E. Smirnov, S. Frey, A. Kiesling, C. Seidel, K. Simon, F. Soldner, C. Weuste, L. Bonis, J. Bouquet, B. Callier, S. Cornebise, P. Doublet, Ph. Dulucq, F. Giannelli, M. Faucci Fleury, J. Li, H. Martin-Chassard, G. Richard, F. de la Taille, Ch. Poeschl, R. Raux, L. Seguin-Moreau, N. Wicek, F. Anduze, M. Boudry, V. Brient, J-C. Jeans, D. de Freitas, P. Mora Musat, G. Reinhard, M. Ruan, M. Videau, H. Bulanek, B. Zacek, J. Cvach, J. Gallus, P. Havranek, M. Janata, M. Kvasnicka, J. Lednicky, D. Marcisovsky, M. Polak, I. Popule, J. Tomasek, L. Tomasek, M. Ruzicka, P. Sicho, P. Smolik, J. Vrba, V. Zalesak, J. Belhorma, B. Ghazlane, H. Takeshita, T. CA CALICE Collaboration TI Tests of a Particle Flow Algorithm with CALICE test beam data SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Large detector systems for particle and astroparticle physics; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) AB The studies presented in this paper provide a first experimental test of the Particle Flow Algorithm (PFA) concept using data recorded in high granularity calorimeters. Pairs of overlaid pion showers from CALICE 2007 test beam data are reconstructed by the PandoraPFA program developed to implement PFA for a future lepton collider. Recovery of a neutral hadron's energy in the vicinity of a charged hadron is studied. The impact of the two overlapping hadron showers on energy resolution is investigated. The dependence of the confusion error on the distance between a 10 GeV neutral hadron and a charged pion is derived for pion energies of 10 and 30 GeV which are representative of a 100 GeV jet. The comparison of these test beam data results with Monte Carlo simulation is done for various hadron shower models within the GEANT4 framework. The results for simulated particles and for beam data are in good agreement thereby providing support for previous simulation studies of the power of Particle Flow Calorimetry at a future lepton collider. C1 [Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Adloff, C.; Blaha, J.; Blaising, J. -J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.] Univ Savoie, Lab Annecy Le Vieux Phys Particules, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Francis, K.; Repond, J.; Smith, J.; Xia, L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Buanes, T.; Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Mikami, Y.; Watson, N. K.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Benchekroun, D.; Hoummada, A.; Khoulaki, Y.] Univ Hassan II Ain Chock, Fac Sci, Casablanca, Morocco. [Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.] Univ Clermont Ferrand, CNRS, IN2P3, Clermont Univ,LPC, F-63000 Clermont Ferrand, France. [Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.] No Illinois Univ, NICADD, Dept Phys, De Kalb, IL 60115 USA. [Hostachy, J. -Y.; Morin, L.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Inst Polytech Grenoble, CNRS IN2P3, F-38026 Grenoble, France. [Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Goettlicher, P.; Guenter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A. -I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.] DESY, D-22603 Hamburg, Germany. [Feege, N.; Haller, J.; Richter, S.; Samson, J.] Univ Hamburg, Dept Phys, Inst Expt Phys, D-22761 Hamburg, Germany. [Eckert, P.; Kaplan, A.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Tadday, A.] Univ Heidelberg, Fak Phys & Astron, D-69120 Heidelberg, Germany. [Bilki, B.; Norbeck, E.; Onel, Y.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Wilson, G. W.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Kawagoe, K.; Uozumi, S.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Dauncey, P. D.; Magnan, A. -M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Dept Phys, London SW7 2AZ, England. [Wing, M.] UCL, Dept Space Phys & Astron, London WC1E 6BT, England. [Salvatore, F.] Royal Holloway Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Alamillo, E. Calvo; Fouz, M. -C.; Puerta-Pelayo, J.] CIEMAT, Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Kozlov, V.; Soloviev, Y.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 117924, Russia. [Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Frey, A.] Moscow Phys Engn Inst, Dept Phys, MEPhI, Moscow 115409, Russia. [Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Giannelli, M. Faucci; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.] Univ Paris 11, Lab Accelerateur Lineaire, Ctr Sci Orsay, CNRS IN2P3, F-91898 Orsay, France. [Anduze, M.; Boudry, V.; Brient, J-C.; Jeans, D.; de Freitas, P. Mora; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.] Ecole Polytech, CNRS, IN2P3, LLR, F-91128 Palaiseau, France. [Bulanek, B.; Zacek, J.] Charles Univ Prague, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Belhorma, B.; Ghazlane, H.] Ctr Natl Energie Sci & Tech Nucl, Rabat 10001, Morocco. [Takeshita, T.] Shinshu Univ, Dept Phys, Nagano 390861, Japan. RP Markin, O (reprint author), Inst Theoret & Expt Phys, B Cheremushkinskaya Ul 25, RU-117218 Moscow, Russia. EM markin@itep.ru RI Kirikova, Nataliia/N-1710-2015; Smirnov, Petr/N-9652-2015; Danilov, Mikhail/C-5380-2014; Smirnov, Sergei/F-1014-2011; Mizuk, Roman/B-3751-2014; Chadeeva, Marina/C-8789-2016; Cvach, Jaroslav/G-6269-2014; Smolik, Jan/H-1479-2014; Marcisovsky, Michal/H-1533-2014; Zalesak, Jaroslav/G-5691-2014; Calvo Alamillo, Enrique/L-1203-2014; Kozlov, Valentin/M-8000-2015; Soloviev, Yury/M-8788-2015 OI Danilov, Mikhail/0000-0001-9227-5164; Smirnov, Sergei/0000-0002-6778-073X; Chadeeva, Marina/0000-0003-1814-1218; Zalesak, Jaroslav/0000-0002-4519-4705; Calvo Alamillo, Enrique/0000-0002-1100-2963; Soloviev, Yury/0000-0003-1136-2827 FU 'Quarks and Leptons' programme, France [CNRS/IN2P3]; Bundesministerium fur Bildung und Forschung, Germany [05HS6VH1]; DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; Helmholtz-Nachwuchsgruppen [VH-NG-206]; Alexander von Humboldt Foundation [RUS1066839 GSA]; joint Helmholtz Foundation and RFBR, SC Rosatom [HRJRG-002]; Russian GrantsRussian Ministry for Education and Science [SS-3270.2010.2, RFBR07-02-92281, RFBR08-02-12100-OF, RFBR09-02-91321]; Russian National Educational Center [02.740.11.0239]; MICINN; CPAN, Spain; US Department of Energy; US National Science Foundation; Ministry of Education, Youth and Sports of the Czech Republic [AV0 Z3407391, AV0 Z10100502, LC527, LA09042]; Grant Agency of the Czech Republic [202/05/0653]; Science and Technology Facilities Council, UK FX We would like to thank the technicians and the engineers who contributed to the design and construction of the prototypes. CALICE conducts test beams at CERN, DESY and FNAL and we gratefully acknowledge the managements of these laboratories for their support and hospitality, and their accelerator staff for the reliable and efficient beam operation. This work was supported within the 'Quarks and Leptons' programme of the CNRS/IN2P3, France; Bundesministerium fur Bildung und Forschung, grant no. 05HS6VH1, Germany; by the DFG cluster of excellence 'Origin and Structure of the Universe' of Germany; by the Helmholtz-Nachwuchsgruppen grant VH-NG-206; by the Alexander von Humboldt Foundation (Research Award IV, RUS1066839 GSA); by joint Helmholtz Foundation and RFBR grant HRJRG-002, SC Rosatom; by Russian Grants SS-3270.2010.2, RFBR07-02-92281, RFBR08-02-12100-OF, RFBR09-02-91321, by the Russian Ministry for Education and Science and by Russian National Educational Center grant 02.740.11.0239; by MICINN and CPAN, Spain; by the US Department of Energy and the US National Science Foundation; by the Ministry of Education, Youth and Sports of the Czech Republic under the projects AV0 Z3407391, AV0 Z10100502, LC527 and LA09042 and by the Grant Agency of the Czech Republic under the project 202/05/0653; and by the Science and Technology Facilities Council, UK. NR 19 TC 11 Z9 11 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2011 VL 6 AR P07005 PG 15 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 814YL UT WOS:000294493000005 ER PT J AU Leitner, D Winklehner, D Strohmeier, M AF Leitner, D. Winklehner, D. Strohmeier, M. TI Ion beam properties for ECR ion source injector systems SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Simulation methods and programs; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB Electron Cyclotron Resonance (ECR) ion sources are essential components of heavyion accelerators due to their ability to produce the wide range of ions required by these facilities. The ever-increasing intensity demands have led to remarkable performance improvements of ECR injector systems mainly due to advances in magnet technology as well as an improved understanding of the ECR ion source plasma physics. At the same time, enhanced diagnostics and simulation capabilities have improved the understanding of the injector beam transport properties. However, the initial ion beam distribution at the extraction aperture is still a subject of research. Due to the magnetic confinement necessary to sustain the ECR plasma, the ion density distribution across the extraction aperture is inhomogeneous and charge state dependent. In addition, the ion beam is extracted from a region of high axial magnetic field, which adds a rotational component to the beam, which leads to emittance growth. This paper will focus on the beam properties of ions extracted from ECR ion sources and diagnostics efforts at LBNL to develop a consistent modeling tool for the design of an optimized beam transport system for ECR ion sources. C1 [Leitner, D.; Winklehner, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Strohmeier, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Leitner, D (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, 1 Cyclotron, E Lansing, MI 48824 USA. EM LeitnerD@nscl.msu.edu FU Office for Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy [DE AC03-76SF00098] FX This work was supported by the Director, Office for Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under Contract DE AC03-76SF00098. NR 25 TC 2 Z9 2 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2011 VL 6 AR P07010 DI 10.1088/1748-0221/6/07/P07010 PG 19 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 814YL UT WOS:000294493000010 ER PT J AU Cleroux, C Demenocal, P Guilderson, T AF Cleroux, Caroline deMenocal, Peter Guilderson, Thomas TI Deglacial radiocarbon history of tropical Atlantic thermocline waters: absence of CO2 reservoir purging signal SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Deglaciation; Radiocarbon; Thermocline; Atlantic; Equator; CO2 purging ID LAST GLACIAL TERMINATION; NORTH-ATLANTIC; DEEP-WATER; SOUTHERN-OCEAN; SURFACE-TEMPERATURE; C-14 CALIBRATION; ATMOSPHERIC CO2; PACIFIC-OCEAN; SEA; CARBON AB A current scenario to explain much of the atmospheric CO2 increase during the Glacial to Holocene climate transition requires the outgassing of a deep, old oceanic CO2 reservoir thought to be located in the Southern Ocean. In this scenario, CO2-rich and C-14-depleted subsurface Antarctic-sourced water, ventilates the thermocline where it is purged to the atmosphere in the equatorial regions, a view that has been met with conflicting results. Using a novel approach (paired surface and deep-dwelling planktonic foraminifer radiocarbon analyses), we document that the equatorial Atlantic thermocline did not see old, C-14-depleted water, which would be characteristic of the proposed isolated deep ocean CO2 reservoir. Data from several studies concur that, during the deglaciation. Antarctic intermediate waters were contributing to Atlantic thermocline waters even more than today, therefore, our observations challenge the current purging hypothesis. Together with other studies, these results suggest that the mechanism responsible for the deglacial CO2 rise cannot invoke contemporary circulation modes and/or thermocline ventilation pathways. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Cleroux, Caroline; deMenocal, Peter] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Guilderson, Thomas] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Guilderson, Thomas] Univ Calif Santa Cruz, Dept Ocean Sci, Santa Cruz, CA 95064 USA. RP Cleroux, C (reprint author), Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. EM ccleroux@ldeo.columbia.edu RI demenocal, peter/B-1386-2013 OI demenocal, peter/0000-0002-7191-717X FU LDEO Climate Center; American Chemical Society PRF [47625-AC2]; NSF [OCE-0927247] FX This work was made possible by an LDEO Climate Center grant, American Chemical Society PRF grant 47625-AC2, and NSF award OCE-0927247. We thank Brad Linsley and Stephen Howe at SUNY Albany for the stable isotope measurements. NR 61 TC 19 Z9 19 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD JUL PY 2011 VL 30 IS 15-16 BP 1875 EP 1882 DI 10.1016/j.quascirev.2011.04.015 PG 8 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 801KD UT WOS:000293436700007 ER PT J AU Doering, D Chuang, YD Andresen, N Chow, K Contarato, D Cummings, C Domning, E Joseph, J Pepper, JS Smith, B Zizka, G Ford, C Lee, WS Weaver, M Patthey, L Weizeorick, J Hussain, Z Denes, P AF Doering, D. Chuang, Y. -D. Andresen, N. Chow, K. Contarato, D. Cummings, C. Domning, E. Joseph, J. Pepper, J. S. Smith, B. Zizka, G. Ford, C. Lee, W. S. Weaver, M. Patthey, L. Weizeorick, J. Hussain, Z. Denes, P. TI Development of a compact fast CCD camera and resonant soft x-ray scattering endstation for time-resolved pump-probe experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE CCD image sensors; superlattices; X-ray scattering ID STRIPE ORDER; ANGLE CALCULATIONS; CHARGE; HOLES; SUPERCONDUCTORS; DIFFRACTOMETER; LA2-XSRXNIO4; DIFFRACTION; MANGANITES; SPINS AB The designs of a compact, fast CCD (cFCCD) camera, together with a resonant soft x-ray scattering endstation, are presented. The cFCCD camera consists of a highly parallel, custom, thick, high-resistivity CCD, readout by a custom 16-channel application specific integrated circuit to reach the maximum readout rate of 200 frames per second. The camera is mounted on a virtual-axis flip stage inside the RSXS chamber. When this flip stage is coupled to a differentially pumped rotary seal, the detector assembly can rotate about 100 degrees/360 degrees in the vertical/horizontal scattering planes. With a six-degrees-of-freedom cryogenic sample goniometer, this endstation has the capability to detect the superlattice reflections from the electronic orderings showing up in the lower hemisphere. The complete system has been tested at the Advanced Light Source, Lawrence Berkeley National Laboratory, and has been used in multiple experiments at the Linac Coherent Light Source, SLAC National Accelerator Laboratory. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3609862] C1 [Doering, D.; Andresen, N.; Chow, K.; Contarato, D.; Cummings, C.; Domning, E.; Joseph, J.; Pepper, J. S.; Smith, B.; Zizka, G.; Denes, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Chuang, Y. -D.; Hussain, Z.; Denes, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, W. S.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci SIMES, Menlo Pk, CA 94025 USA. [Ford, C.; Lee, W. S.; Weaver, M.] Stanford Univ, Menlo Pk, CA 94025 USA. [Patthey, L.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Weizeorick, J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Doering, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ddoering@lbl.gov; ychuang@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Department of Energy, Office of Basic Energy Science, through Stanford Institute for Materials and Energy Science FX Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. W. S. Lee acknowledges support from Department of Energy, Office of Basic Energy Science, through Stanford Institute for Materials and Energy Science. NR 37 TC 39 Z9 39 U1 3 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 073303 DI 10.1063/1.3609862 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400014 PM 21806178 ER PT J AU Eisaman, MD Fan, J Migdall, A Polyakov, SV AF Eisaman, M. D. Fan, J. Migdall, A. Polyakov, S. V. TI Invited Review Article: Single-photon sources and detectors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Review DE infrared detectors; photodetectors; quantum communication; ultraviolet detectors ID QUANTUM KEY DISTRIBUTION; NUMBER-RESOLVING DETECTOR; TIME-DOMAIN REFLECTOMETER; SUPERCONDUCTING TUNNEL-JUNCTION; FREQUENCY UP-CONVERSION; DISPERSION-SHIFTED FIBER; TRANSITION-EDGE SENSORS; FIELD-EFFECT TRANSISTOR; AVALANCHE-DIODES SPADS; POLED LITHIUM-NIOBATE AB We review the current status of single-photon-source and single-photon-detector technologies operating at wavelengths from the ultraviolet to the infrared. We discuss applications of these technologies to quantum communication, a field currently driving much of the development of single-photon sources and detectors. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3610677] C1 NIST, Gaithersburg, MD 20899 USA. Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA. RP Eisaman, MD (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Eisaman, Matthew/E-8006-2011 OI Eisaman, Matthew/0000-0002-3814-6430 NR 358 TC 334 Z9 340 U1 39 U2 294 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 071101 DI 10.1063/1.3610677 PG 25 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400001 PM 21806165 ER PT J AU Madden, T Fernandez, P Jemian, P Narayanan, S Sandy, AR Sikorski, M Sprung, M Weizeorick, J AF Madden, T. Fernandez, P. Jemian, P. Narayanan, S. Sandy, A. R. Sikorski, M. Sprung, M. Weizeorick, J. TI Firmware lower-level discrimination and compression applied to streaming x-ray photon correlation spectroscopy area-detector data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE CCD image sensors; field programmable gate arrays; photon correlation spectroscopy; X-ray spectroscopy ID INTENSITY FLUCTUATION SPECTROSCOPY; SCATTERING; DYNAMICS AB We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming x-ray photon correlation spectroscopy data from a fast charge-coupled device (CCD) area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array. The system is capable of continuously processing at least 60 CCD frames per second each consisting of 1024 x 1024 16-bit pixels with less than or similar to 15 000 photon hits per frame at a maximum compression factor of approximate to 95%. (C) 2011 American Institute of Physics. [doi:10.1063/1.3602277] C1 [Madden, T.; Fernandez, P.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Madden, T (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tmadden@aps.anl.gov FU U.S. DOE [DE-AC02-06CH11357] FX Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 20 TC 3 Z9 3 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 075109 DI 10.1063/1.3602277 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400065 PM 21806229 ER PT J AU March, AM Stickrath, A Doumy, G Kanter, EP Krassig, B Southworth, SH Attenkofer, K Kurtz, CA Chen, LX Young, L AF March, Anne Marie Stickrath, Andrew Doumy, Gilles Kanter, Elliot P. Kraessig, Bertold Southworth, Stephen H. Attenkofer, Klaus Kurtz, Charles A. Chen, Lin X. Young, Linda TI Development of high-repetition-rate laser pump/x-ray probe methodologies for synchrotron facilities SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE data acquisition; high-speed optical techniques; laser beams; light sources; optical focusing; optical harmonic generation; optical pumping; organic compounds; X-ray absorption spectra; X-ray apparatus; X-ray lasers ID ABSORPTION-SPECTROSCOPY; STRUCTURAL DYNAMICS; X-RAYS; GENERATION; TRANSIENT; METALLOPORPHYRIN; SNAPSHOTS; ELECTRON; SOFT AB We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (> 10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 mu m wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of similar to 250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with < 10 mu J/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615245] C1 [March, Anne Marie; Doumy, Gilles; Kanter, Elliot P.; Kraessig, Bertold; Southworth, Stephen H.; Attenkofer, Klaus; Kurtz, Charles A.; Young, Linda] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Stickrath, Andrew; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP March, AM (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amarch@anl.gov RI Kurtz, Chalres/G-1037-2011 OI Kurtz, Chalres/0000-0003-2606-0864 FU U.S. Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences [DE-AC02-06CH11357]; U.S. DOE [DE-AC02-06CH11357] FX We acknowledge support from the U.S. Department of Energy (DOE) Office of Science, Division of Chemical, Geological and Biological Sciences under Contract No. DE-AC02-06CH11357. Use of the Advanced Photon Source, an Office of Science User Facility operated for DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 35 TC 42 Z9 42 U1 4 U2 27 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 073110 DI 10.1063/1.3615245 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400011 PM 21806175 ER PT J AU Rhodes, K Kirkham, M Meisner, R Parish, CM Dudney, N Daniel, C AF Rhodes, Kevin Kirkham, Melanie Meisner, Roberta Parish, Chad M. Dudney, Nancy Daniel, Claus TI Novel cell design for combined in situ acoustic emission and x-ray diffraction study during electrochemical cycling of batteries SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE acoustic emission; cells (electric); electrochemical electrodes; X-ray diffraction ID LITHIUM-ION BATTERIES; POWDER; ELECTRODES; CHARGE; LI AB An in situ acoustic emission (AE) and x-ray diffraction cell for use in the study of battery electrode materials has been designed and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk, which acts as both an x-ray window and a current collector. In this manner, the use of beryllium and its associated cost and hazards is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles, which were previously studied by the AE technique, were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells, while providing information about structural changes in the active material as the cell is repeatedly charged and discharged. (C) 2011 American Institute of Physics. [doi:10.1063/1.3607961] C1 [Rhodes, Kevin; Kirkham, Melanie; Meisner, Roberta; Parish, Chad M.; Dudney, Nancy; Daniel, Claus] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37931 USA. [Rhodes, Kevin; Meisner, Roberta; Daniel, Claus] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. RP Rhodes, K (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd,MS 6083, Oak Ridge, TN 37931 USA. RI Kirkham, Melanie/B-6147-2011; Parish, Chad/J-8381-2013; OI Kirkham, Melanie/0000-0001-8411-9751; Parish, Chad/0000-0003-1209-7439 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Office of Energy Efficiency and Renewable Energy; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Office of Basic Energy Sciences, U.S. Department of Energy FX Research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC05-00OR22725, was sponsored by the Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, with additional support through the High Temperature Materials Laboratory User Program, and ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors would also like to thank Andrew Payzant for his assistance. NR 21 TC 20 Z9 20 U1 3 U2 35 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 075107 DI 10.1063/1.3607961 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400063 PM 21806227 ER PT J AU Schmidt, M Eng, PJ Stubbs, JE Fenter, P Soderholm, L AF Schmidt, M. Eng, P. J. Stubbs, J. E. Fenter, P. Soderholm, L. TI A new x-ray interface and surface scattering environmental cell design for in situ studies of radioactive and atmosphere-sensitive samples SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE geophysical equipment; radiology; surface scattering; X-ray scattering ID HUMIC ACIDS; SORPTION; BEAMLINE; SPECTROSCOPY; PLUTONIUM; COMPLEXATION; DIFFRACTION; MICROSCOPY; ACTINIDES; MINERALS AB We present a novel design of a purpose-built, portable sample cell for in situ x-ray scattering experiments of radioactive or atmosphere sensitive samples. The cell has a modular design that includes two independent layers of containment that are used simultaneously to isolate the sensitive samples. Both layers of containment can be flushed with an inert gas, thus serving a double purpose as containment of radiological material (either as a solid sample or as a liquid phase) and in separating reactive samples from the ambient atmosphere. A remote controlled solution flow system is integrated into the containment system that allows sorption experiments to be performed on the diffractometer. The cell's design is discussed in detail and we demonstrate the cell's performance by presenting first results of crystal truncation rod measurements. The results were obtained from muscovite mica single crystals reacted with 1 mM solutions of Th-IV with 0.1 M NaCl background electrolyte. Data were obtained in specular as well as off-specular geometry. (C) 2011 American Institute of Physics. [doi:10.1063/1.3605484] C1 [Schmidt, M.; Fenter, P.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Eng, P. J.; Stubbs, J. E.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. RP Schmidt, M (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mschmidt@anl.gov RI Schmidt, Moritz/C-2610-2011; Stubbs, Joanne/F-9710-2013; OI Schmidt, Moritz/0000-0002-8419-0811; Stubbs, Joanne/0000-0002-8509-2009; Fenter, Paul/0000-0002-6672-9748 FU United States Department of Energy [DE-AC02-06CH11357]; United States Department of Energy Office of Science [DE-AC02-06CH11357]; BER [DE-AC02-06CH11357]; National Science Foundation (NSF) [DE-AC02-06CH11357]; EPA [DE-AC02-06CH11357]; National Science Foundation - Earth Sciences [EAR-0622171]; Department of Energy - Geosciences [DE-FG02-94ER14466] FX This work conducted at the Argonne National Laboratory, operated by UChicagoArgonne LLC for the United States Department of Energy under Contract No. DE-AC02-06CH11357, is jointly supported by the United States Department of Energy Office of Science, BER, National Science Foundation (NSF), and EPA. Portions of this work were performed at GeoSoilEnviroCARS (APS Sector 13), which is supported by the National Science Foundation - Earth Sciences (EAR-0622171) and Department of Energy - Geosciences (DE-FG02-94ER14466). NR 51 TC 2 Z9 2 U1 2 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 075105 DI 10.1063/1.3605484 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400061 PM 21806225 ER PT J AU Zhang, JY Shaddix, CR Schefer, RW AF Zhang, Jiayao Shaddix, Christopher R. Schefer, Robert W. TI Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article DE boundary layer turbulence; chemically reactive flow; combustion equipment; design engineering; flames; flow visualisation; heat transfer; jets; organic compounds; pipe flow; soot; stratified flow; vortices ID LARGE-EDDY SIMULATION; SANDIA FLAME-D; DIFFUSION FLAMES; NITROGEN EMISSIONS; SPONTANEOUS RAMAN; SCALAR PROPERTIES; SOOT FORMATION; SCATTERING; RADIATION; EXTINCTION AB Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet. (C) 2011 American Institute of Physics. [doi:10.1063/1.3605491] C1 [Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Zhang, JY (reprint author), Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94550 USA. FU U.S. Strategic Environmental Research and Development Program (SERDP); U.S. Department of Energy (DOE) [DE-AC04-94-AL85000] FX This work was supported by the U.S. Strategic Environmental Research and Development Program (SERDP). The authors thank Allen Salmi and Dennis Morrison of Sandia for their assistance with the design and assembly of the burners and vaporizer, and Robert Harmon of Sandia for his technical assistance with experiments. Rob Barlow and Joe Oefelein of Sandia are gratefully acknowledged for advice on burner design and suggestions on selecting appropriate flame conditions to investigate. Sandia is operated by the Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy (DOE) under Contract DE-AC04-94-AL85000. NR 62 TC 10 Z9 11 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JUL PY 2011 VL 82 IS 7 AR 074101 DI 10.1063/1.3605491 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 802GX UT WOS:000293498400037 PM 21806201 ER PT J AU Manginell, RP Bauer, JM Moorman, MW Sanchez, LJ Anderson, JM Whiting, JJ Porter, DA Copic, D Achyuthan, KE AF Manginell, Ronald P. Bauer, Joseph M. Moorman, Matthew W. Sanchez, Lawrence J. Anderson, John M. Whiting, Joshua J. Porter, Daniel A. Copic, Davor Achyuthan, Komandoor E. TI A Monolithically-Integrated mu GC Chemical Sensor System SO SENSORS LA English DT Article DE monolithic integration; mu GC; cost modeling; thermal isolation; CWA simulants ID MICRO GAS-CHROMATOGRAPHY; CHIP; PRECONCENTRATOR; ARRAYS; COLUMN AB Gas chromatography (GC) is used for organic and inorganic gas detection with a range of applications including screening for chemical warfare agents (CWA), breath analysis for diagnostics or law enforcement purposes, and air pollutants/indoor air quality monitoring of homes and commercial buildings. A field-portable, light weight, low power, rapid response, micro-gas chromatography (mu GC) system is essential for such applications. We describe the design, fabrication and packaging of mu GC on monolithically-integrated Si dies, comprised of a preconcentrator (PC), mu GC column, detector and coatings for each of these components. An important feature of our system is that the same mechanical micro resonator design is used for the PC and detector. We demonstrate system performance by detecting four different CWA simulants within 2 min. We present theoretical analyses for cost/power comparisons of monolithic versus hybrid mu GC systems. We discuss thermal isolation in monolithic systems to improve overall performance. Our monolithically-integrated mu GC, relative to its hybrid cousin, will afford equal or slightly lower cost, a footprint that is 1/2 to 1/3 the size and an improved resolution of 4 to 25%. C1 [Manginell, Ronald P.; Moorman, Matthew W.; Anderson, John M.] Sandia Natl Labs, Integrated Microdevice Syst Dept, Albuquerque, NM 87185 USA. [Bauer, Joseph M.] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA. [Whiting, Joshua J.] 3 Degrees Separat, Dayton, OH 45402 USA. [Porter, Daniel A.] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA. [Copic, Davor] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Achyuthan, Komandoor E.] Sandia Natl Labs, Biosensors & Nanomat Dept, Albuquerque, NM 87185 USA. RP Manginell, RP (reprint author), Sandia Natl Labs, Integrated Microdevice Syst Dept, POB 5800, Albuquerque, NM 87185 USA. EM rpmangi@sandia.gov; jbauer@draper.com; mmoorma@sandia.gov; ljsanch@sandia.gov; jmander@sandia.gov; joshua.whiting@3dsanalytical.com; daport02@louisville.edu; copicd@umich.edu; kachyut@sandia.gov RI Copic, Davor/J-5011-2014 OI Copic, Davor/0000-0002-9346-8846 FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 24 TC 34 Z9 34 U1 3 U2 28 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1424-8220 J9 SENSORS-BASEL JI Sensors PD JUL PY 2011 VL 11 IS 7 BP 6517 EP 6532 DI 10.3390/s110706517 PG 16 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 796RK UT WOS:000293069200003 PM 22163970 ER PT J AU Chathoth, SM AF Chathoth, S. M. TI Microscopic glass-transition in Ni-based metallic glass-forming melts SO EPL LA English DT Article ID MODE-COUPLING THEORY; SUPERCOOLED LIQUIDS; RELAXATION; DIFFUSION; ALLOYS; PD40NI40P20 AB Quasielastic neutron scattering (QENS) has been used to investigate microscopic dynamics in the glass-forming Ni(80)P(20), Pd(40)Ni(40)P(20) and Pd(43)Ni(10)Cu(27)P(20) melts. These melts are characterized by a high-packing fraction that is similar at their liquidus temperatures. Increasing the number of components in these melts increases the viscosity at their liquidus temperature. However, the fragility of these melts did not show a composition dependence. Atomic dynamics in these liquids agree well with mode-coupling theory (MCT) predictions. From the MCT analysis of the QENS data the critical packing fractions for the microscopic glass-transition (phi(c)) were obtained. The values obtained for phi(c) are well within the MCT theoretical predictions for hard-sphere liquids. Copyright (C) EPLA, 2011 C1 [Chathoth, S. M.] Tech Univ Munich, Phys Dept E13, D-85747 Garching, Germany. RP Chathoth, SM (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM smchathoth@gmail.com RI Mavila Chathoth, Suresh/E-7560-2010 OI Mavila Chathoth, Suresh/0000-0002-4120-6959 FU Deutsche Forschungsgemeinschaft [SPP 1120, Me1958/2-3] FX The author thanks Prof. A. MEYER (Institut fur Materialphysik im Weltraum, German Aerospace Center (DLR), Koln, Germany) for his support and acknowledges financial support from the Deutsche Forschungsgemeinschaft within SPP 1120 under Grant No. Me1958/2-3. NR 23 TC 0 Z9 0 U1 1 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2011 VL 95 IS 2 AR 26001 DI 10.1209/0295-5075/95/26001 PG 4 WC Physics, Multidisciplinary SC Physics GA 787NY UT WOS:000292384900018 ER PT J AU Gruber, D Greiner, J von Kienlin, A Rau, A Briggs, MS Connaughton, V Goldstein, A van der Horst, AJ Nardini, M Bhat, PN Bissaldi, E Burgess, JM Chaplin, VL Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, MH Giles, MM Guiriec, S Kippen, RM Kouveliotou, C Lin, L McBreen, S Meegan, CA Olivares, F Paciesas, WS Preece, RD Tierney, D Wilson-Hodge, C AF Gruber, D. Greiner, J. von Kienlin, A. Rau, A. Briggs, M. S. Connaughton, V. Goldstein, A. van der Horst, A. J. Nardini, M. Bhat, P. N. Bissaldi, E. Burgess, J. M. Chaplin, V. L. Diehl, R. Fishman, G. J. Fitzpatrick, G. Foley, S. Gibby, M. H. Giles, M. M. Guiriec, S. Kippen, R. M. Kouveliotou, C. Lin, L. McBreen, S. Meegan, C. A. Olivares E, F. Paciesas, W. S. Preece, R. D. Tierney, D. Wilson-Hodge, C. TI Rest-frame properties of 32 gamma-ray bursts observed by the Fermi Gamma-ray Burst Monitor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gamma-ray burst: general ID E-PEAK; REDSHIFT DISTRIBUTION; LUMINOSITY FUNCTION; SPECTRA; BATSE; EVOLUTION; MISSION; ENERGETICS; TELESCOPE; ASTRONOMY AB Aims. In this paper we study the main spectral and temporal properties of gamma-ray bursts (GRBs) observed by Fermi/GBM. We investigate these key properties of GRBs in the rest-frame of the progenitor and test for possible intra-parameter correlations to better understand the intrinsic nature of these events. Methods. Our sample comprises 32 GRBs with measured redshift that were observed by GBM until August 2010. 28 of them belong to the long-duration population and 4 events were classified as short/hard bursts. For all of these events we derive, where possible, the intrinsic peak energy in the nu F(nu) spectrum (E(p,rest)), the duration in the rest-frame, defined as the time in which 90% of the burst fluence was observed (T(90,rest)) and the isotropic equivalent bolometric energy (E(iso)). Results. The distribution of E(p), rest has mean and median values of 1.1 MeV and 750 keV, respectively. A log-normal fit to the sample of long bursts peaks at similar to 800 keV. No high-E(p) population is found but the distribution is biased against low E(p) values. We find the lowest possible E(p) that GBM can recover to be approximate to 15 keV. The T(90,rest) distribution of long GRBs peaks at similar to 10 s. The distribution of E(iso) has mean and median values of 8.9 x 10(52) erg and 8.2 x 10(52) erg, respectively. We confirm the tight correlation between E(p,rest) and E(iso) (Amati relation) and the one between E(p,rest) and the 1-s peak luminosity (L(p)) (Yonetoku relation). Additionally, we observe a parameter reconstruction effect, i.e. the low-energy power law index a gets softer when E(p) is located at the lower end of the detector energy range. Moreover, we do not find any significant cosmic evolution of neither E(p,rest) nor T(90,rest). C1 [Gruber, D.; Greiner, J.; von Kienlin, A.; Rau, A.; Nardini, M.; Bissaldi, E.; Diehl, R.; Foley, S.; McBreen, S.; Olivares E, F.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Briggs, M. S.; Connaughton, V.; Goldstein, A.; van der Horst, A. J.; Bhat, P. N.; Burgess, J. M.; Chaplin, V. L.; Guiriec, S.; Lin, L.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Fitzpatrick, G.; McBreen, S.; Tierney, D.] Univ Coll, Dublin 4, Ireland. [Fishman, G. J.; Kouveliotou, C.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, VP62, Huntsville, AL 35812 USA. [Gibby, M. H.; Giles, M. M.] Jacobs Technol Inc, Huntsville, AL USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meegan, C. A.] NSSTC, Univ Space Res Assoc, Huntsville, AL 35805 USA. RP Gruber, D (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. EM dgruber@mpe.mpg.de RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335; Burgess, James/0000-0003-3345-9515 FU NASA [NNH07ZDA001-GLAST]; Irish Research Council for Science, Engineering and Technology; Marie Curie Actions under FP7; German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) [50 QV 0301, 50 OG 0502] FX We thank Jonathan Granot for useful discussions. A.J.v.d.H. was supported by NASA grant NNH07ZDA001-GLAST. SF acknowledges the support of the Irish Research Council for Science, Engineering and Technology, cofunded by Marie Curie Actions under FP7. The GBM project is supported by the German Bundesministerium fur Wirtschaft und Technologie (BMWi) via the Deutsches Zentrum fur Luft- und Raumfahrt (DLR) under the contract numbers 50 QV 0301 and 50 OG 0502. NR 78 TC 12 Z9 12 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A20 DI 10.1051/0004-6361/201116953 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700161 ER PT J AU Labadie, L Martin, G Anheier, NC Arezki, B Qiao, HA Bernacki, B Kern, P AF Labadie, L. Martin, G. Anheier, N. C. Arezki, B. Qiao, H. A. Bernacki, B. Kern, P. TI First fringes with an integrated-optics beam combiner at 10 mu m A new step towards instrument miniaturization for mid-infrared interferometry SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE instrumentation: high angular resolution; instrumentation: interferometers; methods: laboratory; techniques: interferometric ID CONDUCTIVE WAVE-GUIDES; ASTRONOMICAL INTERFEROMETRY; NULLING INTERFEROMETER; EXTRASOLAR PLANETS; STELLAR INTERFEROMETRY; GLASS; INTERFEROGRAMS; SEARCH; SPACE; FIBER AB Context. Observations of milliarcsecond-resolution scales and high dynamic range hold a central place in the exploration of distant planetary systems in order to achieve, for instance, the spectroscopic characterization of exo-Earths or the detailed mapping of their protoplanetary disc birthplace. Multi-aperture infrared interferometry, either from the ground or from space, is a very powerful technique to tackle these goals. However, significant technical efforts still need to be undertaken to achieve a simplification of these instruments if we wish to recombine the light from a large number of telescopes. Integrated-optics concepts appear to be a suitable alternative to the current conventional designs, especially if their use can be extended to a higher number of astronomical bands. Aims. This article reports, for the first time to our knowledge, the experimental demonstration of the feasibility of an integrated-optics approach to mid-infrared beam combination for single-mode stellar interferometry. Methods. We fabricated a two-telescope beam combiner prototype integrated on a substrate of chalcogenide glass, a material transparent from similar to 1 mu m to similar to 14 mu m. We developed laboratory tools to characterize in the mid-infrared the modal properties and the interferometric capabilities of our device. Results. We obtain interferometric fringes at 10 mu m and measure a mean contrast V = 0.981 +/- 0.001 with high repeatability over one week and high stability over a time-period of similar to 5 h. We show experimentally - as well as on the basis of modeling considerations - that the component has a single-mode behavior at this wavelength, which is essential to achieve high-accuracy interferometry. From previous studies, the propagation losses are estimated to be 0.5 dB/cm for this type of component. We also discuss possible issues that may impact the interferometric contrast. Conclusions. The IO beam combiner performs well at the tested wavelength. We also anticipate the requirement of a closer matching between the numerical apertures of the component and the (de) coupling optics to optimize the total throughput. The next step foreseen is the achievement of wide-band interferograms. C1 [Labadie, L.] Inst Astrofis Canarias, Tenerife 38200, Spain. [Martin, G.; Arezki, B.; Kern, P.] UJF Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Anheier, N. C.; Qiao, H. A.; Bernacki, B.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Labadie, L.] Univ La Laguna, Dept Astrofis, Tenerife 38205, Islas Canarias, Spain. [Labadie, L.] Univ Cologne, Phys Inst 1, D-50937 Cologne, Germany. RP Labadie, L (reprint author), Inst Astrofis Canarias, C Via Lactea S-N, Tenerife 38200, Spain. EM labadie@iac.es FU Spanish MICINN [CSD2006-00070]; US Department of Energy, Office of Nonproliferation Research and Development [NA-22]; U.S. Department of Energy by Battelle Memorial Institute [DE-AC05-76RLO1830] FX L.L. is funded by the Spanish MICINN under the Consolider-Ingenio 2010 Program grant CSD2006-00070: First Science with the GTC (www.iac.es/consolider-ingenio-gtc). This work was also supported by the US Department of Energy, Office of Nonproliferation Research and Development (NA-22). Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 36 TC 14 Z9 14 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2011 VL 531 AR A48 DI 10.1051/0004-6361/201116727 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 795YZ UT WOS:000293017700120 ER PT J AU Alverson, AJ Rice, DW Dickinson, S Barry, K Palmer, JD AF Alverson, Andrew J. Rice, Danny W. Dickinson, Stephanie Barry, Kerrie Palmer, Jeffrey D. TI Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber SO PLANT CELL LA English DT Article ID GROUP-I INTRON; CHLOROPLAST DNA; MARCHANTIA-POLYMORPHA; COMPLETE SEQUENCE; PHYSICAL MAP; GENE CONTENT; GUIDE RNAS; ATPA GENE; ORGANIZATION; MAIZE AB Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes. C1 [Alverson, Andrew J.; Rice, Danny W.; Palmer, Jeffrey D.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Dickinson, Stephanie] Indiana Univ, Dept Stat, Bloomington, IN 47408 USA. [Barry, Kerrie] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Palmer, JD (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. EM jpalmer@indiana.edu RI Palmer, Jeffrey/P-6747-2014; OI Palmer, Jeffrey/0000-0002-4626-2220; Alverson, Andrew/0000-0003-1241-2654 FU National Institutes of Health [1F32GM080079-01A1, RO1-GM-70612]; METACyt Initiative of Indiana University; Lilly Endowment; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Arnie Bendich (University of Washington), Sally Mackenzie (University of Nebraska), Susanne Renner (University of Munich), Dan Sloan (University of Virginia), and two anonymous reviewers for critical comments. We thank Dan Croaker and Nischit Shetty (Seminis Vegetable Seeds) for providing the Calypso seed. This work was supported by the National Institutes of Health (1F32GM080079-01A1 to A.J.A. and RO1-GM-70612 to J.D.P.) and the METACyt Initiative of Indiana University, funded in part through a major grant from the Lilly Endowment to J.D.P. The U.S. Department of Energy Joint Genome Institute provided sequencing and analyses under the Community Sequencing Program supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 77 TC 79 Z9 87 U1 7 U2 20 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD JUL PY 2011 VL 23 IS 7 BP 2499 EP 2513 DI 10.1105/tpc.111.087189 PG 15 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 810XU UT WOS:000294164300009 PM 21742987 ER PT J AU Weng, JK Akiyama, T Ralph, J Chapple, C AF Weng, Jing-Ke Akiyama, Takuya Ralph, John Chapple, Clint TI Independent Recruitment of an O-Methyltransferase for Syringyl Lignin Biosynthesis in Selaginella moellendorffii SO PLANT CELL LA English DT Article ID ALFALFA MEDICAGO-SATIVA; DOWN-REGULATION; MONOLIGNOL BIOSYNTHESIS; SUBSTRATE-SPECIFICITY; CONVERGENT EVOLUTION; ARABIDOPSIS-THALIANA; VASCULAR PLANTS; GENE CLUSTERS; EXPRESSION; DEFICIENT AB Syringyl lignin, an important component of the secondary cell wall, has traditionally been considered to be a hallmark of angiosperms because ferns and gymnosperms in general lack lignin of this type. Interestingly, syringyl lignin was also detected in Selaginella, a genus that represents an extant lineage of the most basal of the vascular plants, the lycophytes. In angiosperms, syringyl lignin biosynthesis requires the activity of ferulate 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase, and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT). Together, these two enzymes divert metabolic flux from the biosynthesis of guaiacyl lignin, a lignin type common to all vascular plants, toward syringyl lignin. Selaginella has independently evolved an alternative lignin biosynthetic pathway in which syringyl subunits are directly derived from the precursors of p-hydroxyphenyl lignin, through the action of a dual specificity phenylpropanoid meta-hydroxylase, Sm F5H. Here, we report the characterization of an O-methyltransferase from Selaginella moellendorffii, COMT, the coding sequence of which is clustered together with F5H at the adjacent genomic locus. COMT is a bifunctional phenylpropanoid O-methyltransferase that can methylate phenylpropanoid meta-hydroxyls at both the 3- and 5-position and function in concert with F5H in syringyl lignin biosynthesis in S. moellendorffii. Phylogenetic analysis reveals that Sm COMT, like F5H, evolved independently from its angiosperm counterparts. C1 [Weng, Jing-Ke; Chapple, Clint] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. [Akiyama, Takuya] ARS, US Dairy Forage Res Ctr, USDA, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Dept Biochem, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Chapple, C (reprint author), Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. EM chapple@purdue.edu RI Ye, Mingli/G-4909-2012; Weng, Jing-Ke/E-7343-2013; Weng, Jing-Ke/A-6900-2015 OI Weng, Jing-Ke/0000-0003-1079-3668; Weng, Jing-Ke/0000-0003-3059-0075 FU National Science Foundation [IOB-0450289]; Department of Energy Office of Science [DE-AI02-06ER64299]; Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science) [BER DE-FC02-07ER64494] FX We thank J.A. Banks for providing S. moellendorffii plant materials, D. Sherman for the technical assistance with the scanning electron microscopy, F. Lu and R. Dixon for providing chemicals for enzyme assays, and G.V. Louie and J.P. Noel for insightful discussion. This work is supported by the National Science Foundation (Grant IOB-0450289). Partial funding to J.R. was via the Department of Energy Office of Science (Grant DE-AI02-06ER64299) and the Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science BER DE-FC02-07ER64494). NR 66 TC 24 Z9 26 U1 2 U2 29 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD JUL PY 2011 VL 23 IS 7 BP 2708 EP 2724 DI 10.1105/tpc.110.081547 PG 17 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 810XU UT WOS:000294164300023 PM 21742988 ER PT J AU Burr, T Hamada, MS Cremers, T Weaver, BP Howell, J Croft, S Vardeman, SB AF Burr, T. Hamada, M. S. Cremers, T. Weaver, B. P. Howell, J. Croft, S. Vardeman, S. B. TI Measurement error models and variance estimation in the presence of rounding error effects SO ACCREDITATION AND QUALITY ASSURANCE LA English DT Article DE Bayesian methods; Instrument resolution; Item-specific bias; Likelihood ID INSTRUMENT RESOLUTION; UNCERTAINTY AB An approach to estimating measurement error variances for any instrument having round-off effects that might also have instrument bias is presented. Recently finite instrument resolution effects on error variances have been studied, but negligible instrument bias was assumed and the contexts were different than considered here. Our intent is to use repeated measurements on several standards to estimate the instrument's random and systematic error variances. Recognizing that rounding impacts item bias and variance in a manner that depends on the true value, an approach is presented to estimate random error variance and instrument systematic error variance. The key finding is that item-specific bias can interfere with the estimation of overall instrument bias unless appropriate error modeling and associated inference steps are taken. C1 [Burr, T.; Hamada, M. S.; Cremers, T.; Weaver, B. P.; Croft, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Howell, J.] Univ Glasgow, Dept Mech Engn, Glasgow G12 8QQ, Lanark, Scotland. [Vardeman, S. B.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. [Vardeman, S. B.] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA. RP Burr, T (reprint author), Los Alamos Natl Lab, POB 1663,MS F600, Los Alamos, NM 87545 USA. EM tburr@lanl.gov FU Next Generation Safeguards Initiative of the National Nuclear Security Administration FX This work was funded as part of the Next Generation Safeguards Initiative of the National Nuclear Security Administration. NR 22 TC 5 Z9 5 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0949-1775 J9 ACCREDIT QUAL ASSUR JI Accredit. Qual. Assur. PD JUL PY 2011 VL 16 IS 7 BP 347 EP 359 DI 10.1007/s00769-011-0791-0 PG 13 WC Chemistry, Analytical; Instruments & Instrumentation SC Chemistry; Instruments & Instrumentation GA 799LG UT WOS:000293287600002 ER PT J AU Chekanov, SV AF Chekanov, S. V. CA ATLAS Collaboration TI PRECISION TESTS OF THE STANDARD MODEL USING THE ATLAS DETECTOR AT THE LHC SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Cracow Epiphany Conference on the First Year of the LHC CY JAN 10-12, 2011 CL Cracow, POLAND SP H Niewodniczanski Inst Nucl Phys PAN, Jagiellonian Univ, Inst Phys, Polish Acad Arts & Sci, AGH Univ Sci & Technol AB This article discusses the recent tests of the Standard Model using pp-collision events at root s = 7 TeV collected with the ATLAS detector at the Large Hadron Collider (LHC) during 2010 data taking period. The paper focuses on measurements of hard and soft sectors of quantum chromodynamics (QCD), a theory describing interactions of quarks and gluons. C1 [Chekanov, S. V.; ATLAS Collaboration] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Chekanov, SV (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 23 TC 0 Z9 0 U1 0 U2 3 PU JAGIELLONIAN UNIV PRESS PI KRAKOW PA UL MICHALOWSKIEGO 9-2, KRAKOW, 31126, POLAND SN 0587-4254 EI 1509-5770 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JUL PY 2011 VL 42 IS 7 BP 1365 EP 1376 DI 10.5506/APhysPolB.42.1365 PG 12 WC Physics, Multidisciplinary SC Physics GA 808QO UT WOS:000293993700004 ER PT J AU Evanoff, K Magasinski, A Yang, JB Yushin, G AF Evanoff, Kara Magasinski, Alexandre Yang, Junbing Yushin, Gleb TI Nanosilicon-Coated Graphene Granules as Anodes for Li-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article ID LITHIUM INSERTION; COMPOSITE ANODES; CARBONACEOUS MATERIALS; RAMAN-SPECTROSCOPY; SILICON; PERFORMANCE; STORAGE; ELECTRODES; GRAPHITE; INSERTION/EXTRACTION C1 [Evanoff, Kara; Magasinski, Alexandre; Yushin, Gleb] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Yang, Junbing] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Yushin, G (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr, Atlanta, GA 30332 USA. EM yushin@gatech.edu RI Yushin, Gleb/B-4529-2013 OI Yushin, Gleb/0000-0002-3274-9265 FU NASA [NNC08CB01C] FX This work was partially supported by NASA via Contract No. NNC08CB01C. We thank B. Hertzberg, I. Kovalenko, B. Zhdyrko, I. Luzinov, and T. Fuller for helpful discussions. NR 43 TC 153 Z9 156 U1 21 U2 171 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUL PY 2011 VL 1 IS 4 BP 495 EP 498 DI 10.1002/aenm.201100071 PG 4 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 806HB UT WOS:000293795800005 ER PT J AU Chen, HY Hou, JH Dayal, S Huo, LJ Kopidakis, N Beard, MC Luther, JM AF Chen, Hsiang-Yu Hou, Jianhui Dayal, Smita Huo, Lijun Kopidakis, Nikos Beard, Matthew C. Luther, Joseph M. TI A p-Type Quantum Dot/Organic Donor: Acceptor Solar-Cell Structure for Extended Spectral Response SO ADVANCED ENERGY MATERIALS LA English DT Article ID RESOLVED TERAHERTZ SPECTROSCOPY; COLLOIDAL PBS NANOCRYSTALS; POLYMER PHOTOVOLTAIC CELLS; CHARGE-CARRIER GENERATION; FIELD-EFFECT TRANSISTORS; CDSE NANOPARTICLES; EFFICIENCY; FILMS; DOTS; POLY(3-HEXYLTHIOPHENE) C1 [Chen, Hsiang-Yu; Dayal, Smita; Kopidakis, Nikos; Beard, Matthew C.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hou, Jianhui; Huo, Lijun] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China. RP Chen, HY (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Hsiang.Yu.Chen@nrel.gov; Joey.Luther@nrel.gov RI dayal, smita/F-2756-2011; huo, lijun/A-9367-2012; Hou, Jianhui /E-5824-2011; Kopidakis, Nikos/N-4777-2015; OI Hou, Jianhui /0000-0002-2105-6922; BEARD, MATTHEW/0000-0002-2711-1355 FU US DOE Office of Science; NREL; US Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; [DE-AC36-08GO28308] FX We thank Andrew Ferguson, Brian Gregg, Octavi Semonin, and Jianbo Gao for helpful discussions. We thank Bobby To for SEM imaging. This work is supported by the Center for Advanced Solar Photophysics an Energy Frontier Research Center funded by US DOE Office of Science. H.Y.C. acknowledges the NCPV seed fund program at NREL for funding. Time-resolved microwave conductivity work was funded by the Solar Photochemistry program of the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. The DOE work was funded by Contract DE-AC36-08GO28308 to NREL. NR 45 TC 12 Z9 12 U1 2 U2 49 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD JUL PY 2011 VL 1 IS 4 BP 528 EP 533 DI 10.1002/aenm.201100190 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 806HB UT WOS:000293795800011 ER PT J AU Hosoi, A Yukawa, Y Igarashi, S Teat, SJ Roubeau, O Evangelisti, M Cremades, E Ruiz, E Barrios, LA Aromi, G AF Hosoi, Ayako Yukawa, Yasuhiko Igarashi, Satoshi Teat, Simon J. Roubeau, Olivier Evangelisti, Marco Cremades, Eduard Ruiz, Eliseo Barrios, Leoni A. Aromi, Guillem TI A Molecular Pair of [GdNi3] Tetrahedra Bridged by Water Molecules SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE amino acids; coordination chemistry; density functional calculations; heterometallic complexes; lanthanides; magnetic properties ID HIGH-FIELD EPR; MAGNETIC-PROPERTIES; STRUCTURAL CHARACTERIZATION; LANTHANIDE COMPLEXES; HIGH-NUCLEARITY; AMINO-ACIDS; CLUSTERS; SERIES; LIGANDS; LN C1 [Hosoi, Ayako; Yukawa, Yasuhiko] Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, Niigata 9502181, Japan. [Igarashi, Satoshi] Niigata Univ, Grad Sch Sci & Technol, Nishi Ku, Niigata 9502181, Japan. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Roubeau, Olivier; Evangelisti, Marco] Univ Zaragoza, Dept Fis Mat Condensada, CSIC, ICMA, E-50009 Zaragoza, Spain. [Cremades, Eduard; Ruiz, Eliseo; Barrios, Leoni A.; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. RP Yukawa, Y (reprint author), Niigata Univ, Fac Sci, Dept Environm Sci, Nishi Ku, 8050 Ikarashi Nino Cho, Niigata 9502181, Japan. EM yukawa@env.sc.niigata-u.ac.jp; guillem.aromi@qi.ub.es RI Ruiz, Eliseo/A-6268-2011; Cremades, Eduard/E-3412-2012; Evangelisti, Marco/B-5878-2011; Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; BARRIOS MORENO, LEONI ALEJANDRA/E-5413-2017 OI Ruiz, Eliseo/0000-0001-9097-8499; Evangelisti, Marco/0000-0002-8028-9064; Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; BARRIOS MORENO, LEONI ALEJANDRA/0000-0001-7075-9950 FU Generalitat de Catalunya [2009SGR-1459]; Spanish MCI [CTQ2009-06959, MAT2009-13977-C03, CTQ2008-06670-C02-01]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the Generalitat de Catalunya for the prize ICREA Academia 2008 (G. A.) and Grant 2009SGR-1459 (E. C. and E. R.) and Spanish MCI through CTQ2009-06959 (G. A., L. B.), MAT2009-13977-C03 (M. E.), and CTQ2008-06670-C02-01 (E. C., ER). Computer resources and assistance were provided by the Barcelona Supercomputer Centre. The advanced light source (S.J.T.) is supported by the U.S. Department of Energy (DE-AC02-05CH11231). NR 33 TC 42 Z9 43 U1 1 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD JUL PY 2011 VL 17 IS 30 BP 8264 EP 8268 DI 10.1002/chem.201100769 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 806UH UT WOS:000293838300003 PM 21671297 ER PT J AU Melapudi, V Shanker, B Seal, S Aluru, S AF Melapudi, Vikram Shanker, Balasubramaniam Seal, Sudip Aluru, Srinivas TI A Scalable Parallel Wideband MLFMA for Efficient Electromagnetic Simulations on Large Scale Clusters SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Accelerated Cartesian expansion (ACE); Cartesian expansions; fast multipole method (FMM); fast solvers; integral equation (IE); multipole methods; parallel multilevel fast multipole algorithm (MLFMA); scattering; self-similar tree; wideband MLFMA ID FAST MULTIPOLE ALGORITHM; ACCELERATED CARTESIAN EXPANSIONS; N-BODY SIMULATION; HELMHOLTZ-EQUATION; 3 DIMENSIONS; INTEGRAL-EQUATIONS; ERROR ANALYSIS; SCATTERING; UNKNOWNS; FIELDS AB The development of the multilevel fast multipole algorithm (MLFMA) and its multiscale variants have enabled the use of integral equation (IE) based solvers to compute scattering from complicated structures. Development of scalable parallel algorithms, to extend the reach of these solvers, has been a topic of intense research for about a decade. In this paper, we present a new algorithm for parallel implementation of IE solver that is augmented with a wideband MLFMA and scalable on large number of processors. The wideband MLFMA employed here, to handle multiscale problems, is a hybrid combination of the accelerated Cartesian expansion (ACE) and the classical MLFMA. The salient feature of the presented parallel algorithm is that it is implicitly load balanced and exhibits higher performance. This is achieved by developing a strategy to partition the MLFMA tree, and hence the associated computations, in a self-similar fashion among the parallel processors. As detailed in the paper, the algorithm employs both spatial and direction partitioning approaches in a flexible manner to ensure scalable performance. Plethora of results are presented here to exhibit the scalability of this algorithm on 512 and more processors. C1 [Melapudi, Vikram; Shanker, Balasubramaniam] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Seal, Sudip] Oak Ridge Natl Lab, Modeling & Simulat Grp, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Aluru, Srinivas] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Melapudi, V (reprint author), Ansys Inc, Ann Arbor, MI 48108 USA. EM vikram.melapudi@gmail.com; sealsk@ornl.gov FU National Science Foundation [CCF-0729157, DMS-0811197] FX Manuscript received May 16, 2009; revised November 03, 2010; accepted January 29, 2011. Date of publication May 12, 2011; date of current version July 07, 2011. This work was supported by the National Science Foundation under Grants CCF-0729157 and DMS-0811197. NR 45 TC 19 Z9 19 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X EI 1558-2221 J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD JUL PY 2011 VL 59 IS 7 BP 2565 EP 2577 DI 10.1109/TAP.2011.2152311 PG 13 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 801ME UT WOS:000293442200015 ER PT J AU Lin, CR Liao, WH Wei, DH Chang, CK Fang, WC Chen, CL Dong, CL Chen, JL Guo, JH AF Lin, Chii-Ruey Liao, Wen-Hsiang Wei, Da-Hua Chang, Chien-Kuo Fang, Wei-Chuan Chen, Chi-Liang Dong, Chung-Li Chen, Jeng-Lung Guo, Jing-Hua TI Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition SO JOURNAL OF CRYSTAL GROWTH LA English DT Article DE Crystallites; Near-edge X-ray absorption fine structure spectrum (NEXAFS); Chemical vapor deposition processes; Microwave plasma jet chemical vapor deposition (MPJCVD); Diamond; Ultrananocrystalline diamond (UNCD) ID FIELD ELECTRON-EMISSION; THIN-FILMS; MICROSTRUCTURE; CARBON AB In this paper, a particular class of smooth ultrananocrystalline diamond (UNCD) films synthesized by home-made microwave plasma jet chemical vapor deposition system (MPJCVD) with gas chemistry of Ar-MCH4-10%H-2 is presented. This synthesis by MPJCVD yields UNCD films identical to those UNCD films fabricated with Ar/CH4 chemistry by MPCVD, but using relatively low Ar introduction, low pressure, and low power due to the focused microwave plasma jet enhanced the dissociation of react gases to form energetic species during the deposition. The transition from microcrystalline to ultrananocrystalline diamond films grown from Ar/Ar+H-2 0% to 90% plasmas using MPJCVD has been systematically studied. The results of this study showed that the grain size, surface roughness, and sp(3) bonding carbon concentration in the films decreased with the increase in Ar concentration. The reason is due to the great increase in renucleation during the films growth. The TEM images clearly exhibited the grain size of the films (Ar/Ar+H-2: 90%) in the range of 3-8 nm. The near-edge X-ray absorption fine structure spectrum also exhibited the clear bonding characteristics of diamond. Moreover, the plasma precarbonization was employed by MPJCVD prior to UNCD films synthesis in order to markedly enhance the smoothness of UNCD films. The UNCD film was synthesized via unique MPJCVD-enhanced nucleation and growth, which produced films with high growth rate (315 nm/h), smooth surfaces (similar to 11.7 nm rms), and extremely fine-grained (3-8 nm) distribution in the whole film. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lin, Chii-Ruey; Wei, Da-Hua] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 106, Taiwan. [Lin, Chii-Ruey; Wei, Da-Hua] Natl Taipei Univ Technol, Inst Mfg Technol, Taipei 106, Taiwan. [Lin, Chii-Ruey; Liao, Wen-Hsiang; Wei, Da-Hua; Chang, Chien-Kuo] Natl Taipei Univ Technol, Grad Inst Mech & Elect Engn, Taipei 106, Taiwan. [Fang, Wei-Chuan] Ind Technol Res Inst, Mat & Chem Res Labs, Hsinchu 300, Taiwan. [Chen, Chi-Liang] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Dong, Chung-Li] Natl Synchrotron Radiat Res Ctr, Hsinchu 300, Taiwan. [Chen, Jeng-Lung; Guo, Jing-Hua] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lin, CR (reprint author), Natl Taipei Univ Technol, Dept Mech Engn, Taipei 106, Taiwan. EM crlin@ntut.edu.tw; dhwei@ntut.edu.tw RI Chen, Chi Liang/F-4649-2012 FU National Science Council of R.O.C. [NSC 99-2221-E-027-086, NSC 99-2221-E-027-051] FX This work was financially supported by the main research projects of the National Science Council of R.O.C. under Grant nos. NSC 99-2221-E-027-086 and NSC 99-2221-E-027-051, respectively. NR 25 TC 9 Z9 11 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 EI 1873-5002 J9 J CRYST GROWTH JI J. Cryst. Growth PD JUL 1 PY 2011 VL 326 IS 1 BP 212 EP 217 DI 10.1016/j.jcrysgro.2011.01.100 PG 6 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 802BH UT WOS:000293483800048 ER PT J AU Akerblom, N Cornelissen, G Stavenga, G van Holten, JW AF Akerblom, N. Cornelissen, G. Stavenga, G. van Holten, J. W. TI Nonrelativistic Chern-Simons vortices on the torus SO JOURNAL OF MATHEMATICAL PHYSICS LA English DT Article ID EQUATION AB A classification of all periodic self-dual static vortex solutions of the Jackiw-Pi model is given. Physically acceptable solutions of the Liouville equation are related to a class of functions, which we term Omega-quasi-elliptic. This class includes, in particular, the elliptic functions and also contains a function previously investigated by Olesen. Some examples of solutions are studied numerically and we point out a peculiar phenomenon of lost vortex charge in the limit where the period lengths tend to infinity, that is, in the planar limit. (C) 2011 American Institute of Physics. [doi:10.1063/1.3610643] C1 [Akerblom, N.; van Holten, J. W.] Nikhef Theory Grp, Amsterdam, Netherlands. [Cornelissen, G.] Univ Utrecht, Dept Math, NL-3508 TC Utrecht, Netherlands. [Stavenga, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Akerblom, N (reprint author), Nikhef Theory Grp, Amsterdam, Netherlands. EM nikolasa@nikhef.nl; g.cornelissen@uu.nl; stavenga@gmail.com; t32@nikhef.nl FU Dutch Foundation for Fundamental Research on Matter (FOM); US Department of Energy [DE-AC02-07CH11359] FX We are indebted to P. Horvathy for correspondence and comments and to C. Hill, S. Moster, E. Plauschinn, and B. Schellekens for helpful discussions. Two of us (N. Akerblom and J.-W. van Holten) have their work supported by the Dutch Foundation for Fundamental Research on Matter (FOM). N. A. also thanks the Max-Planck-Institute for Physics (Munich) for hospitality during the final stage of this paper. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy. NR 30 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0022-2488 J9 J MATH PHYS JI J. Math. Phys. PD JUL PY 2011 VL 52 IS 7 AR 072901 DI 10.1063/1.3610643 PG 17 WC Physics, Mathematical SC Physics GA 801ZB UT WOS:000293478000013 ER PT J AU Danioux, E Klein, P Hecht, MW Komori, N Roullet, G Le Gentil, S AF Danioux, Eric Klein, Patrice Hecht, Matthew W. Komori, Nobumasa Roullet, Guillaume Le Gentil, Sylvie TI Emergence of Wind-Driven Near-Inertial Waves in the Deep Ocean Triggered by Small-Scale Eddy Vorticity Structures SO JOURNAL OF PHYSICAL OCEANOGRAPHY LA English DT Article ID MESOSCALE EDDIES; ENERGY; PROPAGATION; TURBULENCE; STORM; FIELD; MODEL AB Using numerical simulations forced by a uniform realistic wind time series, the authors show that the presence of a mesoscale eddy field at midlatitudes accelerates the vertical propagation of the wind-forced near-inertial waves (NIW) and produces the emergence of a maximum of vertical velocity into the deep ocean (around 2500 m) characterized by a mean amplitude of 25 m day(-1), a dominant 2f frequency, and scales as small as O(30 km). These results differ from previous studies that reported a smaller depth and larger scales. The authors show that the larger depth observed in the present study (2500 m instead of 1700 m) is due to the wind forcing duration that allows the first five baroclinic modes to disperse and to impact the deep NIW maximum (instead of the first two modes as reported before). The smaller scales (30 km instead of 90 km) are explained by a resonance mechanism (described in previous studies) that affects the high NIW baroclinic modes, but only when small-scale relative vorticity structures (related to the mesoscale eddy field) have an amplitude that is large enough. These results, which point out the importance of the wind forcing duration and the resolution, indicate that the emergence of a deep NIW maximum with a 2f frequency reported before is a robust feature that is enhanced with more realistic conditions. Such 2f frequency in the deep interior raises the question of the mechanisms, still unresolved, that may ultimately transfer this superinertial energy into mixing at these depths. C1 [Danioux, Eric; Klein, Patrice; Roullet, Guillaume; Le Gentil, Sylvie] IFREMER, LPO, CNRS, UBO,IRD, F-29280 Plouzane, France. [Hecht, Matthew W.] Los Alamos Natl Lab, Los Alamos, NM USA. [Komori, Nobumasa] JAMSTEC, Earth Simulator Ctr, Yokohama, Kanagawa, Japan. RP Klein, P (reprint author), IFREMER, LPO, CNRS, UBO,IRD, BP 70, F-29280 Plouzane, France. EM patrice.klein@ifremer.fr RI Komori, Nobumasa/D-1989-2013; Roullet, Guillaume/L-3998-2015; OI Komori, Nobumasa/0000-0001-6067-8356; Roullet, Guillaume/0000-0002-7482-864X; Hecht, Matthew/0000-0003-0946-4007 FU IFREMER; CNRS (France); Agence Nationale pour la Recherche [ANR-05-CIGC-010]; MEXT of Japan [19340130] FX This work is supported by IFREMER, CNRS (France), and the Agence Nationale pour la Recherche (Contract ANR-05-CIGC-010). Some of the simulations reported here were done on the Earth Simulator (Yokohama, Japan) through an MOU signed between IFREMER, CNRS, and JAMSTEC. PK thanks Eric D'Asaro for stimulating us to report these results. NK is partly supported by a Grant-in-Aid for Scientific Research (19340130) from MEXT of Japan. NR 25 TC 10 Z9 12 U1 1 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-3670 J9 J PHYS OCEANOGR JI J. Phys. Oceanogr. PD JUL PY 2011 VL 41 IS 7 BP 1297 EP 1307 DI 10.1175/2011JPO4537.1 PG 11 WC Oceanography SC Oceanography GA 802LP UT WOS:000293513200002 ER PT J AU Liu, L Lo, CF Kang, TS Ren, F Pearton, SJ Kravchenko, II Laboutin, O Cao, Y Johnson, WJ AF Liu, Lu Lo, Chien-Fong Kang, Tsung-Sheng Ren, Fan Pearton, S. J. Kravchenko, I. I. Laboutin, O. Cao, Yu Johnson, Wayne J. TI Comparison of DC performance of Pt/Ti/Au- and Ni/Au-gated AlGaN/GaN high electron mobility transistors SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE aluminium compounds; gallium compounds; gold; high electron mobility transistors; III-V semiconductors; leakage currents; metallisation; platinum; Schottky barriers; titanium; wide band gap semiconductors ID THERMAL-STABILITY; CRITICAL VOLTAGE; HEMTS; GAN; RELIABILITY; HETEROSTRUCTURES; DEGRADATION; MECHANISMS; CONTACTS; LENGTH AB We have demonstrated significant improvements of AlGaN/GaN high electron mobility transistors (HEMTs) dc performance by employing Pt/Ti/Au instead of the conventional Ni/Au gate metallization. During off-state bias stressing, the typical critical voltage for HEMTs with Ni/Au gate metallization was similar to-45 to -65 V. By sharp contrast, no critical voltage was observed for HEMTs with Pt/Ti/Au gate metallization, even up to -100 V, which was the instrumental limitation in this experiment. After the off-state stressing, the drain current of Ni/Au gated-HEMTs decreased by similar to 15%. For the Pt-gate HEMTs, no degradation of the drain current occurred and there were minimal changes in the Schottky gate characteristics for both forward and reverse bias conditions. The HEMTs with Pt/Ti/Au metallization showed an excellent drain on/off current ratio of 1.56 x 10(8). The on/off drain current ratio of Ni-gated HEMTs was dependent on the drain bias voltage and ranged from 1.16 x 10(7) at V-DS=5 V and 6.29 x 10(5) V-DS = 40 V due to the larger gate leakage current at higher drain bias voltage. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3607601] C1 [Liu, Lu; Lo, Chien-Fong; Kang, Tsung-Sheng; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, S. J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kravchenko, I. I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Laboutin, O.; Cao, Yu; Johnson, Wayne J.] Kopin Corp, Taunton, MA 02780 USA. RP Liu, L (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM ren@che.ufl.edu RI Cao, Yu/E-4990-2011; LIU, LU/H-2307-2013; Kravchenko, Ivan/K-3022-2015 OI LIU, LU/0000-0001-7256-3775; Kravchenko, Ivan/0000-0003-4999-5822 FU AFOSR MURI; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX The work performed at UF is supported by an AFOSR MURI monitored by Gregg Jessen and Kitt Reinhardt. A portion of this research was conducted at the Center for nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 20 TC 2 Z9 2 U1 0 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2011 VL 29 IS 4 AR 042202 DI 10.1116/1.3607601 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 806YS UT WOS:000293854800039 ER PT J AU Park, JY Belau, L Seo, H Somorjai, GA AF Park, Jeong Y. Belau, Leonid Seo, Hyungtak Somorjai, Gabor A. TI Improved oxidation resistance of Ru/Si capping layer for extreme ultraviolet lithography reflector SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE atomic force microscopy; boron; carbon; durability; etching; oxidation; plasma materials processing; reflectivity; ruthenium; scanning electron microscopy; silicon; surface morphology; surface roughness; ultraviolet lithography; X-ray photoelectron spectra ID MASK BLANKS; RU FILMS; OZONE; RUTHENIUM; REMOVAL; SURFACE; NANOPARTICLES; REDUCTION; OPTICS; PLASMA AB The authors report on the chemical durability and oxidation resistance of Ru/Si, Ru/B, Ru/C, and Ru capping layers on the extreme ultraviolet (EUV) reflector surface. Surface etching and changes in the oxidation state were probed with x-ray photoelectron spectroscopy. The changes in surface morphology and roughness are characterized using scanning electron microscopy and atomic force microscopy. Out of four different capping layers, Ru/Si layers exhibited the least surface oxidation after oxygen plasma and UV/ozone treatment, indicating a superior oxidation resistance. The authors found that the reflectivity of the Ru/Si capped reflector is similar to that of a bare Ru capped reflector. This study suggests that a Ru/Si layer can be an excellent capping layer for the EUV reflector. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3596560] C1 [Belau, Leonid; Seo, Hyungtak; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Park, Jeong Y.] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea. [Park, Jeong Y.] Korea Adv Inst Sci & Technol, NanoCentury KI, Taejon 305701, South Korea. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu RI Park, Jeong Young/A-2999-2008 FU Intel Corp.; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; WCU through the National Research Foundation of Korea [R-31-2008-000-10055-0] FX The authors acknowledge the contribution of Erik Gullikson (CXRO, LBNL) for his help with reflectivity measurements, and valuable comments from Ted Liang. This work was funded by Intel Corp. and supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC0-205CH11231; J.Y.P. acknowledges the support by the WCU program through the National Research Foundation of Korea (Grant No. R-31-2008-000-10055-0) NR 26 TC 1 Z9 2 U1 2 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2011 VL 29 IS 4 AR 041602 DI 10.1116/1.3596560 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 806YS UT WOS:000293854800021 ER PT J AU Roy, A Craver, B Ocola, LE Wolfe, JC AF Roy, Ananya Craver, Barry Ocola, Leonidas E. Wolfe, John C. TI Image noise in helium lithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article DE helium neutral atoms; Monte Carlo methods; noise; Poisson distribution; proximity effect (lithography); resists ID LINE-EDGE ROUGHNESS; ION-BEAM LITHOGRAPHY; SHOT-NOISE; PROXIMITY LITHOGRAPHY; RESIST; MODEL; NANOLITHOGRAPHY; MICROSCOPE; PARAMETERS; DIMENSION AB A distinctive feature of resist exposure by energetic helium ions or neutral atoms is that critical exposure densities are very low, about 100 times smaller than for electrons. Thus, particle distributions are sparse, leading to significant statistical fluctuations in the deposited energy density even in polymethylmethacrylate (PMMA), a relatively insensitive, nonchemically amplified resist. The impact is first seen as roughness in the region of partial exposure on a feature's edge where the bunching of just a few particles may cause the energy density to shift above or below the resist development threshold. As feature size is reduced, however, fluctuations in the total number of particles (shot noise) become larger as a fraction of average dose, potentially causing over- and underexposure of the entire feature. This article presents an integrated study of image noise in helium lithography that compares shape variations in neutral particle mask images with the predictions of a Monte Carlo model. The model accounts for the following: (1) Poisson statistics of the particle emission process, (2) the variable spatial distribution of the particles within the aerial image, (3) the effect of scattering on the particle distribution at various depths in the resist, and (4) smoothing of the deposited energy distribution by exposure and development processes. Proximity lithography experiments were carried out using 10 keV neutral helium atoms in 20 nm thick PMMA resist under conditions of 12.7 nm [full width at half maximum (FWHM)] penumbral image blur. The energy smoothing function is assumed, based on previous experiments, to be Gaussian and its standard deviation sigma treated as a free parameter. Model predictions of the power spectral density of line edge roughness agree with experiment for sigma=5.0 perpendicular to 0.5 nm. The model predicts that using a resist with a critical dose 20 times higher than PMMA and reducing penumbra to 0.5 nm (FWHM), for example by reducing the proximity gap, would reduce shape fluctuations to less than 0.5 nm (FWHM) for dense 10 nm dot arrays. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3597835] C1 [Roy, Ananya; Craver, Barry] Univ Houston, Dept Elect & Comp Engn, Nanosyst Mfg Ctr, Houston, TX 77204 USA. [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Wolfe, John C.] Univ Houston, Dept Phys, Nanosyst Mfg Ctr, Houston, TX 77204 USA. RP Roy, A (reprint author), CGGVeritas, 10300 Town Pk Dr, Houston, TX 77072 USA. EM wolfe@uh.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU NSF [DMI-0521523, ECS-0404308]; Center for Nanoscale Materials at the Argonne National Laboratory; Texas Center for Superconductivity at the University of Houston; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research supported by NSF Award Nos. DMI-0521523 and ECS-0404308, Center for Nanoscale Materials at the Argonne National Laboratory, and the Texas Center for Superconductivity at the University of Houston. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 1 Z9 1 U1 3 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2011 VL 29 IS 4 AR 041005 DI 10.1116/1.3597835 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 806YS UT WOS:000293854800009 ER PT J AU Kleiser, IKW Poznanski, D Kasen, D Young, TR Chornock, R Filippenko, AV Challis, P Ganeshalingam, M Kirshner, RP Li, WD Matheson, T Nugent, PE Silverman, JM AF Kleiser, Io K. W. Poznanski, Dovi Kasen, Daniel Young, Timothy R. Chornock, Ryan Filippenko, Alexei V. Challis, Peter Ganeshalingam, Mohan Kirshner, Robert P. Li, Weidong Matheson, Thomas Nugent, Peter E. Silverman, Jeffrey M. TI Peculiar Type II supernovae from blue supergiants SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; supernovae: individual: SN 2000cb; supernovae: individual: SN 1987A; supernovae: individual: SN 2005ci; supernovae: individual: SN 1998A; supernovae: individual: SN 1999em ID EXPANDING PHOTOSPHERE METHOD; CORE-COLLAPSE SUPERNOVAE; THEORETICAL LIGHT-CURVE; P SUPERNOVAE; PLATEAU SUPERNOVAE; OBSERVATIONAL CONSTRAINTS; UBVRI PHOTOMETRY; MAGELLANIC-CLOUD; IA SUPERNOVAE; MASSIVE STARS AB The vast majority of Type II supernovae (SNeII) are produced by red supergiants, but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best-studied event revolutionized our understanding of SNe and linking it to the bulk of Type II events is essential. We present here the optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard SNII and yet is not a SN 1987A analogue. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time-scales. Spectroscopically, SN 2000cb resembles a normal SNII, but with ejecta velocities that far exceed those measured for SN 1987A or normal SNeII, above 18 000 km s(-1) for H alpha at early times. The red colours, high velocities, late photometric peak and our modelling of this object all point towards a scenario involving the high-energy explosion of a small-radius star, most likely a BSG, producing 0.1 M-circle dot of Ni-56. Adding a similar object to the sample, SN 2005ci, we derive a rate of similar to 2 per cent of the core-collapse rate for this loosely defined class of BSG explosions. C1 [Kleiser, Io K. W.; Poznanski, Dovi; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Poznanski, Dovi; Kasen, Daniel; Nugent, Peter E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Young, Timothy R.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Chornock, Ryan; Challis, Peter; Kirshner, Robert P.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Kleiser, IKW (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM io.kleiser@berkeley.edu; dovi@berkeley.edu FU Einstein Fellowship; US Department of Energy [DE-FG02-06ER06-04]; NSF [AST-0908886, AST-0907903]; TABASGO Foundation; Sun Microsystems, Inc.; Hewlett-Packard Company; AutoScope Corporation; Lick Observatory; University of California; Sylvia & Jim Katzman Foundation FX We thank Eddie Baron, Luc Dessart, Dan Maoz and the referee (Stephen Smartt) for useful discussions and comments on this manuscript; Mario Hamuy and Andrea Pastorello for sharing their data; and the following for assistance with observations: Zoltan Balog, Perry Berlind, Alison Coil, Douglas Leonard, Maryam Modjaz and Mark Phillips. DP acknowledges support from an Einstein Fellowship and from the US Department of Energy Scientific Discovery through Advanced Computing (SciDAC) programme under contract DE-FG02-06ER06-04. AVF's SN group at UC Berkeley is supported by the NSF grant AST-0908886 and by the TABASGO Foundation. The SN research at the Harvard College Observatory is supported by NSF grant AST-0907903. The construction and ongoing operation of the KAIT were made possible by donations from the Sun Microsystems, Inc., Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, NSF, University of California, Sylvia & Jim Katzman Foundation and TABASGO Foundation. The Kast spectrograph at the Lick Observatory resulted from a generous donation made by Bill and Marina Kast. We are grateful to the dedicated staff at the Lick and F. L. Whipple Observatories. NR 77 TC 32 Z9 32 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 372 EP 382 DI 10.1111/j.1365-2966.2011.18708.x PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000049 ER PT J AU De Rosa, RJ Bulger, J Patience, J Leland, B Macintosh, B Schneider, A Song, I Marois, C Graham, JR Bessell, M Doyon, R AF De Rosa, R. J. Bulger, J. Patience, J. Leland, B. Macintosh, B. Schneider, A. Song, I. Marois, C. Graham, J. R. Bessell, M. Doyon, R. TI The Volume-limited A-Star (VAST) survey - I. Companions and the unexpected X-ray detection of B6-A7 stars SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE techniques: high angular resolution; binaries: general; stars: early-type; stars: imaging; X-rays: stars ID LOW-MASS STARS; ADAPTIVE OPTICS SYSTEM; NEAR-INFRARED CAMERA; B-TYPE STARS; OPEN CLUSTER; HYADES CLUSTER; BROWN DWARFS; EMISSION; PLEIADES; ROSAT AB With an adaptive optics imaging survey of 148 B6-A7 stars, we have tested the hypothesis that unresolved lower mass companions are the source of the unexpected X-ray detections of stars in this spectral type range. The sample is composed of 63 stars detected in X-rays within the ROSAT All Sky Survey and 85 stars that form a control sample; both subsets have the same restricted distribution of spectral type, age, X-ray sensitivity and separation coverage. A total of 68 companion candidates are resolved with separations ranging from 0.3 to 26.2 arcsec, with 23 new detections. The multiple star frequency of the X-ray sample based on companions resolved within the ROSAT error ellipse is found to be 43(-6)(+6) per cent. The corresponding control sample multiple star frequency is three times lower at 12(-3)(+4) per cent - a difference of 31 +/- 7 per cent. These results are presented in the first of a series of papers based on our Volume-limited A-Star (VAST) survey - a comprehensive study of the multiplicity of A-type stars. C1 [De Rosa, R. J.; Bulger, J.; Patience, J.; Leland, B.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Patience, J.; Macintosh, B.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Schneider, A.; Song, I.] Univ Georgia, Athens, GA 30602 USA. [Marois, C.] NRC Herzberg Inst Astrophys, Victoria, BC V9E 2E7, Canada. [Graham, J. R.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Graham, J. R.] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M55 3H8, Canada. [Bessell, M.] Australian Natl Univ, Inst Adv Studies, Mt Stromlo & Siding Spring Observ, Weston, ACT 2611, Australia. [Doyon, R.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. RP De Rosa, RJ (reprint author), Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon, England. EM derosa@astro.ex.ac.uk FU Science and Technology Facilities Council (STFC) [ST/F 007124/1, ST/F003277/1]; Air Force Office of Scientific Research (AFOSR) for the AEOS; EC Research Training Network; US Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344]; National Science Foundation (NSF) [AST 98-76783]; JRG; University of California [09-LR-118057-GRAJ]; NSF [AST-0909188]; National Aeronautics and Space Administration FX We gratefully acknowledge several sources of funding. RJDR and JB (ST/F 007124/1) are funded through studentships from the Science and Technology Facilities Council (STFC). This work was initiated with a grant awarded to JP from the Air Force Office of Scientific Research (AFOSR) for the AEOS component and completed with a grant from the STFC (ST/F003277/1). Funding for collaborative visits was provided by the CONSTELLATION EC Research Training Network. Portions of this work were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory in part under contract W-7405-Eng-48 and in part under contract DE-AC52-07NA27344, and also supported in part by the National Science Foundation (NSF) Science and Technology CfAO, managed by the UC Santa Cruz under cooperative agreement AST 98-76783. This work was supported, through JRG, in part by University of California Lab Research Programme 09-LR-118057-GRAJ and NSF grant AST-0909188. We thank LLNL summer students C. White (US Air Force Academy) and S. Kost (Carnegie Mellon University) who assisted with obtaining a subset of the data and some of the early analysis. This research has made use of the SIMBAD and VizieR databases, operated at CDS, Strasbourg, France. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the NSF. This research has made use of the Washington Double Star Catalogue maintained at the US Naval Observatory. We thank the referee for the helpful comments during the review process. NR 59 TC 24 Z9 24 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP 854 EP 866 DI 10.1111/j.1365-2966.2011.18765.x PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000088 ER PT J AU Poznanski, D Ganeshalingam, M Silverman, JM Filippenko, AV AF Poznanski, Dovi Ganeshalingam, Mohan Silverman, Jeffrey M. Filippenko, Alexei V. TI Low-resolution sodium D absorption is a bad proxy for extinction SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; dust, extinction; galaxies: ISM ID BVRI LIGHT CURVES; OBSERVATORY SUPERNOVA SEARCH; TO-GAS RATIO; IA SUPERNOVAE; IMPROVED DISTANCES; NA-I; DUST; PHOTOMETRY; TELESCOPE; CONSTANT AB Dust extinction is generally the least tractable systematic uncertainty in astronomy, and particularly in supernova science. Often in the past, studies have used the equivalent width of NaID absorption measured from low-resolution spectra as proxies for extinction, based on tentative correlations that were drawn from limited data sets. We show here, based on 443 low-resolution spectra of 172 Type Ia supernovae for which we have measured the dust extinction as well as the equivalent width of NaID, that the two barely correlate. We briefly examine the causes for this large scatter that effectively prevents one from inferring extinction using this method. C1 [Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Poznanski, Dovi; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. RP Poznanski, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dovi@berkeley.edu FU NASA; US National Science Foundation (NSF) [AST-0607485, AST-0908886]; TABASGO Foundation; US Department of Energy SciDAC [DE-FC02-06ER41453]; US Department of Energy [DE-FG02-08ER41563] FX We thank A. A. Miller, J. S. Bloom and P. E. Nugent for useful comments on this manuscript. DP is supported by an Einstein Fellowship from NASA. The research of AVF's supernova group at UC Berkeley has been generously supported by the US National Science Foundation (NSF; most recently through grants AST-0607485 and AST-0908886), the TABASGO Foundation, US Department of Energy SciDAC grant DE-FC02-06ER41453, and US Department of Energy grant DE-FG02-08ER41563. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, the Richard and Rhoda Goldman Fund, and the TABASGO Foundation. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank the staffs of the Lick and Keck Observatories for their assistance with the observations. NR 37 TC 60 Z9 60 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 415 IS 1 BP L81 EP L84 DI 10.1111/j.1745-3933.2011.01084.x PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 805UR UT WOS:000293755000018 ER PT J AU Beresh, SJ Henfling, JF Spillers, RW Pruett, BOM AF Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. TI Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer SO PHYSICS OF FLUIDS LA English DT Article DE boundary layer turbulence; flow measurement; flow sensors; fluctuations; Mach number; pressure measurement; pressure transducers; supersonic flow; vibrations; wind tunnels ID SHOCK-WAVE STRUCTURE; HIGH-REYNOLDS-NUMBER; RESOLUTION; FIELD; FLOW; UNSTEADINESS AB Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the omega(-1) dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized omega(2) dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the omega(-1) region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low. (C) 2011 American Institute of Physics. [doi:10.1063/1.3609271] C1 [Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia National Laboratories; United States Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Ryan Bond, Larry DeChant, Rich Field, Keith Miller, Jeff Payne, Jerry Rouse, and Justin Smith for numerous invaluable conversations regarding the physics of pressure fluctuations relevant to re-entry vehicles. The compilation of the historical database was begun by Fred Blottner, now retired from Sandia, and the authors are grateful for his contribution. Tom Grasser designed much of the mounting hardware for the pressure sensors. This work is supported by Sandia National Laboratories and the United States Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 68 TC 15 Z9 15 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2011 VL 23 IS 7 AR 075110 DI 10.1063/1.3609271 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 801ZD UT WOS:000293478200038 ER PT J AU Gowardhan, AA Ristorcelli, JR Grinstein, FF AF Gowardhan, Akshay A. Ristorcelli, J. Ray Grinstein, Fernando F. TI The bipolar behavior of the Richtmyer-Meshkov instability SO PHYSICS OF FLUIDS LA English DT Article ID INITIAL CONDITIONS AB A numerical study of the evolution of the multimode planar Richtmyer-Meshkov instability (RMI) in a light-heavy (air-SF6, Atwood number A = 0.67) configuration involving a Mach number Ma = 1.5 shock is carried out. Our results demonstrate that the initial material interface morphology controls the evolution characteristics of RMI (for fixed A, Ma), and provide a significant basis to develop metrics for transition to turbulence. Depending on initial rms slope of the interface, RMI evolves into linear or nonlinear regimes, with distinctly different flow features and growth rates, turbulence statistics, and material mixing rates. We have called this the bipolar behavior of RMI. Some of our findings are not consistent with heuristic notions of mixing in equilibrium turbulence: more turbulent flow-as measured by spectral bandwidth, can be associated with higher material mixing but, paradoxically, to lower integral measures of turbulent kinetic energy and mixing layer width. (C) 2011 American Institute of Physics. [doi:10.1063/1.3610959] C1 [Gowardhan, Akshay A.; Grinstein, Fernando F.] Los Alamos Natl Lab, XCP 4, Los Alamos, NM 87545 USA. [Ristorcelli, J. Ray] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. RP Gowardhan, AA (reprint author), Los Alamos Natl Lab, XCP 4, MS F644, Los Alamos, NM 87545 USA. FU DOE NNSA [DE-AC52-06NA25396]; LANL [20090058DR] FX Los Alamos National Laboratory (LANL) is operated by LANS, LLC for DOE NNSA under Contract No. DE-AC52-06NA25396. This work was made possible by funding from the LANL LDRD Program on "Turbulence by Design" through directed research project 20090058DR. NR 14 TC 23 Z9 23 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD JUL PY 2011 VL 23 IS 7 AR 071701 DI 10.1063/1.3610959 PG 4 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 801ZD UT WOS:000293478200001 ER PT J AU Awe, TJ Adams, CS Davis, JS Hanna, DS Hsu, SC Cassibry, JT AF Awe, T. J. Adams, C. S. Davis, J. S. Hanna, D. S. Hsu, S. C. Cassibry, J. T. TI One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners SO PHYSICS OF PLASMAS LA English DT Article ID INERTIAL CONFINEMENT FUSION; TARGETS AB One-dimensional radiation-hydrodynamic simulations are performed to develop insight into the scaling of stagnation pressure with initial conditions of an imploding spherical plasma shell or "liner." Simulations reveal the evolution of high-Mach-number (M), annular, spherical plasma flows during convergence, stagnation, shock formation, and disassembly, and indicate that cm-and mu s-scale plasmas with peak pressures near 1 Mbar can be generated by liners with initial kinetic energy of several hundred kilo-joules. It is shown that radiation transport and thermal conduction must be included to avoid non-physical plasma temperatures at the origin which artificially limit liner convergence and, thus, the peak stagnation pressure. Scalings of the stagnated plasma lifetime (tau(stag)) and average stagnation pressure (P(stag), the pressure at the origin, averaged over tau(stag)) are determined by evaluating a wide range of liner initial conditions. For high-M flows, tau(stag) similar to Delta R/v(0), where Delta R and v(0) are the initial liner thickness and velocity, respectively. Furthermore, for argon liners, P(stag) scales approximately as v(0)(15/4) over a wide range of initial densities (n(0)) and as n(0)(1/2) over a wide range of v(0). The approximate scaling P(stag) similar to M(3/2) is also found for a wide range of liner-plasma initial conditions. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3610374] C1 [Awe, T. J.; Adams, C. S.; Davis, J. S.; Hanna, D. S.; Hsu, S. C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Cassibry, J. T.] Univ Alabama, Prop Res Ctr, Huntsville, AL 35899 USA. RP Awe, TJ (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM awetj@lanl.gov OI Hsu, Scott/0000-0002-6737-4934 FU Office of Fusion Energy Sciences of the U.S. Department of Energy [DE-AC52-06NA25396]; National Undergraduate Fellowship in Plasma Physics and Fusion Energy Sciences FX For assistance with RAVEN simulations, we thank W. Atchison, A. Kaul, and C. Rousculp. For assistance with HELIOS simulations, we thank J. MacFarlane and Prism Computational Sciences, Inc. Finally, we thank B. Bauer, G. Kagan, M. Stanic, X. Tang, Y. C. F. Thio, and F. D. Witherspoon for many useful conversations. This work was supported by the Office of Fusion Energy Sciences of the U.S. Department of Energy under contract No. DE-AC52-06NA25396 and a National Undergraduate Fellowship in Plasma Physics and Fusion Energy Sciences (JSD). NR 17 TC 16 Z9 16 U1 1 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072705 DI 10.1063/1.3610374 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500032 ER PT J AU Berkery, JW Betti, R Sabbagh, SA AF Berkery, J. W. Betti, R. Sabbagh, S. A. TI Investigation of multiple roots of the resistive wall mode dispersion relation, including kinetic effects SO PHYSICS OF PLASMAS LA English DT Article ID HIGH-BETA PLASMAS; TOKAMAKS; STABILIZATION; DISSIPATION; PHYSICS; NSTX AB The resistive wall mode instability in tokamak plasmas has a complex frequency which can be determined by a dispersion relation that is cubic, in general, leading to three distinct roots. A simplified model of the dispersion relation, including kinetic effects, is presented and used to explore the behavior of these roots. By changing the plasma rotation frequency, it is shown that one root has a slow mode rotation frequency (less than the inverse wall time) while the other two rotate more quickly, one leading and one lagging the plasma rotation frequency. When realistic experimental parameters from the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)] are used, however, only one slow rotating, near-marginal stability root is found, consistent with present experiments and more detailed calculations with the MISK code [B. Hu et al., Phys. Plasmas 12, 057301 (2005)]. Electron collisionality acts to stabilize one of the rotating roots, while ion collisionality can stabilize the other. In devices with low rotation and low collisionality, these two rotating roots may manifest themselves, but they are likely to remain stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3604948] C1 [Berkery, J. W.; Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Betti, R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Berkery, JW (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. FU U.S. Department of Energy [DE-FG02-99ER54524, DE-AC02-09CH11466, DE-FG02-93ER54215] FX The authors would like to acknowledge R. E. Bell and B. P. LeBlanc for diagnostic contributions to the experimental profiles in Fig. 1. Supported by the U.S. Department of Energy under Contract Nos. DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-FG02-93ER54215. NR 28 TC 17 Z9 17 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072501 DI 10.1063/1.3604948 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500022 ER PT J AU Chen, M Kumar, N Pukhov, A Yu, TP AF Chen, Min Kumar, Naveen Pukhov, Alexander Yu, Tong-Pu TI Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets SO PHYSICS OF PLASMAS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; INERTIAL CONFINEMENT FUSION; ABLATION FRONTS; PROTON-BEAMS; LASER; PLASMA; DRIVEN; FLAMES AB The Rayleigh-Taylor instability in the radiation pressure dominated regime of ion acceleration is studied by means of multidimensional particle-in-cell simulations. It is shown that the growth of the long wavelength mode of the instability can be reduced by transverse diffusion of ions coming from the initial subwavelength modulations on the target front surface. Reduction in the growth of the instability keeps the target structure uniform along the transverse direction and opaque to the laser pulse for a longer duration, improving both the final peak energy and the spectral quality of the ions. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3606562] C1 [Chen, Min; Kumar, Naveen; Pukhov, Alexander; Yu, Tong-Pu] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Chen, Min] Univ Calif Berkeley, Lawrence Berkeley Lab, LOASIS Program, Berkeley, CA 94720 USA. [Yu, Tong-Pu] Natl Univ Def Technol, Dept Phys, Changsha 410073, Hunan, Peoples R China. RP Chen, M (reprint author), Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. EM MinChen@lbl.gov; kumar@tp1.uni-duesseldorf.de RI Yu, Tong-Pu/A-2360-2011; Kumar, Naveen/E-6017-2012; Chen, Min/A-9955-2010; pukhov, alexander/C-8082-2016 OI Chen, Min/0000-0002-4290-9330; FU DFG [TR-18]; Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231]; Alexander von Humboldt Foundation FX This work is supported by the DFG through TR-18 project and in parts by the Department of Energy, Office of Science, Office of High Energy Physics under contract No. DE-AC02-05CH11231 for utilizing the computational resources of NERSC. MC also acknowledges support by the Alexander von Humboldt Foundation and helpful discussions with S. V. Bulanov at JAEA and S. S. Bulanov, C. G. R. Geddes, C. B. Schroeder, E. Esarey at LBNL. NR 40 TC 16 Z9 16 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 073106 DI 10.1063/1.3606562 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500041 ER PT J AU Girard, F Primout, M Villette, B Stemmler, P Jacquet, L Babonneau, D Fournier, KB AF Girard, F. Primout, M. Villette, B. Stemmler, Ph. Jacquet, L. Babonneau, D. Fournier, K. B. TI Titanium and germanium lined hohlraums and halfraums as multi-keV x-ray radiators (vol 16, 052704, 2009) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.; Jacquet, L.] CEA, DAM, DIF, F-91297 Arpajon, France. [Fournier, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Girard, F (reprint author), CEA, DAM, DIF, F-91297 Arpajon, France. NR 2 TC 6 Z9 7 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 079901 DI 10.1063/1.3600532 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500063 ER PT J AU Kyrala, GA Seifter, A Kline, JL Goldman, SR Batha, SH Hoffman, NM AF Kyrala, G. A. Seifter, A. Kline, J. L. Goldman, S. R. Batha, S. H. Hoffman, N. M. TI Tuning indirect-drive implosions using cone power balance SO PHYSICS OF PLASMAS LA English DT Article ID MULTIPLE-BEAM CONES; SYMMETRY EXPERIMENTS; LASER SYSTEM; OMEGA; NOVA; PERFORMANCE; HOHLRAUMS; FACILITY; TARGETS AB We demonstrate indirect-drive implosion symmetry tuning in a vacuum hohlraum 6.6 mm in length and 3.56 mm in diameter with a CH capsule 6.38 mu m in thickness and 1414 mu m in diameter, scaled roughly 0.7 X from a National ignition facility (NIF) [E. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005)] The hohlraums have radiation drives of 117 +/- 4 eV relevant to conditions for the first similar to 1 ns of ignition experiments. By varying the relative ratio of the energy between inner and outer beam cones illuminating the hohlraum at OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. the shape of the x-ray self-emission, and hence the shape of the emitting object, can be tuned from prolate to oblate. The second-order Legendre coefficient, used to characterize the shape, changes from a negative to a positive value at the time of peak x-ray emission during the implosion through the variation of the cone power balance. With the appropriate selection of the cone power balance, the implosion can be tuned to produce a spherical implosion. Using capsules with thicker walls, this technique can be extended to measure the drive symmetry at later times as the length of the drive pulse is increased [N. M. Hoffman et al., J. Phys.: Conf. Ser. 112, 022075 (2008); N. M. Hoffman et al., Phys. Plasmas 3, 2022 (1996)]. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3598179] C1 [Kyrala, G. A.; Seifter, A.; Kline, J. L.; Goldman, S. R.; Batha, S. H.; Hoffman, N. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kyrala, GA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Kline, John/0000-0002-2271-9919 FU DOE [DE-AC52-06NA25396] FX For this work, we acknowledge the contributions of our colleagues at General Atomics in fabricating the shells, the contributions of the target fabrication group at Los Alamos National Laboratory for building and characterizing the targets, the helpful discussions with our colleagues at Laboratory for Laser Energetics that facilitated laser alignment, the discussions with colleagues at Lawrence Livermore National Laboratory concerning symmetry tuning techniques, and our technicians at Los Alamos National Laboratory without whose efforts this work would have been much more difficult. The work was supported by DOE Contract No. DE-AC52-06NA25396 to Los Alamos National Laboratory operated by the Los Alamos National Security, LLC. NR 33 TC 9 Z9 9 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072703 DI 10.1063/1.3598179 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500030 ER PT J AU Liu, J Qin, H AF Liu, Jian Qin, Hong TI Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field SO PHYSICS OF PLASMAS LA English DT Article ID GYROKINETIC THEORY; ADIABATIC ANGLES; BERRY PHASE; HOLONOMY; QUANTUM AB We study the dynamics of the gyrophase of a charged particle in a magnetic field which is uniform in space but changes slowly with time. As the magnetic field evolves slowly with time, the changing of the gyrophase is composed of two parts. The first part is the dynamical phase, which is the time integral of the instantaneous gyrofrequency. The second part, called geometric gyrophase, is more interesting, and it is an example of the geometric phase which has found many important applications in different branches of physics. If the magnetic field returns to the initial value after a loop in the parameter space, then the geometric gyrophase equals the solid angle spanned by the loop in the parameter space. This classical geometric gyrophase is compared with the geometric phase (the Berry phase) of the spin wave function of an electron placed in the same adiabatically changing magnetic field. Even though gyromotion is not the classical counterpart of the quantum spin, the similarities between the geometric phases of the two cases nevertheless reveal the similar geometric nature of the different physics laws governing these two physics phenomena. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3609830] C1 [Liu, Jian] Peking Univ, State Key Lab Nucl Phys & Technol, Sch Phys, Beijing 100871, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Liu, J (reprint author), Peking Univ, State Key Lab Nucl Phys & Technol, Sch Phys, Beijing 100871, Peoples R China. RI Liu, Jian/E-5857-2010 FU China Scholarship Council [2009601134]; U.S. Department of Energy [DE-AC02-09CH11466]; ITER-China [2010GB107001]; National Natural Science Foundation of China [NSFC-11075162] FX This research is supported by the China Scholarship Council (2009601134), the U.S. Department of Energy (DE-AC02-09CH11466), ITER-China Program (2010GB107001), and the National Natural Science Foundation of China (NSFC-11075162). Jian Liu thanks the Theory Department of Princeton Plasma Physics Laboratory for the hospitality during his visit. NR 34 TC 10 Z9 10 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072505 DI 10.1063/1.3609830 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500026 ER PT J AU Muller, SH Boedo, JA Burrell, KH deGrassie, JS Moyer, RA Rudakov, DL Solomon, WM Tynan, GR AF Mueller, S. H. Boedo, J. A. Burrell, K. H. deGrassie, J. S. Moyer, R. A. Rudakov, D. L. Solomon, W. M. Tynan, G. R. TI Intrinsic rotation generation in ELM-free H-mode plasmas in the DIII-D tokamak-Experimental observations SO PHYSICS OF PLASMAS LA English DT Article ID MOMENTUM INPUT; TCV TOKAMAK; CONFINEMENT; TURBULENCE; TRANSPORT; FLOW; TRANSITION; THRESHOLD; PARADIGM; LANGMUIR AB A detailed description is presented of the experiment reported in [S. H. Muller et al., Phys. Rev. Lett. 106, 115001 (2011)], which reported the first measurements of fluid turbulent stresses in a tokamak H-mode pedestal. Mach probe measurements disclosed a narrow co-current rotation layer at the separatrix, which is also seen in some L-modes [J. A. Boedo et al., Phys. Plasmas 18, 032510 (2011)]. Independent evidence for the existence of the edge co-rotation layer is presented from main-ion rotation measurements by charge-exchange-recombination spectroscopy in comparable helium plasmas. The probe measurements are validated against density and electron temperature profiles from Thomson scattering and in terms of the measured turbulent particle transport, which is consistent with the global density rise. Non-diffusive non-convective angular momentum transport is required by two independent experimental observations: (1) A persistent dip in the rotation profile separates the edge layer from the evolving core region during intrinsic rotation development. (2) The rotation profiles with co- and counter-current neutral beam injection appear well described as the simple sum of a constant intrinsic part and the beam-driven part, also demonstrating the profile-independence of the intrinsic torque. Characteristics of the turbulent fluctuations composing the fluid turbulent stresses are discussed: Up to 0.5 cm inside the separatrix, the low amplitude of the Reynolds stress (<0.05 Nm of torque) is due to both a reduction of the fluctuation amplitudes at the peak of the edge co-rotation layer and weak correlations between the toroidal and radial velocity fluctuations. Further into the core, the correlations increase significantly up to a value of +0.75, resulting in an almost unidirectional character of the turbulent Reynolds stress, generating substantial counter-current torques up to -2 Nm. Additional mechanisms must be present to balance these torques and explain the co-current core-plasma spin-up at a rate of +0.3 Nm. (C) 2011 American Institute of Physics. [doi:10.1063/1.3605041] C1 [Mueller, S. H.; Boedo, J. A.; Moyer, R. A.; Rudakov, D. L.; Tynan, G. R.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Mueller, S. H.; Tynan, G. R.] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, La Jolla, CA 92093 USA. [Burrell, K. H.; deGrassie, J. S.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Muller, SH (reprint author), Univ Calif San Diego, Energy Res Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA. OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-FG02-07ER54917, DE-FC02-04ER54698, DE-AC02-09CH11466] FX This work was supported by the US Department of Energy under DE-FG02-07ER54917, DE-FC02-04ER54698, and DE-AC02-09CH11466. Many valuable contributions from P. H. Diamond, P. Gohil, I. H. Hutchinson, C. C. Petty, H. Reimerdes, J. G. Watkins, and J. H. Yu are gratefully acknowledged. NR 41 TC 18 Z9 18 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072504 DI 10.1063/1.3605041 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500025 ER PT J AU Sheehan, JP Raitses, Y Hershkowitz, N Kaganovich, I Fisch, NJ AF Sheehan, J. P. Raitses, Y. Hershkowitz, N. Kaganovich, I. Fisch, N. J. TI A comparison of emissive probe techniques for electric potential measurements in a complex plasma SO PHYSICS OF PLASMAS LA English DT Article ID CHARGE LIMITED EMISSION; LOW-TEMPERATURE PLASMA; FAST TIME EVOLUTIONS; HALL THRUSTERS; SPACE-CHARGE; ELECTROSTATIC-PROBE; VELOCITY DISTRIBUTION; SHEATH; SECONDARY; LANGMUIR AB The major emissive probe techniques are compared to better understand the floating potential of an electron emitting surface in a plasma. An overview of the separation point technique, floating point technique, and inflection point in the limit of zero emission technique is given, addressing how each method works as well as the theoretical basis and limitations of each. It is shown that while the floating point method is the most popular, it is expected to yield a value similar to 1.5T(e)/e below the plasma potential due to a virtual cathode forming around the probe. The theoretical predictions were checked with experiments performed in a 2 kW annular Hall thruster plasma (n(e) similar to 10(9)-10(10) cm(-3) and T-e similar to 10-50 eV). The authors find that the floating point method gives a value around 2T(e)/e below the inflection point method, which is shown to be a more accurate emissive probe technique than other techniques used in this work for measurements of the plasma potential. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3601354] C1 [Sheehan, J. P.; Hershkowitz, N.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Raitses, Y.; Kaganovich, I.; Fisch, N. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Sheehan, JP (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM sheehan2@wisc.edu OI Sheehan, J. P./0000-0003-4312-0611 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-97ER54437]; DOE Office of Fusion Energy Science [DE-SC0001939]; Fusion Energy Sciences Fellowship; U.S. Department of Energy; Oak Ridge Associated Universities FX Special thanks are due to Martin Griswold and Lee Ellison for all of their assistance. This work was supported by US Department of Energy grants No. DE-AC02-09CH11466, and No. DE-FG02-97ER54437, the DOE Office of Fusion Energy Science Contract DE-SC0001939, and the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U.S. Department of Energy and the Oak Ridge Associated Universities. NR 38 TC 50 Z9 51 U1 7 U2 43 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 073501 DI 10.1063/1.3601354 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500046 ER PT J AU Zhou, Y Oughton, S AF Zhou, Ye Oughton, Sean TI Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY-TRANSFER; NUMERICAL SIMULATIONS; MAGNETIC FLUCTUATIONS; DISSIPATION RANGE; INERTIAL-RANGE; LOCALITY; ANISOTROPY; TRANSFERS; CASCADES; SPECTRUM AB Magnetohydrodynamic (MHD) systems can be strongly nonlinear ( turbulent) when their kinetic and magnetic Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced all of the most influential physics of the flows and magnetic fields? In this paper, a metric is defined to indicate whether the necessary physics of interest has been captured. It is found that current computing resources will typically not be sufficient to achieve this minimum state metric. (C) 2011 American Institute of Physics. [doi:10.1063/1.3606473] C1 [Zhou, Ye] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Oughton, Sean] Univ Waikato, Dept Math, Hamilton 3240, New Zealand. RP Zhou, Y (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Oughton, Sean/A-3380-2012 OI Oughton, Sean/0000-0002-2814-7288 FU Lawrence Livermore National Security, LLC [DE-AC52-07NA27344]; University of Waikato FX This work was performed under the auspices of the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344 and with support from the University of Waikato Strategic Research Investment Fund. Y.Z. is extremely grateful to Professor David Wallace, Director of the Isaac Newton Institute for Mathematical Sciences, University of Cambridge and the organizers of the Partial Differential Equations in Kinetic Theories Programmes, for their kind invitation. NR 45 TC 5 Z9 5 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD JUL PY 2011 VL 18 IS 7 AR 072304 DI 10.1063/1.3606473 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 801XS UT WOS:000293474500019 ER PT J AU Bessa, RJ Miranda, V Botterud, A Wang, J AF Bessa, R. J. Miranda, V. Botterud, A. Wang, J. TI 'Good' or 'bad' wind power forecasts: a relative concept SO WIND ENERGY LA English DT Article DE wind power forecasting; neural networks; correntropy; electricity markets; good forecasts; bad forecasts ID ELECTRICITY MARKET; INFORMATION; GENERATION; PREDICTION AB This paper reports a study on the importance of the training criteria for wind power forecasting and calls into question the generally assumed neutrality of the 'goodness' of particular forecasts. The study, focused on the Spanish Electricity Market as a representative example, combines different training criteria and different users of the forecasts to compare them in terms of the benefits obtained. In addition to more classical criteria, an information theoretic learning training criterion, called parametric correntropy, is introduced as a means to correct problems detected in other criteria and achieve more satisfactory compromises among conflicting criteria, namely forecasting value and quality. We show that the interests of wind farm owners may lead to a preference for biased forecasts, which may be in conflict with the larger needs of secure operating policies. The ideas and conclusions are supported by results from three real wind farms. Copyright (c) 2010 John Wiley & Sons, Ltd. C1 [Bessa, R. J.; Miranda, V.] INESC Porto, Inst Engn Sistemas & Computadores Porto, P-4200465 Oporto, Portugal. [Bessa, R. J.; Miranda, V.] Univ Porto, Fac Engn, FEUP, P-4100 Oporto, Portugal. [Botterud, A.; Wang, J.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Bessa, RJ (reprint author), INESC Porto, Inst Engn Sistemas & Computadores Porto, Campus FEUP,Rua Dr Roberto Frias 378, P-4200465 Oporto, Portugal. EM rbessa@inescporto.pt RI Miranda, Vladimiro/H-6245-2012; OI Bessa, Ricardo/0000-0002-3808-0427; Miranda, Vladimiro/0000-0002-5772-8452 NR 38 TC 19 Z9 21 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD JUL PY 2011 VL 14 IS 5 BP 625 EP 636 DI 10.1002/we.444 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 805PE UT WOS:000293740500001 ER PT J AU Falcone, R Jacobsen, C Kirz, J Marchesini, S Shapiro, D Spence, J AF Falcone, Roger Jacobsen, Chris Kirz, Janos Marchesini, Stefano Shapiro, David Spence, John TI New directions in X-ray microscopy SO CONTEMPORARY PHYSICS LA English DT Review DE X-ray microscopy; X-ray diffraction; X-ray optics; phase-contrast ID ZERNIKE PHASE-CONTRAST; FRESNEL ZONE-PLATE; DIFFRACTION MICROSCOPY; PROTEIN NANOCRYSTALLOGRAPHY; TRANSPARENT OBJECTS; CHEMICAL CONTRAST; RESOLUTION; HOLOGRAPHY; TOMOGRAPHY; SCATTERING AB The development of high brightness X-ray sources and high resolution X-ray optics has led to rapid advances in Xray microscopy. Scanning microscopes and full-field instruments are in operation at synchrotron light sources worldwide, and provide spatial resolution routinely in the 25-50 nm range using zone plate focusing elements. X-ray microscopes can provide elemental maps and/or chemical sensitivity in samples that are too thick for electron microscopy. Lensless techniques, such as diffraction microscopy, holography and ptychography are also being developed. In high resolution imaging of radiation-sensitive material the effects of radiation damage needs to be carefully considered. This article is designed to provide an introduction to the current state and future prospects of X-ray microscopy for the non-expert. C1 [Falcone, Roger; Kirz, Janos; Marchesini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Falcone, Roger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jacobsen, Chris] Argonne Natl Lab, Argonne, IL 60439 USA. [Jacobsen, Chris] Northwestern Univ, Evanston, IL USA. [Shapiro, David] Brookhaven Natl Lab, NSLS 2, Upton, NY USA. [Spence, John] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Falcone, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM rwf@berkeley.edu RI Marchesini, Stefano/A-6795-2009; Jacobsen, Chris/E-2827-2015 OI Jacobsen, Chris/0000-0001-8562-0353 FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC02-98CH10886] FX The work as part of Roger Falcone, Janos Kirz, and Stefano Marchesini's official duties as Federal Government Contractors is published by permission of the Lawrence Berkeley National Laboratory and the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-05CH11231 and Chris Jacobsen's official duties as a Federal Government Contractor is published by permission of the Argonne National Laboratory and the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract DE-AC02-06CH11357. David Shapiro's work, as part of his official duties as a Federal Government Contractor, is published by permission of the Brookhaven National Laboratory and the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-98CH10886. The US Government retains for itself, and others acting on its behalf, a paid-up, non-exclusive, and irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 117 TC 38 Z9 38 U1 10 U2 93 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0010-7514 J9 CONTEMP PHYS JI Contemp. Phys. PD JUL-AUG PY 2011 VL 52 IS 4 BP 293 EP 318 DI 10.1080/00107514.2011.589662 PG 26 WC Physics, Multidisciplinary SC Physics GA 805KM UT WOS:000293725300003 ER PT J AU Zhang, YW Zalapa, JE Jakubowski, AR Price, DL Acharya, A Wei, YL Brummer, EC Kaeppler, SM Casler, MD AF Zhang, Yunwei Zalapa, Juan E. Jakubowski, Andrew R. Price, David L. Acharya, Ananta Wei, Yanling Brummer, E. Charles Kaeppler, Shawn M. Casler, Michael D. TI Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences SO GENETICA LA English DT Article DE Switchgrass; DNA markers; Genetic diversity; Genetic structure; Post-glacial migration ID PLANT ADAPTATION REGIONS; SWITCHGRASS POPULATIONS; NORTH-AMERICA; ECOTYPIC VARIATION; CENTRAL FLORIDA; COASTAL-PLAIN; ICE AGES; RECORD; GRASSES; NUMBER AB Switchgrass (Panicum virgatum), a central and Eastern USA native, is highly valued as a component in tallgrass prairie and savanna restoration and conservation projects and a potential bioenergy feedstock. The purpose of this study was to identify regional diversity, gene pools, and centers-of-diversity of switchgrass to gain an understanding of its post-glacial evolution and to identify both the geographic range and potential overlap between functional gene pools. We sampled a total of 384 genotypes from 49 accessions that included the three main taxonomic groups of switchgrass (lowland 4x, upland 4x, and upland 8x) along with one accession possessing an intermediate phenotype. We identified primary centers of diversity for switchgrass in the eastern and western Gulf Coast regions. Migration, drift, and selection have led to adaptive radiation in switchgrass, creating regional gene pools within each of the main taxa. We estimate that both upland-lowland divergence and 4x-to-8x polyploidization within switchgrass began approximately 1.5-1 M ybp and that subsequent ice age cycles have resulted in gene flow between ecotype lineages and between ploidy levels. Gene flow has resulted in "hot spots" of genetic diversity in the southeastern USA and along the Atlantic Seaboard. C1 [Zalapa, Juan E.] Univ Wisconsin, Dept Hort, USDA, ARS,Vegetable Crops Res Unit, Madison, WI 53706 USA. [Zhang, Yunwei] China Agr Univ, Grassland Inst, Beijing 100094, Peoples R China. [Zalapa, Juan E.; Kaeppler, Shawn M.; Casler, Michael D.] DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Jakubowski, Andrew R.; Price, David L.; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Acharya, Ananta; Wei, Yanling; Brummer, E. Charles] Univ Georgia, Crop & Soil Sci Dept, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA. [Acharya, Ananta; Wei, Yanling; Brummer, E. Charles] DOE BioEnergy Sci Ctr, Athens, GA USA. [Brummer, E. Charles] Samuel Roberts Noble Fdn Inc, Ardmore, OK USA. [Casler, Michael D.] ARS, USDA, US Dairy Forage Res Ctr, Madison, WI USA. RP Zalapa, JE (reprint author), Univ Wisconsin, Dept Hort, USDA, ARS,Vegetable Crops Res Unit, 1575 Linden Dr, Madison, WI 53706 USA. EM Juan.Zalapa@ars.usda.gov OI Kaeppler, Shawn/0000-0002-5964-1668 FU DOE Great Lakes Bioenergy Research Center (GLBRC, DOE Office of Science) [BER DE-FC02-07ER64494]; USDA-ARS CRIS [3655-41000-003-00D, 3655-41000-004-00D]; University of Wisconsin Agricultural Research Stations; University of Georgia College of Agricultural and Environmental Sciences; Ministry of Science and Technology, PR China [2008BADB3B04, 2009BADA7B04, 2011AA100209]; DOE BioEnergy Science Center (BESC, DOE Office of Science) [BER DE-AC05-00OR22725]; Office of Biological and Environmental Research in the DOE Office of Science; National Science Foundation [NSF IOS 0922457] FX We thank Nick Baker, USDA-ARS, Madison, WI, and Jonathan Markham and Wesley Dean, University of Georgia, for assistance with field-plot establishment and maintenance. We thank Dr. Ken Vogel, USDA-ARS, Lincoln, NE, for many fruitful discussions, particularly his suggestion of the connection between Fort Robinson and U. S. Army bases in the eastern USA. We thank Denise Costich, USDA-ARS, Ithaca, NY, for kindly supplying a confirmed hexaploid control plant for our flow cytometry assays. We also thank Donna Tabor, Fort Bragg Historian, U. S. Army, for assistance in locating written historical records. We thank the Florida State Park Service for permission to collect switchgrass accessions on Florida State Park lands. This work was funded in part by the DOE Great Lakes Bioenergy Research Center (GLBRC, DOE Office of Science BER DE-FC02-07ER64494). Additional funding for this project was provided by the following organizations and grants: USDA-ARS CRIS Project Nos. 3655-41000-003-00D and 3655-41000-004-00D; the University of Wisconsin Agricultural Research Stations; the University of Georgia College of Agricultural and Environmental Sciences; the Ministry of Science and Technology, PR China, Project Nos. 2008BADB3B04, 2009BADA7B04, and 2011AA100209; and Project 1.3.3.3 of the DOE BioEnergy Science Center (BESC, DOE Office of Science BER DE-AC05-00OR22725). Both GLBRC and BESC are U. S. Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. This project represents a formal collaboration between GLBRC, BESC, and the Chinese Ministry of Science and Technology. Mention of a trademark, product name, or brand does not imply endorsement of a product over any other product by the USDA-ARS, the University of Georgia, or the U. S. Department of Energy. Panicum hallii sequence data were kindly provided to us by Eli Meyer and Tom Juenger of the University of Texas, Austin, TX. Their efforts were supported through National Science Foundation Plant Genome Research Program NSF IOS 0922457. Christian Tobias, USDA-ARS, Albany, CA kindly provided the full chloroplast sequence of P. virgatum cv. Kanlow as a reference genome for alignment of P. hallii fragments. NR 72 TC 43 Z9 44 U1 1 U2 36 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0016-6707 J9 GENETICA JI Genetica PD JUL PY 2011 VL 139 IS 7 BP 933 EP 948 DI 10.1007/s10709-011-9597-6 PG 16 WC Genetics & Heredity SC Genetics & Heredity GA 798XG UT WOS:000293244900010 PM 21786028 ER PT J AU Kar, A Upadhya, PC Dayeh, SA Picraux, ST Taylor, AJ Prasankumar, RP AF Kar, Ayan Upadhya, Prashanth C. Dayeh, Shadi A. Picraux, S. Tom Taylor, Antoinette J. Prasankumar, Rohit P. TI Probing Ultrafast Carrier Dynamics in Silicon Nanowires SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Nanotechnology; optical spectroscopy; semiconductor materials; silicon; ultrafast optics ID RECOMBINATION DYNAMICS; ELECTRON AB We present the first ultrafast optical pump-probe spectroscopic measurements, to the best of our knowledge, on silicon nanowires (SiNWs). In this study, we performed femtosecond pump-probe measurements on vapor-liquid-solid-grown SiNWs to investigate the influence of the NW diameter, pump and probe polarizations, and pump fluence on the observed dynamics while tuning the probe wavelength below and above the indirect bandgap in Si. For smaller NW diameters, carriers were found to relax more rapidly into both extended and localized states, indicating that a surface-mediated mechanism governs the observed dynamics. The magnitude of the photoinduced transmission change exhibited strong polarization dependence, showing that optical transitions in these quasi-1D systems are highly polarized along the NW axis. Finally, density-dependent experiments revealed that the relaxation time decreases with increasing photoexcited carrier density for an above bandgap probe; however, no significant density-dependent changes in the relaxation dynamics were observed when probed below the bandgap. In short, our experiments reveal the influence of diameter, polarization, and carrier density on carrier dynamics in SiNWs, shedding light on the phenomena that govern carrier relaxation in these important nanosystems and giving insight on their future use in nanophotonic applications. C1 [Kar, Ayan; Upadhya, Prashanth C.; Dayeh, Shadi A.; Picraux, S. Tom; Taylor, Antoinette J.; Prasankumar, Rohit P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Kar, A (reprint author), Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA. EM akar2@uic.edu; pupadhya@lanl.gov; shadi@lanl.gov; picraux@lanl.gov; ttaylor@lanl.gov; rpprasan@lanl.gov RI Dayeh, Shadi/H-5621-2012 FU Los Alamos National Laboratory, U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by Los Alamos National Laboratory, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. NR 31 TC 12 Z9 12 U1 2 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JUL-AUG PY 2011 VL 17 IS 4 BP 889 EP 895 DI 10.1109/JSTQE.2010.2076399 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 805UW UT WOS:000293755500014 ER PT J AU Logeeswaran, VJ Oh, J Nayak, AP Katzenmeyer, AM Gilchrist, KH Grego, S Kobayashi, NP Wang, SY Talin, AA Dhar, NK Islam, MS AF Logeeswaran, V. J. Oh, Jinyong Nayak, Avinash P. Katzenmeyer, Aaron M. Gilchrist, Kristin H. Grego, Sonia Kobayashi, Nobuhiko P. Wang, Shih-Yuan Talin, A. Alec Dhar, Nibir K. Islam, M. Saif TI A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE High speed; impedance matching; metamaterials; nanoepitaxy; nanowire (NW); optical waveguide; photodetectors (PDs); photon traps ID CHEMICAL-VAPOR-DEPOSITION; P-N-JUNCTION; PLASMONIC WAVE-GUIDE; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; ZINC-OXIDE NANOWIRES; MATCHED DISTRIBUTED PHOTODETECTORS; HIGHLY CONDUCTIVE NANOWIRES; CATALYZED SILICON NANOWIRES; INDIUM-PHOSPHIDE NANOWIRES AB One-dimensional semiconductor nanostructures (nanowires (NWs), nanotubes, nanopillars, nanorods, etc.) based photodetectors (PDs) have been gaining traction in the research community due to their ease of synthesis and unique optical, mechanical, electrical, and thermal properties. Specifically, the physics and technology of NW PDs offer numerous insights and opportunities for nanoscale optoelectronics, photovoltaics, plasmonics, and emerging negative index metamaterials devices. The successful integration of these NWPDs on CMOS-compatible substrates and various low-cost substrates via direct growth and transfer-printing techniques would further enhance and facilitate the adaptation of this technology module in the semiconductor foundries. In this paper, we review the unique advantages of NW-based PDs, current device integration schemes and practical strategies, recent device demonstrations in lateral and vertical process integration with methods to incorporate NWs in PDs via direct growth (nanoepitaxy) methods and transfer-printing methods, and discuss the numerous technical design challenges. In particular, we present an ultrafast surface-illuminated PD with 11.4-ps full-width at half-maximum (FWHM), edge-illuminated novel waveguide PDs, and some novel concepts of light trapping to provide a full-length discussion on the topics of: 1) low-resistance contact and interfaces for NW integration; 2) high-speed design and impedance matching; and 3) CMOS-compatible mass-manufacturable device fabrication. Finally, we offer a brief outlook into the future opportunities of NW PDs for consumer and military application. C1 [Logeeswaran, V. J.; Oh, Jinyong; Nayak, Avinash P.; Katzenmeyer, Aaron M.; Islam, M. Saif] Univ Calif Davis, Integrated Nanodevices & Nanosyst Res Grp, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Gilchrist, Kristin H.; Grego, Sonia] Res Triangle Int, Ctr Mat & Elect Technol, Res Triangle Pk, NC 27709 USA. [Kobayashi, Nobuhiko P.] Univ Calif Santa Cruz, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Wang, Shih-Yuan] Hewlett Packard Labs, Informat & Quantum Sci Lab, Palo Alto, CA 94304 USA. [Talin, A. Alec] Sandia Natl Labs, Livermore, CA 94551 USA. [Dhar, Nibir K.] Def Adv Res Projects Agcy, Microsyst Technol Off, Arlington, VA 22203 USA. RP Logeeswaran, VJ (reprint author), Univ Calif Davis, Integrated Nanodevices & Nanosyst Res Grp, Dept Elect & Comp Engn, Davis, CA 95616 USA. EM sgrego@rti.org; nobby@soe.ucsc.edu; sywang@hp.com; albert.talin@nist.gov; nibir.dhar@darpa.mil; sislam@ucdavis.edu RI Wang, Shih-Yuan/C-3889-2009; Kobayashi, Nobuhiko/E-3834-2012; Katzenmeyer, Aaron/F-7961-2014 OI Wang, Shih-Yuan/0000-0002-1212-3484; Katzenmeyer, Aaron/0000-0002-5755-8537 FU Department of Defense under Army Research Office [55176-EL-DRP]; Research Triangle International (RTI); National Science Foundation [0547679] FX This work was supported in part by the Department of Defense under Army Research Office Research Grant 55176-EL-DRP, in part by the Research Triangle International (RTI), and in part by the National Science Foundation under Grant 0547679. NR 401 TC 25 Z9 25 U1 2 U2 82 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD JUL-AUG PY 2011 VL 17 IS 4 BP 1002 EP 1032 DI 10.1109/JSTQE.2010.2093508 PG 31 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 805UW UT WOS:000293755500029 ER PT J AU Massoudi, M AF Massoudi, Mehrdad TI A generalization of Reiner's mathematical model for wet sand SO MECHANICS RESEARCH COMMUNICATIONS LA English DT Article DE Continuum mechanics; Wet sand; Dilatancy; Shear flow; Non-Newtonian fluids; Granular materials ID STRESS-DEFORMATION RELATIONS; SATURATED GRANULAR-MATERIALS; FLOW; FLUID; DILATANCY; MECHANICS; DENSE AB In this paper we modify the constitutive relation derived by Reiner (1945), to describe dilatancy in wet sand, by suggesting that the shear viscosity would depend on the shear rate and the volume fraction. We then look at the flow of a saturated densely packed bed of particles (with liquid in the pores) between two horizontal flat plates. We obtain exact solutions for a very special case. Published by Elsevier Ltd. C1 US DOE, NETL, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM Massoudi@netl.doe.gov NR 42 TC 8 Z9 8 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0093-6413 J9 MECH RES COMMUN JI Mech. Res. Commun. PD JUL PY 2011 VL 38 IS 5 BP 378 EP 381 DI 10.1016/j.mechrescom.2011.05.002 PG 4 WC Mechanics SC Mechanics GA 805IU UT WOS:000293720900007 ER PT J AU Gainsforth, Z Butterworth, AL Brownlee, DE Huss, GR Joswiak, D Nagashima, K Ogliore, RC Tyliczszak, T Westphal, AJ AF Gainsforth, Z. Butterworth, A. L. Brownlee, D. E. Huss, G. R. Joswiak, D. Nagashima, K. Ogliore, R. C. Tyliczszak, T. Westphal, A. J. TI METAMORPHIC INDICATORS IN STARDUST SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID CHONDRITES C1 [Gainsforth, Z.; Butterworth, A. L.; Westphal, A. J.] UC Berkeley, Berkeley, CA USA. [Brownlee, D. E.; Joswiak, D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Huss, G. R.; Nagashima, K.; Ogliore, R. C.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Tyliczszak, T.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. EM zackg@ssl.berkeley.edu NR 6 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A72 EP A72 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700140 ER PT J AU Goldstein, JI Jones, RH Kotula, PG Michael, JR AF Goldstein, J. I. Jones, R. H. Kotula, P. G. Michael, J. R. TI THERMAL HISTORY OF METAL PARTICLES IN CB CHONDRITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID EARLY SOLAR-SYSTEM C1 [Goldstein, J. I.] Univ Massachusetts, Amherst, MA 01003 USA. [Jones, R. H.] Univ New Mexico, Albuquerque, NM 87131 USA. [Kotula, P. G.; Michael, J. R.] Sandia Natl Labs, Albuquerque, NM USA. EM jig0@ecs.umass.edu NR 7 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A80 EP A80 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700156 ER PT J AU Heck, PR Pellin, MJ Davis, AM Isheim, D Seidman, DN Hiller, J Mane, A Elam, J Savina, MR Stephan, T Stadermann, FJ Zhao, X Daulton, TL Floss, C AF Heck, P. R. Pellin, M. J. Davis, A. M. Isheim, D. Seidman, D. N. Hiller, J. Mane, A. Elam, J. Savina, M. R. Stephan, T. Stadermann, F. J. Zhao, X. Daulton, T. L. Floss, C. TI ATOM-PROBE TOMOGRAPHY OF METEORITIC AND SYNTHETIC NANODIAMONDS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID INTERSTELLAR DIAMONDS C1 [Heck, P. R.; Davis, A. M.; Stephan, T.] Field Museum Nat Hist, Dept Geol, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL 60605 USA. [Heck, P. R.; Pellin, M. J.; Davis, A. M.; Savina, M. R.; Stephan, T.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Pellin, M. J.; Davis, A. M.; Stephan, T.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Pellin, M. J.; Hiller, J.; Savina, M. R.; Stephan, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pellin, M. J.; Davis, A. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Isheim, D.; Seidman, D. N.] Northwestern Univ, Dept Mat Sci & Engn, Ctr Atom Probe Tomog, Evanston, IL 60208 USA. [Mane, A.; Elam, J.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Stadermann, F. J.; Zhao, X.; Floss, C.] Wash Univ, Space Sci Lab, St Louis, MO USA. [Stadermann, F. J.; Zhao, X.; Daulton, T. L.; Floss, C.] Wash Univ, Dept Phys, St Louis, MO USA. [Daulton, T. L.] Wash Univ, Ctr Mat Innovat, St Louis, MO USA. EM prheck@fieldmuseum.org RI Hiller, Jon/A-2513-2009; Heck, Philipp/C-6092-2012; Pellin, Michael/B-5897-2008; Seidman, David/B-6697-2009 OI Hiller, Jon/0000-0001-7207-8008; Pellin, Michael/0000-0002-8149-9768; NR 10 TC 2 Z9 2 U1 2 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A90 EP A90 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700177 ER PT J AU Hu, ZW Winarski, R AF Hu, Z. W. Winarski, R. TI NONDESTRUCTIVE THREE-DIMENSIONAL IMAGING OF AN INTERPLANETARY DUST PARTICLE AT THE NANOSCALE SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID CLOUD C1 [Hu, Z. W.] XNano Sci Inc, Huntsville, AL 35812 USA. [Winarski, R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM zwhu@xnano.org NR 5 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A103 EP A103 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700203 ER PT J AU Ishii, HA Wozniakiewicz, PJ Kearsley, AT Burchell, MJ Bradley, JP Teslich, N Price, MC Cole, MJ AF Ishii, H. A. Wozniakiewicz, P. J. Kearsley, A. T. Burchell, M. J. Bradley, J. P. Teslich, N. Price, M. C. Cole, M. J. TI THE QUESTION OF GEMS IN COMET 81P/WILD 2: STARDUST ANALOG IMPACTS OF FINE-GRAINED MINERAL AGGREGATES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID DUST C1 [Ishii, H. A.; Wozniakiewicz, P. J.; Bradley, J. P.; Teslich, N.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Kearsley, A. T.] Nat Hist Museum, Dept Mineral, Impacts & Astromat Res Ctr, London SW7 5BD, England. [Burchell, M. J.; Price, M. C.; Cole, M. J.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. EM hope.ishii@llnl.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A110 EP A110 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700216 ER PT J AU Jacobsen, B Matzel, J Krot, AN Hutcheon, ID Telus, M Nagashima, K AF Jacobsen, B. Matzel, J. Krot, A. N. Hutcheon, I. D. Telus, M. Nagashima, K. TI THE TIMING OF AQUEOUS ALTERATION IN UNEQUILIBRATED ORDINARY CHONDRITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbH, Royal Observ Greenwich ID FAYALITE FORMATION C1 [Jacobsen, B.; Matzel, J.; Hutcheon, I. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Krot, A. N.; Telus, M.; Nagashima, K.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A111 EP A111 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700218 ER PT J AU Kearsley, AT Burchell, MJ Price, MC Cole, MJ Wozniakiewicz, PJ Ishii, HA Teslich, N Bradley, JP Salge, T AF Kearsley, A. T. Burchell, M. J. Price, M. C. Cole, M. J. Wozniakiewicz, P. J. Ishii, H. A. Teslich, N. Bradley, J. P. Salge, T. TI COMETARY DUST RESIDUE IN LARGE STARDUST FOIL CRATERS: HOW MUCH SURVIVES, AND HOW TO SAFELY EXTRACT IT FOR ANALYSIS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID WILD-2; SIZE C1 [Kearsley, A. T.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Burchell, M. J.; Price, M. C.; Cole, M. J.] Univ Kent, Sch Phys Sci, Canterbury CT2 7NH, Kent, England. [Wozniakiewicz, P. J.; Ishii, H. A.; Teslich, N.; Bradley, J. P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Salge, T.] Bruker Nano GmbH, D-12489 Berlin, Germany. EM antk@nhm.ac.uk NR 5 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A120 EP A120 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700236 ER PT J AU Kebukawa, Y Zolensky, ME Fries, MD Steele, A Kilcoyne, ALD Cody, GD AF Kebukawa, Y. Zolensky, M. E. Fries, M. D. Steele, A. Kilcoyne, A. L. D. Cody, G. D. TI ORGANIC ANALYSIS OF XENOLITHIC CLASTS IN METEORITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID SOLAR-SYSTEM C1 [Kebukawa, Y.; Steele, A.; Cody, G. D.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20005 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Fries, M. D.] Planetary Sci Inst, San Diego, CA USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM ykebukawa@ciw.edu RI Kilcoyne, David/I-1465-2013 NR 4 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A121 EP A121 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700238 ER PT J AU King, AJ Sutton, SR Newville, M Liu, N Trappitsch, R Heck, PR Davis, AM Pellin, MJ Stephan, T AF King, A. J. Sutton, S. R. Newville, M. Liu, N. Trappitsch, R. Heck, P. R. Davis, A. M. Pellin, M. J. Stephan, T. TI DETERMINING TRACE ELEMENT ABUNDANCES IN SINGLE PRESOLAR SiC GRAINS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [King, A. J.; Sutton, S. R.; Liu, N.; Trappitsch, R.; Davis, A. M.; Pellin, M. J.; Stephan, T.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [King, A. J.; Liu, N.; Trappitsch, R.; Heck, P. R.; Davis, A. M.; Pellin, M. J.; Stephan, T.] Univ Chicago, Chicago Ctr Cosmochem, Chicago, IL 60637 USA. [Sutton, S. R.; Newville, M.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Liu, N.; Trappitsch, R.; Pellin, M. J.; Stephan, T.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Heck, P. R.; Davis, A. M.; Stephan, T.] Field Museum, Robert A Pritzker Ctr Meteorit & Polar Studies, Chicago, IL USA. [Davis, A. M.; Pellin, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM ajking@uchicago.edu RI Heck, Philipp/C-6092-2012; Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 4 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A125 EP A125 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700246 ER PT J AU Kita, NT Ushikubo, T Knight, KB Mendybaev, RA Davis, AM Richter, FM Nakashima, D Spicuzza, MJ Valley, JW AF Kita, N. T. Ushikubo, T. Knight, K. B. Mendybaev, R. A. Davis, A. M. Richter, F. M. Nakashima, D. Spicuzza, M. J. Valley, J. W. TI HIGH PRECISION OXYGEN ISOTOPE SYSTEMATICS OF A TYPE B1 CAI FROM LEOVILLE (CV3) SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Kita, N. T.; Ushikubo, T.; Nakashima, D.; Spicuzza, M. J.; Valley, J. W.] Univ Wisconsin, WiscSIMS, Madison, WI 53706 USA. [Knight, K. B.; Mendybaev, R. A.; Davis, A. M.; Richter, F. M.] Univ Chicago, Chicago, IL 60637 USA. [Knight, K. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM noriko@geology.wisc.edu NR 7 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A125 EP A125 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700247 ER PT J AU Krot, A Hutcheon, I Nagashima, K Crites, S Gasda, P Hallis, L Jilly, C Petaev, M Robertson, K Taylor, G Telus, M AF Krot, A. Hutcheon, I. Nagashima, K. Crites, S. Gasda, P. Hallis, L. Jilly, C. Petaev, M. Robertson, K. Taylor, G. Telus, M. TI ORIGIN OF FERROAN OLIVINE IN MATRICES OF UNEQUILIBRATED CHONDRITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID FAYALITE C1 [Krot, A.; Nagashima, K.; Crites, S.; Gasda, P.; Hallis, L.; Jilly, C.; Robertson, K.; Taylor, G.; Telus, M.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Hutcheon, I.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Petaev, M.] Harvard Univ, Cambridge, MA 02138 USA. NR 8 TC 2 Z9 2 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A131 EP A131 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700258 ER PT J AU Qin, L Carlson, RW Alexander, CMO AF Qin, L. Carlson, R. W. Alexander, C. M. O'D. TI CORRELATED NUCLEOSYNTHETIC ISOTOPE VARIABILITY IN Cr, Sr, Ba, Sm, Nd, AND Hf IN MURCHISON AND QUE 97008 SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Qin, L.; Carlson, R. W.; Alexander, C. M. O'D.] Carnegie Inst Washington, DTM, Washington, DC 20015 USA. [Qin, L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Isotope Geochem, Berkeley, CA 94720 USA. EM lqin@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A194 EP A194 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700384 ER PT J AU Sandford, SA Nuevo, M Milam, SN Cody, GD Kilcoyne, ALD De Gregorio, BT Stroud, RM AF Sandford, S. A. Nuevo, M. Milam, S. N. Cody, G. D. Kilcoyne, A. L. D. De Gregorio, B. T. Stroud, R. M. TI XANES ANALYSIS OF ORGANIC RESIDUES FROM THE IRRADIATION OF ASTROPHYSICAL ICE ANALOGS AND COMPARISON WITH Stardust SAMPLES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich ID AMINO-ACIDS; COMET 81P/WILD-2 C1 [Sandford, S. A.; Nuevo, M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Milam, S. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Cody, G. D.] Carnegie Inst Washington, Washington, DC 20005 USA. [Kilcoyne, A. L. D.] Adv Light Source, Berkeley, CA USA. [De Gregorio, B. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Stroud, R. M.] USN, Res Lab, Washington, DC 20375 USA. EM Scott.A.Sandford@nasa.gov RI Milam, Stefanie/D-1092-2012; De Gregorio, Bradley/B-8465-2008; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008 OI Milam, Stefanie/0000-0001-7694-4129; De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A204 EP A204 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700404 ER PT J AU Stephan, T Davis, AM Pellin, MJ Savina, MR Veryovkin, IV King, AJ Liu, N Trappitsch, R Yokochi, R AF Stephan, T. Davis, A. M. Pellin, M. J. Savina, M. R. Veryovkin, I. V. King, A. J. Liu, N. Trappitsch, R. Yokochi, R. TI CHILI-APPROACHING THE FINAL FRONTIERS IN LATERAL RESOLUTION AND SENSITIVITY FOR ISOTOPIC AND CHEMICAL ANALYSIS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Stephan, T.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Veryovkin, I. V.; King, A. J.; Liu, N.; Trappitsch, R.; Yokochi, R.] Chicago Ctr Cosmochem, Chicago, IL USA. [Stephan, T.; Davis, A. M.; Pellin, M. J.; King, A. J.; Liu, N.; Trappitsch, R.; Yokochi, R.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Stephan, T.; Pellin, M. J.; Savina, M. R.; Veryovkin, I. V.; Liu, N.; Trappitsch, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Davis, A. M.; Pellin, M. J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. EM tstephan@uchicago.edu RI Pellin, Michael/B-5897-2008 OI Pellin, Michael/0000-0002-8149-9768 NR 4 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A222 EP A222 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700441 ER PT J AU Wozniakiewicz, PJ Ishii, HA Kearsley, AT Burchell, MJ Bradley, JP Teslich, N Cole, MJ AF Wozniakiewicz, P. J. Ishii, H. A. Kearsley, A. T. Burchell, M. J. Bradley, J. P. Teslich, N. Cole, M. J. TI INVESTIGATING CARBONATE SURVIVAL IN Stardust ALUMINUM FOILS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Wozniakiewicz, P. J.; Ishii, H. A.; Bradley, J. P.; Teslich, N.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Kearsley, A. T.] Nat Hist Museum, Impacts & Astromat Res Ctr, Dept Mineral, London SW7 5BD, England. [Burchell, M. J.; Cole, M. J.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. EM wozniakiewic1@llnl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A253 EP A253 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700502 ER PT J AU Wozniakiewicz, PJ Bradley, JP Zolensky, ME Brownlee, DE Ishii, HA AF Wozniakiewicz, P. J. Bradley, J. P. Zolensky, M. E. Brownlee, D. E. Ishii, H. A. TI KWAJALEIN ATOLL: A NEW COLLECTION SITE FOR MICROMETEORITES SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brownlee, D. E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM wozniakiewic1@llnl.gov NR 9 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A253 EP A253 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700503 ER PT J AU Wozniakiewicz, PJ Bradley, JP Zolensky, ME Brownlee, DE Ishii, HA AF Wozniakiewicz, P. J. Bradley, J. P. Zolensky, M. E. Brownlee, D. E. Ishii, H. A. TI TAKING PLANETARY SCIENCE AND ASTRONOMY TO STUDENTS IN THE MIDDLE OF THE PACIFIC OCEAN SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 74th Annual Meeting of the Meteoritical-Society CY AUG 08-12, 2011 CL London, ENGLAND SP Meteorit Soc, Nat Hist Museum, Imperial Coll, Lunar & Planetary Inst, Natl Aeronaut & Space Adm, European Space Agcy, Barringer Crater Co, CAMECA Instruments, Bruker Nano GmbH, CEPSAR - Open Univ, Univ Leicester, Space Res Ctr, Univ Glasgow, Cambridge Univ Press, Sci (AAAS), WiTec GmbII, Royal Observ Greenwich C1 [Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Zolensky, M. E.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Brownlee, D. E.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. EM wozniakiewic1@llnl.gov NR 0 TC 0 Z9 0 U1 1 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 SU 1 SI SI BP A254 EP A254 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 797AN UT WOS:000293094700504 ER PT J AU Wijayasekara, D Manic, M Sabharwall, P Utgikar, V AF Wijayasekara, Dumidu Manic, Milos Sabharwall, Piyush Utgikar, Vivek TI Optimal artificial neural network architecture selection for performance prediction of compact heat exchanger with the EBaLM-OTR technique SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article ID LIMITED EXPERIMENTAL-DATA; PARAMETERS; MODEL; ANN AB Artificial Neural Networks (ANN) have been used in the past to predict the performance of printed circuit heat exchangers (PCHE) with satisfactory accuracy. Typically published literature has focused on optimizing ANN using a training dataset to train the network and a testing dataset to evaluate it. Although this may produce outputs that agree with experimental results, there is a risk of over-training or over-learning the network rather than generalizing it, which should be the ultimate goal. An over-trained network is able to produce good results with the training dataset but fails when new datasets with subtle changes are introduced. In this paper we present EBaLM-OTR (error back propagation and Levenberg-Marquardt algorithms for over training resilience) technique, which is based on a previously discussed method of selecting neural network architecture that uses a separate validation set to evaluate different network architectures based on mean square error (MSE), and standard deviation of MSE. The method uses k-fold cross validation. Therefore in order to select the optimal architecture for the problem, the dataset is divided into three parts which are used to train, validate and test each network architecture. Then each architecture is evaluated according to their generalization capability and capability to conform to original data. The method proved to be a comprehensive tool in identifying the weaknesses and advantages of different network architectures. The method also highlighted the fact that the architecture with the lowest training error is not always the most generalized and therefore not the optimal. Using the method the testing error achieved was in the order of magnitude of within 10(-5)-10(-3). It was also show that the absolute error achieved by EBaLM-OTR was an order of magnitude better than the lowest error achieved by EBaLM-THP. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wijayasekara, Dumidu; Manic, Milos] Univ Idaho, Dept Comp Sci, Idaho Falls, ID 83402 USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID USA. [Utgikar, Vivek] Univ Idaho, Dept Chem Engn, Idaho Falls, ID 83402 USA. RP Wijayasekara, D (reprint author), Univ Idaho, Dept Comp Sci, 1776 Sci Ctr Dr, Idaho Falls, ID 83402 USA. EM wija2589@vandals.uidaho.edu RI Wijayasekara, Dumidu/E-6346-2017 NR 32 TC 11 Z9 11 U1 1 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD JUL PY 2011 VL 241 IS 7 BP 2549 EP 2557 DI 10.1016/j.nucengdes.2011.04.045 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 802EZ UT WOS:000293493400021 ER PT J AU Gounder, R Iglesia, E AF Gounder, Rajamani Iglesia, Enrique TI Catalytic Alkylation Routes via Carbonium-Ion-Like Transition States on Acidic Zeolites SO CHEMCATCHEM LA English DT Article DE alkylation; Bronsted acid; carbonium ion; cracking; zeolites ID PROPANE AROMATIZATION; PHOSPHOTUNGSTIC ACID; LOCAL-STRUCTURE; CONVERSION; CRACKING; METHANE; CHEMISTRY; MECHANISM; ETHYLENE; ALKENES C1 [Gounder, Rajamani; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Chevron Energy Technology Company FX We acknowledge the financial support from the Chevron Energy Technology Company. NR 31 TC 3 Z9 3 U1 2 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD JUL PY 2011 VL 3 IS 7 BP 1134 EP 1138 DI 10.1002/cctc.201100051 PG 5 WC Chemistry, Physical SC Chemistry GA 800RT UT WOS:000293384000006 ER PT J AU Wang, HM Iglesia, E AF Wang, Huamin Iglesia, Enrique TI Mechanism and Site Requirements of Thiophene Hydrodesulfurization Catalyzed by Supported Pt Clusters SO CHEMCATCHEM LA English DT Article DE cluster-size effect; hydrodesulfurization; kinetics; platinum; reaction mechanisms; thiophene ID TRANSITION-METAL SULFIDES; STRUCTURAL REQUIREMENTS; HYDROTREATING CATALYSIS; SULFUR CHEMISORPTION; REACTION PATHWAYS; CARBON; MODEL; DESULFURIZATION; THERMODYNAMICS; ADSORPTION AB Kinetic, isotopic, and chemical analysis methods are used to examine the identity and kinetic relevance of elementary steps and the effects of Pt cluster size on thiophene hydrodesulfurization (HDS) turnover rates. Quasi-equilibrated H(2) and H(2)S heterolytic dissociation steps lead to sulfur chemical potentials given by the prevalent H(2)S/H(2) ratio and to cluster surfaces with a metallic bulk, but near-saturation sulfur coverages, during steady-state catalysis. Sulfur-vacancies on such surfaces are required for eta(1)(S) or eta(4) thiophene adsorption modes and for H2 and H2S dissociation steps. H-assisted C-S bond cleavage of eta(1)(S) thiophene and H-addition to eta(4) thiophene limits rates of direct desulfurization and hydrogenation sulfur removal pathways, respectively. These steps, their kinetic relevance, and the prevalent sulfur-saturated surfaces resemble those on Ru clusters; they are also consistent with the observed kinetic effects of reactants and products on rates, with the rapid isotopic exchange in H(2)/D(2)/H(2)S mixtures during HDS catalysis, and with measured H(2)/D(2) kinetic isotope effects. Small Pt clusters exhibit lower turnover rates, stronger inhibition by H(2)S, and a greater preference for desulfurization pathways than those of large clusters. These effects reflect the prevalence of coordinatively unsaturated corner and edge sites on small clusters, which bind sulfur atoms more strongly and lead to lower densities of vacancies and to a preference for eta(1)(S)-bound thiophene species. Sulfur binding energies and their concomitant effects on the number of available vacancies also account for the higher turnover rates measured on Pt clusters compared with Ru clusters of similar size. These data and their mechanistic interpretation suggest that the concepts and steps proposed here apply generally to hydrogenation and direct desulfurization of organosulfur compounds. Taken together with similar observed effects of oxygen binding strength, metal identity, and cluster size for oxidation reactions of NO, hydrocarbons, and oxygenates, which also require vacancies in their respective kinetically relevant steps, these data also indicate that low reactivity of small clusters may reflect in most instances their coordinative unsaturation and the concomitant kinetic and thermodynamic preference for low vacancy concentrations on nearly saturated surfaces. C1 [Wang, Huamin; Iglesia, Enrique] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Wang, Huamin; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Iglesia, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM iglesia@berkeley.edu RI Wang, Huamin/J-8701-2012; Iglesia, Enrique/D-9551-2017 OI Iglesia, Enrique/0000-0003-4109-1001 FU Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract DE-AC02-05CH11231. The authors acknowledge Drs. David Flaherty, Zhijie Wu, Ms. Cathy Chin, and Mr. Brett Loveless of the University of California at Berkeley for their careful review of the contents and conclusions of this manuscript. The authors also thank Dr. Monica Garcia-Dieguez of the University of California at Berkeley for help with the measurement of H2 and D2 adsorption isotherms. NR 45 TC 16 Z9 17 U1 4 U2 52 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD JUL PY 2011 VL 3 IS 7 BP 1166 EP 1175 DI 10.1002/cctc.201100027 PG 10 WC Chemistry, Physical SC Chemistry GA 800RT UT WOS:000293384000013 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, N Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antosb, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, P Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C MelladoGarcia, BR Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantonia, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antosb, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Comune, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Gesualdi Mello, A. Da Rocha Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. MelladoGarcia, B. R. Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantonia, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Garcia-Estan, M. T. Perez Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Varela Rodriguez, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in root s=7 TeV proton-proton collisions with the ATLAS experiment SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERGAUGE TRANSFORMATIONS; LOCAL SUPERSYMMETRY; GRAND UNIFICATION; MODEL; SQUARKS; GLUINOS; PHYSICS; FB(-1); STATES; PIONS AB Results are presented of searches for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons in root s = 7 TeV proton-proton collisions at the Large Hadron Collider. Search strategies requiring lepton pairs with identical-sign or opposite-sign electric charges are described. In a data sample corresponding to an integrated luminosity of 35 pb(-1) collected with the ATLAS detector, no significant excesses are observed. Based on specific benchmark models, limits are placed on the squark mass between 450 and 690 GeV for squarks approximately degenerate in mass with gluinos, depending on the supersymmetric mass hierarchy considered. C1 [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [ATLAS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bellomo, M.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Cambiaghi, M.; Ciocca, C.; Conta, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Livan, M.; Massa, I.; Mengarelli, A.; Monzani, S.; Negri, A.; Piccinini, M.; Polesello, G.; Polini, A.; Rebuzzi, D. M.; Rimoldi, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Uslenghi, M.; Valentinetti, S.; Vercesi, V.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Cambiaghi, M.; Ciocca, C.; Conta, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Livan, M.; Massa, I.; Mengarelli, A.; Monzani, S.; Negri, A.; Piccinini, M.; Rebuzzi, D. M.; Rimoldi, A.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Uslenghi, M.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Gesualdi Mello, A. Da Rocha; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gabizon, O.; Gibbard, B.; Gordon, H. A.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Berge, D.; Bertinelli, F.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Garrido, M. D. M. Capeans; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Elsing, M.; Fabre, C.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gayde, J. -C.; Gianotti, F.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Hahn, F.; Hatch, M.; Hauschild, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Joram, C.; Kaplon, J.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Maugain, J. M.; Menot, C.; Messina, A.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Pastore, Fr.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Salzburger, A.; Savu, D. O.; Schott, M.; Schuler, G.; Sfyrla, A.; Sloper, J.; Spigo, G.; Stanecka, E.; Stockton, M. C.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandoni, G.; Varela Rodriguez, F.; Vinek, E.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Han, H.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN Grp Collegato Cosenza, I-87030 Commenda Di Rende, Italy. [Ciba, K.; Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Ilchenko, Y.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhochsch Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] INFN Lab Nazl Frascati, Frascati, Italy. [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Saavedra, A. F.; Schiavi, C.] Univ Geneva, INFN Sez Genova, Geneva, Switzerland. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Addy, N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Trocme, B.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN Sez Lecce, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN Sez Milano, Milan, Italy. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.; Taylor, F. E.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, Novosibirsk, Russia. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Falou, A. C.; Fournier, D.; Hrivnac, J.; Idarraga, J.; Lounis, A.; Niedercorn, F.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN Sez Roma Tor Vergata, Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, INFN Sez Roma Tre, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.] CEA Saclay, DSM IRFU Inst Rech Lois Fondament Univers, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antosb, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN Grp Coll Udine, Udine, Italy. [Acharya, B. S.; Orestano, D.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Minano, M.; Moreno Llacer, M.; Oliver Garcia, E.; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; MelladoGarcia, B. R.; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. Univ Lisbon, Fac Ciencias, Lisbon, Portugal. Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. Univ Coimbra, Dept Phys, Coimbra, Portugal. Univ Napoli Parthenope, Naples, Italy. Louisiana Tech Univ, Ruston, LA 71270 USA. Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. CALTECH, Pasadena, CA 91125 USA. Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. Univ Geneva, Sect Phys, Geneva, Switzerland. Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. Jagiellonian Univ, Inst Phys, Krakow, Poland. Univ Oxford, Dept Phys, Oxford, England. [Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. RP Aad, G (reprint author), SUNY Albany, Albany, NY 12222 USA. RI Losada, Marta/B-2261-2010; Jakubek, Jan/E-6530-2011; valente, paolo/A-6640-2010; Smirnov, Sergei/F-1014-2011; Fazio, Salvatore /G-5156-2010; Bauer, Florian/G-8816-2011; Marti-Garcia, Salvador/F-3085-2011; Doyle, Anthony/C-5889-2009; Laycock, Paul/F-7543-2011; Conde Muino, Patricia/F-7696-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Smirnova, Lidia/D-8089-2012; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Zhou, Ning/D-1123-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Gavrilenko, Igor/M-8260-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Nemecek, Stanislav/C-3487-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012 OI valente, paolo/0000-0002-5413-0068; Smirnov, Sergei/0000-0002-6778-073X; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; Stoicea, Gabriel/0000-0002-7511-4614; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Camarri, Paolo/0000-0002-5732-5645; Mikestikova, Marcela/0000-0003-1277-2596; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; McKee, Shawn/0000-0002-4551-4502; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF and Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 56 TC 32 Z9 32 U1 9 U2 61 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1682 DI 10.1140/epjc/s10052-011-1682-6 PG 19 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900015 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbia, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakira, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torresa, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildizb, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummadaa, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, H Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meiera, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomucenoa, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, C Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Pages, AP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltranaa, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, D Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JA van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpinia, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakira, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Comune, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torresa, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Rocha Gesualdi Mello, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildizb, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garca Navarro, J. E. Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummadaa, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, H. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meiera, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomucenoa, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Nunes Hanninger, G. Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. C. Ohm, C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Pacheco Pages, A. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltranaa, D. Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in root s=7 TeV proton-proton collisions with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERGAUGE TRANSFORMATIONS; MODEL; GENERATORS; PIONS AB Results are presented of a search for particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e, mu) of opposite charge in root s = 7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corresponding to an integrated luminosity of 35 pb(-1) no such excess is observed. Model-independent limits are set on the contribution to these final states from supersymmetry and are used to exclude regions of a phenomenological supersymmetric parameter space. C1 [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakira, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildizb, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS, IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Heelan, L.; Kim, H.; Nilsson, P.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Trzupek, A.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Da Silva, P. V. M.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Mohn, B.; Oye, O. K.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Leggett, C.; Loscutoff, P.; Lys, J.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Tatarkhanov, M.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Lohse, T.; Mandrysch, R.; Schulz, H.; Soh, D. A.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Newman, P. R.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, D.; Torro Pastor, E.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negri, A.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Nunes Hanninger, G.; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.; Zhang, D.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Da Rocha Gesualdi Mello, A.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torresa, R.; Da Rocha Gesualdi Mello, A.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomucenoa, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltranaa, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhao, Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Ge, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Rios, R. R.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Rios, R. R.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Rios, R. R.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN, Grp Coll Cosenza, Arcavacata Di Rende, Italy. [La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bangert, A.; Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Joffe, D.; Kasmi, A.; Lu, L.; Renkel, P.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kowalski, H.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Ahmad, A.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Garca Navarro, J. E.; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Nessi, M.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Chelkov, G. A.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meiera, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Todorova-Nova, S.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Ishikawa, A.; Kawagoe, K.; Kiyamura, H.; Kurashige, H.; Miyazaki, K.; Ochi, A.; Omachi, C.; Suita, K.; Takeda, H.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Owen, M.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN, Sez Lecce, Lecce, Italy. [Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kotov, S.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Mattravers, C.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbia, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbia, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Azuelos, G.; Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Univ Napoli, INFN, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, I-56100 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Baroncelli, A.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummadaa, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Ahmad, A.; Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; C. Ohm, C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; C. Ohm, C.; Ramstedt, M.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Hawkins, D.; Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Behera, P. K.; Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Nikolaev, K.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Cataldi, G.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, Villeurbanne, France. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Fernandes, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Amorim, A.; Fernandes, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, P-1699 Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. RP Aad, G (reprint author), SUNY Albany, Albany, NY 12222 USA. RI Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Rotaru, Marina/A-3097-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Fazio, Salvatore /G-5156-2010; Marti-Garcia, Salvador/F-3085-2011; Doyle, Anthony/C-5889-2009; Laycock, Paul/F-7543-2011; Conde Muino, Patricia/F-7696-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; Jakubek, Jan/E-6530-2011; valente, paolo/A-6640-2010; Smirnov, Sergei/F-1014-2011; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Smirnova, Lidia/D-8089-2012; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Nemecek, Stanislav/C-3487-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017 OI spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Rotaru, Marina/0000-0003-3303-5683; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; Stoicea, Gabriel/0000-0002-7511-4614; valente, paolo/0000-0002-5413-0068; Smirnov, Sergei/0000-0002-6778-073X; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Camarri, Paolo/0000-0002-5732-5645; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; Mikestikova, Marcela/0000-0003-1277-2596; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; McKee, Shawn/0000-0002-4551-4502; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM , The Netherlands; NWO, The Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF and Cantons of Bern, Switzerland; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 41 TC 12 Z9 12 U1 6 U2 54 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1647 DI 10.1140/epjc/s10052-011-1647-9 PG 18 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900016 ER PT J AU Conley, JA Gainer, JS Hewett, JL Le, MP Rizzo, TG AF Conley, John A. Gainer, James S. Hewett, JoAnne L. My Phuong Le Rizzo, Thomas G. TI Supersymmetry without prejudice at the LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HADRON COLLIDERS; GENERIC MODEL; RELIC DENSITY; DARK-MATTER; STANDARD MODEL; LIGHT GLUINOS; BREAKING; PARTICLES; TEVATRON; SPECTRUM AB The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (root s = 14 TeV, 1 fb(-1)) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of similar to 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all (two-thirds) of the pMSSM model points are discovered with a significance S > 5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches. C1 [Conley, John A.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Gainer, James S.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gainer, James S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Hewett, JoAnne L.; My Phuong Le; Rizzo, Thomas G.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Conley, JA (reprint author), Univ Bonn, Inst Phys, Nussallee 12, D-53115 Bonn, Germany. EM conley@th.physik.uni-bonn.de OI Gainer, James/0000-0002-8872-0664 FU Department of Energy, Division of High Energy Physics [DE-AC02-76SF00515, DE-AC02-06CH11357, DE-FG02-91ER40684]; BMBF [05H09PDE] FX Work supported by the Department of Energy, Division of High Energy Physics, Contracts DE-AC02-76SF00515 DE-AC02-06CH11357, and DE-FG02-91ER40684, and by the BMBF "Verbundprojekt HEP-Theorie" under contract 05H09PDE. NR 80 TC 39 Z9 39 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1697 DI 10.1140/epjc/s10052-011-1697-z PG 35 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900005 ER PT J AU Ellis, J Mustafayev, A Olive, KA AF Ellis, John Mustafayev, Azar Olive, Keith A. TI Constrained supersymmetric flipped SU(5) GUT phenomenology SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID NEUTRALINO DARK-MATTER; RENORMALIZATION-GROUP EQUATIONS; EVEN HIGGS BOSONS; RELIC DENSITY; MU-PROBLEM; MINIMAL SUPERGRAVITY; NATURAL SOLUTION; STAU COANNIHILATION; NEUTRINO MASSES; STRING MODEL AB We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M-in, above the GUT scale, M-GUT. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino chi and the lighter stau (tau) over tilde (1) is sensitive to M-in, as is the relationship between m(chi) and the masses of the heavier Higgs bosons A, H. For these reasons, prominent features in generic (m(1/2), m(0)) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M-in, as we illustrate for several cases with tan beta = 10 and 55. However, these features do not necessarily disappear at large M-in, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. C1 [Ellis, John] CERN, TH Div, PH Dept, CH-1211 Geneva 23, Switzerland. [Ellis, John] Kings Coll London, Theoret Phys & Cosmol Grp, Dept Phys, London WC2R 2LS, England. [Mustafayev, Azar; Olive, Keith A.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Olive, Keith A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Olive, Keith A.] Stanford Univ, SLAC, Stanford, CA 94305 USA. RP Ellis, J (reprint author), CERN, TH Div, PH Dept, CH-1211 Geneva 23, Switzerland. EM mustafayev@physics.umn.edu RI Ellis, John/J-2222-2012; OI Ellis, John/0000-0002-7399-0813; Olive, Keith/0000-0001-7201-5998 FU DOE at the University of Minnesota [DE-FG02-94ER-40823, DE-AC02-76SF00515]; Stanford Institute for Theoretical Physics FX The work of A.M. and K.A.O. was supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota. We thank I. Gogoladze and Q. Shafi for many useful discussions. K.A.O. also thanks SLAC (supported by the DOE under contract number DE-AC02-76SF00515) and the Stanford Institute for Theoretical Physics for their hospitality and support while this work was being finished. NR 109 TC 9 Z9 9 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1689 DI 10.1140/epjc/s10052-011-1689-z PG 15 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900014 ER PT J AU Friman, B Karsch, F Redlich, K Skokov, V AF Friman, B. Karsch, F. Redlich, K. Skokov, V. TI Fluctuations as probe of the QCD phase transition and freeze-out in heavy ion collisions at LHC and RHIC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CRITICAL-POINT; POLYAKOV LOOP; MODEL; DIAGRAM; LATTICE; FLOW AB We discuss the relevance of higher order cumulants of net baryon number fluctuations for the analysis of freeze-out and critical conditions in heavy ion collisions at LHC and RHIC. Using properties of O(4) scaling functions, we discuss the generic structure of these higher cumulants at vanishing baryon chemical potential and apply chiral model calculations to explore their properties at non-zero baryon chemical potential. We show that the ratios of the sixth to second and eighth to second order cumulants of the net baryon number fluctuations change rapidly in the transition region of the QCD phase diagram. Already at vanishing baryon chemical potential they deviate considerably from the predictions of the hadron resonance gas model which reproduce the second and fourth order cumulants of the net proton number fluctuations at RHIC. We point out that the sixth order cumulants of baryon number and electric charge fluctuations remain negative at the chiral transition temperature. Thus, they offer the possibility to probe the proximity of the chemical freeze-out to the crossover line. C1 [Friman, B.; Skokov, V.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Karsch, F.] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany. [Karsch, F.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Redlich, K.] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland. [Redlich, K.] GSI Darmstadt, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. RP Friman, B (reprint author), GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. EM karsch@physik.uni-bielefeld.de OI Skokov, Vladimir/0000-0001-7619-1796; Friman, Bengt/0000-0002-3211-7073 FU U.S. Department of Energy [DE-AC02-98CH10886]; BMBF [06BI401]; GSI Helmholtzzentrum fur Schwerionenforschung; Polish Ministry of Science (MEN); ExtreMe Matter Institute (EMMI); Frankfurt Institute for Advanced Studies (FIAS) FX We gratefully acknowledge discussions with Jurgen Engels on the O(4) scaling functions. The work of F.K. was supported in part by contract DE-AC02-98CH10886 with the U.S. Department of Energy, by the BMBF under grant 06BI401 and the GSI Helmholtzzentrum fur Schwerionenforschung under grant BILAER. K.R. acknowledges partial support by the Polish Ministry of Science (MEN). B.F. and K.R. were supported in part by the ExtreMe Matter Institute (EMMI). V.S. acknowledges support by the Frankfurt Institute for Advanced Studies (FIAS). NR 40 TC 93 Z9 93 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1694 DI 10.1140/epjc/s10052-011-1694-2 PG 11 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900010 ER PT J AU Giele, WT Stavenga, GC Winter, J AF Giele, Walter T. Stavenga, Gerben C. Winter, Jan TI Thread-scalable evaluation of multi-jet observables SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HADRON COLLIDERS; AMPLITUDES AB We have implemented the leading-color n-gluon amplitudes using the Berends-Giele recursion relations on a multi-threaded GPU. Speed-up factors between 150 and 300 are obtained compared to the CPU-based implementation of the same event generator. In this first paper, we study the feasibility of a GPU-based event generator with an emphasis on the constraints imposed by the hardware. Some studies of Monte Carlo convergence and accuracy are presented for PP --> 2, ... , 10 jet observables using of the order of 10(11) events. C1 [Giele, Walter T.; Stavenga, Gerben C.; Winter, Jan] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Giele, WT (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM giele@fnal.gov; stavenga@fnal.gov; jwinter@fnal.gov FU United States Department of Energy [AC02-07CH11359] FX Fermilab is operated by Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the United States Department of Energy. NR 31 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2011 VL 71 IS 7 AR 1703 DI 10.1140/epjc/s10052-011-1703-5 PG 13 WC Physics, Particles & Fields SC Physics GA 799OL UT WOS:000293295900013 ER PT J AU Moses, EI AF Moses, E. I. TI THE NATIONAL IGNITION FACILITY AND THE PROMISE OF INERTIAL FUSION ENERGY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med AB The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm(3)-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm(3), and pressures 100 billion times atmospheric pressure-conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy. C1 Lawrence Livermore Natl Lab, Livermore, CA 94451 USA. RP Moses, EI (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94451 USA. EM moses1@llnl.gov NR 17 TC 9 Z9 10 U1 3 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 11 EP 16 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200003 ER PT J AU Dunne, M Moses, EI Amendt, P Anklam, T Bayramian, A Bliss, E Debs, B Deri, R de la Rubia, TD El-Dasher, B Farmer, JC Flowers, D Kramer, KJ Lagin, L Latkowski, JF Lindl, J Meier, W Miles, R Moses, GA Reyes, S Roberts, V Sawicki, R Spaeth, M Storm, E AF Dunne, M. Moses, E. I. Amendt, P. Anklam, T. Bayramian, A. Bliss, E. Debs, B. Deri, R. de la Rubia, T. Diaz El-Dasher, B. Farmer, J. C. Flowers, D. Kramer, K. J. Lagin, L. Latkowski, J. F. Lindl, J. Meier, W. Miles, R. Moses, G. A. Reyes, S. Roberts, V. Sawicki, R. Spaeth, M. Storm, E. TI TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE) SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California ID FUEL-CYCLE AB The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This "LIFE" concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. C1 [Dunne, M.; Moses, E. I.; Amendt, P.; Anklam, T.; Bayramian, A.; Bliss, E.; Debs, B.; Deri, R.; de la Rubia, T. Diaz; El-Dasher, B.; Farmer, J. C.; Flowers, D.; Kramer, K. J.; Lagin, L.; Latkowski, J. F.; Lindl, J.; Meier, W.; Miles, R.; Reyes, S.; Roberts, V.; Sawicki, R.; Spaeth, M.; Storm, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Moses, G. A.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Dunne, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dunne8@llnl.gov RI Dunne, Mike/B-4318-2014 OI Dunne, Mike/0000-0001-8740-3870 NR 6 TC 24 Z9 25 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 19 EP 27 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200004 ER PT J AU Bayramian, A Aceves, S Anklam, T Baker, K Bliss, E Boley, C Bullington, A Caird, J Chen, D Deri, R Dunne, M Erlandson, A Flowers, D Henesian, M Latkowski, J Manes, K Molander, W Moses, E Piggott, T Powers, S Rana, S Rodriguez, S Sawicki, R Schaffers, K Seppala, L Spaeth, M Sutton, S Telford, S AF Bayramian, A. Aceves, S. Anklam, T. Baker, K. Bliss, E. Boley, C. Bullington, A. Caird, J. Chen, D. Deri, R. Dunne, M. Erlandson, A. Flowers, D. Henesian, M. Latkowski, J. Manes, K. Molander, W. Moses, E. Piggott, T. Powers, S. Rana, S. Rodriguez, S. Sawicki, R. Schaffers, K. Seppala, L. Spaeth, M. Sutton, S. Telford, S. TI COMPACT, EFFICIENT LASER SYSTEMS REQUIRED FOR LASER INERTIAL FUSION ENERGY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med ID NATIONAL IGNITION FACILITY; HIGH-AVERAGE-POWER; SPATIAL FILTER PINHOLE; 3RD-HARMONIC GENERATION; OPTICAL-ABSORPTION; YAG LASER; PROPAGATION; CONVERSION; PHOSPHATE; AMPLIFIER AB This paper presents our conceptual design for laser drivers used in Laser Inertial Fusion Energy (LIFE) power plants. Although we have used only modest extensions of existing laser technology to ensure near-term feasibility, predicted performance meets or exceeds plant requirements: 2.2 MJ pulse energy produced by 384 beamlines at 16 Hz, with 18% wall-plug efficiency. High reliability and maintainability are achieved by mounting components in compact line-replaceable units that can be removed and replaced rapidly while other beamlines continue to operate, at up to similar to 13% above normal energy, to compensate for neighboring beamlines that have failed. Statistical modeling predicts that laser-system availability can be greater than 99% provided that components meet reasonable mean-time-between-failure specifications. C1 [Bayramian, A.; Aceves, S.; Anklam, T.; Baker, K.; Bliss, E.; Boley, C.; Bullington, A.; Caird, J.; Chen, D.; Deri, R.; Dunne, M.; Erlandson, A.; Flowers, D.; Henesian, M.; Latkowski, J.; Manes, K.; Molander, W.; Moses, E.; Piggott, T.; Powers, S.; Rana, S.; Rodriguez, S.; Sawicki, R.; Schaffers, K.; Seppala, L.; Spaeth, M.; Sutton, S.; Telford, S.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Bayramian, A (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave,L-470, Livermore, CA 94551 USA. EM bayramian1@llnl.gov RI aceves, salvador/G-9052-2011; Dunne, Mike/B-4318-2014 OI aceves, salvador/0000-0001-5687-7256; Dunne, Mike/0000-0001-8740-3870 NR 55 TC 34 Z9 42 U1 8 U2 17 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 28 EP 48 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200005 ER PT J AU Amendt, P Dunne, M Ho, DD Lindl, JD AF Amendt, Peter Dunne, M. Ho, D. D. Lindl, J. D. TI LIFE PURE FUSION TARGET DESIGNS: STATUS AND PROSPECTS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California ID DRIVE AB Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-mu m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility. C1 [Amendt, Peter; Dunne, M.; Ho, D. D.; Lindl, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Amendt, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM amendt1@llnl.gov RI Dunne, Mike/B-4318-2014 OI Dunne, Mike/0000-0001-8740-3870 NR 7 TC 11 Z9 11 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 49 EP 53 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200006 ER PT J AU Latkowski, JF Abbott, RP Aceves, S Anklam, T Cook, AW DeMuth, J Divol, L El-Dasher, B Farmer, JC Flowers, D Fratoni, M Heltemes, T Kane, J Kramer, KJ Kramer, R Lafuente, A Loosmore, GA Morris, KR Moses, GA Olson, B Pantano, C Reyes, S Rhodes, M Sawicki, R Scott, H Tabak, M Wilks, S AF Latkowski, Jeffery F. Abbott, Ryan P. Aceves, Sal Anklam, Tom Cook, Andrew W. DeMuth, James Divol, Laurent El-Dasher, Bassem Farmer, Joseph C. Flowers, Dan Fratoni, Massimiliano Heltemes, Thad Kane, Jave Kramer, Kevin J. Kramer, Richard Lafuente, Antonio Loosmore, Gwendolen A. Morris, Kevin R. Moses, Gregory A. Olson, Britton Pantano, Carlos Reyes, Susana Rhodes, Mark Sawicki, Rick Scott, Howard Tabak, Max Wilks, Scott TI CHAMBER DESIGN FOR THE LASER INERTIAL FUSION ENERGY (LIFE) ENGINE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California ID REACTOR AB The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein. C1 [Latkowski, Jeffery F.; Abbott, Ryan P.; Aceves, Sal; Anklam, Tom; Cook, Andrew W.; DeMuth, James; Divol, Laurent; El-Dasher, Bassem; Farmer, Joseph C.; Flowers, Dan; Fratoni, Massimiliano; Kane, Jave; Kramer, Kevin J.; Lafuente, Antonio; Loosmore, Gwendolen A.; Morris, Kevin R.; Olson, Britton; Reyes, Susana; Rhodes, Mark; Sawicki, Rick; Scott, Howard; Tabak, Max; Wilks, Scott] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heltemes, Thad; Moses, Gregory A.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Kramer, Richard; Pantano, Carlos] Univ Illinois, Dept Mech Engn, Urbana, IL 61801 USA. [Lafuente, Antonio] Univ Politecn Madrid, ETSI Ind, Madrid, Spain. RP Latkowski, JF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM latkowski@llnl.gov RI Fratoni, Massimiliano/F-9746-2011; Pantano, Carlos/B-7571-2009; aceves, salvador/G-9052-2011; Fratoni, Massimiliano/M-8323-2015 OI aceves, salvador/0000-0001-5687-7256; Fratoni, Massimiliano/0000-0003-0452-0508 NR 11 TC 15 Z9 17 U1 1 U2 9 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 54 EP 60 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200007 ER PT J AU Miles, R Spaeth, M Manes, K Amendt, P Tabak, M Bond, T Kucheyev, S Latkowski, J Loosmore, G Bliss, E Baker, K Bhandarkar, S Havstad, M Petzoldt, R Alexander, N Tillack, M Holdener, D AF Miles, Robin Spaeth, Mary Manes, Ken Amendt, Peter Tabak, Max Bond, Tiziana Kucheyev, Sergei Latkowski, Jeff Loosmore, Gwen Bliss, Erlan Baker, Kevin Bhandarkar, Suhas Havstad, Mark Petzoldt, Ron Alexander, Neil Tillack, Mark Holdener, Dain TI CHALLENGES SURROUNDING THE INJECTION AND ARRIVAL OF TARGETS AT LIFE FUSION CHAMBER CENTER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB IFE target designers must consider several engineering requirements in addition to the physics requirements for successful target implosion. These considerations include low target cost, high manufacturing throughput, the ability of the target to survive the injection into the fusion chamber and arrive in a condition and physical position consistent with proper laser-target interaction and ease of post-implosion debris removal. This article briefly describes these considerations for the Laser Inertial Fusion-based Energy (LIFE) targets currently being designed. C1 [Miles, Robin; Spaeth, Mary; Manes, Ken; Amendt, Peter; Tabak, Max; Bond, Tiziana; Kucheyev, Sergei; Latkowski, Jeff; Loosmore, Gwen; Bliss, Erlan; Baker, Kevin; Bhandarkar, Suhas; Havstad, Mark] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Petzoldt, Ron; Alexander, Neil] Gen Atom, San Diego, CA USA. [Tillack, Mark; Holdener, Dain] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Miles, R (reprint author), Lawrence Livermore Natl Lab, POB 808-L-223, Livermore, CA 94551 USA. EM miles7@llnl.gov; ronald.petzoldt@gat.com NR 6 TC 10 Z9 10 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 61 EP 65 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200008 ER PT J AU Anklam, TM Dunne, M Meier, WR Powers, S Simon, AJ AF Anklam, Thomas M. Dunne, Mike Meier, Wayne R. Powers, Sarah Simon, Aaron J. TI LIFE: THE CASE FOR EARLY COMMERCIALIZATION OF FUSION ENERGY SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant. C1 [Anklam, Thomas M.; Dunne, Mike; Meier, Wayne R.; Powers, Sarah; Simon, Aaron J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Anklam, TM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM anklam2@llnl.gov RI Dunne, Mike/B-4318-2014 OI Dunne, Mike/0000-0001-8740-3870 NR 16 TC 11 Z9 13 U1 0 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 66 EP 71 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200009 ER PT J AU Kramer, KJ Fratoni, M Latkowski, JF Abbott, RP Anklam, TM Beckett, EM Bayramian, AJ DeMuth, JA Deri, RJ De La Rubia, TD Dunne, AM El-dasher, BS Farmer, JC Lafuente, A Meier, WR Moir, RW Morris, KL Moses, EI Powers, JJ Reyes, S Sawicki, RH Seifried, JE Storm, E Taylor, JM AF Kramer, Kevin J. Fratoni, Massimiliano Latkowski, Jeffery F. Abbott, Ryan P. Anklam, Thomas M. Beckett, Elizabeth M. Bayramian, Andy J. DeMuth, James A. Deri, Robert J. De La Rubia, Tomas Diaz Dunne, A. Mike El-dasher, Bassem S. Farmer, Joseph C. Lafuente, Antonio Meier, Wayne R. Moir, Ralph W. Morris, Kevin L. Moses, Edward I. Powers, Jeffrey J. Reyes, Susana Sawicki, Richard H. Seifried, Jeffrey E. Storm, Erik Taylor, Janine M. TI FUSION-FISSION BLANKET OPTIONS FOR THE LIFE ENGINE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California ID NUCLEAR; ENERGY AB The Laser Inertial Fusion Energy (LIFE) concept is being developed to operate as either a pure fusion or hybrid fusion-fission system. The hybrid version is designed to generate power and burn both fertile and fissile nuclear fuel. The fuel blanket is composed of TRISO-based fuel cooled by a molten salt. Low-yield (similar to 25-40 MJ) targets and a repetition rate of similar to 10-15 Hz produce a 300-500 MW fusion source. When this fusion power is coupled to a compact (2-4 m diameter) target chamber, a 14 MeV neutron flux of similar to 2 x 10(14) n/cm(2)-s drives fissile production and destruction in the fuel blanket providing an additional energy gain of 4-8, depending on the fuel and design objective. We employ a methodology using (6)Li as a neutron absorber to generate self-sustaining tritium production for fusion and to maintain constant power over the lifetime of the engine. In a single pass, fertile LIFE blankets achieve uranium and thorium utilization beyond 80% without chemical reprocessing or isotopic enrichment. Fissile blankets destroy more than 90% of the initial load of weapons grade plutonium or highly enriched uranium. C1 [Kramer, Kevin J.; Fratoni, Massimiliano; Latkowski, Jeffery F.; Abbott, Ryan P.; Anklam, Thomas M.; Beckett, Elizabeth M.; Bayramian, Andy J.; DeMuth, James A.; Deri, Robert J.; De La Rubia, Tomas Diaz; Dunne, A. Mike; El-dasher, Bassem S.; Farmer, Joseph C.; Lafuente, Antonio; Meier, Wayne R.; Moir, Ralph W.; Morris, Kevin L.; Moses, Edward I.; Powers, Jeffrey J.; Reyes, Susana; Sawicki, Richard H.; Seifried, Jeffrey E.; Storm, Erik; Taylor, Janine M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Beckett, Elizabeth M.; Lafuente, Antonio] Purdue Univ, Dept Nucl Engn, W Lafayette, IN 47907 USA. [Beckett, Elizabeth M.; Lafuente, Antonio] Univ Politecn Madrid, ETSI Ind, Madrid, Spain. [Powers, Jeffrey J.; Seifried, Jeffrey E.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Kramer, KJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kramer12@llnl.gov RI Fratoni, Massimiliano/F-9746-2011; Fratoni, Massimiliano/M-8323-2015 OI Fratoni, Massimiliano/0000-0003-0452-0508 NR 18 TC 2 Z9 2 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 72 EP 77 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200010 ER PT J AU Berry, J Ferrada, J Kim, S Curd, W Orco, GD Barabash, V AF Berry, Jeanette (Jan) Ferrada, Juan Kim, Seokho Curd, Warren Orco, Giovanni Dell Barabash, Vladimir TI ITER'S TOKAMAK COOLING WATER SYSTEM AND THE USE OF ASME CODES TO COMPLY WITH FRENCH REGULATIONS FOR NUCLEAR PRESSURE EQUIPMENT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB During inductive plasma operation of ITER, fusion power will reach 500 MW with an energy multiplication factor of 10. The heat will be transferred by the Tokamak Cooling Water System (TCWS) to the environment using the secondary cooling system. Plasma operations are inherently safe even under the most severe postulated accident condition-a large, in-vessel break that results in a loss-of-coolant accident. A functioning cooling water system is not required to ensure safe shutdown. Even though ITER is inherently safe, TCWS equipment (e.g., heat exchangers, piping, pressurizers) are classified as safety important components. This is because the water is predicted to contain low-levels of radionuclides (e.g., activated corrosion products, tritium) with activity levels high enough to require the design of components to be in accordance with French regulations for nuclear pressure equipment, i.e., the French Order dated 12 December 2005 (ESPN). ESPN has extended the practical application of the methodology established by the Pressure Equipment Directive (97/23/EC) to nuclear pressure equipment, under French Decree 99-1046 dated 13 December 1999, and Order dated 21 December 1999 (ESP). ASME codes and supplementary analyses (e.g., Failure Modes and Effects Analysis) will be used to demonstrate that the TCWS equipment meets these essential safety requirements. TCWS is being designed to provide not only cooling, with a capacity of approximately 1 GW energy removal, but also elevated temperature baking of first-wall/blanket, vacuum vessel, and divertor. Additional TCWS functions include chemical control of water, draining and drying for maintenance, and facilitation of leak detection/localization. The TCWS interfaces with the majority of ITER systems, including the secondary cooling system. U.S. ITER is responsible for design, engineering, and procurement of the TCWS with industry support from an Engineering Services Organization (ESO) (AREVA Federal Services, with support from Northrop Grumman, and OneCIS). ITER International Organization (ITER-IO) is responsible for design oversight and equipment installation in Cadarache, France. TCWS equipment will be fabricated using ASME design codes with quality assurance and oversight by an Agreed Notified Body (approved by the French regulator) that will ensure regulatory compliance. This paper describes the TCWS design and how US. ITER and fabricators will use ASME codes to comply with EU Directives and French Orders and Decrees. C1 [Berry, Jeanette (Jan); Ferrada, Juan; Kim, Seokho] Oak Ridge Natl Lab, US ITER, Oak Ridge, TN 37831 USA. [Curd, Warren; Orco, Giovanni Dell; Barabash, Vladimir] ITER Org, F-13067 St Paul Les Durance, France. RP Berry, J (reprint author), Oak Ridge Natl Lab, US ITER, Oak Ridge, TN 37831 USA. EM berryjb@ornl.gov NR 4 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 87 EP 94 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200012 ER PT J AU Neumeyer, C Brooks, A Bryant, L Chrzanowski, J Feder, R Gomez, M Heitzenroeder, P Kalish, M Lipski, A Mardenfeld, M Simmons, R Titus, P Zatz, I Daly, E Martin, A Nakahira, M Pillsbury, R Feng, J Bohm, T Sawan, M Griffiths, I Schaffer, M AF Neumeyer, C. Brooks, A. Bryant, L. Chrzanowski, J. Feder, R. Gomez, M. Heitzenroeder, P. Kalish, M. Lipski, A. Mardenfeld, M. Simmons, R. Titus, P. Zatz, I. Daly, E. Martin, A. Nakahira, M. Pillsbury, R. Feng, J. Bohm, T. Sawan, M. Griffiths, I. Schaffer, M. TI DESIGN OF THE ITER IN-VESSEL COILS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB The ITER project is considering the inclusion of two sets of in-vessel coils, one to mitigate the effect of Edge Localized Modes (ELMs) and another to provide vertical stabilization (VS). The in-vessel location (behind the blanket shield modules, mounted to the vacuum vessel inner wall) presents special challenges in terms of nuclear radiation (similar to 3000 MGy) and temperature (100 degrees C vessel during operations, 200 degrees C during bakeout). Mineral insulated conductors are well suited to this environment but are not commercially available in the large cross section required. An R&D program is underway to demonstrate the production of mineral insulated (MgO or Spinel) hollow copper conductor with stainless steel jacketing needed for these coils. A preliminary design based on this conductor technology has been developed and is presented herein. C1 [Neumeyer, C.; Brooks, A.; Bryant, L.; Chrzanowski, J.; Feder, R.; Gomez, M.; Heitzenroeder, P.; Kalish, M.; Lipski, A.; Mardenfeld, M.; Simmons, R.; Titus, P.; Zatz, I.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. [Daly, E.; Martin, A.; Nakahira, M.] ITER Org, St Paul Les Durance, France. [Pillsbury, R.] Sherbrooke Consulting, Arlington, VA USA. [Feng, J.] MIT Plasma Sci & Fus Ctr, Cambridge, MA USA. [Bohm, T.; Sawan, M.] Univ Wisconsin, Fus Technol Inst, Madison, WI USA. [Griffiths, I.] Univ Oxford, Oxford, England. [Schaffer, M.] Gen Atom, San Diegio, CA USA. RP Neumeyer, C (reprint author), Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. EM neumeyer@pppl.gov; Edward.Daly@iter.org; rdpj@sherbrookeconsulting.com; feng@psfc.mit.edu; tdbohm@wisc.edu; schaffer@fusion.gat.com NR 7 TC 18 Z9 18 U1 0 U2 8 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 95 EP 99 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200013 ER PT J AU Dell'Orco, G Curd, W Berruyer, F Kim, S Shearin, R Ferrada, J AF Dell'Orco, Giovanni Curd, Warren Berruyer, Fabien Kim, Seokho Shearin, Roy Ferrada, Juan TI STUDY ON THE OPTIMIZATION OF THE ITER TOKAMAK COOLING WATER SYSTEM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB ITER is a joint international fusion facility to demonstrate the scientific and technological feasibility of fusion power for future commercial electric power facilities. ITER is designed to reject all the heat generated in the plasma and transmitted to the in-vessel components through the Tokamak Cooling Water System (TCWS) to the intermediate closed loop Component Cooling Water System (CCWS) and then to the environment via the open Heat Rejection System (HRS) and Cooling Towers. At the present the main in-vessel components as First Wall-Blanket (FW-BLK) and the Divertor (DIV) are cooled via four separated Primary Heat Transfer Systems (PHTSs). This paper describes the proposal to integrate the PHTS for the FW-BLK and DIV in a common loop to improve the availability and reliability of the cooling system. Furthermore, the paper presents the new thermal hydraulic design parameters, the relevant Process Flow Diagram (PFD) and a study for the new arrangements of the piping in the TCWS vault. Some associated issues for safety accidental scenarios are planned to be solved before the final acceptance of the proposal in the baseline design. C1 [Dell'Orco, Giovanni; Curd, Warren; Berruyer, Fabien] ITER Org, F-13115 St Paul Les Durance, France. [Kim, Seokho; Shearin, Roy; Ferrada, Juan] Oak Ridge Natl Lab, US ITER, Oak Ridge, TN 37831 USA. RP Dell'Orco, G (reprint author), ITER Org, Route Vinon sur Verdon, F-13115 St Paul Les Durance, France. EM giovanni.dellorco@iter.org NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 100 EP 104 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200014 ER PT J AU Ferrada, JJ Reiersen, WT AF Ferrada, J. J. Reiersen, W. T. TI RAMI ANALYSIS FOR DESIGNING AND OPTIMIZING ITER TOKAMAK COOLING WATER SYSTEM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success, and it interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis indicates appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. Results from the study indicate that pump and heat exchanger reliability are key issues. The ITER International Organization (ITER 10) RAMI group has proposed standardization for the pumps and heat exchangers to reduce fabrication risks of one-of-a-kind components. An aggressive maintenance/repair program should be an integral part of ITER operations. Preventive maintenance should be part of the maintenance system. For equipment that is infrequently operated, it is suggested that the key components be tested on a regular basis. The analysis has indicated that the RAMI requirements have been exceeded at this point, allowing concentration on cost optimization. C1 [Ferrada, J. J.; Reiersen, W. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ferrada, JJ (reprint author), Oak Ridge Natl Lab, 1055 Commerce Pk, Oak Ridge, TN 37831 USA. NR 5 TC 1 Z9 1 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 105 EP 112 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200015 ER PT J AU Popov, E Ying, A AF Popov, Emilian Ying, Alice TI MODELING AND SIMULATION OF THE ITER FIRST WALL/BLANKET PRIMARY HEAT TRANSFER SYSTEM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature. C1 [Popov, Emilian] ORNL, Reactor & Nucl Syst Div, Oak Ridge, TN USA. [Ying, Alice] Univ Calif Los Angeles, Mech & Aerosp Engn Dep, Los Angeles, CA USA. RP Popov, E (reprint author), ORNL, Reactor & Nucl Syst Div, Oak Ridge, TN USA. EM popove@ornl.gov; ying@fusion.ucla.edu NR 3 TC 0 Z9 0 U1 1 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 128 EP 133 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200019 ER PT J AU Carbajo, JJ Yoder, GL Kim, SH AF Carbajo, Juan J. Yoder, Graydon L. Kim, Seokho H. TI THERMAL DESIGN OF THE ITER VACUUM VESSEL COOLING SYSTEM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB RELAP5-3D models of the ITER Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) have been developed The design of the cooling system is described in detail, and RELAP5 results are presented Two parallel pump/heat exchanger trains comprise the design one train is for full-power operation and the other is for emergency operation or operation at decay heat levels. All the components are located inside the Tokamak Building (a significant change from the original configurations). The results presented include operation at full power, decay heat operation, and baking operation. The RELAP5-3D results confirm that the design can operate satisfactorily during normal pulsed power operation, decay heat operation and baking operation. All the temperatures in the coolant and in the different system components are maintained within acceptable operating limits. C1 [Carbajo, Juan J.; Yoder, Graydon L.; Kim, Seokho H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Carbajo, JJ (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6167, Oak Ridge, TN 37831 USA. EM carbajojj@ornl.gov NR 5 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 150 EP 155 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200023 ER PT J AU Kim, SH Berry, JB AF Kim, Seokho H. Berry, Jeanette B. TI CRITICAL DESIGN ISSUES OF THE TOKAMAK COOLING WATER SYSTEM OF ITER'S FUSION REACTOR SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System. The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation-850 MW at up to 150 degrees C and 4.2MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200-240 degrees C at up to 4.4MPa, and corrosion products become activated by neutron. The complexity of the TCWS design and fabrication presents unique challenges. During completion of the conceptual design of this one-of-a-kind cooling system, several issues were identified because of complex system requirements. Those issues include flow balancing between over a hundred branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through the cryostat (freezing environment), requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. The TCWS conceptual design and strategies for resolving critical design issues are described. C1 [Kim, Seokho H.; Berry, Jeanette B.] Oak Ridge Natl Lab, US ITER, Oak Ridge, TN 37830 USA. RP Kim, SH (reprint author), Oak Ridge Natl Lab, US ITER, 1055 Commerce Pk, Oak Ridge, TN 37830 USA. EM kims@ornl.gov NR 1 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 156 EP 160 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200024 ER PT J AU Youchison, DL Ulrickson, MA Bullock, JH AF Youchison, D. L. Ulrickson, M. A. Bullock, J. H. TI PREDICTION OF CRITICAL HEAT FLUX IN WATER-COOLED PLASMA FACING COMPONENTS USING COMPUTATIONAL FLUID DYNAMICS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med ID NUMERICAL SIMULATIONS; ITER; HYPERVAPOTRON; DIAMETER; MODEL; FLOW AB Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m(2). Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 degrees C for a wide range of heat fluxes from 3 MW/m(2) to 10 MW/m(2) and flow velocities from I m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin to dominate. Beyond this threshold, higher heat fluxes lead to the boiling crisis and eventual burnout. This predictive capability is essential in determining the critical heat flux margin for the design of complex 3d components. C1 [Youchison, D. L.; Ulrickson, M. A.; Bullock, J. H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Youchison, DL (reprint author), Sandia Natl Labs, MS1129,POB 5800, Albuquerque, NM 87185 USA. EM dlyouch@sandia.gov; maulric@sandia.gov NR 26 TC 13 Z9 13 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 177 EP 184 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200028 ER PT J AU El-Guebaly, L Kurtz, R Rieth, M Kurishita, H Robinson, A AF El-Guebaly, L. Kurtz, R. Rieth, M. Kurishita, H. Robinson, A. CA ARIES Team TI W-BASED ALLOYS FOR ADVANCED DIVERTOR DESIGNS: OPTIONS AND ENVIRONMENTAL IMPACT OF STATE-OF-THE-ART ALLOYS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med ID STRUCTURAL-MATERIALS; TUNGSTEN; IMPURITIES; FRACTURE AB The development of radiation-resistant materials to sustain the harsh fusion environment represents a challenging task for divertor designers. In recent years, advanced physics simulations of the power leaving the plasma with radiation and charged particles indicate much higher heat fluxes to the divertor than previous estimates. In response, experts in EU, Japan, and US developed several W alloys for advanced He-cooled divertors that can handle heat fluxes in excess of 10 MW/m(2). This paper briefly discusses the ongoing effort to develop W alloys suitable for fusion applications, the challenging phenomena impacting the behavior of W under a fusion environment, and the environmental impact of the most promising, state-of-the-art alloys: W-La(2)O(3) and W-1.1TiC. C1 [El-Guebaly, L.; Robinson, A.] Univ Wisconsin, Madison, WI 53706 USA. [Kurtz, R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Rieth, M.] Karlsruhe Inst Technol, IMF I, D-76021 Karlsruhe, Germany. [Kurishita, H.] Tohoku Univ, IMR, Oarai, Ibaraki 3111313, Japan. RP El-Guebaly, L (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM elguebaly@engr.wisc.edu; rj.kurtz@pnl.gov; michael.rieth@kit.edu; kurishi@imr.tohoku.ac.jp; aprobinson@wisc.edu RI Rieth, Michael/E-4245-2017 OI Rieth, Michael/0000-0002-6231-6241 NR 20 TC 12 Z9 12 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 185 EP 189 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200029 ER PT J AU Zweben, SJ Ellis, RA Titus, P Xing, A Zhang, H AF Zweben, S. J. Ellis, R. A. Titus, P. Xing, A. Zhang, H. TI RAPIDLY MOVING DIVERTOR PLATES IN A TOKAMAK SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med ID PEBBLE DIVERTOR AB It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for similar to 10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide near-optimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U. C1 [Zweben, S. J.; Ellis, R. A.; Titus, P.; Xing, A.; Zhang, H.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Zweben, SJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. EM szweben@pppl.gov NR 10 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 197 EP 202 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200031 ER PT J AU Kotulski, JD Coats, RS Pasik, MF Ulrickson, M AF Kotulski, J. D. Coats, R. S. Pasik, M. F. Ulrickson, M. TI ELECTROMAGNETIC ANALYSIS OF FORCES AND TORQUES ON SELECTED COMPONENTS OF THE ITER BLANKET SYSTEM DUE TO PLASMA DISRUPTION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB The ITER device is based on the tokamak concept of magnetic confinement in which the plasma is contained by the use of strong magnetic fields. The nearest structure to the plasma is the blanket system which provides shielding to the vacuum vessel and the superconducting magnets. There are potential abnormal operating environments where the plasma currents inside the tokamak are disrupted and induce eddy currents in the blanket (first wall and shield module). These currents interact with the large magnetic fields to produce forces in the blanket which could potentially cause mechanical failure in the first wall, shield module, or vacuum vessel. For this reason the design and qualification of the ITER blanket system requires appropriate high-fidelity electromagnetic simulations that capture the physics of these disruption scenarios. A number of different geometries will be discussed revealing the effect of different first wall designs and shield modules on the forces and torques experienced by these assemblies during plasma disruption. The key features of the modeling procedure will be presented including the plasma current modeling and geometric modeling of the first wall, shield modules, and vacuum vessel. The eddy current calculation is performed using the Opera-3d software. C1 [Kotulski, J. D.; Coats, R. S.; Pasik, M. F.; Ulrickson, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kotulski, JD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jdkotul@sandia.gov NR 4 TC 2 Z9 2 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 272 EP 277 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200044 ER PT J AU Katsui, H Hasegawa, A Katoh, Y Hatano, Y Tanaka, T Nogami, S Hinoki, T Shikama, T AF Katsui, H. Hasegawa, A. Katoh, Y. Hatano, Y. Tanaka, T. Nogami, S. Hinoki, T. Shikama, T. TI STUDY ON COMPATIBILITY BETWEEN SILICON CARBIDE AND SOLID BREEDING MATERIALS UNDER NEUTRON IRRADIATION SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med ID SIC/SIC COMPOSITES; LI2TIO3 AB Compatibility of monolithic silicon carbide (SiC) with ternary lithium ceramics (Li(1-x)AlO(2-y), Li(2-x)TiO(3-y), Li(2-x)ZrO(3-y), and Li(4-x)SiO(4-y)) under irradiation of neutrons at high temperatures was studied Disk samples of SiC in contact with sintered ternary lithium ceramics were irradiated in High Flux Isotope Reactor (HFIR) at 800 degrees C to 5.9 displacements per atom (dpa). Chemical reactions of SiC as determined by appearance of the surface were relatively less significant for the systems of SiC/Li(1-x)AlO(2-y) and SiC/Li(2-x)TiO(3-y), whereas some bonding likely due to chemical reaction between SiC and the lithium ceramics and broken samples were observed in the systems of SiC/Li(2-x)ZrO(3-y) and SiC/Li(4-x)SiO(4-y). The effect of lithium burnup due to the (n, alpha) nuclear reaction was also examined by using samples of lithium ceramics whose lithium ratio was hypo-stoichiometric in the fabrication process. More reaction products were observed on the surface of beta-SiC in contact with Li(1-x)AlO(2-y) having the lower lithium ratio (Li/Al). It was considered that the formation of LiAl(5)O(8) phase due to lithium loss could deteriorate the compatibility of the SiC - Li(1-x)AlO(2-y) system. C1 [Katsui, H.; Shikama, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi, Japan. [Hasegawa, A.; Nogami, S.] Tohoku Univ, Dept Quantum Sci & Energy Engn, Sendai, Miyagi 980, Japan. [Katoh, Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Hatano, Y.] Toyama Univ, Hydrogen Isotope Res Ctr, Toyama 930, Japan. [Tanaka, T.] Natl Inst Nat Sci, Natl Inst Fus Sci, Dept Helical Plasma Res, Toki, Gifu 5095292, Japan. [Hinoki, T.] Kyoto Univ, Inst Adv Energy, Kyoto, Japan. RP Katsui, H (reprint author), Tohoku Univ, Inst Mat Res, Sendai, Miyagi, Japan. EM katsui@imr.tohoku.ac.jp RI Katsui, Hirokazu/A-8115-2011; OI Katsui, Hirokazu/0000-0002-6715-7788; Katoh, Yutai/0000-0001-9494-5862 NR 11 TC 5 Z9 5 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 288 EP 291 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200047 ER PT J AU Tresemer, K Stevenson, T Priniski, C Winkelman, J Bryant, L Wood, R AF Tresemer, K. Stevenson, T. Priniski, C. Winkelman, J. Bryant, L. Wood, R. TI NEUTRAL BEAM ARMOR FOR NSTX UPGRADE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL). This device is presently being upgraded to enhance its operations by adding a second Neutral Beamline (NBL). This change will nearly double the power available to the plasma but necessitate improvements to other design aspects of NSTX Included in these upgrades are the relocation and upgrade of the NSTX Neutral Beam Armor to capture both sets of beamline source profiles while maintaining the same level of vacuum vessel wall protection. In order to minimize the space required to accomplish this, it has been proposed to relocate and reuse the existing armor array, improving the design so that two overlapping sets of beam profiles both fit completely. This beam fine overlap could possibly cause the armor tiles to experience higher heat fluxes which translate into higher internal mechanical stresses. This would be mitigated by changing the isotropic graphite (ATJ) tiles in the overlap areas to a rugged 3D carbon-fiber composite (CFC) material, capable of handling thermally-induced stresses. Additional benefits to this recycling design proposal include opportunities to reduce project cost, increase diagnostic port access, and improve an awkward and difficult mounting scheme. C1 [Tresemer, K.; Stevenson, T.; Priniski, C.; Winkelman, J.; Bryant, L.; Wood, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Tresemer, K (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ktresemer@pppl.gov NR 6 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 303 EP 307 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200050 ER PT J AU Muroga, T Sze, DK Okuno, K Terai, T Kimura, A Kurtz, RJ Sagara, A Nygren, R Ueda, Y Doerner, RP Sharpe, JP Kunugi, T Morley, NB Hatano, Y Sokolov, MA Yamamoto, T Hasegawa, A Katoh, Y Ohno, N Tokunaga, K Konishi, S Fukuda, S Calderoni, P Yokomine, T Messadek, K Oya, Y Hashimoto, N Hinoki, T Hashizume, H Norimatsu, T Shikama, T Stoller, RE Tanaka, KA Tillack, MS AF Muroga, T. Sze, D. K. Okuno, K. Terai, T. Kimura, A. Kurtz, R. J. Sagara, A. Nygren, R. Ueda, Y. Doerner, R. P. Sharpe, J. P. Kunugi, T. Morley, N. B. Hatano, Y. Sokolov, M. A. Yamamoto, T. Hasegawa, A. Katoh, Y. Ohno, N. Tokunaga, K. Konishi, S. Fukuda, S. Calderoni, P. Yokomine, T. Messadek, K. Oya, Y. Hashimoto, N. Hinoki, T. Hashizume, H. Norimatsu, T. Shikama, T. Stoller, R. E. Tanaka, K. A. Tillack, M. S. TI MIDTERM SUMMARY OF JAPAN-US FUSION COOPERATION PROGRAM TITAN SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California ID IRRADIATION; BLANKET; TUNGSTEN; FLOWS AB Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. C1 [Muroga, T.; Sagara, A.] NIFS, Toki, Gifu, Japan. [Sze, D. K.; Doerner, R. P.; Tillack, M. S.] UCSD, San Diego, CA USA. [Okuno, K.; Oya, Y.] Shizuoka Univ, Shizuoka, Japan. [Terai, T.] Univ Tokyo, Tokyo, Japan. [Kimura, A.; Konishi, S.; Hinoki, T.] Kyoto Univ, Uji, Kyoto, Japan. [Kurtz, R. J.] PNNL, Richland, WA USA. [Nygren, R.] SNL, Albuquerque, NM USA. [Ueda, Y.; Norimatsu, T.; Tanaka, K. A.] Osaka Univ, Suita, Osaka, Japan. [Sharpe, J. P.; Calderoni, P.] INL, Idaho Falls, ID USA. [Kunugi, T.; Yokomine, T.] Kyoto Univ, Kyoto, Japan. [Morley, N. B.; Messadek, K.] Univ Calif Los Angeles, Los Angeles, CA USA. [Hatano, Y.] Toyama Univ, Toyama 930, Japan. [Sokolov, M. A.; Katoh, Y.; Stoller, R. E.] ORNL, Oak Ridge, TN USA. [Yamamoto, T.] UCSB Santa Barbara, Santa Barbara, CA USA. [Hasegawa, A.; Hashizume, H.; Shikama, T.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Ohno, N.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Tokunaga, K.; Fukuda, S.] Kyushu Univ, Kasuga, Fukuoka 816, Japan. [Hashimoto, N.] Hokkaido Univ, Sapporo, Hokkaido, Japan. RP Muroga, T (reprint author), NIFS, Toki, Gifu, Japan. EM muroga@nifs.ac.jp RI Stoller, Roger/H-4454-2011; HASHIMOTO, Naoyuki/D-6366-2012; Kyushu, RIAM/F-4018-2015; OI Katoh, Yutai/0000-0001-9494-5862 NR 20 TC 5 Z9 5 U1 0 U2 10 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 321 EP 328 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200053 ER PT J AU Hunt, R Zhang, HJ Ying, A Ulrickson, M AF Hunt, Ryan Zhang, Hongjie Ying, Alice Ulrickson, Michael TI ASSESSMENT OF BERYLLIUM TILE SIZE IN ITER EHF FIRST WALL SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan, Gen Atom, Univ California AB This research reveals the results of a thermo-mechanical stress analysis of the beryllium and CuCrZr components of the Enhanced Heat Flux (EHF) First Wall (FW). Under the EHF thermal load, differential thermal expansion at the Be/CuCrZr interface can potentially lead to failure of the beryllium tiles. We have shown that the stress profile in both beryllium and CuCrZr can be improved by reducing the dimensions of the beryllium tiles covering the FW panels. In addition, our research investigated a failure condition for the FW finger's design. Specifically, we assessed the temperature profile at the CuCrZr/water interface of the EHF FW finger in the event of a single failed tile. This was done in order to determine whether or not the critical heat flux condition occurs in the coolant channel after a single tile failure. Assuming the failure of a single tile between 11.75mm and 50mm in size, temperature profiles were generated assuming flat, rectangular water cooling channels. It was found that tile failure from the edges of the finger resulted in considerably higher temperatures than tile failures at the middle of the finger. Failure of a tile along the edge of the finger may cause catastrophic failure, as the critical heat flux condition occurred at the CuCrZr/water interface even for tiles as small as 11.75mm in size. C1 [Hunt, Ryan; Zhang, Hongjie; Ying, Alice] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90024 USA. [Ulrickson, Michael] Sandia Natl Labs, Fus Technol Dept, Albuquerque, NM 87185 USA. RP Hunt, R (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, 420 Westwood Plaza, Los Angeles, CA 90024 USA. EM rhunt@ucla.edu NR 5 TC 1 Z9 1 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 354 EP 358 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200059 ER PT J AU Youngblood, GE Thomsen, EC Shinavski, RJ AF Youngblood, G. E. Thomsen, E. C. Shinavski, R. J. TI ELECTRICAL CONDUCTIVITY OF 2D-SICF/CVI-SIC SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th Topical Meeting on the Technology of Fusion Energy (TOFE-19) CY NOV 08-11, 2011 CL Las Vegas, NV SP Amer Nucl Soc Fus Energy Div, US Dept Energy, Atom Energy Soc Japan (AESJ), Gen Atom, Univ California, Sch Med AB Electrical conductivity (EC) data for several plate forms of two-dimensional, silicon carbide composite made with chemical vapor infiltration matrix and with Hi Nicalon (TM) type S fibers (2D-SiCf/CVI-SiC) were acquired. The composite fibers were coated with pyrocarbon (PyC) of various thicknesses (50 to 310 nm) and an outer thin (similar to 60 mu m) SiC "seal coat" was applied by CVD to the infiltrated plates. The EC was highly anisotropic in the transverse and in-plane directions. In-plane EC ranged from similar to 150 to 1600 S/m, increased slowly with increasing temperature, and depended primarily on the total PyC thickness. High in-plane EC-values occur because it is dominated by conduction along the numerous, continuous PyC fiber coating pathways. Transverse EC ranged from similar to 1 to 60 S/m, and increased strongly with increasing temperature up to 800 degrees C. The transverse EC is controlled by conduction through the interconnections of the carbon-coating network within and between fiber bundles, especially at moderate temperatures (degrees 300 to 700 degrees C). Below similar to 300 degrees C, the electrical resistance of the pure SiC seal coat becomes increasingly more important as temperatures are further lowered. Importantly, a "3-layer series" model predicts that transverse EC-values for a standard seal-coated 2D-SiCf/CV1-SiC with a monolayer PyC fiber coating of similar to 50-nm thickness will be <20 S/m for all temperatures up to 800 degrees C, as desired for a flow channel insert in a fusion reactor blanket component. C1 [Youngblood, G. E.; Thomsen, E. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Shinavski, R. J.] Hyper Therm HTC Inc, Huntington Beach, CA 92648 USA. RP Youngblood, GE (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM ge.youngblood@pnl.gov NR 3 TC 1 Z9 1 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL PY 2011 VL 60 IS 1 BP 364 EP 368 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 801EP UT WOS:000293420200061 ER PT J AU Hively, L Sheldon, F Squicciarini, AC AF Hively, Lee Sheldon, Frederick Squicciarini, Anna Cinzia TI Toward Scalable Trustworthy Computing Using the Human-Physiology-Immunity Metaphor SO IEEE SECURITY & PRIVACY LA English DT Article C1 [Hively, Lee; Sheldon, Frederick] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Squicciarini, Anna Cinzia] Penn State Univ, Coll Informat Sci & Technol, University Pk, PA 16802 USA. RP Hively, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM hivelylm@ornl.gov; sheldon@ieee.org; acs20@psu.edu OI Sheldon, Frederick/0000-0003-1241-2750 FU US Department of Energy [DE-AC05-00OR222725] FX UT-Battelle LLC manages Oak Ridge National Laboratory for the US Department of Energy, under Contract DE-AC05-00OR222725. NR 12 TC 2 Z9 2 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD JUL-AUG PY 2011 VL 9 IS 4 BP 14 EP 23 PG 10 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 800LP UT WOS:000293361700003 ER PT J AU Kraft, AD Harry, GJ AF Kraft, Andrew D. Harry, G. Jean TI Features of Microglia and Neuroinflammation Relevant to Environmental Exposure and Neurotoxicity SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Review DE neuroinflammation; microglia; neurotoxicity; neurodegeneration; cytokines; environmental exposure ID CENTRAL-NERVOUS-SYSTEM; BLOOD-BRAIN-BARRIER; DIESEL EXHAUST PARTICLES; TOLL-LIKE RECEPTORS; NITRIC-OXIDE SYNTHASE; MANGANESE-INDUCED PARKINSONISM; FOCAL CEREBRAL-ISCHEMIA; NECROSIS-FACTOR-ALPHA; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; OXIDATIVE STRESS CONTRIBUTES AB Microglia are resident cells of the brain involved in regulatory processes critical for development, maintenance of the neural environment, injury and repair. They belong to the monocytic-macrophage lineage and serve as brain immune cells to orchestrate innate immune responses; however, they are distinct from other tissue macrophages due to their relatively quiescent phenotype and tight regulation by the CNS microenvironment. Microglia actively survey the surrounding parenchyma and respond rapidly to changes such that any disruption to neural architecture or function can contribute to the loss in regulation of the microglia phenotype. In many models of neurodegeneration and neurotoxicity, early events of synaptic degeneration and neuronal loss are accompanied by an inflammatory response including activation of microglia, perivascular monocytes, and recruitment of leukocytes. In culture, microglia have been shown to be capable of releasing several potentially cytotoxic substances, such as reactive oxygen intermediates, nitric oxide, proteases, arachidonic acid derivatives, excitatory amino acids, and cytokines; however, they also produce various neurotrophic factors and quench damage from free radicals and excitotoxins. As the primary source for pro-inflammatory cytokines, microglia are implicated as pivotal mediators of neuroinflammation and can induce or modulate a broad spectrum of cellular responses. Neuroinflammation should be considered as a balanced network of processes whereby subtle modifications can shift the cells toward disparate outcomes. For any evaluation of neuroinflammation and microglial responses, within the framework of neurotoxicity or degeneration, one key question in determining the consequence of neuroinflammation is whether the response is an initiating event or the consequence of tissue damage. As examples of environmental exposure-related neuroinflammation in the literature, we provide an evaluation of data on manganese and diesel exhaust particles. C1 [Harry, G. Jean] NIEHS, Neurotoxicol Grp, Lab Toxicol & Pharmacol, NIH, Res Triangle Pk, NC 27709 USA. [Kraft, Andrew D.] US EPA, Oak Ridge Inst Sci & Educ Res Participant, Natl Ctr Environm Assessment, Off Res & Dev, Arlington, VA 22202 USA. RP Harry, GJ (reprint author), NIEHS, Neurotoxicol Grp, Lab Toxicol & Pharmacol, NIH, Res Triangle Pk, NC 27709 USA. EM kraft.andrew@epamail.epa.gov; harry@niehs.nih.gov FU Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services [1Z01ES101623 and ES021164]; U.S. Department of Energy; EPA FX This research was supported by the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services #1Z01ES101623 and ES021164, and in part by an appointment to the Research Participation Program for the U. S. Environmental Protection Agency, Office of Research and Development, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. The views expressed in this article are those of the authors and they do not represent the NIH or U. S. EPA policy and guidance. NR 282 TC 76 Z9 80 U1 3 U2 24 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD JUL PY 2011 VL 8 IS 7 BP 2980 EP 3018 DI 10.3390/ijerph8072980 PG 39 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 796QS UT WOS:000293067300025 PM 21845170 ER PT J AU Dong, QF Brulc, JM Iovieno, A Bates, B Garoutte, A Miller, D Revanna, KV Gao, X Antonopoulos, DA Slepak, VZ Shestopalov, VI AF Dong, Qunfeng Brulc, Jennifer M. Iovieno, Alfonso Bates, Brandon Garoutte, Aaron Miller, Darlene Revanna, Kashi V. Gao, Xiang Antonopoulos, Dionysios A. Slepak, Vladlen Z. Shestopalov, Valery I. TI Diversity of Bacteria at Healthy Human Conjunctiva SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Article ID RIBOSOMAL-RNA GENE; MULTIPLE DISPLACEMENT AMPLIFICATION; CORE GUT MICROBIOME; TOLL-LIKE RECEPTORS; OCULAR SURFACE; IMMUNE-RESPONSE; SKIN MICROBIOTA; FLORA; MICROORGANISMS; IDENTIFICATION AB PURPOSE. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. METHODS. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). RESULTS. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera-Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium-were ubiquitous among the analyzed cohort and represented the putative "core" of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. CONCLUSIONS. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. (Invest Ophthalmol Vis Sci. 2011; 52: 5408-5413) DOI: 10.1167/iovs.10-6939 C1 [Iovieno, Alfonso; Miller, Darlene; Shestopalov, Valery I.] Univ Miami, Miller Sch Med, Bascom Palmer Eye Inst, Dept Ophthalmol, Miami, FL 33136 USA. [Dong, Qunfeng; Revanna, Kashi V.; Gao, Xiang] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA. [Dong, Qunfeng; Revanna, Kashi V.; Gao, Xiang] Univ N Texas, Dept Comp Sci, Denton, TX 76203 USA. [Dong, Qunfeng; Revanna, Kashi V.; Gao, Xiang] Univ N Texas, Dept Engn, Denton, TX 76203 USA. [Brulc, Jennifer M.; Bates, Brandon; Garoutte, Aaron; Antonopoulos, Dionysios A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Slepak, Vladlen Z.] Univ Miami, Miller Sch Med, Dept Mol & Cellular Pharmacol, Miami, FL 33136 USA. [Shestopalov, Valery I.] Univ Miami, Miller Sch Med, Dept Anat & Cell Biol, Miami, FL 33136 USA. RP Shestopalov, VI (reprint author), Univ Miami, Miller Sch Med, Bascom Palmer Eye Inst, Dept Ophthalmol, Miami, FL 33136 USA. EM vshestopalov@med.miami.edu RI Miller, Darlene /C-9053-2013; Iovieno, Alfonso /B-2939-2011 FU Department of Ophthalmology, Bascom Palmer Eye Institute; National Institutes of Health [EY019974, RO1EY018666, P30 EY014801l]; Research to Prevent Blindness FX Supported by the Department of Ophthalmology, Bascom Palmer Eye Institute; National Institutes of Health Grants EY019974 (VIS) and RO1EY018666 (VZS) and Center Grant P30 EY014801l; and an unrestricted grant from Research to Prevent Blindness to the Department of Ophthalmology.; The authors thank the Bascom Palmer Eye Institute, Department of Ophthalmology, for full support of this study, all volunteers at BPEI for their dedication to ocular biomedical studies, the personnel of the High-Throughput Sequencing Core at the Argonne National Laboratory, and the UNT Bioinformatics Core at the Department of Biology for their expert help in processing and for analysis of conjunctival samples. NR 59 TC 49 Z9 52 U1 5 U2 36 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD JUL PY 2011 VL 52 IS 8 BP 5408 EP 5413 DI 10.1167/iovs.10-6939 PG 6 WC Ophthalmology SC Ophthalmology GA 800QC UT WOS:000293377400051 PM 21571682 ER PT J AU Soh, DBS Bisson, SE Patterson, BD Moore, SW AF Soh, Daniel B. S. Bisson, Scott E. Patterson, Brian D. Moore, Sean W. TI High-power all-fiber passively Q-switched laser using a doped fiber as a saturable absorber: numerical simulations SO OPTICS LETTERS LA English DT Article AB We report a design for a power-scalable all-fiber passively Q-switched laser that uses a large mode area Yb-doped fiber as a gain medium adiabatically tapered to an unpumped single-mode Yb-doped fiber, which serves as a saturable absorber. Through the use of a comprehensive numerical simulator, we demonstrate a passively Q-switched 1030 nm pulsed laser with 14 ns pulse duration and 0: 5 mJ pulse energy operating at 200 kHz repetition rate. The proposed configuration has a potential for orders of magnitude of improvement in both the pulse energies and durations compared to the previously reported result. The key mechanism for this improvement relates to the ratio of the core areas between the pumped inverted large mode area gain fiber and the unpumped doped single-mode fiber. (C) 2011 Optical Society of America C1 [Soh, Daniel B. S.; Bisson, Scott E.; Patterson, Brian D.; Moore, Sean W.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Soh, DBS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM dbsoh@sandia.gov FU Laboratory Directed Research and Development, Sandia National Laboratories, United States Department of Energy (DOE) [DE-AC04-94AL85000] FX This research was supported by Laboratory Directed Research and Development, Sandia National Laboratories, United States Department of Energy (DOE), under contract DE-AC04-94AL85000. NR 9 TC 16 Z9 16 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 1 PY 2011 VL 36 IS 13 BP 2536 EP 2538 PG 3 WC Optics SC Optics GA 800GA UT WOS:000293346600053 PM 21725471 ER PT J AU Christensen, AN Arnbjerg, LM DiMasi, E Cerenius, Y Hauback, BC Jensen, TR AF Christensen, Axel Norlund Arnbjerg, Lene M. DiMasi, Elaine Cerenius, Yngve Hauback, Bjorn C. Jensen, Torben R. TI Thermally induced phase transitions of barium oxalates SO SOLID STATE SCIENCES LA English DT Article DE Synchrotron X-ray powder diffraction; Neutron ppwder diffraction; Structure of alpha-BaC(2)O(4); Thermal transformation of barium oxalates hydrates ID CRYSTAL-STRUCTURE DETERMINATION; NEUTRON POWDER DIFFRACTION; SYNCHROTRON X-RAY; PATTERN AB The thermal decomposition of BaC(2)O(4)center dot 3.5H(2)O and BaC(2)O(4)center dot 0.5H(2)O was investigated using in situ synchrotron X-ray and neutron powder diffraction. The decomposition routes for the barium oxalate hydrates were observed to depend on the applied heating rate. Thermal decomposition of BaC(2)O(4)center dot 0.5H(2)O showed transformation to alpha-BaC(2)O(4) and to beta-BaC(2)O(4) prior to the formation of BaCO(3). The decomposition of BaC(2)O(4)center dot 3.5H(2)O showed formation of BaC(2)O(4)center dot 0.5H(2)O at 58 degrees C and the hemi hydrate transforms to alpha-BaC(2)O(4) at 187 degrees C using a relatively fast heating rate of 6.25 degrees C/min. The phase transitions were more complicated using lower heating rate, which also reveal formation of beta-BaC(2)O(4) coexisting with alpha-BaC(2)O(4) along with an unidentified compound. Heating alpha- and beta-BaC(2)O(4) to higher temperatures (T > 400 degrees C) produced BaCO(3). A sample of alpha-BaC(2)O(4) was prepared in situ by thermal decomposition of BaC(2)O(4)center dot 3.5H(2)O on a powder neutron diffractometer. The neutron diffraction data has broad diffraction peaks due to small crystallite sizes and overlapping Bragg reflections. [A structural model for alpha-BaC(2)O(4) was derived from the neutron pattern, triclinic, space group P-1, a = 5.127(7), b = 8.905(12), c = 9.068(12) angstrom, alpha = 82.74(1), beta = 99.46(2), gamma = 100.10(1)degrees measured at T= 300 degrees C. The average Ba-O distances are 2.84(3) angstrom and 2.66(3) angstrom for Ba 1 and Ba2 respectively, C-O atom distances in the oxalate ions were found in the range 1.25(3)-1.26(4) angstrom, and C-C distances were 1.60(1)-1.61(1) angstrom]. (C) 2011 Elsevier Masson SAS. All rights reserved. C1 [Arnbjerg, Lene M.; Jensen, Torben R.] Univ Aarhus, iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. [Arnbjerg, Lene M.; Jensen, Torben R.] Univ Aarhus, Dept Chem, DK-8000 Aarhus C, Denmark. [Christensen, Axel Norlund] Crystal Chem, DK-8210 Aarhus V, Denmark. [DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. [Cerenius, Yngve] Lund Univ, Max Lab, S-22100 Lund, Sweden. [Hauback, Bjorn C.] Inst Energy Technol, NO-2027 Kjeller, Norway. RP Jensen, TR (reprint author), Univ Aarhus, iNANO, Ctr Mat Crystallog, DK-8000 Aarhus C, Denmark. EM trj@chem.au.dk OI Cerenius, Yngve/0000-0001-5805-0113; Jensen, Torben Rene/0000-0002-4278-3221 FU USDOE, BES [DE-AC02-98CH10886]; Danish National Research Foundation (Center for Materials Crystallography); Danish Strategic Research Council (Center for Energy Materials); Danish Research Council for Nature and Universe (Danscatt) FX The Daresbury Laboratory Synchrotron Radiation Source, U.K., is thanked for the use of the diffractometer on Station 2.3. Measurements carried out at the NSLS at Brookhaven National Laboratory are supported by the USDOE, BES under contract DE-AC02-98CH10886. Institute Max von Laue - Paul Langevin, Grenoble France, are thanked for use of the diffractometers. The access to beamtime at the MAX-II synchrotron, Lund, Sweden in the research laboratory MAX-lab is gratefully acknowledged. The work was supported by the Danish National Research Foundation (Center for Materials Crystallography), the Danish Strategic Research Council (Center for Energy Materials), and by the Danish Research Council for Nature and Universe (Danscatt). We are grateful to the Carlsberg Foundation. NR 21 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD JUL PY 2011 VL 13 IS 7 BP 1407 EP 1413 DI 10.1016/j.solidstatesciences.2011.04.013 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 801FX UT WOS:000293425000008 ER PT J AU Chen, TL Zhang, Y Smith, P Tamayo, A Liu, Y Ma, BW AF Chen, Teresa L. Zhang, Yue Smith, Patrizia Tamayo, Arnold Liu, Yi Ma, Biwu TI Diketopyrrolopyrrole-Containing Oligothiophene-Fullerene Triads and Their Use in Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic solar cells; diketopyrrolopyrrole; triads; n-type acceptor; intramolecular charge separation ID POLYMER PHOTOVOLTAIC CELLS; HIGH-PERFORMANCE; SMALL-MOLECULE; EFFICIENCY; ACCEPTOR; NETWORK; DEVICES AB We report the characterization of a series of oligothiophene-diketopyrrolopyrrole-fullerene triads and their use as active materials for solution processed organic solar cells (OSCs). By incorporating the diketopyrrolopyrrole (DPP) core with electron rich oligothiophene units and electron withdrawing fullerene units, multifunctional electronic molecules have been prepared; these molecules show high solubility in common organic solvents, excellent photophysical properties with high extinction coefficients (1 x 10(4) to 1 x 10(5) M(-1) cm(-1)) and broad absorption spectra coverage (250-800 nm), as well as suitable molecular orbital energy levels (HOMO of approximately -5.1 eV, LUMO of approximately -3.7 eV). Solution-processed thin-film organic field effect transistors (OFETs) from these triads revealed good n-type characteristics with electron mobilities up to 1.5 x 10(-3) cm(2) V(-1) s(-1). With these multifunctional triads, single-component OSCs have been fabricated, exhibiting power conversion efficiencies (PCEs) of up to 0.5 % under AM 1.5 G simulated 1 sun solar illumination. Blending these molecules with poly(3-hexylthiophene) (P3HT) afforded bulk heterojunction OSCs with PCEs reaching as high as 2.41%. C1 [Smith, Patrizia; Tamayo, Arnold] Colorado Sch Mines, Golden, CO 80401 USA. [Chen, Teresa L.; Zhang, Yue; Liu, Yi; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Tamayo, A (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM atamayo@mines.edu; BWMa@lbl.gov RI Ma, Biwu/B-6943-2012; Zhang, Yue/D-5090-2013 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy [DE-AC02-05CH11231]; Colorado School of Mines (CSM) FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231. A.T. thanks Colorado School of Mines (CSM) for financial support. NR 20 TC 37 Z9 37 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2011 VL 3 IS 7 BP 2275 EP 2280 DI 10.1021/am200145t PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 798IO UT WOS:000293196800020 PM 21682269 ER PT J AU Ovchinnikova, OS Nikiforov, MP Bradshaw, JA Jesse, S Van Berkel, GJ AF Ovchinnikova, Olga S. Nikiforov, Maxim P. Bradshaw, James A. Jesse, Stephen Van Berkel, Gary J. TI Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer-Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry SO ACS NANO LA English DT Article DE thermal desorption; nanometer scale; atmospheric pressure; atomic force microscopy; mass spectrometry; electrospray Ionization; caffeine ID EVOLVED GAS-ANALYSIS; ELECTROSPRAY; DESORPTION AB Namimetez-scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nanothermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 degrees C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 pm spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also :demonstrated. Estimated from the crater volume (similar to 2 x 10(6) nm(3)), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in an automated fashion submicrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated. C1 [Ovchinnikova, Olga S.; Bradshaw, James A.; Van Berkel, Gary J.] Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ovchinnikova, Olga S.; Van Berkel, Gary J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nikiforov, Maxim P.; Jesse, Stephen] Oak Ridge Natl Lab, Imaging Funct Grp, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Organ & Biol Mass Spectrometry Grp, Div Chem Sci, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI Nikiforov, Maxim/C-1965-2012; Jesse, Stephen/D-3975-2016 OI Jesse, Stephen/0000-0002-1168-8483 FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX M. EINaggar (ORNL) is thanked for creating the schematic of the experimental setup (Figure 1). A portion of this research (M.P.N. and S.J.) was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors are grateful to S. Kalinin (CNMS) for helpful discussions. The work of O.S.O., J.A.B., and G.J.V.B. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 20 TC 22 Z9 22 U1 5 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 5526 EP 5531 DI 10.1021/nn200939e PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200029 PM 21639403 ER PT J AU Rance, WL Ferguson, AJ McCarthy-Ward, T Heeney, M Ginley, DS Olson, DC Rumbles, G Kopidakis, N AF Rance, William L. Ferguson, Andrew J. McCarthy-Ward, Thomas Heeney, Martin Ginley, David S. Olson, Dana C. Rumbles, Garry Kopidakis, Nikos TI Photainduced Carrier Generation and Decay Dynamics in Intercalated and Non-intercalated Polymer: Fullerene Bulk Heterojunctions SO ACS NANO LA English DT Article DE conjugated polymer; fullerene; intercalation; photoconductance; electron transfer; blend ID CHARGE SEPARATION EFFICIENCY; EXCITONIC SOLAR-CELLS; PHOTOVOLTAIC CELLS; BLEND FILMS; NANOSCALE MORPHOLOGY; CONJUGATED POLYMERS; DEVICE PERFORMANCE; ELECTRON-TRANSFER; MOBILITY; POLYTHIOPHENE AB The dependence of photoinduced carrier generation and decay on donor acceptor nanomorphology is reported as a function of composition for blends of the polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT-C-14) with two electron-accepting fullerenes: phenyl-C-71-butyric acid methyl ester (PC71BM) or the bisadduct of phenyl-C-61-butyric add methyl ester (bis-PC61BM). The formation of partially or fully intercalated bimolecular crystals at weight ratios up to 1:1 for pBTTT-C-14:PC71BM blends leads to efficient exciton quenching due to a combination of static and dynamic mechanisms. At higher fullerene loadings, pure PC71BM domains are formed that result in an enhanced free carrier lifetime, as a consequence of spatial separation of the electron and hole into different phases, and the dominant contribution to the photoconductance comes from the high:frequency electron mobility In the fullerene dusters. In the pBM-C-14:bisPC(61)BM system, phase separation results In a non-intercalated structure, Independent of composition, which Is characterized by exciton quenching that is dominated by a dynamic process, an enhanced carrier lifetime and a hole-dominated photoconductance signal. The results indicate that intercalation of fullerene Into crystalline polymer domains is not detrimental to the density of long-lived carriers, suggesting that efficient organic photovoltaic devices could be fabricated that incorporate intercalated structures, provided that an additional pure fullerene phase is present for charge extraction. C1 [Ferguson, Andrew J.; Ginley, David S.; Olson, Dana C.; Rumbles, Garry; Kopidakis, Nikos] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Rance, William L.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [McCarthy-Ward, Thomas; Heeney, Martin] Imperial Coll London, Dept Chem, Kensington SW7 2AZ, England. RP Kopidakis, N (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM nikos.kopidakis@nrel.gov RI Heeney, Martin/O-1916-2013; Rumbles, Garry/A-3045-2014; Kopidakis, Nikos/N-4777-2015 OI Heeney, Martin/0000-0001-6879-5020; FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX We thank Jao van de Lagemaat and Obadiah Reid (National Renewable Energy Laboratory, USA), Natalie Stingelin-Stutzmann (Imperial College London, UK), and Mike McGehee (Stanford University, USA) for helpful discussions. The Energy Efficiency & Renewable Energy Solar Energy Technologies Program is acknowledged for the provision of the thin film fabrication and X-ray diffraction facilities. The remainder of this work was funded by the Solar Photochemistry program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 67 TC 47 Z9 47 U1 3 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 5635 EP 5646 DI 10.1021/nn201251v PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200041 PM 21650204 ER PT J AU Kalinin, SV Jesse, S Tselev, A Baddorf, AP Balke, N AF Kalinin, Sergei V. Jesse, Stephen Tselev, Alexander Baddorf, Arthur P. Balke, Nina TI The Role of Electrochemical Phenomena in Scanning Probe Microscopy of Ferroelectric Thin Films SO ACS NANO LA English DT Article DE scanning probe microscopy; ferroelectric thin films; electrochemical phenomena; oxides ID ATOMIC-FORCE MICROSCOPY; CHEMICAL EXPANSION; OXIDE; SURFACE; POLARIZATION; CHARGE; PIEZORESPONSE; TRANSITION; TRANSPORT; WATER AB Applications of piezoresponse force microscopy and conductive atomic force microscopy to ferroelectric thin films necessitate understanding of the possible bias-induced electrochemical reactivity of oxide surfaces. These range from reversible Ionic surface charging (possibly coupled to polarization) and vacancy and proton injection to partially reversible vacancy ordering, to irreversible electrochemical degradation of the film and bottom electrode. Here, the electrochemical phenomena induced by a biased tip are analyzed and both theoretical and experimental criteria for their identification are summarized. C1 [Kalinin, Sergei V.; Jesse, Stephen; Tselev, Alexander; Baddorf, Arthur P.; Balke, Nina] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012; Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382 FU Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The authors gratefully acknowledge H.N. Lee (ORNL), P. Yu (UC Berkeley), and P.K. Davies (UPenn) for samples used in these studies over past decade, and P. Maksymovych (ORNL), F. Ciucci (Heidelberg), A. Kholkin (U. Aveiro), A. Morozovska (UAS), and A. Gruverman (UNL) for invaluable discussions. NR 71 TC 46 Z9 46 U1 4 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 5683 EP 5691 DI 10.1021/nn2013518 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200046 PM 21682317 ER PT J AU Ashley, CE Carnes, EC Phillips, GK Durfee, PN Buley, MD Lino, CA Padilla, DP Phillips, B Carter, MB Willman, CL Brinker, CJ Caldeira, JD Chackerian, B Wharton, W Peabody, DS AF Ashley, Carlee E. Carnes, Eric C. Phillips, Genevieve K. Durfee, Paul N. Buley, Mekensey D. Lino, Christopher A. Padilla, David P. Phillips, Brandy Carter, Mark B. Willman, Cheryl L. Brinker, C. Jeffrey Caldeira, Jerri do Carmo Chackerian, Bryce Wharton, Walker Peabody, David S. TI Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles SO ACS NANO LA English DT Article DE virus-like particles; multivalent peptide display; targeted drug delivery; cancer; nanoparticle; nanocarrier ID TARGETED DRUG-DELIVERY; HEPATOCELLULAR-CARCINOMA; MULTIDRUG-RESISTANCE; CANCER-CELLS; IN-VITRO; NANOPARTICLES; PLATFORM; CISPLATIN; PEPTIDES; VEHICLES AB Virus-like particles (VLPs) of bacteriophage MS2 possess numerous features that make them well-suited for use in targeted delivery of therapeutic and Imaging agents. MS2 VLPs can be rapidly produced in large quantities using in vivo or in vitro synthesis techniques. Their capsids can be modified in precise locations via genetic insertion or chemical conjugation, facilitating the multivalent display of targeting ligands. MS2 VU's also self-assemble in the presence of nucleic adds to specifically encapsidate siRNA and RNA-modified cargos. Here we report the use of MS2 VLPs to selectively deliver nanoparticles, chemotherapeutic drugs, siRNA cocktails, and protein toxins to human hepatocellular carcinoma (HCC). MS2 VLPs modified with a peptide (SP94) that binds HCC exhibit a 10(4)-fold higher avidity for HCC than for hepatocytes, endothelial cells, monocytes, or lymphocytes and can deliver high concentrations of encapsidated cargo to the cytosol of HCC cells. SP94-targeted VLPs loaded with doxorubicin, cisplatin, and 5-fluorouracil selectively kill the HCC cell line, Hep3B, at drug concentrations <1 nM, while SP94-targeted VLPs that encapsidate a siRNA cocktail, which silences expression of cyclin family members, Induce growth arrest and apoptosis of Hep3B at siRNA concentrations <150 pM. Impressively, M52 VLPs, when loaded with ricin toxin A-chain (RTA) and modified to codisplay the SP94 targeting peptide and a histidine-rich fusogenic peptide (H5WYG) that promotes endosomal escape, kill virtually the entire population of Hep3B cells at an RTA concentration of 100 fM without affecting the viability of control cells. Our results demonstrate that M52 VLPs, because of their tolerance of multivalent peptide display and their ability to specifically encapsidate a variety of chemically disparate cargos, Induce selective cytotoxicity of cancer in vitro and represent a significant improvement in the characteristics of VLP-based delivery systems. C1 [Ashley, Carlee E.; Padilla, David P.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengineered Mat, Albuquerque, NM 87131 USA. [Carnes, Eric C.; Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Phillips, Genevieve K.; Phillips, Brandy; Carter, Mark B.; Willman, Cheryl L.; Brinker, C. Jeffrey; Chackerian, Bryce; Wharton, Walker; Peabody, David S.] Univ New Mexico, Canc Res & Treatment Ctr, Albuquerque, NM 87131 USA. [Buley, Mekensey D.] Univ Oklahoma, Norman, OK 73109 USA. [Willman, Cheryl L.; Wharton, Walker] Univ New Mexico, Dept Pathol, Sch Med, Albuquerque, NM 87131 USA. [Durfee, Paul N.; Lino, Christopher A.; Brinker, C. Jeffrey; Caldeira, Jerri do Carmo; Chackerian, Bryce; Peabody, David S.] Univ New Mexico, Dept Mol Genet & Microbiol, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Self Assembled Mat Dept, Albuquerque, NM 87185 USA. RP Ashley, CE (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. EM ceashle@sandia.gov; dpeabody@salud.unm.edu FU NIH/Roadmap for Medical Research [PHS 2 PN2 EY016570B]; NCI [U01CA151792-01]; Air Force Office of Scientific Research [FA 9550-07-1-0054/9550-10-1-0054]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories; NIH [R01 GM42901]; IGERT Fellowship [NSF DGE-0504276]; NSF [DGE-0549500]; NSF, University of New Mexico Center for Micro-engineered Materials [DMR-0649132]; NCRR; University of New Mexico Health Sciences Center; University of New Mexico Cancer Center; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NIH/Roadmap for Medical Research under Grant PHS 2 PN2 EY016570B; NCI Cancer Nanotechnology Platform Partnership Grant U01CA151792-01; Air Force Office of Scientific Research Grants FA 9550-07-1-0054/9550-10-1-0054; the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program; and NIH grant R01 GM42901. Rebecca Lee provided guidance for imaging protocols, Tamara Howard performed electron microscopy, and Mona Aragon created schematics. C.E.A. was supported by IGERT Fellowship Grant NSF DGE-0504276 and by Sandia National Laboratories' Truman Fellowship in National Security Science and Engineering. E.C.C. was supported by NSF IGERT Grant DGE-0549500. M.B. was supported by NSF Nanoscience and Microsystems REU program (Grant DMR-0649132) at the University of New Mexico Center for Micro-engineered Materials. Some images in this paper were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility supported by NCRR, NSF, and NCI as detailed at http://hsc.unm.edu/crtc/microscopy/Facility.html. Data was generated in the Flow Cytometry Shared Resource Center supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 41 TC 78 Z9 81 U1 15 U2 97 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 5729 EP 5745 DI 10.1021/nn201397z PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200051 PM 21615170 ER PT J AU Yao, JM Le, AP Schulmerich, MV Maria, J Lee, TW Gray, SK Bhargava, R Rogers, JA Nuzzo, RG AF Yao, Jimin Le, An-Phong Schulmerich, Matthew V. Maria, Joana Lee, Tae-Woo Gray, Stephen K. Bhargava, Rohit Rogers, John A. Nuzzo, Ralph G. TI Soft Embossing of Nanoscale Optical and Plasmonic Structures in Glass SO ACS NANO LA English DT Article DE surface plasmon resonance; surface-enhanced Raman scattering; soft lithography; organic sensing; nanostructure; finite-difference time-domain; plasmonic crystal ID ENHANCED RAMAN-SCATTERING; SUBWAVELENGTH HOLE ARRAYS; DIP-PEN NANOLITHOGRAPHY; IMPRINT LITHOGRAPHY; GOLD NANOPARTICLES; LIGHT TRANSMISSION; SILVER ELECTRODE; SURFACE; SPECTROSCOPY; FLUORESCENCE AB We describe here soft nanofabrication methods using spin-on glass (SOG) materials for the fabrication of both bulk materials and replica masters. The precision of soft nanofabrication using SOG is tested using features on size scales ranging from 0.6 nm to 1.0 mu m. The performance of the embossed optics is tested quantitatively via replica patterning of new classes of plasmonic crystals formed by soft nanoimprinting of SOG. These crystals are found to offer significant Improvements over previously reported plasmonic crystals fabricated using embossed polymeric substrate materials in several ways. The SOG structures are shown to be particularly robust, being stable in organic solvent environments and at high temperatures (similar to 450 degrees C), thus extending the capacities and scope of plasmonic crystal applications to sensing In these environments. They also provide a stable, and particularly high-performance, platform for surface-enhanced Raman scattering. We further illustrate that SOG embossed nanostructures can serve as regenerable masters for the fabrication of plasmonic crystals. Perhaps most significantly, we show how the.. design rules of plasmonic crystals replicated from a single master can be tuned during the embossing steps of the fabrication process to provide useful modifications of their optical responses. We illustrate how the strongest feature in the transmission spectrum of a plasmonic crystal formed using a single SOG master can be shifted precisely in a SOG replica between 700 and 900 nm for an exemplary design of a full 3D plasmonic crystal by careful manipulation of the process parameters used to fabricate the optical device. C1 [Yao, Jimin; Le, An-Phong; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Schulmerich, Matthew V.; Bhargava, Rohit] Univ Illinois, Dept Bioengn, Beckman Inst, Urbana, IL 61801 USA. [Maria, Joana; Rogers, John A.; Nuzzo, Ralph G.] Univ Illinois, Dept Mat Sci & Engn, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Lee, Tae-Woo] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Nuzzo, RG (reprint author), Univ Illinois, Dept Chem, Urbana, IL 61801 USA. EM r-nuzzo@illinois.edu RI Rogers, John /L-2798-2016; OI Bhargava, Rohit/0000-0001-7360-994X FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001293, 67N-1087758, DE-AC02-06CH11357]; U.S. Department of Energy, Basic Energy Science, Materials Science and Engineering Division [DE-FG02-07ER46471] FX This material is based upon work supported as part of the Light-Material Interactions in Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under prime contract DE-SC0001293 to the California Institute of Technology via subaward 67N-1087758 to the University of Illinois. The authors gratefully acknowledge use of the Frederick Seitz Materials Research Laboratory Central Facilities at the University of Illinois, including the Center for Microanalysis of Materials, supported by the U.S. Department of Energy, Basic Energy Science, Materials Science and Engineering Division under Award No. DE-FG02-07ER46471. The work at the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also gratefully acknowledge the use of the Turing cluster maintained and operated by the Computational Science and Engineering Program at the University of Illinois. NR 70 TC 16 Z9 16 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 5763 EP 5774 DI 10.1021/nn201464t PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200054 PM 21711004 ER PT J AU Vlassiouk, I Regmi, M Fulvio, PF Dai, S Datskos, P Eres, G Smirnov, S AF Vlassiouk, Ivan Regmi, Murari Fulvio, Pasquale F. Dai, Sheng Datskos, Panos Eres, Gyula Smirnov, Sergei TI Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene SO ACS NANO LA English DT Article DE graphene; CVD; grain; domain; mechanism; hydrogen; hexagons ID FILMS; DISSOCIATION; CU(100) AB We show that graphene chemical vapor deposition growth on copper foil using methane as a carbon source is strongly affected by hydrogen, which appears to serve a dual role: an activator of the surface bound carbon that Is necessary for monolayer growth and an etching reagent that controls the size and morphology of the graphene domains. The resulting growth rate for a fixed methane partial pressure has a maximum at hydrogen partial pressures 200-400 times that of methane. The morphology and size of the graphene domains, as well as the number of layers, change with hydrogen pressure from irregularly shaped incomplete bilayers to well-defined perfect single layer hexagons. Raman spectra suggest the zigzag termination in the hexagons as more stable than the armchair edges. C1 [Vlassiouk, Ivan; Datskos, Panos] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Regmi, Murari; Eres, Gyula] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Fulvio, Pasquale F.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Smirnov, Sergei] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. RP Vlassiouk, I (reprint author), Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. EM vlassioukiv@ornl.gov; snsm@nmsu.edu RI Fulvio, Pasquale/B-2968-2014; Smirnov, Sergei/H-8774-2016; Vlassiouk, Ivan/F-9587-2010; Dai, Sheng/K-8411-2015; Eres, Gyula/C-4656-2017 OI Fulvio, Pasquale/0000-0001-7580-727X; Vlassiouk, Ivan/0000-0002-5494-0386; Dai, Sheng/0000-0002-8046-3931; Eres, Gyula/0000-0003-2690-5214 FU U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; Materials Science and Engineering Division through Basic Energy Sciences Program; US Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61] FX I.V. is a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. The LPCVD part of the work was supported by the Materials Science and Engineering Division through Basic Energy Sciences Program. P.F.F. and S.D. were supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. ERKCC61 NR 23 TC 392 Z9 401 U1 48 U2 545 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2011 VL 5 IS 7 BP 6069 EP 6076 DI 10.1021/nn201978y PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 796ES UT WOS:000293035200090 PM 21707037 ER PT J AU Badger, J Chie-Leon, B Logan, C Sridhar, V Sankaran, B Zwart, PH Nienaber, V AF Badger, John Chie-Leon, Barbara Logan, Cheyenne Sridhar, Vandana Sankaran, Banumathi Zwart, Peter H. Nienaber, Vicki TI The structure of LpxD from Pseudomonas aeruginosa at 1.3 angstrom resolution SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID RESISTANCE; ENDOTOXINS AB LpxD is a bacterial protein that is part of the biosynthesis pathway of lipid A and is responsible for transferring 3-hydroxymyristic acid from the R-3-hydroxymyristoyl-acyl carrier protein to the 2-OH group of UDP-3-O-(3-hydroxymyristoyl) glucosamine. The crystal structure of LpxD from Pseudomonas aeruginosa has been determined at high resolution (1.3 angstrom). The crystal belonged to space group H3, with unit-cell parameters a = b = 106.19, c = 93.38 angstrom, and contained one molecule in the asymmetric unit. The structure was solved by molecular replacement using the known structure of LpxD from Escherichia coli (PDB entry 3eh0) as a search model and was refined to R-work = 16.4% (R-free = 18.5%) using 91 655 reflections. The final protein model includes 355 amino-acid residues (including 16 amino acids from a 20 amino-acid N-terminal His tag), one chloride ion and two ethylene glycol molecules. C1 [Badger, John; Chie-Leon, Barbara; Logan, Cheyenne; Sridhar, Vandana; Nienaber, Vicki] Zenobia Therapeut, La Jolla, CA 92122 USA. [Sankaran, Banumathi; Zwart, Peter H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Phys Biosci Div, Berkeley, CA 94720 USA. RP Badger, J (reprint author), Zenobia Therapeut, 505 Coast Blvd S,Suite 111, La Jolla, CA 92122 USA. EM john@zenobiatherapeutics.com FU National Institutes of Health; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 13 TC 6 Z9 7 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD JUL PY 2011 VL 67 BP 749 EP 752 DI 10.1107/S1744309111018811 PN 7 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 798GU UT WOS:000293191400004 PM 21795786 ER PT J AU Han, SH Yoo, S Kippelen, B Levi, D AF Han, S. -H. Yoo, S. Kippelen, B. Levi, D. TI Precise determination of optical properties of pentacene thin films grown on various substrates: Gauss-Lorentz model with effective medium approach SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article; Proceedings Paper CT Spring Meeting of the AMOP Section of the German-Physical-Society CY MAR 08-12, 2010 CL Hannover, GERMANY ID 3,4,9,10-PERYLENETETRACARBOXYLIC DIANHYDRIDE PTCDA; ORGANIC SOLAR-CELLS; DIELECTRIC FUNCTION; PERFORMANCE; SI AB Spectroscopic ellipsometry measurements are performed on thin pentacene films grown on glass, SiO2, and n-Si substrates. The Gauss-Lorentz oscillator model is shown to be effective in modeling the pi-pi (au) transitions found in organic compounds. The effective medium approximation that considers the surface roughness of the films, which can be significant in case of pentacene, is also shown to be a key factor in precisely determining their dielectric functions. The proposed method reveals that there are some quantitative differences in the optical properties of the pentacene films prepared on different substrates. C1 [Han, S. -H.; Levi, D.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Han, S. -H.] LG Elect Inst Technol, Seoul 137724, South Korea. [Yoo, S.; Kippelen, B.] Georgia Inst Technol, Sch Elect & Comp Engn, Ctr Organ Photon & Elect, Atlanta, GA 30332 USA. [Yoo, S.] Korea Adv Inst Sci & Technol, Dept Elect Engn, Taejon, South Korea. RP Han, SH (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM sungho.han@lge.edu RI Yoo, Seunghyup/C-1656-2011; Kippelen, Bernard/I-4058-2013 OI Kippelen, Bernard/0000-0002-8417-7051 FU US Department of Energy [DE-AC36-99GO10337]; National Science Foundation [DMR-0120967]; Office of Naval Research FX The authors thank H. Moutinho, J. Pankow, and Z. An for their assistance in characterization of pentacene films. This work was supported in part by the US Department of Energy under Contract No. DE-AC36-99GO10337 and in part by the STC Program of the National Science Foundation under Agreement Number DMR-0120967, by the Office of Naval Research. NR 25 TC 1 Z9 1 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD JUL PY 2011 VL 104 IS 1 BP 139 EP 144 DI 10.1007/s00340-011-4383-9 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA 799NG UT WOS:000293292800022 ER PT J AU McKenzie, DE Savage, SL AF McKenzie, D. E. Savage, S. L. TI DISTRIBUTION FUNCTIONS OF SIZES AND FLUXES DETERMINED FROM SUPRA-ARCADE DOWNFLOWS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetic reconnection; Sun: corona; Sun: flares; Sun: X-rays, gamma rays ID ERUPTIVE SOLAR-FLARES; QUANTITATIVE EXAMINATION; RECONNECTION AB The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes. We examine 120 cross-sectional areas and magnetic flux estimates found by Savage & McKenzie for SADs, and find that (1) the areas are consistent with a log-normal distribution and (2) the fluxes are consistent with both a log-normal and an exponential distribution. Neither set of measurements is compatible with a power-law distribution nor a normal distribution. As a demonstration of the applicability of these findings to improved understanding of reconnection, we consider a simple SAD growth scenario with minimal assumptions, capable of producing a log-normal distribution. C1 [McKenzie, D. E.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. [Savage, S. L.] Oak Ridge Associated Univ, NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP McKenzie, DE (reprint author), Montana State Univ, Dept Phys, POB 173840, Bozeman, MT 59717 USA. FU NASA [NNM07AB07C]; Harvard-Smithsonian Astrophysical Observatory FX This work was partially supported by NASA under contract NNM07AB07C with the Harvard-Smithsonian Astrophysical Observatory. Yohkoh data are provided courtesy of the NASA-supported Yohkoh Legacy Archive at Montana State University. We gratefully acknowledge the helpful comments of an anonymous referee. NR 15 TC 7 Z9 7 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 1 PY 2011 VL 735 IS 1 AR L6 DI 10.1088/2041-8205/735/1/L6 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 797OT UT WOS:000293137900006 ER PT J AU Johnson, DR Willis, HH Curtright, AE Samaras, C Skone, T AF Johnson, David R. Willis, Henry H. Curtright, Aimee E. Samaras, Constantine Skone, Timothy TI Incorporating uncertainty analysis into life cycle estimates of greenhouse gas emissions from biomass production SO BIOMASS & BIOENERGY LA English DT Article DE Life cycle assessment; Uncertainty analysis; Greenhouse gas emissions; Data variability; Biobased fuels ID CORN-ETHANOL; BOUNDARIES; INVENTORY; ENERGY AB Before further investments are made in utilizing biomass as a source of renewable energy, both policy makers and the energy industry need estimates of the net greenhouse gas (GHG) reductions expected from substituting biobased fuels for fossil fuels. Such GHG reductions depend greatly on how the biomass is cultivated, transported, processed, and converted into fuel or electricity. Any policy aiming to reduce GHGs with biomass-based energy must account for uncertainties in emissions at each stage of production, or else it risks yielding marginal reductions, if any, while potentially imposing great costs. This paper provides a framework for incorporating uncertainty analysis specifically into estimates of the life cycle GHG emissions from the production of biomass. We outline the sources of uncertainty, discuss the implications of uncertainty and variability on the limits of life cycle assessment (LCA) models, and provide a guide for practitioners to best practices in modeling these uncertainties. The suite of techniques described herein can be used to improve the understanding and the representation of the uncertainties associated with emissions estimates, thus enabling improved decision making with respect to the use of biomass for energy and fuel production. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Johnson, David R.] RAND Corp, Santa Monica, CA 90405 USA. [Willis, Henry H.; Curtright, Aimee E.; Samaras, Constantine] RAND Corp, Pittsburgh, PA 15213 USA. [Skone, Timothy] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Johnson, DR (reprint author), RAND Corp, 1776 Main St,POB 2138, Santa Monica, CA 90405 USA. EM djohnson@rand.org RI Willis, Henry/L-8437-2013; OI Willis, Henry/0000-0001-6404-721X; Samaras, Constantine/0000-0002-8803-2845 FU Department of Energy's National Energy Technology Laboratory (NETL) FX This work was funded by the Department of Energy's National Energy Technology Laboratory (NETL). The authors thank Robert Dilmore (NETL) and Jason Hill (University of Minnesota) for assistance with development of the Calculating Uncertainty in Biomass Emissions (CUBE) model v1.0, the process which informed the discussion in this paper. We also thank David Ortiz and Nicholas Burger (both of RAND), who were part of the CUBE v1.0 development team, Chris Weber (STPI) and H. Scott Matthews (Carnegie Mellon) for feedback on an earlier draft of the paper, and two anonymous reviewers who provided valuable feedback that resulted in substantial improvements. NR 31 TC 19 Z9 19 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD JUL PY 2011 VL 35 IS 7 BP 2619 EP 2626 DI 10.1016/j.biombioe.2011.02.046 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 793UK UT WOS:000292849200019 ER PT J AU Kim, S Dale, BE AF Kim, Seungdo Dale, Bruce E. TI Indirect land use change for biofuels: Testing predictions and improving analytical methodologies SO BIOMASS & BIOENERGY LA English DT Article DE Corn; Biofuel; Historical data; Indirect land use change; Renewable energy policy; Soybean ID EMISSIONS AB Current practices for estimating indirect land use change (iLUC) due to United States biofuel production rely on assumption-heavy, global economic modeling approaches. Prior iLUC studies have failed to compare their predictions to past global historical data. An empirical approach is used to detect evidence for iLUC that might be catalyzed by United States biofuel production through a "bottom-up", data-driven, statistical approach. Results show that biofuel production in the United States from 2002 to 2007 is not significantly correlated with changes in croplands for corn (coarse grain) plus soybean in regions of the world which are corn (coarse grain) and soybean trading partners of the United States. The results may be interpreted in at least two different ways: 1) biofuel production in the United States through 2007 (the last date for which information is available) probably has not induced any indirect land use change, and 2) this empirical approach may not be sensitive enough to detect indirect land use change from the historical data. It seems clear that additional effort may be required to develop methodologies to observe indirect land use change from the historical data. Such efforts might reduce uncertainties in indirect land use change estimates or perhaps form the basis for better policies or standards for biofuels. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kim, Seungdo; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, DOE Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA. RP Dale, BE (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, DOE Great Lakes Bioenergy Res Ctr, 3900 Collins Rd, Lansing, MI 48910 USA. EM kimseun@msu.edu; bdale@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center by US Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494] FX This work was funded by DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. Support was also provided by the Michigan Agricultural Experiment Station. NR 20 TC 54 Z9 55 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD JUL PY 2011 VL 35 IS 7 BP 3235 EP 3240 DI 10.1016/j.biombioe.2011.04.039 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 793UK UT WOS:000292849200087 ER PT J AU Campeau, E Gobeil, S AF Campeau, Eric Gobeil, Stephane TI RNA interference in mammals: behind the screen SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE shRNA; siRNA; esiRNA; RNAi screen; lentivirus; retrovirus ID C VIRUS-REPLICATION; FUNCTIONAL GENOMIC SCREEN; STEM-CELL IDENTITY; TUMOR-SUPPRESSOR; IMAGE-ANALYSIS; CANCER-CELLS; GENETIC SCREENS; BREAST-CANCER; IDENTIFICATION; REGULATORS AB The discovery of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in a cell or an animal. The availability of genome-wide RNAi libraries targeting the mouse and human genomes has made it possible to carry out large scale, phenotype-based screens, which have yielded seminal information on diverse cellular processes ranging from virology to cancer biology. Today, several strategies are available to perform RNAi screens, each with their own technical and monetary considerations. Special care and budgeting must be taken into account during the design of these screens in order to obtain reliable results. In this review, we discuss a number of critical aspects to consider when planning an effective RNAi screening strategy, including selecting the right biological system, designing an appropriate selection scheme, optimizing technical aspects of the screen, and validating and verifying the hits. Similar to an artistic production, what happens behind the screen has a direct impact on its success. C1 [Campeau, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Campeau, Eric] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA USA. RP Campeau, E (reprint author), Resverlogix Corp 140, Translat Biol Grp, 3553 31st St NW, Calgary, AB T2L 2K7, Canada. EM ecampeau@gmail.com; stephane.gobeil@crchul.ulaval.ca FU Canadian Institutes of Health Research [111069] NR 95 TC 10 Z9 12 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD JUL PY 2011 VL 10 IS 4 SI SI BP 215 EP 226 DI 10.1093/bfgp/elr018 PG 12 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 799QN UT WOS:000293301300007 PM 21791555 ER PT J AU Fayek, M Anovitz, LM Cole, DR Bostick, DA AF Fayek, Mostafa Anovitz, Lawrence M. Cole, David R. Bostick, Debra A. TI O and H diffusion in uraninite: Implications for fluid-uraninite interactions, nuclear waste disposal, and nuclear forensics SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID HYPERSTOICHIOMETRIC URANIUM-DIOXIDE; OXYGEN SELF-DIFFUSION; ATHABASCA BASIN; MCARTHUR RIVER; UO2; SASKATCHEWAN; FRACTIONATION; CANADA; COEFFICIENTS; MECHANISM AB Diffusion coefficients for oxygen and hydrogen were determined from a series of natural uraninite-H2O experiments between 50 and 700 degrees C. Under hydrous conditions there are two diffusion mechanisms: (1) an initial extremely fast-path diffusion mechanism that overprinted the oxygen isotopic composition of the entire crystals regardless of temperature and (2) a slower volume-diffusive mechanism dominated by defect clusters that displace or eject nearest neighbor oxygen atoms to form two interstitial sites and two partial vacancies, and by vacancy migration. Using the volume diffusion coefficients in the temperature range of 400-600 degrees C, diffusion coefficients for oxygen can be represented by D = 1.90e(-5) exp (-123,382 J/RT) cm(2)/s and for temperatures between 100 and 300 degrees C the diffusion coefficients can be represented by D = 1.95e (10) exp (-62484 J/RT) cm(2)/s, where the activation energies for uraninite are 123.4 and 62.5 kJ/mol, respectively. Hydrogen diffusion in uraninite appears to be controlled by similar mechanisms as oxygen. Using the volume diffusion coefficients for temperatures between 50 and 700 degrees C, diffusion coefficients for hydrogen can be represented by D = 9.28e(-6) exp (-156,528 J/RT) cm(2)/s for temperatures between 450 and 700 degrees C and D = 1.39e(-14) exp (-34518 J/RT) cm(2)/s for temperatures between 50 and 400 degrees C, where the activation energies for uraninite are 156.5 and 34.5 kJ/mol, respectively. Results from these new experiments have implications for isotopic exchange during natural UO2-water interactions. The exceptionally low delta O-18 values of natural uraninites (i.e. -32 parts per thousand to -19.5 parts per thousand) from unconformity-type uranium deposits in Saskatchewan, in conjunction with theoretical and experimental uraninite-water and UO3-water fractionation factors, suggest that primary uranium mineralization is not in oxygen isotopic equilibrium with coeval clay and silicate minerals. The low delta O-18 values have been interpreted as resulting from the low temperature overprinting of primary uranium mineralization in the presence of relatively modern meteoric fluids having delta O-18 values of ca. -18 parts per thousand, despite petrographic and U-Pb isotope data that indicate limited alteration. Our data show that the anomalously low oxygen isotopic composition of the uraninite from the Athabasca Basin can be due to meteoric water overprinting under reducing conditions, and meteoric water or groundwater can significantly affect the oxygen isotopic composition of spent nuclear fuel in a geologic repository, with minimal change to the chemical composition or texture. Moreover, the rather fast oxygen and hydrogen diffusion coefficients for uraninite, especially at low temperatures, suggest that oxygen and hydrogen diffusion may impart characteristic isotopic signals that can be used to track the route of fissile material. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fayek, Mostafa] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada. [Anovitz, Lawrence M.; Bostick, Debra A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cole, David R.] Ohio State Univ, Dept Earth Sci, Columbus, OH 43210 USA. RP Fayek, M (reprint author), Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada. EM fayek@cc.umanitoba.ca RI Anovitz, Lawrence/P-3144-2016 OI Anovitz, Lawrence/0000-0002-2609-8750 FU NSERC; CRC; CFI; US Department of Energy through Divisions of Materials Sciences and Engineering and Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725] FX Partial support for this research was provided by a NSERC-discovery, CRC, and CFI grants to Fayek. The authors would like to thank Dr. Rong Liu and Brandi Shabaga for their assistance in obtaining the SIMS and XRD data. Financial support for DRC and LMA was provided by the US Department of Energy through funding provided by the Divisions of Materials Sciences and Engineering and Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy, by Contract Number DE-AC05-00OR22725 to Oak Ridge National Laboratory (managed and operated by UT-Battelle, LLC). NR 50 TC 3 Z9 3 U1 1 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2011 VL 75 IS 13 BP 3677 EP 3686 DI 10.1016/j.gca.2011.03.040 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 796YE UT WOS:000293088600003 ER PT J AU Chen, HC Burgoon, JK Derrick, DC Elkins, A Sanfilippo, A McGrath, L AF Chen, Hsinchun Burgoon, Judee K. Derrick, Douglas C. Elkins, Aaron Sanfilippo, Antonio McGrath, Liam TI Social Intelligence and Cultural Awareness SO IEEE INTELLIGENT SYSTEMS LA English DT Editorial Material C1 [Chen, Hsinchun] Univ Arizona, Artificial Intelligence Lab, Tucson, AZ 85721 USA. [Burgoon, Judee K.; Elkins, Aaron] Univ Arizona, Ctr Identificat Technol Res, Tucson, AZ 85721 USA. [Derrick, Douglas C.] Univ Nebraska, Sch Interdisciplinary Informat, Omaha, NE 68182 USA. [Sanfilippo, Antonio] Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. RP Chen, HC (reprint author), Univ Arizona, Artificial Intelligence Lab, Tucson, AZ 85721 USA. EM hchen@eller.arizona.edu; jburgoon@cmi.arizona.edu; douglas.derrick@gmail.com; aelkins@cmi.arizona.edu; antonio.sanfilippo@pnnl.gov; liam.mcgrath@pnnl.gov NR 6 TC 0 Z9 0 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1541-1672 J9 IEEE INTELL SYST JI IEEE Intell. Syst. PD JUL-AUG PY 2011 VL 26 IS 4 BP 80 EP 91 PG 12 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 798ZL UT WOS:000293251300025 ER PT J AU Wu, D Wang, Q Assary, RS Broadbelt, LJ Krilov, G AF Wu, Di Wang, Qin Assary, Rajeev S. Broadbelt, Linda J. Krilov, Goran TI A Computational Approach To Design and Evaluate Enzymatic Reaction Pathways: Application to 1-Butanol Production from Pyruvate SO JOURNAL OF CHEMICAL INFORMATION AND MODELING LA English DT Article ID CLOSTRIDIUM-BEIJERINCKII; METABOLIC NETWORKS; ESCHERICHIA-COLI; BIODEGRADATION PATHWAYS; THERMODYNAMIC ANALYSIS; ALCOHOL-DEHYDROGENASE; ACCURATE DOCKING; GRAPH-THEORY; IN-SILICO; SUBSTRATE AB We present a new computational strategy for the design and evaluation of novel enzymatic pathways for the biosynthesis of fuels and chemicals. The approach combines the use of the Biochemical Network Integrated Computational Explorer (BNICE) framework and a structure-based screening method for rapid generation and evaluation of novel enzymatic reactions and pathways. The strategy is applied to a case study of 1-butanol production from pyruvate, which yielded nine novel biosynthetic pathways. Using screening criteria based on pathway length, thermodynamic feasibility, and metabolic flux analysis, all nine novel pathways were deemed to be attractive candidates. To further assess their feasibility of implementation, we introduced a new screening criterion based on structural complementarity using molecular docking methods. We show that this approach correctly reproduces the native binding poses for a wide range of enzymes in key classes related to 1-butanol production and provides qualitative agreement with experimental measures of catalytic activity for different substrates. In addition, we show that the structure-based methods can be used to select specific proteins that may be promising candidates to catalyze novel reactions. C1 [Wu, Di; Assary, Rajeev S.; Broadbelt, Linda J.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Wang, Qin; Krilov, Goran] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA. [Assary, Rajeev S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Krilov, Goran] Schrodinger Inc, New York, NY 10036 USA. RP Broadbelt, LJ (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. EM broadbelt@northwestern.edu; goran.krilov@schrodinger.com RI Broadbelt, Linda/B-7640-2009; Surendran Assary, Rajeev/E-6833-2012 OI Surendran Assary, Rajeev/0000-0002-9571-3307 FU National Science Foundation [CBET-0835800]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences FX The authors are grateful for the financial support of the National Science Foundation (CBET-0835800). This material is based upon work supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. NR 82 TC 9 Z9 9 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9596 J9 J CHEM INF MODEL JI J. Chem Inf. Model. PD JUL PY 2011 VL 51 IS 7 BP 1634 EP 1647 DI 10.1021/ci2000659 PG 14 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Pharmacology & Pharmacy; Chemistry; Computer Science GA 796EU UT WOS:000293035400013 PM 21671635 ER PT J AU Miller, SF Arul, SG Kruger, GH Pan, TY Shih, AJ AF Miller, Scott F. Arul, Senthil G. Kruger, Grant H. Pan, Tsung-Yu Shih, Albert J. TI Effect of Localized Metal Matrix Composite Formation on Spot Friction Welding Joint Strength SO JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE friction stir welding; metal matrix composite; joint strength ID ALUMINUM; FLOW; REINFORCEMENT; BEHAVIOR; CREEP AB In this study, metal particles were added during the spot friction welding (SFW) process, a solid state sheet metal joining process, to create a localized metal matrix composite (MMC) for the improvement of lap shear strength in AISI 6111-T4 aluminum alloy sheets. The Ancorsteel (R) 1000 particles were compressed between the upper and lower sheets and distributed concentrically around the tool axis perpendicular to the plate surface, which formed a localized MMC and were effective as the reinforcement particles in aluminum 6111-T4 alloy sheets. Results revealed that the MMC reinforcement improved the lap shear strength of SFW joints by about 25%. An aluminum-ferrous solid solution was formed around the steel particles along the aluminum matrix interface. The load-deflection curve shows that the steel particle MMC increased both the strength and ductility of SFW joint. This is attributed to two phenomena observed on the failed lap shear tensile specimens with SFW MMC. One is the longer and more torturous crack path, and the other is the secondary crack on steel particle MMC reinforced SFW joints. [DOI: 10.1115/1.4004389] C1 [Miller, Scott F.] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Arul, Senthil G.] USN, Sea Syst Command, Dept Navy, Washington, DC 20376 USA. [Kruger, Grant H.; Shih, Albert J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Pan, Tsung-Yu] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Miller, SF (reprint author), Univ Hawaii Manoa, Honolulu, HI 96822 USA. FU Ford Motor Company; NSF [0700617] FX We acknowledge the support from Ford Motor Company and NSF CMMI Grant No. 0700617. NR 23 TC 0 Z9 0 U1 1 U2 10 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-4289 J9 J ENG MATER-T ASME JI J. Eng. Mater. Technol.-Trans. ASME PD JUL PY 2011 VL 133 IS 3 AR 031009 DI 10.1115/1.4004389 PG 8 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 794TD UT WOS:000292923300018 ER PT J AU Ramakrishnan, S Teh, KY Miller, SL Edwards, CF AF Ramakrishnan, Sankaran Teh, Kwee-Yan Miller, Shannon L. Edwards, Christopher F. TI Optimal Architecture for Efficient Simple-Cycle Steady-Flow Combustion Engines SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID THERMODYNAMIC REQUIREMENTS; TURBINE; GENERATION; FUTURE AB Increasing efficiency of steady-flow engines by way of irreversibility minimization has been the underlying objective in the development of a variety of simple, regenerative, and combined cycles. The approach thus far has been to conceptualize new cycles, or choose existing cycles, perform exergy analyses, and make modifications to minimize irreversibility. In this paper, a different approach is taken by developing a thermodynamic framework that defines the principles governing the minimization of irreversibility and uses these principles to deduce an optimal architecture for simple-cycle stationary gas-turbine and propulsion engines. The optimal architecture is thus obtained as the result of the irreversibility-minimization analysis and not by optimization of a preconceived architecture or cycle. The benefit of this approach is that, based on the chosen constraints for the analysis (e.g., polytropic efficiency of compression and expansion processes, blade temperature limits, etc.), the efficiency of the optimal architecture obtained is greater than any preconceived cycle or architecture subject to the same constraints. C1 [Ramakrishnan, Sankaran; Miller, Shannon L.; Edwards, Christopher F.] Stanford Univ, Stanford, CA 94305 USA. [Teh, Kwee-Yan] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Ramakrishnan, S (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM rsankar@stanford.edu; kteh@sandia.gov; slmiller@stanfordalumni.org; cfe@stanford.edu FU Stanford University FX The authors would like to thank the Global Climate and Energy Project at Stanford University for supporting this work. NR 21 TC 0 Z9 0 U1 0 U2 6 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2011 VL 27 IS 4 BP 873 EP 883 DI 10.2514/1.B34050 PG 11 WC Engineering, Aerospace SC Engineering GA 797SF UT WOS:000293149700015 ER PT J AU Rai, D Yui, M Schaef, HT Kitamura, A AF Rai, Dhanpat Yui, Mikazu Schaef, H. Todd Kitamura, Akira TI Thermodynamic Model for SnO2(cr) and SnO2(am) Solubility in the Aqueous Na+-H+-OH--Cl--H2O System SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Solubility; Thermodynamic data; Tin; Tin hydroxide; Cassiterite; Hydrolysis constants of tin; SnO2(am); Sn ID INORGANIC TIN; 350-DEGREES-C; TEMPERATURES; CASSITERITE; OXIDE AB The solubility of SnO2(cassiterite) was studied at 23 +/- 2 A degrees C as a function of time (7 to 49 days) and pH (0 to 14.5). Steady state concentrations were reached in < 7 days. The data were interpreted using the SIT model. The data show that SnO2(cassiterite) is the stable phase at pH values of < similar to 11.7. These extensive data provided a log (10) K (0) value of -64.39 +/- 0.30 for the reaction (SnO2(cassiterite) +2H(2)Oa double dagger"Sn4++4OH(-)) and values of 1.86 +/- 0.30, a parts per thousand currency signa'0.62, -9.20 +/- 0.34, and -20.28 +/- 0.34 for the reaction (Sn4++nH(2)O reversible arrow Sn(OH)(n)(4-n)+nH(+)) with values of "n" equal to 1, 4, 5, and 6 respectively. These thermodynamic hydrolysis constants were used to reinterpret the extensive literature data for SnO2(am) solubility, which provided a log (10) K (0) value of -61.80 +/- 0.29 for the reaction (SnO2(am)+2H(2)Oa double dagger"Sn4++4OH(-)). SnO2(cassiterite) is unstable under highly alkaline conditions (NaOH concentrations > 0.003 mola <...dm(-3)) and transforms to a double salt of SnO2 and NaOH. Although additional well-focused studies will be required for confirmation, the experimental data in the highly alkaline region (0.003 to 3.5 mola <...dm(-3) NaOH) can be well described with log (10) K (0) of -5.29 +/- 0.35 for the reaction Na2Sn(OH)(6)(s)a double dagger"Na2Sn(OH)(6)(aq). C1 [Rai, Dhanpat] Rai Envirochem LLC, Yachats, OR 97498 USA. [Yui, Mikazu; Kitamura, Akira] Japan Atom Agcy, Tokai, Ibaraki, Japan. [Schaef, H. Todd] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rai, D (reprint author), Rai Envirochem LLC, 1000 Hanley Dr,POB 784, Yachats, OR 97498 USA. EM dhan.rai@raienvirochem.com FU U.S. Department of Energy (U.S. DOE); Japan Atomic Energy Agency (JAEA), under a collaborative agreement between JAEA and Rai Enviro-Chem, LLC.; JAEA FX The experimental study was conducted at the Pacific Northwest National Laboratory and funded by the U.S. Department of Energy (U.S. DOE). Data interpretation and manuscript preparation were supported by the Japan Atomic Energy Agency (JAEA), under a collaborative agreement between JAEA and Rai Enviro-Chem, LLC. The senior author gratefully acknowledges the financial support provided by U.S. DOE and JAEA to complete various aspects of this study. NR 26 TC 10 Z9 10 U1 2 U2 23 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD JUL PY 2011 VL 40 IS 7 BP 1155 EP 1172 DI 10.1007/s10953-011-9723-1 PG 18 WC Chemistry, Physical SC Chemistry GA 798NG UT WOS:000293214600001 ER PT J AU Kelly, LC Cockell, CS Herrera-Belaroussi, A Piceno, Y Andersen, G DeSantis, T Brodie, E Thorsteinsson, T Marteinsson, V Poly, F LeRoux, X AF Kelly, Laura C. Cockell, Charles S. Herrera-Belaroussi, Aude Piceno, Yvette Andersen, Gary DeSantis, Todd Brodie, Eoin Thorsteinsson, Thorsteinn Marteinsson, Viggo Poly, Franck LeRoux, Xavier TI Bacterial Diversity of Terrestrial Crystalline Volcanic Rocks, Iceland SO MICROBIAL ECOLOGY LA English DT Article ID MONOXIDE-OXIDIZING BACTERIA; CLONE LIBRARY; MICROBIAL DIVERSITY; COMMUNITY STRUCTURE; BASALTIC GLASS; FLOOR BASALT; MICROARRAY; POPULATIONS; DEPOSITS; DYNAMICS AB Bacteria inhabiting crystalline rocks from two terrestrial Icelandic volcanic lava flows of similar age and from the same geographical region, but differing in porosity and mineralogy, were characterised. Microarray (PhyloChip) and clone library analysis of 16S rRNA genes revealed the presence of a diverse assemblage of bacteria in each lava flow. Both methods suggested a more diverse community at the Dmadalshraun site (rhyolitic/andesitic lava flow) than that present at the Hnausahraun site (basaltic lava flow). Proteobacteria dominated the clone library at the Dmadalshraun site, while Acidobacteria was the most abundant phylum in the Hnausahraun site. Although analysis of similarities of denaturing gradient gel electrophoresis profiles suggested a strong correlation of community structure with mineralogy, rock porosity may also play an important role in shaping the bacterial community in crystalline volcanic rocks. Clone sequences were most similar to uncultured microorganisms, mainly from soil environments. Of these, Antarctic soils and temperate rhizosphere soils were prominent, as were clones retrieved from Hawaiian and Andean volcanic soils. The novel diversity of these Icelandic microbial communities was supported by the finding that up to 46% of clones displayed < 85% sequence identities to sequences currently deposited in the RDP database. C1 [Kelly, Laura C.; Cockell, Charles S.; Herrera-Belaroussi, Aude] Open Univ, Geomicrobiol Res Grp, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. [Piceno, Yvette; Andersen, Gary; DeSantis, Todd; Brodie, Eoin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Thorsteinsson, Thorsteinn] Natl Energy Author, Hydrol Div, IS-108 Reykjavik, Iceland. [Marteinsson, Viggo] Matis Ohf Iceland Food & Biotech R&D, IS-113 Reykjavik, Iceland. [Poly, Franck; LeRoux, Xavier] Univ Lyon 1, CNRS, INRA, UMR Ecol Microbienne 5557, F-69622 Villeurbanne, France. RP Kelly, LC (reprint author), Open Univ, Geomicrobiol Res Grp, Planetary & Space Sci Res Inst, Milton Keynes MK7 6AA, Bucks, England. EM lckelly23@hotmail.com RI GenePool, The/D-8812-2012; Brodie, Eoin/A-7853-2008; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015 OI Brodie, Eoin/0000-0002-8453-8435; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827 FU Leverhulme Trust [F/00 269/N] FX This work was made possible and supported by the Leverhulme Trust (project number F/00 269/N). We thank John Watson (Department of Earth Science, Open University, UK) for the XRF analyses and Stephen Summers (Geomicrobiology Group, Open University) for statistical advice. The authors are also grateful to Steve Blake and Steve Self (Earth and Environmental Sciences, Open University, UK) for helpful discussions and advice, and Mark Blaxter (School of Biological Sciences, University of Edinburgh, UK) for the sequencing facilities. NR 49 TC 14 Z9 15 U1 0 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 J9 MICROB ECOL JI Microb. Ecol. PD JUL PY 2011 VL 62 IS 1 BP 69 EP 79 DI 10.1007/s00248-011-9864-1 PG 11 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 796DM UT WOS:000293030400007 PM 21584756 ER PT J AU Hamlet, J Eng, K Gurrieri, T Levy, J Carroll, M AF Hamlet, J. Eng, K. Gurrieri, T. Levy, J. Carroll, M. TI Modeling of circuits with strongly temperature dependent thermal conductivities for cryogenic CMOS SO MICROELECTRONICS JOURNAL LA English DT Article DE Thermal modeling; Cryogenic CMOS; 4 K electronics ID TRANSISTORS AB When designing and studying circuits operating at cryogenic temperatures understanding local heating within the circuits is critical due to the temperature dependence of transistor and noise behavior. Local heating effects of a CMOS ring oscillator and current comparator were investigated at T=4.2 K. In two cases, the temperature near the circuit was measured with an integrated thermometer. A lumped element equivalent electrical circuit SPICE model that accounts for the strongly temperature dependent thermal conductivities and special 4.2 K heat sinking considerations was developed. The temperature dependence on power is solved numerically with a SPICE package, and the results are typically within 3 sigma of the measured values for local heating ranging from <1 K to over 100 K. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hamlet, J.; Eng, K.; Gurrieri, T.; Levy, J.; Carroll, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hamlet, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jrhamle@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0026-2692 J9 MICROELECTRON J JI Microelectron. J. PD JUL PY 2011 VL 42 IS 7 BP 936 EP 941 DI 10.1016/j.mejo.2011.04.015 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA 799CW UT WOS:000293262100002 ER PT J AU Panaitescu, A Vestrand, WT AF Panaitescu, A. Vestrand, W. T. TI Optical afterglows of gamma-ray bursts: peaks, plateaus and possibilities SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE radiation mechanisms: non-thermal; shock waves ID SWIFT XRT DATA; X-RAY; LIGHT-CURVES; LORENTZ FACTOR; EMISSION; PROMPT; BREAKS; ONSET AB The optical light curves of gamma-ray burst (GRB) afterglows display either peaks or plateaus. We identify 16 afterglows of the former type, 17 of the latter and four with broad peaks, which could be of either type. The optical energy release of these two classes is similar and is correlated with the GRB output, the correlation being stronger for peaky afterglows, which suggests that the burst and afterglow emissions of peaky afterglows are from the same relativistic ejecta and that the optical emission of afterglows with plateaus arises more often from ejecta that did not produce the burst emission. Consequently, we propose that peaky optical afterglows are from impulsive ejecta releases and that plateau optical afterglows originate from long-lived engines, the break in the optical light curve (peak or plateau end) marking the onset of the entire outflow deceleration. In the peak luminosity-peak time plane, the distribution of peaky afterglows displays an edge with L-p proportional to t(p)(-3), which we attribute to variations (among afterglows) in the ambient medium density. The fluxes and epochs of optical plateau breaks follow an L-p proportional to t(b)(-1) anticorrelation. Sixty per cent of 25 afterglows that were well monitored in the optical and X-rays show light curves with comparable power-law decay indices and achromatic breaks. The other 40 per cent display three types of decoupled behaviours: (1) chromatic optical light-curve breaks (perhaps due to the peak of the synchrotron spectrum crossing the optical), (2) X-ray flux decays faster than in the optical (suggesting that the X-ray emission is from local inverse-Compton scattering) and (3) chromatic X-ray light-curve breaks (indicating that the X-ray emission is from external upscattering). C1 [Panaitescu, A.; Vestrand, W. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Panaitescu, A (reprint author), Los Alamos Natl Lab, MS D466, Los Alamos, NM 87545 USA. EM alin@lanl.gov FU NASA [NNG09EK68I, NNG10PM41P] FX This work was supported by NASA Guest Investigator grants NNG09EK68I and NNG10PM41P. NR 24 TC 30 Z9 31 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3537 EP 3546 DI 10.1111/j.1365-2966.2011.18653.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600057 ER PT J AU Burningham, B Leggett, SK Homeier, D Saumon, D Lucas, PW Pinfield, DJ Tinney, CG Allard, F Marley, MS Jones, HRA Murray, DN Ishii, M Day-Jones, A Gomes, J Zhang, ZH AF Burningham, Ben Leggett, S. K. Homeier, D. Saumon, D. Lucas, P. W. Pinfield, D. J. Tinney, C. G. Allard, F. Marley, M. S. Jones, H. R. A. Murray, D. N. Ishii, M. Day-Jones, A. Gomes, J. Zhang, Z. H. TI The properties of the T8.5p dwarf Ross 458C SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; brown dwarfs; stars: low-mass ID LARGE-AREA SURVEY; T-DWARFS; BROWN DWARFS; BINARY-SYSTEM; PHOTOMETRIC CALIBRATION; INFRARED ASTRONOMY; DISCOVERY; UKIDSS; MASS; BENCHMARK AB We present near-infrared photometry and spectroscopy, and warm-Spitzer IRAC photometry of the young very cool T dwarf Ross 458C, which we have typed as T8.5p. By applying the fiducial age constraints (<= 1 Gyr) imposed by the properties of the active M dwarf Ross 458A, we have used these data to determine that Ross 458C has T-eff = 695 +/- 60 K, log g = 4.0-4.7 and an inferred mass of 5-20M(J). We have compared fits of the near-infrared spectrum and IRAC photometry to the BT Settl and Saumon & Marley model grids, and have found that both sets provide best fits that are consistent with our derived properties, whilst the former provide a marginally closer match to the data for all scenarios explored here. The main difference between the model grids arises in the 4.5-mu m region, where the BT Settl models are able to better predict the flux through the IRAC filter, suggesting that non-equilibrium effects on the CO-CO2 ratio are important for shaping the mid-infrared spectra of very cool T dwarfs. We have also revisited the issue of the dust opacity in the spectra of Ross 458C that was raised by Burgasser et al. We have found that the BT Settl models which also incorporate a condensate cloud model provide a better match to the near-infrared spectrum of this target than the Saumon & Marley model with f(sed) = 2 and we briefly discuss the influence of condensate clouds on T dwarf spectra. C1 [Burningham, Ben; Lucas, P. W.; Pinfield, D. J.; Jones, H. R. A.; Murray, D. N.; Gomes, J.; Zhang, Z. H.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Leggett, S. K.] Gemini Observ, Hilo, HI 96720 USA. [Homeier, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Saumon, D.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Tinney, C. G.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Allard, F.] Ecole Normale Super Lyon, CRAL, CNRS, UMR 5574, F-69364 Lyon 07, France. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Ishii, M.] Subaru Telescope, Hilo, HI 96720 USA. [Day-Jones, A.] Univ Chile, Santiago, Chile. RP Burningham, B (reprint author), Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. EM B.Burningham@herts.ac.uk OI Burningham, Ben/0000-0003-4600-5627; Marley, Mark/0000-0002-5251-2943; Tinney, Christopher/0000-0002-7595-0970; Homeier, Derek/0000-0002-8546-9128; Leggett, Sandy/0000-0002-3681-2989; Jones, Hugh/0000-0003-0433-3665; Allard, France/0000-0003-1929-9340 FU Gemini Observatory; ARC [DP0774000] FX We thank our anonymous referee for comments that have greatly improved the quality of the manuscript. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. SKL is supported by the Gemini Observatory, which is operated by the AURA, on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom and the United States of America. CGT is supported by ARC grant DP0774000. This research has made use of the SIMBAD data base operated at CDS, Strasbourg, France, and has benefitted from the SpeX Prism Spectral Libraries maintained by Adam Burgasser at http://www.browndwarfs.org/spexprism. NR 48 TC 48 Z9 48 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD JUL PY 2011 VL 414 IS 4 BP 3590 EP 3598 DI 10.1111/j.1365-2966.2011.18664.x PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 798CF UT WOS:000293178600063 ER PT J AU Chen, ZH Lee, DJ Sun, YK Amine, K AF Chen, Zonghai Lee, Dong-Ju Sun, Yang-Kook Amine, Khalil TI Advanced cathode materials for lithium-ion batteries SO MRS BULLETIN LA English DT Article ID POSITIVE ELECTRODE MATERIAL; VOLTAGE CYCLING PERFORMANCE; CORE-SHELL STRUCTURE; SECONDARY BATTERIES; ELECTROCHEMICAL PROPERTIES; HIGH-ENERGY; LINI0.5MN1.5O4 SPINEL; SURFACE MODIFICATION; LICOO2 CATHODE; ANODE MATERIAL AB High-energy cathode materials with high working potential and/or high specific capacity are desired for future electrification of vehicles. In this article, we provide a general overview of advanced high-energy cathode materials using different approaches such as core-shell, concentration-gradient materials, and the effects of nanocoatings at the particle level to improve both electrochemical performance and safety. We also summarize the methods used to prepare these materials. Special attention is placed on the co-precipitation process for making dense, spherical particles for the purpose of improving the powder packing density and increasing the electrode energy density. C1 [Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Lee, Dong-Ju; Sun, Yang-Kook] Hanyang Univ, Seoul 133791, South Korea. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM zonghai.chen@anl.gov; 2dongju@gmail.com; yksun@hanyang.ac.kr; amine@anl.gov RI Sun, Yang-Kook/B-9157-2013; Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; FU U.S. Department of Energy; FreedomCAR; Vehicle Technologies Office; UChicago Argonne, LLC [DE-AC02-06CH11357]; Ministry of Education, Science and Technology (MEST) of Korea for the Center for Next Generation Dye-sensitized Solar Cells [2010-0001842]; Korea government Ministry of Knowledge Economy [20104010100560] FX The research of Z. Chen and K. Amine is funded by the U.S. Department of Energy, FreedomCAR, and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by the UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The work of D.-J. Lee and Y.-K. Sun was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded from the Ministry of Education, Science and Technology (MEST) of Korea for the Center for Next Generation Dye-sensitized Solar Cells (No. 2010-0001842) and by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20104010100560). NR 60 TC 24 Z9 24 U1 0 U2 58 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD JUL PY 2011 VL 36 IS 7 BP 498 EP 505 DI 10.1557/mrs.2011.155 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 798XW UT WOS:000293246500008 ER PT J AU Barber, SK Geckeler, RD Yashchuk, VV Gubarev, MV Buchheim, J Siewert, F Zeschke, T AF Barber, Samuel K. Geckeler, Ralf D. Yashchuk, Valeriy V. Gubarev, Mikhail V. Buchheim, Jana Siewert, Frank Zeschke, Thomas TI Optimal alignment of mirror-based pentaprisms for scanning deflectometric devices SO OPTICAL ENGINEERING LA English DT Article DE optical metrology; surface slope metrology; surface profilometer; long trace profiler; developmental long trace profiler; pentaprism; mirror-based pentaprism; alignment; deflectometry; extended shear angle difference; nanometer optical component measuring machine ID OPTICS AB Replacement of a bulk pentaprism with a mirror-based pentaprism (MBPP) in slope-measuring instruments, such as long trace profilers and autocollimator-based deflectometers, is a well-established way to significantly improve the reliability of surface slope measurements. This is due to the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of bulk pentaprisms. Proper use of an MBPP requires precision mutual alignment of its mirrors. In a recent work we have reported on an original experimental procedure for optimal alignment of MBPP mirrors. The procedure has been verified with numerical ray tracing simulations and via test experiments with the developmental long trace profiler, a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory. In the present article, we provide an analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror-based pentaprisms. We also provide an analytical description for a mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3598325] C1 [Barber, Samuel K.; Yashchuk, Valeriy V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Geckeler, Ralf D.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Gubarev, Mikhail V.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Buchheim, Jana; Siewert, Frank; Zeschke, Thomas] Helmholtz Zentrum Berlin Mat & Energie Elektronen, D-12489 Berlin, Germany. RP Barber, SK (reprint author), Univ Calif Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095 USA. EM VVYashchuk@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; United States Government FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 18 TC 9 Z9 10 U1 4 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD JUL PY 2011 VL 50 IS 7 AR 073602 DI 10.1117/1.3598325 PG 8 WC Optics SC Optics GA 797XZ UT WOS:000293164700024 ER PT J AU Eggleton, PP AF Eggleton, Peter P. TI Chandrasekhar's book An Introduction to the Study of Stellar Structure SO PRAMANA-JOURNAL OF PHYSICS LA English DT Article; Proceedings Paper CT Chandrasekhar Centenary Conference CY DEC 07-11, 2010 CL Bangalore, INDIA DE S Chandrasekhar; stellar structure; thermodynamics ID PHOTOELECTRIC RADIAL-VELOCITIES; SPECTROSCOPIC BINARY ORBITS; RED GIANTS; EVOLUTION; STARS AB For me, and for many astrophysicists of my generation, Chandrasekhar's book An Introduction to the Study of Stellar Structure was very important. I could not have done my PhD (1962-1965) without it. Much more recently (1998) I realized that I could not have written my lecture course on thermodynamics and statistical mechanics without much of it, particularly the first chapter. I shall present anecdotal evidence that the influence of his discussion on the second law of thermodynamics has been important not just for astrophysics but for a much wider range of physics. Chandrasekhar's discussion of polytropes was masterly. Even today polytropes play an important role as an aid for understanding stellar structure. I believe that to the list of analytic solutions of the polytrope only one more has to be added: a curious n = 5 model of Srivastava (1962). Stellar structure is nowadays a very computationally intensive subject. I shall illustrate this with a couple of topics from my experience with Dj ehuty, a supercomputer code for modelling stars in 3D. Nevertheless it remains true, I believe, that analytical mathematical entities like polytropes are fundamental as aids for understanding what the computers churn out. How close are we to seeing a book with the title 'The Last Word on the Study of Stellar Structure'? Not very, although much has been learned in 70 years. I shall discuss a few of the aspects of stellar evolution that are problematic today. I shall discuss a couple of aspects where I believe analysis of 'piecewise polytropic' structures sheds light on the question 'Why do stars become red giants?' C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Eggleton, PP (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM eggleton1@llnl.gov NR 16 TC 0 Z9 0 U1 1 U2 4 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0304-4289 J9 PRAMANA-J PHYS JI Pramana-J. Phys. PD JUL PY 2011 VL 77 IS 1 SI SI BP 97 EP 105 PG 9 WC Physics, Multidisciplinary SC Physics GA 797RM UT WOS:000293145400009 ER PT J AU Matzner, S Jones, M AF Matzner, Shari Jones, Mark TI Measuring Coastal Boating Noise to Assess Potential Impacts on Marine Life Researchers Monitor Noise Levels in Shallow Marine Environments Produced by Various Motor Configurations in Small Recreational Boats SO SEA TECHNOLOGY LA English DT Article C1 [Matzner, Shari; Jones, Mark] Pacific NW Natl Lab, Marine Sensing Grp, Marine Sci Lab, Sequim, WA USA. RP Matzner, S (reprint author), Pacific NW Natl Lab, Marine Sensing Grp, Marine Sci Lab, Sequim, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD JUL PY 2011 VL 52 IS 7 BP 41 EP + PG 4 WC Engineering, Ocean SC Engineering GA 796NA UT WOS:000293056800010 ER PT J AU Kovtun, O Tomlinson, ID Sakrikar, DS Chang, JC Blakely, RD Rosenthal, SJ AF Kovtun, Oleg Tomlinson, Ian D. Sakrikar, Dhananjay S. Chang, Jerry C. Blakely, Randy D. Rosenthal, Sandra J. TI Visualization of the Cocaine-Sensitive Dopamine Transporter with Ligand-Conjugated Quantum Dots SO ACS CHEMICAL NEUROSCIENCE LA English DT Article DE Quantum dot; live cell imaging; single-cell analysis; dopamine transporter; cocaine analogue; trafficking ID PARKINSONS-DISEASE; UPTAKE INHIBITORS; TRAFFICKING; NANOCRYSTALS; ANALOGS; AMPHETAMINE; ASTROCYTES; RECEPTORS; DISORDER; NEURONS AB The presynaptic dopamine (DA) transporter is responsible for DA inactivation following release and is a major target for the psychostimulants cocaine and amphetamine. Dysfunction and/or polymorphisms in human DAT (SLC6A3) have been associated with schizophrenia, bipolar disorder, Parkinson's disease, and attention-deficit hyperactivity disorder (ADHD). Despite the clinical importance of DAT, many uncertainties remain regarding the transporter's regulation, in part due to the poor spatiotemporal resolution of conventional methodologies and the relative lack of efficient DAT-specific fluorescent probes. We developed a quantum dot-based labeling approach that uses a DAT-specific, biotinylated ligand, 2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (IDT444), that can be bound by streptavidin-conjugated quantum dots. Flow cytometry and confocal microscopy were used to detect DAT in stably and transiently transfected mammalian cells. IDT444 is useful for quantum-dot-based fluorescent assays to monitor DAT expression, function, and plasma membrane trafficking in living cells as evidenced by the visualization of acute, protein-kinase-C (PKC)-dependent DAT internalization. C1 [Kovtun, Oleg; Tomlinson, Ian D.; Chang, Jerry C.; Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Rosenthal, Sandra J.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Blakely, Randy D.; Rosenthal, Sandra J.] Vanderbilt Univ, Vanderbilt Inst Nanoscale Sci & Engn, Nashville, TN 37235 USA. [Sakrikar, Dhananjay S.; Blakely, Randy D.; Rosenthal, Sandra J.] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA. [Blakely, Randy D.] Vanderbilt Univ, Sch Med, Dept Psychiat, Nashville, TN 37232 USA. [Blakely, Randy D.] Vanderbilt Univ, Sch Med, Ctr Mol Neurosci, Nashville, TN 37232 USA. [Rosenthal, Sandra J.] Oak Ridge Natl Lab, Joint Fac, Oak Ridge, TN 37831 USA. RP Rosenthal, SJ (reprint author), Vanderbilt Univ, Dept Chem, Box 1583, Nashville, TN 37235 USA. EM sandra.j.rosenthal@vanderbilt.edu OI Sakrikar, Dhananjay/0000-0001-8430-0120 FU NIH [CA68485, DK20593, DK58404, HD15052, DK59637, EY08126, EB003728, DA07390, DA027739]; Vanderbilt Ingram Cancer Center [P30 CA68485]; Vanderbilt Digestive Disease Research Center [DK058404] FX Confocal imaging using Zeiss LSM 510 Meta was performed in part through the use of the VUMC Cell Imaging Shared Resource supported by NIH Grants CA68485, DK20593, DK58404, HD15052, DK59637, and EY08126. Flow cytometry experiments were performed in the VMC Flow Cytometry Shared Resource supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center (DK058404). This work was supported by NIH Grants EB003728 to S.J.R, and DA07390 and DA027739 to R.D.B. NR 39 TC 18 Z9 19 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7193 J9 ACS CHEM NEUROSCI JI ACS Chem. Neurosci. PD JUL PY 2011 VL 2 IS 7 BP 370 EP 378 DI 10.1021/cn200032r PG 9 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Neurosciences SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Neurosciences & Neurology GA 796EW UT WOS:000293035600006 PM 22816024 ER PT J AU Cline, JP Von Dreele, RB Winburn, R Stephens, PW Filliben, JJ AF Cline, James P. Von Dreele, Robert B. Winburn, Ryan Stephens, Peter W. Filliben, James J. TI Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a SO ACTA CRYSTALLOGRAPHICA SECTION A LA English DT Article ID X-RAY-DIFFRACTION; POWDER DIFFRACTOMETRY; RIETVELD METHOD; EXTINCTION; PROFILE; DISTRIBUTIONS; MIXTURES; PATTERNS; SAMPLES; GROWTH AB A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (alpha-Al2O3) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% +/- 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM. 676a. (C) 2011 International Union of Crystallography Printed in Singapore - all rights reserved C1 [Cline, James P.; Filliben, James J.] NIST, Gaithersburg, MD 20899 USA. [Von Dreele, Robert B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Winburn, Ryan] Minot State Univ, Minot, ND 58707 USA. [Stephens, Peter W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Cline, JP (reprint author), NIST, Gaithersburg, MD 20899 USA. EM jcline@nist.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy, Office of Science. Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We are grateful to the following individuals: Marty Green of the NIST Ceramics Division, Material Science and Engineering Laboratory for discussions concerning the surface character of silicon; Ashfia Huq of Oak Ridge National Laboratory for early contributions to this project leading to the re-certification of SRM 676 for amorphous content; Peter L. Lee for the collection of 25 keV data on beamline 32-ID-B at the Advanced Photon Source; Max Peltz of the NIST Materials and Construction Research Division, Building Fire and Research Laboratory, for the collection of the light scattering particle-size data; Brian Toby for useful discussions; and Pamela Whitfield of National Research Council, Canada, for assistance with the computations concerning the crystallite size distribution of SRM 676a. Use of the Advanced Photon Source and Intense Pulsed Neutron Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science. Office of Basic Energy Sciences, under contract No. DE-AC02-98CH10886. NR 41 TC 20 Z9 20 U1 0 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-7673 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD JUL PY 2011 VL 67 BP 357 EP 367 DI 10.1107/S0108767311014565 PN 4 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 794ZW UT WOS:000292942300005 PM 21694474 ER PT J AU Destaillats, H Chen, WH Apte, MG Li, NA Spears, M Almosni, J Brunner, G Zhang, JS Fisk, WJ AF Destaillats, Hugo Chen, Wenhao Apte, Michael G. Li, Nuan Spears, Michael Almosni, Jeremie Brunner, Gregory Zhang, Jianshun (Jensen) Fisk, William J. TI Secondary pollutants from ozone reactions with ventilation filters and degradation of filter media additives SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Ozone; HVAC; Ventilation; Indoor pollutants; Filters ID VOLATILE ORGANIC-COMPOUNDS; BUILDING-RELATED SYMPTOMS; INDOOR-ENVIRONMENT; OUTDOOR OZONE; AIR FILTERS; FORMALDEHYDE; EMISSIONS; PRODUCTS; REMOVAL; QUALITY AB Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to similar to 150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50% RH). Ozone breakthrough was recorded for each sample over periods of similar to 1000 min: the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L min(-1) (face velocity = 0.013 m s(-1)), and a few tests were also run at higher rates (8-10 L min(-1)) Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59.61 and 101) were also detected in real-time using Proton-Transfer Reaction-Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants. Published by Elsevier Ltd. C1 [Destaillats, Hugo; Apte, Michael G.; Spears, Michael; Almosni, Jeremie; Fisk, William J.] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. [Chen, Wenhao; Li, Nuan; Zhang, Jianshun (Jensen)] Syracuse Univ, Bldg Energy & Environm Syst Lab, Syracuse, NY USA. [Brunner, Gregory] US EPA, Washington, DC 20460 USA. RP Destaillats, H (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. EM HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU U.S. Environmental Protection Agency [DW-89-92224401]; U.S. Department of Energy [DE-AC02-05CH11231]; National Institute for Occupational Safety and Health (NIOSH) [OH008891-01A2]; New York Strategically Targeted Academic Research Center in Environmental Quality Systems (NYSTAR-EQS) FX This research was supported by the U.S. Environmental Protection Agency through interagency agreement DW-89-92224401 with the U.S. Department of Energy under Contract DE-AC02-05CH11231. Additional support was provided by the National Institute for Occupational Safety and Health (NIOSH) through grant number OH008891-01A2. PTR-MS experiments were conducted at Syracuse University's Building Energy and Environmental Systems Laboratory with equipments funded by the New York Strategically Targeted Academic Research Center in Environmental Quality Systems (NYSTAR-EQS). Conclusions in this paper are those of the authors and not necessarily those of the U.S. Environmental Protection Agency or the U.S. Department of Energy. The authors acknowledge LA. Gundel, M. Sidheswaran and M. Sleiman (LBNL) for helpful suggestions, T. Hotchi and D. Sullivan (LBNL) for experimental assistance and R. Patterson and M. Ringbom for facilitating access to HVAC air handling systems. We also thank anonymous reviewers for their helpful comments. NR 29 TC 14 Z9 14 U1 1 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD JUL PY 2011 VL 45 IS 21 BP 3561 EP 3568 DI 10.1016/j.atmosenv.2011.03.066 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 787DS UT WOS:000292357400007 ER PT J AU Ghosh, A Hartung, S van der Does, C Tainer, JA Albers, SV AF Ghosh, Abhrajyoti Hartung, Sophia van der Does, Chris Tainer, John A. Albers, Sonja-Verena TI Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding SO BIOCHEMICAL JOURNAL LA English DT Article DE ATPase superfamily; lipid activation; secretion superfamily ATPase; Sulfolobus acidocaldarius; type II/IV secretion ATPase; type IV pilus ID CAG PATHOGENICITY ISLAND; IV PILUS STRUCTURE; X-RAY SOLUTION; HALOBACTERIUM-SALINARUM; PSEUDOMONAS-AERUGINOSA; PROTEIN SECRETION; SULFOLOBUS-SOLFATARICUS; METHANOCOCCUS-VOLTAE; ESCHERICHIA-COLI; SCATTERING SAXS AB Microbial motility frequently depends on flagella or type TV pili. Using recently developed archaeal genetic tools, archaeal flagella and its assembly machinery have been identified. Archaeal flagella are functionally similar to bacterial flagella and their assembly systems are homologous with type IV pill assembly systems of Gram-negative bacteria. Therefore elucidating their biochemistry may result in insights in both archaea and bacteria. Flak a critical cytoplasmic component of the archaeal flagella assembly system in Sulfolobus acidocaldarius, is a member of the type II/IV secretion system ATPase superfamily, and is proposed to be bi-functional in driving flagella assembly and movement. In the present study we show that purified FlaI is a Mn(2+)-dependent ATPase that binds MANT-ATP [2'-/3'-O-(N'-methylanthraniloyl)adenosine-5'-O-triphosphate] with a high affinity and hydrolyses ATP in a co-operative manner. FlaI has an optimum pH and temperature of 6.5 and 75 degrees C for ATP hydrolysis. Remarkably, archaeal, but not bacterial, lipids stimulated the ATPase activity of FlaI 3-4-fold. Analytical gel filtration indicated that FlaI undergoes nucleotide-dependent oligomerization. Furthermore, SAXS (small-angle X-ray scattering) analysis revealed an ATP-dependent hexamerization of FlaI in solution. The results of the present study report the first detailed biochemical analyses of the motor protein of an archaeal flagellum. C1 [van der Does, Chris; Albers, Sonja-Verena] Max Planck Inst Terr Microbiol, Dept Ecophysiol, D-35043 Marburg, Germany. [Hartung, Sophia; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Hartung, Sophia; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Albers, SV (reprint author), Max Planck Inst Terr Microbiol, Dept Ecophysiol, Karl von Frisch Str 10, D-35043 Marburg, Germany. EM albers@mpi-marburg.mpg.de RI Albers, Sonja-Verena/H-1213-2012; Ghosh, Abhrajyoti/H-8550-2012; OI Ghosh, Abhrajyoti/0000-0002-2469-3740; Albers, Sonja-Verena/0000-0003-2459-2226 FU Max Planck Postdoctoral fellowship; Dutch Science Organization (NWO); Max Planck Society; National Institutes of Health [AI022160]; Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; United States Department of Energy [DE-AC02-05CH11231] FX A.G. received a Max Planck Postdoctoral fellowship and S.V.A. was supported by a VIDI grant of the Dutch Science Organization (NWO) and intramural funds of the Max Planck Society. T4P system studies by S.H. and J.A.T. are supported by the National Institutes of Health [grant number AI022160] and the microbial complex SAXS studies are supported by the ENIGMA Program of the Department of Energy, Office of Biological and Environmental Research [contract number DE-AC02-05CH11231], the Lawrence Berkeley National Laboratory and by the National Institutes of Health [gram number AI022160]. The SIBYLS beamline (BL12.3.1) at the Advanced Light Source is supported by the United States Department of Energy program Integrated Diffraction Analysis Technologies (IDAT) [grant number DE-AC02-05CH11231]. NR 56 TC 25 Z9 27 U1 1 U2 5 PU PORTLAND PRESS LTD PI LONDON PA THIRD FLOOR, EAGLE HOUSE, 16 PROCTER STREET, LONDON WC1V 6 NX, ENGLAND SN 0264-6021 J9 BIOCHEM J JI Biochem. J. PD JUL 1 PY 2011 VL 437 BP 43 EP 52 DI 10.1042/BJ20110410 PN 1 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 792BC UT WOS:000292714500005 PM 21506936 ER PT J AU Chen, F Drumm, EC Guiochon, G AF Chen, Feng Drumm, Eric C. Guiochon, Georges TI Coupled discrete element and finite volume solution of two classical soil mechanics problems SO COMPUTERS AND GEOTECHNICS LA English DT Article DE Discrete element method; Finite volume method; Open source code; Coupled flow problem; 1D upward seepage flow; 1D consolidation ID SIMULATIONS; FLOW AB One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAM for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chen, Feng; Drumm, Eric C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Drumm, EC (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM edrumm@utk.edu RI CHEN, FENG/B-5413-2012; OI Drumm, Eric/0000-0001-9491-0934 FU US Department of Energy [DE-FG05-88-ER-13869] FX This work was supported in part by Grant DE-FG05-88-ER-13869 of the US Department of Energy. NR 20 TC 16 Z9 16 U1 1 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-352X J9 COMPUT GEOTECH JI Comput. Geotech. PD JUL PY 2011 VL 38 IS 5 BP 638 EP 647 DI 10.1016/j.compgeo.2011.03.009 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Geological; Geosciences, Multidisciplinary SC Computer Science; Engineering; Geology GA 793YM UT WOS:000292860300005 ER PT J AU French, RJ Stunkel, J Baldwin, RM AF French, Richard J. Stunkel, Jim Baldwin, Robert M. TI Mild Hydrotreating of Bio-Oil: Effect of Reaction Severity and Fate of Oxygenated Species SO ENERGY & FUELS LA English DT Article ID BIOMASS FAST PYROLYSIS; CATALYTIC HYDROTREATMENT AB Bio-oil derived by fast pyrolysis of biomass represents a potentially attractive source of hydrocarbon transportation fuels. Raw bio-oil however is completely unsuitable for application as a fuel due primarily to high organic oxygen content, which imparts a number of undesirable properties including high acidity and low stability. These problems can be overcome by catalytic hydrodeoxygenation (HDO); however, removing oxygen to very low levels by hydrotreating carries a strong economic penalty. Mild hydrotreating (where moderate levels of deoxygenation take place) coupled with coprocessing in a petroleum refinery represents an alternative to deep hydrotreating, which may help improve the economics of manufacture of hydrocarbon transportation fuels from biomass. This study reports on the effect of reaction severity on the quality of bio-oil produced via mild hydrotreating in a semibatch reactor using conventional hydroprocessing catalysts. Detailed speciation of oxygen functional groups in distillate and bottoms products has been carried out, and the fate of organic oxygen as a function of reaction severity has been determined. The results indicate that acceptable refinery blendstocks and perhaps final fuels can be produced by mild hydrotreating. C1 [French, Richard J.; Stunkel, Jim; Baldwin, Robert M.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Baldwin, RM (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM robert.baldwin@nrel.gov FU U.S. Department of Energy, Office of the Biomass Program FX We wish to acknowledge the assistance of Teresa Alleman, Earl Christensen, Gina Chupka, Jon Luecke, Michele Myers, Stuart Black, and Erica Gjersing for physical and chemical analysis of the products and Kristiina Iisa for project management. Financial support from the U.S. Department of Energy, Office of the Biomass Program, is gratefully acknowledged. NR 26 TC 30 Z9 31 U1 2 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2011 VL 25 IS 7 BP 3266 EP 3274 DI 10.1021/ef200462v PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 794JR UT WOS:000292892700059 ER PT J AU Nakano, J Kwong, KS Bennett, J Lam, T Fernandez, L Komolwit, P Sridhar, S AF Nakano, Jinichiro Kwong, Kyei-Sing Bennett, James Lam, Thomas Fernandez, Laura Komolwit, Piyamanee Sridhar, Seetharaman TI Phase Equilibria in Synthetic Coal-Petcoke Slags (Al2O3-CaO-FeO-SiO2-V2O3) under Simulated Gasification Conditions SO ENERGY & FUELS LA English DT Article ID PETROLEUM COKE; VANADIUM AB Phase equilibria of the Al2O3-CaO-FeO-SiO2-V2O3 system in synthetic slag mixtures simulating coal-petcoke slag chemistry at 1500 degrees C in an oxygen partial pressure of 10(-8) atm were investigated by a series of quench experiments. Quenched samples were analyzed by inductively coupled plasma optical emission spectrometry (ICP), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and wavelength dispersive X-ray (WDX). Two precipitated crystal phases were identified in molten slags: mullite (3Al(2)O(3)center dot 2SiO(2)) in Al2O3-rich slags and karelianite (V2O3) in V2O3-rich slags. Scanning electron microscopy and TEM diffraction patterns confirmed the presence of the mullite and karelianite phases. On the basis of experimental results, an isothermal phase diagram of the Al2O3-CaO-FeO-SiO2-V2O3 system at 1500 degrees C and P-O2, = 10(-8) atm is proposed while keeping CaO = 7.0 wt % and FeO = 13.5 wt %. C1 [Nakano, Jinichiro; Kwong, Kyei-Sing; Bennett, James; Lam, Thomas; Sridhar, Seetharaman] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Nakano, Jinichiro] URS Corp, Albany, OR 97321 USA. [Fernandez, Laura; Komolwit, Piyamanee; Sridhar, Seetharaman] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. RP Nakano, J (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. EM jinichiro.nakano@netl.doe.gov FU National Energy Technology Laboratory under the RES [DE-FE0004000] FX This technical effort was performed in support of the ongoing research of the National Energy Technology Laboratory in Control of Carbon Feedstock and the Impact on Gasifier under the RES Contract DE-FE0004000. The authors also acknowledge the FIB TEM preparation work provided by the CAMCOR facility of the University of Oregon. NR 22 TC 10 Z9 11 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD JUL PY 2011 VL 25 IS 7 BP 3298 EP 3306 DI 10.1021/ef200633q PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 794JR UT WOS:000292892700063 ER PT J AU Stalford, H Young, RW Nordberg, EP Pinilla, CB Levy, JE Carroll, MS AF Stalford, Harold Young, Ralph W. Nordberg, Eric P. Borras Pinilla, Carlos Levy, James. E. Carroll, Malcolm S. TI Capacitance Modeling of Complex Topographical Silicon Quantum Dot Structures SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE FETs; finite-element modeling; quantum capacitance; silicon (Si) nanowire; silicon quantum dots (QDs) ID SINGLE-ELECTRON TRANSISTOR; SPINS; COMPUTATION AB Quantum dot (QD) layouts are becoming more complex as the technology is being applied to more sophisticated multi-QD structures. This increase in complexity requires improved capacitance modeling both for the design and accurate interpretation of QD properties from measurement. A combination of process simulation, electrostatic simulation, and computer-assisted design (CAD) layout packages are used to develop a 3-D classical capacitance model. The agreement of the classical model's capacitances is tested against two different, experimentally measured, topographically complex silicon QD geometries. Agreement with experiment, within 10%-20%, is demonstrated for the two structures when the details of the structure are transferred from the CAD to the model capturing the full 3-D topography. Small uncertainties in device dimensions due to uncontrolled variation in processing, like layer thickness and gate size, are calculated to be sufficient to explain the disagreement. The sensitivity of the capacitances to small variations in the structure also highlights the limits of accuracy of capacitance models for QD analysis. We furthermore observe that a critical density, the metal-insulator transition, can be used as a good approximation of the metallic edge of the QD when electron density in the dot is calculated directly with a semi-classical simulation. C1 [Stalford, Harold] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. [Young, Ralph W.; Levy, James. E.; Carroll, Malcolm S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Nordberg, Eric P.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Borras Pinilla, Carlos] Univ Oklahoma, Norman, OK 73019 USA. [Borras Pinilla, Carlos] Univ Ind Santander, Bucaramanga 678 6344000, Colombia. RP Stalford, H (reprint author), Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA. EM stalford@ou.edu; rwyoung@sandia.gov; enordbe@wisc.edu; cborras@ou.edu; jelevy@sandia.gov; mscarro@sandia.gov FU Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration. The review of this paper was arranged by Associate Editor M. M. De Souza. NR 21 TC 2 Z9 2 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD JUL PY 2011 VL 10 IS 4 BP 855 EP 864 DI 10.1109/TNANO.2010.2087035 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 795HX UT WOS:000292966400031 ER PT J AU Ginosar, DM Petkovic, LM Burch, KC AF Ginosar, Daniel M. Petkovic, Lucia M. Burch, Kyle C. TI Commercial activated carbon for the catalytic production of hydrogen via the sulfur-Iodine thermochemical water splitting cycle SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Thermochemical water splitting; Sulfur-iodine cycle; Hydroiodic acid decomposition; Hydrogen production; Activated carbon catalyst ID CERIA CATALYSTS; DECOMPOSITION; KINETICS AB Eight commercial activated carbon catalysts were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. No statistically significant correlation was found between the measured catalyst sample properties and catalytic activity. Four of the eight samples were examined for one week of continuous operation at 723 K. All samples appeared to be stable over the period of examination. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ginosar, Daniel M.; Petkovic, Lucia M.; Burch, Kyle C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Ginosar, DM (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM daniel.ginosar@inl.gov RI Petkovic, Lucia/E-9092-2011; Ginosar, Daniel/C-2357-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Ginosar, Daniel/0000-0002-8522-1659 FU U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-05ID14517]; Battelle Energy Alliance, LLC, U.S. Department of Energy [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 22 TC 7 Z9 9 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2011 VL 36 IS 15 BP 8908 EP 8914 DI 10.1016/j.ijhydene.2011.04.164 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 795AS UT WOS:000292944500013 ER PT J AU Park, CY Lee, TH Dorris, SE Lu, Y Balachandran, U AF Park, C. Y. Lee, T. H. Dorris, S. E. Lu, Y. Balachandran, U. TI Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE La(0.7)Sr(0.3)Cu(0.2)Fe(0.8)O(3-delta); BaFe(0.9)Zr(0.1)O(3-delta); Oxygen transport membrane; Water splitting; Hydrogen production ID BAFEO3-DELTA PEROVSKITES; CERAMIC MEMBRANES; OXIDE MEMBRANES; FUEL-CELLS; CONDUCTIVITY; PERMEABILITY; CERMET; FOSSIL AB A tubular oxygen transport membrane (OTM) was developed to produce hydrogen via water splitting using fossil sources. In this study, two OTM materials, La(0.7)Sr(0.3)Cu(0.2)Fe(0.8)O(3-delta)(LSCF) and BaFe(0.9)Zr(0.1)O(3-delta) (BFZ), were prepared by a conventional solid-state technique. In tests with an LSCF thin-film tube (thickness approximate to 30 mu m) as an OTM, hydrogen was produced by flowing simulated product streams from coal gasification on one side of the OTM and steam on the other side. In this method, the coal gas on the oxygen-permeate side drives the removal of oxygen from the other hydrogen-generation side of the OTM, where hydrogen and oxygen are produced by water splitting. With CO (99.5% purity) flowing on the oxygen-permeate side, the hydrogen production rate of the LSCF tube was measured to be approximate to 19.6 cm(3)/min at 900 degrees C, indicating that hydrogen can be produced at a significant rate by using product streams from coal gasification. Concentration polarization effects were found to lower the hydrogen production rate of the LSCF thin-film tube at high temperatures. This process also yields a CO(2)-rich product stream that is ready for sequestration. The other candidate OTM material, BFZ, was tested by measuring its oxygen-permeation flux, DC conductivity, and hydrogen production, and by evaluating its microstructure. The dependences of the hydrogen production rate of BFZ disks (thickness, approximate to 1.6 mm) on water partial pressure and temperature were determined while flowing 80% CO(2)/He over a graphite rod on the oxygen-permeate side and humidified N(2) on the hydrogen-generation side. Preliminary results indicate that BFZ is a promising OTM material. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Park, C. Y.; Lee, T. H.; Dorris, S. E.; Lu, Y.; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Park, CY (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave,Bldg 212, Argonne, IL 60439 USA. EM cpark@anl.gov FU U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory [DE-AC02-06CH11357] FX Work supported by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory's Advanced Fuels Technology Program, under Contract DE-AC02-06CH11357. NR 25 TC 10 Z9 10 U1 4 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2011 VL 36 IS 15 BP 9345 EP 9354 DI 10.1016/j.ijhydene.2011.04.090 PG 10 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 795AS UT WOS:000292944500062 ER PT J AU Neufeld, RB AF Neufeld, Richard Bryon TI TAGGED JETS AND JET RECONSTRUCTION AS A PROBE OF QGP INDUCED PARTONIC ENERGY LOSS SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article; Proceedings Paper CT Workshop on Jets in Proton-Proton and Heavy-Ion Collisions CY AUG 12-14, 2010 CL Prague, CZECH REPUBLIC AB Recent experimental advances at the Relativistic Heavy Ion Collider (RHIC) and the large center-of-mass energies available to the heavy-ion program at the Large Hadron Collider (LHC) will enable strongly interacting matter at high temperatures and densities, that is, the quark-gluon plasma (QCP), to be probed in unprecedented ways. Among these exciting new probes are fully-reconstructed inclusive jets and the away-side hadron showers associated with a weakly or electromagnetically interacting boson, or, tagged jets. Full jet reconstruction provides an experimental window into the mechanisms of quark and gluon dynamics in the QGP which is not accessible via leading particles and leading particle correlations. Theoretical advances in this growing field can help resolve some of the most controversial points in heavy ion physics today. I here discuss the power of jets to reveal the spectrum of induced radiation, thereby shedding light on the applicability of the commonly used energy loss formalisms and present results on the production and subsequent suppression of high energy jets tagged with Z bosons in relativistic heavy-ion collisions at RHIC and LHC energies using the Gyulassy-Levai-Vitev (GLV) parton energy loss approach. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. EM neufeld@lanl.gov FU US Department of Energy, Office of Science [DE-AC52-06NA25396] FX I wish to thank my collaborators Ivan Vitev and Ben-Wei Zhang, and also Jaroslav Bielcik and Jana Bielcikova for hosting an excellent workshop. This work was supported in part by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396. NR 17 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD JUL PY 2011 VL 20 IS 7 SI SI BP 1605 EP 1609 DI 10.1142/S0218301311019957 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 794YV UT WOS:000292938600015 ER PT J AU Kotula, PG Sorensen, NR AF Kotula, Paul G. Sorensen, N. R. TI Tomographic spectral imaging: Data acquisition and analysis via multivariate statistical analysis SO JOM LA English DT Article ID MICROANALYSIS; IMAGES AB Tomographic spectral imaging is a powerful technique for the three-dimensional (3-D) analysis of materials. Using a focused ion-beam/scanning electron microscope equipped with an x-ray spectrometer, 3-D microanalysis can be performed on individual regions of a sample, such as defects, with microanalytical spatial resolution of better than 300 nm typically. The focused ion-beam can serially section at comparable thicknesses to sequentially reveal new analytical surfaces within the specimen. After each slice a full 2-spatial dimension spectral image, consisting of a complete spectrum at each point in the 2-D array, is acquired with the scanning electron microscope/energy-dispersive x-ray spectrometer on the same platform. The process is repeated multiple times to result in a 3-D or tomographic spectral image. The challenge is to effectively and efficiently analyze the tomographic spectral image to extract chemical phase distributions. Therefore, automated multivariate statistical analysis methods were developed and applied to these images. Sandia's Automated eXpert Spectral Image Analysis multivariate statistical analysis software requires no a priori information to find even very weak signals hidden in the data sets. The result of the analysis is a small number of chemical components which describe the 3-D phase distribution in the volume of material sampled. These 3-D phases can then be effectively visualized with off-the-shelf 3-D rendering software. C1 [Kotula, Paul G.; Sorensen, N. R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kotula, PG (reprint author), Sandia Natl Labs, POB 5800,MS 0886, Albuquerque, NM 87185 USA. EM pgkotul@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU United Stated Department of Energy (DOE) [DE-AC04-94AL85000] FX The authors would like to acknowledge Michael Rye for assistance in acquiring the TSI data and Mark Van Benthem for helpful comments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration, part of the United Stated Department of Energy (DOE) under contract DE-AC04-94AL85000. NR 4 TC 1 Z9 1 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2011 VL 63 IS 7 BP 41 EP 43 DI 10.1007/s11837-011-0109-z PG 3 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 794IE UT WOS:000292887900009 ER PT J AU Barabash, RI AF Barabash, Rozaliya I. TI Small scale materials behavior from X-ray microdiffraction and imaging: Part II SO JOM LA English DT Editorial Material ID ELASTIC STRAINS; DIFFRACTION; PLASTICITY C1 [Barabash, Rozaliya I.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. NR 7 TC 1 Z9 1 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2011 VL 63 IS 7 BP 60 EP 60 DI 10.1007/s11837-011-0114-2 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 794IE UT WOS:000292887900014 ER PT J AU Lienert, U Li, SF Hefferan, CM Lind, J Suter, RM Bernier, JV Barton, NR Brandes, MC Mills, MJ Miller, MP Jakobsen, B Pantleon, W AF Lienert, U. Li, S. F. Hefferan, C. M. Lind, J. Suter, R. M. Bernier, J. V. Barton, N. R. Brandes, M. C. Mills, M. J. Miller, M. P. Jakobsen, B. Pantleon, W. TI High-energy diffraction microscopy at the advanced photon source SO JOM LA English DT Article ID X-RAY-DIFFRACTION; DEFORMATION STRUCTURES; DISLOCATION DENSITIES; ELASTIC STRAINS; IN-SITU; MICROSTRUCTURE AB The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM. C1 [Lienert, U.] Argonne Natl Lab, Lemont, IL 60439 USA. [Li, S. F.; Hefferan, C. M.; Lind, J.; Suter, R. M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Bernier, J. V.; Barton, N. R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brandes, M. C.] Ohio State Univ, Dept Mat Sci, Columbus, OH 43210 USA. [Miller, M. P.] Cornell Univ, Ithaca, NY 14853 USA. [Jakobsen, B.] Roskilde Univ Ctr, DK-4000 Roskilde, Denmark. [Pantleon, W.] Riso DTU, DK-4000 Roskilde, Denmark. RP Lienert, U (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM lienert@aps.anl.gov RI Li, Shiu Fai/B-2605-2014; Mills, Michael/I-6413-2013; Pantleon, Wolfgang/L-9657-2014; Suter, Robert/P-2541-2014; Miller, Matthew/D-7903-2017; OI Li, Shiu Fai/0000-0001-9805-5621; Pantleon, Wolfgang/0000-0001-6418-6260; Suter, Robert/0000-0002-0651-0437; Jakobsen, Bo/0000-0002-4018-6431 FU National Science Foundation [DMR-0520425, DMR-0805100]; Office of Naval Research [N00014-05-1-0505]; Center of Fundamental Research; Danish Natural Science Research Council; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [10-ERD-053] FX Work at CMU was supported by the MRSEC program of the National Science Foundation under award number DMR-0520425 and the NSF Metals program under award number DMR-0805100; NSF TeraGrid resources were provided by the Pittsburgh Supercomputing Center. Cornell gratefully acknowledges the Office of Naval Research, Julie Christodoulou, Grant Officer for support of this work as part of the D 3-D Program, contract number N00014-05-1-0505. Work at Riso DTU was supported by the Danish National Research Foundation through funding of the Center of Fundamental Research: Metal Structures in Four Dimensions and the Danish Natural Science Research Council. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding supplied by Laboratory Directed Research and Development grant 10-ERD-053. NR 17 TC 56 Z9 57 U1 3 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2011 VL 63 IS 7 BP 70 EP 77 DI 10.1007/s11837-011-0116-0 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 794IE UT WOS:000292887900016 ER PT J AU Carvallo, MA Pino, MT Jeknic, Z Zou, C Doherty, CJ Shiu, SH Chen, THH Thomashow, MF AF Carvallo, Marcela A. Pino, Maria-Teresa Jeknic, Zoran Zou, Cheng Doherty, Colleen J. Shiu, Shin-Han Chen, Tony H. H. Thomashow, Michael F. TI A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Arabidopsis; CBF regulon; freezing tolerance; low temperature transcriptome; Solanum species ID RESPONSIVE GENE-EXPRESSION; LINEAGE-SPECIFIC GENES; COLD-ACCLIMATION; ABSCISIC-ACID; WATER-DEFICIT; PROBE LEVEL; STRESS; FAMILY; PATHWAYS; DROUGHT AB Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112-156 million years, it seems likely that these conserved cold-regulated genes-many of which encode transcription factors and proteins of unknown function-have fundamental roles in plant growth and development at low temperature. C1 [Carvallo, Marcela A.; Doherty, Colleen J.; Thomashow, Michael F.] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Zou, Cheng; Shiu, Shin-Han] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Thomashow, Michael F.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. [Pino, Maria-Teresa; Jeknic, Zoran; Chen, Tony H. H.] Oregon State Univ, Dept Hort, Corvallis, OR 97331 USA. RP Thomashow, MF (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM thomash6@msu.edu OI Shiu, Shin-Han/0000-0001-6470-235X; Jeknic, Zoran/0000-0002-3965-0401 FU National Science Foundation [DBI 0110124]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy [DE-FG02-91ER20021]; Michigan Agricultural Experiment Station FX We thank Sarah Gilmour for assistance in preparing this manuscript for publication. The research reported was supported by grants from the National Science Foundation Plant Genome Program (DBI 0110124), the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy (DE-FG02-91ER20021), and the Michigan Agricultural Experiment Station. NR 59 TC 47 Z9 49 U1 1 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2011 VL 62 IS 11 BP 3807 EP 3819 DI 10.1093/jxb/err066 PG 13 WC Plant Sciences SC Plant Sciences GA 793QR UT WOS:000292838700010 PM 21511909 ER PT J AU Knepper, R Tappan, AS Wixom, RR Rodriguez, MA AF Knepper, Robert Tappan, Alexander S. Wixom, Ryan R. Rodriguez, Mark A. TI Controlling the microstructure of vapor-deposited pentaerythritol tetranitrate films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID THIN-FILMS; GROWTH; MORPHOLOGY; EXPLOSIVES; INITIATION; PERYLENE; CRYSTALS; MODEL AB We have demonstrated that the microstructure of thick pentaerythritol tetranitrate (PETN) films can be controlled using physical vapor deposition by varying the film/substrate interface. PETN films were deposited on silicon and fused silica with and without a thin layer of sputtered aluminum to demonstrate the effects of the interface on subsequent film growth. Evolution of surface morphology, average density, and surface roughness as a function of film thickness were characterized using surface profilometry, scanning electron microscopy, and atomic force microscopy. Significant variations in density, pore size, and surface morphology were observed in films deposited on the different substrates. In addition, x-ray diffraction experiments showed that while films deposited on bare fused silica or silicon had only weak texturing, films deposited on a sputtered aluminum layer were highly oriented, with a strong (110) out-of-plane texture. C1 [Knepper, Robert; Tappan, Alexander S.; Wixom, Ryan R.; Rodriguez, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Knepper, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rkneppe@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development; Joint Department of Defense/Department of Energy Munitions Technology Development FX The authors thank Michael P. Marquez and M. Barry Ritchey for their assistance with sample preparation and SEM imaging. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sandia's Laboratory Directed Research and Development Program and the Joint Department of Defense/Department of Energy Munitions Technology Development Program supported this work. NR 38 TC 5 Z9 5 U1 0 U2 14 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JUL PY 2011 VL 26 IS 13 BP 1605 EP 1613 DI 10.1557/jmr.2011.177 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 793NQ UT WOS:000292830800006 ER PT J AU Wozniakiewicz, PJ Ishii, HA Kearsley, AT Burchell, MJ Bland, PA Bradley, JP Dai, ZR Teslich, N Collins, GS Cole, MJ Russell, SS AF Wozniakiewicz, Penelope J. Ishii, Hope A. Kearsley, Anton T. Burchell, Mark J. Bland, Philip A. Bradley, John P. Dai, Zurong Teslich, Nick Collins, Gareth S. Cole, Mike J. Russell, Sara S. TI Investigation of iron sulfide impact crater residues: A combined analysis by scanning and transmission electron microscopy SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID INTERPLANETARY DUST PARTICLES; STARDUST ALUMINUM FOILS; MICRON-SIZED CRATERS; HYPERVELOCITY IMPACT; COMET 81P/WILD-2; LABORATORY IMPACTS; MARTIAN METEORITES; SAMPLE PREPARATION; NICKEL SULFIDES; QUASI-CRYSTALS AB Samples returned from comet 81P/Wild 2 by the Stardust mission provided an unequaled opportunity to compare previously available extraterrestrial samples against those from a known comet. Iron sulfides are a major constituent of cometary grains commonly identified within cometary interplanetary dust particles (IDPs) and Wild 2 samples. Chemical analyses indicate Wild 2 sulfides are fundamentally different from those in IDPs. However, as Wild 2 dust was collected via impact into capture media at approximately 6.1 km s(-1), it is unclear whether this is due to variation in preaccretional/parent body processes experienced by these materials or due to heating and alteration during collection. We investigated alteration in pyrrhotite and pentlandite impacted into Stardust flight spare Al foils under encounter conditions by comparing scanning and transmission electron microscope (SEM, TEM) analyses of preimpact and postimpact samples and calculating estimates of various impact parameters. SEM is the primary method of analysis during initial in situ examination of Stardust foils, and therefore, we also sought to evaluate the data obtained by SEM using insights provided by TEM. We find iron sulfides experience heating, melting, separation, and loss of S, and mixing with molten Al. These results are consistent with estimated peak pressures and temperatures experienced (approximately 85 GPa, approximately 2600 K) and relative melting temperatures. Unambiguous identification of preserved iron sulfides may be possible by TEM through the location of Al-free regions. In most cases, the Ni:Fe ratio is preserved in both SEM and TEM analyses and may therefore also be used to predict original chemistry and estimate mineralogy. C1 [Wozniakiewicz, Penelope J.; Ishii, Hope A.; Bradley, John P.; Dai, Zurong; Teslich, Nick] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Wozniakiewicz, Penelope J.; Kearsley, Anton T.; Russell, Sara S.] Nat Hist Museum, Dept Mineral, IARC, London SW7 5BD, England. [Burchell, Mark J.; Cole, Mike J.] Univ Kent, Sch Phys Sci, Ctr Astrophys & Planetary Sci, Canterbury CT2 7NH, Kent, England. [Bland, Philip A.; Collins, Gareth S.; Russell, Sara S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, IARC, London SW11 2AZ, England. [Bland, Philip A.] Curtin Univ Technol, Dept Appl Geol, Perth, WA 6845, Australia. RP Wozniakiewicz, PJ (reprint author), Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, 7000 East Ave, Livermore, CA 94550 USA. EM wozniakiewic1@llnl.gov OI Collins, Gareth/0000-0002-6087-6149; Burchell, Mark/0000-0002-2680-8943 FU STFC; PPARC [PPA/S/S/2005/04118]; NERC [NE/E013589/1]; U.S. DOE [DE-AC52-07NA27344]; NASA [NNH07AG46I]; LDRD [09-ERI-004] FX We thank NASA for providing Al foils, STFC for support of the LGG and PPARC grant funding a Ph.D. studentship for P. J. W. (grant ref. PPA/S/S/2005/04118). We also thank G. Flynn, M. Zolensky, and D. Brownlee for their valuable comments and suggestions during review. G. S. C. was funded by NERC grant NE/E013589/1. Parts of this work were performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work was supported by grants: NASA NNH07AG46I to H. A. I. & LDRD 09-ERI-004 to J. P. B. NR 58 TC 14 Z9 14 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2011 VL 46 IS 7 BP 1007 EP 1024 DI 10.1111/j.1945-5100.2011.01206.x PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 794OA UT WOS:000292908500010 ER PT J AU Tan, LZ Park, CH Louie, SG AF Tan, Liang Z. Park, Cheol-Hwan Louie, Steven G. TI New Dirac Fermions in Periodically Modulated Bilayer Graphene SO NANO LETTERS LA English DT Article DE Bilayer graphene; superlattice; periodic modulation; Dirac fermions; zero-energy modes; quantum phase transition AB We investigate the effect of periodic potentials on the electronic structure of bilayer graphene and show that there is a critical value of the external potential below which new Dirac fermions are generated in the low-energy band structure, and above which a band gap is opened in the system. Our results, obtained from a self-consistent tight-binding calculation, can be simply explained by a two-band continuum model as a consequence of the pseudospin physics in graphene. The findings are robust against changes in the form of the potential, as well as bias voltages between the layers. C1 [Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu RI Park, Cheol-Hwan/A-1543-2009; OI Park, Cheol-Hwan/0000-0003-1584-6896; Tan, Liang Z/0000-0003-4724-6369 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE- AC02-05CH11231]; Office of Naval Research MURI [N00014-09-1066]; National Science Foundation [DMR10-1006184] FX L.Z.T. and the simulations were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE- AC02-05CH11231. C.-H.P. was partially supported by Office of Naval Research MURI Grant N00014-09-1066 and by National Science Foundation Grant DMR10-1006184. Computational resources were provided by NSF through TeraGrid resources at NICS and by DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 44 TC 17 Z9 17 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 2596 EP 2600 DI 10.1021/nl200055s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400004 PM 21699252 ER PT J AU Seok, TJ Jamshidi, A Kim, M Dhuey, S Lakhani, A Choo, H Schuck, PJ Cabrini, S Schwartzberg, AM Bokor, J Yablonovitch, E Wu, MC AF Seok, Tae Joon Jamshidi, Arash Kim, Myungki Dhuey, Scott Lakhani, Amit Choo, Hyuck Schuck, Peter James Cabrini, Stefano Schwartzberg, Adam M. Bokor, Jeffrey Yablonovitch, Eli Wu, Ming C. TI Radiation Engineering of Optical Antennas for Maximum Field Enhancement SO NANO LETTERS LA English DT Article DE Plasmonics; nano-optics; optical antenna; ground plane; impedance matching ID RAMAN-SCATTERING; NANOPARTICLES; NANOANTENNAS; NANOCIRCUIT; SUBSTRATE; SERS AB Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics. We demonstrate that the optimum condition is achieved when the radiation quality factor (Q(rad)) of optical antennas is matched to their absorption quality factor (Q(abs)). We achieve this condition experimentally by fabricating the optical antennas on a dielectric (SiO(2)) coated ground plane (metal substrate) and controlling the antenna radiation through optimizing the dielectric thickness. The dielectric thickness at which the matching condition occurs is approximately half of the quarter-wavelength thickness, typically used to achieve constructive interference, and leads to similar to 20% higher field enhancement relative to a quarter-wavelength thick dielectric layer. C1 [Seok, Tae Joon; Jamshidi, Arash; Kim, Myungki; Lakhani, Amit; Choo, Hyuck; Bokor, Jeffrey; Yablonovitch, Eli; Wu, Ming C.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Dhuey, Scott; Choo, Hyuck; Schuck, Peter James; Cabrini, Stefano; Schwartzberg, Adam M.; Bokor, Jeffrey] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Wu, MC (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM wu@eecs.berkeley.edu RI Wu, Ming/J-9906-2012; Bokor, Jeffrey/A-2683-2011 FU DARPA SERS ST Fundamentals [FA9550-08-1-0257]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by DARPA SERS S&T Fundamentals No. FA9550-08-1-0257. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank Professor Luke P. Lee and Professor Kyoungsik Yu. The authors declare no competing financial interests. NR 27 TC 60 Z9 60 U1 5 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 2606 EP 2610 DI 10.1021/nl2010862 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400006 PM 21648393 ER PT J AU Evans, JE Jungjohann, KL Browning, ND Arslan, I AF Evans, James E. Jungjohann, Katherine L. Browning, Nigel D. Arslan, Ilke TI Controlled Growth of Nanoparticles from Solution with In Situ Liquid Transmission Electron Microscopy SO NANO LETTERS LA English DT Article DE In situ TEM; liquid TEM; fluid TEM; nanoparticle growth; dynamic TEM; DTEM AB Direct visualization of lead sulfide nanoparticle growth is demonstrated by selectively decomposing a chemical precursor from a multicomponent solution using in situ liquid transmission electron microscopy. We demonstrate reproducible control over growth mechanisms that dictate the final morphology of nanostructures while observing growth in real-time with subnanometer spatial resolution. Furthermore, while an intense electron beam can initiate nanoparticle growth, it is also shown that a laser can trigger the reaction independently of the imaging electrons. C1 [Evans, James E.; Browning, Nigel D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Jungjohann, Katherine L.; Browning, Nigel D.; Arslan, Ilke] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Evans, James E.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys Life Sci Directorate, Livermore, CA 94550 USA. RP Evans, JE (reprint author), Univ Calif Davis, Dept Mol & Cellular Biol, 1 Shields Ave, Davis, CA 95616 USA. EM JEEvans@UCDavis.edu OI Browning, Nigel/0000-0003-0491-251X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC52-07NA27344]; NIH [5RC1GM91755] FX We thank Melissa Santala, Bryan Reed, and Thomas LaGrange for experimental assistance with Dynamic TEM. Aspects of this work relating to Dynamic TEM were performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC52-07NA27344. J.E.E. and N.D.B. acknowledge NIH funding support from NIH Grant Number 5RC1GM91755. NR 14 TC 134 Z9 134 U1 20 U2 162 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 2809 EP 2813 DI 10.1021/nl201166k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400042 PM 21619024 ER PT J AU Gharghi, M Gladden, C Zentgraf, T Liu, YM Yin, XB Valentine, J Zhang, X AF Gharghi, Majid Gladden, Christopher Zentgraf, Thomas Liu, Yongmin Yin, Xiaobo Valentine, Jason Zhang, Xiang TI A Carpet Cloak for Visible Light SO NANO LETTERS LA English DT Article DE Optical metamaterials; invisibility cloak; transformation optics; nanofabrication ID FREQUENCIES; DEVICES AB We report an invisibility carpet cloak device, which is capable of making an object undetectable by visible light. The cloak is designed using quasi conformal mapping and is fabricated in a silicon nitride waveguide on a specially developed nanoporous silicon oxide substrate with a very low refractive index (n<1.25). The spatial index variation is realized by etching holes of various sizes in the nitride layer at deep subwavelength scale creating a local effective medium index. The fabricated device demonstrates wideband invisibility throughout the visible spectrum with low loss. This silicon nitride on low index substrate can also be a general scheme for implementation of transformation optical devices at visible frequencies. C1 [Gharghi, Majid; Gladden, Christopher; Liu, Yongmin; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zentgraf, Thomas] Univ Paderborn, Dept Phys, D-33098 Paderborn, Germany. [Valentine, Jason] Vanderbilt Univ, Dept Mech Engn, VU Stn B 351592, Nashville, TN 37235 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Yin, Xiaobo/A-4142-2011; Zhang, Xiang/F-6905-2011; Valentine, Jason/A-6121-2012; Liu, Yongmin/F-5322-2010; Gharghi, Majid/E-5412-2012; Zentgraf, Thomas/G-8848-2013 OI Zentgraf, Thomas/0000-0002-8662-1101 FU U.S. Army Research Office (MURI) [W911NF-09-1-0539]; Natural Sciences and Engineering Research Council of Canada (NSERC); NSF FX The authors acknowledge funding support from the U.S. Army Research Office (MURI programme W911NF-09-1-0539). M.G. acknowledges fellowship from Natural Sciences and Engineering Research Council of Canada (NSERC). C.G. acknowledges support from NSF Graduate Research Fellowship Program (NSF GRFP). Devices fabricated in the UC Berkeley Marvell Nanofabrication Laboratory. NR 24 TC 75 Z9 75 U1 1 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 2825 EP 2828 DI 10.1021/nl201189z PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400045 PM 21619019 ER PT J AU Wyrick, J Kim, DH Sun, DZ Cheng, ZH Lu, WH Zhu, YM Berland, K Kim, YS Rotenberg, E Luo, MM Hyldgaard, P Einstein, TL Bartels, L AF Wyrick, Jonathan Kim, Dae-Ho Sun, Dezheng Cheng, Zhihai Lu, Wenhao Zhu, Yeming Berland, Kristian Kim, Yong Su Rotenberg, Eli Luo, Miaomiao Hyldgaard, Per Einstein, T. L. Bartels, Ludwig TI Do Two-Dimensional "Noble Gas Atoms" Produce Molecular Honeycombs at a Metal Surface? SO NANO LETTERS LA English DT Article DE Quantum dots; molecular networks; self-assembly; scanning tunneling microscopy; adsorption at surfaces; Cu(111) ID QUANTUM DOTS; TUNNELING SPECTROSCOPY; ELECTRONIC-STRUCTURE; CONFINEMENT; MICROSCOPE; SCATTERING; DYNAMICS; NETWORK; CORRALS; MIRAGES AB Anthraquinone self-assembles on Cu(111) into a giant honeycomb network with exactly three molecules on each side. Here we propose that the exceptional degree of order achieved in this system can be explained as a consequence of the confinement of substrate electrons in the pores, with the pore size tailored so that the confined electrons can adopt a noble-gas-like two-dimensional quasi-atom configuration with two filled shells. Formation of identical pores in a related adsorption system (at different overall periodicity due to the different molecule size) corroborates this concept. A combination of photoemission spectroscopy with density functional theory computations (including van der Waals interactions) of adsorbate-substrate interactions allows quantum mechanical modeling of the spectra of the resultant quasi-atoms and their energetics. C1 [Wyrick, Jonathan; Kim, Dae-Ho; Sun, Dezheng; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Bartels, Ludwig] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Wyrick, Jonathan; Kim, Dae-Ho; Sun, Dezheng; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Bartels, Ludwig] Univ Calif Riverside, Dept Phys, Riverside, CA 92521 USA. [Berland, Kristian; Hyldgaard, Per] Chalmers, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden. [Kim, Yong Su; Rotenberg, Eli] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Yong Su] Hanyang Univ, Dept Appl Phys, Ansan 426791, Gyeonggi Do, South Korea. [Einstein, T. L.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Bartels, L (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM ludwig.bartels@ucr.edu RI cheng, zhihai/F-4005-2011; bartelsdoe, ludwig/F-8008-2011; Hyldgaard, Per/A-2038-2011; Kim, Daeho/D-4353-2011; cheng, zhihai/B-9526-2014; Rotenberg, Eli/B-3700-2009; Bartels, Ludwig/C-2764-2008; OI Berland, Kristian/0000-0002-4655-1233; Hyldgaard, Per/0000-0001-5810-8119; Kim, Daeho/0000-0003-4242-316X; cheng, zhihai/0000-0003-4938-4490; Rotenberg, Eli/0000-0002-3979-8844; Einstein, Theodore L./0000-0001-6031-4923 FU NSF [CHE 07-49949, CHE 07-50334]; Swedish Research Council (Vetenskapsradet VR) [621-2008-4346]; NSF MRSEC [DMR 05-20471] FX We gratefully acknowledge joint support from NSF under Grants CHE 07-49949 (L.B.) and CHE 07-50334 (T.L.E.) and support from the Swedish Research Council (Vetenskapsradet VR) under Grant No. 621-2008-4346. (P.H.) L.B. acknowledges additional support through DOE DE-FG02-07ER15842. T.L.E. acknowledges secondary support from NSF MRSEC Grant No. DMR 05-20471 and ancillary support from CNAM. NR 47 TC 18 Z9 18 U1 2 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 2944 EP 2948 DI 10.1021/nl201441b PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400065 PM 21675715 ER PT J AU Zeng, J Tao, J Su, D Zhu, YM Qin, D Xia, YN AF Zeng, Jie Tao, Jing Su, Dong Zhu, Yimei Qin, Dong Xia, Younan TI Selective Sulfuration at the Corner Sites of a Silver Nanocrystal and Its Use in Stabilization of the Shape SO NANO LETTERS LA English DT Article DE Site-selection; sulfuration; polysulfide; silver; nanocrystals; stability ID ETHYLENE EPOXIDATION; OPTICAL-PROPERTIES; NANOPARTICLES; SODIUM; GROWTH; NANOSTRUCTURES; NANOPRISMS; NANOWIRES; CHEMISTRY; NANORODS AB This paper describes a new approach to site-selective sulfuration at the corner sites of Ag nanocrystals including triangular nanoplates and nanocubes. The reaction simply involved mixing an aqueous suspension of the Ag nanocrystals with an aqueous solution of polysulfide at room temperature. As a precursor to elemental S, polysulfide is highly soluble in water and can directly react with elemental Ag upon contact to generate Ag(2)S in the absence of oxygen. The reaction was easily initiated at the corner sites and then pushed toward the center. By controlling the reaction time and/or the amount of polysulfide added, the reaction could be confined to the corner sites only, generating Ag-Ag(2)S hybrid nanocrystals with greatly improved stability against aging at 80 and 100 degrees C in air than their counterparts made of pure Ag. C1 [Zeng, Jie; Xia, Younan] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. [Tao, Jing; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Qin, Dong] Washington Univ, Nano Res Facil, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. RP Xia, YN (reprint author), Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA. EM xia@biomed.wustl.edu RI Xia, Younan/E-8499-2011; Qin, Dong/E-1434-2011; Zeng, Jie/H-1327-2011; Su, Dong/A-8233-2013 OI Zeng, Jie/0000-0002-8812-0298; Su, Dong/0000-0002-1921-6683 FU National Science Foundation (NSF) [DMR-0804088, ECS-0335765]; Washington University in St. Louis; Ministry of Education, Science and Technology [R32-20031]; U.S. Department of Energy (Basic Energy Sciences); Materials Science and Engineering Division [DE-AC02-98CH10886]; CFN FX This work was supported in part by a research grant from the NSF (DMR-0804088) and startup funds from Washington University in St. Louis. Part of the research was performed at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. Y.X. was also partially supported by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-20031). The work at BNL was supported by the U.S. Department of Energy (Basic Energy Sciences) and by the Materials Science and Engineering Division under Contract No. DE-AC02-98CH10886 and through the use of CFN. NR 37 TC 39 Z9 42 U1 6 U2 106 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD JUL PY 2011 VL 11 IS 7 BP 3010 EP 3015 DI 10.1021/nl2016448 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 793UM UT WOS:000292849400076 PM 21688839 ER PT J AU Browne, E Tuli, JK AF Browne, E. Tuli, J. K. TI Nuclear Data Sheets for A=246 SO NUCLEAR DATA SHEETS LA English DT Article ID EVEN-EVEN ACTINIDES; FISSION HALF-LIVES; INTERNAL-CONVERSION COEFFICIENTS; GROUND-STATE BANDS; ALPHA-DECAY; SUPERHEAVY NUCLEI; HEAVY-NUCLEI; EINSTEINIUM ISOTOPES; DEFORMATION SPACE; ROTATIONAL BANDS AB The evaluators present in this publication spectroscopic data and level schemes from radioactive decay and nuclear reaction studies for all nuclei with mass number A=246. C1 [Browne, E.] Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. [Tuli, J. K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Browne, E (reprint author), Lawrence Berkeley Natl Lab, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science, US Department of Energy [DE-AC02-98CH10946] FX Research sponsored by Office of Nuclear Physics, Office of Science, US Department of Energy, under contract DE-AC02-98CH10946. NR 200 TC 4 Z9 4 U1 1 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD JUL PY 2011 VL 112 IS 7 BP 1833 EP 1873 DI 10.1016/j.nds.2011.06.002 PG 41 WC Physics, Nuclear SC Physics GA 792AU UT WOS:000292713700002 ER PT J AU Splettstoesser, T Holmes, KC Noe, F Smith, JC AF Splettstoesser, Thomas Holmes, Kenneth C. Noe, Frank Smith, Jeremy C. TI Structural modeling and molecular dynamics simulation of the actin filament SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE actin; filament; molecular dynamics; model; conformational change ID RAY FIBER DIFFRACTION; F-ACTIN; ATP HYDROLYSIS; ELECTRON CRYOMICROSCOPY; CRYSTAL-STRUCTURE; MONOMERIC ACTIN; NUCLEOTIDE; MUSCLE; STATE; MACROMOLECULES AB Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. C1 [Smith, Jeremy C.] Univ Tennessee ORNL, Ctr Biophys Mol, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Splettstoesser, Thomas; Smith, Jeremy C.] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany. [Holmes, Kenneth C.] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Noe, Frank] FU Berlin, DFG Res Ctr Matheon, D-14159 Berlin, Germany. RP Smith, JC (reprint author), Univ Tennessee ORNL, Ctr Biophys Mol, Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM smithjc@ornl.gov RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Holmes, Kenneth/0000-0001-8894-9453 FU U.S. Department of Energy FX Grant sponsor: U.S. Department of Energy (Laboratory-Directed Research and Development grant) NR 46 TC 25 Z9 25 U1 1 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL PY 2011 VL 79 IS 7 BP 2033 EP 2043 DI 10.1002/prot.23017 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 794TP UT WOS:000292924500003 PM 21557314 ER PT J AU Li, YD Jin, ZM Yu, XL Allewell, NM Tuchman, M Shi, DS AF Li, Yongdong Jin, Zhongmin Yu, Xiaolin Allewell, Norma M. Tuchman, Mendel Shi, Dashuang TI The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE ygeW gene; transcarbamylase; purine degradation pathway; knotted protein ID HUMAN ORNITHINE TRANSCARBAMYLASE; CARBAMYL OXAMIC ACID; CRYSTAL-STRUCTURE; PUTRESCINE CARBAMOYLTRANSFERASE; ASPARTATE TRANSCARBAMOYLASE; STREPTOCOCCUS ALLANTOICUS; ARGININE-BIOSYNTHESIS; CHROMOSOMAL REGION; DEGRADATION; PURIFICATION C1 [Li, Yongdong; Yu, Xiaolin; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Med Genet Res Ctr, Washington, DC 20010 USA. [Li, Yongdong; Yu, Xiaolin; Tuchman, Mendel; Shi, Dashuang] George Washington Univ, Childrens Natl Med Ctr, Dept Integrat Syst Biol, Washington, DC 20010 USA. [Li, Yongdong] Gannan Normal Univ, Key Lab Organo Pharmaceut Chem, Ganzhou 341000, Jiangxi, Peoples R China. [Jin, Zhongmin] Argonne Natl Lab, SER CAT, APS, Argonne, IL 60439 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Cell Biol, College Pk, MD 20742 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Mol Genet, College Pk, MD 20742 USA. [Allewell, Norma M.] Univ Maryland, Coll Comp Math & Nat Sci, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Shi, DS (reprint author), George Washington Univ, Med Genet Res Ctr, 111 Michigan Ave NW, Washington, DC 20010 USA. EM dshi@cnmcresearch.org FU Public Health Service [DK-47870, DK-067935]; National Institute of Diabetes; Digestive and Kidney Diseases; U.S. Department of Energy [W-31-109-Eng-38] FX Grant sponsor: Public Health Service; Grant numbers: DK-47870 (to M. T.), DK-067935 (to D. S.); Grant sponsor: National Institute of Diabetes; Grant sponsor: Digestive and Kidney Diseases and U.S. Department of Energy under contract W-31-109-Eng-38 NR 57 TC 6 Z9 6 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-3585 J9 PROTEINS JI Proteins PD JUL PY 2011 VL 79 IS 7 BP 2327 EP 2334 DI 10.1002/prot.23043 PG 8 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 794TP UT WOS:000292924500030 PM 21557323 ER PT J AU Zhang, FZ Keasling, J AF Zhang, Fuzhong Keasling, Jay TI Biosensors and their applications in microbial metabolic engineering SO TRENDS IN MICROBIOLOGY LA English DT Review ID ESCHERICHIA-COLI; GENE-EXPRESSION; BACTERIAL CHEMOTAXIS; SIGNAL-TRANSDUCTION; COMPUTATIONAL DESIGN; BINDING-PROTEINS; SMALL MOLECULES; LOW-TEMPERATURE; SENSOR; RNA AB Many metabolic pathways in microbial hosts have been created, modified and engineered to produce useful molecules. The titer and yield of a final compound is often limited by the inefficient use of cellular resources and imbalanced metabolism. Engineering sensory-regulation devices that regulate pathway gene expression in response to the environment and metabolic status of the cell have great potential to solve these problems, and enhance product titers and yields. This review will focus on recent developments in biosensor design, and their applications for controlling microbial behavior. C1 [Zhang, Fuzhong; Keasling, Jay] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay] Synthet Biol Engn Res Ctr, Emeryville, CA 94608 USA. [Zhang, Fuzhong; Keasling, Jay] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Zhang, Fuzhong; Keasling, Jay] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Keasling, J (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU National Science Foundation [0540879]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada FX This work was supported in part by the Synthetic Biology Engineering Research Center, which is funded by National Science Foundation Award No. 0540879, and by the Joint BioEnergy Institute, which is funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231. F.Z. is supported by the Postdoctoral Fellowships Program of the Natural Sciences and Engineering Research Council of Canada. NR 60 TC 47 Z9 47 U1 11 U2 65 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0966-842X J9 TRENDS MICROBIOL JI Trends Microbiol. PD JUL PY 2011 VL 19 IS 7 SI SI BP 323 EP 329 DI 10.1016/j.tim.2011.05.003 PG 7 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 797HV UT WOS:000293116000005 PM 21664818 ER PT J AU Kim, AM Bernhardt, ML Kong, BY Ahn, RW Vogt, S Woodruff, TK O'Halloran, TV AF Kim, Alison M. Bernhardt, Miranda L. Kong, Betty Y. Ahn, Richard W. Vogt, Stefan Woodruff, Teresa K. O'Halloran, Thomas V. TI Zinc Sparks Are Triggered by Fertilization and Facilitate Cell Cycle Resumption in Mammalian Eggs SO ACS CHEMICAL BIOLOGY LA English DT Article ID CORTICAL GRANULE EXOCYTOSIS; MOUSE EGGS; INTRACELLULAR ZINC; CALCIUM; ACTIVATION; OOCYTES; ARREST; CHEMISTRY; INDICATOR; ELEVATION AB In last few hours of maturation, the mouse oocyte takes up over twenty billion zinc atoms and arrests after the first meiotic division, until fertilization or pharmacological intervention stimulates cell cycle progression toward a new embryo. Using chemical and physical probes, we show that fertilization of the mature, zinc-enriched egg triggers the ejection of zinc into the extracellular milieu in a series of coordinated events termed zinc sparks. These events immediately follow the well-established series of calcium oscillations within the activated egg and are evolutionarily conserved in several mammalian species, including rodents and nonhuman primates. Functionally, the zinc sparks mediate a decrease in intracellular zinc content that is necessary for continued cell cycle progression, as increasing zinc levels within the, activated egg results in the reestablishment of cell cycle arrest at metaphase. The mammalian egg thus uses a zinc dependent switch mechanism to toggle between metaphase arrest and resumption of the meiotic cell cycle at the initiation of embryonic development. C1 [Kim, Alison M.; Bernhardt, Miranda L.; Kong, Betty Y.; Woodruff, Teresa K.] Northwestern Univ, Feinberg Sch Med, Dept Obstet & Gynecol, Chicago, IL 60611 USA. [Kim, Alison M.; Ahn, Richard W.; Woodruff, Teresa K.; O'Halloran, Thomas V.] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA. [Ahn, Richard W.; O'Halloran, Thomas V.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Woodruff, Teresa K.; O'Halloran, Thomas V.] Northwestern Univ, Dept Mol Biosci, Evanston, IL 60208 USA. RP Woodruff, TK (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Obstet & Gynecol, 250 E Super St,Suite 3-2303, Chicago, IL 60611 USA. EM tkw@northwestern.edu; t-ohalloran@northwestern.edu RI Kim, Alison/D-6969-2014; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Kim, Alison/0000-0001-5845-1865; Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Bernhardt, Miranda/0000-0001-5424-5685 FU National Institutes of Health [P01 HD021921, GM038784]; W. M. Keck Foundation; Chicago Biomedical Consortium; Reproductive Biology Training Grant [HD007068]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We are grateful to F. Rademaker for advice on statistical analysis. We thank S. Kiesewetter, J. Jozefik, and D. Mackovic for rodent care and concerns, and Primate Products, Inc. for providing all nonhuman primate tissue. We acknowledge R. Marvin in the Quantitative Bioelement Imaging Center in the Chemistry of Life Processes Institute at Northwestern University for reagents and discussions regarding sample processing. This work is supported by National Institutes of Health Grants P01 HD021921 and GM038784, the W. M. Keck Foundation Medical Research Award, and the Chicago Biomedical Consortium SPARK Award. A.M.K. and R.W.A. are Keck Graduate Scholars. A.M.K. and M.L.B. are fellows of the Reproductive Biology Training Grant (HD007068). R.W.A. is a predoctoral fellow of the CDMRP Breast Cancer Research Program National Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 36 TC 69 Z9 71 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUL PY 2011 VL 6 IS 7 BP 716 EP 723 DI 10.1021/cb200084y PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 793VB UT WOS:000292850900007 PM 21526836 ER PT J AU Dimitrov, NB Michalopoulos, DP Morton, DP Nehme, MV Pan, F Popova, E Schneider, EA Thoreson, GG AF Dimitrov, Nedialko B. Michalopoulos, Dennis P. Morton, David P. Nehme, Michael V. Pan, Feng Popova, Elmira Schneider, Erich A. Thoreson, Gregory G. TI Network deployment of radiation detectors with physics-based detection probability calculations SO ANNALS OF OPERATIONS RESEARCH LA English DT Article ID INTERDICTION AB We describe a model for deploying radiation detectors on a transportation network consisting of two adversaries: a nuclear-material smuggler and an interdictor. The interdictor first installs the detectors. These installations are transparent to the smuggler, and are made under an uncertain threat scenario, which specifies the smuggler's origin and destination, the nature of the material being smuggled, the manner in which it is shielded, and the mechanism by which the smuggler selects a route. The interdictor's goal is to minimize the probability the smuggler evades detection. The performance of the detection equipment depends on the material being sensed, geometric attenuation, shielding, cargo and container type, background, time allotted for sensing and a number of other factors. Using a stochastic radiation transport code (MCNPX), we estimate detection probabilities for a specific set of such parameters, and inform the interdiction model with these estimates. C1 [Dimitrov, Nedialko B.; Michalopoulos, Dennis P.; Morton, David P.; Nehme, Michael V.; Popova, Elmira; Schneider, Erich A.; Thoreson, Gregory G.] Univ Texas Austin, Austin, TX 78712 USA. [Pan, Feng] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Morton, DP (reprint author), Univ Texas Austin, Austin, TX 78712 USA. EM morton@mail.utexas.edu RI Morton, David/K-2388-2014 FU National Science Foundation [CMMI-0653916, CMMI-0855577]; Defense Threat Reduction Agency [HDTRA1-08-1-0029]; US Department of Homeland Security [2008-DN-077-ARI001-02] FX The authors thank two anonymous referees for helpful comments that improved the paper. This work has been supported by the National Science Foundation through grants CMMI-0653916 and CMMI-0855577, the Defense Threat Reduction Agency through grant HDTRA1-08-1-0029, and the US Department of Homeland Security under Grant Award Number 2008-DN-077-ARI001-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the US Department of Homeland Security. NR 25 TC 7 Z9 7 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 J9 ANN OPER RES JI Ann. Oper. Res. PD JUL PY 2011 VL 187 IS 1 BP 207 EP 228 DI 10.1007/s10479-009-0677-2 PG 22 WC Operations Research & Management Science SC Operations Research & Management Science GA 792KB UT WOS:000292741900011 ER PT J AU Anderson, TD Robson, SA Jiang, XW Malmirchegini, GR Fierobe, HP Lazazzera, BA Clubb, RT AF Anderson, Timothy D. Robson, Scott A. Jiang, Xiao Wen Malmirchegini, G. Reza Fierobe, Henri-Pierre Lazazzera, Beth A. Clubb, Robert T. TI Assembly of Minicellulosomes on the Surface of Bacillus subtilis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID THERMOCELLUM ENDOGLUCANASE CELD; EXTRACELLULAR SIGNALING PEPTIDE; COHESIN-DOCKERIN INTERACTION; INTEGRATING PROTEIN CIPA; WALL-ASSOCIATED PROTEASE; CLOSTRIDIUM-THERMOCELLUM; LIGNOCELLULOSIC BIOMASS; SACCHAROMYCES-CEREVISIAE; SYNERGISTIC INTERACTION; CELLULOSE HYDROLYSIS AB To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass. C1 [Anderson, Timothy D.; Jiang, Xiao Wen; Malmirchegini, G. Reza; Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Lazazzera, Beth A.; Clubb, Robert T.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Lazazzera, Beth A.] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Fierobe, Henri-Pierre] CNRS, Chim Bacterienne Lab, IFR88, F-13277 Marseille, France. RP Clubb, RT (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles E Young Dr, Los Angeles, CA 90095 USA. EM rclubb@mbi.ucla.edu FU National Institutes of Health [AI52217]; Department of Energy [DE-FC-03-87ER60615] FX This work was supported in part by National Institutes of Health grant AI52217 and Department of Energy grant DE-FC-03-87ER60615. NR 72 TC 23 Z9 23 U1 0 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2011 VL 77 IS 14 BP 4849 EP 4858 DI 10.1128/AEM.02599-10 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 789IZ UT WOS:000292510400017 PM 21622797 ER PT J AU Van Nostrand, JD Wu, LY Wu, WM Huang, ZJ Gentry, TJ Deng, Y Carley, J Carroll, S He, ZL Gu, BH Luo, J Criddle, CS Watson, DB Jardine, PM Marsh, TL Tiedje, JM Hazen, TC Zhou, JZ AF Van Nostrand, Joy D. Wu, Liyou Wu, Wei-Min Huang, Zhijian Gentry, Terry J. Deng, Ye Carley, Jack Carroll, Sue He, Zhili Gu, Baohua Luo, Jian Criddle, Craig S. Watson, David B. Jardine, Philip M. Marsh, Terence L. Tiedje, James M. Hazen, Terry C. Zhou, Jizhong TI Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer (vol 77, pg 3860, 2011) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Correction C1 [Van Nostrand, Joy D.] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. Virtual Inst Microbial Stress & Survival, Stanford, CA USA. Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA. Sun Yat Sen Univ, State Key Lab Biocontrol, Sch Marine Sci, Sch Life Sci, Guangzhou 510275, Guangdong, Peoples R China. Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. Georgia Inst Technol, Dept Civil & Environm Engn, Atlanta, GA 30332 USA. Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wu, LY (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. EM lwu@rccc.ou.edu RI Gu, Baohua/B-9511-2012; Watson, David/C-3256-2016; Van Nostrand, Joy/F-1740-2016; Hazen, Terry/C-1076-2012 OI Gu, Baohua/0000-0002-7299-2956; Watson, David/0000-0002-4972-4136; Van Nostrand, Joy/0000-0001-9548-6450; Hazen, Terry/0000-0002-2536-9993 NR 1 TC 3 Z9 3 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2011 VL 77 IS 14 BP 5063 EP 5063 DI 10.1128/AEM.05726-11 PG 1 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 789IZ UT WOS:000292510400046 ER PT J AU Miniati, F Martin, DF AF Miniati, Francesco Martin, Daniel F. TI CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: theory; magnetohydrodynamics (MHD); methods: numerical ID HYPERBOLIC CONSERVATION-LAWS; DIVERGENCE-FREE CONDITION; UNSPLIT GODUNOV METHOD; IDEAL MAGNETOHYDRODYNAMICS; INTERSTELLAR CLOUDS; MAGNETIC-FIELDS; MULTIDIMENSIONAL MAGNETOHYDRODYNAMICS; NUMERICAL SIMULATIONS; COSMIC-RAY; MHD AB We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two-and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout. C1 [Miniati, Francesco] ETH, Dept Phys, CH-8093 Zurich, Switzerland. [Martin, Daniel F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Miniati, F (reprint author), ETH, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. EM fm@phys.ethz.ch; DFMartin@lbl.gov FU Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 68 TC 21 Z9 21 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 5 DI 10.1088/0067-0049/195/1/5 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200005 ER PT J AU Sakamoto, T Barthelmy, SD Baumgartner, WH Cummings, JR Fenimore, EE Gehrels, N Krimm, HA Markwardt, CB Palmer, DM Parsons, AM Sato, G Stamatikos, M Tueller, J Ukwatta, TN Zhang, B AF Sakamoto, T. Barthelmy, S. D. Baumgartner, W. H. Cummings, J. R. Fenimore, E. E. Gehrels, N. Krimm, H. A. Markwardt, C. B. Palmer, D. M. Parsons, A. M. Sato, G. Stamatikos, M. Tueller, J. Ukwatta, T. N. Zhang, B. TI THE SECOND SWIFT BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE gamma-ray burst: general ID IN-FLIGHT PERFORMANCE; HARD X-RAY; COMPLETE SAMPLE; STAR-FORMATION; HOST GALAXIES; REDSHIFT; AFTERGLOWS; ENERGY; SPECTRA; GRB AB We present the second Swift Burst Alert Telescope (BAT) catalog of gamma-ray bursts (GRBs), which contains 476 bursts detected by the BAT between 2004 December 19 and 2009 December 21. This catalog (hereafter the BAT2 catalog) presents burst trigger time, location, 90% error radius, duration, fluence, peak flux, time-averaged spectral parameters, and time-resolved spectral parameters measured by the BAT. In the correlation study of various observed parameters extracted from the BAT prompt emission data, we distinguish among long-duration GRBs (L-GRBs), short-duration GRBs (S-GRBs), and short-duration GRBs with extended emission (S-GRBs with E. E.) to investigate differences in the prompt emission properties. The fraction of L-GRBs, S-GRBs, and S-GRBs with E. E. in the catalog are 89%, 8%, and 2%, respectively. We compare the BAT prompt emission properties with the BATSE, BeppoSAX, and HETE-2 GRB samples. We also correlate the observed prompt emission properties with the redshifts for the GRBs with known redshift. The BAT T-90 and T-50 durations peak at 70 s and 30 s, respectively. We confirm that the spectra of the BAT S-GRBs are generally harder than those of the L-GRBs. The time-averaged spectra of the BAT S-GRBs with E. E. are similar to those of the L-GRBs. Whereas, the spectra of the initial short spikes of the S-GRBs with E. E. are similar to those of the S-GRBs. We show that the BAT GRB samples are significantly softer than the BATSE bright GRBs and that the time-averaged E-peak(obs) of the BAT GRBs peaks at 80 keV, which is significantly lower energy than those of the BATSE sample, which peak at 320 keV. The time-averaged spectral properties of the BAT GRB sample are similar to those of the HETE-2 GRB samples. By time-resolved spectral analysis, we find that only 10% of the BAT observed photon indices are outside the allowed region of the synchrotron shock model. We see no obvious observed trend in the BAT T-90 and the observed spectra with redshifts. The T-90 and T-50 distributions measured at the 140-220 keV band in the GRB rest frame from the BAT known redshift GRBs peak at 19 s and 8 s, respectively. We also provide an update on the status of the on-orbit BAT calibrations. C1 [Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.; Krimm, H. A.] NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. [Sakamoto, T.; Baumgartner, W. H.; Cummings, J. R.] Univ Maryland Baltimore Cty, Joint Ctr Astrophys, Baltimore, MD 21250 USA. [Fenimore, E. E.; Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Sato, G.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Zhang, B.] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. RP Sakamoto, T (reprint author), NASA, Goddard Space Flight Ctr, CRESST, Greenbelt, MD 20771 USA. RI Barthelmy, Scott/D-2943-2012; Gehrels, Neil/D-2971-2012; Tueller, Jack/D-5334-2012; Parsons, Ann/I-6604-2012 NR 53 TC 119 Z9 119 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 2 DI 10.1088/0067-0049/195/1/2 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200002 ER PT J AU Woodring, J Heitmann, K Ahrens, J Fasel, P Hsu, CH Habib, S Pope, A AF Woodring, Jonathan Heitmann, Katrin Ahrens, James Fasel, Patricia Hsu, Chung-Hsing Habib, Salman Pope, Adrian TI ANALYZING AND VISUALIZING COSMOLOGICAL SIMULATIONS WITH ParaView SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE large-scale structure of universe; methods: numerical ID MATTER POWER SPECTRUM; PRECISION DETERMINATION; MASS FUNCTION; HALOS; UNIVERSE; CODE AB The advent of large cosmological sky surveys-ushering in the era of precision cosmology-has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions. C1 [Woodring, Jonathan; Ahrens, James] Los Alamos Natl Lab, CCS 7, CCS Div, Los Alamos, NM 87545 USA. [Heitmann, Katrin; Pope, Adrian] Los Alamos Natl Lab, ISR 1, ISR Div, Los Alamos, NM 87545 USA. [Fasel, Patricia] Los Alamos Natl Lab, CCS 3, CCS Div, Los Alamos, NM 87545 USA. [Hsu, Chung-Hsing] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Habib, Salman; Pope, Adrian] Los Alamos Natl Lab, T 2, Div Theoret, Los Alamos, NM 87545 USA. RP Woodring, J (reprint author), Los Alamos Natl Lab, CCS 7, CCS Div, POB 1663, Los Alamos, NM 87545 USA. FU DOE [W-7405-ENG-36]; Los Alamos National Laboratory FX A special acknowledgment is due for supercomputing time awarded to us under the LANL Institutional Computing Initiative. Part of this research was supported by the DOE under contract W-7405-ENG-36. The authors acknowledge support from the LDRD program at Los Alamos National Laboratory. We are grateful for P. McCormick's contributions and comments on in situ visualization and GPUs. NR 31 TC 7 Z9 7 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2011 VL 195 IS 1 AR 11 DI 10.1088/0067-0049/195/1/11 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 790LT UT WOS:000292590200011 ER PT J AU Satheesh, SK Vinoj, V Moorthy, KK AF Satheesh, S. K. Vinoj, V. Moorthy, K. Krishna TI Weekly periodicities of aerosol properties observed at an urban location in India SO ATMOSPHERIC RESEARCH LA English DT Article DE Aerosols; Anthropogenic effects; Black carbon; Optical depth ID AIR-POLLUTION; LIGHT-SCATTERING; BLACK CARBON; WEEKLY CYCLE; ABSORPTION; MORTALITY; REGION; SIZE; MASS AB Multi-year (similar to 7 years) observations of aerosol optical and microphysical properties were conducted at a tropical urban location in Bangalore, India. As a consequence of rapid urbanization, Bangalore presents high local atmospheric emissions, which makes it an interesting site to study the effect of anthropogenic activities on aerosol properties. It has been found that both column (aerosol optical depth, AOD) and ground-level measurements (black carbon (BC) and composite aerosol mass) exhibit a weekly cycle with low aerosol concentrations on weekends. In comparison to the weekdays, the weekend reductions of aerosol optical depth, black carbon and composite aerosol mass concentrations were similar to 15%, 25% and 24%, respectively. The magnitude of weekend reduction of black carbon is as much as similar to 1 mu g m(-3). The similarity in the weekly cycle between the column and surface measurements suggests that the aerosol column loading at this location is governed by local anthropogenic emissions. The strongest weekly cycle in composite aerosol mass concentration was observed in the super micron mass range (>1 mu m). The weekly cycle of composite aerosol mass in the sub micron mass range (<1 mu m) was weak in comparison to the super micron aerosol mass. (C) 2011 Elsevier B.V. All rights reserved. C1 [Satheesh, S. K.; Vinoj, V.] Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. [Satheesh, S. K.] Indian Inst Sci, Divecha Ctr Climate Change, Bangalore 560012, Karnataka, India. [Vinoj, V.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Moorthy, K. Krishna] Vikram Sarabhai Space Ctr, Space Phys Lab, Thiruvananthapuram 695022, Kerala, India. RP Satheesh, SK (reprint author), Indian Inst Sci, Ctr Atmospher & Ocean Sci, Bangalore 560012, Karnataka, India. EM satheesh@caos.iisc.ernet.in RI Vinoj, V./C-3241-2008 OI Moorthy, K. Krishna/0000-0002-7234-3868; Vinoj, V./0000-0001-8573-6073 FU ISRO; DST, New Delhi FX Authors thank the ISRO - Geosphere Biosphere Program for supporting this work. One of the authors (SKS) thanks DST, New Delhi for Swarna Jayanti Fellowship. NR 36 TC 13 Z9 13 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0169-8095 J9 ATMOS RES JI Atmos. Res. PD JUL PY 2011 VL 101 IS 1-2 BP 307 EP 313 DI 10.1016/j.atmosres.2011.03.003 PG 7 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 790WD UT WOS:000292620500025 ER PT J AU Gonzalez, RM Daly, DS Tan, RM Marks, JR Zangar, RC AF Gonzalez, Rachel M. Daly, Don S. Tan, Ruimin Marks, Jeffrey R. Zangar, Richard C. TI Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES Is Consistently Increased SO CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION LA English DT Article ID GENE-EXPRESSION PATTERNS; MOLECULAR SUBTYPES; TUMOR SUBTYPES; CELL-LINES; MAMMOGRAPHY; ESTROGEN; FEATURES; LIGANDS; PERFORMANCE; MICROARRAYS AB Background: Current biomarkers for breast cancer have little potential for detection. We determined whether breast cancer subtypes influence circulating protein biomarkers. Methods: A sandwich ELISA microarray platform was used to evaluate 23 candidate biomarkers in plasma samples that were obtained from subjects with either benign breast disease or invasive breast cancer. All plasma samples were collected at the time of biopsy, after a referral due to a suspicious screen (e. g., mammography). Cancer samples were evaluated on the basis of breast cancer subtypes, as defined by the HER2 and estrogen receptor statuses. Results: Ten proteins were statistically altered in at least one breast cancer subtype, including four epidermal growth factor receptor ligands, two matrix metalloproteases, two cytokines, and two angiogenic factors. Only one cytokine, RANTES, was significantly increased (P < 0.01 for each analysis) in all four subtypes, with areas under the curve (AUC) for receiver operating characteristic values that ranged from 0.76 to 0.82, depending on cancer subtype. The best AUC values were observed for analyses that combined data from multiple biomarkers, with values ranging from 0.70 to 0.99, depending on the cancer subtype. Although the results for RANTES are consistent with previous publications, the multi-assay results need to be validated in independent sample sets. Conclusions: Different breast cancer subtypes produce distinct biomarker profiles, and circulating protein biomarkers have potential to differentiate between true-and false-positive screens for breast cancer. Impact: Subtype-specific biomarker panels may be useful for detecting breast cancer or as an adjunct assay to improve the accuracy of current screening methods. Cancer Epidemiol Biomarkers Prev; 20(7); 1543-51. (C) 2011 AACR. C1 [Gonzalez, Rachel M.; Daly, Don S.; Tan, Ruimin; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Marks, Jeffrey R.] Duke Univ, Durham, NC USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, 790 6th St, Richland, WA 99354 USA. EM richard.zangar@pnl.gov FU National Cancer Institute Early Detection Research Network [CA117378, CA084955] FX This work was funded by National Cancer Institute Early Detection Research Network grants CA117378 and CA084955. NR 40 TC 13 Z9 14 U1 0 U2 4 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1055-9965 J9 CANCER EPIDEM BIOMAR JI Cancer Epidemiol. Biomarkers Prev. PD JUL PY 2011 VL 20 IS 7 BP 1543 EP 1551 DI 10.1158/1055-9965.EPI-10-1248 PG 9 WC Oncology; Public, Environmental & Occupational Health SC Oncology; Public, Environmental & Occupational Health GA 789FK UT WOS:000292499700031 PM 21586622 ER PT J AU Tritsaris, GA Greeley, J Rossmeisl, J Norskov, JK AF Tritsaris, G. A. Greeley, J. Rossmeisl, J. Norskov, J. K. TI Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt SO CATALYSIS LETTERS LA English DT Article DE Electrocatalysis; Nanoparticles; DFT; Particle size effect; Oxygen electroreduction; Platinum ID ACTIVE-SITES; CATALYSTS; NANOPARTICLES; SURFACES; TRENDS AB We estimate the activity of the oxygen reduction reaction on platinum nanoparticles of sizes of practical importance. The proposed model explicitly accounts for surface irregularities and their effect on the activity of neighboring sites. The model reproduces the experimentally observed trends in both the specific and mass activities for particle sizes in the range between 2 and 30 nm. The mass activity is calculated to be maximized for particles of a diameter between 2 and 4 nm. Our study demonstrates how an atomic-scale description of the surface microstructure is a key component in understanding particle size effects on the activity of catalytic nanoparticles. C1 [Tritsaris, G. A.; Rossmeisl, J.] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark. [Tritsaris, G. A.; Norskov, J. K.] SLAC Natl Accelerator Lab, Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA. [Greeley, J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Norskov, J. K.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. RP Tritsaris, GA (reprint author), Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark. EM getri@fysik.dtu.dk RI Rossmeisl, Jan/A-5714-2011; Norskov, Jens/D-2539-2017 OI Rossmeisl, Jan/0000-0001-7749-6567; Norskov, Jens/0000-0002-4427-7728 FU Lundbeck Foundation; Danish Center for Scientific Computing; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX CAMD is funded by the Lundbeck Foundation. This work was supported by the Danish Center for Scientific Computing. Work at the Center for Nanoscale Materials at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 27 TC 98 Z9 98 U1 8 U2 119 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2011 VL 141 IS 7 BP 909 EP 913 DI 10.1007/s10562-011-0637-8 PG 5 WC Chemistry, Physical SC Chemistry GA 791GF UT WOS:000292652300001 ER PT J AU Alayoglu, S Aliaga, C Sprung, C Somorjai, GA AF Alayoglu, S. Aliaga, C. Sprung, C. Somorjai, G. A. TI Size and Shape Dependence on Pt Nanoparticles for the Methylcyclopentane/Hydrogen Ring Opening/Ring Enlargement Reaction SO CATALYSIS LETTERS LA English DT Article DE Platinum; Methylcyclopentane hydrogenation; Ethylene/hydrogen probing by sum frequency generation vibrational spectroscopy; Shape-controlled nanoparticles; High-resolution electron microscopy; Microscopy; Spectroscopy and general characterisation; Colloidal synthesis; Preparation and materials ID SUM-FREQUENCY GENERATION; METAL-SUPPORT INTERACTIONS; SINGLE-CRYSTAL SURFACES; PARTICLE-SIZE; VIBRATIONAL SPECTROSCOPY; PLATINUM NANOPARTICLES; ETHYLENE HYDROGENATION; PYRROLE HYDROGENATION; STRUCTURE SENSITIVITY; ELECTRON-MICROSCOPY AB Monodisperse Pt nanoparticles (NPs) with well-controlled sizes in the range between 1.5 and 10.8 nm, and shapes of octahedron, cube, truncated octahedron and spheres (similar to 6 nm) were synthesized employing the polyol reduction strategy with polyvinylpyrrolidone (PVP) as the capping agent. We characterized the as-synthesized Pt nanoparticles using transmission electron microscopy (TEM), high resolution TEM, sum frequency generation vibrational spectroscopy (SFGVS) using ethylene/H(2) reaction as the surface probe, and the catalytic ethylene/H(2) reaction by means of measuring surface concentration of Pt. The nanoparticles were supported in mesoporous silica (SBA-15 or MCF-17), and their catalytic reactivity was evaluated for the methylcyclopentane (MCP)/H(2) ring opening/ring enlargement reaction using 10 torr MCP and 50 torr H(2) at temperatures between 160 and 300 A degrees C. We found a strong correlation between the particle shape and the catalytic activity and product distribution for the MCP/H(2) reaction on Pt. At temperatures below 240 A degrees C, 6.3 nm Pt octahedra yielded hexane, 6.2 nm Pt truncated octahedra and 5.2 nm Pt spheres produced 2-methylpentane. In contrast, 6.8 nm Pt cubes led to the formation of cracking products (i.e. C(1)-C(5)) under similar conditions. We also detected a weak size dependence of the catalytic activity and selectivity for the MCP/H(2) reaction on Pt. 1.5 nm Pt particles produced 2-methylpentane for the whole temperature range studied and the larger Pt NPs produced mainly benzene at temperatures above 240 A degrees C. C1 [Alayoglu, S.; Aliaga, C.; Sprung, C.; Somorjai, G. A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Alayoglu, S.; Aliaga, C.; Sprung, C.; Somorjai, G. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Office of Science, Department of Energy; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is funded by Office of Science, Department of Energy. The authors acknowledge support of the National Center for Electron Microscopy, Lawrence Berkeley Lab, which is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231. Work at the Molecular Foundry was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Material Sciences and Engineering, of the U.S. Department of Energy under Contract # DE-AC02-05CH11231. NR 32 TC 51 Z9 51 U1 3 U2 79 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2011 VL 141 IS 7 BP 914 EP 924 DI 10.1007/s10562-011-0647-6 PG 11 WC Chemistry, Physical SC Chemistry GA 791GF UT WOS:000292652300002 ER PT J AU Cronauer, DC Jacobs, G Linganiso, L Kropf, AJ Elam, JW Christensen, ST Marshall, CL Davis, BH AF Cronauer, Donald C. Jacobs, Gary Linganiso, Linda Kropf, A. Jeremy Elam, Jeffrey W. Christensen, Steven T. Marshall, Christopher L. Davis, Burtron H. TI CO Hydrogenation: Exploring Iridium as a Promoter for Supported Cobalt Catalysts by TPR-EXAFS/XANES and Reaction Testing SO CATALYSIS LETTERS LA English DT Article DE Cobalt; Iridium; Alumina; Incipient wetness impregnation; Atomic layer deposition; TPR; EXAFS; XANES ID FISCHER-TROPSCH SYNTHESIS; RAY-ABSORPTION SPECTROSCOPY; IN-SITU EXAFS; L-III EDGES; CO/AL2O3 CATALYSTS; REDUCTION PROPERTY; XPS; REDUCIBILITY AB The price of iridium currently trends at about half the cost of platinum, the latter being a typical reduction promoter for Co/Al(2)O(3) Fischer-Tropsch (FT) synthesis catalysts in gas-to-liquids (GTL) technology. In the current contribution, both fixed-bed catalytic FT and TPR-EXAFS/XANES experiments were carried out over 0.1% iridium-doped 25% Co/Al(2)O(3) catalysts in order to (1) assess the effectiveness of Ir as a promoter of cobalt oxide reduction and (2) evaluate the effectiveness of the incipient wetness impregnation (IWI) technique for adding the Ir precursor by comparing a catalyst prepared by IWI to one prepared by atomic layer deposition (ALD). Ir was demonstrated to be an effective promoter for facilitating the second step of cobalt oxide reduction, CoO to Co(0), and the IWI method was found to be superior to ALD. C1 [Jacobs, Gary; Linganiso, Linda; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Cronauer, Donald C.; Kropf, A. Jeremy; Elam, Jeffrey W.; Christensen, Steven T.; Marshall, Christopher L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu RI ID, MRCAT/G-7586-2011; Marshall, Christopher/D-1493-2015; Jacobs, Gary/M-5349-2015 OI Marshall, Christopher/0000-0002-1285-7648; Jacobs, Gary/0000-0003-0691-6717 FU NASA [NNX07AB93A]; Commonwealth of Kentucky; U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL) [AA-10-15, 49261-00-107]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT FX The work carried out at the CAER was supported in part by funding from a grant from NASA (#NNX07AB93A), as well as the Commonwealth of Kentucky. Argonne's research was supported in part by the U.S. Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Project AA-10-15; 49261-00-107. The use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 23 TC 17 Z9 17 U1 1 U2 51 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2011 VL 141 IS 7 BP 968 EP 976 DI 10.1007/s10562-011-0620-4 PG 9 WC Chemistry, Physical SC Chemistry GA 791GF UT WOS:000292652300009 ER PT J AU Congdon, JD Pappas, M Brecke, B Capps, J AF Congdon, Justin D. Pappas, Michael Brecke, Bruce Capps, Joshua TI Conservation Implications of Initial Orientation of Naive Hatchling Snapping Turtles (Chelydra serpentina) and Painted Turtles (Chrysemys picta belli) Dispersing From Experimental Nests SO CHELONIAN CONSERVATION AND BIOLOGY LA English DT Article DE Reptilia; Testudines, Chelydridae; Emydidae; Chelydra serpentina; Chrysemys picta belli; dispersal from nests; naive hatchlings; orientation; turtle; Minnesota, USA ID DEPENDENT SEX DETERMINATION; SITE SELECTION; BODY-SIZE; KINOSTERNON-FLAVESCENS; HATCHING SUCCESS; SURVIVAL; BEHAVIOR; MOVEMENTS; OVIPOSITION; HYPOTHESIS AB We examined the orientation of 76 naive painted turtles (Chrysemys picta belli) and 746 snapping turtles (Chelydra serpentina) during initial dispersal from experimental nests in the Weaver Dunes area of southeastern Minnesota. We conducted 15 releases into large circular arenas in 4 natural nesting areas and 2 atypical areas. Hatchling orientation and dispersal for both species were 1) all nonrandom, 2) appeared to be based on vision (i.e., nonpolarized light), and 3) toward nearby, open, and highly illuminated horizons, regardless of whether or not they were associated with the wetlands. A first-order estimate of hatchling snapping turtle perception distance was 55-90 m. We found no evidence that suggests that specular light from the wetlands, olfaction, or humidity gradients were important in orientation. At 2 of 3 locations, substantial changes in orientation direction occurred when hatchling snapping turtles were released in morning vs. late afternoon. Changes in dispersal directions in the morning and afternoon indicated that hatchlings were not orienting toward the sun per se but toward different highly illuminated nearby prairie areas. At one site, hatchling orientation in the afternoon (but not in the morning) was toward a nearby wetland and was consistent with either dispersal toward highly illuminated near horizon or with the perception and use of reflected polarized light from the wetland. Collectively, the results from our study also indicate that 1) hatchlings disperse toward open horizons rather than toward wetlands themselves (i.e., open areas that are not necessarily associated with wetlands), 2) dispersal direction is influenced by time of day, apparently because of changes in the degree of illumination of different horizons, and 3) far horizons apparently were not used because they were beyond the perception distance of hatchlings. The most parsimonious evolutionary explanation of solutions to orientation problems is that, for each species, both adults and hatchlings have similar perception distances and use the same sensory modes and types of environmental cues during terrestrial movements. Comprehensive conservation and management plans for aquatic turtles should include consideration of how habitat changes in nesting areas might alter the environmental cues that determine the initial orientation and successful dispersal of hatchlings. We compared the results from this study with the dispersal patterns of naive hatchling Blanding's turtles (Emydoidea blandingii) that emerge from nests located much farther from wetlands. C1 [Congdon, Justin D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, Justin D.] Bar Boot Ranch, Douglas, AZ 85608 USA. [Pappas, Michael] Michaels Restaurant, Rochester, MN 55904 USA. [Capps, Joshua] Alterra Environm Inc, Santa Cruz, CA 95060 USA. RP Congdon, JD (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM congdon@vtc.net; michael@michaelsfinedining.com; breckeopod@msn.com; cappszilla@hotmail.com FU Office of Biological and Environmental Research, US Department of Energy [DE-FC09-96SR18546]; Savannah River Ecology Laboratory FX Nancy Dickson, Richard van Loben Sels, Steve Freedberg, Carolina Pappas, and students from St Olaf's College helped with field work. Larry Gusa, Allison, Alyssa, and Michael Pappas II, and John Schmoker assisted in the collection and incubation of eggs and construction of arenas. Janet Hostetter helped with field work and photography, and Larry Gates helped with identification of the flora of the riparian and upland forests. Dr Jay McLaren (Mayo Clinic, Rochester, MN) reviewed the paper and helped us understand polarized light. The study was conducted under permits from Bonita Eliason, Richard Baker, Jaime Edwards, Nick Gulden, and Don Ramsden of the Minnesota Department of Natural Resources (Permits 10079, 11604, 13808, and 15422); Robert Dreislin, Eric Nelson, and Mary Stefanski of the US Fish and Wildlife Service (Permits 32574, 06001, and 08007); and Meredith Cornett and Rich Biske of The Nature Conservancy (Permit 2007-17R). Special thanks to landowners Ray and Evie Brueske of Mallard Seed and Mary Burmeister for access to their land. Research and manuscript preparation were aided by the Office of Biological and Environmental Research, US Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and by the Savannah River Ecology Laboratory. Improvements of earlier drafts of the manuscript are the results of comments from N. Dickson, S. Freedberg, J. Hostetter, T. Jenssen, R. van Loben Sels, L. Vitt, and R. Vogt. Reviews by K. Buhlmann and J. Harding greatly improved presentation of the results. NR 62 TC 11 Z9 11 U1 6 U2 34 PU CHELONIAN RESEARCH FOUNDATION PI LUNENBURG PA 168 GOODRICH ST., LUNENBURG, MA USA SN 1071-8443 J9 CHELONIAN CONSERV BI JI Chelonian Conserv. Biol. PD JUL PY 2011 VL 10 IS 1 BP 42 EP 53 PG 12 WC Zoology SC Zoology GA 791BP UT WOS:000292635400007 ER PT J AU DeGregorio, BA Williard, AS AF DeGregorio, Brett A. Williard, Amanda Southwood TI Incubation Temperatures and Metabolic Heating of Relocated and In Situ Loggerhead Sea Turtle (Caretta caretta) Nests at a Northern Rookery SO CHELONIAN CONSERVATION AND BIOLOGY LA English DT Article DE Reptilia; Testudines; Cheloniidae; Caretta caretta; loggerhead turtle; nest relocation; thermal buffering; temperature sex determination; North Carolina; climate change ID DERMOCHELYS-CORIACEA; CHELONIA-MYDAS; CLIMATE-CHANGE; SEXUAL-DIFFERENTIATION; PIVOTAL TEMPERATURES; LEATHERBACK TURTLES; GREEN TURTLES; RATIOS; CONSERVATION; HATCHLINGS AB Miniature temperature loggers were used to better understand the incubation temperatures, patterns in metabolic heating, and potential implications for sex determination of relocated and in situ loggerhead sea turtle clutches near the northern extent of their nesting range. All sea turtles display temperature-dependent sex determination, with cooler nests producing males and warmer nests producing females. Analysis of the factors that affect incubation temperatures provides insight into variation in hatchling sex ratios over temporal and spatial scales and may help to guide management measures for the imperiled loggerhead sea turtle. Although no temperature difference was detected between relocated and in situ clutches during the thermal sensitive period, relocated nests hatched more quickly and incubated at warmer temperatures than in situ clutches for the entire incubation period. Metabolic heating was apparent in all clutches, beginning during the middle third of incubation, with the greatest gradient between nest temperature and surrounding sand temperatures ((x) over bar = 1.5 +/- 0.05 degrees C) that occur during the final third of incubation. The magnitude of metabolic heating was not different between relocated and in situ clutches. Diel temperature fluctuations within nests were significantly less pronounced than in adjacent sand, which implies a degree of thermal buffering within the nest chamber. During the thermosensitive period, all nests incubated at a mean temperature above that of the estimated pivotal temperature (29.2 degrees C), which implies a strongly female-biased hatchling sex ratio during the portion of the nesting season monitored. Potential impacts on incubation temperature and resultant sex ratios should be considered and explored on a beach-by-beach basis before adopting nest relocation as a conservation measure. C1 [DeGregorio, Brett A.] Savannah River Ecol Lab, Aiken, SC 29801 USA. [Williard, Amanda Southwood] Univ N Carolina, Dept Biol & Marine Biol, Wilmington, NC 28403 USA. RP DeGregorio, BA (reprint author), Savannah River Ecol Lab, Aiken, SC 29801 USA. EM Baretta66@hotmail.com; Southwooda@uncw.edu FU US Department of Energy [DE-AC09-76SROO-819]; University of Georgia's Savannah River Ecology Laboratory [DE-AC09-76SROO-819] FX Thanks to the Bald Head Island Conservancy for help in all aspects of this study. Matthew Godfrey contributed invaluable advice. We thank Leigh Anne Harden and Justin Henningsen for their diligent editing. Roy Arrezo, Eric Nordberg, Jacob Hill, Jen Schoonmaker, Meredith Atwood, Meredith Wilson, and Anna Frankle provided help in the field. Manuscript preparation was aided by Contract DE-AC09-76SROO-819 between the US Department of Energy and the University of Georgia's Savannah River Ecology Laboratory. NR 46 TC 12 Z9 13 U1 2 U2 45 PU CHELONIAN RESEARCH FOUNDATION PI LUNENBURG PA 168 GOODRICH ST., LUNENBURG, MA USA SN 1071-8443 J9 CHELONIAN CONSERV BI JI Chelonian Conserv. Biol. PD JUL PY 2011 VL 10 IS 1 BP 54 EP 61 PG 8 WC Zoology SC Zoology GA 791BP UT WOS:000292635400008 ER PT J AU Rajbanshi, A Moyer, BA Custelcean, R AF Rajbanshi, Arbin Moyer, Bruce A. Custelcean, Radu TI Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ORGANIC FRAMEWORKS; ANION SEPARATION; BINDING; RECOGNITION; RECEPTOR; ENCAPSULATION; IONS; PHOSPHATE; SOLVENTS; CAVITIES AB Self-assembly of a tris (urea) anion receptor with Na2SO4 or K2SO4 yields crystalline capsules held together by coordinating Na+ or K+ cations and hydrogen-bonding water bridges, with the sulfate anions encapsulated inside urea-lined cavities. The sodium-based capsules can be selectively crystallized in excellent yield from highly competitive aqueous alkaline solutions (similar to 6 M Na+, pH 14), thereby providing for the first time a viable approach to sulfate separation from nuclear wastes. C1 [Rajbanshi, Arbin; Moyer, Bruce A.; Custelcean, Radu] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Custelcean, R (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM custelceanr@ornl.gov RI Custelcean, Radu/C-1037-2009; Moyer, Bruce/L-2744-2016 OI Custelcean, Radu/0000-0002-0727-7972; Moyer, Bruce/0000-0001-7484-6277 FU Office of Technology Innovation and Development, Office of Environmental Management, U.S. Department of Energy FX This research was sponsored by the Office of Technology Innovation and Development, Office of Environmental Management, U.S. Department of Energy. NR 67 TC 40 Z9 40 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2011 VL 11 IS 7 BP 2702 EP 2706 DI 10.1021/cg200515w PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 788AG UT WOS:000292417200008 ER PT J AU Yi, XY Fang, HC Gu, ZG Zhou, ZY Cai, YP Tian, J Thallapally, PK AF Yi, Xiao-Yi Fang, Hua-Cai Gu, Zhi-Gang Zhou, Zheng-Yuan Cai, Yue-Peng Tian, Jian Thallapally, Praveen K. TI Metal-Organic Frameworks with Achiral/Monochiral Nano-Channels SO CRYSTAL GROWTH & DESIGN LA English DT Article ID VIBRATIONAL CIRCULAR-DICHROISM; CHIRAL COORDINATION POLYMERS; CRYSTAL-STRUCTURE; HELICAL CHAINS; LIGANDS; ARCHITECTURES; COMPLEXES; MOLECULES; TOPOLOGY; NETWORK AB Three pH/temperature-dependent 2D MOFs containing 1D nanotubular mesa-helical chains were firstly synthesized from multidentate 2,4(1)-H(2)bpdc. Crystal structure analysis shows that 2 and 3 are monochiral and the resultant crystals were not racemic as evidenced by the observation of strong signals in vibrational circular dichroism (VCD) and circular dichroism (CD) spectra. C1 [Yi, Xiao-Yi; Fang, Hua-Cai; Gu, Zhi-Gang; Zhou, Zheng-Yuan; Cai, Yue-Peng] S China Normal Univ, Sch Chem & Environm, Key Lab Electrochem Technol Energy Storage & Po, Guangdong Higher Educ Inst, Guangzhou 510006, Guangdong, Peoples R China. [Yi, Xiao-Yi; Fang, Hua-Cai; Gu, Zhi-Gang; Zhou, Zheng-Yuan; Cai, Yue-Peng] Guangzhou Univ City, Guangzhou, Guangdong, Peoples R China. [Thallapally, Praveen K.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, YP (reprint author), S China Normal Univ, Sch Chem & Environm, Key Lab Electrochem Technol Energy Storage & Po, Guangdong Higher Educ Inst, Guangzhou 510006, Guangdong, Peoples R China. EM ypcai8@yahoo.com; Praveen.Thallapally@pnl.gov RI Tian, Jian/I-8637-2012; thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU National Natural Science Foundation of China [20772037]; Science and Technology Planning Project of Guangdong Province [2006A10902002, 2010B031100018]; Natural Science Foundation of Guangdong Province [9251063101000006, 06025033]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; Battelle [DE-AC05-76RL01830] FX This work was supported by the National Natural Science Foundation of China (No.20772037), Science and Technology Planning Project of Guangdong Province (Grant No. 2006A10902002 and 2010B031100018), and the Natural Science Foundation of Guangdong Province (9251063101000006 and 06025033). PKT thank the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830 NR 47 TC 32 Z9 33 U1 2 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2011 VL 11 IS 7 BP 2824 EP 2828 DI 10.1021/cg101618n PG 5 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 788AG UT WOS:000292417200023 ER PT J AU Wiser, R Barbose, G Holt, E AF Wiser, Ryan Barbose, Galen Holt, Edward TI Supporting solar power in renewables portfolio standards: Experience from the United States SO ENERGY POLICY LA English DT Article DE Renewables portfolio standards; Solar; Resource diversity ID TRADABLE GREEN CERTIFICATES; ENERGY; POLICY; FEED; MARKETS; PERSPECTIVE; COMPETITION; OBLIGATION; EFFICIENCY; GERMANY AB Renewables portfolio standards (RPS) have become an increasingly popular option for encouraging the deployment of renewable electricity. It is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern is whether RPS policies offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, they will favor a small number of the currently least-cost forms of renewable energy. This article documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important driver for solar energy deployment, and those impacts are projected to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Wiser, Ryan; Barbose, Galen] Univ Calif Berkeley, Lawrence Berkeley Lab, Elect Markets & Policy Grp, Berkeley, CA 94720 USA. [Holt, Edward] Ed Holt & Associates Inc, Harpswell, ME 04079 USA. RP Barbose, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Elect Markets & Policy Grp, Berkeley, CA 94720 USA. EM glbarbose@lbl.gov FU Office of Energy Efficiency and Renewable Energy; Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy [DE-AC02-05CH11231]; National Renewable Energy Laboratory [DEK-8883050]; Clean Energy States Alliance FX This work was supported by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231; the National Renewable Energy Laboratory under Contract no. DEK-8883050; and the Clean Energy States Alliance. NR 36 TC 33 Z9 33 U1 0 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2011 VL 39 IS 7 SI SI BP 3894 EP 3905 DI 10.1016/j.enpol.2010.11.025 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 790WG UT WOS:000292620800003 ER PT J AU Palmer, K Paul, A Woerman, M Steinberg, DC AF Palmer, Karen Paul, Anthony Woerman, Matt Steinberg, Daniel C. TI Federal policies for renewable electricity: Impacts and interactions SO ENERGY POLICY LA English DT Article DE Renewable portfolio standard; Renewable energy credits; Cap-and-trade ID ENERGY; PRICES AB Three types of policies that are prominent in the federal debate over addressing greenhouse gas emissions in the United States are a cap-and-trade program (CTP) on emissions, a renewable portfolio standard (RPS) for electricity production, and tax credits for renewable electricity producers. Each of these policies would have different consequences, and combinations of these policies could induce interactions yielding a whole that is not the sum of its parts. This paper utilizes the Haiku electricity market model to evaluate the economic and technology outcomes, climate benefits, and cost-effectiveness of three such policies and all possible combinations of the policies. A central finding is that the carbon dioxide (CO(2)) emissions reductions from CTP can be significantly greater than those from the other policies, even for similar levels of renewable electricity production, since of the three policies, CTP is the only one that distinguishes electricity generated by coal and natural gas. It follows that CTP is the most cost-effective among these approaches at reducing CO(2) emissions. An alternative compliance payment mechanism in an RPS program could substantially affect renewables penetration, and the electricity price effects of the policies hinge partly on the regulatory structure of electricity markets, which varies across the country. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Palmer, Karen; Paul, Anthony; Woerman, Matt] Resources Future Inc, Washington, DC 20036 USA. [Steinberg, Daniel C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Paul, A (reprint author), Resources Future Inc, 1616 P St NW, Washington, DC 20036 USA. EM Palmer@rff.org; Paul@rff.org; Woerman@rff.org; daniel.steinberg@nrel.gov OI Steinberg, Daniel/0000-0003-1769-2261 NR 22 TC 16 Z9 17 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2011 VL 39 IS 7 SI SI BP 3975 EP 3991 DI 10.1016/j.enpol.2011.01.035 PG 17 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 790WG UT WOS:000292620800012 ER PT J AU Wang, JH Liu, C Ton, D Zhou, Y Kim, J Vyas, A AF Wang, Jianhui Liu, Cong Ton, Dan Zhou, Yan Kim, Jinho Vyas, Anantray TI Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power SO ENERGY POLICY LA English DT Article DE Plug-in hybrid electric vehicles; Wind power; Demand response AB This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wang, Jianhui; Liu, Cong; Zhou, Yan; Vyas, Anantray] Argonne Natl Lab, Argonne, IL 60439 USA. [Ton, Dan] US DOE, Washington, DC 20585 USA. [Kim, Jinho] Kyungwon Univ, Kyunggido 461701, South Korea. RP Wang, JH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 24 TC 95 Z9 98 U1 1 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2011 VL 39 IS 7 SI SI BP 4016 EP 4021 DI 10.1016/j.enpol.2011.01.042 PG 6 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 790WG UT WOS:000292620800016 ER PT J AU Werth, D Kurzeja, R Dias, NL Zhang, G Duarte, H Fischer, M Parker, M Leclerc, M AF Werth, David Kurzeja, Robert Dias, Nelson Luis Zhang, Gengsheng Duarte, Henrique Fischer, Marc Parker, Matthew Leclerc, Monique TI The Simulation of the Southern Great Plains Nocturnal Boundary Layer and the Low-Level Jet with a High-Resolution Mesoscale Atmospheric Model SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID EDDY-COVARIANCE FLUXES; UNITED-STATES; TURBULENCE; SHEAR; CLIMATOLOGY; ENERGY; CANOPY; SYSTEM; FOREST; SCALE AB A field project over the Atmospheric Radiation Measurement-Cloud and Radiation Test Bed (ARM-CART) site during a period of several nights in September 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data were collected from in situ (a multilevel tower) and remote (sodar) sensors, and the observed LLJ activity during the project was found to agree well with data from earlier studies regarding jet speed, height, and direction. To study nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System was used to simulate the ARM-CART NBL field experiment and was validated against the data collected from the site. This model was run at high resolution for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model faithfully simulated the formation and dissolution of the low-level nocturnal jet during a synoptic situation in which low pressure with warm southerly advection replaced high pressure. An additional simulation at 32.5-m resolution was performed for the most stable 5.5-h period, using a turbulence scheme adjusted to allow for greater resolved turbulent kinetic energy, and the model reproduced the turbulence statistics as determined by a power spectrum. The benefit of the high-resolution simulation is evident in the much more realistically resolved model turbulent kinetic energy and the fluxes of momentum, heat, and water vapor. C1 [Werth, David; Kurzeja, Robert; Parker, Matthew] Savannah River Natl Lab, Aiken, SC 29808 USA. [Dias, Nelson Luis] Univ Fed Parana, Ctr Politecn, BR-80060000 Curitiba, Parana, Brazil. [Zhang, Gengsheng; Duarte, Henrique; Leclerc, Monique] Univ Georgia, Lab Environm Phys, Griffin, GA USA. [Fischer, Marc] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. RP Werth, D (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM david.werth@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-08SR22470]; DOE Office of Science [ER64321-1028996-0012858]; Environmental Sciences Division of the Office of Biological and Environmental Research of the U.S. Department of Energy FX This work was prepared for the U.S. Department of Energy under Contract DE-AC09-08SR22470. This work was sponsored by the DOE Office of Science Terrestrial Carbon Processes Program (Contract ER64321-1028996-0012858 for the University of Georgia). Select data were obtained from the Atmospheric Radiation Measurement Program sponsored by the Environmental Sciences Division of the Office of Biological and Environmental Research of the U.S. Department of Energy. We also express our gratitude to the three anonymous reviewers who provided several helpful comments and critiques that greatly improved the quality of the manuscript. NR 44 TC 8 Z9 8 U1 1 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD JUL PY 2011 VL 50 IS 7 BP 1497 EP 1513 DI 10.1175/2011JAMC2272.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 792FI UT WOS:000292725500008 ER PT J AU Jiang, CS Heath, JT Moutinho, HR Al-Jassim, MM AF Jiang, C. -S. Heath, J. T. Moutinho, H. R. Al-Jassim, M. M. TI Scanning capacitance spectroscopy on n(+) -p asymmetrical junctions in multicrystalline Si solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ELECTRICAL SIMULATION; N-JUNCTIONS; MICROSCOPY; DELINEATION AB We report on a scanning capacitance spectroscopy (SCS) study on the n(+) -p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of similar to 10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with similar to 10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in the literature. These distinctive spectra are due to uneven carrier-flow from both the n- and p-sides. Our results contribute significantly to the SCS study on asymmetrical junctions. VC 2011 American Institute of Physics. [doi:10.1063/1.3605507] C1 [Jiang, C. -S.; Heath, J. T.; Moutinho, H. R.; Al-Jassim, M. M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Heath, J. T.] Linfield Coll, Mcminnville, OR 97128 USA. RP Jiang, CS (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM chun.sheng.jiang@nrel.gov RI jiang, chun-sheng/F-7839-2012; Heath, Jennifer/L-1201-2015 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; American Chemical Society FX The authors thank R. Reedy at NREL for performing the SIMS measurement. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. J.H. would like to thank the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. NR 11 TC 7 Z9 7 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2011 VL 110 IS 1 AR 014514 DI 10.1063/1.3605507 PG 5 WC Physics, Applied SC Physics GA 792US UT WOS:000292776500135 ER PT J AU Staruch, M Stan, L Lee, JH Wang, H Budnick, JI Jain, M AF Staruch, M. Stan, L. Lee, J. H. Wang, H. Budnick, J. I. Jain, M. TI Magnetotransport properties of Pr0.5Ca0.5MnO3 thin films grown by a solution route SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MAGNETIC-FIELD; CHARGE; PR1-XCAXMNO3; TRANSITIONS; MANGANITES AB Thin films of Pr0.5Ca0.5MnO3 were fabricated on (001) oriented SrLaAlO4, NdGaO3, and SrTiO3 substrates using a hybrid solution route and spin coating techniques. Good crystalline and epitaxial quality of the films was confirmed with X-ray diffraction and transmission electron microscopy studies. Strain in the film grown on NdGaO3 substrate did not relax during annealing process and the film exhibited charge-ordered insulator phase at low temperatures even with magnetic fields up to 9 T. However, the films on SrLaAlO4 and SrTiO3 substrates (with partially relaxed compressive and tensile strain, respectively) displayed melting of the charge-ordered phase with applied magnetic fields of less than 5 T. The results suggest that strain-relaxation rather than only the type of strain plays an important role in lowering critical melting magnetic fields in these films. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3603011] C1 [Staruch, M.; Budnick, J. I.; Jain, M.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Stan, L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87544 USA. [Lee, J. H.; Wang, H.] Texas A&M Univ, College Stn, TX 77843 USA. [Budnick, J. I.; Jain, M.] Univ Connecticut, Inst Mat Sci, Storrs, CT 06269 USA. RP Staruch, M (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. EM mjain@phys.uconn.edu RI Wang, Haiyan/P-3550-2014; Staruch, Margo/M-9260-2015; OI Wang, Haiyan/0000-0002-7397-1209; Staruch, Margo/0000-0003-3088-2553; Jain, Menka/0000-0002-2264-6895 FU UConn start-up funds; NSF [1105975, 0846504] FX The author MJ is grateful for financial support from UConn start-up funds and NSF 1105975 grant. The efforts at Texas A&M University were supported by NSF 0846504. NR 21 TC 8 Z9 8 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 1 PY 2011 VL 110 IS 1 AR 013921 DI 10.1063/1.3603011 PG 4 WC Physics, Applied SC Physics GA 792US UT WOS:000292776500093 ER PT J AU Mathias, G Baer, MD AF Mathias, Gerald Baer, Marcel D. TI Generalized Normal Coordinates for the Vibrational Analysis of Molecular Dynamics Simulations SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SPACE GAUSSIAN PSEUDOPOTENTIALS; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO; INFRARED-SPECTRUM; SIMULTANEOUS DIAGONALIZATION; POLYATOMIC-MOLECULES; RETINAL CHROMOPHORE; ATOMIC FLUCTUATIONS; WATER NETWORKS; LIQUID WATER AB The computation of vibrational spectra via molecular dynamics (MD) simulations has made lively progress in recent years. In particular, infrared spectra are accessible employing ab initio MD, for which only the total dipole moment has to be computed "on the fly" from the electronic structure along the trajectory. The analysis of such spectra in terms of the normal modes of intramolecular motion, however, still poses a challenge to theory. Here, we present an algorithm to extract such normal modes from MD trajectories by combining several ideas available in the literature. The algorithm allows one to compute both the normal modes and their vibrational bands without having to rely on an equipartition assumption, which hampered previous methods. Our analysis is based on a tensorial definition of the vibrational density of states, which spans both the frequency resolved cross- and auto-correlations of the molecular degrees of freedom. Generalized normal coordinates are introduced as orthonormal transforms of mass-weighted coordinates, which minimize their mutual cross-correlations. The generalized normal coordinates and their associated normal modes are iteratively constructed by a minimization scheme based on the Jacobi diagonalization. Furthermore, the analysis furnishes mode local temperatures, which provide not only a measure for the convergence of the computed intensities but also permits one to correct these intensities a posteriori toward the ensemble limit. As a first non-trivial test application we analyze the infrared spectrum of isoprene based on ab initio MD, which is an important building block of various dye molecules in molecular biology. C1 [Mathias, Gerald] Univ Munich, Lehrstuhl BioMol Opt, D-80538 Munich, Germany. [Baer, Marcel D.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Mathias, Gerald; Baer, Marcel D.] Ruhr Univ Bochum, Lehrstuhl Theoret Chem, D-44780 Bochum, Germany. RP Mathias, G (reprint author), Univ Munich, Lehrstuhl BioMol Opt, Oettingenstr 67, D-80538 Munich, Germany. EM gerald.mathias@physik.uni-muenchen.de RI Baer, Marcel/K-7664-2012 FU Deutsche Forschungsgemeinschaft within FOR [MA 1547/3, 436] FX We thank Sergei Ivanov and Harald Forbert for helpful discussions and Dominik Marx for encouragement and support. Theodoros Zelleke is acknowledged for implementing the internal coordinate transform. Funding was provided by the Deutsche Forschungsgemeinschaft through grant MA 1547/3 to D.M. within FOR 436. NR 55 TC 17 Z9 17 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2011 VL 7 IS 7 BP 2028 EP 2039 DI 10.1021/ct2001304 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 790VI UT WOS:000292617900004 PM 26606474 ER PT J AU Hynninen, AP Matthews, JF Beckham, GT Crowley, MF Nimlos, MR AF Hynninen, Antti-Pekka Matthews, James F. Beckham, Gregg T. Crowley, Michael F. Nimlos, Mark R. TI Coarse-Grain Model for Glucose, Cellobiose, and Cellotetraose in Water SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID CELLULOSE-I-BETA; CARBOHYDRATE-BINDING MODULE; IIII CRYSTAL MODELS; MOLECULAR-DYNAMICS; BIOMASS RECALCITRANCE; CELLOBIOHYDROLASE-I; FORCE-FIELD; SIMULATIONS; STABILITY; POTENTIALS AB We present a coarse-grain (CG) simulation model for aqueous solutions of beta-D-glucose, cellobiose, and cellotetraose, based on atomistic simulation data for each system. In the model, three spherical beads are used to represent glucose, and a single bead is used to represent water. For glucose, the force field is calculated using force matching by minimizing the sum of the square differences between forces calculated from atomistic and CG simulations. For cellobiose and cellotetraose, we use a hybrid method where the nonbonded interactions are obtained using force matching and the bonded interactions are obtained using Boltzmann inversion. We demonstrate excellent agreement in the structural properties between the atomistic simulations and the CG simulations. This model represents the first step in developing a CG force field for cellulose, as it is of significant interest to study cellulose behavior at much longer time and length scales relative to atomistic simulations. C1 [Hynninen, Antti-Pekka; Beckham, Gregg T.; Crowley, Michael F.; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Matthews, James F.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Beckham, Gregg T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. RP Nimlos, MR (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Mark.Nimlos@nrel.gov RI crowley, michael/A-4852-2013 OI crowley, michael/0000-0001-5163-9398 FU Colorado School of Mines; National Science Foundation; National Renewable Energy Laboratory; DOE Office of EERE [DE-AC36-08GO28308] FX This work was supported by the National Renewable Energy Laboratory Directed Research & Development program. Computational resources for this research were supported in part by the Golden Energy Computing Organization and the Colorado School of Mines using resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratory. Computer time was provided in part by the NREL Computational Sciences Center supported by the DOE Office of EERE under contract number DE-AC36-08GO28308. We thank Professor Jhih-Wei Chu of UC Berkeley for helpful discussions. NR 64 TC 14 Z9 14 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2011 VL 7 IS 7 BP 2137 EP 2150 DI 10.1021/ct200092t PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 790VI UT WOS:000292617900015 PM 26606485 ER PT J AU Kowalski, K Olson, RM Krishnamoorthy, S Tipparaju, V Apra, E AF Kowalski, K. Olson, R. M. Krishnamoorthy, S. Tipparaju, V. Apra, E. TI Role of Many-Body Effects in Describing Low-Lying Excited States of pi-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; GAUSSIAN-BASIS SETS; OPEN-SHELL SYSTEMS; EXCITATION-ENERGIES; ELECTRONIC STATES; RESPONSE FUNCTIONS; CONFIGURATION-INTERACTION; MOLECULAR WIRES; ANTHRACENE; SPECTRA AB The unusual photophysical properties of the pi-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAT-Is). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc-porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120 000 cores. C1 [Kowalski, K.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Olson, R. M.] Cray Inc, St Paul, MN 55101 USA. [Tipparaju, V.; Apra, E.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov; aprae@ornl.gov RI Apra, Edoardo/F-2135-2010 OI Apra, Edoardo/0000-0001-5955-0734 FU Extreme Scale Computing Initiative at Pacific Northwest National Laboratory; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; [DE-AC06-76RLO-1830] FX The work related to the development of the scalable EOMCCSD and CR-EOMCCSD(T) approaches (K.K.) and development of new parallel tools (S.K) was supported by the Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. Most of the calculations have been performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. The scalability tests of the CR-EOMCCSD(T) implementation of NWChem have been performed on the Jaguar Cray-XTS computer system of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 71 TC 12 Z9 12 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2011 VL 7 IS 7 BP 2200 EP 2208 DI 10.1021/ct200217y PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 790VI UT WOS:000292617900020 PM 26606489 ER PT J AU Valone, SM AF Valone, Steven M. TI Quantum Mechanical Origins of the Iczkowski-Margrave Model of Chemical Potential SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CHARGE-TRANSFER; MOLECULAR-DYNAMICS; ELECTRONEGATIVITY EQUALIZATION; FORCE-FIELDS; ENERGY; ELECTRONS; HARDNESS; NUMBER; STATES AB Charge flow in materials at the atomistic level is controlled through chemical potential equalization among its constituents. Consequently employing this concept in a simulation requires some model of chemical potential. Current atomistic models of chemical potential, such as the Iczkowski-Margrave (IM) model, are built largely on heuristic arguments and depend linearly on the net charge of each constituent. To gain new insight into the IM model, a many-electron model Hamiltonian is constructed at the atomistic level that is commensurate with the IM model, as opposed to one designed at the one-electron level. For a three-state, two-fragment system, the essential electronegativity and the chemical hardness energies are recovered. However, the model Hamiltonian imparts new charge dependencies not found in the IM model. Decidedly nonlinear, transitional or hopping contributions in those new dependencies are shown to be critical to regulating charge flow. Other modifications to the IM model are illustrated with simple two- and three-fragment systems, involving as many as five states, that act as paradigms for general materials models. Including more than three states in the three-fragment example introduces local bonding refinements to the Mulliken electronegativity and chemical hardness. C1 Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Valone, SM (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM smv@lanl.gov FU U.S. Department of Energy [DE-ACS2-06NA25396]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026] FX Work was performed at Los Alamos National Laboratory under the auspices of the U.S. Department of Energy, under contract no. DE-ACS2-06NA25396 with funding provided by the U.S. Department of Energy, Laboratory Directed Research and Development Program (first half) and the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award number 2008LANL1026 (second half). Thanks is given to the Institute for Mathematics and Its Applications, University of Minnesota, for its support during the earliest stages of this conceptual development. The author thanks Donald G. Truhlar, Susan R. Atlas, Heinz Siedentop, Bias P. Uberuaga, Eric Cances, and Helen G. Telila. NR 57 TC 14 Z9 14 U1 1 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2011 VL 7 IS 7 BP 2253 EP 2261 DI 10.1021/ct200283y PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 790VI UT WOS:000292617900026 PM 26606494 ER PT J AU Ma, HY Ji, X Neelin, JD Mechoso, CR AF Ma, H. -Y. Ji, X. Neelin, J. D. Mechoso, C. R. TI Mechanisms for Precipitation Variability of the Eastern Brazil/SACZ Convective Margin SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; GENERAL-CIRCULATION MODELS; ATLANTIC CONVERGENCE ZONE; PLANETARY BOUNDARY-LAYER; SOUTH-AMERICAN SECTOR; LA-NINA EVENTS; NORTHEAST BRAZIL; EL-NINO; RAINFALL VARIABILITY; LEVEL CIRCULATION AB The present study examines the mechanisms for the connection between the precipitation variability in eastern Brazil and the South Atlantic convergence zone (SACZ) convective margin (eastern Brazil/SACZ convective margin) and the variability of low-level inflow on interannual time scales during austral summer. The authors' methodology is based on the analysis of observational datasets and simulations by the University of California, Los Angeles (UCLA) atmospheric general circulation model (AGCM) coupled to the Simplified Simple Biosphere Model. It is demonstrated that the inflow variability is associated with the leading mode of wind variability over subtropical South America, and the connection is established through the mechanism of an analytic prototype for convective margin shifts proposed in previous studies. Over the eastern Brazil/SACZ convective margin, the weaker (stronger) convection tends to occur together with stronger (weaker) low-level inflows in reference to the mean easterly trades. By changing the "ventilation" effect, stronger (weaker) inflows with low moist static energy from the Atlantic Ocean suppress (promote) convection. The causal relationship is verified by AGCM mechanism-testing experiments performed in perpetual-February mode, in which low-level, nondivergent wind perturbations are imposed in a region overlapping eastern Brazil and the western Atlantic Ocean. With solely the imposed-wind perturbations acting on the moisture advection in the model equation, the AGCM can reproduce the precipitation variability in the eastern Brazil/SACZ convective margin. The capability of the AGCM in capturing such precipitation sensitivity to the low-level inflow variability also suggests that the mechanism can be applied to other regions of convective margins or to other time scales. C1 [Ma, H. -Y.; Ji, X.; Neelin, J. D.; Mechoso, C. R.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Ji, X.] Nanjing Univ, Sch Atmospher Sci, Nanjing 210008, Peoples R China. RP Ma, HY (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Mail Code L-103,7000 East Ave, Livermore, CA 94550 USA. EM ma21@llnl.gov RI Neelin, J. David/H-4337-2011; Ma, Hsi-Yen/K-1019-2013 FU NOAA [NA08OAR4310597, NA08OAR4310882]; NSF [ATM-0645200, AGS-1102838] FX We thank Dr. Benjamin Lintner for very helpful comments and Joyce Meyerson for graphical assistance. Computing resources were provided from the NCAR computational and information systems laboratory. This research was supported by NOAA under Grants NA08OAR4310597 and NA08OAR4310882 and by NSF under Grants ATM-0645200 and AGS-1102838. NR 43 TC 6 Z9 6 U1 1 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD JUL PY 2011 VL 24 IS 13 BP 3445 EP 3456 DI 10.1175/2011JCLI4070.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 790LW UT WOS:000292590500019 ER PT J AU Donner, LJ Wyman, BL Hemler, RS Horowitz, LW Ming, Y Zhao, M Golaz, JC Ginoux, P Lin, SJ Schwarzkopf, MD Austin, J Alaka, G Cooke, WF Delworth, TL Freidenreich, SM Gordon, CT Griffies, SM Held, IM Hurlin, WJ Klein, SA Knutson, TR Langenhorst, AR Lee, HC Lin, YL Magi, BI Malyshev, SL Milly, PCD Naik, V Nath, MJ Pincus, R Ploshay, JJ Ramaswamy, V Seman, CJ Shevliakova, E Sirutis, JJ Stern, WF Stouffer, RJ Wilson, RJ Winton, M Wittenberg, AT Zeng, FR AF Donner, Leo J. Wyman, Bruce L. Hemler, Richard S. Horowitz, Larry W. Ming, Yi Zhao, Ming Golaz, Jean-Christophe Ginoux, Paul Lin, S. -J. Schwarzkopf, M. Daniel Austin, John Alaka, Ghassan Cooke, William F. Delworth, Thomas L. Freidenreich, Stuart M. Gordon, C. T. Griffies, Stephen M. Held, Isaac M. Hurlin, William J. Klein, Stephen A. Knutson, Thomas R. Langenhorst, Amy R. Lee, Hyun-Chul Lin, Yanluan Magi, Brian I. Malyshev, Sergey L. Milly, P. C. D. Naik, Vaishali Nath, Mary J. Pincus, Robert Ploshay, Jeffrey J. Ramaswamy, V. Seman, Charles J. Shevliakova, Elena Sirutis, Joseph J. Stern, William F. Stouffer, Ronald J. Wilson, R. John Winton, Michael Wittenberg, Andrew T. Zeng, Fanrong TI The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3 SO JOURNAL OF CLIMATE LA English DT Article ID GENERAL-CIRCULATION MODELS; LARGE-SCALE MODELS; SHALLOW CUMULUS CONVECTION; CLOUD DROPLET ACTIVATION; SEA-SURFACE TEMPERATURE; INCLUDING MASS FLUXES; AR4 CLIMATE MODELS; PART I; RADIATIVE PROPERTIES; STRATIFORM CLOUDS AB The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32 degrees C relative to 1881-1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56 degrees and 0.52 degrees C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol-cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66 degrees C but did not include aerosol-cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud-aerosol interactions to limit greenhouse gas warming. C1 [Donner, Leo J.; Wyman, Bruce L.; Hemler, Richard S.; Horowitz, Larry W.; Ming, Yi; Golaz, Jean-Christophe; Ginoux, Paul; Lin, S. -J.; Schwarzkopf, M. Daniel; Delworth, Thomas L.; Freidenreich, Stuart M.; Gordon, C. T.; Griffies, Stephen M.; Held, Isaac M.; Hurlin, William J.; Knutson, Thomas R.; Nath, Mary J.; Ploshay, Jeffrey J.; Ramaswamy, V.; Seman, Charles J.; Sirutis, Joseph J.; Stern, William F.; Stouffer, Ronald J.; Wilson, R. John; Winton, Michael; Wittenberg, Andrew T.; Zeng, Fanrong] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA. [Zhao, Ming; Austin, John; Lin, Yanluan] UCAR, GFDL, Princeton, NJ USA. [Alaka, Ghassan] Colorado State Univ, Ft Collins, CO 80523 USA. [Cooke, William F.; Langenhorst, Amy R.; Lee, Hyun-Chul; Naik, Vaishali] High Performance Technol Inc, GFDL, Princeton, NJ USA. [Klein, Stephen A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. [Magi, Brian I.; Malyshev, Sergey L.; Shevliakova, Elena] Princeton Univ, GFDL, Princeton, NJ 08544 USA. [Milly, P. C. D.] US Geol Survey, Princeton, NJ USA. [Pincus, Robert] Univ Colorado, ESRL, Boulder, CO 80309 USA. RP Donner, LJ (reprint author), NOAA, Geophys Fluid Dynam Lab, Princeton Univ Forrestal Campus,201 Forrestal Rd, Princeton, NJ 08540 USA. EM leo.j.donner@noaa.gov RI Ginoux, Paul/C-2326-2008; Ming, Yi/F-3023-2012; Wittenberg, Andrew/G-9619-2013; Delworth, Thomas/C-5191-2014; Zhao, Ming/C-6928-2014; Golaz, Jean-Christophe/D-5007-2014; Horowitz, Larry/D-8048-2014; Naik, Vaishali/A-4938-2013; Shevliakova, Elena/J-5770-2014; Pincus, Robert/B-1723-2013; lin, yanluan/A-6333-2015; Klein, Stephen/H-4337-2016; Magi, Brian/K-2000-2015; Alaka, Ghassan/A-4513-2017 OI Ginoux, Paul/0000-0003-3642-2988; Wittenberg, Andrew/0000-0003-1680-8963; Golaz, Jean-Christophe/0000-0003-1616-5435; Horowitz, Larry/0000-0002-5886-3314; Naik, Vaishali/0000-0002-2254-1700; Pincus, Robert/0000-0002-0016-3470; Klein, Stephen/0000-0002-5476-858X; Magi, Brian/0000-0001-8131-0083; Alaka, Ghassan/0000-0003-3137-8535 FU Office of Science, U.S. Department of Energy [DE FG02-03ER63561]; Office of Science in the U.S. Department of Energy; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Biological and Environmental Research, U.S. Department of Energy [DE AI02-07ER64477] FX We acknowledge the modeling groups, PCMDI, and the World Climate Research Program's (WCRP's) Working Group on Coupled Modelling for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy.; The contribution of Stephen A. Klein to this work was funded through the Regional and Global Climate Modeling and Atmospheric System Research Programs of the Office of Science in the U.S. Department of Energy and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Robert Pincus was supported by the Office of Science, U.S. Department of Energy, under contract DE FG02-03ER63561. Yanluan Lin was supported by the Office of Biological and Environmental Research, U.S. Department of Energy, under Project DE AI02-07ER64477. NR 142 TC 305 Z9 313 U1 5 U2 72 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD JUL PY 2011 VL 24 IS 13 BP 3484 EP 3519 DI 10.1175/2011JCLI3955.1 PG 36 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 790LW UT WOS:000292590500022 ER PT J AU Xie, R Long, GG Weigand, SJ Moss, SC Roorda, S AF Xie, R. Long, G. G. Weigand, S. J. Moss, S. C. Roorda, S. TI Order and disorder in edge-supported pure amorphous Si and pure amorphous Si on Si(001) SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 11th International Conference on the Structure of Non-Crystalline Materials (NCM 11) CY JUN 28-JUL 02, 2010 CL Paris, FRANCE DE Ion-implantation amorphization; Amorphous silicon; Low angle X-ray scattering ID SILICON; SUBMICROCRYSTALLITES; DIFFRACTION AB We report results from an investigation into hidden anisotropy in pure fully-dense amorphous silicon. For amorphous silicon in intimate contact with a crystalline Si(001) substrate, one can reasonably expect that the interface with the substrate may impose anisotropy in the form of distorted ordering within the film. Indeed, we found four-fold periodic intensity variations, with bimodal intensity centered along the substrate c-Si < 110 > directions, in the X-ray scattering from a-Si on Si(001). These well-defined intensity variations disappeared entirely in X-ray scattering from edge-supported a-Si films, where there was no detectable anisotropy. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xie, R.; Long, G. G.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Weigand, S. J.] Northwestern Univ, Argonne Natl Lab, DuPontNorthwesternDow Collaborat Access Team Sync, Argonne, IL 60439 USA. [Moss, S. C.] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Moss, S. C.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Roorda, S.] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada. RP Long, GG (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gglong@aps.anl.gov RI USAXS, APS/D-4198-2013; Roorda, Sjoerd/N-2604-2014; OI Xie, Ruobing/0000-0003-0266-9122 NR 9 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUL 1 PY 2011 VL 357 IS 14 SI SI BP 2498 EP 2501 DI 10.1016/j.jnoncrysol.2011.02.003 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 791KI UT WOS:000292663700002 ER PT J AU Benmore, CJ Soignard, E Guthrie, M Amin, SA Weber, JKR McKiernan, K Wilding, MC Yarger, JL AF Benmore, C. J. Soignard, E. Guthrie, M. Amin, S. A. Weber, J. K. R. McKiernan, K. Wilding, M. C. Yarger, J. L. TI High pressure x-ray diffraction measurements on Mg2SiO4 glass SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article; Proceedings Paper CT 11th International Conference on the Structure of Non-Crystalline Materials (NCM 11) CY JUN 28-JUL 02, 2010 CL Paris, FRANCE DE High pressure; Silicate glass; Glass structure; X-ray diffraction; Equation of state ID FORSTERITE MG2SIO4; MOLECULAR-DYNAMICS; DISCONTINUITY; SCATTERING; LIQUID; MANTLE; ATOP; MELT AB The structure factors of Mg2SiO4 glass have been measured using high energy x-ray diffraction up to pressures of 30.2 GPa, and the equation of state measured up to 12.8 GPa. The average Mg-O coordination numbers were extracted from the experimental pair distribution functions assuming two cases (i) there is no change in Si-O coordination number with pressure and (ii) the average Si-O coordination number increases the same as for pure SiO2 glass. Both analyses give similar results and show a gradual increase in the average Mg-O coordination number from 5.0 at ambient pressure to similar to 6.6(6) at 30.2 GPa. There is good qualitative agreement between the experimental structure and equation of state data for the glass compared to several recent molecular dynamics simulations carried out on liquid Mg2SiO4. (C) 2011 Elsevier B.V. All rights reserved. C1 [Benmore, C. J.; Guthrie, M.; Weber, J. K. R.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Benmore, C. J.; McKiernan, K.; Yarger, J. L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Soignard, E.; Amin, S. A.; McKiernan, K.; Yarger, J. L.] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Weber, J. K. R.] Mat Dev Inc, Arlington Hts, IL 60004 USA. [Wilding, M. C.] Aberystwyth Univ, Inst Math & Phys, Aberystwyth SY23 3BZ, Dyfed, Wales. RP Benmore, CJ (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. EM Benmore@aps.anl.gov RI Guthrie, Malcolm/K-3099-2012; Yarger, Jeff/L-8748-2014; OI Yarger, Jeff/0000-0002-7385-5400; Benmore, Chris/0000-0001-7007-7749 NR 28 TC 10 Z9 11 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD JUL 1 PY 2011 VL 357 IS 14 SI SI BP 2632 EP 2636 DI 10.1016/j.jnoncrysol.2010.12.064 PG 5 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 791KI UT WOS:000292663700024 ER PT J AU Hadamcik, E Levasseur-Regourd, AC Renard, JB Lasue, J Sen, AK AF Hadamcik, E. Levasseur-Regourd, A. C. Renard, J-B Lasue, J. Sen, A. K. TI Polarimetric observations and laboratory simulations of asteroidal surfaces: The case of 21 Lutetia SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT 12th International Conference on Electromagnetic and Light Scattering by Nonspherical Particles - Theory, Measurements, and Applications CY JUN 28-JUL 02, 2010 CL Helsinki, FINLAND DE Space mission; Asteroid; 21 Lutetia; Polarization; Asteroid type; Meteorite ID ROSETTA MISSION; LIGHT-SCATTERING; DUST PARTICLES; SOLAR-SYSTEM; POLARIZATION; TARGET; 2867-STEINS; 21-LUTETIA; TELESCOPE; SPECTRA AB The Rosetta spacecraft flew by 21 Lutetia on July 2010. This event provides a unique opportunity to enhance our knowledge of solar system small bodies, by comparing the surface properties measured in situ and the properties deduced from the linear polarization of scattered light, and prepare future observations. The linear polarization is studied as a function of the phase angle at different wavelengths and compared to phase curves of M-type and C-type asteroids. In a second part of the work, 21 Lutetia's polarization phase curves are compared to phase curves measured in the laboratory for powdered carbonaceous chondrites suggested as eventual analogs by spectroscopic studies. The importance of the variation of the linear polarization as a function of the wavelength is emphasized. CV3-class meteorite is found to be the best polarimetric laboratory analog with an average size of regolith grain lower than 50 mu m. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hadamcik, E.] Univ Paris 06, CNRS, LATMOS IPSL, F-78280 Paris, France. [Levasseur-Regourd, A. C.] Univ Paris 06, CNRS, LATMOS, UMR 8190, F-75005 Paris, France. [Renard, J-B] LPC2E CNRS, F-45071 Orleans 2, France. [Lasue, J.] LANL, Los Alamos, NM 87545 USA. [Lasue, J.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Sen, A. K.] Assam Univ, Silchar 788001, India. RP Hadamcik, E (reprint author), Univ Paris 06, CNRS, LATMOS IPSL, 11 Bld DAlembert, F-78280 Paris, France. EM edith.hadamcik@aerov.jussieu.fr NR 36 TC 1 Z9 1 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2011 VL 112 IS 11 SI SI BP 1881 EP 1890 DI 10.1016/j.jqsrt.2011.01.035 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 789RL UT WOS:000292533900030 ER PT J AU Moyer, RO Gilson, DFR Toby, BH AF Moyer, Ralph O., Jr. Gilson, Denis F. R. Toby, Brian H. TI Neutron powder diffraction, and solid-state deuterium NMR analyses of Yb2RuD6 and spectroscopic vibrational analysis of Yb2RuD6 and Yb2RuH6 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Ternary metal deuteride; Neutron powder diffraction; Infrared spectroscopy; Deuterium NMR ID SPECTRA; SALTS; EARTH AB The crystal structure of Yb2RuD6 has been determined by neutron powder diffraction and the results were consistent with the Fm3m (#225) space group, a=7.2352(18) angstrom, with the atoms arranged according to the well-known K2PtCl6 structure. No structural phase transition was observed in going from room temperature to 4 K. Raman spectra were not available due to fluorescence, but all fundamental bands and combination bands were assigned from FTIR and PAIR spectra only following previous studies for other alkaline earth and europium ruthenium ternary metal hydrides and deuterides. The deuterium nuclear quadrupole coupling constant, 40.9 kHz, leads to an ionic character of the Ru-D bond of 82%. (C) 2011 Elsevier Inc. All rights reserved. C1 [Moyer, Ralph O., Jr.] Trinity Coll, Dept Chem, Hartford, CT 06106 USA. [Gilson, Denis F. R.] McGill Univ, Dept Chem, Montreal, PQ H3A 2K6, Canada. [Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL USA. RP Moyer, RO (reprint author), Trinity Coll, Dept Chem, 300 Summit St, Hartford, CT 06106 USA. EM ralph.moyer@trincoll.edu RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU Trinity College FX We thank Dr. F. Morin for assistance with the NMR measurements, Dr. S. Elowatik (Universite de Montreal) for the PAIR spectra and Dr. J. Stalick(NIST) for assistance with the powder neutron diffraction experiments. We acknowledge support from the National Science Foundation for powder X-ray diffraction laboratory equipment (MRI-CHE 0959526). ROM acknowledges support from the Trinity College Scovill Chair Research Fund. NR 11 TC 5 Z9 5 U1 1 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2011 VL 184 IS 7 BP 1895 EP 1898 DI 10.1016/j.jssc.2011.04.012 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 792CQ UT WOS:000292718500046 ER PT J AU Chazelle, B Seshadhri, C AF Chazelle, Bernard Seshadhri, C. TI Online Geometric Reconstruction SO JOURNAL OF THE ACM LA English DT Article DE Algorithms; Theory; Computational geometry; sublinear algorithms AB We investigate a new class of geometric problems based on the idea of online error correction. Suppose one is given access to a large geometric dataset though a query mechanism; for example, the dataset could be a terrain and a query might ask for the coordinates of a particular vertex or for the edges incident to it. Suppose, in addition, that the dataset satisfies some known structural property P (for example, monotonicity or convexity) but that, because of errors and noise, the queries occasionally provide answers that violate P. Can one design a filter that modifies the query's answers so that (i) the output satisfies P; (ii) the amount of data modification is minimized? We provide upper and lower bounds on the complexity of online reconstruction for convexity in 2D and 3D. C1 [Chazelle, Bernard] Princeton Univ, Princeton, NJ 08544 USA. [Seshadhri, C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Chazelle, B (reprint author), Princeton Univ, 404 Comp Sci Bldg, Princeton, NJ 08544 USA. EM chazelle@cs.princeton.edu; csesha@gmail.com FU NSF [CCR-998817, CCR- 0306283]; ARO [DAAH04-96-1-0181] FX This work was supported in part by NSF grants CCR-998817, CCR- 0306283, and ARO Grant DAAH04-96-1-0181. NR 26 TC 2 Z9 2 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0004-5411 EI 1557-735X J9 J ACM JI J. ACM PD JUL PY 2011 VL 58 IS 4 AR 14 DI 10.1145/1989727.1989728 PG 32 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 792RN UT WOS:000292766900001 ER PT J AU Paliwal, B Tandon, R Buchheit, TE Rodelas, JM AF Paliwal, Bhasker Tandon, Rajan Buchheit, Thomas E. Rodelas, Jeffrey M. TI An Assessment of the Effectiveness of the Hertzian Indentation Technique for Determining the Fracture Toughness of Brittle Materials SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID CONTACT FRACTURE; FINITE FRICTION; STRESS-FIELD; CRACK; GLASS; ELASTICITY; INITIATION; INDENTER; BENEATH; SPHERES AB Ring crack initiation loads on glass using a spherical WC indenter were measured, and the methodology proposed by Warren and Hills and Warren was used to estimate glass toughness (K-IC). The values obtained were overestimates of K-IC, primarily because the methodology does not account for friction correctly. Corrected results that show that the stress-intensity factor at the surface crack tip is extremely sensitive to the friction coefficient, l and to Poisson's ratio, nu of the substrate are presented. This sensitivity and an inability to obtain the minimum load for crack initiation despite numerous experimental trials, cast doubt on the utility of the technique to measure K-IC. C1 [Paliwal, Bhasker; Tandon, Rajan] Sandia Natl Labs, Mat Reliabil Dept, Albuquerque, NM 87185 USA. [Buchheit, Thomas E.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. [Rodelas, Jeffrey M.] Ohio State Univ, Dept Ind Welding & Syst Engn, Coll Engn, Columbus, OH 43221 USA. RP Paliwal, B (reprint author), Georgia Inst Technol, Dept Mech Engn, CNRS, UMI 2958, 2 Rue Marconi, F-57070 Metz, Lorraine, France. EM bpaliwal@gatech.edu FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract-DE-AC04-94AL85000. NR 27 TC 5 Z9 5 U1 0 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2011 VL 94 IS 7 BP 2153 EP 2161 DI 10.1111/j.1551-2916.2010.04345.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 790RJ UT WOS:000292606600034 ER PT J AU Zeng, XP Tao, WK Matsui, T Xie, SC Lang, S Zhang, MH Starr, DO Li, XW AF Zeng, Xiping Tao, Wei-Kuo Matsui, Toshihisa Xie, Shaocheng Lang, Stephen Zhang, Minghua Starr, David O'C Li, Xiaowen TI Estimating the Ice Crystal Enhancement Factor in the Tropics SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID RESOLVING MODEL SIMULATIONS; CUMULUS CLOUDS; TOGA COARE; PARTICLE CONCENTRATIONS; EXPLICIT MICROPHYSICS; ATMOSPHERIC RADIATION; NUCLEATION PROCESSES; CONVECTIVE SYSTEMS; RADAR OBSERVATIONS; CUMULIFORM CLOUDS AB The ice crystal enhancement (IE) factor, defined as the ratio of the ice crystal to ice nuclei (IN) number concentrations for any particular cloud condition, is needed to quantify the contribution of changes in IN to global warming. However, the ensemble characteristics of IE are still unclear. In this paper, a representation of the IE factor is incorporated into a three-ice-category microphysical scheme for use in long-term cloud-resolving model (CRM) simulations. Model results are compared with remote sensing observations, which suggest that, absent a physically based consideration of how IE comes about, the IE factor in tropical clouds is about 10 3 times larger than that in midlatitudinal ones. This significant difference in IE between the tropics and middle latitudes is consistent with the observation of stronger entrainment and detrainment in the tropics. In addition, the difference also suggests that cloud microphysical parameterizations depend on spatial resolution (or subgrid turbulence parameterizations within CRMs). C1 [Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Lang, Stephen; Starr, David O'C; Li, Xiaowen] NASA, Goddard Space Flight Ctr, Atmospheres Lab, Greenbelt, MD 20771 USA. [Zeng, Xiping; Matsui, Toshihisa; Li, Xiaowen] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA. [Xie, Shaocheng] Lawrence Livermore Natl Lab, Div Atmospher Sci, Livermore, CA USA. [Lang, Stephen] Sci Syst & Applicat Inc, Lanham, MD USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. RP Zeng, XP (reprint author), NASA, Goddard Space Flight Ctr, Atmospheres Lab, C423,Bldg 33,Mail Code 613-1, Greenbelt, MD 20771 USA. EM xiping.zeng@nasa.gov RI Xie, Shaocheng/D-2207-2013 OI Xie, Shaocheng/0000-0001-8931-5145 FU Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) [DE-AI02-04ER63755, -09ER64753]; NASA MAP [NNX09AJ46G]; NASA; Stony Brook University; U.S. Department of Energy/Office of Science, Biological and Environmental Research by the University of California Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was supported by the Office of Science (BER), U.S. Department of Energy/Atmospheric System Research (DOE/ASR) Interagency Agreement DE-AI02-04ER63755 and -09ER64753. It was also supported by the NASA MAP project under Grant NNX09AJ46G and the NASA and DOE Atmospheric System Research Programs at the Stony Brook University. Dr. Xie, working at LLNL, was supported under the auspices of the U.S. Department of Energy/Office of Science, Biological and Environmental Research by the University of California Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors greatly appreciate the anonymous reviewers for their critical yet constructive comments. The authors acknowledge the NASA Ames Research Center and the NASA Goddard Space Flight Center for the computer time used in this research. This paper is dedicated to Dr. Joanne Simpson, who passed away on 4 March 2010. Dr. Simpson was the leader of the Goddard Mesoscale Dynamics and Modeling group from 1987 to 2004. She taught the authors (W.-K. Tao, S. Lang, X. Li, and X. Zeng) to appreciate the value of using observations to validate simulated cloud processes. NR 67 TC 12 Z9 12 U1 2 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2011 VL 68 IS 7 BP 1424 EP 1434 DI 10.1175/2011JAS3550.1 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 791BH UT WOS:000292634300002 ER PT J AU Stratakis, D Gallardo, JC Palmer, RB AF Stratakis, Diktys Gallardo, Juan C. Palmer, Robert B. TI Enhancement of accelerating field of microwave cavities by magnetic insulation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Particle accelerators; Microwave cavities; Magnetic insulation; rf breakdown ID COLLIDER AB Limitations on the maximum achievable accelerating gradient of microwave cavities can strongly influence the performance, length, and cost of particle accelerators. Gradient limitations are widely believed to be initiated by electron emission from the cavity surfaces. Here, we show that the deleterious effects of field emission are effectively suppressed by applying a tangential magnetic field to the cavity walls. With the aid of numerical simulations we compute the field strength required to insulate an 805 MHz cavity and estimate the cavity's tolerances to typical experimental errors such as magnet misalignments and positioning errors. Then, we review an experimental program, currently under progress, to further study the concept. Finally, we report on two specific examples that illustrate the feasibility of magnetic insulation into prospective particle accelerator applications. (C) 2011 Elsevier B.V. All rights reserved. C1 [Stratakis, Diktys; Gallardo, Juan C.; Palmer, Robert B.] Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stratakis, D (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM diktys@physics.ucla.edu OI Gallardo, Juan C/0000-0002-5191-3067 FU U.S Department of Energy [DE-AC02-98CH10886] FX Thanks to A. Bross, V.A. Dolgashev, R.C. Fernow, J.T Keane, H. Kirk, A. Moretti, J. Norem, and Y. Torun for very stimulating discussions. The authors also wish to thank A. Woodhead for reading the paper and making useful suggestions. This work is supported by the U.S Department of Energy, Contract no. DE-AC02-98CH10886. NR 27 TC 2 Z9 2 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2011 VL 643 IS 1 BP 1 EP 5 DI 10.1016/j.nima.2011.03.066 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 788KB UT WOS:000292442700001 ER PT J AU Hamilton, DJ Shahinyan, A Wojtsekhowski, B Annand, JRM Chang, TH Chudakov, E Danagoulian, A Degtyarenko, P Egiyan, K Gilman, R Gorbenko, V Hines, J Hovhannisyan, E Hyde-Wright, CE de Jager, CW Ketikyan, A Mamyan, VH Michaels, R Nathan, AM Nelyubin, V Rachek, I Roedelbrom, M Petrosyan, A Pomatsalyuk, R Popov, V Segal, J Shestakov, Y Templon, J Voskanyan, H AF Hamilton, D. J. Shahinyan, A. Wojtsekhowski, B. Annand, J. R. M. Chang, T. -H. Chudakov, E. Danagoulian, A. Degtyarenko, P. Egiyan, K. Gilman, R. Gorbenko, V. Hines, J. Hovhannisyan, E. Hyde-Wright, C. E. de Jager, C. W. Ketikyan, A. Mamyan, V. H. Michaels, R. Nathan, A. M. Nelyubin, V. Rachek, I. Roedelbrom, M. Petrosyan, A. Pomatsalyuk, R. Popov, V. Segal, J. Shestakov, Y. Templon, J. Voskanyan, H. TI An electromagnetic calorimeter for the JLab real compton scattering experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Calorimeters; Cherenkov detectors AB A lead-glass hodoscope calorimeter that was constructed for use in the Jefferson Lab Real Compton Scattering experiment is described. The detector provides a measurement of the coordinates and the energy of scattered photons in the GeV energy range with resolutions of 5 mm and 6%/root E-gamma GeV. Features of both the detector design and its performance in the high luminosity environment during the experiment are presented. (C) 2011 Elsevier B.V. All rights reserved. C1 [Hamilton, D. J.; Annand, J. R. M.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Shahinyan, A.; Egiyan, K.; Hovhannisyan, E.; Ketikyan, A.; Mamyan, V. H.; Voskanyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Wojtsekhowski, B.; Chudakov, E.; Degtyarenko, P.; de Jager, C. W.; Michaels, R.; Popov, V.; Segal, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Chang, T. -H.; Danagoulian, A.; Nathan, A. M.; Roedelbrom, M.] Univ Illinois, Urbana, IL 61801 USA. [Gilman, R.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gorbenko, V.; Pomatsalyuk, R.] Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Hines, J.; Templon, J.] Univ Georgia, Athens, GA 30602 USA. [Hyde-Wright, C. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Nelyubin, V.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Rachek, I.; Shestakov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Hamilton, DJ (reprint author), Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. EM d.hamilton@physics.gla.ac.uk RI Mamyan, Vahe/K-4778-2012; OI Templon, Jeffrey/0000-0002-3371-788X FU National Science Foundation; DOE [DE-AC05-84ER40150] FX We acknowledge the RCS collaborators who helped to operate the detector and the JLab technical staff for providing outstanding support, and specially D. Hayes, T. Hartlove, T. Hunyady, and S. Mayilyan for help in the construction of the lead-glass modules. We appreciate S. Corneliussen's careful reading of the manuscript and his valuable suggestions. This work was supported in part by the National Science Foundation in grants for the University of Illinois University and by DOE Contract DE-AC05-84ER40150 under which the Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy. NR 20 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2011 VL 643 IS 1 BP 17 EP 28 DI 10.1016/j.nima.2011.01.182 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 788KB UT WOS:000292442700004 ER PT J AU Neal, JS Boatner, LA Ramey, JO Wisniewski, D Kolopus, JA Cherepy, NJ Payne, SA AF Neal, John S. Boatner, Lynn A. Ramey, Joanne O. Wisniewski, Dariusz Kolopus, James A. Cherepy, Nerine J. Payne, Stephen A. TI The characterization of Eu2+-doped mixed alkaline-earth iodide scintillator crystals SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Scintillator; Radiation; Detection; Gamma-ray; Crystals AB The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3-6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for strontium ions. Specifically, europium-doped single crystals have been grown in which up to 30 at% of the strontium ions have been substituted for by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, three other column IIA elements are obvious choices for investigations intended to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with Mg2+, Ca2+, or Ba2+. Light yields up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 key gamma rays) have been observed in the case of partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 mu s, while the peak emission wavelengths ranged from 432 to 438 nm. (C) 2011 Elsevier B.V. All rights reserved. C1 [Neal, John S.; Boatner, Lynn A.; Ramey, Joanne O.; Wisniewski, Dariusz; Kolopus, James A.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Wisniewski, Dariusz] Nicolaus Copernicus Univ, Inst Phys, Torun, Poland. [Cherepy, Nerine J.; Payne, Stephen A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Neal, JS (reprint author), Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. EM nealjs1@ornl.gov RI Cherepy, Nerine/F-6176-2013; Boatner, Lynn/I-6428-2013; Neal, John/R-8203-2016 OI Cherepy, Nerine/0000-0001-8561-923X; Boatner, Lynn/0000-0002-0235-7594; Neal, John/0000-0001-8337-5235 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy; Domestic Nuclear Detection Office in the Department of Homeland Security FX This research was carried out in the Center for Radiation Detection Materials and Systems at ORNL and was supported in part by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy and the Domestic Nuclear Detection Office in the Department of Homeland Security. NR 11 TC 5 Z9 5 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD JUL 1 PY 2011 VL 643 IS 1 BP 75 EP 78 DI 10.1016/j.nima.2011.04.010 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 788KB UT WOS:000292442700013 ER PT J AU Goldman, T AF Goldman, Terry TI On measurement and quantum nondemolition SO PHYSICS TODAY LA English DT Letter C1 Los Alamos Natl Lab, Los Alamos, NM USA. RP Goldman, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM tjgoldman@post.harvard.edu NR 1 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUL PY 2011 VL 64 IS 7 BP 10 EP 11 PG 2 WC Physics, Multidisciplinary SC Physics GA 789AE UT WOS:000292484900005 ER PT J AU Goldhaber, AS Goldhaber, M AF Goldhaber, Alfred Scharff Goldhaber, Maurice TI Clarifying Dirac and Majorana distinctions SO PHYSICS TODAY LA English DT Letter C1 [Goldhaber, Alfred Scharff] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Goldhaber, Maurice] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Goldhaber, AS (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUL PY 2011 VL 64 IS 7 BP 12 EP 12 PG 1 WC Physics, Multidisciplinary SC Physics GA 789AE UT WOS:000292484900009 ER PT J AU Schmieder, RW AF Schmieder, Robert W. TI Albert Ghiorso obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Schmieder, RW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD JUL PY 2011 VL 64 IS 7 BP 63 EP 64 PG 2 WC Physics, Multidisciplinary SC Physics GA 789AE UT WOS:000292484900026 ER PT J AU Kryvych, S Kleessen, S Ebert, B Kersten, B Fisahn, J AF Kryvych, Sergiy Kleessen, Sabrina Ebert, Bent Kersten, Birgit Fisahn, Joachim TI Proteomics - The key to understanding systems biology of Arabidopsis trichomes SO PHYTOCHEMISTRY LA English DT Review DE Single cell proteomics; Trichome; Arabidopsis thaliana; Systems biology ID OVERLAPPING EXPRESSION PATTERNS; SINGLE-CELL LEVEL; GENE-EXPRESSION; GLANDULAR TRICHOMES; SHOTGUN PROTEOMICS; EPIDERMAL-CELLS; PLANT TRICHOMES; PRESSURE PROBE; THALIANA; BIOSYNTHESIS AB Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific "omics" data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kryvych, Sergiy; Kleessen, Sabrina; Ebert, Bent; Kersten, Birgit; Fisahn, Joachim] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany. [Kryvych, Sergiy] German Inst Human Nutr, Dept Expt Diabetol, D-14558 Nuthetal, Germany. [Ebert, Bent] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Kersten, Birgit] Johann Heinrich von Thuenen Inst, Fed Res Inst Rural Areas Forestry & Fisheries, Inst Forest Genet, D-22927 Grosshansdorf, Germany. RP Fisahn, J (reprint author), Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany. EM fisahn@mpimp-golm.mpg.de RI Ebert, Berit/F-1856-2016; OI Ebert, Berit/0000-0002-6914-5473; Kersten, Birgit/0000-0001-9900-9133 FU German Ministry for Education and Research (BMBF) [GABI-FUTURE: 0315046] FX We thank Prof. Dr. Diego Mauricio Riano-Pachon for integration of trichome-specific transcript and metabolite data into GabiPD. We highly acknowledge Maren Imhoff for proof-reading the manuscript. This work was supported by the German Ministry for Education and Research (BMBF) (GABI-FUTURE: 0315046). NR 70 TC 7 Z9 7 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0031-9422 J9 PHYTOCHEMISTRY JI Phytochemistry PD JUL PY 2011 VL 72 IS 10 SI SI BP 1061 EP 1070 DI 10.1016/j.phytochem.2010.09.003 PG 10 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 789SH UT WOS:000292536100009 PM 20952039 ER PT J AU Fries, RJ Nonaka, C AF Fries, R. J. Nonaka, C. TI Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics SO PROGRESS IN PARTICLE AND NUCLEAR PHYSICS LA English DT Review DE Relativistic heavy ion collisions; Quark gluon plasma; Quantum chromodynamics; Relativistic hydrodynamics ID QUARK-GLUON PLASMA; NUCLEUS-NUCLEUS COLLISIONS; RADIATIVE ENERGY-LOSS; COLOR GLASS CONDENSATE; MULTIPLE PARTON SCATTERING; DEEP-INELASTIC SCATTERING; LARGE TRANSVERSE-MOMENTUM; PROMPT PHOTON PRODUCTION; ELLIPTIC FLOW; FRAGMENTATION FUNCTIONS AB We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Fries, R. J.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Fries, R. J.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Nonaka, C.] Nagoya Univ, Dept Phys, Nagoya, Aichi 464, Japan. RP Fries, RJ (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM rjfries@comp.tamu.edu FU US National Science Foundation [PHY-0847538]; Japanese Society for the Promotion of Science (JSPS) [22740156, 22224003]; RIKEN/BNL Research Center, DOE [DE-AC02-98CH10886]; Nagoya University [G07] FX We like to thank R. Rodriguez for many useful discussions. This work was supported by CAREER Award PHY-0847538 from the US National Science Foundation, an Invited Fellowship for Research in Japan by the Japanese Society for the Promotion of Science (JSPS), RIKEN/BNL Research Center, DOE grant DE-AC02-98CH10886, and the Global COE Program "Quest for Fundamental Principles in the Universe" of Nagoya University (G07), Grant-in-Aid for Young Scientists (B) (22740156) and Grant-in-Aid for Scientific Research (S) (22224003) and the JSPS Institutional Program for Young Researcher Overseas Visits. R.J.F. would like to express his gratitude to Chiho Nonaka and the Physics Department at Nagoya University for their kind hospitality while part of this work was completed. NR 311 TC 11 Z9 11 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0146-6410 EI 1873-2224 J9 PROG PART NUCL PHYS JI Prog. Part. Nucl. Phys. PD JUL PY 2011 VL 66 IS 3 BP 607 EP 660 DI 10.1016/j.ppnp.2010.12.001 PG 54 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 788VS UT WOS:000292473100004 ER PT J AU Cui, WJ Josyula, R Li, JZ Fu, ZQ Sha, BD AF Cui, Wenjun Josyula, Ratnakar Li, Jingzhi Fu, Zhengqing Sha, Bingdong TI Membrane Binding Mechanism of Yeast Mitochondrial Peripheral Membrane Protzein TIM44 SO PROTEIN AND PEPTIDE LETTERS LA English DT Article DE Mitochondria; peripheral membrane protein; translocation; TIM23; Tim44 ID PROTEIN IMPORT MOTOR; C-TERMINAL DOMAIN; INNER MEMBRANE; MYCOBACTERIUM-TUBERCULOSIS; PREPROTEIN TRANSLOCASE; EPOXIDE HYDROLASE; ATPASE DOMAIN; HSP70; EVOLUTION; MTHSP70 AB The protein translocations across mitochondrial membranes are carried out by specialized complexes, the Translocase of Outer Membrane (TOM) and Translocase of Inner Membrane (TIM). TIM23 translocon is responsible for translocating the mitochondrial matrix proteins across the mitochondrial inner membrane. Tim44 is an essential, peripheral membrane protein in TIM23 complex. Tim44 is tightly associated with the inner mitochondrial membrane on the matrix side. The Tim44 C-Terminal Domain (CTD) functions as an Inner Mitochondrial Membrane (IMM) anchor that recruits the Presequence protein Associated Motor (PAM) to the TIM23 channel. Using X-ray crystallographic and biochemical data, we show that the N-terminal helices A1 and A2 of Tim44 - CTD are crucial for its membrane tethering function. Based on our data, we propose a model showing how the N-terminal A1 and A2 amphipathic helices can either expose their hydrophobic face during membrane binding or conceal it in the soluble form. Therefore, the A1 and A2 helices of Tim44 may function as a membrane sensor. C1 [Cui, Wenjun; Josyula, Ratnakar; Li, Jingzhi; Sha, Bingdong] Univ Alabama, Dept Cell Biol, Birmingham, AL 35294 USA. [Fu, Zhengqing] Argonne Natl Lab, APS, SER CAT, Argonne, IL 60439 USA. RP Sha, BD (reprint author), Univ Alabama, Dept Cell Biol, MCLM 364,1918 Univ Blvd, Birmingham, AL 35294 USA. EM bdsha@uab.edu RI Josyula, Ratnakar/B-6020-2013 NR 28 TC 3 Z9 3 U1 1 U2 4 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 0929-8665 J9 PROTEIN PEPTIDE LETT JI Protein Pept. Lett. PD JUL PY 2011 VL 18 IS 7 BP 718 EP 725 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 792PV UT WOS:000292760900010 PM 21342097 ER PT J AU Lockard, MA Listwan, P Pedelacq, JD Cabantous, S Nguyen, HB Terwilliger, TC Waldo, GS AF Lockard, Meghan A. Listwan, Pawel Pedelacq, Jean-Denis Cabantous, Stephanie Nguyen, Hau B. Terwilliger, Thomas C. Waldo, Geoffrey S. TI A high-throughput immobilized bead screen for stable proteins and multi-protein complexes SO PROTEIN ENGINEERING DESIGN & SELECTION LA English DT Article DE chemical lysis; high-throughput screening; IMAC beads; protein tagging; split GFP ID GREEN FLUORESCENT PROTEIN; TELOMERASE REVERSE-TRANSCRIPTASE; ESCHERICHIA-COLI; RECOMBINANT PROTEINS; STRUCTURAL GENOMICS; SOLUBLE EXPRESSION; CRYSTAL-STRUCTURE; DIRECTED EVOLUTION; GENETIC SELECTION; MAMMALIAN-CELLS AB We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1-10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon (R) resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length 'breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E. coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. C1 [Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stephanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Pedelacq, Jean-Denis] CNRS, IPBS, F-31077 Toulouse, France. [Pedelacq, Jean-Denis] Univ Toulouse, UPS, IPBS, F-31077 Toulouse, France. [Cabantous, Stephanie] Canc Res Ctr Toulouse, INSERM, UMR1037, F-31052 Toulouse, France. [Cabantous, Stephanie] Univ Toulouse, F-31052 Toulouse, France. [Cabantous, Stephanie] Inst Claudius Regaud, F-31052 Toulouse, France. RP Waldo, GS (reprint author), Los Alamos Natl Lab, Biosci Div, MS M888,POB 1663, Los Alamos, NM 87545 USA. EM waldo@lanl.gov RI Pedelacq, Jean-Denis/C-6053-2011; Terwilliger, Thomas/K-4109-2012; Cabantous, Stephanie/M-3282-2014 OI Terwilliger, Thomas/0000-0001-6384-0320; Cabantous, Stephanie/0000-0002-8406-9421 FU National Institutes of Health's Protein Structure Initiative [5U54GM074946-4]; Biosciences Division of Los Alamos National Laboratories FX This work was supported by the National Institutes of Health's Protein Structure Initiative (grant number 5U54GM074946-4). Funding to pay the Open Access publication charges for this article was provided by Biosciences Division of Los Alamos National Laboratories. NR 54 TC 6 Z9 6 U1 0 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1741-0126 J9 PROTEIN ENG DES SEL JI Protein Eng. Des. Sel. PD JUL PY 2011 VL 24 IS 7 BP 565 EP 578 DI 10.1093/protein/gzr021 PG 14 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 790CW UT WOS:000292567100004 PM 21642284 ER PT J AU Santero, NJ Masanet, E Horvath, A AF Santero, Nicholas J. Masanet, Eric Horvath, Arpad TI Life-cycle assessment of pavements. Part I: Critical review SO RESOURCES CONSERVATION AND RECYCLING LA English DT Review DE Life-cycle assessment (LCA); Pavements; Climate Change; Energy; Asphalt; Concrete ID CONSTRUCTION; ASPHALT AB The rapidly expanding set of pavement life-cycle assessments (LCAs) available in the literature represents the growing interest in improving the sustainability of this critical infrastructure system. The existing literature establishes a foundational framework for quantifying environmental impact, but fails to deliver global conclusions regarding materials choices, maintenance strategies, design lives, and other best-practice policies for achieving sustainability goals. In order to comprehensively quantify environmental footprints and effectively guide sustainability efforts, functional units need to be standardized, systems boundaries expanded, data quality and reliability improved, and study scopes broadened. Improving these deficiencies will allow future studies to perform equitable and comparable assessments, thus creating a synergistic set of literature that continuously builds upon itself rather than generates independent and isolated conclusions. These improvements will place the body of pavement LCA research in a better position to confidently lead private industry and government agencies on successful paths towards sustainability goals. (C) 2011 Elsevier B.V. All rights reserved. C1 [Santero, Nicholas J.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Masanet, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Horvath, Arpad] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Santero, NJ (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave,Bldg 5-417, Cambridge, MA 02139 USA. EM nsantero@mit.edu; ermasanet@lbl.gov; horvath@ce.berkeley.edu RI Masanet, Eric /I-5649-2012 FU University of California, Berkeley; Portland Cement Association under U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Sustainable Products and Solutions Program at the University of California, Berkeley, and the Portland Cement Association under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 33 TC 70 Z9 71 U1 7 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD JUL-AUG PY 2011 VL 55 IS 9-10 BP 801 EP 809 DI 10.1016/j.resconrec.2011.03.010 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 793XF UT WOS:000292856500001 ER PT J AU Santero, NJ Masanet, E Horvath, A AF Santero, Nicholas J. Masanet, Eric Horvath, Arpad TI Life-cycle assessment of pavements Part II: Filling the research gaps SO RESOURCES CONSERVATION AND RECYCLING LA English DT Review DE Life-cycle assessment (LCA); Pavements; Climate change; Energy; Asphalt; Concrete ID POLYCYCLIC AROMATIC-HYDROCARBONS; RECLAIMED ASPHALT PAVEMENT; PARKING LOT SEALCOAT; UNRECOGNIZED SOURCE; CONCRETE; CONSTRUCTION; STRATEGIES; IMPACTS; DESIGN AB As life-cycle assessment (LCA) increasingly is used to evaluate the environmental footprint of pavements, there is growing need to critique the state and utility of the supporting science. LCA is a data-intensive methodology that requires inputs and models from a variety of different scientific fields. While some data sources are mature, others are products of nascent and inexact research. Within pavement LCAs, traffic delay, rolling resistance, concrete carbonation, pavement albedo, lighting. leachate, and end of life allocation are areas where the supporting science is incomplete or is ineffectively incorporated into the pavement LCA framework. These components produce quantitative gaps in the assessment methodology, thus jeopardizing the accuracy of results and defensibility of conclusions. Benchmarking where the science stands allows practitioners to perform LCAs while incorporating the best available information, including best estimates and gross evaluations of the uncertainty. Moreover, identifying weaknesses in the fields that support pavement LCAs provides a transparent assessment framework and generates a focused research direction moving forward. (C) 2011 Elsevier B.V. All rights reserved. C1 [Santero, Nicholas J.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. [Masanet, Eric] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Horvath, Arpad] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Santero, NJ (reprint author), MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave,Bldg 5-417, Cambridge, MA 02139 USA. EM nsantero@mit.edu; ermasanet@lbl.gov; horvath@ce.berkeley.edu RI Masanet, Eric /I-5649-2012 FU University of California, Berkeley; Portland Cement Association under U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Sustainable Products and Solutions Program at the University of California, Berkeley, and the Portland Cement Association under U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 80 TC 39 Z9 39 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD JUL-AUG PY 2011 VL 55 IS 9-10 BP 810 EP 818 DI 10.1016/j.resconrec.2011.03.009 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 793XF UT WOS:000292856500002 ER PT J AU Shet, S Ahn, KS Nuggehalli, R Yan, YF Turner, J Al-Jassim, M AF Shet, Sudhakar Ahn, Kwang-Soon Nuggehalli, Ravindra Yan, Yanfa Turner, John Al-Jassim, Mowafak TI Phase separation in Ga and N co-incorporated ZnO films and its effects on photo-response in photoelectrochemical water splitting SO THIN SOLID FILMS LA English DT Article DE Zinc oxide; Sputtering; Phase separation; Co-doping; Gas ambient; Photoelectrochemistry; X-ray diffraction; Band gap ID TITANIUM-DIOXIDE; ELECTRODES; HYDROGEN; CELLS; PHOTOCATALYSIS AB Ga and N co-incorporated ZnO thin films [ZnO:(Ga:N)] with reduced bandgaps were deposited by co-sputtering at different N-2 gas flow rate in mixed N-2 and O-2 ambient at room temperature followed by postannealing at 500 degrees C in air for 2 h. We found that all of the ZnO:(Ga:N) films exhibited enhanced crystallinity which can suppress the recombination rate between the photogenerated electrons and holes. However, phase segregation of Zn3N2 occurred in ZnO:(Ga:N) thin films in nitrogen-rich sputtering ambient. We found that ZnO:(Ga:N) thin films without phase separation of Zn3N2 exhibited much better photoelectrochemical (PEC) response, due to the reduced bandgap and better crystallinity. Our results suggest that growth conditions must be controlled carefully to avoid phase separation in Ga and N co-incorporated ZnO thin films to improve PEC response. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shet, Sudhakar; Yan, Yanfa; Turner, John; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Shet, Sudhakar; Nuggehalli, Ravindra] New Jersey Inst Technol, Newark, NJ 07102 USA. [Ahn, Kwang-Soon] Yeungnam Univ Gyeongsan, Sch Display & Chem Engn, Kyongsan 712749, South Korea. RP Shet, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sudhakar.shet@nrel.gov RI Dom, Rekha/B-7113-2012 FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308] FX This work is supported by the U.S. Department of Energy (DOE) under contract # DE-AC36-08GO28308. NR 28 TC 16 Z9 16 U1 4 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUL 1 PY 2011 VL 519 IS 18 BP 5983 EP 5987 DI 10.1016/j.tsf.2011.03.050 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 790GM UT WOS:000292576500024 ER PT J AU Zhu, KK Sun, JM Liu, J Wang, LQ Wan, HY Hu, JZ Wang, Y Peden, CHF Nie, ZM AF Zhu, Kake Sun, Junming Liu, Jun Wang, Liqiong Wan, Haiying Hu, Jianzhi Wang, Yong Peden, Charles H. F. Nie, Zimin TI Solvent Evaporation Assisted Preparation of Oriented Nanocrystalline Mesoporous MFI Zeolites SO ACS CATALYSIS LA English DT Article DE ZSM-5; zeolites; hierarchical structure; mesoporous; catalyst; acetone; isobutene ID HYPERPOLARIZED XE-129 NMR; HIERARCHICAL ZEOLITES; SINGLE-CRYSTALS; CATALYTIC-PROPERTIES; ALKYL CHAINS; SILICA; ZSM-5; MESOSTRUCTURES; TEMPLATE; ROUTE AB A solvent evaporation route to produce hierarchically porous zeolites with an oriented MFI nanocrystalline structure has been developed, and the method is scalable and low cost. In this method, haadecyltrimethoxysilane is added to an ethanol Solution containing zeolitic precursors. A dry gel is formed during the evaporation process. Subsequent hydrothermal treatments produce the hierarchically porous zeolite. High resolution transmission electron microscopy (HRTEM) studies suggest that misoriented zeolite nuclei are produced in the early stages of the hydrothermal treatment, but further reactions lead to single crystal-like aggregates composed of intergrowth nanocrystals with a mean interparticle pore diameter of 12 nm. Almost all Al atoms exist in tetrahedral sites, as confirmed by (27)Al magic angle spinning nuclear magnetic resonance (MAS NMR). Variable temperature: hyperpolarized (HP) (129)Xe NMR spectroscopy suggests a fast molecular diffusion process from the interconnection, between micro- and mesopores. Catalytic conversion of acetone to isobutene reactions shows comparable (with respect to conventional zeolites) selectivity to isobutene. However, hierarchically porous zeolites display enhanced activity and durability because of the more accessible acidic sites in the hierarchically porous structures. C1 [Zhu, Kake; Sun, Junming; Liu, Jun; Wang, Liqiong; Wan, Haiying; Hu, Jianzhi; Wang, Yong; Peden, Charles H. F.; Nie, Zimin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jun.liu@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Sun, Junming/B-3019-2011; Wang, Yong/C-2344-2013; OI Sun, Junming/0000-0002-0071-9635; Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; U.S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE by Battelle [DE-AC05-76RL01830]; office of Basic Sciences of the U.S. Department of Energy FX We gratefully acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, for supporting this work.; The TEM work described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract number DE-AC05-76RL01830. This research is supported by the office of Basic Sciences of the U.S. Department of Energy. NR 45 TC 34 Z9 34 U1 9 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 682 EP 690 DI 10.1021/cs200085e PG 9 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400002 ER PT J AU Mukherjee, D Thompson, RR Ellern, A Sadow, AD AF Mukherjee, Debabrata Thompson, Richard R. Ellern, Arkady Sadow, Aaron D. TI Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols SO ACS CATALYSIS LA English DT Article DE silane alcoholysis; alkoxysilane; zinc hydride; oxazoline; dehydrocoupling ID HYDROSILYLATION; COMPLEXES; HYDROSILANES; POLYMETHYLHYDROSILOXANE; DERIVATIVES; SILYLATION; ACTIVATION; REACTIVITY; CONVERSION; REDUCTION AB The four-coordinate zinc compound To(M)ZnH (1, To(M) = tris(4,4-dimethyl-2-oxazolinyl)phenylborate) catalyzes selective alcoholysis of substituted hydrosilanes. The catalytic reaction of PhMeSiH(2) and aliphatic alcohols favors the monodehydrocoupled product PhMeHSi-OR With the aryl alcohol 3,5-C(6)H(3)Me(2)OH; the selectivity for mono(aryloxy)-hydrosilane PhMeHSi-OC(6)H(3)Me(2) and bis(aryloxy)silane PhMeSi-(OC(6)H(3)Me(2))(2) is controlled by relative reagent concentrations. Reactions of secondary organosilanes and diols provide cyclic bis(oxo)silacycloalkanes in high yield. The empirical rate law for the To(M)ZnH-catalYzed.reaction of 3,5-dimethylphenol and PhMeSiH(2) is d[PhMeSiH(2)]/dt = k'(obs)[To(M)ZnH](1)[3,5-C(6)H(3)Me(2)OH](0)-, [PhMeSiH(2)](1) (determined at 96 degrees C)which indicates that Si-O bond formation is turnover limiting in the presence of excess phenol. C1 [Sadow, Aaron D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM sadow@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory [DE-AC02-07CH11358] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (Contract No. DE-AC02-07CH11358). NR 34 TC 38 Z9 38 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 698 EP 702 DI 10.1021/cs2001016 PG 5 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400004 ER PT J AU Klobukowski, ER Mueller, ML Angelici, RJ Woo, LK AF Klobukowski, Erik R. Mueller, Mallory L. Angelici, Robert J. Woo, L. Keith TI Conversions of Cyclic Amines to Nylon Precursor Lactams Using Bulk Gold and Fumed Silica Catalysts SO ACS CATALYSIS LA English DT Article DE gold; oxidative-dehydrogenation; catalysis; amidine; hydrolysis; amine; caprolactam; nylon ID NON-NANOGOLD CATALYSIS; SECONDARY-AMINES; EPSILON-CAPROLACTAM; AEROBIC OXIDATION; SUPPORTED GOLD; ISOCYANIDES; HYDROLYSIS; CHEMISTRY; IMINES; OXYGEN AB Bulk gold powder (similar to 50 mu m) and alumina-supported gold catalyzed the oxidative dehydrogedation of 5-, 6-, and 7-membered cyclic amines to amidines. These amidines were hydrolyzed upon treatment with Aerosil 200 (fumed silica gel) and water, producing lactams in 42-73% yields and amines in 36-63% yields. The gold and Aerosil 200 catalysts could also be combined in a one-Pot reaction to catalyze the conversion of cyclic amines to lactams in yields up to 51%. C1 [Angelici, Robert J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Angelici, RJ (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM angelici@iastate.edu; kwoo@iastate.edu FU U.S. Department of Energy [DE-AC02-07CH11358]; Iowa State University FX This research was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11358 with Iowa State University. The Ames Lab provided SULI support for M.L.M. NR 34 TC 18 Z9 18 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 703 EP 708 DI 10.1021/cs200120c PG 6 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400005 ER PT J AU Tsai, CH Chen, HT Althaus, SM Mao, KM Kobayashi, T Pruski, M Lin, VSY AF Tsai, Chih-Hsiang Chen, Hung-Ting Althaus, Stacey M. Mao, Kanmi Kobayashi, Takeshi Pruski, Marek Lin, Victor S. -Y. TI Rational Catalyst Design: A Multifunctional Mesoporous Silica Catalyst for Shifting the Reaction Equilibrium by Removal of Byproduct SO ACS CATALYSIS LA English DT Article DE heterogeneous catalysis; rational catalyst design; mesoporous materials; fluorinated surface; esterification; solid-state NMR ID COOPERATIVE CATALYSIS; FUNCTIONAL-GROUPS; SINGLE-SITE; ACID; ESTERIFICATION; EFFICIENT; NANOSPHERE; TRANSESTERIFICATION; ENANTIOSELECTIVITY; CONDENSATION AB Bifunctional mesoporous silica nanoparticle (MSN) catalysts for esterification reaction, containing a Bronsted acid site of diarylammonium triflate (DAT) and a pentafluorophenyl propyl (PFP) group, were synthesized and thoroughly characterized. Their high reactivity is attributed to the formation of a surface-bound hydro, phobic layer of PFP molecules, which facilitates the extrusion of one of the reaction products (water) from the mesopores by suppressing water adsorption onto the surface, thereby shifting the reaction equilibrium to completion. C1 [Tsai, Chih-Hsiang; Chen, Hung-Ting; Althaus, Stacey M.; Mao, Kanmi; Pruski, Marek; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, Ames, IA 50010 USA. [Chen, Hung-Ting; Althaus, Stacey M.; Mao, Kanmi; Kobayashi, Takeshi; Pruski, Marek; Lin, Victor S. -Y.] Ames Lab, Ames, IA 50010 USA. RP Chen, HT (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50010 USA. EM hungting@iastate.edu; mpruski@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences at Ames Laboratory [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Basic Energy Sciences Center for Catalytic Hydrocarbon Functionalization, an Energy Frontier Research Center [DE-SC0001298] FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-07CH11358 (at Ames Laboratory) and under Award Number DE-SC0001298 (as part of the Center for Catalytic Hydrocarbon Functionalization, an Energy Frontier Research Center). NR 33 TC 17 Z9 17 U1 0 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 729 EP 732 DI 10.1021/cs200222t PG 4 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400008 ER PT J AU Pruski, M Woo, LK Lin, WB AF Pruski, Marek Woo, L. Keith Lin, Wenbin TI Preface to Memorial Issue in Honor of Professor Victor S.-Y. Lin SO ACS CATALYSIS LA English DT Biographical-Item C1 [Pruski, Marek; Woo, L. Keith] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Pruski, Marek; Woo, L. Keith] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Lin, Wenbin] Univ N Carolina, Dept Chem, Chapel Hill, NC 27515 USA. RP Pruski, M (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. NR 1 TC 0 Z9 0 U1 1 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 734 EP 735 DI 10.1021/cs200241q PG 2 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400010 ER PT J AU Appel, AM Pool, DH O'Hagan, M Shaw, WJ Yang, JY DuBois, MR DuBois, DL Bullock, RM AF Appel, Aaron M. Pool, Douglas H. O'Hagan, Molly Shaw, Wendy J. Yang, Jenny Y. DuBois, M. Rakowski DuBois, Daniel L. Bullock, R. Morris TI [Ni((P2N22BN)-N-Ph)(2)(CH3CN)](2+) as an Electrocatalyst for H-2 Production: Dependence on Add Strength and Isomer Distribution SO ACS CATALYSIS LA English DT Article DE electrocatalysis; catalyst; hydrogen production; pendant amine; PCET; potential ID COUPLED ELECTRON-TRANSFER; MOLECULAR CATALYSTS; H BOND; HYDROGEN; COMPLEXES; OXIDATION; BASES; WATER AB [(NiP2N22BN)-N-Ph)(2) (CH3CN)](2+) (where (P2N2BN)-N-Ph is 1,5-dilienzy1-3,7-diphenyl-1,5-diaza-3,7-diphosphacydooctane), has been studied as an electrocatalyst for the production of hydrogen in acetonitrile. Strong acids, such as p-cyanoanilinium, protonate [Ni((P2N22BN)-N-Ph)(2)(CH3CN)](2+) prior to reduction under catalytic conditions, and an effective plc of 6.7 +/- 0.4 was determined for the protonation product. Through multinuclear NMR spectroscopy studies, the nickel(II) complex was found to be doubly protonated without any observed singly protonated species. In the doubly protonated complex, both protons are positioned exo with respect to the metal center and are stabilized by an N-H-N hydrogen bond. The formation of exo protonated isomers is proposed to hunt the rate of hydrogen production because the protons are unable to gain suitable proximity to the reduced metal center to generate H-2: Preprotonation of [Ni((P2N2BN2)-N-Ph)(2)(CH3CN)](2+) has been found to shift the catalytic operating potential to more positive potentials by up to 440 mV, depending upon the conditions. The half-wave potential for the catalytic production of H2 depends linearly on the pH of the solution and indicates a proton-coupled electron transfer reaction. The overpotential remains low and nearly constant at 74 +/- 44 mV over the pH range of 6.2-11.9. The catalytic rate was found to increase by an order of magnitude by increasing the, solution pH or through the addition of water. C1 [Appel, Aaron M.; Pool, Douglas H.; O'Hagan, Molly; Shaw, Wendy J.; Yang, Jenny Y.; DuBois, M. Rakowski; DuBois, Daniel L.; Bullock, R. Morris] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Appel, AM (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, POB 999,K2-57, Richland, WA 99352 USA. EM aaron.appel@pnl.gov; daniel.dubois@pnl.gov RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Appel, Aaron/0000-0002-5604-1253 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The authors thank Dr. Herman Cho for helpful discussions about 2D NMR data. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 32 TC 60 Z9 60 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 777 EP 785 DI 10.1021/cs2000939 PG 9 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400015 ER PT J AU Sedai, B Diaz-Urrutia, C Baker, RT Wu, RL Silks, LA Hanson, SK AF Sedai, Baburam Diaz-Urrutia, Christian Baker, R. Tom Wu, Ruilian Silks, L. A. Pete Hanson, Susan K. TI Comparison of Copper and Vanadium Homogeneous Catalysts for Aerobic Oxidation of Lignin Models SO ACS CATALYSIS LA English DT Article DE lignin models; vanadium; copper; aerobic oxidation; lignocellulose ID MOLECULAR-OXYGEN ACTIVATION; ALPHA-HYDROXY ESTERS; PRIMARY ALCOHOLS; PHANEROCHAETE-CHRYSOSPORIUM; FRAGMENTATION REACTIONS; MANGANESE PEROXIDASE; STEP CONVERSION; BOND-CLEAVAGE; IONIC LIQUID; ALDEHYDES AB The reactivity of copper and vanadium catalysts toward the aerobic oxidation of lignin models has been explored. Both (dipic)V(V)(0)(O(i)Pr) (3) (dipic = dipicolinate) and CuCl/TEMPO (TEMPO = tetramethylpiperidine N-oxide) catalyzed the aerobic oxidation of the lignin model compound 1,2-diphenyl-2-methoxyethanol (2). The vanadium catalyst 3 pro-The copper catalyzed reaction afforded benzaldehyde (84%) and methylbenzoate (88%) directly, with no intermediate formation of 4. The more complex lignin model system 1-(3,5-dimethoxypheny1)-2-(2-methoxyphenoxy)propane-1,3-diol-[2,3)(13)C(2)] (5-(13)C(2)) was oxidized under air by vanadium catalyst 3, affording ketone 7-(13)C(2) (65%), dehydrated ketone 8-(13)C(2) (5%), alkene product 9-(13)C(2) (14%), 3,5-dirnethoxybenzoic acid (11%), 3,5-dimethoxybenzaldehyde (2%), 2-methoxyphenol, and formic acid-(13)C(1) (4%). Aerobic oxidation of ketone 7-(13)C(2) using catalyst 3 produced dehydrated ketone, 8-(13)C(2), dimethoxybenzoic acid, and formic acid (13)C(1), suggesting that 7 is further oxidized under the catalytic conditions. In contrast, oxidation of beta-O-4 model 5-(13)C(2) using, CuCl/TEMPO affords 3,5-dimethoxybenzaldehyde (43%), 3,5-dimethoxybenzoic acid (13%), 2-methoxyphenol (7%), formic acid (13)C(1) (7%), ketone 7(13)C(2) (1%), dehydrated ketone 8-(13)C(2) (2%), and a number of higher molecular weight products, as determined by (1)H and (13)C NMR, GC-MS, and LC-MS. Attempted oxidation of ketone 7 using CuCl/TEMPO yielded primarily dehydrated ketone 8, indicating that the ketone is not an intermediate in the formation of the aldehyde product The reactivities of the copper and vanadium catalysts in the oxidation of lignin model compounds 2 and 5 are discussed. Remarkably different selectivities were observed for the vanadium and copper catalyzed reactions, suggesting the potential of homogeneous catalysts for controlling selectivity in the aerobic oxidation of lignin. C1 [Hanson, Susan K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Wu, Ruilian; Silks, L. A. Pete] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Sedai, Baburam; Diaz-Urrutia, Christian; Baker, R. Tom] Univ Ottawa, Dept Chem, Ottawa, ON K1N 6N5, Canada. [Sedai, Baburam; Diaz-Urrutia, Christian; Baker, R. Tom] Univ Ottawa, Ctr Catalysis Res & Innovat, Ottawa, ON K1N 6N5, Canada. RP Hanson, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skhanson@lanl.gov OI Silks, Pete/0000-0002-2993-5630 FU Los Alamos National Laboratory LDRD [ER 20100160]; Center for Enabling New Technologies through Catalysis [CHE-0650456] FX S.K.H., R.W., and L.A.S. thank Los Alamos National Laboratory LDRD for funding (ER 20100160). R.T.B. thanks Lignoworks, the NSERC Biomaterials and Chemicals Research Network, for funding of this work. We also thank the Center for Enabling New Technologies through Catalysis (CHE-0650456) for support. NR 66 TC 66 Z9 66 U1 12 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 794 EP 804 DI 10.1021/cs200149v PG 11 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400017 ER PT J AU Ma, Z Dai, S AF Ma, Zhen Dai, Sheng TI Design of Novel Structured Gold Nanocatalysts SO ACS CATALYSIS LA English DT Article DE gold nanoparticles; catalyst design; gold catalysis; CO oxidation; core-shell structure ID TEMPERATURE CO OXIDATION; GAS SHIFT REACTION; AU-FE3O4 DUMBBELL NANOPARTICLES; MESOPOROUS SILICA MATERIALS; ANALYTICAL TEM OBSERVATION; HIGHLY EFFICIENT CATALYST; NIAU ALLOY NANOPARTICLES; POROUS CARBON SHELL; IN-SITU SURFACTANT; NANOCLUSTER CATALYSTS AB Small gold nanoparticles dispersed on certain oxide supports exhibit unprecedented catalytic activities in low-temperature CO oxidation, and gold catalysts show a great potential for selective oxidation or hydrogenation of organic substrates. Nevertheless, most gold catalysts (e.g., Au/ TiO2, Au/Al2O3, Au/Fe2O3, Au/SiO2, Au/CeO2) have been prepared by loading gold on unmodified or modified solid supports through traditional synthesis methodologies (e.g., deposition precipitation, wet impregnation), therefore having simple metal-on-support structures and metal-support interactions. The current Perspective highlights some recent progress in the design of novel structured gold nanocatalysts, including unsupported or supported core shell or yolk hell structures, gold nanoparticles encapsulated in an inorganic matrix, postmodified gold catalysts, gold-based,alloy catalysts, and gold catalysts with additional interfacial sites (or metal mode components) carried to supports or formed in situ on supports. The objective of most of these studies Was to demonstrate synthetic protocols by testing the catalytic performance, of the prepared catalysts in simple probe reactions, and the focus was more on materials synthesis than on catalytic reactions or reaction mechanisms. These novel structured gold catalysts will certainly bring new opportunities for studying their performance in various catalytic reactions, the nature of active sites, reaction mechanisms, and correlations between structure and catalytic properties. C1 [Ma, Zhen] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China. [Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Ma, Z (reprint author), Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China. EM zhenma@fudan.edu.cn; dais@ornl.gov RI Ma, Zhen/F-1348-2010; Dai, Sheng/K-8411-2015 OI Ma, Zhen/0000-0002-2391-4943; Dai, Sheng/0000-0002-8046-3931 FU National Science Foundation of China [21007011]; Ministry of Education in China [20100071120012]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC0S-00OR22725] FX Z. Ma is grateful for the financial support by the National Science Foundation of China (Grant No. 21007011) and the Doctoral Fund of Ministry of Education in China (Grant No. 20100071120012). S. Dai was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. Many colleagues working in the field of gold catalysis are acknowledged. In particular, the laboratory work of Dr. Wenfu Yan, Dr. Haoguo Zhu, Dr. Hongfeng Yin, Dr. Shenghu Zhou, and Dr. J. Chris Bauer makes the current literature review possible. This article is in memory of the late Professor Victor S. Y. Lin for his friendship and research passion. NR 198 TC 77 Z9 78 U1 18 U2 300 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 805 EP 818 DI 10.1021/cs200100w PG 14 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400018 ER PT J AU Kaur, P Hupp, JT Nguyen, ST AF Kaur, Parminder Hupp, Joseph T. Nguyen, SonBinh T. TI Porous Organic Polymers in Catalysis: Opportunities and Challenges SO ACS CATALYSIS LA English DT Article DE porous organic polymers; conjugated porous polymers; hyper-cross-linked polymers; heterogeneous catalysis ID MOLECULARLY IMPRINTED POLYMERS; INTRINSIC MICROPOROSITY PIMS; ULTRAHIGH SURFACE-AREA; GEL-PERMEATION CHROMATOGRAPHY; NANOPOROUS NETWORK POLYMERS; HETEROGENEOUS CATALYSIS; PORPHYRIN FILMS; PORE-SIZE; INTERFACIAL POLYMERIZATION; IONOTHERMAL SYNTHESIS AB Porous organic polymers (POPs), a class of highly crosslinked, amorphous polymers possessing micropores, have recently emerged as a versatile platform for the deployment of catalysts. These materials can be divided into three major classes: POPs that incorporate rigid well-defined homogeneous catalysts as building blocks, POPs that can be modified post-synthesis, and POPs that encapsulate metal particles. This perspective article summarizes the recent developments in POP-based catalysis and outlines the potential of POPs as platforms of heterogeneous catalysts along with some of the challenges. C1 [Kaur, Parminder; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kaur, Parminder; Hupp, Joseph T.; Nguyen, SonBinh T.] Northwestern Univ, Inst Catalysis Energy Proc, Evanston, IL 60208 USA. [Hupp, Joseph T.; Nguyen, SonBinh T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM j-hupp@northwestern.edu; stn@northwestern.edu RI Hupp, Joseph/K-8844-2012; Nguyen, SonBinh/C-1682-2014 OI Hupp, Joseph/0000-0003-3982-9812; Nguyen, SonBinh/0000-0002-6977-3445 FU DTRA [HDTRA1-10-1-0023]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We acknowledge DTRA for funding P.K. (Grant HDTRA1-10-1-0023). This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. J.T.H. and S.T.N. additionally acknowledge the LDRD program of Argonne National Laboratory for supporting some aspects of their research efforts in POP-based catalysis. NR 113 TC 263 Z9 267 U1 42 U2 267 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD JUL PY 2011 VL 1 IS 7 SI SI BP 819 EP 835 DI 10.1021/cs200131g PG 17 WC Chemistry, Physical SC Chemistry GA 788YD UT WOS:000292479400019 ER PT J AU Santala, MK Radmilovic, V Giulian, R Ridgway, MC Gronsky, R Glaeser, AM AF Santala, Melissa K. Radmilovic, Velimir Giulian, Raquel Ridgway, Mark C. Gronsky, Ronald Glaeser, Andreas M. TI The orientation and morphology of platinum precipitates in sapphire SO ACTA MATERIALIA LA English DT Article DE Alumina; Platinum group; Metal precipitation; Misorientation; Interfaces ID SURFACE-ENERGY-ANISOTROPY; METAL-CERAMIC INTERFACES; OXYGEN ACTIVITY DEPENDENCY; CONSERVING SHAPE CHANGES; BASAL-PLANE SAPPHIRE; EQUILIBRIUM SHAPE; SELF-DIFFUSION; WULFF SHAPE; RAYLEIGH INSTABILITIES; ELLIPSOIDAL INCLUSION AB The orientation relationship, crystallography and structure of heterointerfaces influence their energy, and collectively these interface properties can exert a profound effect on a wide range of multiphase-material properties. In this study, stable interfaces were identified and relative interfacial energies were determined in a model oxide metal system from measurements of the shapes of Pt inclusions in a sapphire matrix. Platinum precipitates were formed in sapphire via ion implantation followed by thermal annealing in air. The morphology of precipitates with a high-symmetry orientation relationship was determined after annealing at 1600 degrees C for 100 h, processing conditions anticipated to result in equilibrium morphology if shape changes are only diffusion limited. The precipitates were found to have both faceted and rough interfaces. The facets coincided with low-index planes of sapphire. All sapphire facets that appear in the Wulff shape of undoped sapphire at 1600 degrees C were observed, but additional facets also appeared. Lack of complete convergence on an equilibrium shape is believed to be due to the absence of ledge-producing defects in some particles, and the inability to overcome the nucleation energy barriers required to form ledges. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Santala, Melissa K.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Radmilovic, Velimir] Univ Belgrade, Fac Technol & Met, Nanotechnol & Funct Mat Ctr, Belgrade 11000, Serbia. [Giulian, Raquel; Ridgway, Mark C.] Australian Natl Univ, Dept Elect Mat Engn, Canberra, ACT, Australia. [Gronsky, Ronald; Glaeser, Andreas M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Santala, MK (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. EM santala1@llnl.gov RI Giulian, Raquel/A-6019-2008; Santala, Melissa/K-6871-2013; Giulian, Raquel/G-8075-2014; OI Santala, Melissa/0000-0002-5189-5153 FU National Science Foundation [0805062]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Nanotechnology and Functional Materials Center, Faculty of Technology and Metallurgy, University of Belgrade, Serbia; Australian Research Council; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Metals and Metallic Nanostructures Program of the National Science Foundation through Grant No. 0805062. M.K.S. was supported by an NSF Graduate Research Fellowship. Portions of the work by M.K.S. were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. A.M.G. acknowledges generous support from the GRF. V.R. acknowledges the support of the Nanotechnology and Functional Materials Center, Faculty of Technology and Metallurgy, University of Belgrade, Serbia. R.G. and M.C.R. are supported by the Australian Research Council. All electron microscopy in this work was performed at the National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231. M.K.S. and A.M.G. thank U. Dahmen for many useful conversations over the course of this work. NR 99 TC 8 Z9 8 U1 0 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2011 VL 59 IS 12 BP 4761 EP 4774 DI 10.1016/j.actamat.2011.04.012 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 788DV UT WOS:000292426500003 ER PT J AU Budruk, A Phatak, C Petford-Long, AK De Graef, M AF Budruk, A. Phatak, C. Petford-Long, A. K. De Graef, M. TI In situ lorentz TEM magnetization study of a Ni-Mn-Ga ferromagnetic shape memory alloy SO ACTA MATERIALIA LA English DT Article DE Lorentz microscopy; Heusler phases; Martensitic phase transformation; Magnetic domain; Twinning ID ANTIPHASE BOUNDARIES; HEUSLER ALLOYS; MARTENSITE; PHASE; NI2MNGA; FIELD AB The magnetic domain structure of a Ni(49.9)Mn(28.3)Ga(21.8) ferromagnetic shape memory alloy has been investigated by in situ Lorentz TEM. Field-induced changes in the magnetic domain wall structure were recorded over a field range of [-500, +300] Oe. Inside a martensite twin variant, the observed domain structure was either an alternating (80 wall pattern or a maze-like pattern, depending on the relative orientation of the magnetic easy axis and the in-plane applied field. In twin variants with an in-plane easy axis, significant domain wall movement was observed at moderate applied fields, in agreement with an existing magneto-mechanical model. 180 degrees domain walls were found to be pinned by anti-phase boundaries (APBs). The maze-like domain structure was stable under applied fields below about +/- 100 Oe; at higher fields, the walls became aligned with the applied field. Domain walls also remained strongly pinned at twin boundaries up to applied fields of around 400 Oe. Interestingly, depinning of walls from twin boundaries occurs at field values that are significantly lower than those required to induce motion of the structural twins. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Budruk, A.; De Graef, M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Phatak, C.; Petford-Long, A. K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP De Graef, M (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM abudruk@andrew.cmu.edu; cd@anl.gov; petford.long@anl.gov; degraef@cmu.edu RI Phatak, Charudatta/A-1874-2010; DeGraef, Marc/G-5827-2010; Petford-Long, Amanda/P-6026-2014 OI DeGraef, Marc/0000-0002-4721-6226; Petford-Long, Amanda/0000-0002-3154-8090 FU National Science Foundation, NSF [1005330]; Argonne National Laboratory, a US Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357]; US DOE, Division of Materials Science and Engineering, Office of Basic Energy Sciences; DOE FX The results presented in this paper represent a portion of the Doctoral Thesis research of A.B. The authors would like to acknowledge Dr. Kari Ullakko for providing the Ni-Mn-Ga alloy. M.D.G. and A.B. would like to acknowledge the financial support from National Science Foundation, NSF DMR # 1005330. A part of this work was carried out at Argonne National Laboratory, a US Department of Energy, Office of Science Laboratory operated under contract DE-AC02-06CH11357 by University of Chicago Argonne, LLC. The funding for the JEOL Lorentz TEM was provided by US DOE, Division of Materials Science and Engineering, Office of Basic Energy Sciences. C.P. and A.K.P.L. would like to acknowledge the financial support from the DOE. NR 25 TC 14 Z9 14 U1 12 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2011 VL 59 IS 12 BP 4895 EP 4906 DI 10.1016/j.actamat.2011.04.031 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 788DV UT WOS:000292426500015 ER PT J AU Matesanz, S Sultan, SE Jones, KL Hagen, C Lance, SL AF Matesanz, Silvia Sultan, Sonia E. Jones, Kenneth L. Hagen, Cris Lance, Stacey L. TI DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE MARKERS FOR POLYGONUM CESPITOSUM (POLYGONACEAE) SO AMERICAN JOURNAL OF BOTANY LA English DT Article DE microsatellite; PCR primers; Persicaria; Polygonum; SSR; STR ID LOCI AB Premise of the study: We isolated and characterized microsatellite markers in Polygonum cespitosum Blume, an herbaceous annual plant species introduced into North America from Asia that has recently become invasive. Methods and Results: A total of 12 polymorphic and 3 monomorphic loci were screened in 1-2 individuals from each of 20 populations from the introduced and native range, for a total of 24 samples. The number of alleles per locus in the polymorphic loci ranged from 3 to 9, and expected heterozygosity ranged from 0.156 to 0.838. Conclusions: These new loci will provide tools for examining genetic relatedness among introduced and native populations of this and other related species. C1 [Matesanz, Silvia; Sultan, Sonia E.] Wesleyan Univ, Dept Biol, Middletown, CT 06459 USA. [Matesanz, Silvia] CSIC, Museo Nacl Ciencias Nat, Lab Int Cambio Global LINC Global, E-28006 Madrid, Spain. [Jones, Kenneth L.] Univ Georgia, Georgia Genom Facil, Athens, GA 30602 USA. [Hagen, Cris; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Matesanz, S (reprint author), Wesleyan Univ, Dept Biol, Middletown, CT 06459 USA. EM silvia@ccma.csic.es RI Matesanz, Silvia/L-5153-2014; Lance, Stacey/K-9203-2013 OI Matesanz, Silvia/0000-0003-0060-6136; Lance, Stacey/0000-0003-2686-1733 FU DOE [DE-FC09-07SR22506]; European Commission; Wesleyan University; agency of the United States Government FX This research was partially supported by the DOE under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, by a Marie Curie IOF Fellowship (European Commission FP7) awarded to Silvia Matesanz, and by a Wesleyan University Project Grant to Sonia E. Sultan. We also thank John R. Kirn and his laboratory for access to their Wetlab facilities.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 10 TC 3 Z9 3 U1 0 U2 10 PU BOTANICAL SOC AMER INC PI ST LOUIS PA PO BOX 299, ST LOUIS, MO 63166-0299 USA SN 0002-9122 J9 AM J BOT JI Am. J. Bot. PD JUL PY 2011 VL 98 IS 7 BP E180 EP E182 DI 10.3732/ajb.1100053 PG 3 WC Plant Sciences SC Plant Sciences GA 787LF UT WOS:000292377000006 PM 21700804 ER PT J AU Mitsunobu, S Takahashi, Y Utsunomiya, S Marcus, MA Terada, Y Iwamura, T Sakata, M AF Mitsunobu, Satoshi Takahashi, Yoshio Utsunomiya, Satoshi Marcus, Matthew A. Terada, Yasuko Iwamura, Takeru Sakata, Masahiro TI Identification and characterization of nanosized tripuhyite in soil near Sb mine tailings SO AMERICAN MINERALOGIST LA English DT Article DE Antimony; tripuhyite; micro-XAFS; micro-XRD; HRTEM ID X-RAY-FLUORESCENCE; ABSORPTION SPECTROSCOPY; NATURAL SPECIATION; ARSENIC MOBILITY; MICROMETER SCALE; GREEN RUST; IRON-OXIDE; ANTIMONY; SEDIMENTS; DIFFRACTION AB In soil near tailings from an antimony (Sb) mine, we found micro-grains coated with an antimony-rich layer. These grains were characterized in detail using multiple advanced analytical techniques such as micro-X-ray absorption near edge structure (mu-XANES), micro-extended X-ray absorption fine structure (mu-EXAFS), micro-X-ray diffraction (mu-XRD), transmission electron microscope (TEM), and electron probe microanalysis (EPMA). The EPMA showed that one soil grain (grain A) locally accumulated a large amount of Sb in the secondary phases (40-61 wt% Sb2O5) with significant Fe (20-28 wt% Fe2O3). The spatial distribution of Sb in the grain was similar to that of iron. Both Fe mu-XANES and mu-XRD of the Sb hot spots in grain A consistently showed that the secondary products were dominantly composed of ferric antimonate, tripuhyite (FeSbO4). Fits to the Sb K-edge mu-EXAFS of this phase showed second-neighbor coordination numbers similar to 30% smaller than in bulk tripuhyite, indicating that the tripuhyite included in grain A is nanoparticulate and/or has a high structural disorder. The TEM analysis suggests that the particle size of tripuhyite in grain A was around 10 nm, which is consistent with the size range indicated by mu-XRD and mu-EXAFS. This is the first report showing tripuhyite with nanocrystallinity in natural soil to date. C1 [Mitsunobu, Satoshi; Iwamura, Takeru; Sakata, Masahiro] Univ Shizuoka, Inst Environm Sci, Suruga Ku, Shizuoka 4228526, Japan. [Takahashi, Yoshio] Hiroshima Univ, Dept Earth & Planetary Syst Sci, Grad Sch Sci, Hiroshima 7398526, Japan. [Takahashi, Yoshio] Hiroshima Univ, Lab Multiple Isotope Res Astro & Geochem Evolut M, Hiroshima 7398526, Japan. [Utsunomiya, Satoshi] Kyushu Univ, Dept Chem, Higashi Ku, Fukuoka 8128581, Japan. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Terada, Yasuko] SPring 8, Japan Synchrotron Radiat Res Inst JASRI, Sayo, Hyogo 6795158, Japan. RP Mitsunobu, S (reprint author), Univ Shizuoka, Inst Environm Sci, Suruga Ku, 52-1 Yada, Shizuoka 4228526, Japan. EM mitunobu@u-shizuoka-ken.ac.jp RI Takahashi, Yoshio/F-6733-2011 FU University of Shizuoka FX We thank Y. Shibata and H. Ishisako for assistance in EPMA and thin section preparation, respectively. This work is partly supported by a fund from the University of Shizuoka. This work was performed with the approval of JASRI (Proposal Nos. 2008A1436, 2009A1243 2009A1571, and 2009B1575), Photon Factory (Proposal Nos. 2008G683 and 2009G655), and Advanced Light Source (Proposal No. ALS-02648). NR 52 TC 13 Z9 13 U1 2 U2 14 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD JUL PY 2011 VL 96 IS 7 BP 1171 EP 1181 DI 10.2138/am.2011.3651 PG 11 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 787JM UT WOS:000292372400023 ER PT J AU Effenberger, AJ Scott, JR AF Effenberger, Andrew J., Jr. Scott, Jill R. TI Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE DP-LIBS; Helium; Argon; Air; Reduced pressure ID INDUCED PLASMA SPECTROSCOPY; PRE-ABLATION SPARK; ELEMENTAL ANALYSIS; SINGLE-PULSE; ANALYTE INTERACTIONS; SIGNAL ENHANCEMENT; METALLIC SAMPLES; SOLID SAMPLES; SPECTROMETRY; LIBS AB Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researchers have reported significant increases in signal-to-noise and/or spectral intensity compared to single-pulse (SP) LIBS. In addition to DP-LIBS, atmospheric conditions can also increase sensitivity. Thus, in this study, a collinear DP-LIBS scheme was used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consisted of an initial 45-mJ pulse at 1,064-nm fired into a sample contained in a controlled atmospheric/vacuum chamber. A second analytical 45-mJ pulse at 1,064-nm was then fired 0 to 200 mu s after and along the same path of the first pulse. Ar, He, and air at pressures ranging from atmospheric pressure to 1 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, significant increases in the spectral intensities of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air. It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. While collinear DP-LIBS is effective for increasing the sensitivity for some reduced atmospheres (i.e., Ar and air at 630 to 100 Torr and He at 300 Torr), the enhanced spectral intensity ultimately dropped off as the pressure was reduced below 10 Torr for all atmospheric compositions in the experimental arrangement used in this study. At all pressures of air and Ar, the plasma temperature remained rather constant with increased inter-pulse delays; however, the plasma temperature was more variable for different He gas pressures and interpulse delays. C1 [Effenberger, Andrew J., Jr.; Scott, Jill R.] INL, Idaho Falls, ID 83415 USA. RP Scott, JR (reprint author), INL, MS 2208,1725 N Yellowstone HWY, Idaho Falls, ID 83415 USA. EM jill.scott@inl.gov FU US Department of Energy (DOE) through the INL Laboratory Directed Research and Development (LDRD) under DOE Idaho Operations Office [DE-AC07-05ID1417] FX This work was supported by the US Department of Energy (DOE) through the INL Laboratory Directed Research and Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID1417. NR 64 TC 13 Z9 14 U1 6 U2 38 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2011 VL 400 IS 10 BP 3217 EP 3227 DI 10.1007/s00216-011-5034-z PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 789IE UT WOS:000292508200005 PM 21553217 ER PT J AU Lasue, J Wiens, RC Stepinski, TF Forni, O Clegg, SM Maurice, S AF Lasue, J. Wiens, R. C. Stepinski, T. F. Forni, O. Clegg, S. M. Maurice, S. CA ChemCam Team TI Nonlinear mapping technique for data visualization and clustering assessment of LIBS data: application to ChemCam data SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE ChemCam; Laser-induced breakdown spectroscopy (LIBS); Multivariate analysis; Sammon's map; Mars Science Laboratory; Geological samples ID INDUCED BREAKDOWN SPECTROSCOPY; MARS AB ChemCam is a remote laser-induced breakdown spectroscopy (LIBS) instrument that will arrive on Mars in 2012, on-board the Mars Science Laboratory Rover. The LIBS technique is crucial to accurately identify samples and quantify elemental abundances at various distances from the rover. In this study, we compare different linear and nonlinear multivariate techniques to visualize and discriminate clusters in two dimensions (2D) from the data obtained with ChemCam. We have used principal components analysis (PCA) and independent components analysis (ICA) for the linear tools and compared them with the nonlinear Sammon's map projection technique. We demonstrate that the Sammon's map gives the best 2D representation of the data set, with optimization values from 2.8% to 4.3% (0% is a perfect representation), together with an entropy value of 0.81 for the purity of the clustering analysis. The linear 2D projections result in three (ICA) and five times (PCA) more stress, and their clustering purity is more than twice higher with entropy values about 1.8. We show that the Sammon's map algorithm is faster and gives a slightly better representation of the data set if the initial conditions are taken from the ICA projection rather than the PCA projection. We conclude that the nonlinear Sammon's map projection is the best technique for combining data visualization and clustering assessment of the ChemCam LIBS data in 2D. PCA and ICA projections on more dimensions would improve on these numbers at the cost of the intuitive interpretation of the 2D projection by a human operator. C1 [Lasue, J.; Wiens, R. C.] Los Alamos Natl Lab, Int Space & Response Div, Los Alamos, NM 87544 USA. [Lasue, J.; Stepinski, T. F.] Lunar & Planetary Inst, Houston, TX 77058 USA. [Stepinski, T. F.] Univ Cincinnati, Dept Geog, Cincinnati, OH 45221 USA. [Forni, O.; Maurice, S.] Univ Toulouse, IRAP, CNRS, F-31400 Toulouse, France. [Clegg, S. M.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87544 USA. RP Lasue, J (reprint author), Los Alamos Natl Lab, Int Space & Response Div, POB 1663, Los Alamos, NM 87544 USA. EM lasue@lanl.gov OI Forni, Olivier/0000-0001-6772-9689; Clegg, Sam/0000-0002-0338-0948 FU ChemCam/MSL; lab-directed research and development (LDRD) FX The work at Los Alamos was supported by the ChemCam/MSL project and by lab-directed research and development (LDRD) funds. The work of French co-authors was conducted under the auspices of the Centre National d'Etudes Spatiales (CNES). This is JL contribution to the LPI number 1604. The authors thank two anonymous referees for their relevant comments and their contribution to improving the manuscript. NR 33 TC 24 Z9 25 U1 2 U2 22 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2011 VL 400 IS 10 BP 3247 EP 3260 DI 10.1007/s00216-011-4747-3 PG 14 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 789IE UT WOS:000292508200008 PM 21331488 ER PT J AU Li, CL Cheng, G Balan, V Kent, MS Ong, M Chundawat, SPS Sousa, LD Melnichenko, YB Dale, BE Simmons, BA Singh, S AF Li, Chenlin Cheng, Gang Balan, Venkatesh Kent, Michael S. Ong, Markus Chundawat, Shishir P. S. Sousa, Leonardo daCosta Melnichenko, Yuri B. Dale, Bruce E. Simmons, Blake A. Singh, Seema TI Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover SO BIORESOURCE TECHNOLOGY LA English DT Article DE Ionic liquid; AFEX; Crystallinity; Surface area; Enzymatic saccharification ID BIOMASS RECALCITRANCE; DILUTE-ACID; CELLULOSE; HYDROLYSIS; LIGNIN; DELIGNIFICATION; SWITCHGRASS; SCATTERING; FEATURES; POROSITY AB Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each. Published by Elsevier Ltd. C1 [Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Li, Chenlin; Cheng, Gang; Kent, Michael S.; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Li, Chenlin; Cheng, Gang; Kent, Michael S.; Ong, Markus; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Balan, Venkatesh; Chundawat, Shishir P. S.; Sousa, Leonardo daCosta; Dale, Bruce E.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Balan, Venkatesh; Chundawat, Shishir P. S.; Sousa, Leonardo daCosta; Dale, Bruce E.] Great Lakes Bioenergy Res Ctr GLBRC, E Lansing, MI USA. [Melnichenko, Yuri B.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN USA. RP Singh, S (reprint author), Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. EM seesing@sandia.gov RI da Costa Sousa, Leonardo/A-1536-2016; OI Li, Chenlin/0000-0002-0793-0505; Chundawat, Shishir/0000-0003-3677-6735; Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; US Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) [DE-FC02-07ER64494]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; EPSCoR Neutron through University of Tennessee FX The authors thank Novozymes for the gift of the enzyme cocktails used in this work. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. This work was also supported in part by US Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) Grant DE-FC02-07ER64494. The research conducted at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. G. Cheng acknowledges the EPSCoR Neutron Travel Fellowship through University of Tennessee. We would like to thank Derek Marshall for helping prepare AFEX pretreated biomass. NR 36 TC 93 Z9 94 U1 5 U2 54 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2011 VL 102 IS 13 BP 6928 EP 6936 DI 10.1016/j.biortech.2011.04.005 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 789BC UT WOS:000292487300021 PM 21531133 ER PT J AU Bu, Q Lei, HW Ren, SJ Wang, L Holladay, J Zhang, Q Tang, J Ruan, R AF Bu, Quan Lei, Hanwu Ren, Shoujie Wang, Lu Holladay, John Zhang, Qin Tang, Juming Ruan, Roger TI Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biomass; Activated carbon; Catalytic microwave pyrolysis; Phenol; Phenolics ID BIO-OIL; LIQUEFACTION; CONVERSION; CHEMICALS; CRACKING; FUELS AB Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyrolysis without catalysts has a close relationship with the decomposition of lignin under the performance of activated carbon. The concentration of esters was also increased using activated carbon as a catalyst. The high content of phenols obtained in this study can be used either directly as fuel after upgrading or as feedstock of bio-based phenols for chemical industry. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bu, Quan; Lei, Hanwu; Ren, Shoujie; Wang, Lu; Zhang, Qin; Tang, Juming] Washington State Univ, Dept Biol Syst Engn, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. [Holladay, John] Pacific NW Natl Lab, Richland, WA 99354 USA. [Ruan, Roger] Univ Minnesota, Dept Bioprod & Biosyst Engn, St Paul, MN 55108 USA. RP Lei, HW (reprint author), Washington State Univ, Dept Biol Syst Engn, Bioprod Sci & Engn Lab, Richland, WA 99354 USA. EM hlei@tricity.wsu.edu RI ren, shoujie/P-1384-2014; OI Ruan, Roger/0000-0001-8835-2649 FU Office of Research and Department of Biological Systems Engineering at Washington State University FX This work was supported in partial by the Office of Research and Department of Biological Systems Engineering at Washington State University. NR 17 TC 67 Z9 69 U1 6 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2011 VL 102 IS 13 BP 7004 EP 7007 DI 10.1016/j.biortech.2011.04.025 PG 4 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 789BC UT WOS:000292487300032 PM 21531545 ER PT J AU Bellen, HJ Levis, RW He, YC Carlson, JW Evans-Holm, M Bae, E Kim, J Metaxakis, A Savakis, C Schulze, KL Hoskins, RA Spradling, AC AF Bellen, Hugo J. Levis, Robert W. He, Yuchun Carlson, Joseph W. Evans-Holm, Martha Bae, Eunkyung Kim, Jaeseob Metaxakis, Athanasios Savakis, Charalambos Schulze, Karen L. Hoskins, Roger A. Spradling, Allan C. TI The Drosophila Gene Disruption Project: Progress Using Transposons With Distinctive Site Specificities SO GENETICS LA English DT Article ID P-ELEMENT INSERTIONS; HOMOLOGOUS RECOMBINATION; TARGETED MUTAGENESIS; GENOME PROJECT; X-CHROMOSOME; FREE REGIONS; MELANOGASTER; TRANSGENESIS; SCREEN; TOOL AB The Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of similar to 7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon. These additions nearly double the size of the collection and increase the number of tagged genes to at least 9440, approximately two-thirds of all annotated protein-coding genes. We also compare the site specificity of the three major transposons used in the project. All three elements insert only rarely within many Polycomb-regulated regions, a property that may contribute to the origin of "transposon-free regions" (TFRs) in metazoan genomes. Within other genomic regions, Minos transposes essentially at random, whereas P or piggyBac elements display distinctive hotspots and coldspots. P elements, as previously shown, have a strong preference for promoters. In contrast, piggyBac site selectivity suggests that it has evolved to reduce deleterious and increase adaptive changes in host gene expression. The propensity of Minos to integrate broadly makes possible a hybrid finishing strategy for the project that will bring >95% of Drosophila genes under experimental control within their native genomic contexts. C1 [Bellen, Hugo J.; He, Yuchun; Schulze, Karen L.] Baylor Coll Med, Howard Hughes Med Inst, Dept Mol & Human Genet, Program Dev Biol, Houston, TX 77030 USA. [Levis, Robert W.; Spradling, Allan C.] Carnegie Inst Sci, Dept Embryol, Howard Hughes Med Inst Res Labs, Baltimore, MD 21218 USA. [Carlson, Joseph W.; Evans-Holm, Martha; Hoskins, Roger A.] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bae, Eunkyung; Kim, Jaeseob] Aprogen, Seoul 462807, South Korea. [Metaxakis, Athanasios; Savakis, Charalambos] Fdn Res & Technol, Inst Mol Biol & Biotechnol, Iraklion 71110, Crete, Greece. RP Spradling, AC (reprint author), Carnegie Inst, Dept Embryol, Baltimore, MD 21218 USA. EM spradling@ciwemb.edu OI Bellen, Hugo/0000-0001-5992-5989 FU National Institute of General Medical Sciences [GM067858]; Howard Hughes Medical Institute FX We thank Danqing Bei, Ying Fang, Adeel Jawaid, Jianping Li, Zhihua Wang, and Jin Yue at Baylor College of Medicine, Houston, TX, for generating and maintaining fly stocks. Vanessa Damm, Shelly Paterno, and Eric Chen assisted in the line maintenance and balancing at Carnegie Institution for Science, Baltimore, Maryland. We thank Soo Park and Kenneth Wan at Lawrence Berkeley National Laboratory, Berkeley, CA, for assistance with iPCR and sequencing of insertions. We are grateful to Exelixis and Aprogen (formerly GenExel) for providing lines and sequence data. We are grateful to researchers at Max Planck Institute, Gottingen, Germany, EMBL Heidelberg, Germany, and DeveloGen, Gottingen, Germany, for donating P-insertion lines to the public. We are grateful to Ulrich Schafer and Herbert Jackle for providing information and lines from the Gottingen X-linked insertion collection. We thank Peter Maroy for shipping lines to the project from the Szeged Stock Center. We thank Kathy Matthews, Kevin Cook, and Annette Parks for coordinating the transition of the lines to the Bloomington Drosophila Stock Center. We thank Koen Venken for useful suggestions. This work was supported by National Institute of General Medical Sciences (GM067858). Additional funds were provided through the support of the Spradling and Bellen labs from the Howard Hughes Medical Institute. NR 66 TC 132 Z9 135 U1 1 U2 22 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 J9 GENETICS JI Genetics PD JUL PY 2011 VL 188 IS 3 BP 731 EP U341 DI 10.1534/genetics.111.126995 PG 22 WC Genetics & Heredity SC Genetics & Heredity GA 789TJ UT WOS:000292538900022 PM 21515576 ER PT J AU Jin, JM Miller, NL AF Jin, Jiming Miller, Norman L. TI Improvement of snowpack simulations in a regional climate model SO HYDROLOGICAL PROCESSES LA English DT Article DE land-surface model; regional climate model; snow; vegetation ID WESTERN UNITED-STATES; ASSIMILATION SYSTEM NLDAS; SNOWMELT RUNOFF; MONSOON; IMPLEMENTATION; PRECIPITATION; VARIABILITY; SENSITIVITY; TRENDS; MASS AB To improve simulations of regional-scale snow processes and related cold-season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth-generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5-CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5-CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land-surface model. One important cause for the underestimated SWE in Noah is its unrealistic land-surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow-season surface albedo overestimated by MM5-Noah is now more accurately predicted by MM5-CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near-surface cold bias in MM5-Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5-CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5-Noah. In addition, the over-predicted precipitation in the Pacific Northwest as shown in MM5-Noah is significantly decreased in MM5-CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright. (C) 2011 John Wiley & Sons, Ltd. C1 [Jin, Jiming] Utah State Univ, Dept Watershed Sci & Plants, Logan, UT 84322 USA. [Jin, Jiming] Utah State Univ, Dept Soils, Logan, UT 84322 USA. [Jin, Jiming] Utah State Univ, Dept Climate, Logan, UT 84322 USA. [Jin, Jiming] Utah State Univ, Utah Climate Ctr, Logan, UT 84322 USA. [Miller, Norman L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Jin, JM (reprint author), 5210 Old Main Hill, Logan, UT 84322 USA. EM jimingjin99@gmail.com RI Jin, Jiming/A-9678-2011 FU Utah Agricultural Experiment Station, USDA [2009-34610-19925]; EPA [RD83418601]; NOAA MAPP [NA090AR4310195] FX The authors want to thank Drs Kenneth Mitchell, Helin Wei from NOAA and the three anonymous reviewers for useful comments, which have improved the quality of this study. Jiming Jin was supported by the Utah Agricultural Experiment Station, USDA Special Grants No. 2009-34610-19925, EPA RD83418601 and the NOAA MAPP NA090AR4310195 grant. NR 30 TC 5 Z9 5 U1 1 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD JUL 1 PY 2011 VL 25 IS 14 BP 2202 EP 2210 DI 10.1002/hyp.7975 PG 9 WC Water Resources SC Water Resources GA 789YF UT WOS:000292554800004 ER PT J AU Hong, M Fredrick, D Devito, DM Howe, JY Yang, XC Giles, NC Neal, JS Munir, ZA AF Hong, Mei Fredrick, Daniela Devito, David M. Howe, Jane Y. Yang, Xiaocheng Giles, Nancy C. Neal, John S. Munir, Zuhair A. TI Characterization of Green-Emitting Translucent Zinc Oxide Ceramics Prepared Via Spark Plasma Sintering SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID OPTICAL-PROPERTIES; LIGHT-SCATTERING; GRAIN-GROWTH; ZNO FILMS; FABRICATION; ALUMINA; PHOTOLUMINESCENCE; CONSOLIDATION; TEMPERATURE; PRESSURE AB Translucent, green-emitting zinc oxide (ZnO) bodies, 19mm in diameter and 0.72mm in thickness, have been prepared via spark plasma sintering method. The consolidation of ZnO powders was investigated over the temperature range of 550-1050 degrees C and the pressure range of 55-530 MPa. Samples sintered at temperatures >850 degrees C and pressures of similar to 120 MPa were translucent and had densities of similar to 100%. Samples sintered at 950 degrees C and 130 MPa showed a higher maximum transmittance than the samples sintered at higher or lower temperatures or pressures, with an excellent in-line transmission of 70% in the IR region around 2330 nm. The dense ZnO ceramics exhibited a strong green emission and a weak ultraviolet emission, and the relative intensity of the green emission increased with increasing sintering temperature. C1 [Hong, Mei; Fredrick, Daniela; Munir, Zuhair A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Devito, David M.; Howe, Jane Y.; Neal, John S.] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Yang, Xiaocheng; Giles, Nancy C.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Munir, Zuhair A.] Amer Ceram Soc, Westerville, OH USA. RP Hong, M (reprint author), Lonza Guangzhou Res & Dev Ctr, Guangzhou 511455, Guangdong, Peoples R China. EM zamunir@ucdavis.edu RI Howe, Jane/G-2890-2011; Neal, John/R-8203-2016 OI Neal, John/0000-0001-8337-5235 FU DOE Office of Nonproliferation Research and Engineering in the National Nuclear Security Administration (NNSA); U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX Research supported by the DOE Office of Nonproliferation Research and Engineering in the National Nuclear Security Administration (NNSA), U.S. Department of Energy under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. NR 35 TC 2 Z9 2 U1 4 U2 11 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2011 VL 8 IS 4 BP 725 EP 733 DI 10.1111/j.1744-7402.2010.02527.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 788ND UT WOS:000292450800004 ER PT J AU Jadaan, OM Wereszczak, AA Johanns, KE Daloz, WL AF Jadaan, Osama M. Wereszczak, Andrew A. Johanns, Kurt E. Daloz, William L. TI Weibull Effective Area for Hertzian Ring Crack Initiation SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID INDENTER; FRACTURE AB Spherical or Hertzian indentation is used to characterize and guide the development of engineered ceramics under consideration for diverse applications involving contact, wear, rolling fatigue, and impact. Ring crack initiation can be one important damage mechanism of Hertzian indentation. It is caused by surface-located, radial tensile stresses in an annular ring located adjacent to and outside the Hertzian contact circle. While the maximum radial tensile stress is known to be dependent on the elastic properties of the sphere and target, diameter of the sphere, applied compressive force, and coefficient of friction, the Weibull effective area too will be affected by these parameters. However, estimations of a maximum radial tensile stress and Weibull effective area are difficult to obtain because the coefficient of friction during indentation is not known a priori. Circumventing this, the Weibull effective area expressions are derived here for the two extremes that bracket all coefficients of friction; namely (1) the classical, pure-slip frictionless case and (2) the case of an infinite coefficient of friction or pure stick. C1 [Jadaan, Osama M.] Univ Wisconsin, Coll Engn Math & Sci, Platteville, WI 53818 USA. [Wereszczak, Andrew A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Johanns, Kurt E.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Daloz, William L.] Georgia Inst Technol, Dept Mat Sci & Engn, Atlanta, GA 30332 USA. RP Jadaan, OM (reprint author), Univ Wisconsin, Coll Engn Math & Sci, Platteville, WI 53818 USA. EM Jadaan@uwplatt.edu RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U.S. Army Tank-Automotive Research, Development and Engineering Center [DE-AC-00OR22725]; UT-Battelle, LLC; U.S. Army Research, Development and Engineering Command-Tank-Automotive and Armaments Command FX Research sponsored by Work For Others sponsor U.S. Army Tank-Automotive Research, Development and Engineering Center, under contract DE-AC-00OR22725 with UT-Battelle, LLC.; The authors thank F. Rickert and D. Templeton of the U.S. Army Research, Development and Engineering Command-Tank-Automotive and Armaments Command for sponsoring this work. We also thank ORNL's P. Becher and P. Blau for their useful suggestions. NR 14 TC 4 Z9 4 U1 0 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2011 VL 8 IS 4 BP 824 EP 831 DI 10.1111/j.1744-7402.2010.02514.x PG 8 WC Materials Science, Ceramics SC Materials Science GA 788ND UT WOS:000292450800015 ER PT J AU Wereszczak, AA Dalozw, WL Strong, KT Jadaan, OM AF Wereszczak, Andrew A. Dalozw, William L. Strong, Kevin T., Jr. Jadaan, Osama M. TI Effect of Indenter Elastic Modulus on Hertzian Ring Crack Initiation in Silicon Carbide SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID BRITTLE MATERIALS; FRACTURE AB Hertzian ring cracking in two SiCs was studied as a function of elastic property mismatch between indenter and target. Ring crack initiation forces (RCIF) were measured using ZrO(2), steel, Si(3)N(4), Al(2)O(3), and WC balls. The SiCs were similar; however, similar to 20% of the grains in one were larger than the largest grains in the other. Decreasing indenter stiffness resulted in lower RCIFs and initiation occurred at lower forces in the SiC containing larger grains. Using a spherical indenter with similar elastic properties as the target provides a simpler interpretation and useful and confident estimates of ring crack initiation stresses. C1 [Wereszczak, Andrew A.; Dalozw, William L.; Strong, Kevin T., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jadaan, Osama M.] Univ Wisconsin, Coll Engn Math & Sci, Platteville, WI 53818 USA. RP Wereszczak, AA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wereszczakaa@ornl.gov RI Wereszczak, Andrew/I-7310-2016 OI Wereszczak, Andrew/0000-0002-8344-092X FU U.S. Army Tank-Automotive Research, Development and Engineering Center [DE-AC-00OR22725]; UT-Battelle, LLC; United States Government [DE-AC05-00OR22725]; United States Department of Energy FX Research performed under Work For Others funded by the U.S. Army Tank-Automotive Research, Development and Engineering Center, under contract DE-AC-00OR22725 with UT-Battelle, LLC.; This submission was produced by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. NR 12 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD JUL-AUG PY 2011 VL 8 IS 4 BP 885 EP 894 DI 10.1111/j.1744-7402.2010.02522.x PG 10 WC Materials Science, Ceramics SC Materials Science GA 788ND UT WOS:000292450800021 ER PT J AU Lang, ZQ Park, G Farrar, CR Todd, MD Mao, Z Zhao, L Worden, K AF Lang, Z. Q. Park, G. Farrar, C. R. Todd, M. D. Mao, Z. Zhao, L. Worden, K. TI Transmissibility of non-linear output frequency response functions with application in detection and location of damage in MDOF structural systems SO INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS LA English DT Article DE Transmissibility; Non-linear MDOF systems; Damage detection and location ID PERIODIC STRUCTURES; COMPONENTS AB Transmissibility is a well-known linear system concept that has been widely applied in the diagnosis of damage in various engineering structural systems. However, in engineering practice, structural systems can behave non-linearly due to certain kinds of damage such as, e.g., breathing cracks. In the present study, the concept of transmissibility is extended to the non-linear case by introducing the Transmissibility of Non-linear Output Frequency Response Functions (NOFRFs). The NOFRFs are a concept recently proposed by the authors for the analysis of non-linear systems in the frequency domain. A NOFRF transmissibility-based technique is then developed for the detection and location of both linear and non-linear damage in MDOF structural systems. Numerical simulation results verify the effectiveness of the new technique. Experimental studies on a three-storey building structure demonstrate the potential to apply the developed technique to the detection and location of damage in practical MDOF engineering structures. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lang, Z. Q.; Zhao, L.] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England. [Park, G.; Farrar, C. R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Todd, M. D.; Mao, Z.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Worden, K.] Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England. RP Lang, ZQ (reprint author), Univ Sheffield, Dept Automat Control & Syst Engn, Mappin St, Sheffield S1 3JD, S Yorkshire, England. EM z.lang@sheffield.ac.uk RI Farrar, Charles/C-6954-2012; OI Farrar, Charles/0000-0001-6533-6996 NR 30 TC 16 Z9 16 U1 1 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7462 EI 1878-5638 J9 INT J NONLIN MECH JI Int. J. Non-Linear Mech. PD JUL PY 2011 VL 46 IS 6 BP 841 EP 853 DI 10.1016/j.ijnonlinmec.2011.03.009 PG 13 WC Mechanics SC Mechanics GA 788JS UT WOS:000292441800004 ER PT J AU Mei, F Fu, HJ Chen, DR AF Mei, Fan Fu, Huijing Chen, Da-Ren TI A cost-effective differential mobility analyzer (cDMA) for multiple DMA column applications SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Cost-effective differential mobility analyzer; Macromolecules; Transfer function; Size resolution; Transmission efficiency ID SIZE-RANGE; AEROSOL MEASUREMENTS; PROTEIN COMPLEXES; PARTICLE-SIZE; NANO-DMA; NANOPARTICLES; IONS; SPECTROMETER; IONIZATION; VIRUSES AB In aerosol research and applications, a differential mobility analyzer (DMA) is now considered the standard tool for sizing and classifying monodisperse particles in the sub-micrometer and nanometer size ranges. However, DMA application at the pilot or industrial production scale remains infeasible because of the low mass throughput. A simple way to scale up DMA operation is to use multiple DMA columns. The manufacture and maintenance costs of existing DMAs, however, limit such a scale-up. A cost-effective DMA column (named cDMA) has thus been developed in this work to address the above issue. To reduce its manufacturing cost, the prototype was constructed using parts requiring little machining. The cDMA column was also designed for easy maintenance and easy variation of the classification length for any application-specified size range. In this study, prototypes with two particle classification lengths, 1.75 and 4.50 cm, were constructed and their performance was experimentally evaluated at sheath-to-aerosol flowrate ratios of 5:1, 10:1, and 15:1 via the tandem DMA (TDMA) technique. It was concluded that both prototype cDMAs, operated at a sheath/aerosol flowrate ratio less than 15:1 and with a polydisperse aerosol flowrate of 1.0 lpm, achieved sizing resolution comparable to that offered by Nano-DMA. The longer cDMA had comparable transmission efficiency to that of Nano-DMA, and the shorter cDMA exceeded the performance of Nano-DMA. Hence, the cDMA with the shorter (1.75 cm) classification length is better suited for the characterization of macromolecular samples. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fu, Huijing; Chen, Da-Ren] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Mei, Fan] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Chen, DR (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, Campus Box 1180,1 Brookings Dr, St Louis, MO 63130 USA. EM chen@seas.wustl.edu RI Mei, Fan/H-2665-2012; Mei, Fan/D-9953-2013; OI Mei, Fan/0000-0003-4285-2749 FU GeneSeek Inc. FX The authors are grateful for the partial financial support provided by GeneSeek Inc. for this DMA development. NR 51 TC 6 Z9 6 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD JUL PY 2011 VL 42 IS 7 BP 462 EP 473 DI 10.1016/j.jaerosci.2011.04.001 PG 12 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 787HF UT WOS:000292366500002 ER PT J AU Goesten, MG Juan-Alcaniz, J Ramos-Fernandez, EV Gupta, KBSS Stavitski, E van Bekkum, H Gascon, J Kapteijn, F AF Goesten, Maarten G. Juan-Alcaniz, Jana Ramos-Fernandez, Enrique V. Gupta, K. B. Sai Sankar Stavitski, Eli van Bekkum, Herman Gascon, Jorge Kapteijn, Freek TI Sulfation of metal-organic frameworks: Opportunities for acid catalysis and proton conductivity SO JOURNAL OF CATALYSIS LA English DT Article DE Metal-organic frameworks; MIL-53; MIL-101; Esterification; Proton conductivity; Flexibility ID TEREPHTHALATE MIL-53; SPECTROSCOPY; NMR; ADSORPTION; CO2; HYDRATION; SORPTION; SOLIDS; SULFUR; SITES AB A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Bronsted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion (R) display in the esterification of n-butanol with acetic acid (TOF similar to 1 min(-1) @ 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Bronsted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures. (C) 2011 Elsevier Inc. All rights reserved. C1 [Goesten, Maarten G.; Juan-Alcaniz, Jana; Ramos-Fernandez, Enrique V.; van Bekkum, Herman; Gascon, Jorge; Kapteijn, Freek] Delft Univ Technol, Catalysis Engn Chem Engn Dept, NL-2628 BL Delft, Netherlands. [Gupta, K. B. Sai Sankar] Leiden Univ, NMR Dept, Leiden, Netherlands. [Stavitski, Eli] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Gascon, J (reprint author), Delft Univ Technol, Catalysis Engn Chem Engn Dept, Julianalaan 136, NL-2628 BL Delft, Netherlands. EM j.gascon@tudelft.nl RI Juan-Alcaniz, Jana/F-7875-2010; Kapteijn, Frederik /F-2031-2010; Laboratory, Advanced Materials/I-7298-2015; Gascon, Joaquim/M-3598-2015; Gascon, Jorge/E-8798-2010; Stavitski, Eli/C-4863-2009; Group, CE/C-3853-2009; Ramos-Fernandez, Enrique V./B-8407-2011 OI Kapteijn, Frederik /0000-0003-0575-7953; Gascon, Joaquim/0000-0002-5045-1585; Gascon, Jorge/0000-0001-7558-7123; Ramos-Fernandez, Enrique V./0000-0001-6357-0383 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; TUDelft; European Commission; Netherlands Science Foundation FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We are thankful to Dr. Syed Khalid for his help with the XANES measurements. TUDelft is acknowledged for financial support. E.V.R.F. gratefully acknowledges the European Commission for his personal Marie Curie grant. J.G. gratefully acknowledges the Netherlands Science Foundation for his personal VENI grant. NR 43 TC 128 Z9 129 U1 35 U2 251 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL 1 PY 2011 VL 281 IS 1 BP 177 EP 187 DI 10.1016/j.jcat.2011.04.015 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 789BP UT WOS:000292488600018 ER PT J AU Yakovlev, S Downing, KH AF Yakovlev, S. Downing, K. H. TI Crystalline ice as a cryoprotectant: theoretical calculation of cooling speed in capillary tubes SO JOURNAL OF MICROSCOPY LA English DT Article DE Cryo-fixation; cryo-microscopy; cooling rate; vitrification ID HIGH-PRESSURE; POLYMERIC CRYOPROTECTANTS; BIOLOGICAL ULTRASTRUCTURE; ELECTRON-MICROSCOPY; GLASS-TRANSITION; HEAT-CAPACITY; AMORPHOUS ICE; PRESERVATION; WATER; CRYOPRESERVATION AB It is generally assumed that vitrification of both cells and the surrounding medium provides the best preservation of ultrastructure of biological material for study by electron microscopy. At the same time it is known that the cell cytoplasm may provide substantial cryoprotection for internal cell structure even when the medium crystallizes. Thus, vitrification of the medium is not essential for good structural preservation. By contrast, a high cooling rate is an essential factor for good cryopreservation because it limits phase separation and movement of cellular components during freezing, thus preserving the native-like state. Here we present calculations of freezing rates that incorporate the effect of medium crystallization, using finite difference methods. We demonstrate that crystallization of the medium in capillary tubes may increase the cooling rate of suspended cells by a factor of 25-300 depending on the distance from the centre. We conclude that crystallization of the medium, for example due to low cryoprotectant content, may actually improve cryopreservation of some samples in a near native state. C1 [Yakovlev, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Downing, K. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Yakovlev, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM SYakovlev@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We wish to express our thanks to Dr. Mikhael. V. Shokurov and Dr. Alexander V. Prusov from the Marine Hydrophysical Institute. Ukrainian National Academy of Sciences, for help with computational aspects of the work. This work has been supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 3 Z9 3 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-2720 J9 J MICROSC-OXFORD JI J. Microsc.. PD JUL PY 2011 VL 243 IS 1 BP 8 EP 14 DI 10.1111/j.1365-2818.2011.03498.x PG 7 WC Microscopy SC Microscopy GA 788XT UT WOS:000292478400002 PM 21534954 ER PT J AU Superko, HR Momary, KM Pendyala, LK Williams, PT Frohwein, S Garrett, BC Skrifvars, C Gadesam, R King, SB Rolader, S Meyers, B Dusik, D Polite, S AF Superko, H. Robert Momary, Kathryn M. Pendyala, Lakshmana K. Williams, Paul T. Frohwein, Steven Garrett, Brenda C. Skrifvars, Cathy Gadesam, Radhika King, Spencer B., III Rolader, Steve Meyers, Bill Dusik, David Polite, Stoney TI Firefighters, Heart Disease, and Aspects of Insulin Resistance The FEMA Firefighter Heart Disease Prevention Study SO JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE LA English DT Article ID CARDIOVASCULAR RISK-FACTORS; METABOLIC SYNDROME; UNITED-STATES; MYOCARDIAL-INFARCTION; BLOOD-PRESSURE; SYNDROME-X; CHOLESTEROL; ADULTS; MEN; CLASSIFICATION AB Objective: To determine the association of cardiovascular risk markers with noninvasive imaging of atherosclerosis in firefighters. Methods: Cross-sectional investigation of subclinical atherosclerosis with metabolic, work related, and life-style variables in 296 professional firefighters. Results: Calcified coronary atherosclerosis (CAC), carotid arterial intimal thickness (CIMT), and electrocardiogram provided independent CVD assessments. Homeostatic Model Assessment (HOMA) concentrations were related to heart-rate-corrected QT (QTc) (slope +/- SE: 2.16 +/- 65, P = 0.001), average common CIMT (0.019 +/- 0.005 mm, P = 0.0005), and total CAC lesions (0.269 +/- 0.116, P = 0.02). Stepwise linear regression selected fasting insulin as the strongest predictor for QTc, HOMA as the strongest predictor of average CIMT, and fasting glucose as the strongest predictor of total coronary lesion number and score. Conclusion: Firemen's HOMA and fasting insulin and glucose concentrations were significantly associated with three measures of CVD. Aspects of insulin resistance are related to CVD risk among firefighters. C1 [Superko, H. Robert; Momary, Kathryn M.; Frohwein, Steven; Garrett, Brenda C.; Skrifvars, Cathy; Gadesam, Radhika; King, Spencer B., III] Mercer Univ, Sch Pharmaceut Sci, St Josephs Res Inst, Atlanta, GA USA. [Superko, H. Robert; Garrett, Brenda C.] Cholesterol Genet & Heart Dis Inst, Portola Valley, CA USA. Celera Corp, Alameda, CA USA. [Pendyala, Lakshmana K.] Univ Louisville, Louisville, KY 40292 USA. [Williams, Paul T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Rolader, Steve; Meyers, Bill; Dusik, David; Polite, Stoney] Gwinnett Cty Fire Serv, Gwinnett Cty, GA USA. RP Superko, HR (reprint author), 1401 Harbor Bay Pkwy, Alameda, CA 94502 USA. EM HighHDL@mac.com OI Superko, H. Robert/0000-0002-3542-0393 FU FEMA Grant [EMW-2006-FP-01744] FX The funding source of this article was FEMA Grant #EMW-2006-FP-01744. NR 37 TC 3 Z9 3 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1076-2752 J9 J OCCUP ENVIRON MED JI J. Occup. Environ. Med. PD JUL PY 2011 VL 53 IS 7 BP 758 EP 764 DI 10.1097/JOM.0b013e31821f64c3 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 789TQ UT WOS:000292539600011 PM 21701401 ER PT J AU Zhang, QB Monroe, ME Schepmoes, AA Clauss, TRW Gritsenko, MA Meng, D Petyuk, VA Smith, RD Metz, TO AF Zhang, Qibin Monroe, Matthew E. Schepmoes, Athena A. Clauss, Therese R. W. Gritsenko, Marina A. Meng, Da Petyuk, Vladislav A. Smith, Richard D. Metz, Thomas O. TI Comprehensive Identification of Glycated Peptides and Their Glycation Motifs in Plasma and Erythrocytes of Control and Diabetic Subjects SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE nonenzymatic glycation; Amadori compound; boronate affinity chromatography; electron transfer dissociation; type 2 diabetes mellitus; plasma; erythrocyte; red blood cell; glycation motif ID TANDEM MASS-SPECTROMETRY; ELECTRON-TRANSFER DISSOCIATION; HUMANIZED MONOCLONAL-ANTIBODY; END-PRODUCTS; NONENZYMATIC GLYCOSYLATION; PROTEIN GLYCATION; MAILLARD REACTION; COMPLICATIONS; GLUCOSE; HEMOGLOBIN AB Nonenzymatic glycation of proteins sets the stage for formation of advanced glycation end-products and development of chronic complications of diabetes. In this report, we extended our previous methods on proteomics analysis of glycated proteins to comprehensively identify glycated proteins in control and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semiquantitative comparisons showed that glycation levels of a number of proteins were significantly increased in diabetes and that erythrocyte proteins were more extensively glycated than plasma proteins. A glycation motif analysis revealed that some amino acids were favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for potential identification of novel markers for diabetes, hyperglycemia, and diabetic complications in future studies. C1 [Zhang, Qibin; Monroe, Matthew E.; Schepmoes, Athena A.; Clauss, Therese R. W.; Gritsenko, Marina A.; Meng, Da; Petyuk, Vladislav A.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Metz, TO (reprint author), POB 999,MS K8-98, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Petyuk, Vladislav/0000-0003-4076-151X; Metz, Tom/0000-0001-6049-3968 FU NIH [DK071283]; National Center for Research Resources [RR018522]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research; DOE [DE-AC06-76RLO-1830] FX We thank Dr. Bart Haigh of the Institute for Bioanalytics for kindly providing the Glycogel II boronate affinity gel and Dr. John W. Baynes of the University of South Carolina for critically reading the manuscript. We also thank Dr. Nancy Hess of the Environmental Molecular Sciences Laboratory (EMSL) and Dr. Odeta Qafoku of Pacific Northwest National Laboratory (PNNL) for providing the centrifuge used for isolating erythrocyte membrane and cytosol proteins. This research was supported by NIH grant DK071283; portions of this research were supported through the National Center for Research Resources (RR018522), and work was performed at the EMSL, a national scientific user facility located at PNNL and sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under Contract No. DE-AC06-76RLO-1830. NR 67 TC 37 Z9 37 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 EI 1535-3907 J9 J PROTEOME RES JI J. Proteome Res. PD JUL PY 2011 VL 10 IS 7 BP 3076 EP 3088 DI 10.1021/pr200040j PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 788AI UT WOS:000292417400019 PM 21612289 ER PT J AU Chen, HT O'Hara, JF Azad, AK Taylor, AJ AF Chen, Hou-Tong O'Hara, John F. Azad, Abul K. Taylor, Antoinette J. TI Manipulation of terahertz radiation using metamaterials SO LASER & PHOTONICS REVIEWS LA English DT Review DE Metamaterials; terahertz; split ring resonators; inductive-capacitive resonance; solid state device; active device; passive properties ID SPLIT-RING RESONATORS; TIME-DOMAIN SPECTROSCOPY; LOW-FREQUENCY PLASMONS; NEGATIVE-INDEX; BROAD-BAND; SUPERCONDUCTING METAMATERIALS; OPTICAL METAMATERIALS; ELECTROMAGNETIC METAMATERIALS; MAGNETIC RESPONSE; HOLE ARRAYS AB During the past decade electromagnetic metamaterials have realized many exotic phenomena that are difficult or impossible using naturally occurring materials. It is their resonantly enhanced interaction with electromagnetic waves that underpins their attractive qualities, which are increasingly important in the terahertz frequency range. Passive and active terahertz metamaterials and devices have enabled novel functionality and unprecedented terahertz device performance. These demonstrations prove their potential to address the so-called terahertz gap, a technology vacuum associated with the deficiency of natural materials with a desirable terahertz response. C1 [Chen, Hou-Tong; O'Hara, John F.; Azad, Abul K.; Taylor, Antoinette J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Chen, HT (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM chenht@lanl.gov RI Chen, Hou-Tong/C-6860-2009; OI Chen, Hou-Tong/0000-0003-2014-7571; Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX We acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 151 TC 76 Z9 77 U1 11 U2 86 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1863-8880 J9 LASER PHOTONICS REV JI Laser Photon. Rev. PD JUL PY 2011 VL 5 IS 4 BP 513 EP 533 DI 10.1002/lpor.201000043 PG 21 WC Optics; Physics, Applied; Physics, Condensed Matter SC Optics; Physics GA 789TY UT WOS:000292540400004 ER PT J AU Pogorelsky, IV Polyanskiy, MN Babzien, M Yakimenko, V Dover, NP Palmer, CAJ Najmudin, Z Schreiber, J Shkolnikov, P Dudnikova, G AF Pogorelsky, I. V. Polyanskiy, M. N. Babzien, M. Yakimenko, V. Dover, N. P. Palmer, C. A. J. Najmudin, Z. Schreiber, J. Shkolnikov, P. Dudnikova, G. TI Laser-induced cavities and solitons in overcritical hydrogen plasma SO LASER PHYSICS LA English DT Article AB A picosecond CO(2) laser was used successfully in a number of experiments exploring advanced methods of particle acceleration [1]. Proton acceleration from gas-jet plasma exemplifies another advantage of employing the increase in laser wavelength from the optical to the mid-IR region. Recent theoretical- and experimental-studies of ion acceleration from laser-generated plasma point to better ways to control the ion beam's energy when plasma approaches the critical density. Studying this regime with solid-state lasers is problematic due to the dearth of plasma sources at the critical electron density similar to 10(21) cm(-3), corresponding to laser wavelength lambda = 1 mu m. CO(2) laser offers a solution. The CO(2) laser's 10 mu m wavelength shifts the critical plasma density to 10(19) cm(-3), a value attainable with gas jets. Capitalizing on this approach, we focused a circular polarized 1-TW CO(2) laser beam onto a hydrogen gas jet and observed a monoenergetic proton beam in the 1-2 MeV range. Simultaneously, we optically probed the laser/plasma interaction region with visible light, revealing holes bored by radiation pressure, as well as quasi-stationary soliton-like plasma formations. Our findings from 2D PIC simulations agree with experimental results and aid in their interpretation. C1 [Pogorelsky, I. V.; Polyanskiy, M. N.; Babzien, M.; Yakimenko, V.] Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. [Dover, N. P.; Palmer, C. A. J.; Najmudin, Z.; Schreiber, J.] Imperial Coll London, Blackett Lab, London SW7 2BW, England. [Shkolnikov, P.] SUNY Stony Brook, Elect & Comp Eng Dept, Stony Brook, NY 11794 USA. [Dudnikova, G.] Univ Maryland, College Pk, MD 20742 USA. RP Pogorelsky, IV (reprint author), Brookhaven Natl Lab, Accelerator Test Facil, Upton, NY 11973 USA. EM igor@bnl.gov RI Polyanskiy, Mikhail/E-8406-2010 FU Libra Basic Technology Consortium; US DOE [DE-FG02-07ER41488] FX The work was partly funded by the Libra Basic Technology Consortium and US DOE grant DE-FG02-07ER41488. We thank D. Neely, P. Foster, and J. Green for help with the proton energy diagnostic, and K. Kusche and the ATF technical staff for their assistance with our experiments. NR 13 TC 1 Z9 1 U1 0 U2 11 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1054-660X J9 LASER PHYS JI Laser Phys. PD JUL PY 2011 VL 21 IS 7 BP 1288 EP 1294 DI 10.1134/S1054660X11130226 PG 7 WC Optics; Physics, Applied SC Optics; Physics GA 788SE UT WOS:000292463900027 ER PT J AU Botta, F Mairani, A Battistoni, G Cremonesi, M Di Dia, A Fasso, A Ferrari, A Ferrari, M Paganelli, G Pedroli, G Valente, M AF Botta, F. Mairani, A. Battistoni, G. Cremonesi, M. Di Dia, A. Fasso, A. Ferrari, A. Ferrari, M. Paganelli, G. Pedroli, G. Valente, M. TI Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy SO MEDICAL PHYSICS LA English DT Article DE dose point kernel; FLUKA; Monte Carlo simulation; dosimetry; radionuclide therapy ID PENELOPE CODE; WATER; DISTRIBUTIONS; RADIOTHERAPY; BREMSSTRAHLUNG; SIMULATIONS; VALIDATION; SCATTERING; MCNPX; MODEL AB Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, FLUKA Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, FLUKA has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: FLUKA DPKS have been calculated in both water and compact bone for monoenergetic electrons (10-3 MeV) and for beta emitting isotopes commonly used for therapy ((89)Sr, (90)Y, (131)I, (153)Sm, (177)Lu, (186)Re, and (188)Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. FLUKA outcomes have been compared to PENELOPE v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (ETRAN, GEANT4, MCNPX) has been done. Maximum percentage differences within 0.8.R(CSDA) and 0.9.R(CSDA) for monoenergetic electrons (R(CSDA) being the continuous slowing down approximation range) and within 0.8.X(90) and 0.9.X(90) for isotopes (X(90) being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9.R(CSDA) and 0.9.X(90) for electrons and isotopes, respectively. Results: Concerning monoenergetic electrons, within 0.8.R(CSDA) (where 90%-97% of the particle energy is deposed), FLUKA and PENELOPE agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between FLUKA and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9.X(90), FLUKA and PENELOPE differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of FLUKA DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. Conclusions: FLUKA provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry. (C) 2011 American Association of Physicists in Medicine. [DOI:10.1118/1.3586038] C1 [Mairani, A.; Battistoni, G.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Botta, F.; Cremonesi, M.; Di Dia, A.; Ferrari, M.; Pedroli, G.] European Inst Oncol, Dept Med Phys, I-20141 Milan, Italy. [Fasso, A.] Jefferson Lab, Newport News, VA 23606 USA. [Ferrari, A.] CERN, CH-1211 Geneva 23, Switzerland. [Paganelli, G.] European Inst Oncol, Dept Nucl Med, I-2014 Milan, Italy. [Valente, M.] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina. [Valente, M.] Consejo Nacl Invest Cient & Tecn, RA-5000 Cordoba, Argentina. RP Battistoni, G (reprint author), Ist Nazl Fis Nucl, Via Celoria 16, I-20133 Milan, Italy. EM giuseppe.battistoni@mi.infn.it RI Battistoni, Giuseppe/B-5264-2012; OI Battistoni, Giuseppe/0000-0003-3484-1724; VALENTE, MAURO/0000-0002-1229-1154 NR 39 TC 22 Z9 23 U1 2 U2 15 PU AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0094-2405 J9 MED PHYS JI Med. Phys. PD JUL PY 2011 VL 38 IS 7 BP 3944 EP 3954 DI 10.1118/1.3586038 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 789NB UT WOS:000292521100006 PM 21858991 ER PT J AU Chanda, D Shigeta, K Gupta, S Cain, T Carlson, A Mihi, A Baca, AJ Bogart, GR Braun, P Rogers, JA AF Chanda, Debashis Shigeta, Kazuki Gupta, Sidhartha Cain, Tyler Carlson, Andrew Mihi, Agustin Baca, Alfred J. Bogart, Gregory R. Braun, Paul Rogers, John A. TI Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing SO NATURE NANOTECHNOLOGY LA English DT Article ID NANOIMPRINT LITHOGRAPHY; TERAHERTZ FREQUENCIES; REFRACTIVE-INDEX; FABRICATION AB Negative-index metamaterials (NIMs) are engineered structures with optical properties that cannot be obtained in naturally occurring materials(1-3). Recent work has demonstrated that focused ion beam(4) and layer-by-layer electron-beamlithography(5) can be used to pattern the necessary nanoscale features over small areas (hundreds of mu m(2)) for metamaterials with three-dimensional layouts and interesting characteristics, including negative-index behaviour in the optical regime. A key challenge is in the fabrication of such three-dimensional NIMs with sizes and at throughputs necessary for many realistic applications (including lenses, resonators and other photonic components(6-8)). We report a simple printing approach capable of forming large-area, high-quality NIMs with three-dimensional, multilayer formats. Here, a silicon wafer with deep, nanoscale patterns of surface relief serves as a reusable stamp. Blanket deposition of alternating layers of silver and magnesium fluoride onto such a stamp represents a process for 'inking' it with thick, multilayer assemblies. Transfer printing this ink material onto rigid or flexible substrates completes the fabrication in a high-throughput manner. Experimental measurements and simulation results show that macroscale, three-dimensional NIMs (>75 cm(2)) nano-manufactured in this way exhibit a strong, negative index of refraction in the near-infrared spectral range, with excellent figures of merit. C1 [Chanda, Debashis; Shigeta, Kazuki; Gupta, Sidhartha; Cain, Tyler; Carlson, Andrew; Mihi, Agustin; Braun, Paul; Rogers, John A.] Univ Illinois, Dept Mat Sci, Beckman Inst, Urbana, IL 61801 USA. [Chanda, Debashis; Shigeta, Kazuki; Gupta, Sidhartha; Cain, Tyler; Carlson, Andrew; Mihi, Agustin; Braun, Paul; Rogers, John A.] Univ Illinois, Dept Engn, Beckman Inst, Urbana, IL 61801 USA. [Chanda, Debashis; Shigeta, Kazuki; Gupta, Sidhartha; Cain, Tyler; Carlson, Andrew; Mihi, Agustin; Braun, Paul; Rogers, John A.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Rogers, John A.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Baca, Alfred J.] USN, NAVAIR NAWCWD, Res & Intelligence Dept, Chem Branch, China Lake, CA 93555 USA. [Bogart, Gregory R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rogers, JA (reprint author), Univ Illinois, Dept Mat Sci, Beckman Inst, Urbana, IL 61801 USA. EM jrogers@uiuc.edu RI Mihi, Agustin/F-6416-2011; Rogers, John /L-2798-2016 FU Office of Naval Research; US Department of Energy [DE-AC04-94AL85000] FX The work at University of Illinois was supported by a grant from the Office of Naval Research. The authors also gratefully knowledge the contribution of Sandia National Laboratory, which is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy (contract no. DE-AC04-94AL85000), in fabricating the large-area master mask using deep UV lithography. NR 35 TC 150 Z9 153 U1 38 U2 333 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD JUL PY 2011 VL 6 IS 7 BP 402 EP 407 DI 10.1038/NNANO.2011.82 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 788RV UT WOS:000292463000007 PM 21642984 ER PT J AU Crease, RP Qiu, GM AF Crease, Robert P. Qiu, Guangming TI Critical Point Chinese metrology SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD JUL PY 2011 VL 24 IS 7 BP 16 EP 17 PG 2 WC Physics, Multidisciplinary SC Physics GA 790FU UT WOS:000292574700012 ER PT J AU Camporeale, E Burgess, D AF Camporeale, Enrico Burgess, David TI THE DISSIPATION OF SOLAR WIND TURBULENT FLUCTUATIONS AT ELECTRON SCALES (vol 730, pg 114, 2011) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Camporeale, Enrico] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Burgess, David] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England. RP Camporeale, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 1 TC 0 Z9 0 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 67 DI 10.1088/0004-637X/735/1/67 PG 2 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300067 ER PT J AU Escala, A AF Escala, Andres TI A LAW FOR STAR FORMATION IN GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: formation; galaxies: ISM; galaxies: star formation; instabilities ID ULTRALUMINOUS INFRARED GALAXIES; INITIAL MASS FUNCTION; GLOBAL SCHMIDT LAW; NEARBY GALAXIES; GALACTIC DISKS; MOLECULAR GAS; INTERSTELLAR-MEDIUM; SPIRAL GALAXIES; VIRGO CLUSTER; ENVIRONMENT AB We study the galactic-scale triggering of star formation. We find that the largest mass scale not stabilized by rotation, a well-defined quantity in a rotating system and with clear dynamical meaning, strongly correlates with the star formation rate in a wide range of galaxies. We find that this relation can be understood in terms of self-regulation toward marginal Toomre stability and the amount of turbulence allowed to sustain the system in this self-regulated quasi-stationary state. We test such an interpretation by computing the predicted star formation rates for a galactic interstellar medium characterized by a lognormal probability distribution function and find good agreement with the observed relation. C1 [Escala, Andres] Univ Chile, Dept Astron, Santiago, Chile. [Escala, Andres] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, SLAC, Menlo Pk, CA 94025 USA. RP Escala, A (reprint author), Univ Chile, Dept Astron, Casilla 36-D, Santiago, Chile. RI Escala, Andres /J-6618-2016 FU Center of Excellence in Astrophysics and Associated Technologies [PFB 06]; FONDECYT [11090216]; Comite Mixto ESO-Chile FX I thank Richard Larson for valuable comments on an early version of the draft, Catherine Vlahakis for proofreading this manuscript, and the referee, Brant Robertson, for a constructive report. I am indebted to Fernando Becerra for performing the error analysis and graphical display. I also acknowledge partial support from the Center of Excellence in Astrophysics and Associated Technologies (PFB 06), FONDECYT Iniciacion Grant 11090216, and from the Comite Mixto ESO-Chile. NR 44 TC 9 Z9 9 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 56 DI 10.1088/0004-637X/735/1/56 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300056 ER PT J AU Myers, AT Krumholz, MR Klein, RI McKee, CF AF Myers, Andrew T. Krumholz, Mark R. Klein, Richard I. McKee, Christopher F. TI METALLICITY AND THE UNIVERSALITY OF THE INITIAL MASS FUNCTION SO ASTROPHYSICAL JOURNAL LA English DT Article DE ISM: clouds; radiative transfer; stars: formation; stars: luminosity function; mass function turbulence ID SMALL-MAGELLANIC-CLOUD; SELF-GRAVITATIONAL HYDRODYNAMICS; ADAPTIVE MESH REFINEMENT; STAR-FORMATION; MOLECULAR CLOUDS; PROTOSTELLAR COLLAPSE; DISRUPTION MECHANISMS; RADIATIVE-TRANSFER; ANTENNAE GALAXIES; TURBULENT CORES AB The stellar initial mass function (IMF), along with the star formation rate, is one of the fundamental properties that any theory of star formation must explain. An interesting feature of the IMF is that it appears to be remarkably universal across a wide range of environments. Particularly, there appears to be little variation in either the characteristic mass of the IMF or its high-mass tail between clusters with different metallicities. Previous attempts to understand this apparent independence of metallicity have not accounted for radiation feedback from high-mass protostars, which can dominate the energy balance of the gas in star-forming regions. We extend this work, showing that the fragmentation of molecular gas should depend only weakly on the amount of dust present, even when the primary heating source is radiation from massive protostars. First, we report a series of core collapse simulations using the ORION AMR code that systematically vary the dust opacity and show explicitly that this has little effect on the temperature or fragmentation of the gas. Then, we provide an analytic argument for why the IMF varies so little in observed star clusters, even as the metallicity varies by a factor of 100. C1 [Myers, Andrew T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Krumholz, Mark R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Myers, AT (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM atmyers@berkeley.edu OI Krumholz, Mark/0000-0003-3893-854X FU NSF [0847477, AST-0807739, CAREER-0955300, AST-0908553]; France-Berkeley fund; Institute for Geophysics and Planetary Physics; Center for Origin, Dynamics and Evolution of Planets; DOE [DE-FC02-06ER41453-03]; Alfred P. Sloan Fellowship; US Department of Energy at LLNL [DE-AC52-07NA]; NASA [NNX09AK31G]; NSF through Teragrid resources; ATFP FX We thank Charles Hansen, Stella Offner, Andrew Cunningham, and the anonymous referee for helpful comments. This project was initiated during the ISIMA 2010 summer program, funded by the NSF CAREER grant 0847477, the France-Berkeley fund, the Institute for Geophysics and Planetary Physics and the Center for Origin, Dynamics and Evolution of Planets. We thank them for their support. Support for this work was also provided by the DOE SciDAC program under grant DE-FC02-06ER41453-03 (A.T.M.), an Alfred P. Sloan Fellowship (M.R.K.), NSF grants AST-0807739 (M.R.K.), CAREER-0955300 (M.R.K.), and AST-0908553 (C.F.M., R.I.K., and A.T.M.), the US Department of Energy at LLNL under contract DE-AC52-07NA (R.I.K.), NASA through Astrophysics Theory and Fundamental Physics grant NNX09AK31G (R.I.K., C.F.M., and M.R.K.), and through a Spitzer Space Telescope Theoretical Research Program grant (M. R. K. and C.F.M.). Support for computer simulations was provided by an LRAC grant from the NSF through Teragrid resources and NASA through a grant from the ATFP. We have used the YT software toolkit (Turk et al. 2011) for data analysis and plotting. NR 64 TC 27 Z9 27 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 49 DI 10.1088/0004-637X/735/1/49 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300049 ER PT J AU Vallinotto, A Viel, M Das, S Spergel, DN AF Vallinotto, Alberto Viel, Matteo Das, Sudeep Spergel, David N. TI CROSS-CORRELATIONS OF THE Ly alpha FOREST WITH WEAK-LENSING CONVERGENCE. ANALYTICAL ESTIMATES OF SIGNAL-TO-NOISE RATIO AND IMPLICATIONS FOR NEUTRINO MASS AND DARK ENERGY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; gravitational lensing: weak; intergalactic medium; large-scale structure of universe; neutrinos ID QSO ABSORPTION-SPECTRA; SLOAN DIGITAL SKY; INTERGALACTIC MEDIUM; POWER SPECTRUM; COSMOLOGY; DENSITY; FLUCTUATIONS; BISPECTRUM; EVOLUTION; REDSHIFT AB We expect a detectable correlation between two seemingly unrelated quantities: the four-point function of the cosmic microwave background (CMB) and the amplitude of flux decrements in quasar (QSO) spectra. The amplitude of CMB convergence in a given direction measures the projected surface density of matter. Measurements of QSO flux decrements trace the small-scale distribution of gas along a given line of sight. While the cross-correlation between these two measurements is small for a single line of sight, upcoming large surveys should enable its detection. This paper presents analytical estimates for the signal-to-noise ratio (S/N) for measurements of the cross-correlation between the flux decrement and the convergence, , and for measurements of the cross-correlation between the variance in flux decrement and the convergence, <(delta F)(2)kappa >. For the ongoing BOSS (SDSS-III) and Planck surveys, we estimate an S/N of 30 and 9.6 for these two correlations. For the proposed BigBOSS and ACTPOL surveys, we estimate an S/N of 130 and 50, respectively. Since <(delta F)(2)kappa > proportional to sigma(4)(8), the amplitude of these cross-correlations can potentially be used to measure the amplitude of sigma(8) at z similar to 2%-2.5% with BOSS and Planck and even better with future data sets. These measurements have the potential to test alternative theories for dark energy and to constrain the mass of the neutrino. The large potential signal estimated in our analytical calculations motivates tests with nonlinear hydrodynamic simulations and analyses of upcoming data sets. C1 [Vallinotto, Alberto] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Viel, Matteo] Osserv Astron Trieste, INAF, I-34131 Trieste, Italy. [Viel, Matteo] Ist Nazl Fis Nucl, Natl Inst Nucl Phys, I-34127 Trieste, Italy. [Das, Sudeep; Spergel, David N.] Princeton Univ Observ, Princeton, NJ 08544 USA. [Das, Sudeep] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBNL, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Vallinotto, A (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500,Kirk Rd & Pine St, Batavia, IL 60510 USA. EM avalli@fnal.gov; viel@oats.inaf.it; sudeep@astro.princeton.edu; dns@astro.princeton.edu RI Spergel, David/A-4410-2011; OI Viel, Matteo/0000-0002-2642-5707 FU DOE; NSF; [INFN/PD51]; [ASI-AAE a PRIN MIUR]; [PRIN INAF]; [ERCStG] FX We thank S. Matarrese, F. Bernardeau, S. Dodelson, J. Frieman, E. Sefusatti, N. Gnedin, R. Scoccimarro, S. Ho, D. Weinberg, and J. P. Uzan for useful conversations. We also thank the referee for a constructive report. A.V. is supported by the DOE at Fermilab. M.V. is supported by grants INFN/PD51, ASI-AAE a PRIN MIUR, a PRIN INAF 2009, and the ERCStG "cosmoIGM." D.N.S. and S.D. are supported by NSF grant NR 49 TC 4 Z9 4 U1 1 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2011 VL 735 IS 1 AR 38 DI 10.1088/0004-637X/735/1/38 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 779OM UT WOS:000291788300038 ER PT J AU Labaj, PP Leparc, GG Linggi, BE Markillie, LM Wiley, HS Kreil, DP AF Labaj, Pawel P. Leparc, German G. Linggi, Bryan E. Markillie, Lye Meng Wiley, H. Steven Kreil, David P. TI Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 19th Annual International Conference on Intelligent Systems for Molecular Biology/10th European Conference on Computational Biology CY JUL 17-19, 2011 CL Vienna, AUSTRIA ID SHORT READ ALIGNMENT; DIFFERENTIAL EXPRESSION; GENERATION; CELL; GENOME; ARRAYS; ULTRAFAST; TOOL AB Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error <20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision. C1 [Labaj, Pawel P.; Leparc, German G.; Kreil, David P.] Boku Univ Vienna, Chair Bioinformat, A-1190 Vienna, Austria. [Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. Steven] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kreil, DP (reprint author), Boku Univ Vienna, Chair Bioinformat, Muthgasse 18, A-1190 Vienna, Austria. EM rnaseq10@boku.ac.at RI Kreil, D/O-1783-2013; Labaj, Pawel/N-5425-2014; OI Kreil, D/0000-0001-7538-2056; Wiley, Steven/0000-0003-0232-6867 NR 45 TC 60 Z9 62 U1 0 U2 21 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD JUL 1 PY 2011 VL 27 IS 13 BP I383 EP I391 DI 10.1093/bioinformatics/btr247 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 779BH UT WOS:000291752600047 PM 21685096 ER PT J AU Savol, AJ Burger, VM Agarwal, PK Ramanathan, A Chennubhotla, CS AF Savol, Andrej J. Burger, Virginia M. Agarwal, Pratul K. Ramanathan, Arvind Chennubhotla, Chakra S. TI QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin SO BIOINFORMATICS LA English DT Article; Proceedings Paper CT 19th Annual International Conference on Intelligent Systems for Molecular Biology/10th European Conference on Computational Biology CY JUL 17-19, 2011 CL Vienna, AUSTRIA ID TIME-SERIES ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; MIMICKING PROTEIN DYNAMICS; HIERARCHICAL STRUCTURE; ENERGY LANDSCAPE; SIMULATIONS; PROPAGATION; SCALES; STATES AB Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5 mu s ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory's temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model. We show the learned model can be extrapolated to synthesize trajectories of arbitrary length. C1 [Agarwal, Pratul K.; Ramanathan, Arvind] Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37830 USA. [Agarwal, Pratul K.; Ramanathan, Arvind] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. [Savol, Andrej J.; Burger, Virginia M.; Chennubhotla, Chakra S.] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15260 USA. [Savol, Andrej J.; Burger, Virginia M.] Joint Carnegie Mellon Univ Univ Pittsburgh PhD Pr, Pittsburgh, PA USA. RP Ramanathan, A (reprint author), Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN 37830 USA. EM ramanathana@ornl.gov; chakracs@pitt.edu OI /0000-0002-8612-4797 FU Howard Hughes Medical Institute; NIBIB NIH HHS [T32 EB009403]; NIGMS NIH HHS [R01 GM086238, R01 GM086238-04] NR 47 TC 9 Z9 9 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 1 PY 2011 VL 27 IS 13 BP I52 EP I60 DI 10.1093/bioinformatics/btr248 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 779BH UT WOS:000291752600007 PM 21685101 ER PT J AU Meral, C Benmore, CJ Monteiro, PJM AF Meral, Cagla Benmore, C. J. Monteiro, Paulo J. M. TI The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis SO CEMENT AND CONCRETE RESEARCH LA English DT Review DE amorphous material; Calcium-Silicate-Hydrate (C-S-H); X-ray diffraction; alkali-aggregate reaction; Geopolymer ID CALCIUM-SILICATE-HYDRATE; X-RAY-DIFFRACTION; AMORPHOUS ALUMINUM SILICATES; MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; STRUCTURAL FEATURES; SIO2-AL2O3 GLASSES; CRYSTAL-STRUCTURE; NMR-SPECTROSCOPY; TOTAL SCATTERING AB Significant progress was achieved with the application of Rietveld method to characterize the crystalline phases in portland cement paste. However, to obtain detailed information on the amorphous or poorly crystalline phases, it is necessary to analyze the total scattering data. The pair distribution function (PDF) method has been successfully used in the study of liquids and amorphous solids. The method takes the Sine Fourier transform of the measured structure factor over a wide momentum transfer range, providing a direct measure of the probability of finding an atom surrounding a central atom at a radial distance away. The obtained experimental characteristic distances can be also used to validate the predictions by the theoretical models, such as, molecular dynamics, ab initio simulations and density functional theory. The paper summarizes recent results of PDF analysis on silica fume, rice husk ash, fly ash. ASR gel, C-S-H and geopolymers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Meral, Cagla; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Benmore, C. J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Monteiro, PJM (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM monteiro@berkeley.edu RI Meral, Cagla/J-9467-2012; Meral, Cagla/K-8590-2013; OI Meral, Cagla/0000-0001-8720-1216; Benmore, Chris/0000-0001-7007-7749 FU U.S. DOE, Argonne National Laboratory [DE-AC02-06CH11357]; King Abdullah University of Science and Technology (KAUST) [KUS-l1-004021]; NIST [60NANB10D014] FX This work was supported by the U.S. DOE, Argonne National Laboratory under contract number DE-AC02-06CH11357. This publication was based on work supported in part by Award No. KUS-l1-004021, made by King Abdullah University of Science and Technology (KAUST) and by NIST Grant 60NANB10D014. Also, thanks to Dr. L.B. Skinner, Dr. C. Erdonmez, Dr. B. Ercan, Dr. S. Soyer-Uzun and Dr. C. White for their valuable discussions during the production of this paper. NR 102 TC 38 Z9 39 U1 5 U2 76 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-8846 J9 CEMENT CONCRETE RES JI Cem. Concr. Res. PD JUL PY 2011 VL 41 IS 7 SI SI BP 696 EP 710 DI 10.1016/j.cemconres.2011.03.027 PG 15 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA 779LW UT WOS:000291780100008 ER PT J AU van Veenendaal, M AF van Veenendaal, Michel TI 3j symbols: to normalize or not to normalize? SO EUROPEAN JOURNAL OF PHYSICS LA English DT Article ID X-RAY-ABSORPTION; RARE-EARTHS; DISTRIBUTIONS; SCATTERING AB The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to tesseral harmonics. The methodology developed here leads to a significantly clearer presentation, which is of interest, not only for textbooks but also for researchers using spherical tensors. C1 [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP van Veenendaal, M (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM veenendaal@niu.edu FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; NIU's Institute for Nanoscience, Engineering, and Technology; US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-03ER46097, and NIU's Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. NR 9 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0143-0807 J9 EUR J PHYS JI Eur. J. Phys. PD JUL PY 2011 VL 32 IS 4 BP 947 EP 954 DI 10.1088/0143-0807/32/4/009 PG 8 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 778FD UT WOS:000291686800013 ER PT J AU Tauke-Pedretti, A Vawter, GA Skogen, EJ Peake, G Overberg, M Alford, C Chow, WW Yang, ZSS Torres, D Cajas, F AF Tauke-Pedretti, Anna Vawter, G. Allen Skogen, Erik J. Peake, Greg Overberg, Mark Alford, Charles Chow, Weng W. Yang, Zhenshan S. Torres, David Cajas, Florante TI Mutual Injection Locking of Monolithically Integrated Coupled-Cavity DBR Lasers SO IEEE PHOTONICS TECHNOLOGY LETTERS LA English DT Article DE Amplitude modulation; coupled-cavity lasers; injection locking; monolithic integration; photonic integrated circuits (PICs); semiconductor lasers ID STRONG OPTICAL-INJECTION; SEMICONDUCTOR-LASERS AB We present a photonic integrated circuit (PIC) composed of two strongly coupled distributed Bragg reflector (DBR) lasers. This PIC utilizes the dynamics of mutual injection locking to increase the relaxation resonance frequency from 3 GHz to beyond 30 GHz. Mutual injection-locking and external injection-locking operation are compared. C1 [Tauke-Pedretti, Anna; Vawter, G. Allen; Skogen, Erik J.; Peake, Greg; Overberg, Mark; Alford, Charles; Chow, Weng W.; Yang, Zhenshan S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Torres, David; Cajas, Florante] LMATA Govt Serv LLC, Albuquerque, NM 87185 USA. RP Tauke-Pedretti, A (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ataukep@sandia.gov; gavawte@sandia.gov; ejskoge@sandia.gov; gmpeake@sandia.gov; meoverb@sandia.gov; cralfor@sandia.gov; wwchow@sandia.gov; dtorres@sandia.gov; fgcajas@sandia.gov FU U.S. Department of Energy at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Manuscript received October 26, 2010; revised March 01, 2011; accepted March 26, 2011. Date of publication April 07, 2011; date of current version June 15, 2011. This work was supported by the U.S. Department of Energy's Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 8 TC 8 Z9 9 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1041-1135 J9 IEEE PHOTONIC TECH L JI IEEE Photonics Technol. Lett. PD JUL 1 PY 2011 VL 23 IS 13 BP 908 EP 910 DI 10.1109/LPT.2011.2140099 PG 3 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 778CZ UT WOS:000291678300001 ER PT J AU Wang, ZG Xue, SW Li, JB Gao, F AF Wang, Zhiguo Xue, Shuwen Li, Jingbo Gao, Fei TI First principles study of p-type doping in SiC nanowires: role of quantum effect SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE SiC nanowires; p-type doping; First principles; Modeling and simulation ID THIN-FILMS; SEMICONDUCTORS; GROWTH; DEPOSITION; EMISSION; ENERGY AB Using first principles density functional theory calculations, we investigated the X and X-N-X (X = Al and Ga) doped 3C-SiC nanowires grown along the [111] crystal direction with diameter of 1.00 and 1.33 nm. We found that the ionization energy of acceptor state is much larger in nanowires than that in the bulk SiC as a result of quantum confinement effect. Simulation results show that the reduced dimensionality in p-type SiC nanowires strongly reduces the capability of the materials to generate free carriers. It is also found that X-N-X (X = Al and Ga) complexes are energetically favored to form in the materials and have lower ionization energy than single doping. It is confirm that codoping is more suitable method for achieving low-resistivity semiconductors either in nano materials or bulk material. C1 [Wang, Zhiguo; Xue, Shuwen] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Wang, Zhiguo; Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Jingbo] Chinese Acad Sci, State Key Lab Superlattices & Microstruct, Inst Semicond, Beijing 100083, Peoples R China. RP Wang, ZG (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn; fei.gao@pnl.gov RI Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sichuan [09ZQ026-029]; UESTC [JX0731]; Chinese Academy of Sciences; National Science Fund for Distinguished Young Scholar [60925016]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (10704014) and the Young Scientists Foundation of Sichuan (09ZQ026-029) and UESTC (JX0731). J. Li gratefully acknowledges financial support from the "One-Hundred Talents Plan" of the Chinese Academy of Sciences and National Science Fund for Distinguished Young Scholar (Grants No. 60925016). F. Gao was supported from the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 25 TC 3 Z9 3 U1 0 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 EI 1572-896X J9 J NANOPART RES JI J. Nanopart. Res. PD JUL PY 2011 VL 13 IS 7 BP 2887 EP 2892 DI 10.1007/s11051-010-0177-y PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 778YZ UT WOS:000291746600022 ER PT J AU Conley, AJ Collins, WD AF Conley, A. J. Collins, W. D. TI Extension of the weak-line approximation and application to correlated-k methods SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Band model; Radiative transfer; Weak-line approximation; Correlated-k method; Laplace transform AB Global climate models require accurate and rapid computation of the radiative transfer through the atmosphere. Correlated-k methods are often used. One of the approximations used in correlated-k models is the weak-line approximation. We introduce an approximation T(gamma) which reduces to the weak-line limit when optical depths are small, and captures the deviation from the weak-line limit as the extinction deviates from the weak-line limit. This approximation is constructed to match the first two moments of the gamma distribution to the k-distribution of the transmission. We compare the errors of the weak-line approximation with T(gamma) in the context of a water vapor spectrum. The extension T(gamma) is more accurate and converges more rapidly than the weak-line approximation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Conley, A. J.] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Collins, W. D.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Collins, W. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Conley, AJ (reprint author), Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. EM aconley@ucar.edu RI Collins, William/J-3147-2014 OI Collins, William/0000-0002-4463-9848 FU Department of Energy; NCAR; National Science Foundation; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Andrew Conley was supported by the SciDAC project from the Department of Energy and NCAR. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the author and do not necessarily reflect the views of the National Science Foundation.; Bill Collins was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 10 TC 4 Z9 4 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2011 VL 112 IS 10 BP 1525 EP 1532 DI 10.1016/j.jqsrt.2011.02.008 PG 8 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 778OS UT WOS:000291714600003 ER PT J AU Rees, EVL Priest, JA Clayton, CRI AF Rees, Emily V. L. Priest, Jeffery A. Clayton, Chris R. I. TI The structure of methane gas hydrate bearing sediments from the Krishna-Godavari Basin as seen from Micro-CT scanning SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrate; Hydraulic fracturing; Pressure coring; X-ray CT; NGHP-1 ID DISSOCIATION; FRACTURES; IMAGERY; SAMPLES; SLOPE; RIDGE; ZONE AB The Indian National Gas Hydrate Program (NGHP) Expedition 1, of 2006, cored through several methane gas hydrate deposits on the continental shelf around the coast of India. The pressure coring techniques utilized during the expedition (HYACINTH and PCS) enabled recovery of gas hydrate bearing, fine-grained, sediment cores to the surface. After initial characterization core sections were rapidly depressurized and submerged in liquid nitrogen, preserving the structure and form of the hydrate within the host sediment. Once on shore, high resolution X-ray CT scanning was employed to obtain detailed three-dimensional images of the internal structure of the gas hydrate. Using a resolution of 80 gm the detailed structure of the hydrate veins present in each core could be observed, and allowed for an in depth analysis of orientation, width and persistence of each vein. Hydrate saturation estimates could also be made and saturations of 20-30% were found to be the average across the core section with some portions showing highs of almost 60% saturation. The majority of hydrate veins in each core section were found to be orientated between 50 and 80 degrees to the horizontal. Analysis of the strikes of the veins suggested a slight preferential orientation in individual sample sections, although correlation between individual sections was not possible due to the initial orientation of the sections being lost during the sampling stage. The preferred vein orientation within sample sections coupled with several geometric features identified in individual veins, suggest that hydraulic fracturing by upward advecting pore fluids is the main formation mechanism for the veined hydrate deposits in the K-G Basin. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Rees, Emily V. L.; Priest, Jeffery A.; Clayton, Chris R. I.] Univ Southampton, Sch Civil Engn & Environm, Southampton, Hants, England. RP Rees, EVL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM evrees@lbl.gov; J.A.Priest@soton.ac.uk; C.Clayton@soton.ac.uk RI YAMMANI, SRINIVASARAO/E-9400-2011 OI YAMMANI, SRINIVASARAO/0000-0001-7844-0223 FU UK EPSRC [EP/D035996/1] FX The authors gratefully acknowledge the Science Team of the Indian NGHP Expedition 01 and the Indian government for providing recovered pressure core samples for testing. We would also like to thank Ian Sinclair and his team from the Mechanical Engineering Department of Southampton University for their aid in using and interpreting data from the Micro-focus X-ray CT scanning equipment. This study was partially funded by UK EPSRC project EP/D035996/1. NR 46 TC 22 Z9 23 U1 3 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD JUL PY 2011 VL 28 IS 7 BP 1283 EP 1293 DI 10.1016/j.marpetgeo.2011.03.015 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 780DK UT WOS:000291834500002 ER PT J AU Xing, CH Jensen, C Ban, H Phillips, J AF Xing, Changhu Jensen, Colby Ban, Heng Phillips, Jeffrey TI Uncertainty analysis on the design of thermal conductivity measurement by a guarded cut-bar technique SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE uncertainty analysis; guarded cut-bar technique; thermal conductivity measurement; nuclear fuel compact ID VALIDATION; APPARATUS AB A technique adapted from the guarded-comparative-longitudinal heat flow method was selected for the measurement of the thermal conductivity of a nuclear fuel compact over a temperature range characteristic of its usage. This technique fulfills the requirement for non-destructive measurement of the composite compact. Although numerous measurement systems have been created based on the guarded-comparative method, comprehensive systematic (bias) and measurement (precision) uncertainty associated with this technique have not been fully analyzed. In addition to the geometric effect in the bias error, which has been analyzed previously, this paper studies the working condition which is another potential error source. Using finite element analysis, this study showed the effect of these two types of error sources in the thermal conductivity measurement process and the limitations in the design selection of various parameters by considering their effect on the precision error. The results and conclusions provide valuable reference for designing and operating an experimental measurement system using this technique. C1 [Xing, Changhu; Jensen, Colby; Ban, Heng] Utah State Univ, Dept Aerosp Engn & Mech, Logan, UT 84322 USA. [Phillips, Jeffrey] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Xing, CH (reprint author), Utah State Univ, Dept Aerosp Engn & Mech, Logan, UT 84322 USA. EM changhu.xing@aggiemail.usu.edu RI Ban, Heng/I-6268-2012; OI Jensen, Colby/0000-0001-8925-7758 FU US Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office [DE-AC07-05ID14517]; Department of Energy Nuclear Energy University FX The work was supported by US Department of Energy, Office of Nuclear Energy, under DOE Idaho Operations Office, contract DE-AC07-05ID14517. The work performed by Colby Jensen was supported under a Department of Energy Nuclear Energy University Programs Graduate Fellowship. NR 22 TC 10 Z9 10 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD JUL PY 2011 VL 22 IS 7 AR 075702 DI 10.1088/0957-0233/22/7/075702 PG 9 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 777YG UT WOS:000291660500024 ER PT J AU Boyce, BL Padilla, HA AF Boyce, Brad L. Padilla, Henry A., II TI Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID MECHANICAL-PROPERTIES; BOUNDARY MOTION; PLASTIC-DEFORMATION; ROOM-TEMPERATURE; THIN-FILMS; METALS; COPPER; NI; MICROSTRUCTURE; SIMULATION AB Fatigue failure due to repetitive loading of metallic devices is a pervasive engineering concern. The present work reveals extraordinary fatigue resistance in nanocrystalline (NC) alloys, which appears to be associated with the small (< 100 nm) grain size inhibiting traditional cyclic damage processes. In this study, we examine the fatigue performance of three electrodeposited NC Ni-based metals: Ni, Ni-0.5Mn, and Ni-22Fe (PERMALLOY). When subjected to fatigue stresses at and above the tensile yield strength where conventional coarse-grained (CG) counterparts undergo low-cycle fatigue failure (< 10(4) cycles to failure), these alloys exhibit exceptional fatigue lives (in some cases, > 10(7) cycles to failure). Postmortem examinations show that failed samples contain an aggregate of coarsened grains at the crack initiation site. The experimental data and accompanying microscopy suggest that the NC matrix undergoes abnormal grain growth during cyclic loading, allowing dislocation activity to persist over length scales necessary to initiate a fatigue crack by traditional fatigue mechanisms. Thus, the present observations demonstrate anomalous fatigue behavior in two regards: (1) quantitatively anomalous when considering the extremely high stress levels needed to drive fatigue failure and (2) mechanistically anomalous in light of the grain growth process that appears to be a necessary precursor to crack initiation. C1 [Boyce, Brad L.; Padilla, Henry A., II] Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Boyce, BL (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM blboyce@sandia.gov RI Boyce, Brad/H-5045-2012 OI Boyce, Brad/0000-0001-5994-1743 FU United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors thank Drs. T. R Christensen and S. H. Goods for supplying the various electroplated alloys used in this investigation, as well as Dr. E. A. Holm for helpful discussions and guidance regarding grain growth phenomenon. The authors also thank Dr. P. G. Kotula, Dr. B. G. Clark, Dr. J.R. Michael, M. Rye, and B. McKenzie for electron microscopy support, as well as Dr. M. Rodriguez for XRD support. This work was performed, in part, at the Center for Integrated Nanotechnologies, a United States Department of Energy, Office of Basic Energy Sciences, user facility. This work was funded by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 66 TC 30 Z9 30 U1 4 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2011 VL 42A IS 7 BP 1793 EP 1804 DI 10.1007/s11661-011-0708-x PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 775SS UT WOS:000291484300008 ER PT J AU Arias, R Andrews, J Pandya, S Pettit, K Trout, C Apkon, S Karwoski, J Cunniff, C Matthews, D Miller, T Davis, MF Meaney, FJ AF Arias, Rebeca Andrews, Jennifer Pandya, Shree Pettit, Kathleen Trout, Christina Apkon, Susan Karwoski, Jane Cunniff, Christopher Matthews, Dennis Miller, Timothy Davis, Melinda F. Meaney, F. John TI PALLIATIVE CARE SERVICES IN FAMILIES OF MALES WITH DUCHENNE MUSCULAR DYSTROPHY SO MUSCLE & NERVE LA English DT Article DE advance directives; Duchenne muscular dystrophy; health services model; healthcare barriers; palliative care ID ACCULTURATION; PERCEPTIONS; SURVIVAL; DISEASE AB Introduction: Palliative care services that address physical pain and emotional, psychosocial, and spiritual needs may benefit individuals with Duchenne muscular dystrophy (DMD). Methods: The objective of this study was to describe the palliative care services that families of males with DMD report they receive. A questionnaire was administered to families of males with DMD born prior to January 1, 1982. Thirty-four families responded. Results: Most families (85%) had never heard the term palliative care. Only attendant care and skilled nursing services showed much usage, with 44% and 50% indicating receipt of these services, respectively. Receipt of other services was reported less frequently: pastoral care (27%); respite care (18%); pain management (12%); and hospice care (6%). Only 8 respondents (25%) reported having any type of directive document in place. Conclusion: The data suggest a need for improved awareness of palliative care and related services among families of young men with DMD. Muscle Nerve 44: 93-101, 2011 C1 [Arias, Rebeca; Andrews, Jennifer; Pettit, Kathleen; Cunniff, Christopher; Miller, Timothy; Meaney, F. John] Univ Arizona, Dept Pediat, Tucson, AZ 85724 USA. [Arias, Rebeca; Andrews, Jennifer; Pettit, Kathleen; Cunniff, Christopher; Miller, Timothy; Meaney, F. John] Univ Arizona, Steele Res Ctr, Tucson, AZ 85724 USA. [Pandya, Shree] Univ Rochester, Dept Neurol, Rochester, NY USA. [Trout, Christina] Univ Iowa, Dept Pediat, Iowa City, IA 52242 USA. [Apkon, Susan] Seattle Childrens Hosp, Seattle, WA USA. [Karwoski, Jane] Oak Ridge Inst Sci & Educ, Atlanta, GA USA. [Karwoski, Jane] Ctr Dis Control & Prevent, Div Human Dev & Disabil, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA USA. [Matthews, Dennis] Univ Colorado, Sch Med, Dept Phys Med & Rehabil, Denver, CO USA. [Matthews, Dennis] Childrens Hosp, Denver, CO 80218 USA. [Davis, Melinda F.] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA. RP Meaney, FJ (reprint author), Univ Arizona, Dept Pediat, 1501 N Campbell Ave,POB 245073, Tucson, AZ 85724 USA. EM fmeaney@email.arizona.edu FU Association of University Centers on Disabilities [AUCD RTOI 2004-03-03]; Centers for Disease Control and Prevention [AUCD RTOI 2004-03-03] FX The authors thank the individuals with DMD and their families who participated in the survey. We thank Shawnell Damon for her assistance in conducting the interviews. Finally, we thank Rachele Peterson and Cecilia Lopez for their expert technical assistance in the preparation and submission of the manuscript. This work was done by the authors on behalf of the Association of University Centers on Disabilities through a cooperative agreement with the Centers for Disease Control and Prevention (Contract No. AUCD RTOI 2004-03-03). NR 22 TC 11 Z9 11 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0148-639X J9 MUSCLE NERVE JI Muscle Nerve PD JUL PY 2011 VL 44 IS 1 BP 93 EP 101 DI 10.1002/mus.22005 PG 9 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA 778HH UT WOS:000291694000016 PM 21674523 ER PT J AU Liu, HH Rutqvist, J Birkholzer, JT AF Liu, H. H. Rutqvist, J. Birkholzer, J. T. TI Constitutive Relationships for Elastic Deformation of Clay Rock: Data Analysis SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Constitutive model; Clay rock; Coupled processes ID EXCAVATION DAMAGED ZONE; BEHAVIOR; STRAIN AB Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations. C1 [Liu, H. H.; Rutqvist, J.; Birkholzer, J. T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov RI Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015 OI Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785 NR 15 TC 8 Z9 8 U1 0 U2 11 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD JUL PY 2011 VL 44 IS 4 BP 463 EP 468 DI 10.1007/s00603-010-0131-4 PG 6 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 777GB UT WOS:000291602800006 ER PT J AU Smith, AM Perelson, AS AF Smith, Amber M. Perelson, Alan S. TI Influenza A virus infection kinetics: quantitative data and models SO WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE LA English DT Review ID SERONEGATIVE ADULT VOLUNTEERS; SCALE MICROCARRIER CULTURE; ADAPTIVE IMMUNE-RESPONSE; LOWER RESPIRATORY-TRACT; DYNAMICS IN-VIVO; VIRAL DYNAMICS; GENE-EXPRESSION; ALVEOLAR MACROPHAGES; PANDEMIC INFLUENZA; CYTOKINE RESPONSES AB Influenza A virus is an important respiratory pathogen that poses a considerable threat to public health each year during seasonal epidemics and even more so when a pandemic strain emerges. Understanding the mechanisms involved in controlling an influenza infection within a host is important and could result in new and effective treatment strategies. Kinetic models of influenza viral growth and decay can summarize data and evaluate the biological parameters governing interactions between the virus and the host. Here we discuss recent viral kinetic models for influenza. We show how these models have been used to provide insight into influenza pathogenesis and treatment, and we highlight the challenges of viral kinetic analysis, including accurate model formulation, estimation of important parameters, and the collection of detailed data sets that measure multiple variables simultaneously. (C) 2010 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 3 429-445 DOI: 10.1002/wsbm.129 C1 [Smith, Amber M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM asp@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396]; NIH [N0I-AI50020, RR06555, AI28433] FX This work was done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396 and supported by NIH contract N0I-AI50020 and grants RR06555 and AI28433. NR 110 TC 41 Z9 41 U1 0 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1939-5094 J9 WIRES SYST BIOL MED JI Wiley Interdiscip. Rev.-Syst. Biol PD JUL-AUG PY 2011 VL 3 IS 4 BP 429 EP 445 DI 10.1002/wsbm.129 PG 17 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 779ZS UT WOS:000291821300004 PM 21197654 ER PT J AU Luo, Y Sun, W Liu, C Wang, GF Fang, N AF Luo, Yong Sun, Wei Liu, Chang Wang, Gufeng Fang, Ning TI Superlocalization of Single Molecules and Nanoparticles in High-Fidelity Optical Imaging Microfluidic Devices SO ANALYTICAL CHEMISTRY LA English DT Article ID GREEN FLUORESCENT PROTEIN; IN-VIVO; CULTURE PLATFORM; LIVE CELLS; MICROSCOPY; RESOLUTION; PRECISION; DNA; EXPRESSION; TRACKING AB Superlocalization of single molecules and nanoparticles with a precision of subnanometer to a few tens of nanometers is crucial for elucidating nanoscale structures and movements in biological and chemical systems. A novel design of ultraflat and ultrathin glass/polydimethylsiloxane (PDMS) hybrid microdevices is introduced to provide almost uncompromised optical imaging quality for on-chip superlocalization and super-resolution imaging of single molecules and nanoparticles under a variety of microscopy modes. The performance of the high-fidelity (Hi-Fi) optical imaging microfluidic device was validated by precisely mapping micronecklaces made of fluorescent microtubules and 40 nm gold nanoparticles and by demonstrating the activation and excitation cycles of single Alexa Fluor 647 dyes for direct stochastic optical reconstruction microscopy in PDMS-based microchannels for the first time. Furthermore, the microdevice's feasibility for multimodality microscopy imaging was demonstrated by a vertical scan of live cells in epi-fluorescence and differential interference contrast (DIC) microscopy modes simultaneously. C1 [Luo, Yong; Sun, Wei; Liu, Chang; Wang, Gufeng; Fang, Ning] US DOE, Ames Lab, Ames, IA 50011 USA. [Luo, Yong; Sun, Wei; Liu, Chang; Wang, Gufeng; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Luo, Yong] Dalian Univ Technol, Sch Pharmaceut Sci & Technol, Dalian, Liaoning, Peoples R China. [Liu, Chang] Univ British Columbia, Dept Chem, Vancouver, BC, Canada. RP Fang, N (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM nfang@iastate.edu RI Liu, Chang/F-5472-2011; Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011; OI Liu, Chang/0000-0003-0508-4357 FU Iowa State University; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; Fundamental Research Funds for the Central Universities, China [DUT10RC(3)92, DUT11SM11] FX Y.L. and W.S. contributed equally to this work. This work was supported by the start-up funds from Iowa State University (microfabrication) and by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (optical imaging). The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Y.L. was also supported in part by "Fundamental Research Funds for the Central Universities, China" (Grants DUT10RC(3)92 and DUT11SM11). We specially thank Prof. David Chen of the University of British Columbia for his financial support to CL's visit to Ames Laboratory. NR 44 TC 10 Z9 10 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2011 VL 83 IS 13 BP 5073 EP 5077 DI 10.1021/ac201056z PG 5 WC Chemistry, Analytical SC Chemistry GA 786CN UT WOS:000292280900009 PM 21648954 ER PT J AU Shvartsburg, AA Singer, D Smith, RD Hoffmann, R AF Shvartsburg, Alexandre A. Singer, David Smith, Richard D. Hoffmann, Ralf TI Ion Mobility Separation of Isomeric Phosphopeptides from a Protein with Variant Modification of Adjacent Residues SO ANALYTICAL CHEMISTRY LA English DT Article ID ELECTRON-TRANSFER DISSOCIATION; MULTIPHOSPHORYLATED PEPTIDE ISOMERS; MASS-SPECTROMETRY; POSTTRANSLATIONAL MODIFICATIONS; ISOBARIC PHOSPHOPEPTIDES; PHOSPHORYLATED PEPTIDES; LIQUID-CHROMATOGRAPHY; ALZHEIMERS-DISEASE; IN-VIVO; PHASE AB Ion mobility spectrometry (IMS), and particularly differential or field asymmetric waveform IMS (FAIMS), was recently shown capable of separating peptides with variant localization of post-translational modifications. However, that work was limited to a model peptide with Ser phosphorylation on fairly distant alternative sites. Here, we demonstrate that FAIMS (coupled to electrospray/mass spectrometry (ESI/MS)) can broadly baseline-resolve variant phosphopeptides from a biologically modified human protein, including those involving phosphorylation of different residues and adjacent sites that challenge existing tandem mass spectrometry (MS/MS) methods most. Singly and doubly phosphorylated variants can be resolved equally well and identified without dissociation, based on accurate separation properties. The spectra change little over a range of infusion solvent pH; hence, the present approach should be viable in conjunction with chromatographic separations using mobile phase gradients. C1 [Shvartsburg, Alexandre A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Singer, David; Hoffmann, Ralf] Univ Leipzig, Inst Bioanalyt Chem, D-04103 Leipzig, Germany. [Singer, David; Hoffmann, Ralf] Univ Leipzig, Ctr Biotechnol & Biomed, D-04103 Leipzig, Germany. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM alexandre.shvartsburg@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR18522] FX We thank Ron Moore and Heather Brewer for experimental help and Drs. Keqi Tang, Mike Belov, Yehia Ibrahim, Julia Laskin, and Helen Cooper for discussions. This research was supported by the NIH National Center for Research Resources (Grant RR18522). Work was performed in the Environmental Molecular Sciences Laboratory, a U.S. DoE OBER national scientific user facility at PNNL. NR 42 TC 22 Z9 22 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2011 VL 83 IS 13 BP 5078 EP 5085 DI 10.1021/ac200985s PG 8 WC Chemistry, Analytical SC Chemistry GA 786CN UT WOS:000292280900010 PM 21667994 ER PT J AU Wymelenberg, AV Gaskell, J Mozuch, M BonDurant, SS Sabat, G Ralph, J Skyba, O Mansfield, SD Blanchette, RA Grigoriev, IV Kersten, PJ Cullen, D AF Wymelenberg, Amber Vanden Gaskell, Jill Mozuch, Michael BonDurant, Sandra Splinter Sabat, Grzegorz Ralph, John Skyba, Oleksandr Mansfield, Shawn D. Blanchette, Robert A. Grigoriev, Igor V. Kersten, Philip J. Cullen, Dan TI Significant Alteration of Gene Expression in Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium by Plant Species SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GLYCOSIDE HYDROLASE FAMILY; BROWN-ROT BASIDIOMYCETE; CELLOBIOSE DEHYDROGENASE; SECRETOME ANALYSIS; MASS-SPECTROMETRY; LIGNIN PEROXIDASE; CRYSTAL-STRUCTURE; GLYOXAL OXIDASE; ENZYME-SYSTEM; CELLULOSE AB Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and complex carbon compounds. However, systematic comparative studies with different woody substrates have not been reported. To address this issue, we examined gene expression of these fungi colonizing aspen (Populus grandidentata) and pine (Pinus strobus). Transcript levels of genes encoding extracellular glycoside hydrolases, thought to be important for hydrolytic cleavage of hemicelluloses and cellulose, showed little difference for P. placenta colonizing pine versus aspen as the sole carbon source. However, 164 genes exhibited significant differences in transcript accumulation for these substrates. Among these, 15 cytochrome P450s were upregulated in pine relative to aspen. Of 72 P. placenta extracellular proteins identified unambiguously by mass spectrometry, 52 were detected while colonizing both substrates and 10 were identified in pine but not aspen cultures. Most of the 178 P. chrysosporium glycoside hydrolase genes showed similar transcript levels on both substrates, but 13 accumulated >2-fold higher levels on aspen than on pine. Of 118 confidently identified proteins, 31 were identified in both substrates and 57 were identified in pine but not aspen cultures. Thus, P. placenta and P. chrysosporium gene expression patterns are influenced substantially by wood species. Such adaptations to the carbon source may also reflect fundamental differences in the mechanisms by which these fungi attack plant cell walls. C1 [Gaskell, Jill; Mozuch, Michael; Kersten, Philip J.; Cullen, Dan] US Forest Serv, USDA, Forest Prod Lab, Madison, WI 53726 USA. [Wymelenberg, Amber Vanden] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [BonDurant, Sandra Splinter; Sabat, Grzegorz] Univ Wisconsin, Genet & Biotechnol Ctr, Madison, WI 53706 USA. [Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Skyba, Oleksandr; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Blanchette, Robert A.] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA. [Grigoriev, Igor V.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. RP Cullen, D (reprint author), US Forest Serv, USDA, Forest Prod Lab, 1 Gifford Pinchot Dr, Madison, WI 53726 USA. EM dcullen@wisc.edu FU National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2007-35504-18257]; Office of Science U.S. Department of Energy [DE-AC02-05CH11231]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DEFC02-07ER64494] FX This work was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (grant 2007-35504-18257 to the Forest Products Laboratory), by the Office of Science U.S. Department of Energy contract DE-AC02-05CH11231 to the Joint Genome Institute, and by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DEFC02-07ER64494). NR 65 TC 18 Z9 18 U1 3 U2 24 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2011 VL 77 IS 13 BP 4499 EP 4507 DI 10.1128/AEM.00508-11 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 782CR UT WOS:000291985700028 ER PT J AU White, J Gilbert, J Hill, G Hill, E Huse, SM Weightman, AJ Mahenthiralingam, E AF White, Judith Gilbert, Jack Hill, Graham Hill, Edward Huse, Susan M. Weightman, Andrew J. Mahenthiralingam, Eshwar TI Culture-Independent Analysis of Bacterial Fuel Contamination Provides Insight into the Level of Concordance with the Standard Industry Practice of Aerobic Cultivation SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BURKHOLDERIA-CEPACIA COMPLEX; CRUDE-OIL; COMMUNITY STRUCTURE; MICROBIAL-CONTAMINATION; CYSTIC-FIBROSIS; RARE BIOSPHERE; RIBOSOMAL-RNA; AVIATION FUEL; SEA; DIVERSITY AB Bacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance of Pseudomonas (21%), Burkholderia (7%), and Bacillus (7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealed Proteobacteria and Firmicutes to be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by "JW") was performed, Betaproteobacteria (42.8%) and Gammaproteobacteria (30.6%) formed the largest proportion of reads; the most abundant genera were Marinobacter (15.4%; JW57), Achromobacter (41.6%; JW63), Burkholderia (80.7%; JW76), and Halomonas (66.2%; JW78), all of which were also observed by DGGE. However, the Clostridia (38.5%) and Deltaproteobacteria (11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) a Pseudomonas sp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) a Mangroveibacter sp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) a Burkholderia vietnamiensis strain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such as Pseudomonas. C1 [White, Judith; Weightman, Andrew J.; Mahenthiralingam, Eshwar] Cardiff Univ, Cardiff Sch Biosci, Organisms & Environm Div, Cardiff CF10 3AT, S Glam, Wales. [Gilbert, Jack] Argonne Natl Lab, Argonne, IL 60439 USA. [Gilbert, Jack] Univ Chicago, Chicago, IL 60637 USA. [Hill, Graham; Hill, Edward] ECHA Microbiol Ltd, Cardiff Bay Business Ctr, Unit M210, Cardiff, S Glam, Wales. [Huse, Susan M.] Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Marine Biol Lab, Woods Hole, MA USA. RP Mahenthiralingam, E (reprint author), Cardiff Univ, Cardiff Sch Biosci, Organisms & Environm Div, Room 0-11E Main Bldg,Museum Ave, Cardiff CF10 3AT, S Glam, Wales. EM MahenthiralingamE@cardiff.ac.uk RI Mahenthiralingam, Eshwar/D-3333-2009; Weightman, Andrew/A-2970-2010 OI Mahenthiralingam, Eshwar/0000-0001-9014-3790; Weightman, Andrew/0000-0002-6671-2209 FU Natural Environment Research Council (NERC) [NER/S/A/2006/14002, 357]; ECHA Microbiology Ltd., Cardiff, Wales, United Kingdom FX J.W. acknowledges funding from a Natural Environment Research Council (NERC) Ph.D. studentship (NER/S/A/2006/14002) and industrial CASE-Ph.D. sponsorship from ECHA Microbiology Ltd., Cardiff, Wales, United Kingdom. G.H. and E.H. declare a financial interest in ECHA Microbiology Ltd. as managing director and laboratory director of the company, respectively.; We thank Julian Marchesi, Kevin Ashelford, Steffan Adams, Andrew Cossins, and Margaret Hughes for advice and technical assistance in performing the pyrosequencing analysis under NERC Biomolecular Analysis Facility (NBAF) grant 357. NR 51 TC 17 Z9 20 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2011 VL 77 IS 13 BP 4527 EP 4538 DI 10.1128/AEM.02317-10 PG 12 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 782CR UT WOS:000291985700031 PM 21602386 ER PT J AU Sundararajan, A Kurowski, J Yan, T Klingeman, DM Joachimiak, MP Zhou, J Naranjo, B Gralnick, JA Fields, MW AF Sundararajan, A. Kurowski, J. Yan, T. Klingeman, D. M. Joachimiak, M. P. Zhou, J. Naranjo, B. Gralnick, J. A. Fields, M. W. TI Shewanella oneidensis MR-1 Sensory Box Protein Involved in Aerobic and Anoxic Growth SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CYCLIC-DI-GMP; AZOTOBACTER-VINELANDII NIFL; HOST-RANGE CLONING; ANAEROBIC RESPIRATION; CAMPYLOBACTER-JEJUNI; HYPOTHETICAL GENES; EXPRESSION VECTORS; FUMARATE REDUCTASE; FLAVOCYTOCHROME-C; ESCHERICHIA-COLI AB Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (Delta SO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O(2)/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O(2)/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S. oneidensis MR-1. C1 [Fields, M. W.] Montana State Univ, Dept Microbiol, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Sundararajan, A.; Kurowski, J.] Miami Univ, Dept Microbiol, Oxford, OH 45056 USA. [Yan, T.; Klingeman, D. M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Joachimiak, M. P.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zhou, J.] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Naranjo, B.; Gralnick, J. A.] Univ Minnesota, Dept Microbiol & BioTechnol Inst, St Paul, MN 55108 USA. RP Fields, MW (reprint author), Montana State Univ, Dept Microbiol, Ctr Biofilm Engn, 366 EPS Bldg, Bozeman, MT 59717 USA. EM matthew.fields@erc.montana.edu RI Klingeman, Dawn/B-9415-2012 OI Klingeman, Dawn/0000-0002-4307-2560 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was conducted by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) and was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 60 TC 5 Z9 5 U1 2 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2011 VL 77 IS 13 BP 4647 EP 4656 DI 10.1128/AEM.03003-10 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 782CR UT WOS:000291985700045 PM 21602393 ER PT J AU Xiong, YL AF Xiong, Yongliang TI Organic species of lanthanum in natural environments: Implications to mobility of rare earth elements in low temperature environments SO APPLIED GEOCHEMISTRY LA English DT Article ID STABILITY-CONSTANTS; IONIC-STRENGTH; AQUEOUS GEOCHEMISTRY; STANDARD ENTHALPIES; ACETATE SYSTEMS; COMPLEXES; 25-DEGREES-C; SOLUBILITY; WATERS; COEFFICIENTS AB Naturally occurring organic ligands, such as acetate, citrate, malonate, oxalate, and succinate, play important roles in mobility and accumulation of La and other rare earth elements in low temperature systems under Earth surface conditions. However, a comprehensive and consistent thermodynamic database covering the complexes of rare earth elements with those naturally occurring organic ligands is lacking. In this study, thermodynamic data of organic species of rare earth elements (REE) represented by La, with an emphasis on their aqueous complexes with organic ligands, are critically reviewed. The organic ligands covered by this study include acetate, citrate, malonate, oxalate and succinate. In this critical review, the Specific Interaction Theory (SIT) model is adopted for extrapolation to infinite dilution. This model is a reliable activity coefficient model valid for a wide range of ionic strengths. These critically reviewed data, including complex formation constants, SIT interaction coefficients and solubility product constants, would enable accurate modeling of the speciation and solubility of REE in various environments including high ionic strength environments, providing insight into mobility and enrichment of REE in various environments. (C) 2011 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Carlsbad, NM 88220 USA. RP Xiong, YL (reprint author), Sandia Natl Labs, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov FU Lockheed Martin company for United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The author is grateful to Dr. Phil Verplanck, the journal reviewer, for his insightful review, and to Dr. Ron Fuge, the journal editor, for his editorial work. Their efforts have significantly improved the presentation of the paper. NR 36 TC 6 Z9 6 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD JUL PY 2011 VL 26 IS 7 BP 1130 EP 1137 DI 10.1016/j.apgeochem.2011.04.003 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 783XO UT WOS:000292118400008 ER PT J AU Hoover, SW Marner, WD Brownson, AK Lennen, RM Wittkopp, TM Yoshitani, J Zulkifly, S Graham, LE Chaston, SD McMahon, KD Pfleger, BF AF Hoover, Spencer W. Marner, Wesley D., II Brownson, Amy K. Lennen, Rebecca M. Wittkopp, Tyler M. Yoshitani, Jun Zulkifly, Shahrizim Graham, Linda E. Chaston, Sheena D. McMahon, Katherine D. Pfleger, Brian F. TI Bacterial production of free fatty acids from freshwater macroalgal cellulose SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Biofuel; Algae; Fatty acid; Escherichia coli; Thioesterase ID ESCHERICHIA-COLI; TREATMENT FACILITY; NILE RED; BIOFUELS; BIOSYNTHESIS; EXPRESSION; CELLOBIOHYDROLASE; OVERPRODUCTION; PERIPHYTON; CONVERSION AB The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing microorganisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl beta-d-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 mu M IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (similar to 90 mu g/mL FFA) cultures grown on rich Luria-Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. C1 [Hoover, Spencer W.; Brownson, Amy K.; Lennen, Rebecca M.; Pfleger, Brian F.] Univ Wisconsin, Madison, WI 53706 USA. [Hoover, Spencer W.; Marner, Wesley D., II; Lennen, Rebecca M.; Wittkopp, Tyler M.; Pfleger, Brian F.] Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Yoshitani, Jun] Bioenergy & Environm Inc, W Chicago, IL 60185 USA. [Zulkifly, Shahrizim; Graham, Linda E.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. [Chaston, Sheena D.; McMahon, Katherine D.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [Chaston, Sheena D.; McMahon, Katherine D.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. RP Pfleger, BF (reprint author), Univ Wisconsin, 2034 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM pfleger@engr.wisc.edu RI McMahon, Katherine/I-3651-2012; OI McMahon, Katherine D./0000-0002-7038-026X; Zulkifly, Shahrizim/0000-0001-7809-6469 FU Wisconsin Energy Independence Fund; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; Holstrom Environmental Scholarship FX This work was supported by a grant from the Wisconsin Energy Independence Fund to J.Y. and by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). A.K.B. was supported as a recipient of a Holstrom Environmental Scholarship. R. M. L. was supported as a trainee in the Chemistry-Biology Interface Training Program (NIH). NR 50 TC 14 Z9 15 U1 1 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD JUL PY 2011 VL 91 IS 2 BP 435 EP 446 DI 10.1007/s00253-011-3344-x PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 785BU UT WOS:000292203200020 PM 21643704 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Commercial Envelopes SO ASHRAE JOURNAL LA English DT Editorial Material AB More than 5 million buildings, totalling more than 80 billion ft(2) (7.4 billion m(2)) of floor space, comprise the U.S. commercial building stock. Eighty percent of these buildings will still be in operation for at least the next two decades. These inefficient buildings will continue to waste energy unless improved.(1,2) Commercial building retrofits occur at a rate of 2.2% of the current stock per year, or approximately 2 billion ft(2) (185 million m(2)) per year.(3) C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Cambridge, MA USA. NR 14 TC 4 Z9 4 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2011 VL 53 IS 7 BP 134 EP 136 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 793GW UT WOS:000292809400021 ER PT J AU Faccioli, L Kim, AG Miquel, R Bernstein, G Bonissent, A Brown, M Carithers, W Christiansen, J Connolly, N Deustua, S Gerdes, D Gladney, L Kushner, G Linder, EV Mckee, S Mostek, N Shukla, H Stebbins, A Stoughton, C Tucker, D AF Faccioli, L. Kim, A. G. Miquel, R. Bernstein, G. Bonissent, A. Brown, M. Carithers, W. Christiansen, J. Connolly, N. Deustua, S. Gerdes, D. Gladney, L. Kushner, G. Linder, E. V. McKee, S. Mostek, N. Shukla, H. Stebbins, A. Stoughton, C. Tucker, D. TI Reducing zero-point systematics in dark energy supernova experiments SO ASTROPARTICLE PHYSICS LA English DT Article DE Dark energy; Cosmology: observations; Supernovae ID IA SUPERNOVAE; COSMOLOGICAL PARAMETERS; LIGHT CURVES; CONSTRAINTS; UNCERTAINTIES AB We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type la supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission calibration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however-the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based. (C) 2011 Elsevier B.V. All rights reserved. C1 [Faccioli, L.; Linder, E. V.; Mostek, N.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Kim, A. G.; Carithers, W.; Kushner, G.; Shukla, H.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, R.] Inst Fiis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bernstein, G.; Gladney, L.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bonissent, A.] CNRS, IN2P3, CPPM, F-13288 Marseille 9, France. [Brown, M.] MIT, Lincoln Lab, Lexington, MA 02420 USA. [Christiansen, J.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Connolly, N.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Deustua, S.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gerdes, D.; McKee, S.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Linder, E. V.] Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, E. V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. [Stebbins, A.; Stoughton, C.; Tucker, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Faccioli, L (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM lfaccioli@lbl.gov OI Tucker, Douglas/0000-0001-7211-5729; Miquel, Ramon/0000-0002-6610-4836 FU Office of Science, Office of High Energy Physics, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of High Energy Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD JUL PY 2011 VL 34 IS 12 BP 847 EP 857 DI 10.1016/j.astropartphys.2011.03.003 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 781TF UT WOS:000291958700001 ER PT J AU Chauvin, TR Liu, T Nicora, C Xie, F Yang, F Camp, D Smith, R Roberts, KP AF Chauvin, Theodore R. Liu, Tao Nicora, Carrie Xie, Fang Yang, Feng Camp, David Smith, Richard Roberts, Kenneth P. TI The Sperm Maturation Proteome of Mus musculus. SO BIOLOGY OF REPRODUCTION LA English DT Meeting Abstract CT 44th Annual Meeting of the Society-for-the-Study-of-Reproduction (SSR) CY 2011 CL Portland, OR SP Soc Study Reproduct C1 Washington State Univ, Spokane, WA USA. Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SOC STUDY REPRODUCTION PI MADISON PA 1691 MONROE ST,SUITE # 3, MADISON, WI 53711-2021 USA SN 0006-3363 J9 BIOL REPROD JI Biol. Reprod. PD JUL PY 2011 VL 85 SI SI MA 575 PG 2 WC Reproductive Biology SC Reproductive Biology GA 032VC UT WOS:000310746200155 ER PT J AU Nagler, J Cavileer, T Caldwell, L Schultz, I AF Nagler, James Cavileer, Timothy Caldwell, Lucius Schultz, Irvin TI Duplication of the Kisspeptin-2 Gene in Rainbow Trout (Oncorhynchus mykiss) Brain and Pituitary SO BIOLOGY OF REPRODUCTION LA English DT Meeting Abstract CT 44th Annual Meeting of the Society-for-the-Study-of-Reproduction (SSR) CY 2011 CL Portland, OR SP Soc Study Reproduct C1 Univ Idaho, Moscow, ID 83843 USA. Battelle Pacific NW Div, Sequim, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SOC STUDY REPRODUCTION PI MADISON PA 1691 MONROE ST,SUITE # 3, MADISON, WI 53711-2021 USA SN 0006-3363 J9 BIOL REPROD JI Biol. Reprod. PD JUL PY 2011 VL 85 SI SI MA 814 PG 1 WC Reproductive Biology SC Reproductive Biology GA 032VC UT WOS:000310746200706 ER PT J AU Nagler, J Cavileer, T Caldwell, L Schultz, I AF Nagler, James Cavileer, Timothy Caldwell, Lucius Schultz, Irvin TI Duplication of the Kisspeptin-2 Gene in Rainbow Trout (Oncorhynchus mykiss) Brain and Pituitary. SO BIOLOGY OF REPRODUCTION LA English DT Meeting Abstract CT 44th Annual Meeting of the Society-for-the-Study-of-Reproduction (SSR) CY 2011 CL Portland, OR SP Soc Study Reproduct C1 Univ Idaho, Moscow, ID 83843 USA. Battelle Pacific NW Div, Sequim, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU SOC STUDY REPRODUCTION PI MADISON PA 1691 MONROE ST,SUITE # 3, MADISON, WI 53711-2021 USA SN 0006-3363 J9 BIOL REPROD JI Biol. Reprod. PD JUL PY 2011 VL 85 SI SI MA 814 PG 1 WC Reproductive Biology SC Reproductive Biology GA 032VC UT WOS:000310746200464 ER PT J AU Rosner, R Lordan, R Goldberg, S AF Rosner, Robert Lordan, Rebecca Goldberg, Stephen TI Moving to passive designs SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE active design; defense in depth; Fukushima Daiichi; nuclear energy; nuclear reactors; passive design; safety; small modular reactor AB The events at Fukushima Daiichi have greatly renewed the public focus on the safety of the existing fleet of nuclear reactors, especially as many US reactors share the same fundamental design-and safety systems-as the affected Japanese reactors. The authors explore the proposition that a transition to increasingly passive safety features in new advanced reactor designs- supplementing, and in some cases superseding, the existing approach of depending on active "defense-in-depth" safety systems-could significantly reduce reactor safety risks. Such passive safety features are highly developed in new small modular reactor designs now under thorough study, designs that may also markedly improve the economic case for nuclear power, based on a factory-built reactor approach. These reactors offer the possibility that US-based manufacturers could regain a significant share of the international nuclear reactor market. C1 [Rosner, Robert] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Rosner, Robert] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Lordan, Rebecca] Univ Chicago, Harris Sch Publ Policy Res, Chicago, IL 60637 USA. [Goldberg, Stephen] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rosner, R (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. NR 1 TC 1 Z9 1 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD JUL PY 2011 VL 67 IS 4 SI SI BP 23 EP 29 DI 10.1177/0096340211413374 PG 7 WC International Relations; Social Issues SC International Relations; Social Issues GA 786MS UT WOS:000292313100005 ER PT J AU Daniel, RC Billing, JM Russell, RL Shimskey, RW Smith, HD Peterson, RA AF Daniel, R. C. Billing, J. M. Russell, R. L. Shimskey, R. W. Smith, H. D. Peterson, R. A. TI Integrated pore blockage-cake filtration model for crossflow filtration SO CHEMICAL ENGINEERING RESEARCH & DESIGN LA English DT Article DE Filtration; Fouling; Modeling ID CONCENTRATION POLARIZATION; MICROFILTRATION MEMBRANES; FLUX DECLINE; ULTRAFILTRATION; SUSPENSIONS; MECHANISMS; FLUIDS; LAYER AB Crossflow filtration is to be a key process in the treatment and disposal of approximately 60,000 metric tons of high-level radioactive waste stored at the Hanford Site in Richland, Washington. Pacific Northwest National Laboratory is assessing filter performance with waste simulant materials that mimic the chemical and physical properties of Hanford tank waste. Prior simulant studies indicated that waste filtration performance may be limited by pore and cake fouling. To limit the shutdown of waste treatment operations, the pre-treatment facility plans to recover filter flux losses from cake formation and filter fouling by frequently backpulsing the filter elements. The objective of the current paper is to develop a simple model of flux decline resulting from cake and pore fouling and potential flux recovery through backpulsing of the filters for Hanford waste filtration operations. To this end, a model capable of characterizing the decline in waste simulant filter flux as a function of both irreversible pore blockage and reversible cake formation is proposed. This model is used to characterize the filtration behavior of Hanford waste simulants in both continuous and backpulsed operations. The model is then used to infer the optimal backpulse frequency under specific operating conditions. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. C1 [Daniel, R. C.; Billing, J. M.; Russell, R. L.; Shimskey, R. W.; Smith, H. D.; Peterson, R. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Peterson, RA (reprint author), Pacific NW Natl Lab, POB 999,MSIN P7-22, Richland, WA 99352 USA. EM reid.peterson@pnl.gov OI Peterson, Reid/0000-0003-3368-1896 FU United States Department of Energy [DE-AC05-76RL01830] FX The work described in this article was performed by Pacific Northwest National Laboratory, which is operated by Battelle for the United States Department of Energy under Contract DE-AC05-76RL01830. NR 29 TC 7 Z9 7 U1 1 U2 13 PU INST CHEMICAL ENGINEERS PI RUGBY PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND SN 0263-8762 J9 CHEM ENG RES DES JI Chem. Eng. Res. Des. PD JUL PY 2011 VL 89 IS 7A BP 1094 EP 1103 DI 10.1016/j.cherd.2010.09.006 PG 10 WC Engineering, Chemical SC Engineering GA 781GX UT WOS:000291919700024 ER PT J AU Yue, P Wei, YX Di, LP He, LL Gong, JY Zhang, LP AF Yue, Peng Wei, Yaxing Di, Liping He, Lianlian Gong, Jianya Zhang, Liangpei TI Sharing geospatial provenance in a service-oriented environment SO COMPUTERS ENVIRONMENT AND URBAN SYSTEMS LA English DT Article DE Geospatial Web Service; CSW; ebRIM; Service chaining; Data provenance; GIS ID GEOGRAPHIC INFORMATION-SYSTEMS; SCIENTIFIC WORKFLOW; WEB SERVICES; E-SCIENCE; CHALLENGE; TRACKING; SUPPORT AB One of the earliest investigations of provenance was inspired by applications in GIS in the early 1990's. Provenance records the processing history of a data product. It provides an information context to help users determine the reliability of data products. Conventional provenance applications in GIS focus on provenance capture, representation, and usage in a stand-alone environment such as a desktop-based GIS software system. They cannot support wide sharing and open access of provenance in a distributed environment. The growth of service-oriented sharing and processing of geospatial data brings some new challenges in provenance-aware applications. One is how to share geospatial provenance in an interoperable way. This paper describes the development of provenance service for geospatial data products using the ebXML Registry Information Model (ebRIM) of a geospatial catalog service, which follows the interface specifications of the OGC Catalogue Services for the Web (CSW). This approach fits well the current service stack of the GIS domain and facilitates the management of geospatial data provenance in an open and distributed environment. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yue, Peng; Gong, Jianya; Zhang, Liangpei] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China. [Wei, Yaxing] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Di, Liping] George Mason Univ, Ctr Spatial Informat Sci & Syst CSISS, Fairfax, VA 22030 USA. [He, Lianlian] Hubei Univ Educ, Dept Math, Wuhan 430205, Hubei, Peoples R China. RP Yue, P (reprint author), Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, 129 Luoyu Rd, Wuhan 430079, Peoples R China. EM geopyue@gmail.com NR 48 TC 18 Z9 20 U1 1 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0198-9715 EI 1873-7587 J9 COMPUT ENVIRON URBAN JI Comput. Environ. Urban Syst. PD JUL PY 2011 VL 35 IS 4 BP 333 EP 343 DI 10.1016/j.compenvurbsys.2011.02.006 PG 11 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Studies; Geography; Operations Research & Management Science SC Computer Science; Engineering; Environmental Sciences & Ecology; Geography; Operations Research & Management Science GA 781FV UT WOS:000291916900007 ER PT J AU Arent, DJ Wise, A Gelman, R AF Arent, Douglas J. Wise, Alison Gelman, Rachel TI The status and prospects of renewable energy for combating global warming SO ENERGY ECONOMICS LA English DT Article DE Renewable energy; Global warming; Greenhouse gas emissions; Energy technologies; Energy markets; Energy investments ID CLIMATE; POLICY; ELECTRICITY; GENERATION; BIOFUELS AB Reducing anthropogenic greenhouse gas (GHG) emissions in material quantities, globally, is a critical element in limiting the impacts of global warming. GHG emissions associated with energy extraction and use are a major component of any strategy addressing climate change mitigation. Non-emitting options for electrical power and liquid transportation fuels are increasingly considered key components of an energy system with lower overall environmental impacts. Renewable energy technologies (RETs) as well as biofuels technologies have been accelerating rapidly during the past decades, both in technology performance and cost-competitiveness - and they are increasingly gaining market share. These technology options offer many positive attributes, but also have unique cost/benefit trade-offs, such as land-use competition for bioresources and variability for wind and solar electric generation technologies. This paper presents a brief summary of status, recent progress, some technological highlights for RETs and biofuels, and an analysis of critical issues that must be addressed for RETs to meet a greater share of the global energy requirements and lower GHG emissions. (C) 2011 Published by Elsevier B.V. C1 [Arent, Douglas J.; Wise, Alison; Gelman, Rachel] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Arent, DJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM doug.arent@nrel.gov NR 66 TC 52 Z9 54 U1 4 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD JUL PY 2011 VL 33 IS 4 SI SI BP 584 EP 593 DI 10.1016/j.eneco.2010.11.003 PG 10 WC Economics SC Business & Economics GA 781BS UT WOS:000291906200004 ER PT J AU Greene, DL AF Greene, David L. TI Uncertainty, loss aversion, and markets for energy efficiency SO ENERGY ECONOMICS LA English DT Article DE Energy efficiency; Fuel economy; Loss aversion ID REFERENCE-DEPENDENT PREFERENCES; DISCOUNT RATES; FUEL-ECONOMY; CONSUMERS; INVESTMENT; DECISIONS; CHOICES; RISK AB Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the "efficiency gap" or "energy paradox." The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of context-dependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to loss-averse consumers. (C) 2010 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Greene, DL (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, POB 2008,MS6472, Oak Ridge, TN 37831 USA. EM dlgreene@ornl.gov NR 50 TC 33 Z9 34 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD JUL PY 2011 VL 33 IS 4 SI SI BP 608 EP 616 DI 10.1016/j.eneco.2010.08.009 PG 9 WC Economics SC Business & Economics GA 781BS UT WOS:000291906200008 ER PT J AU McJeon, HC Clarke, L Kyle, P Wise, M Hackbarth, A Bryant, BP Lempert, RJ AF McJeon, Haewon C. Clarke, Leon Kyle, Page Wise, Marshall Hackbarth, Andrew Bryant, Benjamin P. Lempert, Robert J. TI Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios? SO ENERGY ECONOMICS LA English DT Article DE Climate change; Technology R&D; Technological change; Scenario discovery ID STABILIZATION; UNCERTAINTY; STRATEGIES; ROBUST; POLICY AB Advanced low-carbon energy technologies can substantially reduce the cost of stabilizing atmospheric carbon dioxide concentrations. Understanding the interactions between these technologies and their impact on the costs of stabilization can help inform energy policy decisions. Many previous studies have addressed this challenge by exploring a small number of representative scenarios that represent particular combinations of future technology developments. This paper uses a combinatorial approach in which scenarios are created for all combinations of the technology development assumptions that underlie a smaller, representative set of scenarios. We estimate stabilization costs for 768 runs of the Global Change Assessment Model (GCAM), based on 384 different combinations of assumptions about the future performance of technologies and two stabilization goals. Graphical depiction of the distribution of stabilization costs provides first-order insights about the full data set and individual technologies. We apply a formal scenario discovery method to obtain more nuanced insights about the combinations of technology assumptions most strongly associated with high-cost outcomes. Many of the fundamental insights from traditional representative scenario analysis still hold under this comprehensive combinatorial analysis. For example, the importance of carbon capture and storage (CCS) and the substitution effect among supply technologies are consistently demonstrated. The results also provide more clarity regarding insights not easily demonstrated through representative scenario analysis. For example, they show more clearly how certain supply technologies can provide a hedge against high stabilization costs, and that aggregate end-use efficiency improvements deliver relatively consistent stabilization cost reductions. Furthermore, the results indicate that a lack of CCS options combined with lower technological advances in the buildings sector or the transportation sector is the most powerful predictor of high-cost scenarios. (C) 2010 Elsevier B.V. All rights reserved. C1 [McJeon, Haewon C.; Clarke, Leon; Kyle, Page; Wise, Marshall] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Hackbarth, Andrew; Bryant, Benjamin P.; Lempert, Robert J.] RAND Corp, Santa Monica, CA USA. RP McJeon, HC (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM hmcjeon@pnl.gov NR 33 TC 39 Z9 39 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD JUL PY 2011 VL 33 IS 4 SI SI BP 619 EP 631 DI 10.1016/j.eneco.2010.10.007 PG 13 WC Economics SC Business & Economics GA 781BS UT WOS:000291906200010 ER PT J AU Pugh, G Clarke, L Marlay, R Kyle, P Wise, M McJeon, H Chan, G AF Pugh, Graham Clarke, Leon Marlay, Robert Kyle, Page Wise, Marshall McJeon, Haewon Chan, Gabriel TI Energy R&D portfolio analysis based on climate change mitigation SO ENERGY ECONOMICS LA English DT Article DE Energy technology; Climate change; R&D; Portfolio analysis ID TECHNOLOGICAL-CHANGE; TECHNICAL CHANGE; COST AB The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R&D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R&D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R&D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R&D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R&D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not representative of an official U.S. government or DOE funding recommendation but should instead be considered illustrative of the way in which methodologies such as these could be applied. Published by Elsevier B.V. C1 [Pugh, Graham; Marlay, Robert; Chan, Gabriel] US DOE, US Climate Change Technol Program, Washington, DC 20585 USA. [Clarke, Leon; Kyle, Page; Wise, Marshall; McJeon, Haewon] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. RP Pugh, G (reprint author), US DOE, US Climate Change Technol Program, 1000 Independence Ave SW, Washington, DC 20585 USA. EM graham.pugh@hq.doe.gov NR 21 TC 7 Z9 7 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD JUL PY 2011 VL 33 IS 4 SI SI BP 634 EP 643 DI 10.1016/j.eneco.2010.11.007 PG 10 WC Economics SC Business & Economics GA 781BS UT WOS:000291906200012 ER PT J AU Wilbanks, TJ AF Wilbanks, Thomas J. TI Inducing transformational energy technological change SO ENERGY ECONOMICS LA English DT Article DE Energy technological change; Transformational technological change; Serendipity; Economic waves; Information and innovation; Technology transitions AB Reducing risks of severe climate change in the latter part of the 20th Century is likely to require not only incremental improvements in known energy technologies, but the discovery of transformational new energy technologies. This paper reviews current knowledge about both demand and supply aspects of the challenge of accelerating transformational change, considering both economic and policy incentives, including targeted government funding of research and development, and several other schools of thought about drivers of scientific discovery and innovation. (C) 2011 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Wilbanks, TJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM wilbankstj@ornl.gov NR 46 TC 5 Z9 5 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 J9 ENERG ECON JI Energy Econ. PD JUL PY 2011 VL 33 IS 4 SI SI BP 699 EP 708 DI 10.1016/j.eneco.2010.12.019 PG 10 WC Economics SC Business & Economics GA 781BS UT WOS:000291906200020 ER PT J AU Luo, JW Stradins, P Zunger, A AF Luo, Jun-Wei Stradins, Paul Zunger, Alex TI Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SOLAR-CELLS; ELECTRICAL-TRANSPORT; SI NANOCRYSTALS; NANOSTRUCTURES; PHOTOLUMINESCENCE; CONFINEMENT; EFFICIENCY; EXCITONS; PSEUDOPOTENTIALS; LUMINESCENCE AB Si Quantum dots (QD's) are offering the possibilities for improving the efficiency and lowering the cost of solar cells. In this paper we study the PV-related critical factors that may affect design of Si QDs solar cell by performing atomistic calculation including many-body interaction. First, we find that the weak absorption in bulk Si is significantly enhanced in Si QDs, specially in small dot size, due to quantum-confinement induced mixing of G-character into the X-like conduction band states. We demonstrate that the atomic symmetry of Si QD also plays an important role on its bandgap and absorption spectrum. Second, quantum confinement has a detrimental effect on another PV property it significantly enhances the exciton binding energy in Si QDs, leading to difficulty in charge separation. We observe universal linear dependence of exciton binding energy versus excitonic gap for all Si QDs. Knowledge of this universal linear function will be helpful to obtain experimentally the exciton binding energy by just measuring the optical gap without requiring knowledge on dot shape, size, and surface treatment. Third, we evaluate the possibility of resonant charge transport in an array of Si QDs via miniband channels created by dot-dot coupling. We show that for such charge transport the Si QDs embedded into a matrix should have tight size tolerances and be very closely spaced. Fourth, we find that the loss of quantum confinement effect induced by dot-dot coupling is negligible - smaller than 70 meV even for two dots at intimate contact. C1 [Luo, Jun-Wei; Stradins, Paul; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Luo, JW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI LUO, JUN-WEI/A-8491-2010; Zunger, Alex/A-6733-2013; LUO, JUNWEI/B-6545-2013 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 62 TC 50 Z9 51 U1 3 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD JUL PY 2011 VL 4 IS 7 BP 2546 EP 2557 DI 10.1039/c1ee01026c PG 12 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 785CN UT WOS:000292205100025 ER PT J AU Stephens, B Carter, EM Gall, ET Earnest, CM Walsh, EA Hun, DE Jackson, MC AF Stephens, Brent Carter, Ellison M. Gall, Elliott T. Earnest, C. Matt Walsh, Elizabeth A. Hun, Diana E. Jackson, Mark C. TI Home Energy-Efficiency Retrofits SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Letter ID EXPOSURE; INDOOR; HAZARD C1 [Stephens, Brent; Carter, Ellison M.; Gall, Elliott T.; Earnest, C. Matt; Walsh, Elizabeth A.] Univ Texas Austin, Natl Sci Fdn, IGERT Program Indoor Environm Sci & Engn, Austin, TX 78712 USA. [Hun, Diana E.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Jackson, Mark C.] Lennox Int Inc, Carrollton, TX USA. RP Stephens, B (reprint author), Univ Texas Austin, Natl Sci Fdn, IGERT Program Indoor Environm Sci & Engn, Austin, TX 78712 USA. EM stephens.brent@mail.utexas.edu NR 15 TC 1 Z9 1 U1 4 U2 10 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD JUL PY 2011 VL 119 IS 7 BP A283 EP A284 DI 10.1289/ehp.10733 PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 786IT UT WOS:000292299300004 PM 21719389 ER PT J AU Cao, B Ahmed, B Kennedy, DW Wang, ZM Shi, L Marshall, MJ Fredrickson, JK Isern, NG Majors, PD Beyenal, H AF Cao, Bin Ahmed, Bulbul Kennedy, David W. Wang, Zheming Shi, Liang Marshall, Matthew J. Fredrickson, Jim K. Isern, Nancy G. Majors, Paul D. Beyenal, Haluk TI Contribution of Extracellular Polymeric Substances from Shewanella sp HRCR-1 Biofilms to U(VI) Immobilization SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ONEIDENSIS MR-1; PSEUDOMONAS-SP; URANIUM; REDUCTION; EPS; EXOPOLYSACCHARIDE; PUTREFACIENS; CYTOCHROMES; ADSORPTION; MICROSCOPY AB The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction. C1 [Cao, Bin; Ahmed, Bulbul; Beyenal, Haluk] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Cao, Bin; Ahmed, Bulbul; Beyenal, Haluk] Washington State Univ, CESAR, Pullman, WA 99164 USA. [Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Beyenal, H (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM beyenal@wsu.edu RI Wang, Zheming/E-8244-2010; Ahmed, Bulbul/F-8023-2011; Cao, Bin/H-2639-2012; OI Wang, Zheming/0000-0002-1986-4357; Cao, Bin/0000-0002-9462-496X; Isern, Nancy/0000-0001-9571-8864; Kennedy, David/0000-0003-0763-501X FU U.S. DOE Office of Biological and Environmental Research [DE-FG92-08ER64560]; DOE-BER; DOE's Office of Biological and Environmental Research at PNNL; DOE [DE-AC05-76RL01830] FX The research was supported by the U.S. DOE Office of Biological and Environmental Research under the Subsurface Biogeochemistry Research (SBR) Program (grant DE-FG92-08ER64560) and the DOE-BER SBR Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). NMR and LHeT laser fluorescence spectroscopy were performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 39 TC 45 Z9 46 U1 9 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2011 VL 45 IS 13 BP 5483 EP 5490 DI 10.1021/es200095j PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 783IQ UT WOS:000292075100007 PM 21627155 ER PT J AU Zhang, S Du, J Xu, C Schwehr, KA Ho, YF Li, HP Roberts, KA Kaplan, DI Brinkmeyer, R Yeager, CM Chang, HS Santschi, PH AF Zhang, S. Du, J. Xu, C. Schwehr, K. A. Ho, Y-F Li, H-P Roberts, K. A. Kaplan, D. I. Brinkmeyer, R. Yeager, C. M. Chang, Hyun-shik Santschi, P. H. TI Concentration-Dependent Mobility, Retardation, and Speciation of Iodine in Surface Sediment from the Savannah River Site SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HUMIC SUBSTANCES; MASS-SPECTROMETRY; PLANT UPTAKE; SOIL; IODATE; REDUCTION; TRANSPORT; SORPTION; ACCUMULATION; GROUNDWATER AB Iodine occurs in multiple oxidation states in aquatic systems in the form of organic and inorganic species. This feature leads to complex biogeochemical cycling of stable iodine and its long-lived isotope, (129)I. In this study, we investigated the sorption, transport, and interconversion of iodine species by comparing their mobility in groundwaters at ambient concentrations of iodine species (10(-8) to 10(-7) M) to those at artificially elevated concentrations (78.7 mu M), which often are used in laboratory analyses. Results demonstrate that the mobility of iodine species greatly depends on, in addition to the type of species, the iodine concentration used, presumably limited by the number of surface organic carbon binding sites to form covalent bonds. At ambient concentrations, iodide and iodate were significantly retarded (K(d) values as high as 49 mL g(-1)), whereas at concentrations of 78.7 mu M, iodide traveled along with the water without retardation. Appreciable amounts of iodide during transport were retained in soils due to iodination of organic carbon, specifically retained by aromatic carbon. At high input concentration of iodate (78.7 mu M), iodate was found to be reduced to iodide and subsequently followed the transport behavior of iodide. These experiments underscore the importance of studying iodine geochemistry at ambient concentrations and demonstrate the dynamic nature of their speciation during transport conditions. C1 [Zhang, S.; Xu, C.; Schwehr, K. A.; Ho, Y-F; Li, H-P; Brinkmeyer, R.; Santschi, P. H.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA. [Du, J.] E China Normal Univ, State Key Lab Estuarine & Coastal Res, Shanghai 200062, Peoples R China. [Roberts, K. A.; Kaplan, D. I.; Yeager, C. M.] Savannah River Natl Lab, Aiken, SC USA. [Chang, Hyun-shik] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. RP Zhang, S (reprint author), Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA. EM saijinzhang03@hotmail.com RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho, Yi-Fang/H-4198-2013 FU Department of Energy within the Office of Science [DE-FG02-08ER64567]; Welch Grant [BD0046]; 111 project (China) [B08022]; U.S. Department of Energy [DE-AC09-08SR22470] FX This work was funded by the Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-FG02-08ER64567), while S.Z. was partially supported by Welch Grant BD0046. J.D. was supported by the 111 project (China B08022). Work conducted at SRNL was under U.S. Department of Energy Contract DE-AC09-08SR22470. NR 43 TC 28 Z9 28 U1 5 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2011 VL 45 IS 13 BP 5543 EP 5549 DI 10.1021/es1040442 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 783IQ UT WOS:000292075100015 PM 21663237 ER PT J AU Harvey, OR Herbert, BE Rhue, RD Kuo, LJ AF Harvey, Omar R. Herbert, Bruce E. Rhue, Roy D. Kuo, Li-Jung TI Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ACTIVATED CARBON; AQUEOUS-SOLUTION; BLACK CARBON; IONS; CALORIMETRY; CHARCOAL; CADMIUM; MODEL; NITROGEN; LIGNIN AB Plant-derived biochars exhibit large physicochemical heterogeneity due to variations in biomass chemistry and combustion conditions. However, the influence of biochar heterogeneity on biochar-metal interaction mechanisms has not been systematically described. We used flow adsorption microcalorimetry to study structure-sorption relationships between twelve plant-derived biochars and two metals (K(+) and Cd(2+)) of different Lewis acidity. Irrespective of the biochar structure, sorption of K(+) (a hard Lewis acid) occurred predominantly on deprotonated functional groups via ion exchange with molar heats of adsorption (Delta H(ads)) of -4 kJ mol(-1) to -8 kJ mol(-1). By comparison, although ion exchange could not be completely ruled out, our data pointed to Cd(2+) (a soft Lewis acid). sorption occurring predominantly via two distinct cation-pi bonding mechanisms, each with Delta H(ads) of +17 kJ mol(-1). The first, evident in low charge-low carbonized biochars, suggested Cd(2+)-pi bonding to soft ligands such as - C=O; while the second, evident in low charge-highly carbonized biochars, pointed to Cd(2+)-pi bonding with electron-rich domains on aromatic structures. Quantitative contributions of these mechanisms to Cd(2+) sorption can exceed 3 times that expected for ion exchange and therefore could have significant implications for the biogeochemical cycling of metals in fire-impacted or biochar-amended systems. C1 [Harvey, Omar R.; Herbert, Bruce E.] Texas A&M Univ, College Stn, TX 77843 USA. [Rhue, Roy D.] Univ Florida, Gainesville, FL 32611 USA. [Kuo, Li-Jung] Pacific NW Natl Lab, Marine Sci Lab, Sequim, WA 99382 USA. RP Harvey, OR (reprint author), Pacific NW Natl Lab, Earth Syst Sci Div, Richland, WA 99354 USA. EM Omar.Harvey@pnnl.gov RI Herbert, Bruce/K-4744-2013; Herbert, Bruce/L-2170-2015 OI Herbert, Bruce/0000-0002-6736-1148; Herbert, Bruce/0000-0002-6736-1148 NR 33 TC 67 Z9 72 U1 14 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2011 VL 45 IS 13 BP 5550 EP 5556 DI 10.1021/es104401h PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 783IQ UT WOS:000292075100016 PM 21630654 ER PT J AU Wyrzykowska-Ceradini, B Gullett, BK Tabor, D Touati, A AF Wyrzykowska-Ceradini, Barbara Gullett, Brian K. Tabor, Dennis Touati, Abderrahmane TI PBDDs/Fs and PCDDs/Fs in the Raw and Clean Flue Gas during Steady State and Transient Operation of a Municipal Waste Combustor SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BROMINATED FLAME RETARDANTS; DIBENZO-P-DIOXINS; INCINERATION; BEHAVIOR; PCDD/F AB Concentrations of polybrominated dibenzo-p-dioxins, and -dibenzofurans (PBDDs/Fs) and polychlorinated dibenzo-p-dioxins, and -dibenzofurans (PCDDs/Fs), were determined in the pre- and post-air pollution control system (APCS) flue gas of a municipal waste combustor (MWC). Operational transients of the combustor were found to considerably increase levels of PBDDs/Fs and PCDDs/Fs compared to steady state operation, both for the raw and clean flue gas; Sigma PBDDs/Fs increased from 72.7 to 700 pg dscm(-1) in the raw, pre-APCS gas and from 1.45 to 9.53 pg dscm(-1) in the post-APCS flue gas; Sigma PCDDs/Fs increased from 240 to 960 ng dscm(-1) in the pre-APCS flue gas, and from 1.52 to 16.0 ng dscm(-1) in the post-APCS flue gas. The homologue profile of PBDDs/Fs and PCDDs/Fs in the raw flue gas (steady state and transients) was dominated by hexa- and octa-isomers, while the clean flue gas homologue profile was enriched with tetra- and penta-isomers. The efficiency of the APCS for PBDD/F and PCDD/F removal was estimated as 98.5% and 98.7%, respectively. The cumulative TEQ(PCDD/F+PBDD/F) from the stack was dominated by PCDD/F: the TEQ of PBDD/F contributed less than 0.1% to total cumulative toxic equivalency of MWC stack emissions. C1 [Wyrzykowska-Ceradini, Barbara; Gullett, Brian K.; Tabor, Dennis] US EPA, Off Res & Dev, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Touati, Abderrahmane] ARCADIS US Inc, Res Triangle Pk, NC 27711 USA. [Wyrzykowska-Ceradini, Barbara] Oak Ridge Inst Sci & Educ Res Postdoctoral Progra, Oak Ridge, TN 37831 USA. RP Gullett, BK (reprint author), US EPA, Off Res & Dev, Natl Risk Management Res Lab, E343-04, Res Triangle Pk, NC 27711 USA. EM gullett.brian@epa.gov FU U.S. EPA National Risk Management Research Laboratory FX This research was supported in part by an appointment of the Postdoctoral Research Program at the U.S. EPA National Risk Management Research Laboratory, administered by the Oak Ridge Institute for Science and Education (ORISE). The authors want to thank all participants of the 2006 MWC sampling campaign. NR 27 TC 11 Z9 11 U1 4 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2011 VL 45 IS 13 BP 5853 EP 5860 DI 10.1021/es200364u PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 783IQ UT WOS:000292075100057 PM 21657324 ER PT J AU Ament, LJP van Veenendaal, M van den Brink, J AF Ament, L. J. P. van Veenendaal, M. van den Brink, J. TI Determining the electron-phonon coupling strength from Resonant Inelastic X-ray Scattering at transition metal L-edges SO EPL LA English DT Article ID SUPERCONDUCTORS; EXCITATIONS; SPECTRA AB We show that high-resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis indicates how the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross-section. An alternative manner to extract the coupling is to use the one-and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole lifetime. This allows the determination of the e-p coupling on an absolute energy scale. Copyright (C) EPLA, 2011 C1 [Ament, L. J. P.] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. [Ament, L. J. P.; van den Brink, J.] IFW Dresden, Inst Theoret Solid State Phys, D-01171 Dresden, Germany. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ament, LJP (reprint author), Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands. RI van den Brink, Jeroen/E-5670-2011 OI van den Brink, Jeroen/0000-0001-6594-9610 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC02-06CH11357]; Dutch "Stichting voor Fundamenteel Onderzoek der Materie" (FOM); U.S. Department of Energy (DOE) [DE-FG02-03ER46097]; Computational Materials Science Network (CMSN), BES, DOE [DE-FG02-08ER46540] FX We thank L. BRAICOVICH, J. HILL, S. JOHNSTON and T. DEVEREAUX for fruitful discussions. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract DE-AC02-76SF00515 and by the Dutch "Stichting voor Fundamenteel Onderzoek der Materie" (FOM). MvV was supported by the U.S. Department of Energy (DOE), No. DE-FG02-03ER46097. Work at Argonne National Laboratory was supported by the U.S. DOE, Office of Basic Energy Sciences (BES), under contract No. DE-AC02-06CH11357. This research benefited from the RIXS Collaboration supported by the Computational Materials Science Network (CMSN), BES, DOE under grant No. DE-FG02-08ER46540. NR 29 TC 12 Z9 12 U1 1 U2 15 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2011 VL 95 IS 2 AR 27008 DI 10.1209/0295-5075/95/27008 PG 5 WC Physics, Multidisciplinary SC Physics GA 787NY UT WOS:000292384900027 ER PT J AU Atchison, F Blau, B Bodek, K van den Brandt, B Brys, T Daum, M Fierlinger, P Geltenbort, P Hautle, P Henneck, R Heule, S Holley, A Kasprzak, M Kirch, K Knecht, A Konter, JA Kuzniak, M Liu, CY Pichlmaier, A Plonka, C Pokotilovski, Y Saunders, A Tortorella, D Wohlmuther, M Young, AR Zejma, J Zsigmond, G AF Atchison, F. Blau, B. Bodek, K. van den Brandt, B. Brys, T. Daum, M. Fierlinger, P. Geltenbort, P. Hautle, P. Henneck, R. Heule, S. Holley, A. Kasprzak, M. Kirch, K. Knecht, A. Konter, J. A. Kuzniak, M. Liu, C-Y. Pichlmaier, A. Plonka, C. Pokotilovski, Y. Saunders, A. Tortorella, D. Wohlmuther, M. Young, A. R. Zejma, J. Zsigmond, G. TI Production of ultracold neutrons from cryogenic H-2(2), O-2, and (CH4)-H-2 converters SO EPL LA English DT Article ID SOLID-DEUTERIUM SOURCE; COLD NEUTRONS; UCN AB Ultracold neutrons (UCN) have been produced using the cold neutron (CN) beam FUNSPIN at SINQ on cryogenic oxygen (O-2), tetradeuteromethane ((CH4)-H-2), and deuterium (H-2(2)) targets. The target cell (40mm long, fiducial volume about 45 cm(3)) was operated between room temperature and 8K and UCN were produced from gaseous, liquid and solid targets. UCN rates have been measured as a convolution of UCN production and transport out of the target and to the detector. At least within the accessible temperature range of this experiment, deuterium outperforms the other materials. Copyright (C) EPLA, 2011 C1 [Atchison, F.; Blau, B.; van den Brandt, B.; Brys, T.; Daum, M.; Fierlinger, P.; Hautle, P.; Henneck, R.; Heule, S.; Kasprzak, M.; Kirch, K.; Knecht, A.; Konter, J. A.; Kuzniak, M.; Pichlmaier, A.; Wohlmuther, M.; Zsigmond, G.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Bodek, K.; Kuzniak, M.; Zejma, J.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Fierlinger, P.; Heule, S.; Knecht, A.] Univ Zurich, Inst Phys, CH-8006 Zurich, Switzerland. [Geltenbort, P.; Plonka, C.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Holley, A.; Young, A. R.] N Carolina State Univ, Raleigh, NC 27695 USA. [Kasprzak, M.] Austrian Acad Sci, Stefan Meyer Inst Subat Phys, A-1010 Vienna, Austria. [Liu, C-Y.] Indiana Univ, Bloomington, IN USA. [Pokotilovski, Y.] Joint Inst Nucl Res, Dubna, Russia. [Saunders, A.] Los Alamos Natl Lab, Los Alamos, NM USA. [Tortorella, D.] Tech Univ Munich, Munich, Germany. RP Atchison, F (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland. EM malgorzata.kasprzak@unifr.ch; klaus.kirch@psi.ch RI Hautle, Patrick/C-1044-2012; Knecht, Andreas/C-9917-2013; Kuzniak, Marcin/A-3053-2015 OI Hautle, Patrick/0000-0002-0502-8278; Knecht, Andreas/0000-0002-3767-950X; Kuzniak, Marcin/0000-0001-9632-9115 FU Polish Ministry of Science and Higher Education [N N202 065436] FX The work was performed at the Swiss Spallation Neutron Source (SINQ), PSI, Switzerland. We acknowledge the outstanding technical support of W. ARRIGONI, M. MEIER and P. SCHURTER. We thank E. WIDMANN, A. WOKAUN and J. ZMESKAL for discussions. We acknowledge the support from Polish Ministry of Science and Higher Education, grant No. N N202 065436. NR 30 TC 4 Z9 4 U1 1 U2 7 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2011 VL 95 IS 1 SI SI AR 12001 DI 10.1209/0295-5075/95/12001 PG 6 WC Physics, Multidisciplinary SC Physics GA 782EJ UT WOS:000291990600009 ER PT J AU Lei, HC Zhu, XD Petrovic, C AF Lei, Hechang Zhu, Xiangde Petrovic, C. TI Raising T-c in charge density wave superconductor ZrTe3 by Ni intercalation SO EPL LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-PROPERTIES; TEMPERATURE; GROWTH; SPIN AB We report on the discovery of bulk superconductivity in Ni0.05ZrTe3 at T-c = 3.1K, obtained through Ni intercalation. Superconductivity coexists with charge density wave (CDW) state with T-CDW = 41K. When compared to the parent material ZrTe3, the filamentary superconducting transition is substantially increased whereas T-CDW is suppressed. The analysis of superconducting state indicates that Ni0.05ZrTe3 is an intermediately coupled superconductor. Copyright (C) EPLA, 2011 C1 [Lei, Hechang; Zhu, Xiangde; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhu, Xiangde] Chinese Acad Sci, High Magnet Field Lab, Hefei 230031, Peoples R China. RP Lei, HC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM petrovic@bnl.gov RI Zhu, Xiangde/M-5869-2014; Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; NR 27 TC 9 Z9 9 U1 8 U2 49 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2011 VL 95 IS 1 SI SI AR 17011 DI 10.1209/0295-5075/95/17011 PG 5 WC Physics, Multidisciplinary SC Physics GA 782EJ UT WOS:000291990600029 ER PT J AU Wang, YYV Leblanc, M Fox, N Mao, JH Tinkum, KL Krummel, K Engle, D Piwnica-Worms, D Piwnica-Worms, H Balmain, A Kaushansky, K Wahl, GM AF Wang, Yunyuan V. Leblanc, Mathias Fox, Norma Mao, Jian-Hua Tinkum, Kelsey L. Krummel, Kurt Engle, Dannielle Piwnica-Worms, David Piwnica-Worms, Helen Balmain, Allan Kaushansky, Kenneth Wahl, Geoffrey M. TI Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity SO GENES & DEVELOPMENT LA English DT Article DE p53; C-terminal modification; HSC; radiosensitivity; cell cycle; apoptosis ID HEMATOPOIETIC STEM-CELLS; DNA-DAMAGE; POSTTRANSLATIONAL MODIFICATIONS; TRANSCRIPTION FACTOR; IONIZING-RADIATION; PROGENITOR CELLS; DEFICIENT MICE; ACETYLATION; ACTIVATION; STABILITY AB Cell cycle regulation in hematopoietic stem cells (HSCs) is tightly controlled during homeostasis and in response to extrinsic stress. p53, a well-known tumor suppressor and transducer of diverse stress signals, has been implicated in maintaining HSC quiescence and self-renewal. However, the mechanisms that control its activity in HSCs, and how p53 activity contributes to HSC cell cycle control, are poorly understood. Here, we use a genetically engineered mouse to show that p53 C-terminal modification is critical for controlling HSC abundance during homeostasis and HSC and progenitor proliferation after irradiation. Preventing p53 C-terminal modification renders mice exquisitely radiosensitive due to defects in HSC/ progenitor proliferation, a critical determinant for restoring hematopoiesis after irradiation. We show that fine-tuning the expression levels of the cyclin-dependent kinase inhibitor p21, a p53 target gene, contributes significantly to p53-mediated effects on the hematopoietic system. These results have implications for understanding cell competition in response to stresses involved in stem cell transplantation, recovery from adverse hematologic effects of DNA-damaging cancer therapies, and development of radioprotection strategies. C1 [Wang, Yunyuan V.; Leblanc, Mathias; Krummel, Kurt; Engle, Dannielle; Wahl, Geoffrey M.] Salk Inst Biol Studies, Gene Express Lab, La Jolla, CA 92037 USA. [Fox, Norma; Kaushansky, Kenneth] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA. [Mao, Jian-Hua; Balmain, Allan] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tinkum, Kelsey L.; Piwnica-Worms, Helen] Washington Univ, Sch Med, Dept Cell Biol & Physiol, St Louis, MO 63110 USA. [Tinkum, Kelsey L.; Piwnica-Worms, David] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA. [Tinkum, Kelsey L.; Piwnica-Worms, David; Piwnica-Worms, Helen] Washington Univ, Sch Med, BRIGHT Inst, St Louis, MO 63110 USA. [Piwnica-Worms, David] Washington Univ, Sch Med, Dept Dev Biol, St Louis, MO 63110 USA. [Piwnica-Worms, Helen] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA. [Piwnica-Worms, Helen] Howard Hughes Med Inst, St Louis, MO 63130 USA. RP Wahl, GM (reprint author), Salk Inst Biol Studies, Gene Express Lab, La Jolla, CA 92037 USA. EM wahl@salk.edu RI Piwnica-Worms, Helen/C-5214-2012 FU NCI [CA100845, CA61449, CA094056, U01 CA84244]; Cancer Center Core Grant for Core Facility support [5 P30 CA014195]; DOE FX We thank Daphne Chen and Daniel Kim for mouse colony assistance and BM extraction, Dr. Grant Barish for the help with BM transplantation, and Rose Rodewald for technical assistance. We thank Dr. Alain Mir from Fluidigm Corporation for designing primers and his assistance in microfluidic chip analysis. This work was supported by grants from NCI (grants CA100845 and CA61449 to G.M.W., and CA094056 to D.P.W.) and the Cancer Center Core Grant for Core Facility support (grant 5 P30 CA014195). A.B. and J.-H.M. acknowledge support from the NCI (U01 CA84244) and the DOE Low Dose Program. NR 51 TC 28 Z9 28 U1 1 U2 4 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 0890-9369 J9 GENE DEV JI Genes Dev. PD JUL 1 PY 2011 VL 25 IS 13 BP 1426 EP 1438 DI 10.1101/gad.2024411 PG 13 WC Cell Biology; Developmental Biology; Genetics & Heredity SC Cell Biology; Developmental Biology; Genetics & Heredity GA 786IE UT WOS:000292297200008 PM 21724834 ER PT J AU Vermeul, VR McKinley, JP Newcomer, DR Mackley, RD Zachara, JM AF Vermeul, Vince R. McKinley, James P. Newcomer, Darrell R. Mackley, Robert D. Zachara, J. M. TI River-Induced Flow Dynamics in Long-Screen Wells and Impact on Aqueous Samples SO GROUND WATER LA English DT Article ID BOREHOLE FLOWMETER; BIAS; SHALLOW AB Previously published field investigations and modeling studies have demonstrated the potential for sample bias associated with vertical wellbore flow in conventional monitoring wells constructed with long-screened intervals. This article builds on the existing body of literature by (1) demonstrating the utility of continuous (i.e., hourly measurements for similar to 1 month) ambient wellbore flow monitoring and (2) presenting results from a field experiment where relatively large wellbore flows (up to 4 L/min) were induced by aquifer hydrodynamics associated with a fluctuating river boundary located approximately 250 m from the test well. The observed vertical wellbore flows were strongly correlated with fluctuations in river stage, alternating between upward and downward flow throughout the monitoring period in response to changes in river stage. Continuous monitoring of ambient wellbore flows using an electromagnetic borehole flowmeter allowed these effects to be evaluated in concert with continuously monitored river-stage elevations (hourly) and aqueous uranium concentrations (daily) in a long-screen well and an adjacent multilevel well cluster. This study demonstrates that when contaminant concentrations within the aquifer vary significantly over the depth interval interrogated, river-induced vertical wellbore flow can result in variations in measured concentration that nearly encompass the full range of variation in aquifer contaminant concentration with depth. C1 [Vermeul, Vince R.; McKinley, James P.; Newcomer, Darrell R.; Mackley, Robert D.; Zachara, J. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Vermeul, VR (reprint author), Pacific NW Natl Lab, POB 999,MS K6-96, Richland, WA 99352 USA. EM vince.vermeul@pnl.gov FU U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division FX Funding for this study was provided by the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division. The authors would like to acknowledge Brad Fritz, Don Girvin, and Tom Resch for their support conducting the field experiment and Wayne Cosby, Robert Edrington, and Ron Smith for their efforts associated with the preparation of this manuscript. The authors would also like to acknowledge Daniel Kurtzman and David Hart for their constructive peer review comments. NR 23 TC 12 Z9 12 U1 2 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2011 VL 49 IS 4 BP 515 EP 524 DI 10.1111/j.1745-6584.2010.00769.x PG 10 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 783SN UT WOS:000292104400008 PM 21087248 ER PT J AU Morse, WM AF Morse, William M. TI EDM of the muon, deuteron, and proton in storage rings SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 5th International Conference on Trapped Charged Particles and Fundamental Physics (TCP) CY APR 12-16, 2010 CL Saariselka, FINLAND DE Magnetic monopole; EDM; Parity; Time reversal; Muon; Deuteron; Proton AB I discuss the progression of ideas over the last decade that has led to extremely sensitive dedicated electric dipolemoment (edm) storage ring designs. These ideas grew out of our experience in BNL E821: a precision measurement of the anomalous magnetic moment of the muon (Bennett et al. Phys Rev D73:072003, 2006). C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Morse, WM (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM morse@bnl.gov NR 8 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD JUL PY 2011 VL 199 IS 1-3 BP 93 EP 101 DI 10.1007/s10751-011-0304-x PG 9 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 069FI UT WOS:000313420300010 ER PT J AU Savard, G Pardo, RC Baker, S Davids, CN Levand, A Peterson, D Phillips, DG Sun, T Vondrasek, R Zabransky, BJ Zinkann, GP AF Savard, G. Pardo, R. C. Baker, S. Davids, C. N. Levand, A. Peterson, D. Phillips, D. G. Sun, T. Vondrasek, R. Zabransky, B. J. Zinkann, G. P. TI CARIBU: a new facility for the study of neutron-rich isotopes SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 5th International Conference on Trapped Charged Particles and Fundamental Physics (TCP) CY APR 12-16, 2010 CL Saariselka, FINLAND DE Gas catcher; Neutron-rich isotopes; Californium fission AB The Californium Rare Ion Breeder Upgrade (CARIBU) to the ATLAS superconducting linac facility is currently being commissioned. It provides low-energy and re-accelerated beams of neutron-rich isotopes obtained from Cf-252 fission. The fission products from a Cf-252 source are stopped in a large high-intensity gas catcher, thermalized and extracted through an RFQ cooler, accelerated to 50 kV and mass separated in a high-resolution separator before being sent to either an ECR charge breeder for post-acceleration through the ATLAS linac or to a low-energy experimental area. This approach gives access to beams of very neutron-rich isotopes, many of which have not been available at low or Coulomb barrier energies previously. These beams provide unique opportunities for measurements along the r-process path. To take advantage of these unique possibility, the reaccelerated beams from CARIBU will be made available at the experimental stations of ATLAS to serve equipment such as Gammasphere, HELIOS and the reaction spectrometers. In addition, the Canadian Penning Trap (CPT) mass spectrometer has been moved to the CARIBU low-energy experimental area and a new injection line has been built. The new injection line consists of a RFQ buncher sitting on a 50 kV high-voltage platform that will accumulate the mass separated 50 kV radioactive beams, cool and extract them as a pulsed beam of 3 keV. This beam can be sent either to a tape station for diagnostics and tuning, or a cryogenic linear trap for preparation before transfer to the high-precision Penning trap where the mass measurements will take place. Initial CARIBU commissioning is proceeding with a 2 mCi source that will be replaced by a 100 mCi source as the commissioning proceeds. Final operation will use a 1 Ci source and attain yield in excess of 10(7) ions/sec for the most intense beams at low energy, an order of magnitude less for reaccelerated beams. C1 [Savard, G.; Pardo, R. C.; Baker, S.; Davids, C. N.; Levand, A.; Peterson, D.; Phillips, D. G.; Sun, T.; Vondrasek, R.; Zabransky, B. J.; Zinkann, G. P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Savard, G.] Univ Chicago, Chicago, IL 60637 USA. RP Savard, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM savard@anl.gov NR 7 TC 17 Z9 17 U1 2 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD JUL PY 2011 VL 199 IS 1-3 BP 301 EP 309 DI 10.1007/s10751-011-0325-5 PG 9 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 069FI UT WOS:000313420300031 ER PT J AU Liao, S Gopalsami, N Heifetz, A Elmer, T Fiflis, P Koehl, ER Chien, HT Raptis, AC AF Liao, S. Gopalsami, N. Heifetz, A. Elmer, T. Fiflis, P. Koehl, E. R. Chien, H. T. Raptis, A. C. TI Microwave Remote Sensing of Ionized Air SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Electromagnetic reflection; electromagnetic scattering; radar cross section (RCS); radar scattering ID RADAR; CALIBRATION AB We present observations of microwave scattering from ambient room air ionized with a negative ion generator. The frequency dependence of the radar cross section of ionized air was measured from 26.5 to 40 GHz (Ka-band) in a bistatic mode with an Agilent PNA-X series (model N5245A) vector network analyzer. A detailed calibration scheme is provided to minimize the effect of the stray background field and system frequency response on the target reflection. The feasibility of detecting the microwave reflection from ionized air portends many potential applications such as remote sensing of atmospheric ionization and remote detection of radioactive ionization of air. C1 [Liao, S.; Gopalsami, N.; Heifetz, A.; Elmer, T.; Fiflis, P.; Koehl, E. R.; Chien, H. T.; Raptis, A. C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Liao, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sliao@anl.gov OI Elmer, Thomas/0000-0003-0363-5928 FU Office of Nonproliferation and Verification Research and Development under the National Nuclear Security Administration FX Manuscript received July 1, 2010; accepted November 23, 2010. Date of publication January 19, 2011; date of current version June 24, 2011. This work was supported by the Office of Nonproliferation and Verification Research and Development under the National Nuclear Security Administration. NR 14 TC 0 Z9 0 U1 0 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD JUL PY 2011 VL 8 IS 4 BP 617 EP 620 DI 10.1109/LGRS.2010.2098016 PG 4 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 783SW UT WOS:000292105300007 ER PT J AU Cruz-Campa, JL Nielson, GN Resnick, PJ Sanchez, CA Clews, PJ Okandan, M Friedmann, T Gupta, VP AF Cruz-Campa, Jose L. Nielson, Gregory N. Resnick, Paul J. Sanchez, Carlos A. Clews, Peggy J. Okandan, Murat Friedmann, Tom Gupta, Vipin P. TI Ultrathin Flexible Crystalline Silicon: Microsystems-Enabled Photovoltaics SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Crystalline silicon; microsystems-enabled photovoltaics; photovoltaic modules AB We present an approach to create ultrathin (<20 mu m) and highly flexible crystalline silicon sheets on inexpensive substrates. We have demonstrated silicon sheets capable of bending at a radius of curvature as small as 2mm without damaging the silicon structure. Using microsystem tools, we created a suspended submillimeter honeycomb-segmented silicon structure anchored to the wafer only by small tethers. This structure is created in a standard thickness wafer enabling compatibility with common processing tools. The procedure enables all the high-temperature steps necessary to create a solar cell to be completed while the cells are on the wafer. In the transfer process, the cells attach to an adhesive flexible substrate which, when pulled away from the wafer, breaks the tethers and releases the honeycomb structure. We have previously demonstrated that submillimeter and ultrathin silicon segments can be converted into highly efficient solar cells, achieving efficiencies up to 14.9% at a thickness of 14 mu m. With this technology, achieving high efficiency (>15%) and highly flexible photovoltaic (PV) modules should be possible. C1 [Cruz-Campa, Jose L.; Nielson, Gregory N.; Resnick, Paul J.; Sanchez, Carlos A.; Clews, Peggy J.; Okandan, Murat; Friedmann, Tom; Gupta, Vipin P.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Cruz-Campa, JL (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM jlcruzc@sandia.gov; gnniels@sandia.gov; resnicpj@sandia.gov; carsanc@sandia.gov; pjclews@sandia.gov; mokanda@sandia.gov; tafried@sandia.gov; vpgupta@sandia.gov FU Department of Energy Solar Energy Technology Program Seed Fund; United States Department of Energy's NNSA [DE-AC04-94AL85000] FX Manuscript received June 8, 2011; revised July 15, 2011; accepted July 18, 2011. Date of publication August 22, 2011; date of current version October 27, 2011. This work was supported by the Department of Energy Solar Energy Technology Program Seed Fund and by Sandia, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's NNSA under Contract DE-AC04-94AL85000. NR 12 TC 8 Z9 8 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2011 VL 1 IS 1 BP 3 EP 8 DI 10.1109/JPHOTOV.2011.2162973 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA V28RI UT WOS:000208697500002 ER PT J AU Grover, S Moddel, G AF Grover, Sachit Moddel, Garret TI Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Metal/insulator/metal (MIM) diode; optical rectenna; photon-assisted tunneling; photovoltaics; rectenna; solar cell AB The current-voltage (I-V) characteristics of metal/insulator/metal (MIM) diodes illuminated at optical frequencies are modeled using a semiclassical approach that accounts for the photon energy of the radiation. Instead of classical small-signal rectification, in which a continuous span of the dc I-V curve is sampled during rectification, at optical frequencies, the radiation samples the dc I-V curve at discrete voltage steps separated by the photon energy (divided by the electronic charge). As a result, the diode resistance and responsivity differ from their classical values. At optical frequencies, a diode with even a moderate forward-to-reverse current asymmetry exhibits high quantum efficiency. An analysis is carried out to determine the requirements imposed by the operating frequency on the circuit parameters of antenna-coupled diode rectifiers, which are also called rectennas. Diodes with low resistance and capacitance are required for the RC time constant of the rectenna to be smaller than the reciprocal of the operating frequency and to couple energy efficiently from the antenna. Existing MIM diodes do not meet the requirements to operate efficiently at visible-to-near-infrared wavelengths. C1 [Grover, Sachit; Moddel, Garret] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA. RP Grover, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sachitgrover@ieee.org; moddel@colorado.edu RI Grover, Sachit/M-1881-2013 NR 41 TC 58 Z9 59 U1 3 U2 36 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2011 VL 1 IS 1 BP 78 EP 83 DI 10.1109/JPHOTOV.2011.2160489 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA V28RI UT WOS:000208697500014 ER PT J AU Kanevce, A Gessert, TA AF Kanevce, Ana Gessert, Timothy A. TI Optimizing CdTe Solar Cell Performance: Impact of Variations in Minority-Carrier Lifetime and Carrier Density Profile SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Carrier lifetime; photovoltaic cells; semiconductor device modeling; thin films AB Using numerical simulations, we study the combined effects of nonuniform minority-carrier lifetime tau and carrier density N-A on device performance. In a uniformly doped device, maximum open-circuit voltage V-oc is obtained for high tau and high N-A. The fill-factor (FF) is mainly dependent on the lifetime. When the lifetime is low, and N-A is high, the FF suffers losses due to voltage-dependant carrier collection. For a low carrier density and low lifetime, the electric field strength is low, recombination is a competitive process to drift, and the FF is reduced. Simulations predict that it might be possible to increase the device efficiency with lower carrier density, if the back of the absorber is highly doped. This configuration increases the built-in potential and the electric field close to the junction region, while keeping the space-charge region wide. In addition, a device with such a profile is very tolerant toward lifetime variations of the highly doped layer. With our simulation parameters, when the absorber properties are uniform, efficiencies > 18% require experimentally unrealistic doping and lifetime values. If the back of the absorber is doped significantly higher than the rest, such efficiencies can be achieved with realistic values of doping and lifetime. C1 [Kanevce, Ana; Gessert, Timothy A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Kanevce, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Ana.Kanevce@nrel.gov; Tim.Gessert.@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory (NREL) [ZEJ-7-77039-01] FX Manuscript received June 28, 2011; revised July 27, 2011; accepted August 1, 2011. Date of publication September 1, 2011; date of current version October 27, 2011. This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory (NREL) and the NREL subcontract ZEJ-7-77039-01 to Colorado State University. NR 8 TC 14 Z9 14 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD JUL PY 2011 VL 1 IS 1 BP 99 EP 103 DI 10.1109/JPHOTOV.2011.2164952 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA V28RI UT WOS:000208697500017 ER PT J AU Xie, J Wang, GJ Yow, L Cela, CJ Humayun, MS Weiland, JD Lazzi, G Jadvar, H AF Xie, John Wang, Gene-Jack Yow, Lindy Cela, Carlos J. Humayun, Mark S. Weiland, James D. Lazzi, Gianluca Jadvar, Hossein TI Modeling and Percept of Transcorneal Electrical Stimulation in Humans SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Admittance modeling; DTL-Plus; ERG-Jet; phosphene; positron emission tomography (PET); transcorneal electrical stimulation (TcES) ID RETINITIS-PIGMENTOSA; EVOKED RESPONSE; VISUAL-SYSTEM; RETINAL FUNCTION; ATTENTION; CORTEX; COLOR; EYE; EER AB Retinal activation via transcorneal electrical stimulation (TcES) in normal humans was investigated by comparing subject perception, model predictions, and brain activation patterns. The preferential location of retinal stimulation was predicted from 3-D admittance modeling. Visual cortex activation was measured using positron emission tomography (PET) and F-18-fluorodeoxyglucose (FDG). Two different corneal electrodes were investigated: DTL-Plus and ERG-Jet. Modeling results predicted preferential stimulation of the peripheral, inferior, nasal retina during right eye TcES using DTL-Plus, but more extensive activation of peripheral, nasal hemiretina using ERG-Jet. The results from human FDG PET study using both corneal electrodes showed areas of visual cortex activation that consistently corresponded with the reported phosphene percept and modeling predictions. ERG-Jet was able to generate brighter phosphene percept than DTL-Plus and elicited retinotopically mapped primary visual cortex activation. This study demonstrates that admittance modeling and PET imaging consistently predict the perceived location of electrically elicited phosphenes produced during TcES. C1 [Xie, John] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. [Yow, Lindy; Humayun, Mark S.; Weiland, James D.] Univ So Calif, Doheny Eye Inst, Los Angeles, CA 90033 USA. [Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Cela, Carlos J.] N Carolina State Univ, Raleigh, NC 27607 USA. [Lazzi, Gianluca] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. RP Xie, J (reprint author), Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. EM jianxie@usc.edu; gjwang@bnl.gov; LYow@doheny.org; cjcela@gmail.com; humayun@usc.edu; jweiland@doheny.org; lazzi@ncsu.edu; jadvar@usc.edu FU US Department of Energy [DE-FC02-04ER63735]; National Science Foundation [CBET-0917458] FX This work was supported in part by the US Department of Energy under Grant DE-FC02-04ER63735, and in part by the National Science Foundation under Grant CBET-0917458. NR 26 TC 8 Z9 8 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD JUL PY 2011 VL 58 IS 7 BP 1932 EP 1939 DI 10.1109/TBME.2010.2087378 PG 8 WC Engineering, Biomedical SC Engineering GA 780WL UT WOS:000291890000007 PM 20952323 ER PT J AU Wang, JJA Chan, JK Graziano, JA AF Wang, John Jy-An Chan, John K. Graziano, Joseph A. TI The Lifetime Estimate for ACSR Single-Stage Splice Connector Operating at Higher Temperatures SO IEEE TRANSACTIONS ON POWER DELIVERY LA English DT Article DE Aluminum conductor steel reinforced (ACSR); compressive residual stress; high-temperature low sag conductors; single-stage splice connector; tensile splice connector; thermal cycling; transmission lines AB The power transmission conductor system consists of: the aluminum conductor, the steel-core supporting material, and the splice connector. The splice connector connects the aluminum conductor to form a continuing current transmission line. The splice connector region of a conductor system is more sensitive to material aging during service. This is due to the material discontinuity and the crimped connector's forming mechanism. The objective of this project is to develop a protocol to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly operated at high temperature. The project focuses on thermal mechanical testing, thermal cycling simulation and the effective lifetime of the SSC system. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on SSC integrity and its associated effective lifetime. The developed governing equation and its application to assure the adequate service life of transmission lines are also discussed in the paper. C1 [Wang, John Jy-An] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chan, John K.] EPRI, Palo Alto, CA 94304 USA. [Graziano, Joseph A.] Tennessee Valley Author, Chattanooga, TN 37402 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov; jchan@epri.com; jagraziano@tva.gov OI Wang, Jy-An/0000-0003-2402-3832 FU EPRI HTLS Program; DOE Office of Electricity Delivery and Energy Reliability FX This work was supported in part by EPRI HTLS Program and in par by the DOE Office of Electricity Delivery and Energy Reliability. Paper no. TPWRD-00607-2008. NR 9 TC 7 Z9 7 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8977 J9 IEEE T POWER DELIVER JI IEEE Trans. Power Deliv. PD JUL PY 2011 VL 26 IS 3 BP 1317 EP 1325 DI 10.1109/TPWRD.2011.2107921 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 784OY UT WOS:000292167800002 ER PT J AU Yeager, CM Milliken, CE Bagwell, CE Staples, L Berseth, PA Sessions, HT AF Yeager, Chris M. Milliken, Charles E. Bagwell, Christopher E. Staples, Lauren Berseth, Polly A. Sessions, Henry T. TI Evaluation of experimental conditions that influence hydrogen production among heterocystous Cyanobacteria SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen; Cyanobacteria; Nitrogenase; Bioenergy; Heterocystous ID ENHANCED BIOHYDROGEN PRODUCTION; ANABAENA-VARIABILIS; NITROGEN-FIXATION; H-2 PRODUCTION; FIXING CYANOBACTERIUM; ACTIVE-SITE; STRAIN; EVOLUTION; CULTURES; CYLINDRICA AB The overall goal of this research was to systematically evaluate H(2) production among different heterocystous cyanobacteria in response to defined experimental variables including N(2) and O(2) concentration, carbon source, and light intensity. N(2) elicited an immediate reduction of H(2) production rates and the magnitude of the effect was strikingly similar across the diverse collection of heterocystous cyanobacteria that were tested. At the N(2):O(2) ratio found in air (4:1), N(2) was a much more potent inhibitor of H(2) production than O(2). Low levels of O(2) (1-5% headspace, vol:vol) were generally found to support optimal H(2) production. Glucose addition (10 mM) stimulated light-dependent H(2) production in 8 of 10 cyanobacteria examined, eliciting a 2-11 fold increase in production rates and 2-45 fold increase in yields. The addition of glucose also effectively lowered the intensity of light required for optimal H2 production in 4 of 10 strains tested. H(2) production rates ranged from 1 to 50 mu mol mg chi a(-1) h(-1). The results from this study provide important benchmark phenotypes against which to evaluate newly discovered H(2)-producing heterocystous cyanobacteria, and we discuss how these findings highlight the necessity of a multi-parameter approach to comprehensively screen for superior H(2)-producing heterocystous cyanobacteria. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Yeager, Chris M.; Milliken, Charles E.; Bagwell, Christopher E.; Staples, Lauren] Savannah River Natl Lab, Environm Biotechnol Sect, Aiken, SC 29808 USA. [Sessions, Henry T.] Savannah River Natl Lab, Hydrogen Proc Grp, Aiken, SC 29808 USA. RP Yeager, CM (reprint author), Savannah River Natl Lab, Environm Biotechnol Sect, 999-W, Aiken, SC 29808 USA. EM Chris.yeager@srnl.doe.gov; Charles.Milliken@srnl.doe.gov; christopher.bagwell@srnl.doe.gov; staple5@clemson.edu; Polly.Berseth@wwu.edu; henry.sessions@srnl.doe.gov FU U.S. Department of Energy, Office of Environmental Management [LD06ES054] FX We thank Tanya Soule for carefully reviewing the manuscript. This project was supported by the U.S. Department of Energy, Office of Environmental Management as administered by the SRNL Laboratory Directed Research and Development Program (LD06ES054). NR 58 TC 13 Z9 13 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2011 VL 36 IS 13 BP 7487 EP 7499 DI 10.1016/j.ijhydene.2011.03.078 PG 13 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 783ZR UT WOS:000292123900014 ER PT J AU Palumbo, O Paolone, A Rispoli, P Cantelli, R Autrey, T Karkamkar, A Navarra, MA AF Palumbo, Oriele Paolone, Annalisa Rispoli, Pasquale Cantelli, Rosario Autrey, Tom Karkamkar, Abhijeet Navarra, Maria Assunta TI Hydrogen isotope effects on the structural phase transition of NH3BH3 SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen storage; Complex hydrides; Phase transition ID AMMONIA-BORANE; THERMAL-DECOMPOSITION; ANELASTIC SPECTROSCOPY; CHEMICAL-REACTIONS; STORAGE MATERIAL; DYNAMICS; BH3NH3; NMR AB A systematic study of the structural phase transition of NH3BH3 and of its fully deuterated analogue was performed combining DSC and anelastic spectroscopy measurements. The transition is accompanied by a latent heat, and therefore is of the 1st order. On the deuterated sample the enthalpy variation is reduced of more than 20%, from 1.29 to 1.01 kJ/mol and the transition is shifted by similar to 1.5 K toward higher temperatures. Both NH3BH3 and ND3BD3 display a temperature hysteresis between cooling and heating, thus denoting that the phase transition is of first-order. In addition, this hysteresis is extremely small (similar to 0.5 K) indicating that the coexistence region between the two phases is very narrow. During isothermal ageing, the transformation of the low-temperature orthorhombic phase into the high-temperature tetragonal one occurs with a time constant of similar to 16 min in NH3BH3 and similar to 64 min in ND3BD3, evidencing a drastic slowing down of kinetics in the deuterated compound. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Palumbo, Oriele; Paolone, Annalisa; Rispoli, Pasquale; Cantelli, Rosario] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Palumbo, Oriele; Paolone, Annalisa] CNR SC, Ist Sistemi Complessi, I-00185 Rome, Italy. [Autrey, Tom; Karkamkar, Abhijeet] Pacific NW Natl Lab, Richland, WA 99352 USA. [Navarra, Maria Assunta] Univ Roma La Sapienza, Dipartimento Chim, I-00185 Rome, Italy. RP Palumbo, O (reprint author), Univ Roma La Sapienza, Dipartimento Fis, Piazzale A Moro 2, I-00185 Rome, Italy. EM oriele.palumbo@roma1.infn.it RI Palumbo, Oriele/B-7694-2015; Paolone, Annalisa/B-7701-2015; OI Paolone, Annalisa/0000-0002-4839-7815; Palumbo, Oriele/0000-0003-4968-1049 FU Italian "Ministero dell'Ambiente"; U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences Division FX The present study was supported by the Italian "Ministero dell'Ambiente". TA and AK wish to acknowledge support from the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences Division. PNNL is operated by Battelle for the US DOE. NR 25 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2011 VL 36 IS 13 BP 7927 EP 7931 DI 10.1016/j.ijhydene.2010.12.076 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 783ZR UT WOS:000292123900071 ER PT J AU Groesser, T Chang, H Fontenay, G Chen, J Costes, SV Barcellos-Hoff, MH Parvin, B Rydberg, B AF Groesser, Torsten Chang, Hang Fontenay, Gerald Chen, James Costes, Sylvain V. Barcellos-Hoff, Mary Helen Parvin, Bahram Rydberg, Bjorn TI Persistence of gamma-H2AX and 53BP1 foci in proliferating and non-proliferating human mammary epithelial cells after exposure to gamma-rays or iron ions SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article DE Foci; MCF10A; HZE; iron; 3D; HMEC ID DOUBLE-STRAND BREAKS; DENSELY IONIZING-RADIATION; LINEAR-ENERGY-TRANSFER; HOMOLOGOUS RECOMBINATION; SPACE EXPLORATION; HUMAN FIBROBLASTS; GENE-EXPRESSION; CULTURE MODELS; DNA FRAGMENTS; HIGH-LET AB Purpose: To investigate gamma-H2AX (phosphorylated histone H2AX) and 53BP1 (tumour protein 53 binding protein No. 1) foci formation and removal in proliferating and non-proliferating human mammary epithelial cells (HMEC) after exposure to sparsely and densely ionising radiation under different cell culture conditions. Material and methods: HMEC cells were grown either as monolayers (2D) or in extracellular matrix to allow the formation of acinar structures in vitro (3D). Foci numbers were quantified by image analysis at various time points after exposure. Results: Our results reveal that in non-proliferating cells under 2D and 3D cell culture conditions, iron-ion induced gamma-H2AX foci were still present at 72 h after exposure, although 53BP1 foci returned to control levels at 48 h. In contrast in proliferating HMEC, both gamma-H2AX and 53BP1 foci decreased to control levels during the 24-48 h time interval after irradiation under 2D conditions. Foci numbers decreased faster after gamma-ray irradiation and returned to control levels by 12 h regardless of marker, cell proliferation status, and cell culture condition. Conclusions: The disappearance of radiation-induced gamma-H2AX and 53BP1 foci in HMEC has different dynamics that depend on radiation quality and proliferation status. Notably, the general patterns do not depend on the cell culture condition (2D versus 3D). We speculate that the persistent gamma-H2AX foci in iron-ion irradiated non-proliferating cells could be due to limited availability of double-strand break (DSB) repair pathways in G0/G1-phase, or that repair of complex DSB requires replication or chromatin remodelling. C1 [Groesser, Torsten; Chang, Hang; Fontenay, Gerald; Chen, James; Costes, Sylvain V.; Barcellos-Hoff, Mary Helen; Parvin, Bahram; Rydberg, Bjorn] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA. [Barcellos-Hoff, Mary Helen] NYU Langone Med Ctr, Dept Radiat Oncol, New York, NY USA. [Barcellos-Hoff, Mary Helen] NYU Langone Med Ctr, Dept Cell Biol, New York, NY USA. RP Groesser, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Canc & DNA Damage Responses, Bldg 977-0269,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tgroesser@lbl.gov RI Costes, Sylvain/D-2522-2013 OI Costes, Sylvain/0000-0002-8542-2389 FU NASA [T6275W]; Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr Marcelo Vazquez, Dr Peter Guida, Dr Betsy Sutherland, and Dr Adam Rusek and their groups for support during the NSRL runs at Brookhaven National Laboratory, Dr Janice Pluth (LBNL) for her help with flow cytometry analysis, Dr Martha Stampfer and Dr James Garbe for providing the 184v HMEC cells and for their cell culture support, and Christopher Pham for his help with fitting the curves. The research was support by NASA Grant no. T6275W (awarded to Dr. Mary-Helen Barcellos-Hoff, NSCOR), and in part by the Low Dose Radiation Program, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 52 TC 18 Z9 19 U1 0 U2 11 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0955-3002 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD JUL PY 2011 VL 87 IS 7 BP 696 EP 710 DI 10.3109/09553002.2010.549535 PG 15 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 786BU UT WOS:000292278200006 PM 21271785 ER PT J AU Gerasimova, A Kazakov, AE Arkin, AP Dubchak, I Gelfand, MS AF Gerasimova, Anna Kazakov, Alexey E. Arkin, Adam P. Dubchak, Inna Gelfand, Mikhail S. TI Comparative Genomics of the Dormancy Regulons in Mycobacteria SO JOURNAL OF BACTERIOLOGY LA English DT Article ID TUBERCULOSIS GENE-EXPRESSION; DOSR REGULON; GAMMA-PROTEOBACTERIA; 2-COMPONENT SYSTEM; NITRATE REDUCTION; BACTERIAL GENOMES; ESCHERICHIA-COLI; HYPOXIC RESPONSE; OXYGEN; TRANSCRIPTION AB In response to stresses, Mycobacterium cells become dormant. This process is regulated by the DosR transcription factor. In Mycobacterium tuberculosis, the dormancy regulon is well characterized and contains the dosR gene itself and dosS and dosT genes encoding DosR kinases, nitroreductases (acg; Rv3131), diacylglycerol acyltransferase (DGAT) (Rv3130c), and many universal stress proteins (USPs). In this study, we apply comparative genomic analysis to characterize the DosR regulons in nine Mycobacterium genomes, Rhodococcus sp. RHA1, Nocardia farcinica, and Saccharopolyspora erythraea. The regulons are highly labile, containing eight core gene groups (regulators, kinases, USPs, DGATs, nitroreductases, ferredoxins, heat shock proteins, and the orthologs of the predicted kinase [Rv2004c] from M. tuberculosis) and 10 additional genes with more restricted taxonomic distribution that are mostly involved in anaerobic respiration. The largest regulon is observed in M. marinum and the smallest in M. abscessus. Analysis of large gene families encoding USPs, nitroreductases, and DGATs demonstrates a mosaic distribution of regulated and nonregulated members, suggesting frequent acquisition and loss of DosR-binding sites. C1 [Gerasimova, Anna; Kazakov, Alexey E.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Gerasimova, Anna; Arkin, Adam P.] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [Kazakov, Alexey E.; Gelfand, Mikhail S.] RAS, Inst Informat Transmiss Problems, Moscow 127994, Russia. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Dubchak, Inna] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Gelfand, Mikhail S.] Moscow MV Lomonosov State Univ, Fac Bioengn & Bioinformat, Moscow 119991, Russia. RP Gerasimova, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,Mail Stop 84R0171, Berkeley, CA 94720 USA. EM AGerasimova@lbl.gov RI Gelfand, Mikhail/F-3425-2012; Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU RFBR [09-04-92745, 08-04-01000, 10-04-00431]; RAS; Ministry of Science and Education [2.740.11.0101] FX This study was partially supported by RFBR (09-04-92745, 08-04-01000, and 10-04-00431), RAS (Program in Molecular and Cellular Biology), and the Ministry of Science and Education (2.740.11.0101). NR 50 TC 18 Z9 20 U1 1 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 14 BP 3446 EP 3452 DI 10.1128/JB.00179-11 PG 7 WC Microbiology SC Microbiology GA 784DQ UT WOS:000292134900003 PM 21602344 ER PT J AU Lechno-Yossef, S Fan, Q Wojciuch, E Wolk, CP AF Lechno-Yossef, Sigal Fan, Qing Wojciuch, Elizabeth Wolk, Peter TI Identification of Ten Anabaena sp Genes That under Aerobic Conditions Are Required for Growth on Dinitrogen but Not for Growth on Fixed Nitrogen SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SP STRAIN PCC-7120; HETEROCYST ENVELOPE POLYSACCHARIDE; NOSTOC-PUNCTIFORME; CLONING VECTORS; RESPONSE REGULATOR; FILAMENT INTEGRITY; DIFFERENTIATION; EXPRESSION; FIXATION; GLUCOSE-6-PHOSPHATE-DEHYDROGENASE AB Heterocysts are specialized cells required for aerobic fixation of dinitrogen by certain filamentous cyanobacteria. Numerous genes involved in the differentiation and function of heterocysts in Anabaena sp. strain PCC 7120 have been identified by mutagenizing and screening for mutants that require fixed nitrogen for growth in the presence of oxygen. We have verified that 10 Anabaena sp. genes, all1338, all1591, alr1728, all3278, all3520, all3582, all3850, all4019, alr4311, and all4388, identified initially by transposon mutagenesis, are such genes by complementing or reconstructing the original mutation and by determining whether the mutant phenotype might be due to a polar effect of the transposon. Elucidation of the roles of these genes should enhance understanding of heterocyst biology. C1 [Lechno-Yossef, Sigal; Fan, Qing; Wojciuch, Elizabeth; Wolk, Peter] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Wolk, Peter] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Wolk, CP (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM wolk@msu.edu RI FAN, QING/G-6356-2012 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DOE FG02-91ER20021] FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy grant DOE FG02-91ER20021. NR 47 TC 10 Z9 11 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 14 BP 3482 EP 3489 DI 10.1128/JB.05010-11 PG 8 WC Microbiology SC Microbiology GA 784DQ UT WOS:000292134900007 PM 21602343 ER PT J AU Jiao, YQ Qian, F Li, Y Wang, GM Saltikov, CW Gralnick, JA AF Jiao, Yongqin Qian, Fang Li, Yat Wang, Gongming Saltikov, Chad W. Gralnick, Jeffrey A. TI Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID DISSIMILATORY FE(III); PUTREFACIENS MR-1; STRAIN MR-1; RESPIRATION; CYTOCHROMES; BACTERIA; FLAVINS; CYMA AB We determined that graphene oxide reduction by Shewanella oneidensis MR-1 requires the Mtr respiratory pathway by analyzing a range of mutants lacking these proteins. Electron shuttling compounds increased the graphene oxide reduction rate 3- to 5-fold. These results may help facilitate the use of bacteria for large-scale graphene production. C1 [Jiao, Yongqin; Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Qian, Fang; Li, Yat; Wang, Gongming] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Saltikov, Chad W.] Univ Calif Santa Cruz, Dept Microbiol & Environm Toxicol, Santa Cruz, CA 95064 USA. [Gralnick, Jeffrey A.] Univ Minnesota Twin Cities, Dept Microbiol, St Paul, MN 55108 USA. [Gralnick, Jeffrey A.] Univ Minnesota Twin Cities, Inst Biotechnol, St Paul, MN 55108 USA. RP Jiao, YQ (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave,L-452, Livermore, CA 94550 USA. EM jiao1@llnl.gov RI Wang, Gongming/C-4555-2012; Zong, Xu/B-7149-2013; OI Li, Yat/0000-0002-8058-2084 FU NSF [CBET 1034222]; University of California, Santa Cruz; ONR [N000140810166]; [DE-AC52-07NA27344] FX Y.L. and F.Q. acknowledge partial financial support for this work by the NSF (CBET 1034222) and faculty research funds granted by the University of California, Santa Cruz. J.A.G. acknowledges support from ONR (N000140810166). Work at the Lawrence Livermore National Laboratory was conducted under contract DE-AC52-07NA27344. NR 21 TC 25 Z9 29 U1 4 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 14 BP 3662 EP 3665 DI 10.1128/JB.00201-11 PG 4 WC Microbiology SC Microbiology GA 784DQ UT WOS:000292134900027 PM 21602337 ER PT J AU Brown, SD Begemann, MB Mormile, MR Wall, JD Han, CS Goodwin, LA Pitluck, S Land, ML Hauser, LJ Elias, DA AF Brown, Steven D. Begemann, Matthew B. Mormile, Melanie R. Wall, Judy D. Han, Cliff S. Goodwin, Lynne A. Pitluck, Samuel Land, Miriam L. Hauser, Loren J. Elias, Dwayne A. TI Complete Genome Sequence of the Haloalkaliphilic, Hydrogen-Producing Bacterium Halanaerobium hydrogeniformans SO JOURNAL OF BACTERIOLOGY LA English DT Article ID WASHINGTON; DIVERSITY; DEEP AB Halanaerobium hydrogenoformans is an alkaliphilic bacterium capable of biohydrogen production at pH 11 and 7% (wt/vol) salt. We present the 2.6-Mb genome sequence to provide insights into its physiology and potential for bioenergy applications. C1 [Brown, Steven D.; Land, Miriam L.; Hauser, Loren J.; Elias, Dwayne A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Begemann, Matthew B.] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI 53706 USA. [Mormile, Melanie R.] Missouri Univ Sci & Technol, Dept Biol Sci, Rolla, MO 65409 USA. [Wall, Judy D.] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA. [Han, Cliff S.; Goodwin, Lynne A.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Han, Cliff S.; Goodwin, Lynne A.; Pitluck, Samuel; Land, Miriam L.; Hauser, Loren J.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Pitluck, Samuel] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Elias, DA (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM eliasda@ornl.gov RI Elias, Dwayne/B-5190-2011; Hauser, Loren/H-3881-2012; Land, Miriam/A-6200-2011; Brown, Steven/A-6792-2011; OI Elias, Dwayne/0000-0002-4469-6391; Land, Miriam/0000-0001-7102-0031; Brown, Steven/0000-0002-9281-3898; Mormile, Melanie/0000-0001-9054-2687 FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center, a US DOE Bioenergy Research Center; UT-Battelle, LLC [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was supported by the Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center, a US DOE Bioenergy Research Center. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 13 TC 26 Z9 26 U1 2 U2 11 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 14 BP 3682 EP 3683 DI 10.1128/JB.05209-11 PG 2 WC Microbiology SC Microbiology GA 784DQ UT WOS:000292134900037 PM 21602336 ER PT J AU Beller, HR Goh, EB Keasling, JD AF Beller, Harry R. Goh, Ee-Been Keasling, Jay D. TI Definitive Alkene Identification Needed for in Vitro Studies with Ole (Olefin Biosynthesis) Proteins SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Letter C1 [Beller, Harry R.] JBEI, Berkeley, CA USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Beller, HR (reprint author), JBEI, Berkeley, CA USA. EM hrbeller@lbl.gov RI Keasling, Jay/J-9162-2012; Beller, Harry/H-6973-2014 OI Keasling, Jay/0000-0003-4170-6088; NR 3 TC 0 Z9 0 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 1 PY 2011 VL 286 IS 26 BP LE11 EP LE11 DI 10.1074/jbc.L110.216127 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 782QP UT WOS:000292025000002 PM 21705341 ER PT J AU Gardenier, GH Gui, F Demas, JN AF Gardenier, George H. Gui, Feng Demas, James N. TI Error Propagation Made Easy-Or at Least Easier SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Upper-Division Undergraduate; Analytical Chemistry; Physical Chemistry; Problem Solving/Decision Making; Computational Chemistry; Mathematics/Symbolic Mathematics ID CHEMISTRY AB Complex error propagation is reduced to formula and data entry into a Mathcad worksheet or an Excel spreadsheet. The Mathcad routine uses both symbolic calculus analysis and Monte Carlo methods to propagate errors in a formula of up to four variables. Graphical output is used to clarify the contributions to the final error of each of the individual variables as well as illustrate how well the results conform to the normal distribution. The Excel routine allows direct entry of the formula and evaluates the error by numerical approximation of the necessary partial derivatives. Students find the routines much more user friendly and informative than traditional error propagation techniques. C1 [Demas, James N.] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Gardenier, George H.] US DOE, New Brunswick Lab, Argonne, IL 60439 USA. [Gui, Feng] DNV, Dublin, OH 43017 USA. RP Demas, JN (reprint author), Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. EM jnd@virginia.edu FU NSF [CHE 0410061]; UVA Department of Chemistry FX We thank the NSF for support with CHE 0410061 and the UVA Department of Chemistry. NR 15 TC 4 Z9 4 U1 2 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 J9 J CHEM EDUC JI J. Chem. Educ. PD JUL PY 2011 VL 88 IS 7 BP 916 EP 920 DI 10.1021/ed1004307 PG 5 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA 781TM UT WOS:000291959400016 ER PT J AU Vay, JL Geddes, CGR Cormier-Michel, E Grote, DP AF Vay, J. -L. Geddes, C. G. R. Cormier-Michel, E. Grote, D. P. TI Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Laser wakefield acceleration; Particle-in-cell; Plasma simulation; Special relativity; Boosted frame; Numerical instability ID PERFECTLY MATCHED LAYER; NONSTANDARD FINITE-DIFFERENCES; IN-CELL SIMULATION; ELECTRON-BEAMS; ELECTROMAGNETIC-WAVES; CHARGE CONSERVATION; PARTICLE CODES; GAUSS LAW; ABSORPTION; PHYSICS AB Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] has been shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups required mitigation of a high-frequency instability that otherwise limits effectiveness. In this paper, methods are presented which mitigated the observed instability, including an electromagnetic solver with tunable coefficients, its extension to accommodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is observed that choosing the frame of the wake as the frame of reference allows for higher levels of filtering or damping than is possible in other frames for the same accuracy. Detailed testing also revealed the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion. A combination of the techniques presented in this paper prove to be very efficient at controlling the instability, allowing for efficient direct modeling of 10 GeV class laser plasma accelerator stages. The methods developed in this paper may have broader application, to other Lorentz-boosted simulations and Particle-In-Cell simulations in general. (C) 2011 Elsevier Inc. All rights reserved. C1 [Vay, J. -L.; Geddes, C. G. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cormier-Michel, E.] Tech X Corp, Boulder, CO 80303 USA. [Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vay, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jlvay@ibl.gov FU US-DOE [DE-AC02-05CH11231, DE-AC52-07NA27344] FX We are thankful to D.L. Bruhwiler, J.R. Cary, B. Cowan, E. Esarey, A. Friedman, C. Huang, S.F. Martins, W.B. Mori, B.A. Shadwick, and C.B. Schroeder for insightful discussions, as well as to the VORPAL team from Tech-X for providing plots for benchmarking comparisons. Work supported by US-DOE Contracts DE-AC02-05CH11231 and DE-AC52-07NA27344, and US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231. NR 52 TC 32 Z9 32 U1 1 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2011 VL 230 IS 15 BP 5908 EP 5929 DI 10.1016/j.jcp.2011.04.003 PG 22 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 780ZS UT WOS:000291901000006 ER PT J AU Stojanoff, V AF Stojanoff, Vivian TI THE BEAUTY IN SYNCHROTRON LIGHT SO JOURNAL OF COSMETIC SCIENCE LA English DT Article C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Stojanoff, V (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU SOC COSMETIC CHEMISTS PI NEW YORK PA 120 WALL STREET, SUITE 2400, NEW YORK, NY 10005-4088 USA SN 1525-7886 J9 J COSMET SCI JI J. Cosmet. Sci. PD JUL-AUG PY 2011 VL 62 IS 4 BP 444 EP 444 PG 1 WC Chemistry, Applied; Dermatology SC Chemistry; Dermatology GA V34DK UT WOS:000209066900017 ER PT J AU Bowyer, TW Biegalski, SR Cooper, M Eslinger, PW Haas, D Hayes, JC Miley, HS Strom, DJ Woods, V AF Bowyer, T. W. Biegalski, S. R. Cooper, M. Eslinger, P. W. Haas, D. Hayes, J. C. Miley, H. S. Strom, D. J. Woods, V. TI Elevated radioxenon detected remotely following the Fukushima nuclear accident SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Fukushima; Radioxenon; Xenon; Reactor accident; Xenon-133; Noble gas ID TEST-BAN TREATY; XENON; DISCRIMINATION; SYSTEM AB We report on the first measurements of short-lived gaseous fission products detected outside of Japan following the Fukushima nuclear releases, which occurred after a 9.0 magnitude earthquake and tsunami on March 11, 2011. The measurements were conducted at the Pacific Northwest National Laboratory (PNNL), (46 degrees 16'47 '' N, 119 degrees 16'53 '' W) located more than 7000 km from the emission point in Fukushima Japan (37 degrees 25'17 '' N, 141 degrees 1'57 '' E). First detections of (133)Xe were made starting early March 16, only four days following the earthquake. Maximum concentrations of (133)Xe were in excess of 40 Bq/m(3), which is more than x40,000 the average concentration of this isotope is this part of the United States. (C) 2011 Published by Elsevier Ltd. C1 [Bowyer, T. W.; Cooper, M.; Eslinger, P. W.; Haas, D.; Hayes, J. C.; Miley, H. S.; Strom, D. J.; Woods, V.] Pacific NW Natl Lab, Natl Secur Div, Richland, WA 99352 USA. [Biegalski, S. R.] Univ Texas Austin, Austin, TX 78712 USA. RP Bowyer, TW (reprint author), Pacific NW Natl Lab, Natl Secur Div, POB 999, Richland, WA 99352 USA. EM ted.bowyer@pnl.gov NR 21 TC 91 Z9 96 U1 1 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD JUL PY 2011 VL 102 IS 7 BP 681 EP 687 DI 10.1016/j.jenvrad.2011.04.009 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 781EC UT WOS:000291912400005 PM 21530026 ER PT J AU Babataheri, A Roper, M Fermigier, M Du Roure, O AF Babataheri, Avin Roper, Marcus Fermigier, Marc Du Roure, Olivia TI Tethered fleximags as artificial cilia SO JOURNAL OF FLUID MECHANICS LA English DT Article DE Low-Reynolds-number flows; MEMS/NEMS; swimming/flying ID LEFT-RIGHT ASYMMETRY; BIOMIMETIC CILIA; FLUID; DYNAMICS; FILAMENTS; ARRAYS AB Flexible superparamagnetic filaments ('fleximags') are very slender elastic filaments, which can be driven by distributed magnetic torques to mimic closely the behaviour of biological flagella. Previously, fleximags have been used as a basis for artificial micro-swimmers capable of transporting small cargos Dreyfus et al. (Nature, vol. 437, 2005, p. 862). Here, we demonstrate how these filaments can be anchored to a wall to make carpets of artificial micro-magnetic cilia with tunable densities. We analyse the dynamics of an artificial cilium under both planar and three-dimensional beating patterns. We show that the dynamics are controlled by a single characteristic length scale varying with the inverse square root of the driving frequency, providing a mechanism to break the fore and aft symmetry and to generate net fluxes and forces. However, we show that an effective geometrical reciprocity in the filament dynamics creates intrinsic limitations upon the ability of the artificial flagellum to pump fluid when driven in two dimensions. C1 [Babataheri, Avin; Fermigier, Marc; Du Roure, Olivia] Univ Paris Diderot, Univ Paris 06, ESPCI ParisTech, CNRS,UMR 7636, F-75005 Paris, France. [Roper, Marcus] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Roper, Marcus] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England. RP Fermigier, M (reprint author), Univ Paris Diderot, Univ Paris 06, ESPCI ParisTech, CNRS,UMR 7636, 10 Rue Vauquelin, F-75005 Paris, France. EM marc.fermigier@espci.fr RI DU ROURE, Olivia/J-6955-2013 OI DU ROURE, Olivia/0000-0002-6364-612X FU Miller Institute for Basic Research in Sciences; Ile de France region FX We thank P. Jenffer for technical support. M. R. is supported by a fellowship from the Miller Institute for Basic Research in Sciences. This work is supported by the Ile de France region under the SESAME program. Supplementary movies are available at journals.cambridge.org/flm. NR 20 TC 26 Z9 26 U1 0 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUL PY 2011 VL 678 BP 5 EP 13 DI 10.1017/S002211201100005X PG 9 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 783PI UT WOS:000292096000002 ER PT J AU Constantino, PJ Lee, JJW Morris, D Lucas, PW Hartstone-Rose, A Lee, WK Dominy, NJ Cunningham, A Wagner, M Lawn, BR AF Constantino, Paul J. Lee, James J. -W. Morris, Dylan Lucas, Peter W. Hartstone-Rose, Adam Lee, Wah-Keat Dominy, Nathaniel J. Cunningham, Andrew Wagner, Mark Lawn, Brian R. TI Adaptation to hard-object feeding in sea otters and hominins SO JOURNAL OF HUMAN EVOLUTION LA English DT Article DE Tooth morphology; Fracture; Wear; Diet; Dental evolution; Enamel mechanical properties ID ENAMEL THICKNESS; TOOTH ENAMEL; ENHYDRA-LUTRIS; DENTAL ENAMEL; GREAT APES; DIET; EVOLUTION; FRACTURE; MORPHOLOGY; PATTERNS AB The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the 'robust' australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Constantino, Paul J.; Lawn, Brian R.] Marshall Univ, Dept Biol, Huntington, WV 25755 USA. [Lee, James J. -W.; Morris, Dylan; Lawn, Brian R.] Natl Inst Stand & Technol, Div Ceram, Gaithersburg, MD 20899 USA. [Lucas, Peter W.; Cunningham, Andrew] George Washington Univ, Dept Anthropol, Ctr Adv Study Human Paleobiol, Washington, DC USA. [Hartstone-Rose, Adam] Penn State Altoona, Dept Biol, Altoona, PA USA. [Lee, Wah-Keat] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Dominy, Nathaniel J.] Dartmouth Coll, Dept Anthropol, Hanover, NH 03755 USA. [Wagner, Mark] George Washington Univ, Dept Engn, Washington, DC USA. RP Constantino, PJ (reprint author), Marshall Univ, Dept Biol, 1 John Marshall Dr, Huntington, WV 25755 USA. EM paulconstantino@gmail.com RI Sanders, Susan/G-1957-2011; Hartstone-Rose, Adam/I-3503-2016; OI Hartstone-Rose, Adam/0000-0001-5307-5573; Dominy, Nathaniel/0000-0001-5916-418X FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [0851351]; National Research Council; George Washington University FX We wish to thank Jim Estes, Melissa Miller, and the Marine Wildlife Veterinary Care Research Center for providing access to the sea otter specimens. Permission to transport and test the sea otter teeth was granted by the California Department of Fish and Game. Gary Schumacher, Sabine Dickens and Anthony Guiseppetti of the Pfaffenberger American Dental Association laboratories at the National Institute of Standards and Technology provided the human molar specimens. Use of the Advanced Photon Source (APS) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Thanks also to Jake Socha and Alex Deny for their assistance at the APS. Amanda Keown obtained the section view in Fig. 2A and Rebecca Kirkpatrick provided useful comments on the manuscript. This work was supported by a grant from the National Science Foundation (#0851351 to P.L., P.C., J.J.-W.L. and B.L.), by a National Research Council Postdoctoral Fellowship (J.J-W.L) and by the George Washington University Research Enhancement Fund (P.C.). NR 62 TC 31 Z9 31 U1 2 U2 27 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0047-2484 J9 J HUM EVOL JI J. Hum. Evol. PD JUL PY 2011 VL 61 IS 1 BP 89 EP 96 DI 10.1016/j.jhevol.2011.02.009 PG 8 WC Anthropology; Evolutionary Biology SC Anthropology; Evolutionary Biology GA 785LA UT WOS:000292229300008 PM 21474163 ER PT J AU Luo, ZC Du, CW AF Luo, Zhongchi Du, Congwu TI POWER OF DUAL-WAVELENGTH APPROACHES IN STUDYING PHYSIOLOGICAL AND FUNCTIONAL CHANGES OF INTACT HEART AND IN VIVO BRAIN SO JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES LA English DT Article DE Dual-wavelength; optical spectroscope and biomedical imaging; heart; brain; Rhod2 fluorescence AB Since the dual-wavelength spectrophotometer was developed, it has been widely used for studying biological samples and applied to extensive investigations of the electron transport in respiration and redox cofactors, redox state, metabolic control, and the generation of reactive oxygen species in mitochondria. Here, we discuss some extension of dual-wavelength approaches in our research to study the physiological and functional changes in intact hearts and in vivo brain. Specifically, we aimed at (1) making nonratiometric fluorescent indicator become ratiometric fluorescence function for investigation of Ca2+ dynamics in live tissue; (2) eliminating the effects of physiological changes on measurement of intracellular calcium; (3) permitting simultaneous imaging of multiple physiological parameters. The animal models of the perfused heart and transiently ischemic insult of brain are used to validate these approaches for physiological applications. C1 [Luo, Zhongchi] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Du, Congwu] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Du, Congwu] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. RP Du, CW (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM zluo@ic.sunysb.edu; congwu@bnl.gov FU NIH [K25-DA021200, RC1-DA028534]; Department of Energy at Brookhaven National Laboratory [LDRD 10-023] FX The experiments of heart perfusion were conducted in Carnegie Mellon University with Drs. Guy MacGowan and Alan Koretsky. The brain study is supported in part by NIH grants K25-DA021200, RC1-DA028534 and by Department of Energy grant LDRD 10-023 at Brookhaven National Laboratory. NR 27 TC 2 Z9 2 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1793-5458 J9 J INNOV OPT HEAL SCI JI J. Innov. Opt. Health Sci. PD JUL PY 2011 VL 4 IS 3 BP 261 EP 268 DI 10.1142/S1793545811001575 PG 8 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA V27YK UT WOS:000208648300008 ER PT J AU Clayton, SM AF Clayton, Steven M. TI Spin relaxation and linear-in-electric-field frequency shift in an arbitrary, time-independent magnetic field SO JOURNAL OF MAGNETIC RESONANCE LA English DT Article DE Nuclear magnetic resonance; Relaxation; Diffusion; Electric dipole moment ID GRADIENT AB A method is presented to calculate the spin relaxation times T(1), T(2) due to a non-uniform magnetic field, and the linear-in-electric-field precession frequency shift delta(omega E) when an electric field is present, in the diffusion approximation for spins confined to a rectangular cell. It is found that the rectangular cell geometry admits of a general result for T(1), T(2), and delta(omega E) in terms of the spatial cosine-transform components of the magnetic field. The result is applied to the case of a permanently-magnetized dipole impurity near the cell. (C) 2011 Elsevier Inc. All rights reserved. C1 [Clayton, Steven M.] Univ Illinois, Dept Phys, Urbana, IL 61820 USA. RP Clayton, SM (reprint author), Los Alamos Natl Lab, POB 1663,MS H846, Los Alamos, NM 87545 USA. EM sclayton@lanl.gov FU NSF [NSF06-01067] FX This work was supported by NSF Grant Number NSF06-01067. The author thanks R. Golub for suggesting the application to the linear-in-electric-field frequency shift. NR 22 TC 10 Z9 10 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1090-7807 J9 J MAGN RESON JI J. Magn. Reson. PD JUL PY 2011 VL 211 IS 1 BP 89 EP 95 DI 10.1016/j.jmr.2011.04.008 PG 7 WC Biochemical Research Methods; Physics, Atomic, Molecular & Chemical; Spectroscopy SC Biochemistry & Molecular Biology; Physics; Spectroscopy GA 783DK UT WOS:000292061500013 PM 21600820 ER PT J AU Kern, J Guskov, A AF Kern, Jan Guskov, Albert TI Lipids in photosystem II: Multifunctional cofactors SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY LA English DT Review DE Lipids; Photosystem II; Lipid-protein interactions; Lipid-cofactor interactions; Water oxidation ID X-RAY CRYSTALLOGRAPHY; CYTOCHROME B(6)F COMPLEX; THERMOSYNECHOCOCCUS-ELONGATUS; CRYSTAL-STRUCTURE; ARABIDOPSIS-THALIANA; ANGSTROM RESOLUTION; THERMOPHILIC CYANOBACTERIUM; RHODOBACTER-SPHAEROIDES; PROTEIN INTERACTIONS; REACTION CENTERS AB To maintain its functionality, photosystem II (PSII) employs several types of auxiliary molecules (cofactors). As shown for PSI! from Thermosynechococcus elongatus, lipids previously thought to play mostly the role of a hydrophobic matrix for embedding the membrane proteins, must be considered as a new, multifunctional type of cofactors, playing a vital role in the fine tuning of PSII and in its overall operation. The 2.9 angstrom resolution crystal structure of cyanobacterial homodimeric P511 showed the position of 25 lipid molecules per monomer, and allowed detailed analysis of individual binding sites as well as functional aspects related to lipids. The positions of the bound lipids suggest that they are essential for the assembly and disassembly of PSII, provide the proper environment for plastoquinone exchange, might tune electron transfer through contacts with chlorophylls and carotenoids, and might serve as an oxygen-outlet system from the lumen. Published by Elsevier B.V. C1 [Kern, Jan] Tech Univ Berlin, Inst Chem, Max Volmer Lab Biophys Chem, D-10623 Berlin, Germany. [Guskov, Albert] Free Univ Berlin, Inst Chem & Biochem Kristallog, D-14195 Berlin, Germany. RP Kern, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM janfkern@gmail.com RI Kern, Jan/G-2586-2013; Guskov, Albert/G-1286-2016 OI Kern, Jan/0000-0002-7272-1603; Guskov, Albert/0000-0003-2340-2216 FU Deutsche Forschungsgemeinschaft [Sfb 498, A4, C7]; Alexander von Humboldt Foundation; DOE Office of Science, Office of Basic Energy Sciences (OBES) [DE-AC02-05CH11231] FX The authors wish to thank all co-workers involved in the structure determination of photosystem II in Berlin, especially Matthias Broser, Azat Gabdulkhakov, Athina Zouni and Wolfram Saenger. We are grateful to the Deutsche Forschungsgemeinschaft for support within the framework of Sfb 498 (projects A4, C7). Beam time and support at ESRF (Grenoble), SLS (Villigen), BESSY (Berlin) is gratefully acknowledged. J.K. acknowledges funding by the Alexander von Humboldt Foundation and the DOE Office of Science, Office of Basic Energy Sciences (OBES), under Contract DE-AC02-05CH11231. NR 75 TC 23 Z9 23 U1 1 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1011-1344 J9 J PHOTOCH PHOTOBIO B JI J. Photochem. Photobiol. B-Biol. PD JUL-AUG PY 2011 VL 104 IS 1-2 SI SI BP 19 EP 34 DI 10.1016/j.jphotobiol.2011.02.025 PG 16 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 783FD UT WOS:000292066000003 PM 21481601 ER PT J AU Yachandra, VK Yano, J AF Yachandra, Vittal K. Yano, Junko TI Calcium in the oxygen-evolving complex: Structural and mechanistic role determined by X-ray spectroscopy SO JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY LA English DT Review DE Manganese; Calcium; Oxygen-evolving complex; Photosystem II; X-ray Absorption Spectroscopy ID PHOTOSYNTHETIC WATER OXIDATION; PHOTOSYSTEM-II MEMBRANES; O BOND FORMATION; ABSORPTION SPECTROSCOPY; MN4CA CLUSTER; MANGANESE CLUSTER; MN CLUSTER; CRYSTAL-STRUCTURE; STRONTIUM EXAFS; BINDING SITE AB This review describes the results from X-ray Absorption Spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water-oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn(4)Ca catalytic center. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yachandra, Vittal K.; Yano, Junko] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yachandra, VK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM VKYachandra@lbl.gov; JYano@LBL.GOV FU NIH [GM 55302]; DOE, Office of Science, Office of Basic Energy Sciences (OBES), Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231]; DOE, OBES; DOE, OBER; NIH, NCRR FX This work was supported by the NIH Grant (GM 55302), and the DOE, Director, Office of Science, Office of Basic Energy Sciences (OBES), Chemical Sciences, Geosciences, and Biosciences Division, under Contract DE-AC02-05CH11231. Parts of this research were carried out at ALS, APS and SSRL funded by DOE, OBES. The SSRL SMB Program is supported by the DOE, OBER and by the NIH, NCRR. We are grateful to all the members of our group who have contributed to the work presented in this review, and we especially thank our group members Drs. Matthew Latimer, Roehl Cinco, Yulia Pushkar, and our collaborator Dr. Alain Boussac (Saclay, France). NR 69 TC 34 Z9 34 U1 2 U2 32 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1011-1344 J9 J PHOTOCH PHOTOBIO B JI J. Photochem. Photobiol. B-Biol. PD JUL-AUG PY 2011 VL 104 IS 1-2 SI SI BP 51 EP 59 DI 10.1016/j.jphotobiol.2011.02.019 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 783FD UT WOS:000292066000006 PM 21524917 ER PT J AU Ryan, KJ Hamada, MS Reese, CS AF Ryan, Kenneth J. Hamada, Michael S. Reese, C. Shane TI A Bayesian Hierarchical Power Law Process Model for Multiple Repairable Systems with an Application to Supercomputer Reliability SO JOURNAL OF QUALITY TECHNOLOGY LA English DT Article DE Count Data; Failure Time; Markov Chain Monte Carlo; Random-Effects Model ID WEIBULL PROCESS; INTERVALS; PREDICTION; INFERENCE; INTENSITY; FIT AB Los Alamos National Laboratory was home to the Blue Mountain supercomputer, which at one point was the world's fastest computer. This paper presents and analyzes hardware failure data from Blue Mountain. Nonhomogeneous Poisson process models are fit to the data within a hierarchical Bayesian framework using Markov chain Monte Carlo methods. The implementation of these methods is convenient and flexible. Simulations are used to demonstrate strong frequentist properties and provide comparisons between time-truncated and failure-count designs and demonstrate the benefits of hierarchical modeling of multiple repairable systems over the modeling of such systems separately. C1 [Ryan, Kenneth J.] Bowling Green State Univ, Dept Operat Res & Appl Stat, Bowling Green, OH 43403 USA. [Hamada, Michael S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Reese, C. Shane] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA. RP Ryan, KJ (reprint author), Bowling Green State Univ, Dept Operat Res & Appl Stat, Bowling Green, OH 43403 USA. EM kjryan@bgsu.edu; hama.da@lanl.gov; reese@stat.byu.edu NR 27 TC 2 Z9 2 U1 0 U2 6 PU AMER SOC QUALITY CONTROL-ASQC PI MILWAUKEE PA 600 N PLANKINTON AVE, MILWAUKEE, WI 53203 USA SN 0022-4065 J9 J QUAL TECHNOL JI J. Qual. Technol. PD JUL PY 2011 VL 43 IS 3 BP 209 EP 223 PG 15 WC Engineering, Industrial; Operations Research & Management Science; Statistics & Probability SC Engineering; Operations Research & Management Science; Mathematics GA 785LD UT WOS:000292229600003 ER PT J AU Xing, YL Shu, CW Noelle, S AF Xing, Yulong Shu, Chi-Wang Noelle, Sebastian TI On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Shallow water equation; Still water; Moving water equilibrium; High order accuracy; Well-balanced scheme ID VOLUME WENO SCHEMES AB This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate significant spurious oscillations, unless an extremely refined mesh is used. On the other hand, moving-water well-balanced methods perform well in these tests. The numerical examples in this note clearly demonstrate the importance of utilizing moving-water well-balanced methods for solutions near a moving-water equilibrium. C1 [Xing, Yulong] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Xing, Yulong] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Shu, Chi-Wang] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Noelle, Sebastian] Rhein Westfal TH Aachen, Inst Geometry & Appl Math, D-52056 Aachen, Germany. RP Xing, YL (reprint author), Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. EM xingy@math.utk.edu; shu@dam.brown.edu; noelle@igpm.rwth-aachen RI xing, yulong/C-1484-2011; Noelle, Sebastian/C-9081-2012; Shu, Chi-Wang/A-3216-2013 OI Noelle, Sebastian/0000-0001-6267-8309; Shu, Chi-Wang/0000-0001-7720-9564 FU AFOSR [FA9550-09-1-0126]; NSF [DMS-0809086]; DFG [GK 775]; Oak Ridge National Laboratory the U.S. Government [DE-AC05-00OR22725] FX C.-W. Shu's research is supported by AFOSR grant FA9550-09-1-0126 and NSF grant DMS-0809086. S. Noelle's research is supported by DFG grant GK 775.; The first author is a contractor [UT-Battelle, manager of Oak Ridge National Laboratory] of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 4 TC 23 Z9 24 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD JUL PY 2011 VL 48 IS 1-3 BP 339 EP 349 DI 10.1007/s10915-010-9377-y PG 11 WC Mathematics, Applied SC Mathematics GA 781RX UT WOS:000291952300023 ER PT J AU Liu, WJ Ice, GE Assoufid, L Liu, CA Shi, B Khachatryan, R Qian, J Zschack, P Tischler, JZ Choi, JY AF Liu, Wenjun Ice, Gene E. Assoufid, Lahsen Liu, Chian Shi, Bing Khachatryan, Ruben Qian, Jun Zschack, Paul Tischler, Jonathan Z. Choi, J. -Y. TI Achromatic nested Kirkpatrick-Baez mirror optics for hard X-ray nanofocusing SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE hard X-ray nanofocusing; achromatic; nested Kirkpatrick-Baez; Montel AB The first test of nanoscale-focusing Kirkpatrick-Baez (KB) mirrors in the nested (or Montel) configuration used at a hard X-ray synchrotron beamline is reported. The two mirrors are both 40 mm long and coated with Pt to produce a focal length of 60 mm at 3 mrad incident angle, and collect up to a 120 mm by 120 mm incident X-ray beam with maximum angular acceptance of 2 mrad and a broad bandwidth of energies up to 30 keV. In an initial test a focal spot of about 150 nm in both horizontal and vertical directions was achieved with either polychromatic or monochromatic beam. The nested mirror geometry, with two mirrors mounted side-by-side and perpendicular to each other, is significantly more compact and provides higher demagnification than the traditional sequential KB mirror arrangement. Ultimately, nested mirrors can focus larger divergence to improve the diffraction limit of achromatic optics. A major challenge with the fabrication of the required mirrors is the need for near-perfect mirror surfaces near the edge of at least one of the mirrors. Special polishing procedures and surface profile coating were used to preserve the mirror surface quality at the reflecting edge. Further developments aimed at achieving diffraction-limited focusing below 50 nm are underway. C1 [Liu, Wenjun; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Khachatryan, Ruben; Qian, Jun; Zschack, Paul] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ice, Gene E.; Tischler, Jonathan Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Choi, J. -Y.] Pohang Inst Sci & Technol, Pohang Accelerator Lab, Pohang 790600, South Korea. RP Liu, WJ (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wjliu@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy (DOE), Office of Basic Energy Science (BES), Materials Sciences and Engineering Division; Pohang Accelerator Laboratory FX The authors wish to thank Shih-Nan Hsiao, Kevin Peterson and Ross Harder for help in mirror X-ray testing, and Michael Wieczorek and Ali Khounsary for help in preparing substrates. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. GEI and JZT are supported by the US Department of Energy (DOE), Office of Basic Energy Science (BES), Materials Sciences and Engineering Division. J-YC is supported by the Pohang Accelerator Laboratory. NR 17 TC 20 Z9 20 U1 0 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2011 VL 18 BP 575 EP 579 DI 10.1107/S0909049511010995 PN 4 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 783SY UT WOS:000292105500007 PM 21685674 ER PT J AU Toellner, TS Alatas, A Said, AH AF Toellner, T. S. Alatas, A. Said, A. H. TI Six-reflection meV-monochromator for synchrotron radiation SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE high resolution; monochromator; X-ray ID RAY CRYSTAL COLLIMATORS; MEV ENERGY RESOLUTION; DIFFRACTION CURVES; SCATTERING AB An in-line monochromatization scheme suitable for 10-40 keV synchrotron radiation is presented based on the use of six crystal reflections that achieves meV and sub-meV bandwidths with high efficiency. The theoretical spectral efficiency surpasses all previous multicrystal designs and approaches that of single room-temperature back-reflecting crystals. This article presents the designs of two such devices along with their theoretical and measured performances. C1 [Toellner, T. S.; Alatas, A.; Said, A. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Toellner, TS (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM toellner@anl.gov FU US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; National Science Foundation [DMR-0115852] FX Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. The construction of HRM-2 for beamline 30-ID of the Advanced Photon Source was partially supported by the National Science Foundation under Grant No. DMR-0115852. NR 20 TC 40 Z9 40 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2011 VL 18 BP 605 EP 611 DI 10.1107/S0909049511017535 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 783SY UT WOS:000292105500011 PM 21685678 ER PT J AU Helmer, KG Ambite, JL Ames, J Ananthakrishnan, R Burns, G Chervenak, AL Foster, I Liming, L Keator, D Macciardi, F Madduri, R Navarro, JP Potkin, S Rosen, B Ruffins, S Schuler, R Turner, JA Toga, A Williams, C Kesselman, C AF Helmer, Karl G. Ambite, Jose Luis Ames, Joseph Ananthakrishnan, Rachana Burns, Gully Chervenak, Ann L. Foster, Ian Liming, Lee Keator, David Macciardi, Fabio Madduri, Ravi Navarro, John-Paul Potkin, Steven Rosen, Bruce Ruffins, Seth Schuler, Robert Turner, Jessica A. Toga, Arthur Williams, Christina Kesselman, Carl CA Biomed Informatics Res Network TI Enabling collaborative research using the Biomedical Informatics Research Network (BIRN) SO JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION LA English DT Article ID MULTICENTER FMRI; VARIABILITY; INTEGRATION; ACTIVATION; DATABASE AB Objective As biomedical technology becomes increasingly sophisticated, researchers can probe ever more subtle effects with the added requirement that the investigation of small effects often requires the acquisition of large amounts of data. In biomedicine, these data are often acquired at, and later shared between, multiple sites. There are both technological and sociological hurdles to be overcome for data to be passed between researchers and later made accessible to the larger scientific community. The goal of the Biomedical Informatics Research Network (BIRN) is to address the challenges inherent in biomedical data sharing. Materials and methods BIRN tools are grouped into 'capabilities' and are available in the areas of data management, data security, information integration, and knowledge engineering. BIRN has a user-driven focus and employs a layered architectural approach that promotes reuse of infrastructure. BIRN tools are designed to be modular and therefore can work with pre-existing tools. BIRN users can choose the capabilities most useful for their application, while not having to ensure that their project conforms to a monolithic architecture. Results BIRN has implemented a new software-based data-sharing infrastructure that has been put to use in many different domains within biomedicine. BIRN is actively involved in outreach to the broader biomedical community to form working partnerships. Conclusion BIRN's mission is to provide capabilities and services related to data sharing to the biomedical research community. It does this by forming partnerships and solving specific, user-driven problems whose solutions are then available for use by other groups. C1 [Helmer, Karl G.; Rosen, Bruce] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02129 USA. [Helmer, Karl G.; Rosen, Bruce] Harvard Univ, Sch Med, Dept Radiol, Boston, MA 02115 USA. [Ambite, Jose Luis; Burns, Gully; Chervenak, Ann L.; Schuler, Robert; Williams, Christina; Kesselman, Carl] Univ So Calif, Inst Informat Sci, Marina Del Rey, CA 90292 USA. [Ames, Joseph; Keator, David; Macciardi, Fabio; Potkin, Steven] Univ Calif Irvine, Dept Psychiat & Human Behav, Irvine, CA 92717 USA. [Ananthakrishnan, Rachana; Foster, Ian; Liming, Lee; Madduri, Ravi; Navarro, John-Paul] Argonne Natl Lab, Math & Comp Sci MCS Div, Argonne, IL 60439 USA. [Ananthakrishnan, Rachana; Foster, Ian; Liming, Lee; Madduri, Ravi; Navarro, John-Paul] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Potkin, Steven] Univ Calif Irvine, Brain Imaging Ctr, Irvine, CA USA. [Ruffins, Seth; Toga, Arthur] Univ Calif Los Angeles, Sch Med, Dept Neurol, Lab Neuro Imaging, Los Angeles, CA 90024 USA. [Ruffins, Seth] CALTECH, Biol Imaging Ctr, Pasadena, CA 91125 USA. [Turner, Jessica A.] Mind Res Network, Albuquerque, NM USA. RP Helmer, KG (reprint author), Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, 149-13th St Room 2301, Boston, MA 02129 USA. EM helmer@nmr.mgh.harvard.edu RI Turner, Jessica/H-7282-2015; Macciardi, Fabio/N-3768-2014; OI Turner, Jessica/0000-0003-0076-8434; Macciardi, Fabio/0000-0003-0537-4266; Potkin, Steven/0000-0003-1028-1013; Burns, Gully/0000-0003-1493-865X; Kesselman, Carl/0000-0003-0917-1562 FU National Center for Research Resources (NCRR) [U24-RR025736, U24-RR021992, U24-RR021760]; National Institute of General Medical Sciences (NIGMS [RO1 GM083871]; National Science Foundation and through the Kinetics and Michael J. Fox Foundations [0849977]; [U24-RR026057-01] FX BIRN is supported by grants from the National Center for Research Resources (NCRR) through the following grants: U24-RR025736, U24-RR021992, and U24-RR021760. The outreach portion of BIRN is supported through U24-RR026057-01. Some of the knowledge engineering work is supported though a grant from the National Institute of General Medical Sciences (NIGMS; RO1 GM083871) and the National Science Foundation (grant 0849977), and through the Kinetics and Michael J. Fox Foundations. NR 37 TC 24 Z9 24 U1 0 U2 10 PU B M J PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 1067-5027 J9 J AM MED INFORM ASSN JI J. Am. Med. Inf. Assoc. PD JUL PY 2011 VL 18 IS 4 BP 416 EP 422 DI 10.1136/amiajnl-2010-000032 PG 7 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics SC Computer Science; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics GA 783DM UT WOS:000292061700012 PM 21515543 ER PT J AU Magishi, K Sugawara, H Saito, T Koyama, K Kanetake, F Mukuda, H Kitaoka, Y Itoh, KM Haller, EE AF Magishi, Ko-ichi Sugawara, Hitoshi Saito, Takahito Koyama, Kuniyuki Kanetake, Fumiya Mukuda, Hidekazu Kitaoka, Yoshio Itoh, Kohei M. Haller, Eugene E. TI Ge-73 NQR study of superconducting skutterudites MPt4Ge12 (M = Sr, Ba) SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE filled skutterudite; NOR; superconductivity AB We report on the results of the Ge-73-NQR measurements for MPt4Ge12 (M = Sr, Ba) to clarify the microscopic electronic states and the relationship between superconductivity and rattling. In the normal state, 1/T-1 is proportional to temperature, showing a Korringa relation 1/T-1 T = 0.020 and 0.016 (sK)(-1) for SrPt4Ge12 and BaPt4Ge12, respectively. Also, in the superconducting state, 1/T1 shows a distinct coherence peak just below T-C, which suggests a conventional BCS superconductor. C1 [Magishi, Ko-ichi; Saito, Takahito; Koyama, Kuniyuki] Univ Tokushima, Inst Socioarts & Sci, Tokushima 7708502, Japan. [Sugawara, Hitoshi] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan. [Kanetake, Fumiya; Mukuda, Hidekazu; Kitaoka, Yoshio] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan. [Itoh, Kohei M.] Keio Univ, Dept Appl Phys & Physicoinformat, Yokohama, Kanagawa 2238522, Japan. [Haller, Eugene E.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Magishi, K (reprint author), Univ Tokushima, Inst Socioarts & Sci, Tokushima 7708502, Japan. EM magishi@ias.tokushima-u.ac.jp RI Itoh, Kohei/C-5738-2014 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan [21102517]; Japan Society for the Promotion of Science (JSPS) [21540339]; MEXT of Japan; JGC-S Scholarship Foundation FX This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Heavy Electrons" (No.21102517) of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, Grants-in-Aid for Scientific Research (No.21540339) from the Japan Society for the Promotion of Science (JSPS) and MEXT of Japan, and JGC-S Scholarship Foundation. NR 16 TC 0 Z9 0 U1 0 U2 3 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JUL PY 2011 VL 80 SU A AR SA028 PG 3 WC Physics, Multidisciplinary SC Physics GA V29DF UT WOS:000208728400028 ER PT J AU Sakai, H Kurita, N Miclea, CF Movshovich, R Lee, HO Ronning, F Bauer, ED Thompson, JD AF Sakai, H. Kurita, N. Miclea, C. F. Movshovich, R. Lee, H. -O. Ronning, F. Bauer, E. D. Thompson, J. D. TI Dilute La-substitutions in CeRhIn5 studied by means of NMR/NQR techniques SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE CeRhIn5; specific heat; nuclear magnetic resonance AB The effect of dilute La substitution in Ce1-xLaxRhIn5 (0 <= x <= 0.07) has been investigated macroscopically by specific heat measurement and microscopically by nuclear magnetic/quadrupole resonance (NMR/NQR). The Neel temperature decreases gradually by dilute La substitutions from 3.8 K (x = 0) to 2.9 K (x = 0.07). The specific heat for Ce1-xLaxRhIn5 exhibits nuclear Schottky contributions below 1 K, which are compatible with the microscopic parameters obtained by NMR/NQR. Below the Neel temperature, the residual Sommerfeld coefficient of similar to 50 mJ K-2/ mol is nearly independent of increasing La substitution, while the entropy in the ordered state is slightly enhanced. Microscopically, 1/T-1 in the AF ordered state can be explained by spin-wave term of 4f moments, spin fluctuation term by uncompensated localized Ce moments near the La ions, and a small Korringa contribution by non-4f electrons, which suggests a localized 4f nature in CeRhIn5. C1 [Sakai, H.; Kurita, N.; Miclea, C. F.; Movshovich, R.; Lee, H. -O.; Ronning, F.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakai, H.] Japan Atom Energy Agcy, Advanced Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Sakai, H (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX We thank T. Park, K. Gofryk, Y. -f. Yang, S. -H. Back, T. D. Matsuda, Y. Haga, Y. Tokunaga, S. Kambe, and H. Yasuoka for useful discussions. H. S. wishes to acknowledge the hospitality of Los Alamos National Laboratory. Work at Los Alamos National Laboratory was performed under the auspices of U. S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 15 TC 1 Z9 1 U1 2 U2 6 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JUL PY 2011 VL 80 SU A AR SA059 PG 3 WC Physics, Multidisciplinary SC Physics GA V29DF UT WOS:000208728400059 ER PT J AU Ma, BH Tong, S Narayanan, M Liu, SS Chao, S Balachandran, U AF Ma, Beihai Tong, Sheng Narayanan, Manoj Liu, Shanshan Chao, Sheng Balachandran, U. TI Fabrication and dielectric property of ferroelectric PLZT films grown on metal foils SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Thin film; Ceramics; Sol-gel chemistry; Dielectric properties; Ferroelectricity ID TITANATE THIN-FILMS; ELECTROOPTIC PROPERTIES AB We have grown ferroelectric Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3) (PIZT) films on platinized silicon and LaNiO(3)-buffered nickel substrates by chemical solution deposition using a sol-gel process based on acetic acid chemistry. The following measurements were obtained under zero-bias field: relative permittivity of approximate to 960 and dielectric loss of approximate to 0.04 on the PLZT film grown on Pt/Si substrates, and relative permittivity of and dielectric loss of approximate to 0.06 on the PLZT film grown on LNO-buffered Ni substrates. In addition, a relative permittivity of 125 and dielectric loss of 0.02 were measured at room temperature under a high bias field of 1 x 10(6) V/cm on PLZT deposited on LNO-buffered nickel substrate. Furthermore, a steady-state leakage current density of approximate to 8.1 x 10(-9) A/cm(2) and mean breakdown field strength of 1.7 x 10(6) V/cm were measured at room temperature. Finally, remanent polarization (P(r)) of approximate to 2.0 x 10(-5) C/cm(2), coercive electric field (E(c)) of approximate to 3.4 x 10(4) V/cm, and energy density of approximate to 45 J/cm(3) were determined from room-temperature hysteresis loop measurements on PLZT/LNO/Ni film-on-foil capacitors with 250-mu m-diameter platinum top electrodes. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ma, Beihai; Tong, Sheng; Narayanan, Manoj; Liu, Shanshan; Chao, Sheng; Balachandran, U.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Tong, Sheng/A-2129-2011; Narayanan, Manoj/A-4622-2011; Liu, Shanshan/A-6143-2012; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy, Office of Vehicle Technologies [DE-AC02-06CH11357] FX This work was funded by the U.S. Department of Energy, Office of Vehicle Technologies Program, under Contract DE-AC02-06CH11357. We thank Dr. R.E. Koritala for her help with SEM measurements. This study benefited from use of the Electron Microscopy Center (EMC) at Argonne National Laboratory. NR 24 TC 20 Z9 20 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD JUL PY 2011 VL 46 IS 7 BP 1124 EP 1129 DI 10.1016/j.materresbull.2011.02.047 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 783ZA UT WOS:000292122200025 ER PT J AU Caporale, N Kolstad, KD Lee, T Tochitsky, I Dalkara, D Trauner, D Kramer, R Dan, Y Isacoff, EY Flannery, JG AF Caporale, Natalia Kolstad, Kathleen D. Lee, Trevor Tochitsky, Ivan Dalkara, Deniz Trauner, Dirk Kramer, Richard Dan, Yang Isacoff, Ehud Y. Flannery, John G. TI LiGluR Restores Visual Responses in Rodent Models of Inherited Blindness SO MOLECULAR THERAPY LA English DT Article ID IONOTROPIC GLUTAMATE-RECEPTOR; LEBERS CONGENITAL AMAUROSIS; RETINITIS-PIGMENTOSA; RETINAL DEGENERATION; PHOTORECEPTOR DEGENERATION; ECTOPIC EXPRESSION; GANGLION-CELLS; GENE-THERAPY; MACULAR DEGENERATION; MOUSE MODEL AB Inherited retinal degeneration results from many different mutations in either photoreceptor-specific or nonphoto-receptor-specific genes. However, nearly all mutations lead to a common blinding phenotype that initiates with rod cell death, followed by loss of cones. In most retinal degenerations, other retinal neuron cell types survive for long periods after blindness from photoreceptor loss. One strategy to restore light responsiveness to a retina rendered blind by photoreceptor degeneration is to express light-regulated ion channels or transporters in surviving retinal neurons. Recent experiments in rodents have restored light-sensitivity by expressing melanopsin or microbial opsins either broadly throughout the retina or selectively in the inner segments of surviving cones or in bipolar cells. Here, we present an approach whereby a genetically and chemically engineered light-gated ionotropic glutamate receptor (LiGluR) is expressed selectively in retinal ganglion cells (RGCs), the longest-surviving cells in retinal blinding diseases. When expressed in the RGCs of a well-established model of retinal degeneration, the rd1 mouse, LiGluR restores light sensitivity to the RGCs, reinstates light responsiveness to the primary visual cortex, and restores both the pupillary reflex and a natural light-avoidance behavior. Received 31 March 2011; accepted 29 April 2011; published online 24 May 2011. doi: 10.1038/mt.2011.103 C1 [Caporale, Natalia; Kolstad, Kathleen D.; Lee, Trevor; Dalkara, Deniz; Kramer, Richard; Dan, Yang; Isacoff, Ehud Y.; Flannery, John G.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Tochitsky, Ivan; Kramer, Richard; Dan, Yang; Isacoff, Ehud Y.; Flannery, John G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Trauner, Dirk] Univ Munich, Dept Chem, Munich, Germany. [Kramer, Richard; Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Dan, Yang] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Flannery, John G.] Univ Calif Berkeley, Sch Optometry, Berkeley, CA 94720 USA. RP Flannery, JG (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, 112 Barker Hall, Berkeley, CA 94720 USA. EM flannery@berkeley.edu RI Dalkara, Deniz/D-5057-2017; OI Dan, Yang/0000-0002-3818-877X FU National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function [PN2EY018241]; Foundation for Fighting Blindness FX The authors would like to thank M. Visel and S. Wiese for technical assistance, H. Aaron for help with microscopy, Support for this work was from the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (PN2EY018241), The Foundation for Fighting Blindness (individual grant to J.G.F.). NR 47 TC 75 Z9 78 U1 1 U2 16 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1525-0016 J9 MOL THER JI Mol. Ther. PD JUL PY 2011 VL 19 IS 7 BP 1212 EP 1219 DI 10.1038/mt.2011.103 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA 786HU UT WOS:000292295900007 PM 21610698 ER PT J AU Handoko, L Xu, H Li, GL Ngan, CY Chew, E Schnapp, M Lee, CWH Ye, CP Ping, JLH Mulawadi, F Wong, E Sheng, JP Zhang, YB Poh, T Chan, CS Kunarso, G Shahab, A Bourque, G Cacheux-Rataboul, V Sung, WK Ruan, YJ Wei, CL AF Handoko, Lusy Xu, Han Li, Guoliang Ngan, Chew Yee Chew, Elaine Schnapp, Marie Lee, Charlie Wah Heng Ye, Chaopeng Ping, Joanne Lim Hui Mulawadi, Fabianus Wong, Eleanor Sheng, Jianpeng Zhang, Yubo Poh, Thompson Chan, Chee Seng Kunarso, Galih Shahab, Atif Bourque, Guillaume Cacheux-Rataboul, Valere Sung, Wing-Kin Ruan, Yijun Wei, Chia-Lin TI CTCF-mediated functional chromatin interactome in pluripotent cells SO NATURE GENETICS LA English DT Article ID EMBRYONIC STEM-CELLS; NUCLEAR LAMINA INTERACTIONS; RNA-POLYMERASE-II; HUMAN GENOME; GENE-EXPRESSION; PROTEIN CTCF; CHIP-SEQ; INSULATOR; DIFFERENTIATION; ORGANIZATION AB Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. However, little is known about CTCF-associated higher-order chromatin structures at a global scale. Here we applied chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, we identified 1,480 cis- and 336 trans-interacting loci with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive cross-talk between promoters and regulatory elements. This highly complex nuclear organization offers insights toward the unifying principles that govern genome plasticity and function. C1 [Handoko, Lusy; Xu, Han; Li, Guoliang; Ngan, Chew Yee; Chew, Elaine; Schnapp, Marie; Lee, Charlie Wah Heng; Ye, Chaopeng; Ping, Joanne Lim Hui; Mulawadi, Fabianus; Wong, Eleanor; Zhang, Yubo; Poh, Thompson; Chan, Chee Seng; Shahab, Atif; Bourque, Guillaume; Cacheux-Rataboul, Valere; Sung, Wing-Kin; Ruan, Yijun; Wei, Chia-Lin] Genome Inst Singapore, Singapore, Singapore. [Wong, Eleanor; Sung, Wing-Kin; Wei, Chia-Lin] Natl Univ Singapore, Singapore 117548, Singapore. [Sheng, Jianpeng] Nanyang Technol Univ, Singapore, Singapore. [Kunarso, Galih] Duke NUS Grad Med Sch Singapore, Singapore, Singapore. RP Wei, CL (reprint author), Joint Genome Inst, Walnut Creek, CA 94598 USA. EM ruanyj@gis.a-star.edu.sg; cwei@lbl.gov RI Li, Guoliang/D-8014-2012; Xu, Han/H-1963-2012 OI Li, Guoliang/0000-0003-1601-6640; FU Agency for Science, Technology and Research (A*STAR), Singapore; US National Institutes of Health (NIH) [R01 HG004456-01, R01HG003521-01, 1U54HG004557-01] FX We acknowledge the Genome Technology and Biology Group, particularly the sequencing team, for technical support. We also thank C. Xi and H.H. Ng who provided technical guidance for p300 ChIP optimization, M. Fullwood and B. Han for their 4C assay protocol, L.M. Hui and E. Cheung for 3C optimization and discussion, Z. Jingyao for BAC clone preparation and K. Zawack for reading the manuscript. This work was supported by the Agency for Science, Technology and Research (A*STAR), Singapore, and US National Institutes of Health (NIH) ENCODE grants (R01 HG004456-01, R01HG003521-01 and 1U54HG004557-01) to Y.R. and C.-L.W. NR 53 TC 319 Z9 335 U1 7 U2 59 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 J9 NAT GENET JI Nature Genet. PD JUL PY 2011 VL 43 IS 7 BP 630 EP U198 DI 10.1038/ng.857 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA 784UV UT WOS:000292184600006 PM 21685913 ER PT J AU Moon, S Chamberlain, CP Blisniuk, K Levine, N Rood, DH Hilley, GE AF Moon, Seulgi Chamberlain, C. Page Blisniuk, Kimberly Levine, Nathaniel Rood, Dylan H. Hilley, George E. TI Climatic control of denudation in the deglaciated landscape of the Washington Cascades SO NATURE GEOSCIENCE LA English DT Article ID EROSION RATES; COSMOGENIC NUCLIDES; MOUNTAIN-RANGES; SIERRA-NEVADA; USA; GLACIATION; INCISION; SEDIMENT; HEIGHT; BE-10 AB Since the Last Glacial Maximum, the extent of glaciers in many mountainous regions has declined, and erosion driven by glacial processes has been supplanted by fluvial incision and mass wasting processes. This shift in the drivers of erosion is thought to have altered the rate and pattern of denudation of these landscapes. The Washington Cascades Mountains in the northwestern USA still bear the topographic imprint of Pleistocene glaciations, and are affected by large variations in precipitation, making them an ideal setting to assess the relative controls of denudation. Here we show that denudation rates over the past millennia, as determined by Be-10 exposure ages, range from 0.08 to 0.57 mm yr(-1), about four times higher than the rates inferred for million-year timescales. We find that the millennial timescale denudation rates increase linearly with modern precipitation rates. Based on our landscape analyses, we suggest that this relationship arises because intense precipitation triggers landslides, particularly on slopes that have been steepened by glacial erosion before or during the Last Glacial Maximum. We conclude that the high modern interglacial denudation rates we observe in the Washington Cascades are driven by a disequilibrium between the inherited topography and the current spatial distribution of erosional processes that makes this range particularly sensitive to spatial variations in climate. C1 [Moon, Seulgi; Levine, Nathaniel; Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Chamberlain, C. Page] Stanford Univ, Dept Environm Earth Syst Sci, Stanford, CA 94305 USA. [Blisniuk, Kimberly] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Moon, S (reprint author), Stanford Univ, Dept Geol & Environm Sci, Bldg 320,Room 306D,450 Serra Mall, Stanford, CA 94305 USA. EM sgmoon@stanford.edu OI Moon, Seulgi/0000-0001-5207-1781 FU Stanford Graduate Fellowship; Terman Fellowship FX S. M. acknowledges the support of the Stanford Graduate Fellowship and G. E. H. acknowledges the support of the Terman Fellowship. We thank T. A. Ehlers, S. D. Willet, P. W. Reiners, and K. X. Whipple for thoughtful comments. NR 33 TC 35 Z9 35 U1 0 U2 23 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD JUL PY 2011 VL 4 IS 7 BP 469 EP 473 DI 10.1038/NGEO1159 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 785PV UT WOS:000292241900020 ER PT J AU Frank, AM Monroe, ME Shah, AR Carver, JJ Bandeira, N Moore, RJ Anderson, GA Smith, RD Pevzner, PA AF Frank, Ari M. Monroe, Matthew E. Shah, Anuj R. Carver, Jeremy J. Bandeira, Nuno Moore, Ronald J. Anderson, Gordon A. Smith, Richard D. Pevzner, Pavel A. TI Spectral archives: extending spectral libraries to analyze both identified and unidentified spectra SO NATURE METHODS LA English DT Article ID TANDEM MASS-SPECTRA; POSTTRANSLATIONAL MODIFICATIONS; PEPTIDE IDENTIFICATION; PROTEIN IDENTIFICATION; SPECTROMETRY DATA; PROTEOMICS; SEARCH; ANNOTATION; THROUGHPUT; DISCOVERY AB Tandem mass spectrometry (MS/MS) experiments yield multiple, nearly identical spectra of the same peptide in various laboratories, but proteomics researchers typically do not leverage the unidentified spectra produced in other labs to decode spectra they generate. We propose a spectral archives approach that clusters MS/MS datasets, representing similar spectra by a single consensus spectrum. Spectral archives extend spectral libraries by analyzing both identified and unidentified spectra in the same way and maintaining information about peptide spectra that are common across species and conditions. Thus archives offer both traditional library spectrum similarity-based search capabilities along with new ways to analyze the data. By developing a clustering tool, MS-Cluster, we generated a spectral archive from similar to 1.18 billion spectra that greatly exceeds the size of existing spectral repositories. We advocate that publicly available data should be organized into spectral archives rather than be analyzed as disparate datasets, as is mostly the case today. C1 [Frank, Ari M.; Carver, Jeremy J.; Bandeira, Nuno; Pevzner, Pavel A.] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. [Monroe, Matthew E.; Shah, Anuj R.; Moore, Ronald J.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Bandeira, Nuno] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA. RP Pevzner, PA (reprint author), Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA. EM ppevzner@eng.ucsd.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Center for Research Resources, US National Institutes of Health [1-P41-RR024851]; National Center for Research Resources [RR18522] FX We thank I. Kaufman for his assistance in running the experiments on the computational grid. This work was supported by US National Institutes of Health grant 1-P41-RR024851 from the National Center for Research Resources. This work used measurements based upon capabilities developed by the Department of Energy, Office of Biological and Environmental Research, and National Center for Research Resources (grant RR18522) conducted at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at Pacific Northwest National Laboratory in Richland, Washington, USA. NR 44 TC 31 Z9 31 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD JUL PY 2011 VL 8 IS 7 BP 587 EP U101 DI 10.1038/NMETH.1609 PG 8 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 784YL UT WOS:000292194500023 PM 21572408 ER PT J AU Roy, S AF Roy, Sujoy TI X-RAY PHOTONICS X-ray imaging goes broadband SO NATURE PHOTONICS LA English DT News Item C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Roy, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM SRoy@lbl.gov NR 8 TC 0 Z9 0 U1 1 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD JUL PY 2011 VL 5 IS 7 BP 390 EP 391 DI 10.1038/nphoton.2011.128 PG 3 WC Optics; Physics, Applied SC Optics; Physics GA 785PI UT WOS:000292240600008 ER PT J AU Abbey, B Whitehead, LW Quiney, HM Vine, DJ Cadenazzi, GA Henderson, CA Nugent, KA Balaur, E Putkunz, CT Peele, AG Williams, GJ McNulty, I AF Abbey, Brian Whitehead, Lachlan W. Quiney, Harry M. Vine, David J. Cadenazzi, Guido A. Henderson, Clare A. Nugent, Keith A. Balaur, Eugeniu Putkunz, Corey T. Peele, Andrew G. Williams, G. J. McNulty, I. TI Lensless imaging using broadband X-ray sources SO NATURE PHOTONICS LA English DT Article ID RADIATION; MICROSCOPY; RESOLUTION AB High-resolution X-ray imaging techniques using optical elements such as zone plates are widely used for viewing the internal structure of samples in exquisite detail. The resolution attainable is ultimately limited by the manufacturing tolerances for the optics. Combining ideas from crystallography and holography, this limit may be surpassed by the method of coherent diffractive imaging (CDI)(1). Although CDI shows particular promise in applications involving X-ray free-electron lasers(2), it is also emerging as an important new technique for imaging at third-generation synchrotrons. The limited coherent output of these sources, however, is a significant barrier to obtaining shorter exposure times. A fundamental assumption of coherent diffractive imaging is that the incident light is well-approximated by a single optical frequency. In this Letter, we demonstrate the first experimental realization of 'polyCDI', using a broadband source to achieve a factor of 60 reduction in the exposure time over quasi-monochromatic coherent diffractive imaging. C1 [Abbey, Brian; Whitehead, Lachlan W.; Quiney, Harry M.; Vine, David J.; Cadenazzi, Guido A.; Henderson, Clare A.; Nugent, Keith A.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Coherent Xray Sci, Melbourne, Vic 3010, Australia. [Balaur, Eugeniu; Putkunz, Corey T.; Peele, Andrew G.] La Trobe Univ, Dept Phys, ARC Ctr Excellence Coherent Xray Sci, Bundoora, Vic 3086, Australia. [Williams, G. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [McNulty, I.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Nugent, KA (reprint author), Univ Melbourne, Sch Phys, ARC Ctr Excellence Coherent Xray Sci, Melbourne, Vic 3010, Australia. EM keithan@unimelb.edu.au RI Williams, Garth/H-1606-2012; Nugent, Keith/J-2699-2012; Abbey, Brian/D-3274-2011; Nugent, Keith/I-4154-2016; Balaur, Eugeniu/J-5865-2016; OI Nugent, Keith/0000-0003-1522-8991; Abbey, Brian/0000-0001-6504-0503; Nugent, Keith/0000-0002-4281-3478; Balaur, Eugeniu/0000-0003-4029-2055; Henderson, Clare/0000-0002-4020-0854 FU Australian Research Council Centre of Excellence; Australian Synchrotron Research Program; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge the support of the Australian Research Council Centre of Excellence for Coherent x-ray Science and the Australian Synchrotron Research Program. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). NR 20 TC 71 Z9 73 U1 2 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD JUL PY 2011 VL 5 IS 7 BP 420 EP 424 DI 10.1038/NPHOTON.2011.125 PG 5 WC Optics; Physics, Applied SC Optics; Physics GA 785PI UT WOS:000292240600017 ER PT J AU Daughton, W Roytershteyn, V Karimabadi, H Yin, L Albright, BJ Bergen, B Bowers, KJ AF Daughton, W. Roytershteyn, V. Karimabadi, H. Yin, L. Albright, B. J. Bergen, B. Bowers, K. J. TI Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas SO NATURE PHYSICS LA English DT Article ID FLUX-TRANSFER EVENTS; GUIDE-FIELD; MAGNETOPAUSE; ONSET; INSTABILITIES; SIMULATIONS; THRESHOLD; MODES; SHEET AB Magnetic reconnection releases energy explosively as field lines break and reconnect in plasmas ranging from the Earth's magnetosphere to solar eruptions and astrophysical applications. Collisionless kinetic simulations have shown that this process involves both ion and electron kinetic-scale features, with electron current layers forming nonlinearly during the onset phase and playing an important role in enabling field lines to break(1-4). In larger two-dimensional studies, these electron current layers become highly extended, which can trigger the formation of secondary magnetic islands(5-10), but the influence of realistic three-dimensional dynamics remains poorly understood. Here we show that, for the most common type of reconnection layer with a finite guide field, the three-dimensional evolution is dominated by the formation and interaction of helical magnetic structures known as flux ropes. In contrast to previous theories(11), the majority of flux ropes are produced by secondary instabilities within the electron layers. New flux ropes spontaneously appear within these layers, leading to a turbulent evolution where electron physics plays a central role. C1 [Daughton, W.; Roytershteyn, V.; Yin, L.; Albright, B. J.; Bergen, B.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karimabadi, H.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Daughton, W (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM daughton@lanl.gov RI Daughton, William/L-9661-2013; OI Roytershteyn, Vadim/0000-0003-1745-7587; Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320 FU US Department of Energy; NASA; NSF [ATM 0802380] FX We gratefully acknowledge support from the US Department of Energy through the LANL/LDRD Program and through the Advanced Simulation and Computing program for access to Roadrunner computing resources. Simulations carried out on Kraken were supported by an allocation of advanced computing resources provided by the National Science Foundation at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). Contributions from H. K. were supported by NASA through the Heliophysics Theory Program and NSF through ATM 0802380. We thank K. Quest and J. T. Gosling for discussions and P. Fasel, J. Patchett, J. Ahrens, B. Loring, B. Geveci and D. Partyka for assistance with interfacing the simulation data with ParaView visualization software. NR 34 TC 196 Z9 198 U1 3 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD JUL PY 2011 VL 7 IS 7 BP 539 EP 542 DI 10.1038/NPHYS1965 PG 4 WC Physics, Multidisciplinary SC Physics GA 786FY UT WOS:000292290000011 ER PT J AU Andresen, GB Ashkezari, MD Baquero-Ruiz, M Bertsche, W Bowe, PD Butler, E Cesar, CL Charlton, M Deller, A Eriksson, S Fajans, J Friesen, T Fujiwara, MC Gill, DR Gutierrez, A Hangst, JS Hardy, WN Hayano, RS Hayden, ME Humphries, AJ Hydomako, R Jonsell, S Kemp, SL Kurchaninov, L Madsen, N Menary, S Nolan, P Olchanski, K Olin, A Pusa, P Rasmussen, CO Robicheaux, F Sarid, E Silveira, DM So, C Storey, JW Thompson, RI van der Werf, DP Wurtele, JS Yamazaki, Y AF Andresen, G. B. Ashkezari, M. D. Baquero-Ruiz, M. Bertsche, W. Bowe, P. D. Butler, E. Cesar, C. L. Charlton, M. Deller, A. Eriksson, S. Fajans, J. Friesen, T. Fujiwara, M. C. Gill, D. R. Gutierrez, A. Hangst, J. S. Hardy, W. N. Hayano, R. S. Hayden, M. E. Humphries, A. J. Hydomako, R. Jonsell, S. Kemp, S. L. Kurchaninov, L. Madsen, N. Menary, S. Nolan, P. Olchanski, K. Olin, A. Pusa, P. Rasmussen, C. O. Robicheaux, F. Sarid, E. Silveira, D. M. So, C. Storey, J. W. Thompson, R. I. van der Werf, D. P. Wurtele, J. S. Yamazaki, Y. CA ALPHA Collaboration TI Confinement of antihydrogen for 1,000 seconds SO NATURE PHYSICS LA English DT Article ID TRAPPED NEUTRAL ATOMS; MAGNETIC TRAP; HYDROGEN; ALPHA; SPECTROSCOPY; EXCITATION; CAPTURE; PLASMAS; LASER; H-2 AB Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent. C1 [Friesen, T.; Fujiwara, M. C.; Hydomako, R.; Thompson, R. I.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Ashkezari, M. D.; Hayden, M. E.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Baquero-Ruiz, M.; Fajans, J.; So, C.; Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bertsche, W.; Charlton, M.; Deller, A.; Eriksson, S.; Humphries, A. J.; Madsen, N.; van der Werf, D. P.] Swansea Univ, Dept Phys, Swansea SA2 8PP, W Glam, Wales. [Butler, E.; Kemp, S. L.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [Cesar, C. L.] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. [Fajans, J.; Wurtele, J. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.; Olchanski, K.; Olin, A.; Storey, J. W.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Gutierrez, A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Hayano, R. S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Menary, S.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Jonsell, S.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Nolan, P.; Pusa, P.] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Olin, A.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Robicheaux, F.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Sarid, E.] NRCN, Dept Phys, IL-84190 Beer Sheva, Israel. [Silveira, D. M.; Yamazaki, Y.] RIKEN, Atom Phys Lab, Saitama 3510198, Japan. [Yamazaki, Y.] Univ Tokyo, Grad Sch Arts & Sci, Tokyo 1538902, Japan. RP Fujiwara, MC (reprint author), Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RI Bertsche, William/A-3678-2012; Madsen, Niels/G-3548-2013; Robicheaux, Francis/F-4343-2014; Hayano, Ryugo/F-7889-2012; Jonsell, Svante/J-2251-2016; wurtele, Jonathan/J-6278-2016; Fajans, Joel/J-6597-2016; Yamazaki, Yasunori/N-8018-2015; OI Butler, Eoin/0000-0003-0947-7166; Andresen, Gorm Bruun/0000-0002-4820-020X; Deller, Adam/0000-0002-3430-1501; Bertsche, William/0000-0002-6565-9282; Madsen, Niels/0000-0002-7372-0784; Robicheaux, Francis/0000-0002-8054-6040; Hayano, Ryugo/0000-0002-1214-7806; Jonsell, Svante/0000-0003-4969-1714; wurtele, Jonathan/0000-0001-8401-0297; Fajans, Joel/0000-0002-4403-6027; Yamazaki, Yasunori/0000-0001-5712-0853; van der Werf, Dirk/0000-0001-5436-5214 FU CNPq; FINEP/RENAFAE (Brazil); NSERC; NRC/TRIUMF; AIF; FQRNT (Canada); FNU (Denmark); ISF (Israel); MEXT (Japan); VR (Sweden); EPSRC; Royal Society; Leverhulme Trust (UK); DOE; NSF (USA) FX This work was supported in part by CNPq, FINEP/RENAFAE (Brazil), NSERC, NRC/TRIUMF, AIF, FQRNT (Canada), FNU (Denmark), ISF (Israel), MEXT (Japan), VR (Sweden), EPSRC, the Royal Society and the Leverhulme Trust (UK) and DOE, NSF (USA). We are grateful to the AD team for the delivery of a high-quality antiproton beam. NR 51 TC 107 Z9 108 U1 3 U2 30 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD JUL PY 2011 VL 7 IS 7 BP 558 EP 564 DI 10.1038/NPHYS2025 PG 7 WC Physics, Multidisciplinary SC Physics GA 786FY UT WOS:000292290000015 ER PT J AU Theis, T Ganssle, P Kervern, G Knappe, S Kitching, J Ledbetter, MP Budker, D Pines, A AF Theis, T. Ganssle, P. Kervern, G. Knappe, S. Kitching, J. Ledbetter, M. P. Budker, D. Pines, A. TI Parahydrogen-enhanced zero-field nuclear magnetic resonance SO NATURE PHYSICS LA English DT Article ID ATOMIC MAGNETOMETER; PARA-HYDROGEN; POLARIZATION TRANSFER; SPIN ISOMERS; NMR; SEPARATION; CONVERSION; ETHYLENE; ORDER AB Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting (13)C-(1)H scalar nuclear spin-spin couplings (known as J couplings) in compounds with (13)C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting. C1 [Theis, T.; Ganssle, P.; Kervern, G.; Pines, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Theis, T.; Ganssle, P.; Kervern, G.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Knappe, S.; Kitching, J.] NIST, Time & Frequency Div, Boulder, CO 80305 USA. [Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pines@berkeley.edu RI Theis, Thomas/J-2304-2014; Budker, Dmitry/F-7580-2016 OI Theis, Thomas/0000-0001-6779-9978; Budker, Dmitry/0000-0002-7356-4814 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231]; National Science Foundation [CHE-0957655]; National Institute of Standards and Technology FX Research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract no DE-AC02-05CH11231 (T. T., P. G., G. K. and A. P.), by the National Science Foundation under award noCHE-0957655 (D. B. and M. P. L.) and by the National Institute of Standards and Technology (S. K. and J.K.). We acknowledge discussions with M. Levitt and magnetometer-cell fabrication help from S. Schima. NR 31 TC 54 Z9 56 U1 1 U2 40 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD JUL PY 2011 VL 7 IS 7 BP 571 EP 575 DI 10.1038/NPHYS1986 PG 5 WC Physics, Multidisciplinary SC Physics GA 786FY UT WOS:000292290000017 ER PT J AU Landau, SM Harvey, D Madison, CM Koeppe, RA Reiman, EM Foster, NL Weiner, MW Jagust, WJ AF Landau, Susan M. Harvey, Danielle Madison, Cindee M. Koeppe, Robert A. Reiman, Eric M. Foster, Norman L. Weiner, Michael W. Jagust, William J. CA Alzheimer's Dis Neuroimaging Initi TI Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI SO NEUROBIOLOGY OF AGING LA English DT Article DE FDG-PET; Alzheimer's disease; Mild cognitive impairment ID RANDOM-EFFECTS MODELS; ALZHEIMERS-DISEASE; GLUCOSE-METABOLISM; IMPAIRMENT; PROGRESSION; DEMENTIA; TOMOGRAPHY; PREDICTION; DIAGNOSIS; TRIALS AB The Functional Activities Questionnaire (FAQ) and Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) are frequently used indices of cognitive decline in Alzheimer's disease (AD). The goal of this study was to compare FDG-PET and clinical measurements in a large sample of elderly subjects with memory disturbance. We examined relationships between glucose metabolism in FDG-PET regions of interest (FDG-ROIs), and ADAS-cog and FAQ scores in AD and mild cognitive impairment (MCI) patients enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Low glucose metabolism at baseline predicted subsequent ADAS-cog and FAQ decline. In addition, longitudinal glucose metabolism decline was associated with concurrent ADAS-cog and FAQ decline. Finally, a power analysis revealed that FDG-ROI values have greater statistical power than ADAS-cog to detect attenuation of cognitive decline in AD and MCI patients. Glucose metabolism is a sensitive measure of change in cognition and functional ability in AD and MCI, and has value in predicting future cognitive decline. (C) 2009 Elsevier Inc. All rights reserved. C1 [Landau, Susan M.; Madison, Cindee M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Harvey, Danielle] Univ Calif Davis, Sch Med, Davis, CA 95616 USA. [Koeppe, Robert A.] Univ Michigan, Sch Med, Ann Arbor, MI 48109 USA. [Reiman, Eric M.] Banner Alzheimers Inst, Phoenix, AZ 85006 USA. [Foster, Norman L.] Univ Utah, Dept Neurol, Salt Lake City, UT 84108 USA. [Weiner, Michael W.] San Francisco Vet Adm Hosp, San Francisco, CA 94121 USA. [Jagust, William J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Landau, SM (reprint author), 118 Barker Hall,MC 3190, Uc Berkeley, CA 94720 USA. EM slandau@berkeley.edu RI Scharre, Douglas/E-4030-2011 FU NIH [U01 AG024904] FX This study was supported by NIH grant U01 AG024904. NR 33 TC 181 Z9 184 U1 2 U2 22 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0197-4580 J9 NEUROBIOL AGING JI Neurobiol. Aging PD JUL PY 2011 VL 32 IS 7 BP 1207 EP 1218 DI 10.1016/j.neurobiolaging.2009.07.002 PG 12 WC Geriatrics & Gerontology; Neurosciences SC Geriatrics & Gerontology; Neurosciences & Neurology GA 785QX UT WOS:000292244900007 PM 19660834 ER PT J AU Battaglia, DJ Bongard, MW Fonck, RJ Redd, AJ AF Battaglia, D. J. Bongard, M. W. Fonck, R. J. Redd, A. J. TI Tokamak startup using outboard current injection on the Pegasus Toroidal Experiment SO NUCLEAR FUSION LA English DT Article ID HELICITY INJECTION; CURRENT DRIVE; MAGNETIC HELICITY; PLASMAS; OPERATION; MAST AB Localized current injection near the outboard midplane is used to form 0.1MA plasma discharges with no induction supplied from a central solenoid in the ultra-low aspect ratio Pegasus Toroidal Experiment. The discharges are initiated by driving open-field-line currents that perturb the vacuum magnetic field such that the magnetic topology transitions to a tokamak-like configuration. The plasma is subsequently driven via helicity injection from the edge current sources and poloidal field induction. Intermittent n = 1 MHD activity is observed during periods of strong edge current drive and each event leads to a rapid inward expansion of the plasma volume and a drop in the plasma inductance. The plasmas are sufficiently turbulent such that the equilibrium approaches the lowest energy state described by Taylor relaxation theory. In agreement with that theory, the maximum I-p scales with (ITFIinj/w)(1/2), where I-TF is the toroidal field rod current, I-inj is the injected edge current and w is the radial width of the average poloidal magnetic flux in the driven open flux region. C1 [Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Battaglia, DJ (reprint author), US DOE Fus Energy Sci, Washington, DC 20585 USA. EM dbattagl@pppl.gov FU US DOE [DE-FG02-96ER54375] FX The authors thank E. Hinson, J. Cole, A. Robinson and A. Wiersma for their assistance with Pegasus operations and G. Winz, B. Lewicki and B. Kujak-Ford for the design and construction of the plasma gun system. This work is supported by US DOE Grant DE-FG02-96ER54375. NR 33 TC 12 Z9 12 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073029 DI 10.1088/0029-5515/51/7/073029 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300031 ER PT J AU Beidler, CD Allmaier, K Isaev, MY Kasilov, SV Kernbichler, W Leitold, GO Maassberg, H Mikkelsen, DR Murakami, S Schmidt, M Spong, DA Tribaldos, V Wakasa, A AF Beidler, C. D. Allmaier, K. Isaev, M. Yu Kasilov, S. V. Kernbichler, W. Leitold, G. O. Maassberg, H. Mikkelsen, D. R. Murakami, S. Schmidt, M. Spong, D. A. Tribaldos, V. Wakasa, A. TI Benchmarking of the mono-energetic transport coefficients-results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS) SO NUCLEAR FUSION LA English DT Article ID LARGE HELICAL DEVICE; TOROIDAL CONFINEMENT SYSTEMS; MONTE-CARLO-SIMULATION; BOOTSTRAP CURRENT; ENERGY CONFINEMENT; PARTICLE CONFINEMENT; RIPPLE TRANSPORT; PLASMA TRANSPORT; PHYSICS ISSUES; ASPECT-RATIO AB Numerical results for the three mono-energetic transport coefficients required for a complete neoclassical description of stellarator plasmas have been benchmarked within an international collaboration. These transport coefficients are flux-surface-averaged moments of solutions to the linearized drift kinetic equation which have been determined using field-line-integration techniques, Monte Carlo simulations, a variational method employing Fourier-Legendre test functions and a finite-difference scheme. The benchmarking has been successfully carried out for past, present and future devices which represent different optimization strategies within the extensive configuration space available to stellarators. A qualitative comparison of the results with theoretical expectations for simple model fields is provided. The behaviour of the results for the mono-energetic radial and parallel transport coefficients can be largely understood from such theoretical considerations but the mono-energetic bootstrap current coefficient exhibits characteristics which have not been predicted. C1 [Beidler, C. D.; Maassberg, H.; Schmidt, M.] IPP EURATOM Assoc, Max Planck Inst Plasmaphys, Greifswald, Germany. [Allmaier, K.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.] Graz Univ Technol, OAW EURATOM Assoc, A-8010 Graz, Austria. [Isaev, M. Yu] Russian Res Ctr Kurchatov Inst, Nucl Fus Inst, Moscow, Russia. [Kasilov, S. V.] NSC Kharkov Inst Phys & Technol, Inst Plasma Phys, Kharkov, Ukraine. [Mikkelsen, D. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Murakami, S.; Wakasa, A.] Kyoto Univ, Dept Nucl Engn, Kyoto 606, Japan. [Spong, D. A.] Oak Ridge Natl Lab, Fus Energy Theory Grp, Oak Ridge, TN 37831 USA. [Tribaldos, V.] Univ Carlos III Madrid, Dept Fis, Leganes, Spain. RP Beidler, CD (reprint author), IPP EURATOM Assoc, Max Planck Inst Plasmaphys, Greifswald, Germany. EM craig.beidler@ipp.mpg.de RI Spong, Donald/C-6887-2012; Tribaldos, Victor/K-4299-2012; Murakami, Sadayoshi/A-2191-2016; Isaev, Maxim/A-7910-2012 OI Spong, Donald/0000-0003-2370-1873; Tribaldos, Victor/0000-0002-8683-9338; Murakami, Sadayoshi/0000-0002-2526-7137; Isaev, Maxim/0000-0002-8492-0650 FU Austrian Science Foundation, FWF [P16797-N08]; Leading Scientific Schools [N 2024.2003.2]; Russian Fund for Basic Research [N 03-02-16768]; Department of Atomic Science and Technology, RosAtom, Russian Federation; Fonds National Suisse pour la Recherche Scientifique; United States Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725]; MICINN [ENE 2009-12213-C03-03/FTN]; IPP-EURATOM; OAW-EURATOM; EURATOM-CIEMAT; [WTZ-RUS-01-581] FX This work was supported in part by:; the Austrian Science Foundation, FWF, under contract number P16797-N08,; the Russian-German Agreement WTZ-RUS-01-581,; the Russian Federal Programme for the Support of Leading Scientific Schools, Grant N 2024.2003.2,; the Russian Fund for Basic Research, Grant N 03-02-16768,; the Department of Atomic Science and Technology, RosAtom, Russian Federation,; the Fonds National Suisse pour la Recherche Scientifique,; the United States Department of Energy under contract DE-AC02-09CH11466,; the United States Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC,; the Spanish project MICINN ENE 2009-12213-C03-03/FTN,; the Associations IPP-EURATOM, OAW-EURATOM and EURATOM-CIEMAT (the content of this publication is the sole responsibility of its authors and does not necessarily represent the views of the European Commission or its services). NR 88 TC 39 Z9 39 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 076001 DI 10.1088/0029-5515/51/7/076001 PG 28 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300049 ER PT J AU Buttery, RJ Gerhardt, S La Haye, RJ Liu, YQ Reimerdes, H Sabbagh, S Chu, MS Osborne, TH Park, JK Pinsker, RI Strait, EJ Yu, JH AF Buttery, R. J. Gerhardt, S. La Haye, R. J. Liu, Y. Q. Reimerdes, H. Sabbagh, S. Chu, M. S. Osborne, T. H. Park, J. -K. Pinsker, R. I. Strait, E. J. Yu, J. H. CA DIII-D Team NSTX Team TI The impact of 3D fields on tearing mode stability of H-modes SO NUCLEAR FUSION LA English DT Article ID ERROR-FIELD; DIII-D; PLASMAS; STABILIZATION; TOKAMAK; BETA; PERTURBATIONS; INSTABILITY; ROTATION; JET AB New processes have been discovered in the interaction of 3D fields with tearing mode stability at low torque and modest beta on DIII-D and NSTX. These are thought to arise from the plasma response at the tearing resonant surface, which theoretically is expected to depend strongly on plasma rotation and underlying intrinsic tearing stability. This leads to sensitivities additional to those previously identified at low density where the plasma rotation is more readily stopped, or at high beta(N) where ideal MHD responses amplify the fields (where beta(N) is the plasma beta divided by the ratio of plasma current to minor radius multiplied by toroidal field). It is found that the threshold size for 3D fields to induce modes tends to zero as the natural tearing beta(N) limit is approached. 3D field sensitivity is further enhanced at low rotation, with magnetic probing detecting an increased response to applied fields in such regimes. Modelling with the MARS-F code confirms the interpretation with the usual plasma screening response breaking down in low rotation plasmas and a tearing response developing, opening the door to additional sensitivities to beta and the current profile. Typical field thresholds to induce modes in torque-free beta(N) similar to 1.5 H-modes are well below those in ohmic plasmas or plasmas near the ideal beta(N) limit. The strong interaction with the tearing mode beta(N) limit is identified through rotation shear, which is decreased by the 3D field, leading to decreased tearing stability. Thus both locked and rotating mode field thresholds can be considered in terms of a torque balance, with sufficient braking leading to destabilization of a mode. On this basis new measurements of the principal parameter scalings for error field threshold have been obtained in torque-free H-modes leading to new predictions for error field sensitivity in ITER. The scalings have similar exponents to ohmic plasmas, but with seven times lower threshold at the ITER baseline beta(N) value of 1.8, and a linear dependence on proximity to the tearing mode beta(N) limit (similar to 2.2 at zero torque). This reinforces the need to optimize error field correction strategies in ITER, and implement sources to drive plasma rotation. C1 [Buttery, R. J.; La Haye, R. J.; Chu, M. S.; Osborne, T. H.; Pinsker, R. I.; Strait, E. J.] Gen Atom Co, San Diego, CA 92186 USA. [Gerhardt, S.; Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Liu, Y. Q.] Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Reimerdes, H.; Sabbagh, S.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Yu, J. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. RP Buttery, RJ (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM buttery@fusion.gat.com FU US Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54461, DE-FG02-07ER54917] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54461 and DE-FG02-07ER54917. NR 27 TC 18 Z9 18 U1 1 U2 9 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073016 DI 10.1088/0029-5515/51/7/073016 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300018 ER PT J AU Gerhardt, SP Gates, DA Kaye, SM Maingi, R Menard, JE Sabbagh, SA Soukhanovskii, V Bell, MG Bell, RE Canik, JM Fredrickson, E Kaita, R Kolemen, E Kugel, H Le Blanc, BP Mastrovito, D Mueller, D Yuh, H AF Gerhardt, S. P. Gates, D. A. Kaye, S. M. Maingi, R. Menard, J. E. Sabbagh, S. A. Soukhanovskii, V. Bell, M. G. Bell, R. E. Canik, J. M. Fredrickson, E. Kaita, R. Kolemen, E. Kugel, H. Le Blanc, B. P. Mastrovito, D. Mueller, D. Yuh, H. TI Recent progress towards an advanced spherical torus operating point in NSTX SO NUCLEAR FUSION LA English DT Article ID RESISTIVE WALL MODE; LOW-ASPECT-RATIO; TOROIDAL-MOMENTUM DISSIPATION; HIGH-BETA PLASMAS; BOOTSTRAP-CURRENT; TOKAMAK PLASMAS; STEADY-STATE; DIII-D; PRESSURE PROFILE; STABILITY LIMITS AB Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as the sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65-70%, and beta(P) > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall beta(N) limit, and often have beta(N) at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained beta values when rapidly growing ideal modes are avoided. A beta(N) controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Overall, these NSTX plasmas have many characteristics required for next-step ST devices. C1 [Gerhardt, S. P.; Gates, D. A.; Kaye, S. M.; Menard, J. E.; Bell, M. G.; Bell, R. E.; Fredrickson, E.; Kaita, R.; Kolemen, E.; Kugel, H.; Le Blanc, B. P.; Mastrovito, D.; Mueller, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sabbagh, S. A.; Canik, J. M.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08540 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM sgerhard@pppl.gov OI Canik, John/0000-0001-6934-6681; Menard, Jonathan/0000-0003-1292-3286 FU United States Department of Energy [DE-AC02-09CH11466] FX The authors would like to thank the members of the NB operations team for their help with the betaN feedback system, and the NSTX engineering and operations teams for their support. This research was funded by the United States Department of Energy under contract DE-AC02-09CH11466. NR 113 TC 21 Z9 21 U1 2 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073031 DI 10.1088/0029-5515/51/7/073031 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300033 ER PT J AU Kim, SS Jhang, H Diamond, PH Terzolo, L Yi, S Hahm, TS AF Kim, S. S. Jhang, Hogun Diamond, P. H. Terzolo, L. Yi, S. Hahm, T. S. TI Intrinsic rotation, hysteresis and back transition in reversed shear internal transport barriers SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; H-MODE; CONFINEMENT BIFURCATION; TOROIDAL ROTATION; PLASMA ROTATION; DIII-D; TOKAMAK; SIMULATIONS; MOMENTUM; DISCHARGES AB A study of intrinsic rotation and hysteresis in ion thermal internal transport barrier (ITB) is presented. Global flux-driven gyrofluid simulations are performed. It is found that significant co-current intrinsic rotation (0.1 less than or similar to M-th less than or similar to 0.2, where M-th is the thermal Mach number) can be produced in ITB plasmas. Exploration of the relationship between the intrinsic rotation and the ITB temperature gradient leads to a novel scaling of intrinsic rotation in ITB plasmas. Long time power ramp simulations with self-consistently evolving profiles clearly demonstrate the existence of hysteresis in reversed shear ITBs. It is shown that intrinsic rotation plays an important role in ITB dynamics and is responsible for determining unique properties of ITB hysteresis. A negative feedback mechanism based on destruction of E x B shear prevails in barrier back transition, triggered by an outward momentum transport event during the power ramp down. C1 [Kim, S. S.; Jhang, Hogun; Diamond, P. H.; Terzolo, L.; Yi, S.] Natl Fus Res Inst, Taejon, South Korea. [Diamond, P. H.] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Diamond, P. H.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Hahm, T. S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Kim, SS (reprint author), Natl Fus Res Inst, 52 Yeoeun Dong, Taejon, South Korea. EM sskim@nfri.re.kr FU Ministry of Education, Science and Technology of Korea [2009-0001]; US DOE [DE-FC02-08ER54959]; J.-I.G. Foundation for Cutting Edge Research FX This research was supported by the Ministry of Education, Science and Technology of Korea via WCI project 2009-0001, by the US DOE Contract No DE-FC02-08ER54959, and the J.-I.G. Foundation for Cutting Edge Research. The authors are grateful to Dr X. Garbet for providing the TRB code and useful discussions, and to Drs G. Dif-Pradalier, C. L. Fiore, O.D. Gurcan, F.L. Hinton, K. Ida, J.Y. Kim, J.M. Kwon, C.J. McDevitt, K. Miki, J.E. Rice, W. M. Solomon and M. Yoshida for useful conversations. NR 53 TC 15 Z9 15 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073021 DI 10.1088/0029-5515/51/7/073021 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300023 ER PT J AU Liu, W Hsu, SC AF Liu, Wei Hsu, Scott C. TI Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma SO NUCLEAR FUSION LA English DT Article ID TOKAMAK; GENERATION AB We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a uniform hot strongly magnetized plasma, with the aim of providing insight into core fuelling of a tokamak with parameters relevant for ITER and National Spherical Torus Experiment (NSTX). Unmagnetized dense plasma jet injection is similar to compact toroid injection but with much higher plasma density and total mass, and consequently lower required injection velocity. Mass deposition of the jet into the background appears to be facilitated via magnetic reconnection along the jet's trailing edge. The penetration depth of the plasma jet into the background plasma is mostly dependent on the jet's initial kinetic energy, and a key requirement for spatially localized mass deposition is for the jet's slowing-down time to be less than the time for the perturbed background magnetic flux to relax due to magnetic reconnection. This work suggests that more accurate treatment of reconnection is needed to fully model this problem. Parameters for unmagnetized dense plasma jet injection are identified for localized core deposition as well as edge localized mode (ELM) pacing applications in ITER and NSTX-relevant regimes. C1 [Liu, Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hsu, Scott C.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Liu, W (reprint author), Univ Texas MD Anderson Canc Ctr, Dept Radiat Phys, Houston, TX 77030 USA. EM scotthsu@lanl.gov OI Hsu, Scott/0000-0002-6737-4934; Liu, Wei/0000-0003-0935-3999 FU DOE [DE-AC52-06NA25396] FX The authors thank Dr Shengtai Li for advice on the code. This work was funded by DOE contract no DE-AC52-06NA25396 under the Los Alamos Laboratory Directed Research and Development (LDRD) Program. NR 17 TC 3 Z9 3 U1 0 U2 1 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073026 DI 10.1088/0029-5515/51/7/073026 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300028 ER PT J AU Petrie, TW Evans, TE Brooks, NH Fenstermacher, ME Ferron, JR Holcomb, CT Hudson, B Hyatt, AW Luce, TC Lasnier, CJ Mordijck, S Moyer, RA Osborne, TH Politzer, PA Rensink, ME Schaffer, MJ Snyder, PB Watkins, JG AF Petrie, T. W. Evans, T. E. Brooks, N. H. Fenstermacher, M. E. Ferron, J. R. Holcomb, C. T. Hudson, B. Hyatt, A. W. Luce, T. C. Lasnier, C. J. Mordijck, S. Moyer, R. A. Osborne, T. H. Politzer, P. A. Rensink, M. E. Schaffer, M. J. Snyder, P. B. Watkins, J. G. TI Results from radiating divertor experiments with RMP ELM suppression and mitigation SO NUCLEAR FUSION LA English DT Article ID EDGE LOCALIZED MODES; DIII-D; COLLISIONALITY REGIME; PEDESTAL; PLASMAS; PHYSICS; JET AB The range in density and collisionality for which resonant magnetic perturbations (RMPs) are effective in suppressing edge-localized modes (ELMs) in the presence of a radiating divertor was found to be modest for representative H-mode plasmas in DIII-D. When deuterium and argon gas injection rates were increased during RMP, both the electron collisionality in the pedestal (nu*(e)) and the maximum electron pressure gradient (del P(e,MAX)) in the pedestal also increased. As del P(e,MAX) approached values consistent with the peeling-ballooning stability limit, as determined by edge stability analysis, ELMing activity re-emerged. For cases with the same injected neutral beam power, argon accumulation in the main plasma was greater in the RMP ELM-suppressed cases than in comparable non-RMP ELMing H-mode cases. Reductions in the core concentration of injected argon were observed for both RMP and non-RMP H-mode cases when their respective deuterium injection rates were increased. Although complete ELM suppression in RMP radiating divertor plasmas in DIII-D was only accessible over a limited range in pedestal density and collisionality, significant ELM mitigation with heat flux reduction was possible over a wider range. Comparing RMP radiating divertor discharges after the re-appearance of ELMing activity during gas puffing with a standard ELMing plasma for cases with the same pedestal density reveals that the RMP discharges have (1) lower average electron temperature at the midplane separatrix, implying lower average electron temperature at the divertor target, (2) lower time-averaged peak heat flux and (3) lower transient peak heat flux from ELMs even at the same pedestal collisionality. C1 [Petrie, T. W.; Evans, T. E.; Brooks, N. H.; Ferron, J. R.; Holcomb, C. T.; Hyatt, A. W.; Luce, T. C.; Osborne, T. H.; Politzer, P. A.; Schaffer, M. J.; Snyder, P. B.] Gen Atom Co, San Diego, CA 92186 USA. [Fenstermacher, M. E.; Lasnier, C. J.; Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hudson, B.; Mordijck, S.; Moyer, R. A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92093 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petrie, TW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100, DE-FG02-07ER54917, DE-FG02-05ER54809, DE-AC04-94AL85000] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC05-06OR23100, DE-FG02-07ER54917, DE-FG02-05ER54809 and DE-AC04-94AL85000. NR 24 TC 6 Z9 7 U1 1 U2 4 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073003 DI 10.1088/0029-5515/51/7/073003 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300005 ER PT J AU Solomon, WM Burrell, KH deGrassie, JS Boedo, JA Garofalo, AM Moyer, RA Muller, SH Petty, CC Reimerdes, H AF Solomon, W. M. Burrell, K. H. deGrassie, J. S. Boedo, J. A. Garofalo, A. M. Moyer, R. A. Muller, S. H. Petty, C. C. Reimerdes, H. TI Characterization of intrinsic rotation drive on DIII-D SO NUCLEAR FUSION LA English DT Article ID MOMENTUM TRANSPORT; TOROIDAL ROTATION; D TOKAMAK; DISCHARGES; TURBULENCE; PLASMAS AB Recent experiments on DIII-D have focused on elucidating the drive mechanisms for intrinsic rotation in tokamak fusion plasmas. In H-mode plasmas, the effective torque at the edge (rho > 0.8) associated with the intrinsic rotation shows a dependence on the pedestal pressure gradient. del P-ped, which is qualitatively consistent with models describing E x B shear as a means of creating 'residual stress' and driving intrinsic rotation. However, direct measurement of the turbulent Reynolds stress using probes suggests that this is not the full picture. Specifically, there is a significant mismatch between the plasma spin up and the inferred torque from the Reynolds stress at the edge, indicating that additional mechanisms are necessary to completely understand edge intrinsic rotation generation. A narrow rotation layer is observed near the separatrix, which can qualitatively be explained using a model of thermal ion orbit loss. Parametrically, the torque from such a process is expected to vary with root T-i. A good predictor of the edge intrinsic torque is obtained by including this dependence, together with the previously observed. del P-ped dependence, in a regression fit of a wide range of H-mode conditions. The intrinsic torque in the core (rho < 0.5) of H-mode plasmas tends to be much smaller than observed at the edge, although some examples have been found where it is large enough to modify the rotation profile. For instance, in certain plasmas with electron cyclotron heating, a significant counter-intrinsic torque has been observed in the inner region of the plasma. C1 [Solomon, W. M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; deGrassie, J. S.; Garofalo, A. M.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Boedo, J. A.; Moyer, R. A.; Muller, S. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Reimerdes, H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Solomon, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wsolomon@pppl.gov OI Solomon, Wayne/0000-0002-0902-9876 FU US Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-04ER54761] FX This work was supported by the US Department of Energy under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-FG02-04ER54761. The authors would like to thank P. H. Diamond, G. R. Tynan and R. E. Waltz for beneficial discussions of this work. NR 36 TC 31 Z9 31 U1 1 U2 12 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073010 DI 10.1088/0029-5515/51/7/073010 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300012 ER PT J AU Valovic, M Akers, R de Bock, M McCone, J Garzotti, L Michael, C Naylor, G Patel, A Roach, CM Scannell, R Turnyanskiy, M Wisse, M Guttenfelder, W Candy, J AF Valovic, M. Akers, R. de Bock, M. McCone, J. Garzotti, L. Michael, C. Naylor, G. Patel, A. Roach, C. M. Scannell, R. Turnyanskiy, M. Wisse, M. Guttenfelder, W. Candy, J. CA MAST Team TI Collisionality and safety factor scalings of H-mode energy transport in the MAST spherical tokamak SO NUCLEAR FUSION LA English DT Article ID TORUS EXPERIMENT NSTX; ASPECT-RATIO; CONFINEMENT AB A factor of 4 dimensionless collisionality scan of H-mode plasmas in MAST shows that the thermal energy confinement time scales as B tau(E,th) alpha v(*e)(-0.82 +/- 0.1) Local heat transport is dominated by electrons and is consistent with the global scaling. The neutron rate is in good agreement with the nu(*) dependence of tau(E,th). The gyrokinetic code GYRO indicates that micro-tearing turbulence might explain such a trend. A factor of 1.4 dimensionless safety factor scan shows that the energy confinement time scales as B tau(E,th) alpha q(eng)(-0.82 +/- 0.2) eng. These two scalings are consistent with the dependence of energy confinement time on plasma current and magnetic field. Weaker q(eng) and stronger. dependences compared with the IPB98y2 scaling could be favourable for an ST-CTF device, in that it would allow operation at lower plasma current. C1 [Valovic, M.; Akers, R.; de Bock, M.; McCone, J.; Garzotti, L.; Michael, C.; Naylor, G.; Patel, A.; Roach, C. M.; Scannell, R.; Turnyanskiy, M.; MAST Team] Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. [Guttenfelder, W.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Candy, J.] Gen Atom Co, San Diego, CA 92186 USA. [Wisse, M.] Univ Basel, CH-4056 Basel, Switzerland. RP Valovic, M (reprint author), Culham Sci Ctr, EURATOM CCFE Fus Assoc, Abingdon OX14 3DB, Oxon, England. EM martin.valovic@ccfe.ac.uk RI Roach, Colin/C-4839-2011; Michael, Clive /M-1327-2013; OI Michael, Clive/0000-0003-1804-870X FU RCUK [EP/I501045]; European Communities FX This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The authors would like to thank Drs B. Lloyd and A. W. Morris for valuable comments. Anonymous referees are gratefully acknowledged for their suggestions. NR 20 TC 27 Z9 27 U1 0 U2 3 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 073045 DI 10.1088/0029-5515/51/7/073045 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300047 ER PT J AU Xu, GS Wan, BN Li, JG Gong, XZ Hu, JS Shan, JF Li, H Mansfield, DK Humphreys, DA Naulin, V AF Xu, G. S. Wan, B. N. Li, J. G. Gong, X. Z. Hu, J. S. Shan, J. F. Li, H. Mansfield, D. K. Humphreys, D. A. Naulin, V. CA EAST Team Int Collaborators TI Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak SO NUCLEAR FUSION LA English DT Article AB The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of H-IPB98(y,H-2) similar to 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before plasma breakdown and the real-time injection of fine Li powder into the plasma edge. The threshold power for H-mode access follows the international tokamak scaling even in the low density range and a threshold in density has been identified. With increasing accumulation of deposited Li the H-mode duration was gradually extended up to 3.6 s corresponding to similar to 30 confinement times, limited only by currently attainable durations of the plasma current flat top. Finally, it was observed that neutral density near the lower X-point was progressively reduced by a factor of 4 with increasing Li accumulation, which is considered the main mechanism for the H-mode power threshold reduction by the Li wall coatings. C1 [Xu, G. S.; Wan, B. N.; Li, J. G.; Gong, X. Z.; Hu, J. S.; Shan, J. F.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Li, H.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Mansfield, D. K.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Humphreys, D. A.] Gen Atom Co, San Diego, CA 92186 USA. [Naulin, V.] Assoc Euratom Riso, DK-4000 Roskilde, Denmark. RP Xu, GS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM bnwan@ipp.ac.cn RI Naulin , Volker/A-2419-2012; Xu, Guosheng/B-4857-2013 OI Naulin , Volker/0000-0001-5452-9215; FU National Natural Science Foundation of China [11075181, 10725523, 10721505, 10990212, 11075185]; ITER project of China [2010GB104001] FX This work was supported by the National Natural Science Foundation of China under contracts 11075181, 10725523, 10721505, 10990212, 11075185 and the ITER project of China under contract 2010GB104001. We gratefully acknowledge the contribution of the EAST staff, as well as useful discussions with R. Maingi from the NSTX team. NR 21 TC 81 Z9 85 U1 8 U2 70 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD JUL PY 2011 VL 51 IS 7 AR 072001 DI 10.1088/0029-5515/51/7/072001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 781LI UT WOS:000291933300001 ER PT J AU Saraf, LV AF Saraf, Laxmikant V. TI Realization of critical distance during the interplay between re-deposition and secondary sputtering from milling of angular side wall with a focused ion beam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Re-deposition; FIB; Secondary sputtering ID REDEPOSITION AB In situ observation of critical distance (CD), a distance where secondary sputtering effects diminish and re-deposition starts to dominate is realized during controlled focused ion beam (FIB) sputtering. The experiments were performed on representative high density Ni-alloy and lower density porous Ni-YSZ. For the Ni-alloy case, it was observed that linear extrapolation of re-deposited layer width coincides with CD suggesting uniform sputtering and re-deposition effects. Estimation related to percentage of re-deposition from FIB etched layer at an angle of 50 degrees between the lower membrane and FIB etched side wall clearly demonstrated dominant secondary sputtering, neutralizing sputtering/re-deposition and dominant re-deposition regions. Although the angle between FIB etched angular side wall and re-deposited/etched membrane adds some complication, the suggested overall experimental approach would substantially simplify to develop more realistic models than previously considered complex situations dealing with interplay between the re-deposition and secondary sputtering. (C) 2011 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. RP Saraf, LV (reprint author), Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. EM Lax.Saraf@pnl.gov FU BER at EMSL [DE-AC06-76RL01830] FX The research is performed using Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research located at PNNL. PNNL is operated by Battelle for the US DOE. The work support for is provided by BER under capability development funds at EMSL through the Grant Contract DE-AC06-76RL01830. NR 18 TC 3 Z9 3 U1 4 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD JUL 1 PY 2011 VL 269 IS 13 BP 1540 EP 1547 DI 10.1016/j.nimb.2011.04.111 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 783XS UT WOS:000292118800014 ER PT J AU Kiedrowski, BC Brown, FB Wilson, PPH AF Kiedrowski, Brian C. Brown, Forrest B. Wilson, Paul P. H. TI Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID NEUTRON AB A Monte Carlo method is developed that performs adjoint-weighted tallies in continuous-energy k-eigenvalue calculations. Each contribution to a tally score is weighted by an estimate of the relative magnitude of the fundamental adjoint mode, by way of the iterated fission probability, at the phase-space location of the contribution. The method is designed around the power iteration method such that no additional random walks are necessary, resulting in a minimal increase in computational time. The method is implemented in the Monte Carlo N-Particle (MCNP) code. These adjoint-weighted tallies are used to calculate adjoint-weighted fluxes, point reactor kinetics parameters, and reactivity changes from first-order perturbation theory. The results are benchmarked against discrete ordinates calculations, experimental measurements, and direct Monte Carlo calculations. C1 [Kiedrowski, Brian C.; Brown, Forrest B.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. [Wilson, Paul P. H.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. RP Kiedrowski, BC (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663,MS A143, Los Alamos, NM 87545 USA. EM bckiedro@lanl.gov OI Wilson, Paul/0000-0002-8555-4410 NR 33 TC 29 Z9 30 U1 2 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2011 VL 168 IS 3 BP 226 EP 241 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 783XP UT WOS:000292118500003 ER PT J AU Ramsey, SD Hutchens, GJ AF Ramsey, Scott D. Hutchens, Gregory J. TI Deterministic and Stochastic Evaluation of Criticality Excursion Power Bursts SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SOURCE REACTOR STARTUPS; KINETICS EQUATIONS; NEUTRON AB The utility of stochastic point kinetics theory has been demonstrated through the examination of a criticality excursion in a supercritical system. It has been found that a deterministic point kinetics model underpredicts the excursion maximum energy release by up to two orders of magnitude with respect to a counterpart stochastic model. This potentially large underprediction shows that neutron population fluctuations play an important role in the evolution of that system. This work provides a review of the formalism and approximations used to arrive at this conclusion. To broaden the result's applicability, we relax several approximations, leading to the construction of new, nonanalytical expressions. We compare the two sets of results using local sensitivity analysis, which also allows us to assess the impact of potential uncertainties in included model parameters or data. This comparison (presented also for a U-235 system) also proves useful in assessing the validity of the approximations under consideration. C1 [Ramsey, Scott D.; Hutchens, Gregory J.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. RP Ramsey, SD (reprint author), Los Alamos Natl Lab, X Computat Phys Div, MS F644, Los Alamos, NM 87545 USA. EM ramsey@lanl.gov FU United States Department of Energy by Los Alamos National Security, LLC, at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the United States Department of Energy by Los Alamos National Security, LLC, at Los Alamos National Laboratory under contract DE-AC52-06NA25396. NR 40 TC 3 Z9 4 U1 2 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD JUL PY 2011 VL 168 IS 3 BP 265 EP 277 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 783XP UT WOS:000292118500006 ER PT J AU Fortune, EC Gauld, IC Wang, CKC AF Fortune, Eugene C. Gauld, Ian C. Wang, C. -K. Chris TI GAMMA DOSE RATE NEAR A NEW Cf-252 BRACHYTHERAPY SOURCE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE Cf brachytherapy; gamma dose; bremsstrahlung X-rays ID CERVICAL-CARCINOMA AB A new generation of medical grade Cf-252 sources was developed in 2002 at the Oak Ridge National Laboratory. The combination of small size and large activity of Cf-252 makes the new source suitable to be used with the conventional high-dose-rate remote afterloading system for interstitial brachytherapy. A recent in-water calibration experiment showed that the measured gamma dose rates near the new source are slightly greater than the neutron dose rates, contradicting the well established neutron-to-gamma dose ratio of approximately 2:1 at locations near a Cf-252 brachytherapy source. Specifically, the MCNP-predicted gamma dose rate is a factor of two lower than the measured gamma dose rate at the distance of I cm, and the differences between the two results gradually diminish at distances farther away from the source. To resolve this discrepancy, we updated the source gamma spectrum by including in the ORIGEN-S data library the experimentally measured Cf-252 prompt gamma spectrum as well as the true Cf-252 spontaneous fission yield data to explicitly model delayed gamma emissions from fission products. We also investigated the bremsstrahlung X-rays produced by the beta particles emitted from fission product decays. The results show that the discrepancy of gamma dose rates is mainly caused by the omission of the bremsstrahlung X-rays in the MCNP runs. By including the bremsstrahlung X-rays, the MCNP results show that the gamma dose rates near a new Cf-252 source agree well with the measured results and that the gamma dose rates are indeed greater than the neutron dose rates. C1 [Fortune, Eugene C.; Wang, C. -K. Chris] Georgia Inst Technol, Atlanta, GA 30332 USA. [Gauld, Ian C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Fortune, EC (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM chris.wang@nre.gatech.edu OI Gauld, Ian/0000-0002-3893-7515 NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 73 EP 76 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900014 ER PT J AU Hendricks, JS Quiter, BJ AF Hendricks, John S. Quiter, Brian J. TI MCNP/X FORM FACTOR UPGRADE FOR IMPROVED PHOTON TRANSPORT SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE Monte Carlo; photoatomic; form factor AB The angular distribution of scattered photons is incorrect in MCNPX and MCNP5 because the incoherent and coherent form factors are obsolete. The obsolete data affect all photon transport problems with E > 74 keV. Elastic backscatter for E > 105 keV is completely missing. Consequently, a new ACE-format photoatomic data library, tentatively named MCPLIB05 and referred to herein as MCPLIB05T, has been developed for MCNP/X. Data in MCPLIB05T other than form factors are identical to that in its predecessor photoatomic library, MCPLIB04. The new form factor data in MCPLIB05T come directly from ENDF/B-VII (rev. 0) and are in a format incompatible with older versions of MCNP/X. Consequently, a new version of MCNP/X has been developed to identify and use the new MCPLIB05T data and yet retain backward compatibility, including tracking, when MCPLIB04 is used. The NJOY nuclear data processing system is undergoing development to enable future generations of photoatomic data libraries with modern form factor data in the new format. C1 [Hendricks, John S.] TechSource Inc, Los Alamos, NM 87544 USA. [Hendricks, John S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hendricks, John S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Quiter, Brian J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Quiter, Brian J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hendricks, JS (reprint author), TechSource Inc, Los Alamos, NM 87544 USA. EM jxh@lanl.gov NR 8 TC 3 Z9 3 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 150 EP 161 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900026 ER PT J AU Ibrahim, AM Mosher, SW Evans, TM Peplow, DE Sawan, ME Wilson, PPH Wagner, JC Heltemes, T AF Ibrahim, Ahmad M. Mosher, Scott W. Evans, Thomas M. Peplow, Douglas E. Sawan, Mohamed E. Wilson, Paul P. H. Wagner, John C. Heltemes, Thad TI ITER NEUTRONICS MODELING USING HYBRID MONTE CARLO/DETERMINISTIC AND CAD-BASED MONTE CARLO METHODS SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE CAD-based Monte Carlo; ITER; hybrid Monte Carlo/deterministic ID VARIANCE REDUCTION; NUCLEAR ANALYSIS AB The immense size and complex geometry of the ITER experimental fusion reactor require the development of special techniques that can accurately and efficiently perform neutronics simulations with minimal human effort. This paper shows the effect of the hybrid Monte Carlo (MC)/deterministic techniques-Consistent Adjoint Driven Importance Sampling (CADIS) and Forward-Weighted CADIS (FW-CADIS)-in enhancing the efficiency of the neutronics modeling of ITER and demonstrates the applicability of coupling these methods with computer-aided-design based MC. Three quantities were calculated in this analysis: the total nuclear heating in the inboard leg of the toroidal field coils (TFCs), the prompt dose outside the biological shield, and the total neutron and gamma fluxes over a mesh tally covering the entire reactor. The use of FW-CADIS in estimating the nuclear heating in the inboard TFCs resulted in a factor of similar to 275 increase in the MC figure of merit (FOM) compared with analog MC and a factor of similar to 9 compared with the traditional methods of variance reduction. By providing a factor of similar to 21000 increase in the MC FOM, the radiation dose calculation showed how the CADIS method can be effectively used in the simulation of problems that are practically impossible using analog MC. The total flux calculation demonstrated the ability of FW-CADIS to simultaneously enhance the MC statistical precision throughout the entire ITER geometry. Collectively, these calculations demonstrate the ability of the hybrid techniques to accurately model very challenging shielding problems in reasonable execution times. C1 [Ibrahim, Ahmad M.; Sawan, Mohamed E.; Wilson, Paul P. H.; Heltemes, Thad] Univ Wisconsin, Madison, WI 53706 USA. [Mosher, Scott W.; Evans, Thomas M.; Peplow, Douglas E.; Wagner, John C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ibrahim, AM (reprint author), Univ Wisconsin, 1500 Engn Dr, Madison, WI 53706 USA. EM amibrahim@wisc.edu RI Wagner, John/K-3644-2015; OI Wagner, John/0000-0003-0257-4502; Wilson, Paul/0000-0002-8555-4410 NR 21 TC 3 Z9 3 U1 2 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 251 EP 258 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900038 ER PT J AU Joseph, RA Slater, CO Evans, TM Mosher, SW Johnson, JO AF Joseph, R. A., III Slater, C. O. Evans, T. M. Mosher, S. W. Johnson, J. O. TI SENSITIVITIES AND UNCERTAINTIES RELATED TO NUMERICS AND BUILDING FEATURES IN URBAN MODELING SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE numerics; urban modeling AB Oak Ridge National Laboratory (ORNL) has been engaged in the development and testing of a computational system that would use a grid of activation foil detectors to provide postdetonation forensic information from a nuclear device detonation. ORNL has developed a high-performance, three-dimensional (3-D) deterministic radiation transport code called Denovo. Denovo solves the multigroup discrete ordinates (S(N)) equations and can output 3-D data in a platform-independent format that can be efficiently analyzed using parallel, high-performance visualization tools. To evaluate the sensitivities and uncertainties associated with the deterministic computational method numerics, a numerical study on the New York City Times Square model was conducted using Denovo. In particular, the sensitivities and uncertainties associated with various components of the calculational method were systematically investigated, including (a) the Legendre polynomial expansion order of the scattering cross sections, (b) the angular quadrature, (c) multigroup energy binning, (d) spatial mesh sizes, (e) the material compositions of the building models, (f) the composition of the foundations upon which the buildings rest (e.g., ground, concrete, or asphalt), and (g) the amount of detail included in the building models. Although Denovo may calculate the idealized model well, there may be uncertainty in the results because of slight departures of the above-named parameters from those used in the idealized calculations. Fluxes and activities at selected locations from perturbed calculations are compared with corresponding values from the idealized or base case to determine the sensitivities associated with specified parameter changes. Results indicate that uncertainties related to numerics can be controlled by using higher fidelity models, but more work is needed to control the uncertainties related to the model. C1 [Joseph, R. A., III; Slater, C. O.; Evans, T. M.; Mosher, S. W.; Johnson, J. O.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Joseph, RA (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, POB 2008, Oak Ridge, TN 37831 USA. EM josephiraiii@ornl.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 286 EP 300 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900043 ER PT J AU Klann, RT de la Barrera, SC Vilim, RB AF Klann, Raymond T. de la Barrera, Sergio C. Vilim, Richard B. TI TREATMENT OF SHIELDING IN REAL-TIME SOURCE TRACKING SOFTWARE SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE source localization; shielding; RADTRAC AB Within the homeland security and emergency response communities, there is a need for a low-profile system to detect, locate, and identify radioactive sources in real time. Such a system could be deployed for area monitoring around venues for special events. A system was developed at Argonne National Laboratory, called RADTRAC, which is based on a network of radiation detectors and advanced signal-processing algorithms. The initial implementation of RADTRAC did not account for dynamically changing shielding due to crowd movements. An algorithm was developed that utilizes the gamma-ray energy spectrum from each detector to estimate the amount of attenuation and scattering that is present between the source location (a priori unknown) and the detector location in real time. The attenuation and scattering estimations are then included in the maximum likelihood model to significantly improve the source localization solution. Results are presented for several test cases showing the improvement in the real-time source localization solution. This algorithm has been implemented into the current version of RADTRAC such that it now accounts for the effects of dynamically changing shielding and scattering due to crowd movements in real time in order to accurately determine the source location in crowded venues. C1 [Klann, Raymond T.; de la Barrera, Sergio C.; Vilim, Richard B.] Argonne Natl Lab, Nucl Engn Div, Lemont, IL 60439 USA. RP Klann, RT (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM klann@anl.gov RI de la Barrera, Sergio/A-1850-2016 OI de la Barrera, Sergio/0000-0002-5974-9476 NR 4 TC 4 Z9 4 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 301 EP 313 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900044 ER PT J AU Vilim, R Klann, R Thomas, J AF Vilim, R. Klann, R. Thomas, J. TI INTEGRATED TREATMENT OF DETECTOR ARRAYS FOR SOURCE TRACKING SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE detector; directional; source AB Illicit radioactive sources can potentially appear in a wide range of public venues. One element in a plan for managing such sources involves searching for them in venues at risk and tracking them in real time when they are detected. A treatment of source tracking using multiple directional detectors in a probabilistic framework is given. The performance of a prototype directional detector based on these methods was characterized in the laboratory. Instances where the performance of a directional detector is not immune to the effects of shielding are identified. C1 [Vilim, R.; Klann, R.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Thomas, J.] Penn State Univ, Mech & Nucl Engn Dept, University Pk, PA 16802 USA. RP Vilim, R (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rvilim@anl.gov NR 3 TC 2 Z9 2 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 314 EP 325 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900045 ER PT J AU Jarman, KD Miller, EA Wittman, RS Gesh, CJ AF Jarman, Kenneth D. Miller, Erin A. Wittman, Richard S. Gesh, Christopher J. TI BAYESIAN RADIATION SOURCE LOCALIZATION SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th Biennial Topical Meeting of the American-Nuclear-Society-(ANS)-and-Radiation-Protection-and-Shielding-Di vision-(RPSD) CY APR, 2010 CL Univ Nevada, Las Vegas, NV SP Amer Nucl Soc, Radiation Protection Shielding Div HO Univ Nevada DE radiation source localization; adjoints; Bayesian ID NEUTRON SOURCE; TRANSPORT AB Locating illicit radiological sources using gamma-ray or neutron detection is a key challenge for both homeland security and nuclear nonproliferation. Localization methods using an array of detectors or a sequence of observations in time and space must provide rapid results while accounting for a dynamic attenuating environment. In the presence of significant attenuation and scatter, more extensive numerical transport calculations in place of the standard analytical approximations may be required to achieve accurate results. Numerical adjoints based on deterministic transport codes provide relatively efficient detector response calculations needed to determine the most likely location of a true source given a set of observed count rates. Probabilistic representations account for uncertainty in the source location resulting from uncertainties in detector responses and the potential for nonunique solutions. A Bayesian approach improves on previous likelihood methods for source localization by allowing the incorporation of all available information to help constrain solutions. We present an approach to localizing radiological sources that uses numerical adjoints and a Bayesian formulation and demonstrate the approach on two simple example scenarios. Results indicate accurate estimates of source locations. We briefly study the effect of neglecting the contribution of all scattered radiation in the adjoints, as analytical transport approximations do, for a case with moderately attenuating material between detectors and sources. The source location accuracy of the uncollided-only solutions appears to be significantly worse at the source strength considered here, suggesting that the higher physical fidelity that is provided by full numerical adjoint-based solutions may provide an advantage in operational settings. C1 [Jarman, Kenneth D.; Miller, Erin A.; Wittman, Richard S.; Gesh, Christopher J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jarman, KD (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM kj@pnl.gov RI Jarman, Kenneth/B-6157-2011 OI Jarman, Kenneth/0000-0002-4396-9212 NR 21 TC 6 Z9 6 U1 1 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD JUL PY 2011 VL 175 IS 1 SI SI BP 326 EP 334 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 784PS UT WOS:000292169900046 ER PT J AU Bates, JT Chivian, D Arkin, AP AF Bates, John T. Chivian, Dylan Arkin, Adam P. TI GLAMM: Genome-Linked Application for Metabolic Maps SO NUCLEIC ACIDS RESEARCH LA English DT Article ID KEGG ATLAS; PATHWAYS; LANGUAGE; DATABASE; MODELS AB The Genome-Linked Application for Metabolic Maps (GLAMM) is a unified web interface for visualizing metabolic networks, reconstructing metabolic networks from annotated genome data, visualizing experimental data in the context of metabolic networks and investigating the construction of novel, transgenic pathways. This simple, user-friendly interface is tightly integrated with the comparative genomics tools of MicrobesOnline [Dehal et al. (2010) Nucleic Acids Research, 38, D396-D400]. GLAMM is available for free to the scientific community at glamm.lbl.gov. C1 [Bates, John T.; Chivian, Dylan; Arkin, Adam P.] DOE Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. [Bates, John T.; Chivian, Dylan; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Chivian, D (reprint author), DOE Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. EM dcchivian@lbl.gov; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Office of Biological and Environmental Research (BER) of the US Department of Energy (DOE) Office of Science [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory (LBNL); Oak Ridge National Laboratory (ORNL); US Department of Energy [DE-AC05-00OR22725]; Office of Biological and Environmental Research; US DOE Office of Science [DE-AC02-05CH11231] FX Office of Biological and Environmental Research (BER) of the US Department of Energy (DOE) Office of Science under Contract No. DE-AC02-05CH11231 with the E.O. Lawrence Berkeley National Laboratory (LBNL) (to Joint BioEnergy Institute, JBEI); Office of Biological and Environmental Research in the US DOE Office of Science with American Recovery and Reinvestment Act (ARRA) funding to Oak Ridge National Laboratory (ORNL) (to 'Knowledgebase R&D' project performed at LBNL) administered by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725 (to ORNL). Funding for open access charge: Office of Biological and Environmental Research (to JBEI), of the US DOE Office of Science under Contract No. DE-AC02-05CH11231 with the E.O. Lawrence Berkeley National Laboratory (LBNL). NR 20 TC 17 Z9 17 U1 0 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD JUL PY 2011 VL 39 SU 2 BP W400 EP W405 DI 10.1093/nar/gkr433 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 786RJ UT WOS:000292325300065 PM 21624891 ER PT J AU Gao, XF Hodgson, JL Jiang, DE Zhang, SB Nagase, S Miller, GP Chen, ZF AF Gao, Xingfa Hodgson, Jennifer L. Jiang, De-en Zhang, Shengbai B. Nagase, Shigeru Miller, Glen P. Chen, Zhongfang TI Open-Shell Singlet Character of Stable Derivatives of Nonacene, Hexacene and Teranthene SO ORGANIC LETTERS LA English DT Article ID THIN-FILM TRANSISTORS; HIGHER ACENES; GROUND-STATE; ORGANIC ELECTRONICS; HEPTACENE; NANOGRAPHENES; GAP AB The electronic ground states of the recently synthesized stable nonacene derivatives (J. Am. Chem. Soc. 2010, 132, 1261) are open-shell singlets with a polyradical nature instead of closed-shell singlets as originally, assumed, according to the unrestricted broken spin-symmetry density functional theory (UBS-DFT) computations (at B3LYP/6-31G*). It is the bulky protecting groups, not the transfer from the open-shell singlet to closed-shell singlet ground state, that stabilizes these longest characterized acenes. Similar analyses also confirmed the open-shell singlet character of the hexacene and teranthene derivatives. C1 [Chen, Zhongfang] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Gao, Xingfa] Chinese Acad Sci, Inst High Energy Phys, Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China. [Hodgson, Jennifer L.; Miller, Glen P.] Univ New Hampshire, Dept Chem, Durham, NH 03824 USA. [Hodgson, Jennifer L.; Miller, Glen P.] Univ New Hampshire, Mat Sci Program, Durham, NH 03824 USA. [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Zhang, Shengbai B.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Nagase, Shigeru] Natl Inst Nat Sci, Inst Mol Sci, Dept Theoret & Computat Mol Sci, Okazaki, Aichi 4448585, Japan. RP Chen, ZF (reprint author), Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. EM zhongfangchen@gmail.com RI Chen, Zhongfang/A-3397-2008; Jiang, De-en/D-9529-2011; Gao, Xingfa/E-5691-2010; Krausnick, Jennifer/D-6291-2013; Zhang, Shengbai/D-4885-2013; OI Jiang, De-en/0000-0001-5167-0731; Gao, Xingfa/0000-0002-1636-6336; Zhang, Shengbai/0000-0003-0833-5860; Hodgson, Jennifer/0000-0001-5363-0215 FU MEXT; NSF [EPS-1010094, EEC 0832785]; Department of Energy [DE-SC0002623]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; [Y1515530U1] FX This work was supported in Japan by a Grant-in-Aid for Specially Promoted Research and Next Generation Super Computing Project (Nanoscience Program) from MEXT and in the USA by the NSF (Grant Nos. EPS-1010094 and EEC 0832785) and the Department of Energy (Grant No. DE-SC0002623). D.J. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. X.G. was partially supported by Y1515530U1. NR 35 TC 22 Z9 22 U1 0 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD JUL 1 PY 2011 VL 13 IS 13 BP 3316 EP 3319 DI 10.1021/ol201004u PG 4 WC Chemistry, Organic SC Chemistry GA 781HG UT WOS:000291920800008 PM 21648416 ER PT J AU Novikov, VV Avdashchenko, DV Matovnikov, AV Moiseev, NV Bud'ko, SL Tanaka, T AF Novikov, V. V. Avdashchenko, D. V. Matovnikov, A. V. Moiseev, N. V. Bud'ko, S. L. Tanaka, T. TI Thermal and magnetic properties of DyB62 at low temperatures SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Icosahedral boride; Heat capacity; Magnetization; Disordered systems ID VITREOUS SILICA; HEAT-CAPACITY; YB66; MONOCHROMATOR; CONDUCTIVITY; MK AB Temperature dependences of heat capacity C-P(T) and magnetization M(T) of an icosahedral dysprosium boride (DyB62) single crystal have been experimentally investigated in the temperature range of 2-300 K. The magnetic susceptibility chi(T) of DyB62 follows Curie-Weiss law with a paramagnetic Curie temperature of -3.7 K, which implies that the antiferromagnetic interactions are dominant in this material and suggests the possibility of magnetic ordering at low temperatures. This conjecture is supported by the temperature dependence of heat capacity C-P(T), which decreases upon heating from 2 to 7 K. The heat capacity of DyB62 at 2 K is analyzed as a sum of magnetic, Debye, two-level system and soft atomic potential components. (C) 2011 Elsevier B.V. All rights reserved. C1 [Novikov, V. V.; Avdashchenko, D. V.; Matovnikov, A. V.; Moiseev, N. V.] Petrovsky Bryansk State Univ, Bryansk 241036, Russia. [Bud'ko, S. L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Tanaka, T.] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan. RP Avdashchenko, DV (reprint author), Petrovsky Bryansk State Univ, Bedgitskaya 14, Bryansk 241036, Russia. EM vvnovikov@mail.ru; avdaha@gmail.com RI Novikov, Vladimir/D-3413-2011 OI Novikov, Vladimir/0000-0003-2081-6691 FU US Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences under Contract no. DE-AC02-07CH11358. NR 28 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD JUL 1 PY 2011 VL 406 IS 13 BP 2642 EP 2645 DI 10.1016/j.physb.2011.04.006 PG 4 WC Physics, Condensed Matter SC Physics GA 781YD UT WOS:000291973000029 ER PT J AU Morozovska, AN Eliseev, EA Svechnikov, GS Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Svechnikov, G. S. Kalinin, S. V. TI Nanoscale electromechanics of paraelectric materials with mobile charges: Size effects and nonlinearity of electromechanical response of SrTiO3 films SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRIC THIN-FILMS; ION BATTERY CATHODE; INDUCED EXPANSION; RAMAN-SCATTERING; PHASE-DIAGRAMS; FLEXOELECTRICITY; STRESS; ELECTROSTRICTION; INDENTATION; TEMPERATURE AB Nanoscale enables a broad range of electromechanical coupling mechanisms that are forbidden or are negligible in the materials. We conduct a theoretical study of the electromechanical response of thin paraelectric films with mobile vacancies (or ions) paradigmatic for capacitor-type measurements in x-ray scattering, piezoresponse force microscopy (PFM), and electrochemical strain microscopy (ESM). Using a quantum paraelectric SrTiO3 (STO) film as a model material with well-known electromechanical, electronic, and electrochemical properties, we evaluate the contributions of electrostriction, Maxwell stress, flexoelectric effect, deformation potential, and compositional Vegard strains caused by mobile vacancies (or ions) and electrons to the electromechanical response. The local electromechanical response manifests strong size effects, the scale of which is determined by the ratio of the STO film thickness and PFM/ESM tip size to the carriers' screening radius. Due to the strong dielectric nonlinearity effect inherent in quantum paraelectrics, the dependence of the STO film electromechanical response on the applied voltage demonstrates a pronounced crossover from the linear to the quadratic law and then to the sublinear law with a factor of 2/3 under the voltage increase. The temperature dependence of the electromechanical response as determined by the interplay between the dielectric susceptibility and the screening radius is nonmonotonic and has pronounced maxima, the position and width of which can be tuned by film thickness. This paper provides a comparative framework for the analysis of electromechanical coupling in the nonpiezoelectric nanosystems. C1 [Morozovska, A. N.; Eliseev, E. A.; Svechnikov, G. S.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, S. V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 FU Ukraine State Agency on Science, Innovation and Informatization [UU30/004, GP/F32/099]; National Academy of Sciences of Ukraine, CNMS [UR-08-869]; National Science Foundation (Materials World Network) [DMR-0908718]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX A.N.M., E. A. E. and G. S. S. acknowledgement State Budget funding from Ukraine State Agency on Science, Innovation and Informatization (Grants SFFR - NSF No. UU30/004 and No. GP/F32/099), National Academy of Sciences of Ukraine, user agreement with CNMS No. UR-08-869 and National Science Foundation (Materials World Network, DMR-0908718). S. V. K. was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 101 TC 42 Z9 42 U1 2 U2 78 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 1 PY 2011 VL 84 IS 4 AR 045402 DI 10.1103/PhysRevB.84.045402 PG 20 WC Physics, Condensed Matter SC Physics GA 786SI UT WOS:000292327800006 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, E Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N De Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del PreteA, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, BS Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, A Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y Van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, P Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Mueller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Hr, FR Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Fer, US Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, T Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, E Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenono, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. De Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del PreteA, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, B. S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Garcia-Estan, M. T. Perez Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Hr, F. Ru Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Fer, U. Scha Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, T. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenono, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Nedden, M. Zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for contact interactions in dimuon events from pp collisions at root s=7 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID FERMION-PAIR PRODUCTION; PARTON DISTRIBUTIONS; STANDARD MODEL; PHYSICS; QUARK; HERA; LEP; CONSTRAINTS; DIMENSIONS; TESTS AB A search for contact interactions has been performed using dimuon events recorded with the ATLAS detector in proton-proton collisions at root s = 7 TeV. The data sample corresponds to an integrated luminosity of 42 pb(-1). No significant deviation from the standard model is observed in the dimuon mass spectrum, allowing the following 95% C. L. limits to be set on the energy scale of contact interactions: Lambda > 4: 9 TeV (4.5 TeV) for constructive (destructive) interference in the left-left isoscalar compositeness model. These limits are the most stringent to date for mu mu qq contact interactions. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phy, Freiburg, Germany. [Alam, M. S.; Ernst, J.; Greenwood, Z. D.; Rojo, V.; Sawyer, L.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Di Ciaccio, L.; Doan, T. K. O.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Hr, F. Ru; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Albrand, S.; Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Chiefari, G.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Wolters, H.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Borjanovic, I.; Bozovic-Jelisavcic, I.; Chiefari, G.; Krstic, J.; Mamuzic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Wolters, H.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Oye, O. K.; Rosendahl, P. L.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Einsweiler, K.; Gaponenko, A.; Gilchriese, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Leggett, C.; Loscutoff, P.; Lys, J.; Ruwiedel, C.; Scherzer, M. I.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Virzi, J.; Yao, W-M.; Yao, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Mandrysch, R.; Nikiforov, A.; Sauvan, J. B.; Schulz, H.; Nedden, M. Zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Charlton, D. G.; Dowell, J. D.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Mahout, G.; Mclaughlan, T.; Newman, P. R.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Cambiaghi, M.; Ciocca, C.; Conta, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchino, B. S.; Fraternali, M.; Livan, M.; Massa, I.; Mengarelli, A.; Monzani, S.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Uslenghi, M.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Koffas, T.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Silva, M. L. Gonzalez; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jenni, P.; Jonsson, O.; Joram, C.; Kaplon, J.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Diaz, M. A.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, Ph.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Coll Cosenza, Cosenza, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Ciba, K.; Dabrowski, W.; Dwuznik, M.; Gao, Y. S.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Lowe, A. J.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Vickey, T.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] INFN Lab Nazl Frascati, Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Phys Inst 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Phys Inst 2, Gottingen, Germany. [Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Nodulman, L.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Nodulman, L.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Nodulman, L.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, T.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, Lecce, Italy. [Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Traynor, D.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Traynor, D.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Traynor, D.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Fer, U. Scha; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Amorim, A.; Aoun, S.; Beddall, A.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Gomes, A.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Jorge, P. M.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Lopes, L.; Maio, A.; Monnier, E.; Morais, A.; Odier, J.; Palma, A.; Petit, E.; Pina, J.; Pinto, B.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Saraiva, J. G.; Silva, J.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Amorim, A.; Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Gomes, A.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Jorge, P. M.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Lopes, L.; Maio, A.; Monnier, E.; Morais, A.; Odier, J.; Palma, A.; Petit, E.; Pina, J.; Pinto, B.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Saraiva, J. G.; Silva, J.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] INFN Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, Moscow, Russia. [Artamonov, A.; Gorbounov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Shimojima, M.; Tanaka, Y.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; De Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; De Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Federic, P.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, B. S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, B. S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del PreteA, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenono, Z.] INFN Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del PreteA, T.; Dotti, A.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenono, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Arik, E.; Bogouch, A.; Caso, C.; Castro, N. F.; Muino, P. Conde; Dawson, J. W.; Do Valle Wemans, A.; Dobinson, R.; Dogan, O. B.; Doi, Y.; Dolgoshein, B. A.; Fiolhais, M. C. N.; Gomes, A.; Hill, D.; Jorge, P. M.; Lapin, V. V.; Lopes, L.; Miguens, J. Machado; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Marin, A.; Moisseev, A. M.; Morais, A.; O'Neale, S. W.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Rumiantsev, V.; Santos, H.; Saraiva, J. G.; Schmidt, M. P.; Silva, J.; Soares, M.; Strong, J. A.; Stumer, I.; Veloso, F.; Virchaux, M.; Zmouchko, V. V.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] INFN Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Vickey, T.; Virchaux, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Butler, B.; Haas, A.; Horn, C.; Kenney, C. J.; Lowe, A. J.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Batkova, L.; Blazek, T.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN Grp Coll Udine, Udine, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Garcia, E. Oliver; Garcia-Estan, M. T. Perez; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Gallego, E. Valladolid; Ferrer, J. A. Valls; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, Domaine Sci Doua, IN2P3, Villeurbanne, France. [Aguilar-Saavedra, J. A.] Univ Lisbon, Fac Ciencias & CFNUL, Lisbon, Portugal. [Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Bold, T.; Grabowska-Bold, I.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phy, Freiburg, Germany. RI Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Karyukhin, Andrey/J-3904-2014; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Marti-Garcia, Salvador/F-3085-2011; Laycock, Paul/F-7543-2011; Conde Muino, Patricia/F-7696-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; valente, paolo/A-6640-2010; Doyle, Anthony/C-5889-2009; Andreazza, Attilio/E-5642-2011; Jakubek, Jan/E-6530-2011; Smirnov, Sergei/F-1014-2011; Fazio, Salvatore /G-5156-2010; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; BESSON, NATHALIE/L-6250-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012 OI Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Camarri, Paolo/0000-0002-5732-5645; Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; De Lotto, Barbara/0000-0003-3624-4480; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Gomes, Agostinho/0000-0002-5940-9893; Karyukhin, Andrey/0000-0001-9087-4315; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Conde Muino, Patricia/0000-0002-9187-7478; Stoicea, Gabriel/0000-0002-7511-4614; valente, paolo/0000-0002-5413-0068; Doyle, Anthony/0000-0001-6322-6195; Andreazza, Attilio/0000-0001-5161-5759; Smirnov, Sergei/0000-0002-6778-073X; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; CEA-DSM/IRFU, France [IN2P3-CNRS]; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, USA FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide. NR 38 TC 2 Z9 2 U1 7 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 1 PY 2011 VL 84 IS 1 AR 011101 DI 10.1103/PhysRevD.84.011101 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 786SU UT WOS:000292329000001 ER PT J AU Kritcher, AL Doppner, T Fortmann, C Ma, T Landen, OL Wallace, R Glenzer, SH AF Kritcher, A. L. Doeppner, T. Fortmann, C. Ma, T. Landen, O. L. Wallace, R. Glenzer, S. H. TI In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAY THOMSON SCATTERING; NATIONAL IGNITION FACILITY; DENSE MATTER; TARGETS; PLASMA AB We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T-e and the Fermi temperature T-F similar to n(e)(2/3). In-flight compressions of Be and CH targets reach 6-13 times solid density, with T-e/T-F similar to 0.4-0.7 and Gamma(ii) similar to 5, resulting in minimum adiabats of similar to 1.6-2. These measurements are consistent with low-entropy implosions and predictions by radiation-hydrodynamic modeling. C1 [Kritcher, A. L.; Doeppner, T.; Fortmann, C.; Ma, T.; Landen, O. L.; Wallace, R.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Kritcher, AL (reprint author), Lawrence Livermore Natl Lab, L-493,POB 808, Livermore, CA 94551 USA. RI Ma, Tammy/F-3133-2013 OI Ma, Tammy/0000-0002-6657-9604 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development [11-ER-050]; Humboldt Foundation FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development Grant No. 11-ER-050. C. F. is supported by the Humboldt Foundation. Thanks to R. Bahukutumbi for discussions on pulse shaping. NR 28 TC 28 Z9 28 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2011 VL 107 IS 1 AR 015002 DI 10.1103/PhysRevLett.107.015002 PG 4 WC Physics, Multidisciplinary SC Physics GA 786TN UT WOS:000292330900008 PM 21797548 ER PT J AU Weon, BM Kim, JT Je, JH Yi, JM Wang, S Lee, WK AF Weon, B. M. Kim, J. T. Je, J. H. Yi, J. M. Wang, S. Lee, W. -K. TI Colloid Coalescence with Focused X Rays SO PHYSICAL REVIEW LETTERS LA English DT Article ID SPHERES; TEMPERATURE; DIFFUSION; PARTICLES; BEHAVIOR; CONTACT; SOLIDS; BUBBLE AB We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nano-fabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics. C1 [Weon, B. M.; Kim, J. T.; Je, J. H.] Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Xray Imaging Ctr, Pohang 790784, South Korea. [Yi, J. M.] Samsung Adv Inst Technol, Yongin 446712, Gyeonggi, South Korea. [Wang, S.; Lee, W. -K.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Weon, BM (reprint author), Pohang Univ Sci & Technol, Dept Mat Sci & Engn, Xray Imaging Ctr, Pohang 790784, South Korea. EM bmweon@hotmail.com; jhje@postech.ac.kr RI Weon, Byung Mook/D-1493-2011 OI Weon, Byung Mook/0000-0002-5224-5590 FU MEST/NRF; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Creative Research Initiatives (Functional X-ray Imaging) by MEST/NRF. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 33 TC 7 Z9 7 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 1 PY 2011 VL 107 IS 1 AR 018301 DI 10.1103/PhysRevLett.107.018301 PG 4 WC Physics, Multidisciplinary SC Physics GA 786TN UT WOS:000292330900017 PM 21797577 ER PT J AU Wagner, A Tobimatsu, Y Phillips, L Flint, H Torr, K Donaldson, L Pears, L Ralph, J AF Wagner, Armin Tobimatsu, Yuki Phillips, Lorelle Flint, Heather Torr, Kirk Donaldson, Lloyd Pears, Lana Ralph, John TI CCoAOMT suppression modifies lignin composition in Pinus radiata SO PLANT JOURNAL LA English DT Article DE Pinus radiata; caffeoyl-CoA 3-O-methyltransferase; tracheary elements; lignin; caffeyl alcohol; benzodioxane ID TRACHEARY ELEMENT DIFFERENTIATION; THERMAL-DEGRADATION PRODUCTS; MASS-SPECTROMETRIC CHARACTERIZATION; POLYSACCHARIDE DERIVED PRODUCTS; GAS-CHROMATOGRAPHIC SEPARATION; CINNAMYL ALCOHOL-DEHYDROGENASE; A O-METHYLTRANSFERASE; MEDICAGO-SATIVA L.; CAFFEOYL-COENZYME; BIOFUEL PRODUCTION AB A cDNA clone encoding the lignin-related enzyme caffeoyl CoA 3-O-methyltransferase (CCoAOMT) was isolated from a Pinus radiata cDNA library derived from differentiating xylem. Suppression of PrCCoAOMT expression in P. radiata tracheary element cultures affected lignin content and composition, resulting in a lignin polymer containing p-hydroxyphenyl (H), catechyl (C) and guaiacyl (G) units. Acetyl bromide-soluble lignin assays revealed reductions in lignin content of up to 20% in PrCCoAOMT-deficient transgenic lines. Pyrolysis-GC/MS and 2D-NMR studies demonstrated that these reductions were due to depletion of G-type lignin. Correspondingly, the proportion of H-type lignin in PrCCoAOMT-deficient transgenic lines increased, resulting in up to a 10-fold increase in the H/G ratio relative to untransformed controls. 2D-NMR spectra revealed that PrCCoAOMT suppression resulted in formation of benzodioxanes in the lignin polymer. This suggested that phenylpropanoids with an ortho-diphenyl structure such as caffeyl alcohol are involved in lignin polymerization. To test this hypothesis, synthetic lignins containing methyl caffeate or caffeyl alcohol were generated and analyzed by 2D-NMR. Comparison of the 2D-NMR spectra from PrCCoAOMT-RNAi lines and synthetic lignins identified caffeyl alcohol as the new lignin constituent in PrCCoAOMT-deficient lines. The incorporation of caffeyl alcohol into lignin created a polymer containing catechyl units, a lignin type that has not been previously identified in recombinant lignin studies. This finding is consistent with the theory that lignin polymerization is based on a radical coupling process that is determined solely by chemical processes. C1 [Wagner, Armin; Phillips, Lorelle; Flint, Heather; Torr, Kirk; Donaldson, Lloyd; Pears, Lana] Scion, Rotorua, New Zealand. [Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53705 USA. [Ralph, John] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI USA. [Ralph, John] Wisconsin Bioenergy Initiat, Madison, WI USA. RP Wagner, A (reprint author), Scion, Private Bag 3020, Rotorua, New Zealand. EM armin.wagner@scionresearch.com FU New Zealand Foundation for Research, Science and Technology [C04X0207, C04X0703]; US Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science) [BER DE-FC02-07ER64494] FX This work was funded in part by grants C04X0207 and C04X0703 from the New Zealand Foundation for Research, Science and Technology. J.R. was funded in part by the US Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science BER DE-FC02-07ER64494). We would like to thank Tim Strabala and Brian Richardson for critical reading of this manuscript. NR 62 TC 55 Z9 60 U1 1 U2 34 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD JUL PY 2011 VL 67 IS 1 BP 119 EP 129 DI 10.1111/j.1365-313X.2011.04580.x PG 11 WC Plant Sciences SC Plant Sciences GA 783SQ UT WOS:000292104700011 PM 21426426 ER PT J AU Januszyk, K Fleissner, MR Atchabahian, L Shieh, FK Altenbach, C Martin, SL Guo, F Hubbell, WL Clubb, RT AF Januszyk, Kurt Fleissner, Mark R. Atchabahian, Lara Shieh, Fa-Kuen Altenbach, Christian Martin, Sandra L. Guo, Feng Hubbell, Wayne L. Clubb, Robert T. TI Site-directed spin labeling electron paramagnetic resonance study of the ORF1 protein from a mouse L1 retrotransposon SO PROTEIN SCIENCE LA English DT Article DE retrotransposon; LINE-1; L1; nucleic acid chaperone; RNA-binding; electron paramagnetic resonance spectroscopy; RRM; SDSL-EPR ID C-TERMINAL DOMAIN; SIDE-CHAINS; CHAPERONE ACTIVITY; NITROXIDE MOTION; HUMAN GENOMES; T4 LYSOZYME; RNA-BINDING; IN-VITRO; LINE-1; DYNAMICS AB Long interspersed nuclear element-1 is a highly abundant mammalian retrotransposon that comprises 17% of the human genome. L1 retrotransposition requires the protein encoded by open reading frame-1 (ORF1p), which binds single-stranded RNA with high affinity and functions as a nucleic acid chaperone. ORF1p has been shown to adopt a homo-trimeric, asymmetric dumbbell-shaped structure. However, its atomic-level structure and mechanism of RNA binding remains poorly understood. Here, we report the results of a site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) study of 27 residues within the RNA binding region of the full-length protein. The EPR data are compatible with the large RNA binding lobe of ORF1p containing a RNA recognition motif (RRM) domain and a carboxyl-terminal domain (CTD) that are predicted from crystallographic and NMR studies of smaller fragments of the protein. Interestingly, the EPR data indicate that residues in strands beta 3 and beta 4 of the RRM are structurally unstable, compatible with the previously observed sensitivity of this region to proteolysis. Affinity measurements and RNA-dependent EPR spectral changes map the RNA binding site on ORF1p to residues located in strands beta 3 and beta 4 of the RRM domain and to helix alpha 1 of the CTD. Complementary in vivo studies also identify residues within the RRM domain that are required for retrotransposition. We propose that in the context of the full-length trimeric protein these distinct surfaces are positioned adjacent to one another providing a continuous surface that may interact with nucleic acids. C1 [Januszyk, Kurt; Fleissner, Mark R.; Atchabahian, Lara; Shieh, Fa-Kuen; Altenbach, Christian; Hubbell, Wayne L.; Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Fleissner, Mark R.; Altenbach, Christian; Hubbell, Wayne L.] Univ Calif Los Angeles, Jules Stein Eye Inst, Los Angeles, CA 90095 USA. [Martin, Sandra L.] Univ Colorado, Sch Med, Human Med Genet Program, Aurora, CO 80045 USA. [Martin, Sandra L.] Univ Colorado, Sch Med, Dept Cell & Dev Biol, Aurora, CO 80045 USA. [Guo, Feng; Hubbell, Wayne L.; Clubb, Robert T.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Clubb, Robert T.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Fleissner, MR (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles E Young Dr, Los Angeles, CA 90095 USA. EM mfleissn@ucla.edu; rclubb@mbi.ucla.edu FU NIH [R01-GM57487, R01-AI52217, R01EY05216, RT32EY007026]; UCLA; Jules Stein Professorship Endowment FX Grant sponsor: NIH; Grant numbers: R01-GM57487, R01-AI52217, R01EY05216, RT32EY007026; Grant sponsors: UCLA Dissertation Year Fellowship; Jules Stein Professorship Endowment. NR 48 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2011 VL 20 IS 7 BP 1231 EP 1243 DI 10.1002/pro.651 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 785UV UT WOS:000292257600016 PM 21563223 ER PT J AU Meruelo, AD Samish, I Bowie, JU AF Meruelo, Alejandro D. Samish, Ilan Bowie, James U. TI TMKink: A method to predict transmembrane helix kinks SO PROTEIN SCIENCE LA English DT Article DE membrane protein; protein structure; structure prediction; protein folding ID PROTEIN SECONDARY STRUCTURE; NEURAL-NETWORK; SEQUENCE; MEMBRANE; CONFORMATIONS; DISTORTIONS; MODULATE; DATABASE; PROLINE; SERVER AB A hallmark of membrane protein structure is the large number of distorted transmembrane helices. Because of the prevalence of bends, it is important to not only understand how they are generated but also to learn how to predict their occurrence. Here, we find that there are local sequence preferences in kinked helices, most notably a higher abundance of proline, which can be exploited to identify bends from local sequence information. A neural network predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity 0.89). It is likely that more structural data will allow for better helix distortion predictors with increased coverage in the future. The kink predictor, TMKink, is available at http://tmkinkpredictor.mbi.ucla.edu/. C1 [Bowie, James U.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. [Meruelo, Alejandro D.] Univ Calif Los Angeles, Med Scientist Training Program, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. [Samish, Ilan] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel. RP Bowie, JU (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, UCLA DOE Inst Genom & Prote, Inst Mol Biol, Los Angeles, CA 90095 USA. EM bowie@mbi.ucla.edu RI samish, ilan/B-7980-2016; Meruelo, Alejandro/L-3118-2016 OI samish, ilan/0000-0002-0299-9124; Meruelo, Alejandro/0000-0001-6087-1818 FU NIH [RO1 GM063919]; Ruth L. Kirschstein NRSA Predoctoral Fellowship Award FX Grant sponsor: NIH; Grant number: RO1 GM063919; Grant sponsors: Ruth L. Kirschstein NRSA Predoctoral Fellowship Award to Promote Diversity in Health-Related Research, Molecular Biology Whitecome Stipend. NR 31 TC 24 Z9 25 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD JUL PY 2011 VL 20 IS 7 BP 1256 EP 1264 DI 10.1002/pro.653 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 785UV UT WOS:000292257600018 PM 21563225 ER PT J AU Palmer, TA Elmer, JW Mayr, P Specht, ED AF Palmer, T. A. Elmer, J. W. Mayr, P. Specht, E. D. TI Direct observation of austenitisation in 1005 C-Mn steel during continuous heating using in situ synchrotron X-ray diffraction SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Article DE Austenitisation; Steels; Phase transformation; Synchrotron radiation ID DUAL-PHASE STEELS; LOW-CARBON STEEL; ARC WELDS; AFFECTED ZONE; MANGANESE STEEL; LATTICE-PARAMETERS; TRANSFORMATIONS; FERRITE; KINETICS; PEARLITE AB The austenitisation (alpha ->gamma) transformation in a 1005 C-Mn steel is monitored in real time at continuous heating rates between 1 and 10 degrees C s(-1) using in situ synchrotron X-ray diffraction and validated using dilatometry. Experimental validation is provided for austenitisation models that predict that the austenitisation transformation proceeds through multiple mechanisms. At temperatures below the A1 transformation temperature, the starting microstructure undergoes recovery and recrystallisation to relieve stress imparted during the initial thermomechanical processing of the steel. The austenitisation transformation follows, beginning at the A1 temperature, with the initial transformation proceeding as the pearlite in the microstructure is dissolved and high carbon concentration austenite is formed. Since the carbon is localised near the original pearlite colonies, there is a pronounced heating rate dependent delay before the remaining low C ferrite grains begin to transform. The transformation reaches completion at temperatures above the A3 temperature, and the last ferrite to be transformed is nearly pure iron. C1 [Mayr, P.] Graz Univ Technol, A-8010 Graz, Austria. [Palmer, T. A.; Elmer, J. W.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Specht, E. D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Mayr, P (reprint author), Graz Univ Technol, A-8010 Graz, Austria. EM peter.mayr@tugraz.at RI Mayr, Peter/C-4560-2008; Specht, Eliot/A-5654-2009 OI Mayr, Peter/0000-0003-2530-4644; Specht, Eliot/0000-0002-3191-2163 FU US Department of Energy, Lawrence Livermore National Laboratory [W-7405-ENG-48]; US Department of Energy Division of Materials Sciences and Engineering [DE-AC05-00OR22725]; UT-Battelle, LLC; US DOE through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign [DEFG02-91ER45439]; Oak Ridge National Laboratory (US DOE) [DE-AC05-00OR22725]; Oak Ridge National Laboratory (UT-Battelle LLC); National Institute of Standards and Technology (US Department of Commerce); UOP LLC; US DOE, Basic Energy Sciences, Office of Science [W-31-109-ENG-38] FX The LLNL portion of this work was performed under the auspices of the US Department of Energy, Lawrence Livermore National Laboratory, under contract no. W-7405-ENG-48. The ORNL portion of this work was sponsored by the US Department of Energy Division of Materials Sciences and Engineering under contract no. DE-AC05-00OR22725 with UT-Battelle, LLC. The UNICAT facility at the APS is supported by the US DOE under award no. DEFG02-91ER45439, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign, the Oak Ridge National Laboratory (US DOE contract DE-AC05-00OR22725 with UT-Battelle LLC), the National Institute of Standards and Technology (US Department of Commerce) and UOP LLC. The APS is supported by the US DOE, Basic Energy Sciences, Office of Science under contract no. W-31-109-ENG-38. The authors express gratitude to Bob Vallier and Jackson Go of LLNL for performing optical metallography. NR 44 TC 3 Z9 3 U1 2 U2 16 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD JUL PY 2011 VL 16 IS 5 BP 377 EP 384 DI 10.1179/1362171811Y.0000000028 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 783KY UT WOS:000292082500001 ER PT J AU Chambers, SA AF Chambers, Scott A. TI Understanding the mechanism of conductivity at the LaAlO3/SrTiO3(001) interface SO SURFACE SCIENCE LA English DT Article DE Electrical transport measurements; Lanthanum; Aluminum; Oxygen; Strontium; Titanium; Single crystal epitaxy; Heterojunctions ID 2-DIMENSIONAL ELECTRON-GAS; SRTIO3/LAALO3 INTERFACES; OXIDE INTERFACES; SRTIO3 FILMS; HETEROJUNCTION; TEMPERATURE AB The observation of conductivity at (001)-oriented interfaces of the 2 band insulators LaAlO3 and SrTiO3 is both fascinating and potentially useful for next-generation electronics. The paradigm commonly used to explain this phenomenon is an electronic reconstruction resulting from the instability created by forming an interface of polar and nonpolar perovskites, leading to the formation of a two-dimensional electron gas. This explanation has typically been conceptualized within the framework of an atomically abrupt interface. However, a significant and growing body of data now exists which reveals that the interface is not abrupt, and that all four cations diffuse across the interface. Yet, the potential roles of the resulting defects and dopants in alleviating the polar catastrophe and promoting conductivity are rarely considered. The purpose of this prospective is to take an overview of the field from outside the reigning paradigm and consider ways in which dopants and defects might affect the electronic structure. (C) 2011 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Chambers, SA (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,MS K8-87, Richland, WA 99352 USA. EM sa.chambers@pnl.gov FU U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering; Department of Energy's Office of Biological and Environmental Research FX The author thanks Bharat Jalan, Susanne Stemmer, Jim Allen and Jeremy Levy for informative discussions, as well as Peter Sushko and Tim Droubay for critical readings of this manuscript. This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering, and was performed in the Environmental Molecular Sciences Laboratory, a national science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 49 TC 36 Z9 36 U1 2 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL PY 2011 VL 605 IS 13-14 BP 1133 EP 1140 DI 10.1016/j.susc.2011.04.011 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 781BK UT WOS:000291905400002 ER PT J AU Brooks, JD Chen, TL Mullins, DR Cox, DF AF Brooks, John D. Chen, Tsung-Liang Mullins, David R. Cox, David F. TI Reactions of ethylidene on a model chromia surface: 1,1-dichloroethane on stoichiometric alpha-Cr2O3 (10(1)over-bar2) SO SURFACE SCIENCE LA English DT Article DE Temperature programmed desorption; Chromium oxide; 1,1-dichloroethane; Halogen; Ethane dehydrogenation; Ethylidene ID IRON CARBENE COMPLEXES; METHYL RADICALS; OXIDATIVE DEHYDROGENATION; ALKYLIDENE TRANSFER; CRYSTAL SURFACES; OXIDE CATALYSTS; CARBON-DIOXIDE; DECOMPOSITION; ETHYLENE; PD(111) AB The reaction of CH3CHCl2 over the nearly-stoichiometric alpha-Cr2O3 (10 (1) over bar2) surface produces an ethylidene intermediate that yields primarily gas phase CH2=CH2 and surface chlorine adatoms: however, trace amounts of HC CH, CH3CH3, H-2 and CH3CH=CHCH3 are also observed. A rate-limiting intramolecular isomerization (2,1-hydrogen shift) in the surface ethylidene species produces gas phase CH2=CH2. The chlorine freed from the dissociation of CH3CHCl2 binds at the five-coordinate surface Cr3+ sites on the stoichiometric surface, completing the octahedral coordination sphere, and inhibits the surface chemistry by simple site blocking. No surface carbon deposition is observed from the thermal reaction of 1,1-dichloroethane under the conditions of this study, demonstrating that the ethylidene intermediate is not a primary coke forming intermediate over (10 (1) over bar2) facets of alpha-Cr2O3 under the conditions of this study. (C) 2011 Elsevier B.V. All rights reserved. C1 [Brooks, John D.; Cox, David F.] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. [Chen, Tsung-Liang; Mullins, David R.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Cox, DF (reprint author), Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA. EM dfcox@vt.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-97ER14751]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-000R22725]; Oak Ridge National Laboratory; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX JDB and DFC gratefully acknowledge financial support by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy through Grant DE-FG02-97ER14751. The efforts of TLC and DRM are sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under contract No. DE-AC05-000R22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 42 TC 1 Z9 1 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL PY 2011 VL 605 IS 13-14 BP 1170 EP 1176 DI 10.1016/j.susc.2011.03.020 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 781BK UT WOS:000291905400008 ER PT J AU Preston, BL Yuen, EJ Westaway, RM AF Preston, Benjamin L. Yuen, Emma J. Westaway, Richard M. TI Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks SO SUSTAINABILITY SCIENCE LA English DT Review DE Vulnerability assessment; Mapping; Climate change; Adaptation ID SEA-LEVEL RISE; GLOBAL ENVIRONMENTAL-CHANGE; 2003 HEAT-WAVE; ADAPTIVE CAPACITY; COASTAL VULNERABILITY; SOCIAL VULNERABILITY; NATURAL HAZARDS; FACILITATING ADAPTATION; MARINE ECOSYSTEMS; HEALTH-RISKS AB There is growing demand among stakeholders across public and private institutions for spatially-explicit information regarding vulnerability to climate change at the local scale. However, the challenges associated with mapping the geography of climate change vulnerability are non-trivial, both conceptually and technically, suggesting the need for more critical evaluation of this practice. Here, we review climate change vulnerability mapping in the context of four key questions that are fundamental to assessment design. First, what are the goals of the assessment? A review of published assessments yields a range of objective statements that emphasize problem orientation or decision-making about adaptation actions. Second, how is the assessment of vulnerability framed? Assessments vary with respect to what values are assessed (vulnerability of what) and the underlying determinants of vulnerability that are considered (vulnerability to what). The selected frame ultimately influences perceptions of the primary driving forces of vulnerability as well as preferences regarding management alternatives. Third, what are the technical methods by which an assessment is conducted? The integration of vulnerability determinants into a common map remains an emergent and subjective practice associated with a number of methodological challenges. Fourth, who participates in the assessment and how will it be used to facilitate change? Assessments are often conducted under the auspices of benefiting stakeholders, yet many lack direct engagement with stakeholders. Each of these questions is reviewed in turn by drawing on an illustrative set of 45 vulnerability mapping studies appearing in the literature. A number of pathways for placing vulnerability mapping on a more robust footing are also identified. C1 [Preston, Benjamin L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Yuen, Emma J.] CSIRO Climate Adaptat Flagship, Aspendale, Vic 3195, Australia. [Westaway, Richard M.] IMS Consulting, Bristol BS1 2AW, Avon, England. RP Preston, BL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,MS 6038,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM prestonbl@ornl.gov; emma.j.yuen@csiro.au; westaway.richard@gmail.com RI Yuen, Emma/G-5110-2012; Preston, Benjamin/B-9001-2012 OI Preston, Benjamin/0000-0002-7966-2386 NR 187 TC 108 Z9 110 U1 18 U2 138 PU SPRINGER JAPAN KK PI TOKYO PA CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN SN 1862-4065 EI 1862-4057 J9 SUSTAIN SCI JI Sustain. Sci. PD JUL PY 2011 VL 6 IS 2 BP 177 EP 202 DI 10.1007/s11625-011-0129-1 PG 26 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA 782VV UT WOS:000292041700007 ER PT J AU Andres, RJ Gregg, JS Losey, L Marland, G Boden, TA AF Andres, R. J. Gregg, J. S. Losey, L. Marland, G. Boden, T. A. TI Monthly, global emissions of carbon dioxide from fossil fuel consumption SO TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY LA English DT Article ID UNITED-STATES; CO2 EMISSIONS; INVENTORY; CYCLE; US AB This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950-2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models. C1 [Andres, R. J.; Marland, G.; Boden, T. A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Gregg, J. S.] Riso DTU Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Losey, L.] Univ N Dakota, Dept Space Studies, Grand Forks, ND 58202 USA. RP Andres, RJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM andresrj@ornl.gov RI ANDRES, ROBERT/B-9786-2012; Gregg, Jay/C-6732-2011; OI Gregg, Jay/0000-0003-3946-3099; ANDRES, ROBERT/0000-0001-8781-4979 FU U.S. Department of Energy [DE-FG02-03ER46030]; U.S. Department of Energy, Office of Science; UT-Battelle, LLC, for the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Government [DE-AC05-00OR22725] FX This work was initially supported by U.S. Department of Energy grant DE-FG02-03ER46030. This work was also sponsored by U.S. Department of Energy, Office of Science, Biological and Environmental Research (BER) programs and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The submitted paper has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 41 TC 57 Z9 61 U1 1 U2 43 PU CO-ACTION PUBLISHING PI JARFALLA PA RIPVAGEN 7, JARFALLA, SE-175 64, SWEDEN SN 0280-6509 J9 TELLUS B JI Tellus Ser. B-Chem. Phys. Meteorol. PD JUL PY 2011 VL 63 IS 3 BP 309 EP 327 DI 10.1111/j.1600-0889.2011.00530.x PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 785BK UT WOS:000292202200003 ER PT J AU Muthukumar, K Yu, JJ Xu, Y Guliants, VV AF Muthukumar, Kaliappan Yu, Junjun Xu, Ye Guliants, Vadim V. TI Propane Ammoxidation Over the Mo-V-Te-Nb-O M1 Phase: Reactivity of Surface Cations in Hydrogen Abstraction Steps SO TOPICS IN CATALYSIS LA English DT Article DE Mo-V-Te-Nb-O; Mixed metal oxide; M1 phase; Propane; Propyl; Propene; Allyl; Oxidative dehydrogenation; Ammoxidation; Acrylonitrile; Density functional theory calculations ID VANADIUM-OXIDE CATALYSTS; FINDING SADDLE-POINTS; INITIO MOLECULAR-DYNAMICS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; OXIDATIVE DEHYDROGENATION; SELECTIVE AMMOXIDATION; (AMM)OXIDATION CATALYSTS; V2O5(001) SURFACE; ACTIVE-CENTERS AB Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C(3) (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, Delta E, being <=-1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites (Delta E > -1 eV). Atomic H binds more strongly to Te=O (Delta E <= -3 eV) than to all the other sites, including V=O (Delta E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E(a) <= 1.01 eV) than V=O (E(a) = 1.70 eV on V(5+)=O and 2.13 eV on V(4+)=O). The higher-than-observed activity and the loose binding of Te=O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te=O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions. C1 [Muthukumar, Kaliappan; Yu, Junjun; Guliants, Vadim V.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Guliants, VV (reprint author), Univ Cincinnati, Cincinnati, OH 45221 USA. EM kaliappan.muthukumar@gmail.com; yuj3@mail.uc.edu; xuy2@ornl.gov; Vadim.Guliants@uc.edu RI Xu, Ye/B-5447-2009; Kaliappan, Muthukumar/B-2364-2008 OI Xu, Ye/0000-0002-6406-7832; Kaliappan, Muthukumar/0000-0002-8644-7668 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-04ER15604]; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory FX This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under grant no. DE-FG02-04ER15604. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U. S. Department of Energy. We gratefully acknowledge National Energy Research Scientific Computing Center and Ohio Supercomputing Center for providing computational resources. NR 60 TC 12 Z9 12 U1 0 U2 16 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD JUL PY 2011 VL 54 IS 10-12 BP 605 EP 613 DI 10.1007/s11244-011-9682-1 PG 9 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 782JI UT WOS:000292003900004 ER PT J AU Perkins, TA Jager, HI AF Perkins, T. Alex Jager, Henriette I. TI Falling Behind: Delayed Growth Explains Life-History Variation in Snake River Fall Chinook Salmon SO TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY LA English DT Article ID ALTERNATIVE MALE PHENOTYPES; ONCORHYNCHUS-TSHAWYTSCHA; PACIFIC SALMON; ATLANTIC SALMON; COLUMBIA RIVER; CONDITIONAL STRATEGIES; BODY-SIZE; TEMPERATURE; SURVIVAL; POPULATIONS AB Fall Chinook salmon Oncorhynchus tshawytscha typically migrate to the ocean as subyearlings (age 0), but a strategy whereby juveniles overwinter in freshwater and migrate to the ocean as yearlings (age 1) has emerged over the past few decades in Idaho's Snake River population. The recent appearance of the yearling strategy has conservation implications for this threatened population because of survival and reproductive differences between the two life histories. Different proportions of juveniles adopt the yearling life history in different river reaches and years, and temperature differences are thought to play some role in accounting for this variation. The specific circumstances under which juveniles pursue the yearling life history are poorly understood. We advance a hypothesis for the mechanism by which juveniles adopt a life history, formalize it with a model, and present the results of fitting this model to life history data. The model captures patterns of variation in proportions of yearling out-migrants among reaches and years, and it appears robust to uncertainty in a key unknown parameter. Results from fitting the model to empirical yearling migrant proportions suggest that juveniles commit to a life history earlier in development than the time at which smoltification typically begins. Specifically, juveniles that become yearling migrants do so soon after emergence if they are too far behind a typical growth schedule given temperature and photoperiod cues at that time. Our model also offers those interested in the management and conservation of Snake River fall Chinook salmon a useful tool by which to account for life history variation in population viability analyses and decision making. C1 [Perkins, T. Alex] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA. [Perkins, T. Alex; Jager, Henriette I.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Perkins, TA (reprint author), Univ Calif Davis, Ctr Populat Biol, 1 Shields Ave, Davis, CA 95616 USA. EM taperkins@ucdavis.edu OI Jager, Henriette/0000-0003-4253-533X FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725, DE-FG02-97ER25308]; Idaho Power Company under U.S. DOE [NFE-06-00450] FX This research was conducted at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, under Contract Number DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). The publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. H.I.J. was funded by Idaho Power Company under U.S. DOE Contract Number NFE-06-00450. T. A. P. was funded by a Computational Sciences Graduate Fellowship, which is managed by Krell Institute under U.S. DOE Contract Number DE-FG02-97ER25308. We appreciate comments on the manuscript from G. Cada (Oak Ridge National Laboratory), J. Chandler, P. Groves, R. Waples, and an anonymous reviewer. J. Chandler and P. Groves provided spawning and temperature data on behalf of Idaho Power Company; B. Bellgraph and G. McMichael provided data on variation in fry emergence timing and FL; and W. P. Connor (U. S. Fish and Wildlife Service) provided life history data for 2000-2005. Thanks are extended to A. Lockhart for assistance with temperature imputation. NR 56 TC 4 Z9 4 U1 1 U2 23 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0002-8487 EI 1548-8659 J9 T AM FISH SOC JI Trans. Am. Fish. Soc. PD JUL PY 2011 VL 140 IS 4 BP 959 EP 972 DI 10.1080/00028487.2011.599257 PG 14 WC Fisheries SC Fisheries GA 836VH UT WOS:000296142700008 ER PT J AU Thome, L Moll, S Jagielski, J Debelle, A Garrido, F Sattonnay, G AF Thome, L. Moll, S. Jagielski, J. Debelle, A. Garrido, F. Sattonnay, G. TI Damage Accumulation in Nuclear Ceramics SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 8th International Conference on Ion Implantation and Other Applications of Ions and Electrons - ION 2010 CY JUN 14-17, 2010 CL Maria Curie-Sklodowska Univ, Kazimierz Dolny, POLAND HO Maria Curie-Sklodowska Univ ID ION-BEAM IRRADIATION; SWIFT HEAVY-IONS; SILICON-CARBIDE; IMPLANTATION TEMPERATURE; ANNEALING BEHAVIOR; DEFECT PRODUCTION; RADIATION-DAMAGE; SINGLE-CRYSTALS; WASTE; PLUTONIUM AB Ceramics are key engineering materials in many industrial domains. The evaluation of radiation damage in ceramics placed in a radiative environment is a challenging problem for electronic, space and nuclear industries. Ion beams delivered by various types of accelerators are very efficient tools to simulate the interactions involved during the slowing-down of energetic particles. This article presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on new results concerning the damage build-up. Ions with energies in the keV-GeV range are considered for this study in order to explore both regimes of nuclear collisions (at low energy) and electronic excitations (at high energy). The recovery, by electronic excitation, of the damage created by ballistic collisions (swift heavy ion beam induced epitaxial recrystallization process) is also reported. C1 [Thome, L.; Moll, S.; Debelle, A.; Garrido, F.] Univ Paris 11, CNRS, Ctr Spectrometrie Nucl & Spectrometrie Masse, IN2P3, F-91405 Orsay, France. [Moll, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Jagielski, J.] Inst Elect Mat Technol, PL-01919 Warsaw, Poland. [Jagielski, J.] Andrzej Soltan Inst Nucl Studies, PL-05400 Otwock, Poland. [Sattonnay, G.] Univ Paris 11, LEMHE, ICMMO, UMR 8182, F-91405 Orsay, France. RP Thome, L (reprint author), Univ Paris 11, CNRS, Ctr Spectrometrie Nucl & Spectrometrie Masse, IN2P3, Bat 108, F-91405 Orsay, France. EM thome@csnsm.in2p3.fr NR 49 TC 0 Z9 0 U1 4 U2 18 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD JUL PY 2011 VL 120 IS 1 BP 7 EP 12 PG 6 WC Physics, Multidisciplinary SC Physics GA 776CS UT WOS:000291512700003 ER PT J AU Hodge, JA Becker, RH White, RL Richards, GT Zeimann, GR AF Hodge, J. A. Becker, R. H. White, R. L. Richards, G. T. Zeimann, G. R. TI HIGH-RESOLUTION VERY LARGE ARRAY IMAGING OF SLOAN DIGITAL SKY SURVEY STRIPE 82 AT 1.4 GHz SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; radio continuum: general; surveys ID VLA-COSMOS SURVEY; ACTIVE GALACTIC NUCLEI; FIELD-SOUTH REGION; RADIO-SOURCE COUNTS; 7TH DATA RELEASE; DEEP FIELD; 1ST SURVEY; LUMINOSITY FUNCTION; SOURCE POPULATION; REDSHIFT CUTOFF AB We present a high-resolution radio survey of the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a.k.a. Stripe 82. This 1.4 GHz survey was conducted with the Very Large Array primarily in the A-configuration, with supplemental B-configuration data to increase sensitivity to extended structure. The survey has an angular resolution of 1 ''.8 and achieves a median rms noise of 52 mu Jy beam(-1) over 92 deg(2). This is the deepest 1.4 GHz survey to achieve this large of an area, filling a gap in the phase space between small, deep and large, shallow surveys. It also serves as a pilot project for a larger high-resolution survey with the Expanded Very Large Array. We discuss the technical design of the survey and details of the observations, and we outline our method for data reduction. We present a catalog of 17,969 isolated radio components, for an overall source density of similar to 195 sources deg(-2). The astrometric accuracy of the data is excellent, with an internal check utilizing multiply observed sources yielding an rms scatter of 0 ''.19 in both right ascension and declination. A comparison to the SDSS DR7 Quasar Catalog further confirms that the astrometry is well tied to the optical reference frame, with mean offsets of 0 ''.02 +/- 0 ''.01 in right ascension, and 0 ''.01 +/- 0 ''.02 in declination. A check of our photometry reveals a small, negative CLEAN-like bias on the level of 35 mu Jy. We report on the catalog completeness, finding that 97% of FIRST-detected quasars are recovered in the new Stripe 82 radio catalog, while faint, extended sources are more likely to be resolved out by the resolution bias. We conclude with a discussion of the optical counterparts to the catalog sources, including 76 newly detected radio quasars. The full catalog as well as a search page and cutout server are available online at http://third.ucllnl.org/cgi-bin/stripe82cutout. C1 [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Richards, G. T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Hodge, J. A.; Becker, R. H.; Zeimann, G. R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Becker, R. H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hodge, JA (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. EM hodge@mpia.de FU NRAO [GSSP08-0034]; Hubble Space Telescope [HST-GO-10412.03-A]; National Science Foundation [AST 00-98355]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Space Telescope Science Institute under NASA [NAS5-26555]; Alfred P. Sloan Research Fellowship FX J.A.H. acknowledges the support of NRAO grant GSSP08-0034, a UC Davis Graduate Block Grant Fellowship, and grant HST-GO-10412.03-A from the Hubble Space Telescope. R.H.B. acknowledges the support of the National Science Foundation under grant AST 00-98355. The work by R.H.B. was partly performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. R.L.W. acknowledges the support of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. G.T.R. acknowledges support from an Alfred P. Sloan Research Fellowship. NR 61 TC 34 Z9 34 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2011 VL 142 IS 1 AR 3 DI 10.1088/0004-6256/142/1/3 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 777AE UT WOS:000291584200003 ER PT J AU Zhao, J Scheibe, TD Mahadevan, R AF Zhao, Jiao Scheibe, Timothy D. Mahadevan, R. TI Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE bioremediation of uranium; electron capacitance; Geobacter; global sensitivity analysis; reactive-transport model ID FRESH-WATER SEDIMENTS; GEOBACTER-SULFURREDUCENS; CONTAMINATED AQUIFER; SENSITIVITY-ANALYSIS; MICROBIAL REDUCTION; TRANSPORT MODEL; SITU; GROUNDWATER; DYNAMICS; KINETICS AB Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e. g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction. Biotechnol. Bioeng. 2011; 108: 1537-1548. (C) 2011 Wiley Periodicals, Inc. C1 [Zhao, Jiao; Mahadevan, R.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Scheibe, Timothy D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mahadevan, R.] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada. RP Mahadevan, R (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada. EM krishna.mahadevan@utoronto.ca RI Scheibe, Timothy/A-8788-2008; Mahadevan, Radhakrishnan/A-8502-2008 OI Scheibe, Timothy/0000-0002-8864-5772; Mahadevan, Radhakrishnan/0000-0002-1270-9063 FU Office of Science (BER), U. S. Department of Energy [DE-SC0004080] FX This research was supported by the Office of Science (BER), U. S. Department of Energy, Award No. DE-SC0004080. NR 34 TC 9 Z9 9 U1 1 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD JUL PY 2011 VL 108 IS 7 BP 1537 EP 1548 DI 10.1002/bit.23096 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 775NV UT WOS:000291467600006 PM 21337330 ER PT J AU Liu, WN Sun, X Stephens, E Khaleel, M AF Liu, W. N. Sun, X. Stephens, E. Khaleel, M. TI Effect of substrate thickness on oxide scale spallation for solid oxide fuel cells SO CORROSION SCIENCE LA English DT Article DE Ferritic alloy; Oxidation and internal oxidation; Interface; Experiments; Modeling studies ID SOFC INTERCONNECT APPLICATIONS; METALLIC INTERCONNECTS; OXIDATION BEHAVIOR; STAINLESS-STEELS; FE-CR; STRESS; ALLOY; GROWTH; ADDITIONS; COATINGS AB In this paper, the effect of the ferritic interconnect thickness on the delamination/spallation of the oxide scale was investigated experimentally and numerically. At the operating environment of solid oxide fuel cells (SOFCs), a combination of growth stress with thermal stresses may lead to scale delamination/buckling and eventual spallation during SOFC stack cooling, even leading to serious degradation of cell performance. The experimental and numerical results show that the interfacial shear stresses increase with the growth of the oxide scale and also with the thickness of the ferritic substrate, i.e., the thick ferritic substrate can easily lead to scale delamination and spallation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Liu, W. N.; Sun, X.; Stephens, E.; Khaleel, M.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Liu, WN (reprint author), MSC Software, 101 N Brand Blvd, Pasadena, CA USA. EM Wenning.Liu@mscsoftware.com OI khaleel, mohammad/0000-0001-7048-0749 FU US Department of Energy, Battlle [DE-AC05-76RL01830]; US Department of Energy's National Energy Technology Laboratory FX Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830. The work was funded as part of the Solid-State Energy Conversion Alliance Core Technology Program by the US Department of Energy's National Energy Technology Laboratory. NR 33 TC 6 Z9 6 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD JUL PY 2011 VL 53 IS 7 BP 2406 EP 2412 DI 10.1016/j.corsci.2011.03.025 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 775IX UT WOS:000291454100008 ER PT J AU Liao, HF AF Liao, Huafei TI Preface to the Special Issue: Human Factors in Control Rooms of Nuclear Power Plants SO HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES LA English DT Editorial Material C1 Sandia Natl Labs, Risk & Reliabil Anal Dept, Albuquerque, NM 87185 USA. RP Liao, HF (reprint author), Sandia Natl Labs, Risk & Reliabil Anal Dept, POB 5800, Albuquerque, NM 87185 USA. EM hnliao@sandia.gov RI Liao, Huafei/D-4611-2013 NR 1 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1090-8471 J9 HUM FACTOR ERGON MAN JI Hum. Factors Ergonom. Manuf. Serv. Ind. PD JUL-AUG PY 2011 VL 21 IS 4 SI SI BP 329 EP 330 DI 10.1002/hfm.20338 PG 2 WC Engineering, Manufacturing; Ergonomics SC Engineering GA 776CO UT WOS:000291512300001 ER PT J AU Liao, HF Chang, JL AF Liao, Huafei Chang, Jo-Ling TI Human Performance in Control Rooms of Nuclear Power Plants: A Survey Study SO HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES LA English DT Article DE Human error; Human performance; Human factors; Human reliability; Human-system interface; Factor analysis; Nuclear power plants; Control rooms ID INTERFACE DESIGN AB Driven by the increasing demand for reliable and clean energy, the nuclear industry is booming worldwide three decades after the Three Mile Island accident. The transition of technology in nuclear power plants has raised many important human performance issues in every aspect of control systems. To obtain insights on how to meet the challenges imposed by new technologies, a survey was conducted to examine the causal factors of the human-system interface-related human errors in NPP plant control rooms. The survey results can help us identify error categories in terms of the interrelationships among the error causal factors. Moreover, an investigation of the error causal factors can enable us to better understand the nature of the errors and then propose effective corrective action guidelines to mitigate their consequences and enhance human reliability. A five-factor structure was identified through an exploratory factor analysis: Invisibility of System Status, Incorrect System Interface Design, Insufficient Support for System Diagnosis and Decision Making, Misoperations, and Manual Actions. The five factors are discussed in the context of the decision-action model developed in this study to derive corrective actions for each type of potential human error. (C) 2011 Wiley Periodicals, Inc. C1 [Liao, Huafei] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Chang, Jo-Ling] Bechtel Power Corp, Frederick, MD USA. RP Liao, HF (reprint author), POB 5800,MS 0748, Albuquerque, NM 87185 USA. EM hnliao@sandia.gov RI Liao, Huafei/D-4611-2013 NR 46 TC 1 Z9 1 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1090-8471 J9 HUM FACTOR ERGON MAN JI Hum. Factors Ergonom. Manuf. Serv. Ind. PD JUL-AUG PY 2011 VL 21 IS 4 SI SI BP 412 EP 428 DI 10.1002/hfm.20260 PG 17 WC Engineering, Manufacturing; Ergonomics SC Engineering GA 776CO UT WOS:000291512300007 ER PT J AU Zhou, Z Gill, AS Qian, D Mannava, SR Langer, K Wen, YH Vasudevan, VK AF Zhou, Zhong Gill, Amrinder S. Qian, Dong Mannava, S. R. Langer, Kristina Wen, Youhai Vasudevan, Vijay K. TI A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Inconel 718; Laser shock peening; Residual stress relaxation; Finite element analysis ID HIGH-TEMPERATURE; INCONEL-718; NICKEL; FATIGUE; MICROSTRUCTURE; BEHAVIOR; IMPACT; ALLOY AB The residual stresses in laser shock peened (LSP) Inconel 718 Ni-base superalloy and their thermal relaxation behavior were investigated based on three-dimensional nonlinear finite element analysis. To account for the nonlinear constitutive behavior, the Johnson Cook model has been employed and the model parameters for high strain rate response of IN718 are calibrated by comparison with recent experimental results. Based on the LSP simulation, the thermal relaxation behavior was studied through coupled thermal-structure analysis in LS-DYNA. More specifically, the effects of test temperature, exposure time and degree of initial plastic deformation are analyzed and discussed. It is observed that stress relaxation mainly occurs during the initial period of exposure, and the relaxation amplitude increases with the increase of applied temperature and as-peened plastic deformation. Based on the simulation results, an analytical model based on Zener-Wert-Avrami function is proposed to model the thermal residual stress relaxation. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhou, Zhong; Gill, Amrinder S.; Qian, Dong; Mannava, S. R.; Vasudevan, Vijay K.] Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA. [Langer, Kristina] USAF, Res Lab, RBSM, Dayton, OH 45433 USA. [Wen, Youhai] Natl Energy Technol Lab, Albany, OR 97321 USA. RP Qian, D (reprint author), Univ Cincinnati, Coll Engn & Appl Sci, Cincinnati, OH 45221 USA. EM dong.qian@uc.edu RI Qian, Dong/B-2326-2008 OI Qian, Dong/0000-0001-9367-0924 FU National Science Foundation [DMR-0706161]; General Dynamics Information Technologies (GDIT)/Air Force Research Laboratory/RBSM [FA-8650-3446-29-SC-001] FX The authors (ZZ, ASG, DQ SRM, VKV) would like to thank the National Science Foundation (grant # DMR-0706161, Dr. Alan Ardell Program Monitor) and General Dynamics Information Technologies (GDIT)/Air Force Research Laboratory/RBSM (contract # FA-8650-3446-29-SC-001), Mr. Jeffrey Moore, Program Monitor) for financial support of this research. Any opinions, findings, conclusions, or recommendations expressed in these documents are those of the author(s) and do not necessarily reflect the views of the NSF and GDIT. NR 27 TC 25 Z9 30 U1 7 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD JUL PY 2011 VL 38 IS 7 BP 590 EP 596 DI 10.1016/j.ijimpeng.2011.02.006 PG 7 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 776BA UT WOS:000291508300007 ER PT J AU Betan, RI Racz, A Vertse, T AF Betan, R. Id Racz, A. Vertse, T. TI Calculation of the Isobaric Analogue Resonance Using Shell Model in the Complex Energy Plane SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS LA English DT Article DE Gamow states; Continuum; Complex energy shell model; Lane equations ID QUANTUM-FIELD-THEORY; VACUUM ENERGY; POTENTIALS; SCATTERING AB A convenient tool for studying nuclei being far away from the beta stability line is the complex energy shell model (CXSM) in which the Berggren representation (Nucl. Phys. A 109:265, 1968) (BR) is used. The BR is formed from bound, resonant sates, and complex-energy scattering states. The parameters of isobaric analog resonance (IAR) are calculated in the framework of the Lane-model (Nucl. Phys. A 35:676, 1962) using CXSM. The novel feature of the present CXSM calculation is that the optical potentials used are complex. Results of the CXSM calculation are checked against those of the standard solution of the coupled channel Lane-equations (CC). The IAR parameters calculated by the CXSM agree well with that of the CC results for absorptive and emittive optical potentials. This agreement confirms the applicability of the CXSM calculation for complex potential. C1 [Betan, R. Id] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Betan, R. Id] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Betan, R. Id] Inst Fis Rosario CONICET UNR, Rosario, Argentina. [Racz, A.; Vertse, T.] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary. [Vertse, T.] Hungarian Acad Sci, Inst Nucl Res, H-4001 Debrecen, Hungary. RP Betan, RI (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM ridbetan@ornl.gov OI Id Betan, Rodolfo/0000-0002-6813-3235 NR 18 TC 1 Z9 1 U1 0 U2 4 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0020-7748 J9 INT J THEOR PHYS JI Int. J. Theor. Phys. PD JUL PY 2011 VL 50 IS 7 SI SI BP 2222 EP 2241 DI 10.1007/s10773-011-0722-1 PG 20 WC Physics, Multidisciplinary SC Physics GA 775XE UT WOS:000291496000026 ER PT J AU Ravcheev, DA Best, AA Tintle, N DeJongh, M Osterman, AL Novichkov, PS Rodionov, DA AF Ravcheev, Dmitry A. Best, Aaron A. Tintle, Nathan DeJongh, Matthew Osterman, Andrei L. Novichkov, Pavel S. Rodionov, Dmitry A. TI Inference of the Transcriptional Regulatory Network in Staphylococcus aureus by Integration of Experimental and Genomics-Based Evidence SO JOURNAL OF BACTERIOLOGY LA English DT Article ID GRAM-POSITIVE BACTERIA; ESCHERICHIA-COLI; HYDROGEN-PEROXIDE; BACILLUS-SUBTILIS; LIPID BIOSYNTHESIS; GENE-EXPRESSION; VIRULENCE; DATABASE; STRESS; METABOLISM AB Transcriptional regulatory networks are fine-tuned systems that help microorganisms respond to changes in the environment and cell physiological state. We applied the comparative genomics approach implemented in the RegPredict Web server combined with SEED subsystem analysis and available information on known regulatory interactions for regulatory network reconstruction for the human pathogen Staphylococcus aureus and six related species from the family Staphylococcaceae. The resulting reference set of 46 transcription factor regulons contains more than 1,900 binding sites and 2,800 target genes involved in the central metabolism of carbohydrates, amino acids, and fatty acids; respiration; the stress response; metal homeostasis; drug and metal resistance; and virulence. The inferred regulatory network in S. aureus includes similar to 320 regulatory interactions between 46 transcription factors and similar to 550 candidate target genes comprising 20% of its genome. We predicted similar to 170 novel interactions and 24 novel regulons for the control of the central metabolic pathways in S. aureus. The reconstructed regulons are largely variable in the Staphylococcaceae: only 20% of S. aureus regulatory interactions are conserved across all studied genomes. We used a large-scale gene expression data set for S. aureus to assess relationships between the inferred regulons and gene expression patterns. The predicted reference set of regulons is captured within the Staphylococcus collection in the RegPrecise database (http://regprecise.lbl.gov). C1 [Ravcheev, Dmitry A.; Osterman, Andrei L.; Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA. [Ravcheev, Dmitry A.; Rodionov, Dmitry A.] Kharkevich Inst, Inst Informat Transmiss Problems RAS, Moscow 127994, Russia. [Best, Aaron A.; Tintle, Nathan; DeJongh, Matthew] Hope Coll, Holland, MI 49423 USA. [Novichkov, Pavel S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Rodionov, DA (reprint author), Sanford Burnham Med Res Inst, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM rodionov@sanfordburnham.org RI Ravcheev, Dmitry/B-5899-2013; Ravcheev, Dmitry/M-6877-2015; OI Ravcheev, Dmitry/0000-0002-8435-5516; Rodionov, Dmitry/0000-0002-0939-390X FU National Science Foundation [DBI-0850546]; Office of Science (BER), U.S. Department of Energy [DE-SC0004999]; U.S. Department of Energy [DE-AC02-05CH11231]; Russian Academy of Sciences; Russian Foundation for Basic Research [10-04-01768] FX This work was supported by the National Science Foundation under award DBI-0850546 (M. D.) and by the Office of Science (BER), U.S. Department of Energy, under contract DE-SC0004999 (D. A. R.). The Lawrence Berkeley National Laboratory is funded by the U.S. Department of Energy Genomics GTL program (grant DE-AC02-05CH11231). Additional funding was provided by the Russian Academy of Sciences (program Molecular and Cellular Biology) and the Russian Foundation for Basic Research (10-04-01768). NR 54 TC 20 Z9 20 U1 0 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 13 BP 3228 EP 3240 DI 10.1128/JB.00350-11 PG 13 WC Microbiology SC Microbiology GA 777CS UT WOS:000291592600007 PM 21531804 ER PT J AU Weilharter, A Mitter, B Shin, MV Chain, PSG Nowak, J Sessitsch, A AF Weilharter, Alexandra Mitter, Birgit Shin, Maria V. Chain, Patrick S. G. Nowak, Jerzy Sessitsch, Angela TI Complete Genome Sequence of the Plant Growth-Promoting Endophyte Burkholderia phytofirmans Strain PsJN SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIUM; COLONIZATION AB Burkholderia phytofirmans PsJN(T) is able to efficiently colonize the rhizosphere, root, and above-ground plant tissues of a wide variety of genetically unrelated plants, such as potatoes, canola, maize, and grapevines. Strain PsJN shows strong plant growth-promoting effects and was reported to enhance plant vigor and resistance to biotic and abiotic stresses. Here, we report the genome sequence of this strain, which indicates the presence of multiple traits relevant for endophytic colonization and plant growth promotion. C1 [Sessitsch, Angela] AIT Austrian Inst Technol GmbH, Dept Hlth & Environm, Bioresources Unit, A-3430 Tulln, Austria. [Shin, Maria V.; Chain, Patrick S. G.] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Chain, Patrick S. G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Nowak, Jerzy] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. RP Sessitsch, A (reprint author), AIT Austrian Inst Technol GmbH, Dept Hlth & Environm, Bioresources Unit, Konrad Lorenz Str 24, A-3430 Tulln, Austria. EM angela.sessitsch@ait.ac.at RI chain, patrick/B-9777-2013; OI Sessitsch, Angela/0000-0003-0137-930X; Chain, Patrick/0000-0003-3949-3634 FU FWF (National Science Foundation) [P 21261-B03]; U.S. DOE's Office of Science [DE-AC02-05CH11231] FX This work was supported by a grant provided by the FWF (National Science Foundation grant no. P 21261-B03). The sequencing for the project was provided through the U.S. Department of Energy (DOE) Sequencing Program (http://www.jgi.doe.gov/CSP/index.html). This work was performed at Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, under the auspices of the U.S. DOE's Office of Science, Biological and Environmental Research Program under contract no. DE-AC02-05CH11231. NR 9 TC 37 Z9 38 U1 3 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 13 BP 3383 EP 3384 DI 10.1128/JB.05055-11 PG 2 WC Microbiology SC Microbiology GA 777CS UT WOS:000291592600025 PM 21551308 ER PT J AU Coleman, NV Wilson, NL Barry, K Brettin, TS Bruce, DC Copeland, A Dalin, E Detter, JC del Rio, TG Goodwin, LA Hammon, NM Han, SS Hauser, LJ Israni, S Kim, E Kyrpides, N Land, ML Lapidus, A Larimer, FW Lucas, S Pitluck, S Richardson, P Schmutz, J Tapia, R Thompson, S Tice, HN Spain, JC Gossett, JG Mattes, TE AF Coleman, Nicholas V. Wilson, Neil L. Barry, Kerrie Brettin, Thomas S. Bruce, David C. Copeland, Alex Dalin, Eileen Detter, John C. del Rio, Tijana Glavina Goodwin, Lynne A. Hammon, Nancy M. Han, Shunsheng Hauser, Loren J. Israni, Sanjay Kim, Edwin Kyrpides, Nikolaos Land, Miriam L. Lapidus, Alla Larimer, Frank W. Lucas, Susan Pitluck, Sam Richardson, Paul Schmutz, Jeremy Tapia, Roxanne Thompson, Sue Tice, Hope N. Spain, Jim C. Gossett, James G. Mattes, Timothy E. TI Genome Sequence of the Ethene- and Vinyl Chloride-Oxidizing Actinomycete Nocardioides sp Strain JS614 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID IDENTIFICATION; BIODEGRADATION; DEGRADATION; GENES; METABOLISM; BACTERIUM; SUBSTRATE; PATHWAYS AB Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium. C1 [Coleman, Nicholas V.] Univ Sydney, Sch Mol Biosci, Darlington 2006, Australia. [Wilson, Neil L.] Univ Sydney, Fac Agr Food & Nat Resources, Darlington 2006, Australia. [Barry, Kerrie; Copeland, Alex; del Rio, Tijana Glavina; Hammon, Nancy M.; Israni, Sanjay; Kim, Edwin; Kyrpides, Nikolaos; Lapidus, Alla; Lucas, Susan; Pitluck, Sam; Richardson, Paul; Tice, Hope N.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Brettin, Thomas S.; Hauser, Loren J.; Land, Miriam L.; Larimer, Frank W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bruce, David C.; Detter, John C.; Goodwin, Lynne A.; Han, Shunsheng; Tapia, Roxanne; Thompson, Sue] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dalin, Eileen] Synthet Genom, La Jolla, CA 92037 USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Spain, Jim C.] Georgia Inst Technol, Environm Engn Program, Atlanta, GA 30332 USA. [Gossett, James G.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Mattes, Timothy E.] Univ Iowa, Dept Civil & Environm Engn, Iowa City, IA 52242 USA. RP Coleman, NV (reprint author), Univ Sydney, Sch Mol Biosci, Darlington 2006, Australia. EM nicholas.coleman@sydney.edu.au RI Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Schmutz, Jeremy/N-3173-2013; Land, Miriam/A-6200-2011; Kyrpides, Nikos/A-6305-2014 OI Lapidus, Alla/0000-0003-0427-8731; Schmutz, Jeremy/0000-0001-8062-9172; Land, Miriam/0000-0001-7102-0031; Kyrpides, Nikos/0000-0002-6131-0462 FU U.S. Department of Energy's Office of Science; University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; Lawrence Berkeley National Laboratory [DE-AC03-76SF00098]; Los Alamos National Laboratory [W-7405-ENG-36] FX This work was performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory, under contract no. W-7405-Eng-48, Lawrence Berkeley National Laboratory under contract no. DE-AC03-76SF00098, and Los Alamos National Laboratory under contract no. W-7405-ENG-36. NR 31 TC 6 Z9 6 U1 1 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2011 VL 193 IS 13 BP 3399 EP 3400 DI 10.1128/JB.05109-11 PG 2 WC Microbiology SC Microbiology GA 777CS UT WOS:000291592600033 PM 21551312 ER PT J AU Chen, J Stefano, G Brandizzi, F Zheng, HQ AF Chen, Jun Stefano, Giovanni Brandizzi, Federica Zheng, Huanquan TI Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells SO JOURNAL OF CELL SCIENCE LA English DT Article DE RHD3; Tubular ER; Golgi distribution; GTP/GDP; Protein secretion ID CORTICAL ENDOPLASMIC-RETICULUM; MEMBRANE-PROTEINS; EXPORT SITES; ACTIN ORGANIZATION; TOBACCO-LEAVES; APPARATUS; GENE; MORPHOGENESIS; TRANSPORT; DYNAMICS AB In plant cells, the endoplasmic reticulum (ER) and Golgi apparatus form a unique system in which single Golgi stacks are motile and in close association with the underlying ER tubules. Arabidopsis has three RHD3 (ROOT HAIR DEFECTIVE 3) isoforms that are analogous to the mammalian atlastin GTPases involved in shaping ER tubules. We used live-cell imaging, genetic complementation, split ubiquitin assays and western blot analyses in Arabidopsis and tobacco to show that RHD3 mediates the generation of the tubular ER network and is required for the distribution and motility of Golgi stacks in root and leaf epidermal cells. We established that RHD3 forms homotypic interactions at ER punctae. In addition, the activity of RHD3 on the tubular ER is specifically correlated with the cellular distribution and motility of Golgi stacks because ER to Golgi as well as Golgi to plasma membrane transport was not affected by RHD3 mutations in the conserved GDP/GTP motifs. We found a possible partial redundancy within the RHD3 isoforms in Arabidopsis. However, yeast Sey1p, a functional atlastin homologue, and RHD3 are not interchangeable in complementing the respective loss-of-function mutants, suggesting that the molecular mechanisms controlling ER tubular morphology might not be entirely conserved among eukaryotic lineages. C1 [Chen, Jun; Zheng, Huanquan] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada. [Stefano, Giovanni; Brandizzi, Federica] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Zheng, HQ (reprint author), McGill Univ, Dept Biol, 1205 Dr Penfield Ave, Montreal, PQ H3A 1B1, Canada. EM hugo.zheng@mcgill.ca RI zheng, Huanquan/G-4739-2011; STEFANO, GIOVANNI/A-8264-2011 OI STEFANO, GIOVANNI/0000-0002-2744-0052 FU The National Science and Engineering Research Council of Canada; McGill University (Montreal, Canada); National Science Foundation [MCB-0948584]; Department of Energy Great Lakes Bioenergy Research Center; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021] FX We thank Sylvie Lalonde (Carnegie Institution, Stanford, CA, USA) for pNX32 and pXN22 mbSUS Gateway vectors; David Bird (University of Manitoba, Winnipeg, Canada) for pNCW-GWRFC.1; Tsuyoshi Nakagawa (Shimane University, Matsue, Japan) for pUGW2-nEYFP, pUGW2-cEYFP and pUGW0-cEYFP BiFC gateway vectors; Mark Curtis (University of Zurich, Zurich, Switzerland) for pMDC43; William Prinz (National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA) for the Sey1p clone and sey1 Delta yop1 Delta::Sec63-GFP yeast double mutant; Inhwan Hwang (Pohang University of Science and Technology, Pohang, Korea) for AHA2-GFP; and Tamara Western for critical reading of manuscript. This work was supported by a grant from The National Science and Engineering Research Council of Canada and a startup grant from McGill University (Montreal, Canada) to H.Z. and a grant from National Science Foundation (MCB-0948584) and from the Department of Energy Great Lakes Bioenergy Research Center and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award number DE-FG02-91ER20021) to F. B. NR 59 TC 46 Z9 48 U1 0 U2 14 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0021-9533 J9 J CELL SCI JI J. Cell Sci. PD JUL 1 PY 2011 VL 124 IS 13 BP 2241 EP 2252 DI 10.1242/jcs.084624 PG 12 WC Cell Biology SC Cell Biology GA 776LS UT WOS:000291537200014 PM 21652628 ER PT J AU Wang, DN Hicks, CB Goswami, ND Tafoya, E Ribeiro, RM Cai, FP Perelson, AS Gao, F AF Wang, Dongning Hicks, Charles B. Goswami, Neela D. Tafoya, Emi Ribeiro, Ruy M. Cai, Fangping Perelson, Alan S. Gao, Feng TI Evolution of Drug-Resistant Viral Populations during Interruption of Antiretroviral Therapy SO JOURNAL OF VIROLOGY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; HIV-1 REVERSE-TRANSCRIPTASE; SINGLE-DOSE NEVIRAPINE; PROTEASE INHIBITORS; TREATMENT-NAIVE; REPLICATIVE FITNESS; STOPPING THERAPY; IN-VITRO; TYPE-1; MUTATIONS AB Analysis of a large number of HIV-1 genomes at multiple time points after antiretroviral treatment (ART) interruption allows determination of the evolution of drug-resistant viruses and viral fitness in vivo in the absence of drug selection pressure. Using a parallel allele-specific sequencing (PASS) assay, potential primary drug-resistant mutations in five individual patients were studied by analyzing over 18,000 viral genomes. A three-phase evolution of drug-resistant viruses was observed after termination of ART. In the first phase, viruses carrying various combinations of multiple-drug-resistant (MDR) mutations predominated with each mutation persisting in relatively stable proportions while the overall number of resistant viruses gradually increased. In the second phase, viruses with linked MDR mutations rapidly became undetectable and single-drug-resistant (SDR) viruses emerged as minority populations while wild-type viruses quickly predominated. In the third phase, low-frequency SDR viruses remained detectable as long as 59 weeks after treatment interruption. Mathematical modeling showed that the loss in relative fitness increased with the number of mutations in each viral genome and that viruses with MDR mutations had lower fitness than viruses with SDR mutations. No single viral genome had seven or more drug resistance mutations, suggesting that such severely mutated viruses were too unfit to be detected or that the resistance gain offered by the seventh mutation did not outweigh its contribution to the overall fitness loss of the virus. These data provide a more comprehensive understanding of evolution and fitness of drug-resistant viruses in vivo and may lead to improved treatment strategies for ART-experienced patients. C1 [Wang, Dongning; Cai, Fangping; Gao, Feng] Duke Univ, Duke Human Vaccine Inst, Med Ctr, Durham, NC 27710 USA. [Hicks, Charles B.; Goswami, Neela D.] Duke Univ, Dept Med, Med Ctr, Durham, NC 27710 USA. [Tafoya, Emi; Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gao, F (reprint author), Duke Univ, Duke Human Vaccine Inst, Med Ctr, 3072B MSRB 2,DUMC 103020,Res Dr, Durham, NC 27710 USA. EM fgao@duke.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU National Institutes of Health [GM065057, AI64518, AI067854, AI28433, RR06555, P20-RR18754, K24-AI01608]; National Science Foundation [NSF PHY05-51164]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by grants from the National Institutes of Health (GM065057, AI64518, AI067854, AI28433, RR06555, P20-RR18754, and K24-AI01608) and the National Science Foundation (grant NSF PHY05-51164), and portions of the work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 41 TC 11 Z9 14 U1 1 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUL PY 2011 VL 85 IS 13 BP 6403 EP 6415 DI 10.1128/JVI.02389-10 PG 13 WC Virology SC Virology GA 775CG UT WOS:000291434300030 PM 21490094 ER PT J AU Dale, VH Efroymson, RA Kline, KL AF Dale, Virginia H. Efroymson, Rebecca A. Kline, Keith L. TI The land use-climate change-energy nexus SO LANDSCAPE ECOLOGY LA English DT Article DE Bioenergy; Climate change; Disturbances; Energy; Fossil fuel; Greenhouse gases; Landscape ecology; Solar energy; Wind energy ID ATMOSPHERIC CO2; UNITED-STATES; COASTAL ZONES; GLOBAL CHANGE; COVER CHANGE; WETLAND LOSS; FOREST; IMPACTS; LANDSCAPE; BIOFUELS AB Landscape ecology focuses on the spatial patterns and processes of ecological and human interactions. These patterns and processes are being altered by both changing resource-management practices of humans and changing climate conditions associated, in part, with increases in atmospheric concentrations of greenhouse gases. Dominant resource-extraction and land-management activities involve energy, and the use of fossil energy is one of the key drivers behind increasing greenhouse gas emissions as well as land-use changes. Alternative energy sources (such as wind, solar, nuclear, and bioenergy) are being explored to reduce greenhouse gas emission rates. Yet, energy production, including alternative-energy options, can have a wide range of effects on land productivity, surface cover, albedo, and other factors that affect carbon, water, and energy fluxes and, in turn, climate. Meanwhile, climate influences the potential output, relative efficiencies, and sustainability of alternative energy sources. Thus, land use, climate change, and energy choices are linked, and any comprehensive analysis in landscape ecology that considers one of these factors should be cognizant of these interactions. This analysis explores the implications of linkages between land use, climate hange, and energy and points out ecological patterns and processes that may be affected by their interactions. C1 [Dale, Virginia H.; Efroymson, Rebecca A.; Kline, Keith L.] Oak Ridge Natl Lab, Div Environm Sci, Ctr Bioenergy Sustainabil, Oak Ridge, TN 37831 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Ctr Bioenergy Sustainabil, Bethel Valley Rd,Bldg 1505,Room 200,POB 2008, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov; efroymsonra@ornl.gov; klinekl@ornl.gov OI Kline, Keith/0000-0003-2294-1170; Efroymson, Rebecca/0000-0002-3190-880X FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program. Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. We thank Arielle Notte and Christen Donald for helping us synthesize background information. Frederick O'Hara edited the manuscript, and Jennifer Smith checked some references. Ben Preston, Paul Opdam, Jianguo Wu, and two anonymous reviewers provided useful comments in reviews of an earlier draft of the manuscript. NR 122 TC 43 Z9 44 U1 9 U2 84 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-2973 J9 LANDSCAPE ECOL JI Landsc. Ecol. PD JUL PY 2011 VL 26 IS 6 BP 755 EP 773 DI 10.1007/s10980-011-9606-2 PG 19 WC Ecology; Geography, Physical; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Physical Geography; Geology GA 775TD UT WOS:000291485400001 ER PT J AU Zhang, XZ Sathitsuksanoh, N Zhu, ZG Zhang, YHP AF Zhang, Xiao-Zhou Sathitsuksanoh, Noppadon Zhu, Zhiguang Zhang, Y. -H. Percival TI One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis SO METABOLIC ENGINEERING LA English DT Article DE Bacillus subtilis; Cellulase engineering; Consolidated bioprocessing; Endoglucanase; Lactate; Metabolic engineering; Directed evolution ID CLOSTRIDIUM-CELLULOVORANS; ENZYMATIC-HYDROLYSIS; AMORPHOUS CELLULOSE; KLEBSIELLA-OXYTOCA; ETHANOL-PRODUCTION; SUPRAMOLECULAR STRUCTURE; HETEROLOGOUS EXPRESSION; FERMENTATIVE METABOLISM; RIBOFLAVIN PRODUCTION; ESCHERICHIA-COLI AB Although intensive efforts have been made to create recombinant cellulolytic microorganisms, real recombinant cellulose-utilizing microorganisms that can produce sufficient secretory active cellulase, hydrolyze cellulose, and utilize released soluble sugars for supporting both cell growth and cellulase synthesis without any other organic nutrient (e.g., yeast extract, peptone, amino acids), are not available. Here we demonstrated that over-expression of Bacillus subtilis endoglucanase BsCel5 enabled B. subtilis to grow on solid cellulosic materials as the sole carbon source for the first time. Furthermore, two-round directed evolution was conducted to increase specific activity of BsCel5 on regenerated amorphous cellulose (RAC) and enhance its expression/secretion level in B. subtilis. To increase lactate yield, the alpha-acetolactate synthase gene (alsS) in the 2,3-butanediol pathway was knocked out. In the chemically defined minimal M9/RAC medium, B. subtilis X27(pBscel5-MT2C) strain (Delta alsS), which expressed a BsCel5 mutant MT2C, was able to hydrolyze RAC with cellulose digestibility of 74% and produced about 3.1 g/L lactate with a yield of 60% of the theoretical maximum. When 0.1% (w/v) yeast extract was added in the M9/RAC medium, cellulose digestibility and lactate yield were enhanced to 92% and 63% of the theoretical maximum, respectively. The recombinant industrially safe cellulolytic B. subtilis would be a promising consolidated bioprocessing platform for low-cost production of biocommodities from cellulosic materials. (C) 2011 Elsevier Inc. All rights reserved. C1 [Zhang, Xiao-Zhou; Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Tech, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014; Zhu, Zhiguang/I-3936-2016 OI sathitsuksanoh, noppadon/0000-0003-1521-9155; FU DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; USDA Bioprocessing and Biodesign Center; College of Agriculture and Life Sciences Biodesign and Bioprocessing Research Center; Virginia Tech; Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech FX This work was supported mainly by the DOE BioEnergy Science Center. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the USDA Bioprocessing and Biodesign Center, the College of Agriculture and Life Sciences Biodesign and Bioprocessing Research Center and the Integrated Internal Competitive Grants Program at Virginia Tech. N.S. was supported in part by the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech. We thank Dr. Daniel Zeigler from the Bacillus Genetic Stock Center, Dr. Alfredo Martinez-Jimenez from National Autonomous University of Mexico, and Dr. Sui-Lam Wong from University of Calgary for providing bacterial strains and/or plasmids. NR 70 TC 42 Z9 44 U1 2 U2 48 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD JUL PY 2011 VL 13 IS 4 BP 364 EP 372 DI 10.1016/j.ymben.2011.04.003 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 775OX UT WOS:000291471500002 PM 21549854 ER PT J AU Alonso, AP Val, DL Shachar-Hill, Y AF Alonso, Ana Paula Val, Dale L. Shachar-Hill, Yair TI Understanding fatty acid synthesis in developing maize embryos using metabolic flux analysis (vol 12, pg 488, 2010) SO METABOLIC ENGINEERING LA English DT Correction C1 [Alonso, Ana Paula; Shachar-Hill, Yair] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Alonso, Ana Paula; Shachar-Hill, Yair] Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Alonso, AP (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM alonsoa@msu.edu RI Shachar-Hill, Yair/B-6165-2013 OI Shachar-Hill, Yair/0000-0001-8793-5084 NR 1 TC 0 Z9 0 U1 1 U2 15 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD JUL PY 2011 VL 13 IS 4 BP 454 EP 454 DI 10.1016/j.ymben.2011.01.007 PG 1 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 775OX UT WOS:000291471500011 ER PT J AU Hofmockel, KS Zak, DR Moran, KK Jastrow, JD AF Hofmockel, Kirsten S. Zak, Donald R. Moran, Kelly K. Jastrow, Julie D. TI Changes in forest soil organic matter pools after a decade of elevated CO2 and O-3 SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Soil C sequestration; Soil organic matter; Physical fractionation; N-15; C-13; Stable isotope; Elevated O-3; Elevated CO2; FACE experiment; POM ID ATMOSPHERIC CARBON-DIOXIDE; TROPOSPHERIC O-3; TREMBLING ASPEN; LIQUIDAMBAR-STYRACIFLUA; RESIDUE DECOMPOSITION; MICROBIAL BIOMASS; NORTHERN FORESTS; MEDIATE CHANGES; FACE EXPERIMENT; PARTICLE-SIZE AB The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O-3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O-3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O-3 Enrichment (FACE) experiment. Tracer amounts of (NH4+)-N-15 were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papynlera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O-3 treatments. The N-15 tracer and strongly depleted C-13-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O-3 significantly altered N-15 recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O-3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hofmockel, Kirsten S.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. [Hofmockel, Kirsten S.; Zak, Donald R.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. [Zak, Donald R.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Moran, Kelly K.; Jastrow, Julie D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Hofmockel, KS (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. EM khof@iastate.edu RI Zak, Donald/C-6004-2012 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-06CH11357] FX Our work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under grants to the University of Michigan and contract DE-AC02-06CH11357 to Argonne National Laboratory. We are greatly thankful to the people who assisted with field and laboratory work associated with this research, including Lindsay Cameron, Lauren Cline, Bill Holmes, Wendy Loya, Claire Marchetta, and Rima Upchurch. NR 68 TC 22 Z9 22 U1 7 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD JUL PY 2011 VL 43 IS 7 BP 1518 EP 1527 DI 10.1016/j.soilbio.2011.03.030 PG 10 WC Soil Science SC Agriculture GA 776YI UT WOS:000291576800016 ER PT J AU de la Venta, J Basaran, AC Grant, T Machado, AJS Suchomel, MR Weber, RT Fisk, Z Schuller, IK AF de la Venta, J. Basaran, Ali C. Grant, T. Machado, A. J. S. Suchomel, M. R. Weber, R. T. Fisk, Z. Schuller, Ivan K. TI Methodology and search for superconductivity in the La-Si-C system SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID RARE-EARTH SILICIDES; PHASE-DIAGRAM; GERMANIDES; PRESSURE AB In this paper we describe a methodology for the search for new superconducting materials. This consists of a parallel synthesis of a highly inhomogeneous alloy which covers large areas of the metallurgical phase diagram combined with a fast, microwave-based method which allows non-superconducting portions of the sample to be discarded. Once an inhomogeneous sample containing a minority phase superconductor is identified, we revert to well-known thorough identification methods which include standard physical and structural methods. We show how a systematic structural study helps in avoiding misidentification of new superconducting materials when there are indications from other methods of new discoveries. These ideas are applied to the La-Si-C system which exhibits promising normal state properties which are sometimes correlated with superconductivity. Although this system shows indications for the presence of a new superconducting compound, the careful analysis described here shows that the superconductivity in this system can be attributed to intermediate binary and single phases of the system. C1 [de la Venta, J.; Basaran, Ali C.; Schuller, Ivan K.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [de la Venta, J.; Basaran, Ali C.; Schuller, Ivan K.] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Grant, T.; Machado, A. J. S.; Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Machado, A. J. S.] Univ Sao Paulo, EEL, BR-12600970 Sao Paulo, Brazil. [Suchomel, M. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Weber, R. T.] Bruker BioSpin Corp, EPR Div, Billerica, MA 01821 USA. RP de la Venta, J (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM jdelaventa@physics.ucsd.edu RI Machado, Antonio /F-6130-2012; Basaran, Ali/K-2563-2013; Grant, Ted/O-7453-2014; OI Grant, Ted/0000-0002-2636-8212; SUCHOMEL, Matthew/0000-0002-9500-5079 FU AFOSR MURI; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We gratefully acknowledge the critical reading and valuable comments from Professor I Felner. This work was supported by an AFOSR MURI grant. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 34 TC 6 Z9 6 U1 2 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2011 VL 24 IS 7 AR 075017 DI 10.1088/0953-2048/24/7/075017 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 775NU UT WOS:000291467500017 ER PT J AU Kametani, F Shen, T Jiang, J Scheuerlein, C Malagoli, A Di Michiel, M Huang, Y Miao, H Parrell, JA Hellstrom, EE Larbalestier, DC AF Kametani, F. Shen, T. Jiang, J. Scheuerlein, C. Malagoli, A. Di Michiel, M. Huang, Y. Miao, H. Parrell, J. A. Hellstrom, E. E. Larbalestier, D. C. TI Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID MAGNET APPLICATIONS; TECHNOLOGY; CONDUCTORS; OXYGEN; TAPES; J(C) AB Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density J(c) is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting J(c). By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed J(c) values shows an inverse relation between J(c) and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on J(c). Bubbles reduce the continuous Bi2212 path within each filament and force supercurrent to flow through Bi2212 grains that span the bubbles or through a thin Bi2212 layer at the interface between the bubble and the Ag matrix. Eliminating bubbles appears to be a promising new path to raise the J(c) of Bi2212 round wires. C1 [Kametani, F.; Shen, T.; Jiang, J.; Malagoli, A.; Hellstrom, E. E.; Larbalestier, D. C.] Florida State Univ, Natl High Field Magnet Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Shen, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Scheuerlein, C.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Di Michiel, M.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Huang, Y.; Miao, H.; Parrell, J. A.] Oxford Superconducting Technol, Carteret, NJ 07008 USA. RP Kametani, F (reprint author), Florida State Univ, Natl High Field Magnet Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. RI Larbalestier, David/B-2277-2008; Shen, Tengming/G-7320-2012; Jiang, Jianyi/F-2549-2017 OI Larbalestier, David/0000-0001-7098-7208; Jiang, Jianyi/0000-0002-1094-2013 FU US Department of Energy; National Science Foundation [NSF/DMR-0084173]; State of Florida FX We are very grateful to discussions within the Very High Field Superconducting Magnet Collaboration. The work was supported by the VHFSMC, an ARRA grant of the US Department of Energy and by the National High Magnetic Field Laboratory which is supported by the National Science Foundation under NSF/DMR-0084173 and by the State of Florida. We also acknowledge the ESRF for beam time on the ID15A beamline. NR 20 TC 38 Z9 38 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD JUL PY 2011 VL 24 IS 7 AR 075009 DI 10.1088/0953-2048/24/7/075009 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 775NU UT WOS:000291467500009 ER PT J AU Rezaei, F Joh, LD Kashima, H Reddy, AP VanderGheynst, JS AF Rezaei, Farzaneh Joh, Lawrence D. Kashima, Hiroyuki Reddy, Amitha P. VanderGheynst, Jean S. TI Selection of Conditions for Cellulase and Xylanase Extraction from Switchgrass Colonized by Acidothermus cellulolyticus SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE Enzyme extraction; Solid-state fermentation; Cellulase; Xylanase; Acidothermus cellulolyticus ID SOLID-STATE FERMENTATION; ENZYMATIC-HYDROLYSIS; TRICHODERMA-REESEI; ASPERGILLUS-NIGER; PHENOLIC MONOMERS; PURIFICATION; CULTIVATION; BACTERIA; LIGNOCELLULOSE; OPTIMIZATION AB Solid-state fermentation has been widely used for enzyme production. However, secreted enzymes often bind to the solid substrate preventing their detection and recovery. A series of screening studies was performed to examine the role of extraction buffer composition including NaCl, ethylene glycol, sodium acetate buffer, and Tween 80, on xylanase and cellulase recovery from switchgrass. Our results indicated that the selection of an extraction buffer is highly dependent on the nature and source of the enzyme being extracted. While a buffer containing 50 mM sodium acetate at pH 5 was found to have a positive effect on the recovery of commercial fungal-derived cellulase and xylanase amended to switchgrass, the same buffer had a significant negative effect on enzyme extraction from solid fermentation samples colonized by the bacterium Acidothermus cellulolyticus. Xylanase activity was more affected by components in the extraction buffers compared to cellulase. This study demonstrated that extraction followed by diafiltration is important for assessing enzyme recovery from solid fermentation samples. Reduction in activity due to compounds present in the switchgrass extracts is reversible when the compounds are removed via diafiltration. C1 [Rezaei, Farzaneh; Joh, Lawrence D.; Kashima, Hiroyuki; Reddy, Amitha P.; VanderGheynst, Jean S.] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA. [Reddy, Amitha P.; VanderGheynst, Jean S.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP VanderGheynst, JS (reprint author), Univ Calif Davis, Dept Biol & Agr Engn, 1 Shields Ave, Davis, CA 95616 USA. EM jsvander@ucdavis.edu FU Chevron Technology Ventures; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research between Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy FX Funding for this research was provided by Chevron Technology Ventures. The authors wish to thank Christopher Lee and Joshua Claypool for assistance with enzyme extraction studies. Research by A.P. Reddy and J.S. VanderGheynst was performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 40 TC 7 Z9 8 U1 0 U2 11 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD JUL PY 2011 VL 164 IS 6 BP 793 EP 803 DI 10.1007/s12010-011-9174-6 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 772EY UT WOS:000291218200007 PM 21318368 ER PT J AU Lee, J Lee, TK Loffler, FE Park, J AF Lee, Jaejin Lee, Tae Kwon Loeffler, Frank E. Park, Joonhong TI Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities SO BIODEGRADATION LA English DT Article DE Titanium pyrosequencing; Microbial reductive dechlorination; Tidal flat ID STRICTLY ANAEROBIC BACTERIUM; DEHALOCOCCOIDES SP STRAIN; VINYL-CHLORIDE; REDUCTIVE DECHLORINATION; DEHALOSPIRILLUM-MULTIVORANS; SP NOV.; ELECTRON-ACCEPTORS; GEOBACTER-LOVLEYI; FLAT SEDIMENTS; GEN. NOV. AB Tetrachloroethene (PCE) and trichloroethene (TCE) are common groundwater contaminants that also impact tidal flats, especially near urban and industrial areas. However, very little is known about dechlorinating microbial communities in tidal flats. Titanium pyrosequencing, 16S rRNA gene clone libraries, and dechlorinator-targeted quantitative real-time PCR (qPCR) characterized reductive dechlorinating activities and populations in tidal flat sediments collected from South Korea's central west coast near Kangwha. In microcosms established with surface sediments, PCE dechlorination to TCE began within 10 days and 100% of the initial amount of PCE was converted to TCE after 37 days. cis-1,2-Dichloroethene (cis-DCE) was observed as dechlorination end product in microcosms containing sediments collected from deeper zones (i.e., 35-40 cm below ground surface). Pyrosequencing of bacterial 16S rRNA genes and 16S rRNA gene-targeted qPCR results revealed Desulfuromonas michiganensis-like populations predominanted in both TCE and cis-DCE producing microcosms. Other abundant groups included Desulfuromonas thiophila and Pelobacter acidigallici-like populations in the surface sediment microcosms, and Desulfovibrio dechloracetivorans and Fusibacter paucivorans-like populations in the deeper sediment microcosms. Dehalococcoides spp. populations were not detected in these sediments before and after incubation with PCE. The results suggest that tidal flats harbor novel, salt-tolerant dechlorinating populations and that titanium pyrosequencing provides more detailed insight into community structure dynamics of the dechlorinating microcosms than conventional 16S rRNA gene sequencing or fingerprinting methods. C1 [Lee, Jaejin; Lee, Tae Kwon; Park, Joonhong] Yonsei Univ, Sch Civil & Environm Engn, Seoul 120749, South Korea. [Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Park, J (reprint author), Yonsei Univ, Sch Civil & Environm Engn, Shinchon Dong 134, Seoul 120749, South Korea. EM parkj@yonsei.ac.kr RI Park, Joonhong/G-8064-2012; Loeffler, Frank/M-8216-2013; Park, Joonhong/A-3520-2016 FU Korea Ministry of Environment [051-071-031]; Ministry of Education, Science and Technology [R33-10076] FX We gratefully acknowledge Dr. James M. Tiedje from Center for Microbial Ecology at Michigan State University for his valuable review and advice. This study was supported by Korea Ministry of Environment as "The Eco-technopia 21 Project'' (051-071-031) and WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R33-10076). NR 50 TC 15 Z9 15 U1 0 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD JUL PY 2011 VL 22 IS 4 SI SI BP 687 EP 698 DI 10.1007/s10532-010-9429-x PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 771NZ UT WOS:000291168600002 PM 21053056 ER PT J AU Cusack, DF Silver, WL Torn, MS McDowell, WH AF Cusack, Daniela F. Silver, Whendee L. Torn, Margaret S. McDowell, William H. TI Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests SO BIOGEOCHEMISTRY LA English DT Article DE Aboveground biomass; Dissolved organic carbon; Nutrient limitation; Roots; Soil density fractions; Soil respiration ID SOIL ORGANIC-MATTER; SUBTROPICAL WET FOREST; FINE-ROOT DYNAMICS; LONG-TERM PATTERNS; PUERTO-RICO; RAIN-FOREST; N DEPOSITION; PHOSPHORUS FERTILIZATION; TERRESTRIAL ECOSYSTEMS; NUTRIENT LIMITATION AB Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R-2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R-2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests. C1 [Cusack, Daniela F.; Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Torn, Margaret S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [McDowell, William H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. RP Cusack, DF (reprint author), Univ Calif Santa Barbara, Dept Geog, 1832 Ellison Hall, Santa Barbara, CA 93106 USA. EM dcusack@geog.ucsb.edu RI Silver, Whendee/H-1118-2012; McDowell, William/E-9767-2010; Torn, Margaret/D-2305-2015 OI McDowell, William/0000-0002-8739-9047; FU NSF [DEB 0543558, DEB 0620910]; USDA [9900975]; International Institute of Tropical Forestry USDA Forest Service; Climate Change Research Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Agricultural Experiment Station; International Institute of Tropical Forestry, USDA Forest Service FX We thank C. Castanha, J. K. Harte, J. Merriam, A. Thompson, S. Weintraub, and J. Wright for assistance in the field and laboratory. Funding was provided by an NSF Graduate Student Research Fellowship, an NSF Doctoral Dissertation Improvement Grant, and a University of California-Berkeley Atmospheric Sciences Center grant to D. F. Cusack. This research was also supported by NSF grant DEB 0543558 to W. Silver, USDA grant 9900975 to W. H. McDowell, and NSF grant DEB 0620910 to the Institute for Tropical Ecosystem Studies, University of Puerto Rico, and the International Institute of Tropical Forestry USDA Forest Service. Partial support was provided by the Climate Change Research Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 to M. Torn, by Agricultural Experiment Station funds to W. Silver, and by the International Institute of Tropical Forestry, USDA Forest Service. C. D. Evans and two anonymous reviewers provided insightful editorial comments. NR 109 TC 45 Z9 50 U1 8 U2 121 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 J9 BIOGEOCHEMISTRY JI Biogeochemistry PD JUL PY 2011 VL 104 IS 1-3 BP 203 EP 225 DI 10.1007/s10533-010-9496-4 PG 23 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 771OA UT WOS:000291168900015 ER PT J AU Findlay, SEG Mulholland, PJ Hamilton, SK Tank, JL Bernot, MJ Burgin, AJ Crenshaw, CL Dodds, WK Grimm, NB McDowell, WH Potter, JD Sobota, DJ AF Findlay, S. E. G. Mulholland, P. J. Hamilton, S. K. Tank, J. L. Bernot, M. J. Burgin, A. J. Crenshaw, C. L. Dodds, W. K. Grimm, N. B. McDowell, W. H. Potter, J. D. Sobota, D. J. TI Cross-stream comparison of substrate-specific denitrification potential SO BIOGEOCHEMISTRY LA English DT Article DE Stream; Denitrification; DEA; Comparative; Substrate-specific; Comparison of potential with realized denitrification ID GULF-OF-MEXICO; TRANSIENT STORAGE; HEADWATER STREAMS; NITROGEN; NITRATE; ECOSYSTEMS; RETENTION; RIVER; NITRIFICATION; TERRESTRIAL AB Headwater streams have a demonstrated ability to denitrify a portion of their nitrate (NO(3) (-)) load but there has not been an extensive consideration of where in a stream this process is occurring and how various habitats contribute to total denitrification capability. As part of the Lotic Intersite Nitrogen Experiment II (LINX II) we measured denitrification potential in 65 streams spanning eight regions of the US and draining three land-use types. In each stream, potential denitrification rates were measured in common substrate types found across many streams as well as locations unique to particular streams. Overall, habitats from streams draining urban and agricultural land-uses showed higher potential rates of denitrification than reference streams draining native vegetation. This difference among streams was probably driven by higher ambient nitrate concentrations found in urban or agricultural streams. Within streams, sandy habitats and accumulations of fine benthic organic matter contributed more than half of the total denitrification capacity (mg N removed m(-2) h(-1)). A particular rate of potential denitrification per unit area could be achieved either by high activity per unit organic matter or lower activities associated with larger standing stocks of organic matter. We found that both small patches with high rates (hot spots) or more widespread but less active areas (cool matrix) contributed significantly to whole stream denitrification capacity. Denitrification estimated from scaled-up denitrification enzyme assay (DEA) potentials were not always dramatically higher than in situ rates of denitrification measured as (15)N gas generation following 24-h (15)N-NO(3) tracer additions. In general, headwater streams draining varying land-use types have significant potential to remove nitrate via denitrification and some appear to be functioning near their maximal capacity. C1 [Findlay, S. E. G.; Burgin, A. J.] Cary Inst Ecosyst Studies, Millbrook, NY 12545 USA. [Mulholland, P. J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Hamilton, S. K.] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Tank, J. L.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. [Bernot, M. J.] Ball State Univ, Dept Biol, Muncie, IN 47306 USA. [Crenshaw, C. L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Dodds, W. K.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Grimm, N. B.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [McDowell, W. H.; Potter, J. D.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA. [Sobota, D. J.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. RP Findlay, SEG (reprint author), Cary Inst Ecosyst Studies, Millbrook, NY 12545 USA. EM findlays@CaryInstitute.org RI Mulholland, Patrick/C-3142-2012; Grimm, Nancy/D-2840-2009; Burgin, Amy/G-7444-2014; McDowell, William/E-9767-2010; Hamilton, Stephen/N-2979-2014 OI Grimm, Nancy/0000-0001-9374-660X; Burgin, Amy/0000-0001-8489-4002; McDowell, William/0000-0002-8739-9047; Hamilton, Stephen/0000-0002-4702-9017 NR 34 TC 24 Z9 24 U1 1 U2 72 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 J9 BIOGEOCHEMISTRY JI Biogeochemistry PD JUL PY 2011 VL 104 IS 1-3 BP 381 EP 392 DI 10.1007/s10533-010-9512-8 PG 12 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 771OA UT WOS:000291168900026 ER PT J AU Willson, JD Dorcas, ME Snow, RW AF Willson, John D. Dorcas, Michael E. Snow, Raymond W. TI Identifying plausible scenarios for the establishment of invasive Burmese pythons (Python molurus) in Southern Florida SO BIOLOGICAL INVASIONS LA English DT Article DE Everglades National Park; Introduction; Invasive species; Population growth; Python molurus bivittatus; Reptiles; Snakes ID BOA-CONSTRICTOR; PREDATORS; SURVIVAL; ECOLOGY; SNAKE AB Successful invasions of secretive alien species often go unrecognized until spread has exceeded the point where control or eradication is feasible. In such situations, understanding factors that contributed to establishment can be critical to preventing subsequent introductions of previously-successful invaders or ecologically similar species. The Burmese python (Python molurus bivittatus), a native to Southeast Asia, is abundant in the pet trade and is now well-established in southern Florida. Although there can be little argument that the ultimate source of Florida pythons was the pet industry, there has been limited consideration of biological support for scenarios that may have lead to their establishment. In this study we use information on python capture rates and biologically-derived population growth models to evaluate the plausibility of various scenarios for python establishment. Our results indicate that scenarios involving relatively recent establishment (post-1990) require large numbers (100-1,000) of founders or unrealistically high juvenile survivorship. Intentional simultaneous release of large numbers of pythons is unlikely and accidental release of large numbers of founders is inconsistent with the spatial and temporal pattern of pythons captures in the region. We conclude that the most parsimonious scenario for establishment of pythons in Florida involves the release of a relatively small number of founders prior to 1985. Our results demonstrate that for pythons and other species with low inherent detection probabilities, early action during incipient phases of an invasion is critical and understanding likely introduction scenarios is important for preventing similar situations from occurring elsewhere or with other species. C1 [Willson, John D.] Virginia Polytech Inst & State Univ, Dept Fisheries & Wildlife Sci, Blacksburg, VA 24061 USA. [Willson, John D.] Savannah River Ecol Lab, Aiken, SC 29809 USA. [Dorcas, Michael E.] Davidson Coll, Dept Biol, Davidson, NC 28035 USA. [Snow, Raymond W.] Everglades Natl Pk, Homestead, FL 33034 USA. RP Willson, JD (reprint author), Virginia Polytech Inst & State Univ, Dept Fisheries & Wildlife Sci, 100 Cheatham Hall, Blacksburg, VA 24061 USA. EM willsonj@vt.edu FU USGS; Davidson College Biology Department; National Science Foundation [DEB-0, DEB-347, DEB-326]; Department of Energy [DE-FC-09-075R22506] FX We thank numerous people who collected python abundance and life-history data in Florida, without which these modeling exercises would not have been possible. Of particular note for their involvement in field collection and data collection for pythons are Matt Brien, Michael Cherkiss, Justin Davis, Anthony Flanagan, Wellington Guzman, Kristen Hart, Bobby Hill, Toren Hill, Frank Mazzotti, Kenneth Rice, Michael Rochford, LeRoy Rodgers, Theresa Walters, and Alex Wolf. Discussions with Kenneth Krysko, Robert Reed, and Paul Andreadis were useful in evaluating the spatial and temporal patterns of python captures. Kristen Hart, Shannon Pittman, Steven Price, Robert Reed, J. W. Gibbons, and one anonymous reviewer provided comments that helped to improve the manuscript. Partial funding for this study was provided by USGS, Davidson College Biology Department, and by National Science Foundation grant (DEB-0,347,326) to M.E. Dorcas. This material is based upon work supported by the Department of Energy under Award Number DE-FC-09-075R22506. NR 27 TC 18 Z9 20 U1 28 U2 224 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-3547 J9 BIOL INVASIONS JI Biol. Invasions PD JUL PY 2011 VL 13 IS 7 BP 1493 EP 1504 DI 10.1007/s10530-010-9908-3 PG 12 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 771MZ UT WOS:000291164300002 ER PT J AU Nelson, MA Pardyjak, ER Klein, P AF Nelson, Matthew A. Pardyjak, Eric R. Klein, Petra TI Momentum and Turbulent Kinetic Energy Budgets Within the Park Avenue Street Canyon During the Joint Urban 2003 Field Campaign SO BOUNDARY-LAYER METEOROLOGY LA English DT Article DE Momentum budget; Street canyon; Turbulent kinetic energy budget; Urban turbulence ID ANEMOMETER (CO)SINE RESPONSE; SONIC ANEMOMETER; FLUX MEASUREMENT; WIND-FIELD; FLOW; TEMPERATURE; STATISTICS; ROUGHNESS; STABILITY; SPECTRA AB Very few attempts have so far been made to quantify the momentum and turbulent kinetic energy (TKE) budgets within real urban canopies. In this study, sonic anemometer data obtained during the Joint Urban 2003 field campaign in Oklahoma City, U.S.A. were used for calculating the momentum and TKE budgets within a real-world urban street canyon. Sonic anemometers were deployed on multiple towers in the lower half of the canyon. Gradients in all three principal directions were included in the analyses. The storage and buoyancy terms were found to have negligible contributions to both the momentum and TKE budgets. The momentum budgets were generally found to be more complex than a simple balance of two physical processes. The horizontal terms were found to have significant and sometimes dominant contributions to the momentum and TKE budgets. C1 [Nelson, Matthew A.] Los Alamos Natl Lab, Grp D 3, Los Alamos, NM 87545 USA. [Pardyjak, Eric R.] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA. [Klein, Petra] Univ Oklahoma, Sch Meteorol, Norman, OK 73072 USA. RP Nelson, MA (reprint author), Los Alamos Natl Lab, Grp D 3, POB 1663, Los Alamos, NM 87545 USA. EM nelsonm@lanl.gov RI Klein, Petra/G-1894-2012 OI Klein, Petra/0000-0003-2943-7831 FU Defence Threat Reduction Agency; Dugway Proving Ground; H. E. Cramer Company, Inc.; Marc Parlange; Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM) at Ecole Polytechnique Federale de Lausanne (EPFL) FX The above study was supported by the Defence Threat Reduction Agency and Dugway Proving Ground through a contract with the H. E. Cramer Company, Inc. The authors also acknowledge the hard work of the other Park Avenue street canyon team workers and others who contributed to the datasets and figures presented in this study. In addition, the authors are very grateful to the local government workers, business owners and workers, and citizens of Oklahoma City who made the JU2003 field experiment possible. The authors would also like to thank Marc Parlange and the Laboratory of Environmental Fluid Mechanics and Hydrology (EFLUM) at Ecole Polytechnique Federale de Lausanne (EPFL) for their support in Switzerland. NR 31 TC 8 Z9 8 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-8314 J9 BOUND-LAY METEOROL JI Bound.-Layer Meteor. PD JUL PY 2011 VL 140 IS 1 BP 143 EP 162 DI 10.1007/s10546-011-9610-8 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 774BH UT WOS:000291355800009 ER PT J AU Finsterle, S Zhang, YQ AF Finsterle, Stefan Zhang, Yingqi TI Solving iTOUGH2 simulation and optimization problems using the PEST protocol SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Optimization; Sensitivity analysis; Inverse modeling; Uncertainty quantification; iTOUGH2; PEST ID UNSATURATED FLOW; BACTERIAL UREOLYSIS; AQUIFER PARAMETERS; HARMONY SEARCH; VADOSE ZONE; MODEL; ALGORITHM; SEEPAGE; INVERSE; FIELD AB The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstrate the flexibility added by the PEST protocol for the solution of a variety of simulation optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Finsterle, Stefan; Zhang, Yingqi] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Finsterle, S (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM safinsterle@lbl.gov RI Finsterle, Stefan/A-8360-2009; Zhang, Yingqi/D-1203-2015 OI Finsterle, Stefan/0000-0002-4446-9906; FU Office of Wind and Geothermal Technologies, of the U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Resources [DE-AC02-05CH11231] FX We would like to thank John Doherty for making the PEST protocol and related parsing routines publicly available, and to Nicolas Spycher for his review of the manuscript and for providing the TOUGHREACT simulation for the analysis in Section 3.1. We very much appreciate the thoughtful and constructive comments of the three anonymous reviewers. This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Wind and Geothermal Technologies, of the U.S. Department of Energy, and as part of the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Resources under Award Number DE-AC02-05CH11231. NR 51 TC 29 Z9 30 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD JUL PY 2011 VL 26 IS 7 BP 959 EP 968 DI 10.1016/j.envsoft.2011.02.008 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 759ZT UT WOS:000290291100011 ER PT J AU Standart, GD Stulken, KR Zhang, X Zong, ZL AF Standart, G. D. Stulken, K. R. Zhang, X. Zong, Z. L. TI Geospatial visualization of global satellite images with Vis-EROS SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Geo-visualization; Spatial data; Satellite images; Google Earth; USGS EROS AB Geospatial data visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data, which carry extremely valuable information, are generated on daily basis. On the other hand, these data are not well utilized due to the lack of free and easily used data visualization tools. This paper describes a way of visualizing massive spatial data at no cost by utilizing publically available visualization tools like Google Earth. We illustrate our methods by visualizing a million global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). (C) 2011 Elsevier Ltd. All rights reserved. C1 [Standart, G. D.; Stulken, K. R.; Zong, Z. L.] S Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USA. [Zhang, X.] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. RP Zong, ZL (reprint author), S Dakota Sch Mines & Technol, Dept Math & Comp Sci, Rapid City, SD 57701 USA. EM ziliang.zong@sdsmt.edu RI zhang, xuesong/B-7907-2009 FU Earth Resources Observation and Science (EROS) Center of USGS; U.S. National Science Foundation (NSF) [CNS-0915762]; Nelson Research Grant FX The authors sincerely appreciate the comments and feedbacks from the reviewers and editors. Their valuable discussions and thoughts have tremendously helped in improving the quality of this paper. The authors also gratefully acknowledge the support from the Earth Resources Observation and Science (EROS) Center of USGS. The work reported in this paper was supported by the U.S. National Science Foundation (NSF) under Grants No. CNS-0915762 and the Nelson Research Grant. NR 6 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD JUL PY 2011 VL 26 IS 7 BP 980 EP 982 DI 10.1016/j.envsoft.2011.02.012 PG 3 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 759ZT UT WOS:000290291100014 ER PT J AU Alleman, TL Fouts, L McCormick, RL AF Alleman, Teresa L. Fouts, Lisa McCormick, Robert L. TI Quality analysis of wintertime B6-B20 biodiesel blend samples collected in the United States SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Biodiesel blend; B20; Quality ID STORAGE STABILITY AB A survey of the quality of biodiesel blends in the United States was conducted in the winter of 2009-2010. Forty samples were collected in the study; two-thirds of the samples collected were from areas with a 10th percentile minimum ambient temperature below - 12 degrees C. Fuel properties were measured and compared to the relevant ASTM D7467-09 specification properties. The B6-B20 study shows increased compliance with the blend level requirements to 72.5% of samples tested, with a cold state average biodiesel content of 12% and a warm state average biodiesel content of 19%. The decreased biodiesel content in cold states is likely to due to deliberate reductions to meet the cloud point expectations. Continuing problems were noted with induction period stability for B6-B20 blends, with a failure rate of 24%. Samples collected from cold weather states had a failure rate of only 18%, likely because of the reduced biodiesel content; the failure rate from warm weather states rose to 57%. Samples failed the induction period stability specification before the acid value increased to the point of failure and no acid value failures were recorded. No failures were observed water and sediment. A single failure was noted for flash point, likely due to external contamination during fuel handling. Cloud point and cold filter plugging points are reported. (C) 2011 Elsevier B.V. All rights reserved. C1 [Alleman, Teresa L.; Fouts, Lisa; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Alleman, TL (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd,MS1634, Golden, CO 80401 USA. EM Teresa.Alleman@nrel.gov RI Alleman, Teresa/F-6281-2011; McCormick, Robert/B-7928-2011 FU U.S. Department of Energy (DOE) FX The authors are supported by the U.S. Department of Energy (DOE) Vehicle Technologies Program. The authors also thank BP and GM for providing in-kind testing support for this project. NR 19 TC 15 Z9 15 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD JUL PY 2011 VL 92 IS 7 BP 1297 EP 1304 DI 10.1016/j.fuproc.2011.02.004 PG 8 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 773IO UT WOS:000291300400004 ER PT J AU Mortensen, NP Fowlkes, JD Maggart, M Doktycz, MJ Nataro, JP Drusano, G Allison, DP AF Mortensen, Ninell P. Fowlkes, Jason D. Maggart, Michael Doktycz, Mitchel J. Nataro, James P. Drusano, George Allison, David P. TI Effects of sub-minimum inhibitory concentrations of ciprofloxacin on enteroaggregative Escherichia coli and the role of the surface protein dispersin SO INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS LA English DT Article DE Ciprofloxacin; MIC; Sub-MIC antimicrobial effects; Enteroaggregative Escherichia coli; Dispersin ID BACTERIAL ADHESION; HEP-2 CELLS; SUBINHIBITORY CONCENTRATIONS; PSEUDOMONAS-AERUGINOSA; INVITRO ACTIVITY; ADHERENCE; HYDROPHOBICITY; SUSCEPTIBILITY; RESISTANCE; DIARRHEA AB Enteroaggregative Escherichia coli (EAEC) are bacterial pathogens that cause watery diarrhoea, which is often persistent and can be inflammatory. The antibiotic ciprofloxacin is used to treat EAEC infections, but a full understanding of the antimicrobial effects of ciprofloxacin is needed for more efficient treatment of bacterial infections. In this study, it was found that sub-minimum inhibitory concentrations (sub-MICs) of ciprofloxacin had an inhibitory effect on EAEC adhesion to glass and mammalian HEp-2 cells. It was also observed that bacterial surface properties play an important role in bacterial sensitivity to ciprofloxacin. In an EAEC mutant strain where the hydrophobic positively charged surface protein dispersin was absent, sensitivity to ciprofloxacin was reduced compared with the wild-type strain. Identified here are several antimicrobial effects of ciprofloxacin at sub-MIC concentrations indicating that bacterial surface hydrophobicity affects the response to ciprofloxacin. Investigating the effects of sub-MIC doses of antibiotics on targeted bacteria could help to further our understanding of bacterial pathogenicity and elucidate future antibiotic treatment modalities. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved. C1 [Mortensen, Ninell P.; Maggart, Michael; Doktycz, Mitchel J.; Allison, David P.] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. [Fowlkes, Jason D.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nataro, James P.] Univ Virginia, Sch Med, Dept Pediat, Charlottesville, VA 22908 USA. [Drusano, George] Ordway Res Inst, Emerging Infect & Pharmacodynam Lab, Albany, NY 12208 USA. [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. RP Mortensen, NP (reprint author), Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, POB 2008,Bldg 1061,MS 6445, Oak Ridge, TN 37831 USA. EM mortensennp@ornl.gov RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 FU US Department of Energy (DoE) Office of Biological and Environmental Sciences; US DoE [DEAC05-00OR22725]; Lundbeckfonden (Denmark) FX The authors acknowledge research support from the US Department of Energy (DoE) Office of Biological and Environmental Sciences. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US DoE under Contract no. DEAC05-00OR22725. NPM would like to thank Lundbeckfonden (Denmark) for financial support. NR 40 TC 8 Z9 9 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-8579 J9 INT J ANTIMICROB AG JI Int. J. Antimicrob. Agents PD JUL PY 2011 VL 38 IS 1 BP 27 EP 34 DI 10.1016/j.ijantimicag.2011.03.011 PG 8 WC Infectious Diseases; Microbiology; Pharmacology & Pharmacy SC Infectious Diseases; Microbiology; Pharmacology & Pharmacy GA 772AU UT WOS:000291202600005 PM 21570813 ER PT J AU Long, KN Scott, TF Dunn, ML Qi, HJ AF Long, Kevin N. Scott, Timothy F. Dunn, Martin L. Qi, H. Jerry TI Photo-induced deformation of active polymer films: Single spot irradiation SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Light activated polymers; Soft active materials; Surface patterning; Surface buckling ID SHAPE-MEMORY POLYMERS; CROSS-LINKED POLYMERS; LIGHT; HYDROGELS; BEHAVIOR; GELS AB Light-activated polymers can undergo complex deformation in response to the combination of mechanical and optical stimuli. These materials are attractive for remote actuation and sensing applications. However, the behavior of such materials subjected to photomechanical patterning is not well understood. In this paper we consider a polymer that operates by photoactivated stress relaxation: at the molecular level, photoinitiation of residual initiator molecules generate free radicals that break and then reform in-chain functionalities of stretched chains in an elastomeric network, which results in macroscopic stress relaxation. We carry out experiments and finite element calculations that demonstrate the sequence of deformation events culminating in the formation of a buckled spot as a result of biaxially stretching the elastomeric film then irradiating a circular region followed by releasing the mechanical constraint. In order to better understand the photomechanics, we analyze a simpler model problem wherein a linear elastic, stress relaxing disk is subjected to (i) radial extension, (ii) irradiation of a concentric circular region, and (iii) release of the applied displacements in (i), which results in deformation and stress redistribution. In the final step, the deformation may transition from planar to buckling out of the plane depending on system parameters. Companion finite element calculations are performed against which our analytical results are in good agreement. Although not directly comparable, the analytic model qualitatively agrees with the experiments. The results of this work provide a useful foundation from which to explore more interesting behavior of periodically photo-mechanically patterned films and other more challenging actuation problems. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Long, Kevin N.; Scott, Timothy F.; Dunn, Martin L.; Qi, H. Jerry] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Long, Kevin N.] Sandia Natl Labs, Computat Solid Mech Dept, Albuquerque, NM 87185 USA. RP Qi, HJ (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. EM qih@colorado.edu RI Qi, H. Jerry/C-1588-2009; OI DUNN, MARTIN/0000-0002-4531-9176 FU Sandia National Laboratories [LDRD 11-1001]; NSF [ID 2007056220, CMMI-0645219]; AFOSR [FA9550-09-1-0195]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge the support of Sandia National Laboratories (LDRD 11-1001) and the NSF Graduate Research Fellowship for K.N.L. (ID 2007056220), an NSF career award (CMMI-0645219) to H.J.Q., and an AFOSR grant (FA9550-09-1-0195) to M.L.D. and H.J.Q. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 32 TC 21 Z9 23 U1 8 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD JUL PY 2011 VL 48 IS 14-15 BP 2089 EP 2101 DI 10.1016/j.ijsolstr.2011.02.027 PG 13 WC Mechanics SC Mechanics GA 771WJ UT WOS:000291191100001 ER PT J AU Lee, DW Powell, J Perajarvi, K Guo, FQ Moltz, DM Cerny, J AF Lee, D. W. Powell, J. Peraejaervi, K. Guo, F. Q. Moltz, D. M. Cerny, Joseph TI Study of the C-11(p, gamma) reaction via the indirect d(C-11, N-12)n transfer reaction SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID ASYMPTOTIC NORMALIZATION COEFFICIENTS; ASTROPHYSICAL S-FACTOR; DIRECT CAPTURE; DEUTERON; NUCLEI; BEAM; C-11(P,GAMMA)N-12; SCATTERING; RATES; STARS AB The C-11(p, gamma)N-12 reaction is expected to be an important branch point in supermassive low-metallicity stars because it could produce CNO seed nuclei before the traditional triple-alpha process turns on. In this work, the d(C-11, N-12)n transfer reaction was employed to evaluate this reaction using a radioactive ion beam of 150MeV C-11 with 6 x 10(5) ions s(-1) on target from the BEARS project at the 88 inch cyclotron at the Lawrence Berkeley National Laboratory. Excellent agreement was obtained between the experimental cross sections (theta(c.m.) = 10.9-71.5 degrees.) and DWBA calculations. The asymptotic normalization coefficient was deduced to be (C-eff(12N))(2) = (C-p1/2(12N))(2) + (C-p3/2(12N))(2) = 1.83 +/- 0.27 fm(-1). C1 [Lee, D. W.; Powell, J.; Peraejaervi, K.; Guo, F. Q.; Cerny, Joseph] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Moltz, D. M.; Cerny, Joseph] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Lee, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dmmoltz@highdesertnuclear.com; jcerny@berkeley.edu RI Lee, Dongwon/F-8675-2012 OI Lee, Dongwon/0000-0003-3133-5199 FU US Department of Energy, Office of Nuclear Physics [DE-AC03-76SF00098] FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under contract no DE-AC03-76SF00098. We thank Professor David K Geiger of the State University of New York at Geneseo for providing the CD2 target. NR 33 TC 4 Z9 4 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2011 VL 38 IS 7 AR 075201 DI 10.1088/0954-3899/38/7/075201 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 773YH UT WOS:000291347500006 ER PT J AU Milhans, J Li, DS Khaleel, M Sun, X Al-Haik, MS Harris, A Garmestani, H AF Milhans, J. Li, D. S. Khaleel, M. Sun, X. Al-Haik, Marwan S. Harris, Adrian Garmestani, H. TI Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures SO JOURNAL OF POWER SOURCES LA English DT Article DE Nanoindentation; Creep; Glass-ceramic; High-temperature ID NANOINDENTATION CREEP; RESISTANT ALLOYS; ELASTIC-MODULUS; INDENTATION; BEHAVIOR; INTERCONNECT; POLYMERS; SILICA; RANGE; LOAD AB Mechanical properties of solid oxide fuel cell glass-ceramic seal material. G18, are studied at high temperatures. Samples of G18 are aged for either 4h or 100 h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750 degrees C, using loading rates of 5 mN s(-1) and 25 mN s(-1). Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature. Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4 h-aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging. (C) 2011 Elsevier B.V. All rights reserved. C1 [Milhans, J.; Garmestani, H.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Li, D. S.; Khaleel, M.; Sun, X.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. [Al-Haik, Marwan S.] Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. [Harris, Adrian] Micro Mat Ltd, Unit 3, Wrexham LL13 7YP, Wales. RP Milhans, J (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM jmilhans@gatech.edu RI Al-Haik, Marwan/L-7732-2014; OI Al-Haik, Marwan/0000-0001-7465-0274; khaleel, mohammad/0000-0001-7048-0749 FU United States Department of Energy [DE-AC06-76RL01830]; U.S. Department of Energy's National Energy Technology Laboratory (NETL); Boeing Fellowship FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RL01830. The work summarized in this report was funded as part of the Solid-State Energy Conversion Alliance (SECA) Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Funding was additionally provided by the Boeing Fellowship. NR 19 TC 17 Z9 17 U1 0 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2011 VL 196 IS 13 SI SI BP 5599 EP 5603 DI 10.1016/j.jpowsour.2011.02.033 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 771GA UT WOS:000291144000030 ER PT J AU Xiao, J Hu, JZ Wang, DY Hu, DH Xu, W Graff, GL Nie, ZM Liu, J Zhang, JG AF Xiao, Jie Hu, Jianzhi Wang, Deyu Hu, Dehong Xu, Wu Graff, Gordon L. Nie, Zimin Liu, Jun Zhang, Ji-Guang TI Investigation of the rechargeability of Li-O-2 batteries in non-aqueous electrolyte SO JOURNAL OF POWER SOURCES LA English DT Article DE Li-air batteries; Carbon air electrode; Oxygen diffusion; Energy storage ID LI-AIR BATTERIES; LITHIUM/AIR BATTERIES; LI/AIR BATTERIES; LITHIUM/OXYGEN BATTERY; POLYMER ELECTROLYTE; OPTIMIZATION; PERFORMANCE AB To understand the limited cycle life performance and poor energy efficiency associated with rechargeable lithium-oxygen (Li-O-2) batteries, the discharge products of primary Li-O-2 cells at different depths of discharge (DOD) were systematically analyzed using XRD, FTIR and Ultra-high field MAS NMR. When discharged to 2.0V, the reaction products of Li-O-2 cells include a small amount of Li2O2 along with Li2CO3 and RO-(C=O)-OLi in the alkyl carbonate-based electrolyte. However, regardless of the DOD, there is no Li2O detected in the discharge products in the alkyl-carbonate electrolyte. For the first time it was revealed that in an oxygen atmosphere the high surface area carbon significantly reduces the electrochemical operation window of the electrolyte, and leads to plating of insoluble Li salts on the electrode at the end of the charging process. Therefore, the impedance of the Li-O-2 cell continues to increase after each discharge and recharge process. After only a few cycles, the carbon air electrode is completely insulated by the accumulated Li salt terminating the cycling. Published by Elsevier B.V. C1 [Xiao, Jie; Hu, Jianzhi; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Ji-Guang] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Xiao, J (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM jie.xiao@pnl.gov; jigunag.zhang@pnl.gov RI Hu, Jian Zhi/F-7126-2012; Hu, Dehong/B-4650-2010; Deyu, Wang/J-9496-2014 OI Hu, Dehong/0000-0002-3974-2963; FU Pacific Northwest National Laboratory FX This work was supported by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, which is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. We acknowledge Ms. Mary Hu and Dr. Ja Hun Kwak for their assistance with the NMR experiments and data analysis. NR 23 TC 145 Z9 150 U1 7 U2 147 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2011 VL 196 IS 13 SI SI BP 5674 EP 5678 DI 10.1016/j.jpowsour.2011.02.060 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 771GA UT WOS:000291144000041 ER PT J AU Bailey, DH Borwein, JM AF Bailey, D. H. Borwein, J. M. TI High-precision numerical integration: Progress and challenges SO JOURNAL OF SYMBOLIC COMPUTATION LA English DT Article DE Quadrature; Numerical integration; High-precision arithmetic; Quantum field theory; Ising theory ID ISING-CLASS AB One of the most fruitful advances in the field of experimental mathematics has been the development of practical methods for very high-precision numerical integration, a quest initiated by Keith Geddes and other researchers in the 1980s and 19905. These techniques, when coupled with equally powerful integer relation detection methods, have resulted in the analytic evaluation of many integrals that previously were beyond the realm of symbolic techniques. This paper presents a survey of the current state-of-the-art in this area (including results by the present authors and others), mentions some new results, and then sketches what challenges lie ahead. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bailey, D. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Borwein, J. M.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Borwein, J. M.] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 2W5, Canada. RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dhbailey@lbl.gov; jborwein@cs.dal.ca OI Borwein, Jonathan/0000-0002-1263-0646 FU Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; NSERC; Canada Research Chair FX The first author is supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. The second author is supported in part by NSERC and the Canada Research Chair Programme. NR 26 TC 8 Z9 8 U1 0 U2 2 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0747-7171 J9 J SYMB COMPUT JI J. Symb. Comput. PD JUL PY 2011 VL 46 IS 7 SI SI BP 741 EP 754 DI 10.1016/j.jsc.2010.08.010 PG 14 WC Computer Science, Theory & Methods; Mathematics, Applied SC Computer Science; Mathematics GA 771AX UT WOS:000291130700002 ER PT J AU Shvartsburg, AA Isaac, G Leveque, N Smith, RD Metz, TO AF Shvartsburg, Alexandre A. Isaac, Giorgis Leveque, Nathalie Smith, Richard D. Metz, Thomas O. TI Separation and Classification of Lipids Using Differential Ion Mobility Spectrometry SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Ion mobility spectrometry (IMS); Differential IMS (FAIMS); Lipid analyses; Isomer separation ID GAS-PHASE SEPARATIONS; MASS-SPECTROMETRY; STRUCTURAL-CHARACTERIZATION; BIOLOGICAL SAMPLES; PEAK-CAPACITY; FAIMS-MS; PEPTIDES; FIELD; PHOSPHOLIPIDS; LIPIDOMICS AB Correlations between the dimensions of a 2-D separation create trend lines that depend on structural or chemical characteristics of the compound class and thus facilitate classification of unknowns. This broadly applies to conventional ion mobility spectrometry (IMS)/mass spectrometry (MS), where the major biomolecular classes (e.g., lipids, peptides, nucleotides) occupy different trend line domains. However, strong correlation between the IMS and MS separations for ions of same charge has impeded finer distinctions. Differential IMS (or FAIMS) is generally less correlated to MS and thus could separate those domains better. We report the first observation of chemical class separation by trend lines using FAIMS, here for lipids. For lipids, FAIMS is indeed more independent of MS than conventional IMS, and subclasses (such as phospho-, glycero-, or sphingolipids) form distinct, often non-overlapping domains. Even finer categories with different functional groups or degrees of unsaturation are often separated. As expected, resolution improves in He-rich gases: at 70% He, glycerolipid isomers with different fatty acid positions can be resolved. These results open the door for application of FAIMS to lipids, particularly in shotgun lipidomics and targeted analyses of bioactive lipids. C1 [Shvartsburg, Alexandre A.; Isaac, Giorgis; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Leveque, Nathalie] Univ Paris 11, LETIAM, Orsay, France. RP Shvartsburg, AA (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM alexandre.shvartsburg@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Metz, Tom/0000-0001-6049-3968 FU NIH NCRR [RR 18522]; NIH [DK071283]; NIAID [U54AI081680]; US DoE OBER FX The authors thank Rui Zhao and Dr. Keqi Tang for experimental help, and Professor John A. McLean for discussions. The authors acknowledge that parts of this research were supported by NIH NCRR (RR 18522), NIH grant DK071283, and NIAID Award U54AI081680. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID or NIH. The work was performed in the Environmental Molecular Sciences Laboratory, a scientific user facility at PNNL supported by the US DoE OBER. NR 54 TC 41 Z9 41 U1 3 U2 56 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2011 VL 22 IS 7 BP 1146 EP 1155 DI 10.1007/s13361-011-0114-z PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 772SW UT WOS:000291257400005 PM 21953096 ER PT J AU ElNaggar, MS Barbier, C Van Berkel, GJ AF ElNaggar, Mariam S. Barbier, Charlotte Van Berkel, Gary J. TI Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Surface sampling probe; Fluid dynamics; Mass spectrometry; Electrospray ionization; Surface sampling ID MASS-SPECTROMETRY SYSTEM; THIN-LAYER-CHROMATOGRAPHY; BAYONET TUBE; DEVICE AB A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means for visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formation mode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed. C1 [ElNaggar, Mariam S.; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. [Barbier, Charlotte] Oak Ridge Natl Lab, Computat Sci & Engn Div, Modeling & Simulat Grp, Oak Ridge, TN 37831 USA. RP Van Berkel, GJ (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM vanberkelgj@ornl.gov RI ElNaggar, Mariam/H-3669-2016; OI ElNaggar, Mariam/0000-0001-9259-0148; Barbier, Charlotte/0000-0003-2752-0148 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX Dr. Vilmos Kertesz (ORNL) is thanked for critical review of this manuscript. The authors acknowledge support for this work by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, United States Department of Energy. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 19 TC 5 Z9 5 U1 1 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2011 VL 22 IS 7 BP 1157 EP 1166 DI 10.1007/s13361-011-0145-5 PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 772SW UT WOS:000291257400006 PM 21953098 ER PT J AU Liu, X Tseng, SC Tripathi, R Heifetz, A Krishnamurthy, S Shahriar, MS AF Liu, Xue Tseng, Shih C. Tripathi, Renu Heifetz, Alexander Krishnamurthy, Subramanian Shahriar, M. S. TI White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography SO OPTICS COMMUNICATIONS LA English DT Article DE Optical coherence tomography; Polarization sensitive; Mueller matrix; Interferometric detection ID BIOLOGICAL TISSUE; BIREFRINGENCE CHARACTERIZATION AB Optical coherence tomography (OCT) relies on interference between a polarized reference and the target reflection. Thus, it has generally been impossible to detect any unpolarized part in the signal. Here, we demonstrate a scheme that overcomes this limitation. Using a combination of heterodyning and filtering, we realize a polarization-sensitive OCT system capable of measuring the full Stokes vector, including the depolarized part. Based on such a system, we perform full Stokesmetric imaging of different layers in a porcine tendon sample. The complete 4 x 4 backscattering Muellermetric images of one layer are acquired and investigated. (c) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Xue; Tseng, Shih C.; Tripathi, Renu; Heifetz, Alexander; Krishnamurthy, Subramanian; Shahriar, M. S.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Shahriar, M. S.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Tripathi, Renu] Delaware State Univ, Dept Phys & Preengn, CREOSA, Dover, DE 19901 USA. [Heifetz, Alexander] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Liu, X (reprint author), Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. EM xueliu2012@u.northwestern.edu FU AFOSR [FA9550-06-1-0466]; NASA [NNX09AU90A]; DOE [DE-AC02-06CH11357]; NSF [0630388] FX This work is supported in part by AFOSR grant #FA9550-06-1-0466, NASA Grant #NNX09AU90A, DOE grant #DE-AC02-06CH11357 and NSF Crest grant #0630388. NR 20 TC 4 Z9 6 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0030-4018 J9 OPT COMMUN JI Opt. Commun. PD JUL 1 PY 2011 VL 284 IS 14 BP 3497 EP 3503 DI 10.1016/j.optcom.2011.03.054 PG 7 WC Optics SC Optics GA 771RV UT WOS:000291179300002 ER PT J AU Chen, TL Chen, JJA Catane, L Ma, BW AF Chen, Teresa L. Chen, John Jun-An Catane, Luis Ma, Biwu TI Fully solution processed p-i-n organic solar cells with an industrial pigment - Quinacridone SO ORGANIC ELECTRONICS LA English DT Article DE Organic solar cells; Industrial pigment; Quinacridone; p-i-n; Solution processing; Thermal treatment ID PHOTOVOLTAIC CELLS; LATENT PIGMENTS; SMALL-MOLECULE; DIKETOPYRROLOPYRROLE; EFFICIENCY; DEVICES; OXIDE; FILM AB We report solution processed organic solar cells with quinacridone (QA), an industrial pigment, as the electron donor. Applying simple spin casting and thermal annealing, trilayer devices with a pure donor (p) layer, a bulk heterojunction (i) layer, and a pure acceptor (n) layer have been fabricated. Tert-butoxycarbonyl quinacridone (t-BOC QA), a soluble yellow precursor of industrial red pigment of quinacridone, was synthesized by replacing the H atom of the NH group on QA with a t-BOC group. Uniform thin films were prepared by spin casting t-BOC QA solutions, which could be converted into insoluble thin films by thermal treatment to remove the solubilizing groups. This conversion allowed for the subsequent depositions of multiple layers without the use of orthogonal solvents. The p-i-n devices showed much higher device performance than their bilayer and simple bulk heterojunction counterparts, exhibiting power conversion efficiencies (PCEs) as high as 0.83%. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chen, Teresa L.; Chen, John Jun-An; Catane, Luis; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM BWMa@lbl.gov RI Ma, Biwu/B-6943-2012 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 31 TC 23 Z9 23 U1 2 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD JUL PY 2011 VL 12 IS 7 BP 1126 EP 1131 DI 10.1016/j.orgel.2011.03.039 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 771ZY UT WOS:000291200400005 ER PT J AU Ferreira, SR Davis, RJ Lee, YJ Lu, P Hsu, JWP AF Ferreira, Summer R. Davis, Robert J. Lee, Yun-ju Lu, Ping Hsu, Julia W. P. TI Effect of device architecture on hybrid zinc oxide nanoparticle: poly (3-hexylthiophene) blend solar cell performance and stability SO ORGANIC ELECTRONICS LA English DT Article DE Solar cell; Morphology; Hybrid; ZnO; P3HT ID OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC DEVICES; CONJUGATED POLYMER; ZNO NANOPARTICLES; MORPHOLOGY AB Hybrid zinc oxide nanoparticle (ZnO np):poly(3-hexylthiophene) (P3HT) photovoltaic devices with a blend morphology in the active layer show up to a ninefold improvement in device efficiency above devices with a planar donor-acceptor interface. However, blend devices in a conventional architecture have very poor stability upon white light exposure. Blend devices in an inverted architecture have not been previously achieved because the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hole transport layer etches the ZnO when PEDOT:PSS is deposited on top of the ZnO np:P3HT blend. Here we report the successful demonstration of an inverted ZnO np:P3HT blend solar cells that is made possible through the use of a pH neutralized PEDOT: PSS hole transport layer, and show how the inverted device architecture leads to greatly improved device stability under white light exposure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ferreira, Summer R.; Davis, Robert J.; Lee, Yun-ju; Lu, Ping; Hsu, Julia W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ferreira, SR (reprint author), Sandia Natl Labs, POB 5800,MS-1415, Albuquerque, NM 87185 USA. EM srferre@sandia.gov FU Sandia LDRD; United States Department of Energy [DE-AC04-94AL85000] FX We thank Nelson Bell for discussions and assistance with the nanoparticle synthesis. This work was supported by Sandia LDRD program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. NR 36 TC 14 Z9 14 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD JUL PY 2011 VL 12 IS 7 BP 1258 EP 1263 DI 10.1016/j.orgel.2011.04.008 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 771ZY UT WOS:000291200400026 ER PT J AU Jiang, H Kang, DW Xie, SJ Saxena, A AF Jiang, Hong Kang, Dawei Xie, Shijie Saxena, Avadh TI Effect of spin-flip scattering on current polarization in an organic spin filter SO ORGANIC ELECTRONICS LA English DT Article DE Spin filter; Spin-flip; Organic spintronics ID MAGNETORESISTANCE; VALVE AB We studied the effect of spin-flip scattering to understand the spin-dependent quantum transport properties through an organic spin filter. We found that the electronic orbitals of the organic polymer are spin-mixed when the spin-flip scattering is included. The Peierls energy gap is reduced due to the spin-flip effect, which is a peculiar property of the organic ferromagnetic polymer. An analysis based on the extended Landauer-Buttiker formula shows that the spin polarization of the current through the spin filter decreases with the spin-flip scattering. However, the device keeps the spin filter function intact even when a considerable spin-flip scattering is included. We also discuss the competing effects of spin-flip scattering and ferromagnetism of the organic interlayer on the spin filter. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jiang, Hong; Kang, Dawei; Xie, Shijie] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Jiang, Hong; Kang, Dawei; Xie, Shijie] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China. [Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Xie, SJ (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. EM xsj@sdu.edu.cn; avadh@lanl.gov RI Jiang, Hong/E-1060-2011 FU National Basic Research Program of China [2009CB929204, 2010CB923402]; National Natural Science Foundation of the People's Republic of China [10874100]; US Department of Energy FX The authors would like to acknowledge the financial support from the National Basic Research Program of China (Grant Nos. 2009CB929204 and 2010CB923402) and the National Natural Science Foundation of the People's Republic of China (Grant No. 10874100). This work was supported in part by the US Department of Energy. NR 36 TC 2 Z9 5 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD JUL PY 2011 VL 12 IS 7 BP 1264 EP 1270 DI 10.1016/j.orgel.2011.04.009 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 771ZY UT WOS:000291200400027 ER PT J AU Velasco, M Van Swygenhoven, H Brandl, C AF Velasco, M. Van Swygenhoven, H. Brandl, C. TI Coupled grain boundary motion in a nanocrystalline grain boundary network SO SCRIPTA MATERIALIA LA English DT Article DE Molecular dynamics; Dislocations; Plasticity; Nanocrystalline; Grain boundary ID MIGRATION; AL; DEFORMATION AB Coupled grain boundary motion was simulated in a three-dimensional nanocrystalline Al grain boundary network using molecular dynamics. It is shown that, in spite of the triple junction constraints, a symmetrical Sigma 75 tilt boundary can migrate during the microplastic regime with the same coupling factor as when simulated in a bicrystal configuration. After reaching the full plastic regime, dislocations start coming into play, changing the grain boundary structure and hindering further coupled motion. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Velasco, M.; Van Swygenhoven, H.] Paul Scherrer Inst Mat Sci & Simulat, CH-5232 Villigen, Switzerland. [Velasco, M.; Van Swygenhoven, H.] Ecole Polytech Fed Lausanne, Inst Mat IMX, CH-1015 Lausanne, Switzerland. [Brandl, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Van Swygenhoven, H (reprint author), Paul Scherrer Inst Mat Sci & Simulat, CH-5232 Villigen, Switzerland. EM helena.vs@psi.ch RI Brandl, Christian/C-6405-2009; Brandl, Christian/D-4013-2015 OI Brandl, Christian/0000-0003-1587-4678; Brandl, Christian/0000-0003-1587-4678 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026] FX C.B. was partially supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. 2008LANL1026. NR 18 TC 31 Z9 31 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD JUL PY 2011 VL 65 IS 2 BP 151 EP 154 DI 10.1016/j.scriptamat.2011.03.039 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 771CC UT WOS:000291133800019 ER PT J AU Bansal, DG Streator, JL AF Bansal, Dinesh G. Streator, Jeffrey L. TI Effect of Operating Conditions on Tribological Response of Al-Al Sliding Electrical Interface SO TRIBOLOGY LETTERS LA English DT Article DE Aluminum; Unlubricated friction; Unlubricated wear; Bench wear tests; Electrical contacts; Thermal softening ID ALUMINUM; CONDUCTORS; CONTACT; PERFORMANCE; CONNECTORS; BEHAVIOR; BRUSHES; CREEP AB Aluminum is widely used in electrical contacts due to its electrical properties and inexpensiveness when compared to copper. In this study, we investigate the influence of operating conditions like contact load (pressure), sliding speed, current, and surface roughness on the electrical and tribological behavior of the interface. The tests are conducted on a linear, pin-on-flat tribo-simulator specially designed to investigate electrical contacts under high contact pressures and high current densities. Control parameters include sliding speed, load, current, and surface roughness. The response of the interface is evaluated in the light of coefficient of friction, contact resistance, contact voltage, mass loss of pins, and interfacial temperature rise. As compared to sliding speed, load, and roughness, current is found to have the greatest influence on the various measured parameters. Under certain test conditions, the interface operates in a "voltage saturation" regime, wherein increase in current do not result in any increase in contact voltage. Within the voltage saturation regime the coefficient of friction tends to be lower, a result that is attributed to the higher temperatures associated with the higher voltage (and resulting material softening). Higher interfacial temperatures also appear to be responsible for the higher wear rates observed at higher current levels as well as lower coefficients of friction for smoother surfaces in the presence of current. C1 [Bansal, Dinesh G.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Streator, Jeffrey L.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Bansal, DG (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM bansaldg@ornl.gov; jeffrey.streator@me.gatech.edu RI Bansal, Dinesh/F-2255-2010 OI Bansal, Dinesh/0000-0001-8044-6341 FU University Research Initiative as Office of Naval Research [N00014-04-1-0601] FX This research was conducted at Georgia Institute of Technology, and supported in part through the Department of Defense Multidisciplinary Research Program of the University Research Initiative as Office of Naval Research Grant N00014-04-1-0601, entitled "Friction & Wear under Very High Electromagnetic Stress." Information conveyed in this manuscript does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred. NR 26 TC 3 Z9 3 U1 0 U2 5 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD JUL PY 2011 VL 43 IS 1 BP 43 EP 54 DI 10.1007/s11249-011-9784-8 PG 12 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 772UP UT WOS:000291262900004 ER PT J AU Mitri, FG Silva, GT AF Mitri, F. G. Silva, G. T. TI Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere SO WAVE MOTION LA English DT Article DE Acoustic scattering; Bessel vortex beam; Off-axial scattering; Rigid sphere ID RADIATION FORCE; SELF-RECONSTRUCTION; LIGHT-SCATTERING; ELASTIC SPHERE; GAUSSIAN-BEAM; SHELLS; WAVES; REFLECTION; ULTRASOUND; GENERATION AB In this paper, the off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid immovable (fixed) sphere is investigated. It is shown here that shifting the sphere off the axis of wave propagation induces a dependence of the scattering on the azimuthal angle. Theoretical expressions for the incident and scattered field from a rigid immovable sphere are derived. The near- and far-field acoustic scattering fields are expressed using partial wave series involving the spherical harmonics, the scattering coefficients of the sphere, the half-conical angle of the wave number components of the beam, its order and the beam-shape coefficients. The scattering coefficients of the sphere and the 3D scattering directivity plots in the near- and far-field regions are evaluated using a numerical integration procedure. The calculations indicate that the scattering directivity patterns near the sphere and in the far-field are strongly dependent upon the position of the sphere facing the incident high-order Bessel vortex beam. (C) 2011 Elsevier B.V. All rights reserved. C1 [Mitri, F. G.] Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. [Silva, G. T.] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, Alagoas, Brazil. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov RI Silva, Glauber/B-3240-2008 OI Silva, Glauber/0000-0001-8911-5848 FU Los Alamos National Laboratory [LDRD-X9N9]; CNPq [150745/2007-9] FX Dr. Mitri acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9) from Los Alamos National Laboratory. Dr. Silva acknowledges the funding from a grant CNPq 150745/2007-9 (Brazilian agency). NR 47 TC 36 Z9 41 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2125 J9 WAVE MOTION JI Wave Motion PD JUL PY 2011 VL 48 IS 5 BP 392 EP 400 DI 10.1016/j.wavemoti.2011.02.001 PG 9 WC Acoustics; Mechanics; Physics, Multidisciplinary SC Acoustics; Mechanics; Physics GA 772MW UT WOS:000291239000002 ER PT J AU Merchel, S Bremser, W Alfimov, V Arnold, M Aumaitre, G Benedetti, L Bourles, DL Caffee, M Fifield, LK Finkel, RC Freeman, SPHT Martschini, M Matsushi, Y Rood, DH Sasa, K Steier, P Takahashi, T Tamari, M Tims, SG Tosaki, Y Wilcken, KM Xu, S AF Merchel, S. Bremser, W. Alfimov, V. Arnold, M. Aumaitre, G. Benedetti, L. Bourles, D. L. Caffee, M. Fifield, L. K. Finkel, R. C. Freeman, S. P. H. T. Martschini, M. Matsushi, Y. Rood, D. H. Sasa, K. Steier, P. Takahashi, T. Tamari, M. Tims, S. G. Tosaki, Y. Wilcken, K. M. Xu, S. TI Ultra-trace analysis of Cl-36 by accelerator mass spectrometry: an interlaboratory study SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Accelerator mass spectrometry; Long-lived radionuclides; Cosmogenic nuclides; Exposure dating ID PRODUCTION-RATES; COSMOGENIC CL-36; AMS FACILITY; PERFORMANCE; SPALLATION; BE-10 AB A first international Cl-36 interlaboratory comparison has been initiated. Evaluation of the final results of the eight participating accelerator mass spectrometry (AMS) laboratories on three synthetic AgCl samples with Cl-36/Cl ratios at the 10(-11), 10(-12), and 10(-13) level shows no difference in the sense of simple statistical significance. However, more detailed statistical analyses demonstrate certain interlaboratory bias and underestimation of uncertainties by some laboratories. Following subsequent remeasurement and reanalysis of the data from some AMS facilities, the round-robin data indicate that Cl-36/Cl data from two individual AMS laboratories can differ by up to 17%. Thus, the demand for further work on harmonising the Cl-36-system on a worldwide scale and enlarging the improvement of measurements is obvious. C1 [Merchel, S.; Arnold, M.; Aumaitre, G.; Benedetti, L.; Bourles, D. L.; Finkel, R. C.] Univ Aix Marseille, CNRS, IRD, CEREGE, F-13545 Aix En Provence, France. [Bremser, W.] BAM Fed Inst Mat Res & Testing, D-12489 Berlin, Germany. [Alfimov, V.] ETH, Lab Ion Beam Phys, CH-8093 Zurich, Switzerland. [Caffee, M.] Purdue Univ, PRIME Lab, W Lafayette, IN 47906 USA. [Fifield, L. K.; Tims, S. G.] Australian Natl Univ, Canberra, ACT 0200, Australia. [Finkel, R. C.; Rood, D. H.] Lawrence Livermore Natl Lab, CAMS, Livermore, CA 94550 USA. [Freeman, S. P. H. T.; Wilcken, K. M.; Xu, S.] Scottish Univ Environm Res Ctr SUERC, E Kilbride G75 0QF, Lanark, Scotland. [Martschini, M.; Steier, P.] Univ Vienna, Fac Phys, Vienna Environm Res Accelerator VERA, A-1090 Vienna, Austria. [Matsushi, Y.; Sasa, K.; Takahashi, T.; Tamari, M.; Tosaki, Y.] Univ Tsukuba, Tsukuba, Ibaraki 3058577, Japan. RP Merchel, S (reprint author), Helmholtz Zentrum Dresden Rossendorf HZDR, D-01314 Dresden, Germany. EM s.merchel@hzdr.de RI Tosaki, Yuki/E-4845-2011; Caffee, Marc/K-7025-2015; Tims, Stephen/P-6505-2015; Freeman, Stewart/C-3290-2012; OI Caffee, Marc/0000-0002-6846-8967; Tims, Stephen/0000-0001-6014-0126; Freeman, Stewart/0000-0001-6148-3171; Bourles, Didier/0000-0001-5991-6126 FU INSU/CNRS; French Ministry of Research and Higher Education; IRD; CEA; CRONUS-EU [511927] FX We highly appreciate discussions with and support by R. Braucher (CEREGE), H.-A. Synal (ETH), and A. Priller and A. Wallner (VERA). The measurements performed at the ASTER AMS national facility (CEREGE, Aix-en-Provence) are supported by the INSU/CNRS, the French Ministry of Research and Higher Education, IRD, and CEA. This work was partially funded within the framework of CRONUS-EU (Marie-Curie Action 6th framework programme; Contract No: 511927). NR 35 TC 17 Z9 17 U1 1 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2011 VL 400 IS 9 BP 3125 EP 3132 DI 10.1007/s00216-011-4979-2 PG 8 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 769SE UT WOS:000291037800044 PM 21533641 ER PT J AU Sarathy, SM Yeung, C Westbrook, CK Pitz, WJ Mehl, M Thomson, MJ AF Sarathy, S. M. Yeung, C. Westbrook, C. K. Pitz, W. J. Mehl, M. Thomson, M. J. TI An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame SO COMBUSTION AND FLAME LA English DT Article DE Alkane combustion; Iso-alkane combustion; Opposed-flow diffusion flame; Diesel fuel surrogate; Chemical kinetic modeling; Reaction mechanism ID SHOCK-TUBE; RAPID COMPRESSION; LENNARD-JONES; DECOMPOSITION; IGNITION; ISOMERS; HEPTANE; ISOMERIZATION; OXIDATION; RADICALS AB Fischer-Tropsch (FT) fuels derived from biomass syngas are renewable fuels that can replace conventional petroleum fuels in jet engine and diesel engine applications. FT fuels typically contain a high concentration of lightly methylated iso-alkanes, whereas petroleum derived jet and diesel fuels contain large fractions of n-alkanes, cycloalkanes, and aromatics plus some lightly methylated iso-alkanes. In order to better understand the combustion characteristics of FT and petroleum fuels, this study presents new experimental data for 2-methylheptane and n-octane in an opposed-flow diffusion flame. The high temperature oxidation of 2-methylheptane and n-octane has been modeled using an extended transport database and a reaction mechanism consisting of 3401 reactions involving 714 species. The proposed model shows good qualitative and quantitative agreement with the experimental data. The measured and predicted concentrations of 1-alkenes and ethylene are higher in the n-octane flame, while the concentrations of iso-alkenes (especially iso-butene) and propene are higher in the 2-methylheptane flame. The proposed chemical kinetic model is used to delineate the reactions pathways leading to these observed differences in product species concentrations. An uncertainty analysis was conducted to assess experimental and modeling uncertainties. The results indicate that the simulations are sensitive to the transport parameters used to calculate fuel diffusion. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sarathy, S. M.; Westbrook, C. K.; Pitz, W. J.; Mehl, M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Yeung, C.; Thomson, M. J.] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 1A1, Canada. RP Sarathy, SM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. EM sarathy1@llnl.gov RI Sarathy, S. Mani/M-5639-2015; Mehl, Marco/A-8506-2009 OI Sarathy, S. Mani/0000-0002-3975-6206; Mehl, Marco/0000-0002-2227-5035 FU LLNL; US Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA 27344]; US Department of Energy, Office of Vehicle Technologies; Office of Naval Research; Natural Science and Engineering Research Council of Canada (NSERC) at the University of Toronto FX The portion of this work supported by LLNL was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA 27344. LLNL also acknowledges the support of the US Department of Energy, Office of Vehicle Technologies (program manager Gurpreet Singh) and the Office of Naval Research (program manager Dr. David Shifler). The Natural Science and Engineering Research Council of Canada (NSERC) supported the work at the University of Toronto. NR 49 TC 20 Z9 22 U1 2 U2 13 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD JUL PY 2011 VL 158 IS 7 BP 1277 EP 1287 DI 10.1016/j.combustflame.2010.11.008 PG 11 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 768KF UT WOS:000290932600006 ER PT J AU Loubere, R Maire, PH Shashkov, M AF Loubere, Raphael Maire, Pierre-Henri Shashkov, Mikhail TI ReALE: A Reconnection Arbitrary-Lagrangian-Eulerian method in cylindrical geometry SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 10th Institute for Computational Fluid Dynamics (ICFD) Conference CY 2010 CL Univ Reading, ENGLAND SP Inst Computational Fluid Dynamics (ICFD) HO Univ Reading DE ReALE; Cylindrical geometry; Lagrangian hydrodynamics; Voronoi mesh; Arbitrary-Lagrangian-Eulerian; Mesh reconnection; Polygonal mesh ID CENTROIDAL VORONOI TESSELLATIONS; ALGORITHMS AB This paper deals with the extension to the cylindrical geometry of the recently introduced Reconnection algorithm for Arbitrary-Lagrangian-Eulerian (ReALE) framework. The main elements in standard ALE methods are an explicit Lagrangian phase, a rezoning phase, and a remapping phase. Usually the new mesh provided by the rezone phase is obtained by moving grid nodes without changing connectivity of the underlying mesh. Such rezone strategy has its limitation due to the fixed topology of the mesh. In ReALE we allow connectivity of the mesh to change in rezone phase, which leads to general polygonal mesh and permits to follow Lagrangian features much better than for standard ALE methods. Rezone strategy with reconnection is based on using Voronoi tesselation machinery. In this work we focus on the extension of each phase of ReALE to cylindrical geometry. The Lagrangian, rezone with reconnection and remap phases are revamped to take into account the cylindrical geometry. We demonstrate the efficiency of our ReALE in cylindrical geometry on series of numerical examples. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Loubere, Raphael] Univ Toulouse, CNRS, Inst Math Toulouse, Toulouse, France. [Maire, Pierre-Henri] CEA, CESTA, F-33114 Le Barp, France. [Shashkov, Mikhail] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Loubere, R (reprint author), Univ Toulouse, CNRS, Inst Math Toulouse, Toulouse, France. EM raphael.loubere@math.univ-toulouse.fr RI Maire, Pierre-Henri/H-6219-2013 OI Maire, Pierre-Henri/0000-0002-4180-8220 NR 14 TC 14 Z9 14 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL PY 2011 VL 46 IS 1 SI SI BP 59 EP 69 DI 10.1016/j.compfluid.2010.08.024 PG 11 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 767CY UT WOS:000290834100008 ER PT J AU Dai, WW Woodward, PR AF Dai, William W. Woodward, Paul R. TI Moment preserving schemes for Euler equations SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 10th Institute-for-Computational-Fluid-Dynamics (ICFD) Conference CY 2010 CL Univ Reading, ENGLAND SP Inst Computat Fluid Dynam (ICFD) HO Univ Reading DE Finite difference; Finite element; Hyperbolic system; Gas dynamics ID CONSERVATIVE DIFFERENCE SCHEME; NONOSCILLATORY SCHEMES; RECONSTRUCTION AB A high order accurate finite difference scheme is proposed for one-dimensional Euler equations. In the scheme a set of first three moments of each signal are preserved during the updating. The scheme is one of 5th order in space and 4th order in time. This feature is different from that in typical existing methods in which the use of the first three polynomials results in only 3rd order accuracy in space. The scheme has different features from the existing high order schemes, and the most noticeable are the simultaneous discretization both in space and time, and the use of moments of Riemann invariants instead of primitive physical variables. Numerical examples are given to show the accuracy of the scheme and its robustness for the flows involving shocks. Published by Elsevier Ltd. C1 [Dai, William W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Woodward, Paul R.] Univ Minnesota, Minneapolis, MN 55455 USA. RP Dai, WW (reprint author), Los Alamos Natl Lab, Mail Stop T080, Los Alamos, NM 87545 USA. EM dai@lanl.gov NR 18 TC 1 Z9 1 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL PY 2011 VL 46 IS 1 SI SI BP 186 EP 196 DI 10.1016/j.compfluid.2010.11.005 PG 11 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 767CY UT WOS:000290834100026 ER PT J AU Kucharik, M Breil, J Galera, S Maire, PH Berndt, M Shashkov, M AF Kucharik, M. Breil, J. Galera, S. Maire, P-H Berndt, M. Shashkov, M. TI Hybrid remap for multi-material ALE SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 10th Institute for Computational Fluid Dynamics (ICFD) Conference CY 2010 CL Univ Reading, ENGLAND SP Inst Computational Fluid Dynamics (ICFD) HO Univ Reading DE Multi-material ALE; Conservative interpolations; Hybrid remap ID EULERIAN COMPUTING METHOD; FLOW SPEEDS; GRIDS AB Remapping is one of the essential parts of most arbitrary Lagrangian-Eulerian (ALE) methods. In this short paper we focus on multi-material fluid flows. We present a hybrid remapping method combining the swept remapping algorithm in pure regions with the intersection-based remapping algorithm close to material interfaces. We describe the hybrid remapping method in two formulations, as a one-step and a two-step procedure and compare behaviour of both approaches with the standard intersection-based algorithm using several numerical examples. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kucharik, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Breil, J.; Galera, S.; Maire, P-H] Univ Bordeaux 1, UMR CELIA CEA CNRS, F-33405 Talence, France. [Berndt, M.] Los Alamos Natl Lab, CCS Grp 2, Los Alamos, NM 87545 USA. [Shashkov, M.] Los Alamos Natl Lab, XCP Grp 4, Los Alamos, NM 87545 USA. RP Kucharik, M (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM kucharik@newton.fjfi.cvut.cz RI Berndt, Markus/F-3185-2013; Maire, Pierre-Henri/H-6219-2013; OI Maire, Pierre-Henri/0000-0002-4180-8220; Berndt, Markus/0000-0001-5360-6848 NR 12 TC 18 Z9 18 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL PY 2011 VL 46 IS 1 SI SI BP 293 EP 297 DI 10.1016/j.compfluid.2010.08.004 PG 5 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 767CY UT WOS:000290834100043 ER PT J AU Liska, R Shashkov, M Vachal, P Wendroff, B AF Liska, Richard Shashkov, Mikhail Vachal, Pavel Wendroff, Burton TI Synchronized flux corrected remapping for ALE methods SO COMPUTERS & FLUIDS LA English DT Article; Proceedings Paper CT 10th Institute-for-Computational-Fluid-Dynamics (ICFD) Conference CY 2010 CL Univ Reading, ENGLAND SP Inst Computat Fluid Dynam (ICFD) HO Univ Reading DE ALE; FCT; Remapping ID TRANSPORT; EQUATIONS AB A new optimization-based synchronized flux corrected conservative interpolation (remapping) of mass, momentum and energy for arbitrary Lagrangian Eulerian method is developed. Fluxes of conserved variables (mass, momentum and total energy) are limited in a synchronous FCT-like way to preserve local bounds in density, velocity and specific internal energy. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Liska, Richard; Vachal, Pavel] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Shashkov, Mikhail; Wendroff, Burton] Los Alamos Natl Lab, Appl Math & Plasma Phys Grp T5, Los Alamos, NM 87545 USA. RP Liska, R (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM liska@siduri.fjfi.cvut.cz RI Vachal, Pavel/G-2131-2011; Liska, Richard/C-3142-2009; OI Liska, Richard/0000-0002-6149-0440; Vachal, Pavel/0000-0002-6668-9045 NR 13 TC 14 Z9 14 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD JUL PY 2011 VL 46 IS 1 SI SI BP 312 EP 317 DI 10.1016/j.compfluid.2010.11.013 PG 6 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 767CY UT WOS:000290834100046 ER PT J AU Sherbini, S Ilas, D Eckerman, K DeCicco, J AF Sherbini, Sami Ilas, Dan Eckerman, Keith DeCicco, Joseph TI CORRECTION FACTORS APPLIED TO FINGER DOSIMETRY: A THEORETICAL ASSESSMENT OF APPROPRIATE VALUES FOR USE IN HANDLING RADIOPHARMACEUTICALS SO HEALTH PHYSICS LA English DT Article DE dose; skin; dosimetry; personnel; International Commission on Radiological Protection; radiopharmaceuticals ID MONTE-CARLO; WORKERS AB United States Nuclear Regulatory Commission (USNRC) regulations limit the dose to the skin to 500 mSv per year. This is also the dose limit recommended by the International Commission on Radiological Protection (ICRP). The operational quantity recommended by ICRP for quantifying dose to the skin is the personal dose equivalent, H-p (0.07) and is identical to NRC's shallow dose equivalent, Hs, also measured at a skin depth of 7 mg cm(-2). However, whereas ICRP recommends averaging the dose to the skin over an area of 1 cm(2) regardless of the size of the exposed area of skin, USNRC requires the shallow dose equivalent to be averaged over 10 cm(2). To monitor dose to the skin of the hands of workers handling radioactive materials and particularly in radiopharmaceutical manufacturing facilities, which is the focus of this work, workers are frequently required to wear finger ring dosimeters. The dosimeters monitor the dose at the location of the sensitive element, but this is not the dose required to show compliance (i.e., the dose averaged over the highest exposed contiguous 10 cm(2) of skin). Therefore, it may be necessary to apply a correction factor that enables estimation of the required skin dose from the dosimeter reading. This work explored the effects of finger ring placement and of the geometry of the radioactive materials being handled by the worker on the relationship between the dosimeter reading and the desired average dose. A mathematical model of the hand was developed for this purpose that is capable of positioning the fingers in any desired grasping configuration, thereby realistically modeling manipulation of any object. The model was then used with the radiation transport code MCNP to calculate the dose distribution on the skin of the hand when handling a variety of radioactive vials and syringes, as well as the dose to the dosimeter element. Correction factors were calculated using the results of these calculations and examined for any patterns that may be useful in establishing an appropriate correction factor for this type of work. It was determined that a correction factor of one applied to the dosimeter reading, with the dosimeter placed at the base of the middle finger, provides an adequate estimate of the required average dose during a monitoring period for most commonly encountered geometries. Different correction factors may be required for exceptional or unusual source geometries and must be considered on a case-by-case basis. Health Phys. 101(1):1-12; 2011 C1 [Sherbini, Sami] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Washington, DC 20555 USA. [Ilas, Dan; Eckerman, Keith] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Sherbini, S (reprint author), US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Mail Stop CSB C3A07M, Washington, DC 20555 USA. EM sxs2@nrc.gov OI Ilas, Dan/0000-0002-4971-9476 NR 10 TC 0 Z9 0 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2011 VL 101 IS 1 BP 1 EP 12 DI 10.1097/HP.0b013e318207ce10 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 769NF UT WOS:000291021500001 PM 21617388 ER PT J AU Tolstykh, EI Degteva, MO Peremyslova, LM Shagina, NB Shishkina, EA Krivoshchapov, VA Anspaugh, LR Napier, BA AF Tolstykh, E. I. Degteva, M. O. Peremyslova, L. M. Shagina, N. B. Shishkina, E. A. Krivoshchapov, V. A. Anspaugh, L. R. Napier, B. A. TI RECONSTRUCTION OF LONG-LIVED RADIONUCLIDE INTAKES FOR TECHA RIVERSIDE RESIDENTS: STRONTIUM-90 SO HEALTH PHYSICS LA English DT Article DE contamination, environmental; dose, internal; food chain; metabolism ID STRONTIUM; COHORT; TEETH; AGE; UNCERTAINTIES; POPULATION; METABOLISM; INFANTS; SYSTEM; MODEL AB Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was Sr-90, which downstream residents consumed with water from the river and with milk contaminated by cows' consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-Sr-90-intake function for the members of this cohort. The revision was necessary because recently discovered data have provided a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-Sr-90-intake function remains the same: thousands of measurements of Sr-90 content in bone with a special whole-body counter, thousands of measurements of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of Sr-90 in bone, measurements of Sr-90 in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of Sr-90 in bone tissue have changed substantially. Health Phys. 101(1):28-47; 2011 C1 [Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.; Shagina, N. B.; Shishkina, E. A.] Urals Res Ctr Radiat Med, Chelyabinsk 454076, Russia. [Krivoshchapov, V. A.] So Urals State Univ, Chelyabinsk, Russia. [Anspaugh, L. R.] Univ Utah, Div Radiobiol, Dept Radiol, Salt Lake City, UT 84112 USA. [Napier, B. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Tolstykh, EI (reprint author), Urals Res Ctr Radiat Med, Vorovskogo 68 A, Chelyabinsk 454076, Russia. EM evgenia@urcrm.ru RI Shishkina, Elena/G-4595-2016; OI Shishkina, Elena/0000-0003-4464-0889; Shishkina, Elena/0000-0002-3076-2108 FU U.S. Department of Energy's Office of International Health Studies; U.S. Environmental Protection Agency's Office of Radiation and Indoor Air; Federal Medical-Biological Agency of the Russian Federation; European Union FX This work has been funded by the U.S. Department of Energy's Office of International Health Studies, the U.S. Environmental Protection Agency's Office of Radiation and Indoor Air, and the Federal Medical-Biological Agency of the Russian Federation. The authors also acknowledge the useful contributions that have been performed by Russian-European investigators working within the SOUL Project funded by the European Union. NR 43 TC 23 Z9 25 U1 1 U2 9 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2011 VL 101 IS 1 BP 28 EP 47 DI 10.1097/HP.0b013e318206d0ff PG 20 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 769NF UT WOS:000291021500003 PM 21617390 ER PT J AU Kuby, MJ Bielicki, JM Middleton, RS AF Kuby, Michael J. Bielicki, Jeffrey M. Middleton, Richard S. TI Optimal Spatial Deployment of CO2 Capture and Storage Given a Price on Carbon SO INTERNATIONAL REGIONAL SCIENCE REVIEW LA English DT Article; Proceedings Paper CT ISOLDE XI Conference CY 2008 CL Santa Barbara, CA DE pipeline; network; optimization; model; infrastructure; location; CCS ID TECHNOLOGIES AB Carbon dioxide capture and storage (CCS) links together technologies that separate carbon dioxide (CO2) from fixed point source emissions and transport it by pipeline to geologic reservoirs into which it is injected underground for long-term containment. Previously, models have been developed to minimize the cost of a CCS infrastructure network that captures a given amount of CO2. The CCS process can be costly, however, and large-scale implementation by industry will require government regulations and economic incentives. The incentives can price CO2 emissions through a tax or a cap-and-trade system. This paper extends the earlier mixed-integer linear programming model to endogenously determine the optimal quantity of CO2 to capture and optimize the various components of a CCS infrastructure network, given the price per tonne to emit CO2 into the atmosphere. The spatial decision support system first generates a candidate pipeline network and then minimizes the total cost of capturing, transporting, storing, or emitting CO2. To illustrate how the new model based on CO2 prices works, it is applied to a case study of CO2 sources, reservoirs, and candidate pipeline links and diameters in California. C1 [Kuby, Michael J.] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85069 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Ctr Sci Technol & Publ Policy, Humphrey Sch, Minneapolis, MN USA. [Middleton, Richard S.] Los Alamos Natl Lab, Los Alamos Natl Lab Earth & Environm Sci, Los Alamos, NM USA. RP Kuby, MJ (reprint author), Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ 85069 USA. EM mikekuby@asu.edu RI Middleton, Richard/A-5470-2011; Bielicki, Jeffrey/D-4239-2016; OI Bielicki, Jeffrey/0000-0001-8449-9328; Middleton, Richard/0000-0002-8039-6601 NR 27 TC 20 Z9 20 U1 1 U2 7 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0160-0176 J9 INT REGIONAL SCI REV JI Int. Reg. Sci. Rev. PD JUL PY 2011 VL 34 IS 3 BP 285 EP 305 DI 10.1177/0160017610397191 PG 21 WC Environmental Studies; Planning & Development; Urban Studies SC Environmental Sciences & Ecology; Public Administration; Urban Studies GA 769VZ UT WOS:000291047700002 ER PT J AU Beavers, CM Talbo, GH Richards, AF AF Beavers, Christine M. Talbo, Gert H. Richards, Anne F. TI Ketiminate supported aluminum(III) complexes: Synthesis, characterization and reactivity SO JOURNAL OF ORGANOMETALLIC CHEMISTRY LA English DT Article DE Ketiminate; Aluminum(III); Crystal structure ID X-RAY-STRUCTURE; RING-OPENING POLYMERIZATION; BETA-DIKETIMINATO LIGAND; CARBON BOND FORMATION; 2 ALPHA-DIIMINES; SCHIFF-BASES; COMPOUND; COORDINATION; 4-COORDINATE; DINUCLEAR AB The reaction of LLi, (L = [RNC(Me)CHC(Me) = O] (R = C(2)H(4)NEt(2))), with AlCl(3) at -78 degrees C forms the mono-ketiminate product, LAlCl(2), 1, while the same reaction at 0 degrees C affords the bis-ketiminate complex, [{(LH)(2)AlCl}(Cl(2))], 2, Reduction of 1 with Li(o), K(o) or Mg(o) yielded an unusual dimeric aluminum(III) species, [L'AlCl](2), 3, where C-C coupling of the ligand backbone is observed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Talbo, Gert H.; Richards, Anne F.] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem, Melbourne, Vic 3086, Australia. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Richards, AF (reprint author), La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem, Melbourne, Vic 3086, Australia. EM a.richards@latrobe.edu.au FU Australian Research Council [FT100100003] FX AFR acknowledges the Australian Research Council for the award of a Future Fellowship, (FT100100003). NR 50 TC 3 Z9 3 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0022-328X J9 J ORGANOMET CHEM JI J. Organomet. Chem. PD JUL 1 PY 2011 VL 696 IS 13 BP 2507 EP 2511 DI 10.1016/j.jorganchem.2011.03.024 PG 5 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 769MK UT WOS:000291017700006 ER PT J AU Sanchez, R Newman, DE Leboeuf, JN Decyk, VK AF Sanchez, R. Newman, D. E. Leboeuf, J-N Decyk, V. K. TI Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 15th International Congress on Plasma Physics (ICPP) / 13th Latin American Workshop on Plasma Physics (LAWPP) CY AUG 08-13, 2010 CL Santiago, CHILE SP Chilean Nucl Energy Commiss, Thermonuclear Plasma Dept ID PLASMA; TOKAMAK; CONFINEMENT; DISCHARGES; MODEL AB The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data. C1 [Sanchez, R.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Sanchez, R.] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain. [Newman, D. E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Leboeuf, J-N] JNL Sci Inc, Casa Grande, AZ 85294 USA. [Decyk, V. K.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. RP Sanchez, R (reprint author), Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. EM sanchezferlr@ornl.gov FU US DOE [DE-AC05-00OR22725]; DOE at University of Alaska [DE-FG02-04ER54741]; DOE at UCLA [DE-FG02-04ER54740]; Spanish National Project [ENE2009-12213-C03-03]; ARSC (Alaska, USA); NERSC (Berkeley, USA); Spanish National Supercomputing Network; Universidad Carlos III de Madrid (Spain) FX Research was carried out in part at ORNL, managed by UT-Battelle LLC, for US DOE under Contract No DE-AC05-00OR22725. Research funded in part by the DOE Grants No DE-FG02-04ER54741 at University of Alaska and No DE-FG02-04ER54740 at UCLA. Research funded in part by Spanish National Project No ENE2009-12213-C03-03. Simulations run thanks to grants for the use of supercomputing resources at ARSC (Alaska, USA), at NERSC (Berkeley, USA), at the Spanish National Supercomputing Network and at the Universidad Carlos III de Madrid (Spain). NR 28 TC 10 Z9 10 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD JUL PY 2011 VL 53 IS 7 AR 074018 DI 10.1088/0741-3335/53/7/074018 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 769QY UT WOS:000291034500019 ER PT J AU Gonzalez, RM Zhang, QB Zangar, RC Smith, RD Metz, TO AF Gonzalez, Rachel M. Zhang, Qibin Zangar, Richard C. Smith, Richard D. Metz, Thomas O. TI Development of a fibrinogen-specific sandwich enzyme-linked immunosorbent assay microarray assay for distinguishing between blood plasma and serum samples SO ANALYTICAL BIOCHEMISTRY LA English DT Article DE ELISA; Plasma; Proteomics; Serum ID ANTIBODY STANDARDIZATION PROGRAM; LIQUID-CHROMATOGRAPHY; MASS-SPECTROMETRY; CHAIN AB We have developed a fibrinogen-specific sandwich enzyme-linked immunosorbent assay (ELISA) microarray assay for use in qualitatively distinguishing between blood plasma and serum samples. Three capture antibodies (4902, HPA001900, and F8512) were evaluated in conjunction with 106 as the detection antibody. The data show that 4902 and (to a lesser extent) F8512 successfully identify previously unknown plasma and serum samples based on approximately a 28-fold difference in signal intensity between the sample types. This assay has utility in rapidly identifying previously archived clinical samples with incomplete annotation in a high-throughput manner prior to proteomic analyses. (C) 2011 Elsevier Inc. All rights reserved. C1 [Gonzalez, Rachel M.; Zhang, Qibin; Zangar, Richard C.; Smith, Richard D.; Metz, Thomas O.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Metz, TO (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM thomas.metz@pnl.gov RI Smith, Richard/J-3664-2012 OI Metz, Tom/0000-0001-6049-3968; Smith, Richard/0000-0002-2381-2349 FU National Institutes of Health (NIH) [DK070146]; National Institute of Biomedical Imaging and Bioengineering (NIBIB) [EB006177]; US Department of Energy (DOE) Office of Biological and Environmental Research [DE-AC06-76RLO-1830] FX The authors thank Roger L Lundblad of Lundblad Biotechnology for very helpful discussions of fibrinogen assays. This work was supported in part by National Institutes of Health (NIH) Grant DK070146 to R.D.S. and T.O.M. and National Institute of Biomedical Imaging and Bioengineering (NIBIB) Grant EB006177 to R.C.Z. A portion of the work was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by the US Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under contract DE-AC06-76RLO-1830. NR 16 TC 2 Z9 2 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-2697 J9 ANAL BIOCHEM JI Anal. Biochem. PD JUL 1 PY 2011 VL 414 IS 1 BP 99 EP 102 DI 10.1016/j.ab.2011.02.039 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 765KK UT WOS:000290704300013 PM 21371419 ER PT J AU Iamnitchi, A Ripeanu, M Santos-Neto, E Foster, I AF Iamnitchi, Adriana Ripeanu, Matei Santos-Neto, Elizeu Foster, Ian TI The Small World of File Sharing SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE File sharing; workload characterization; small-world graphs; self-organization; peer-to-peer systems ID COMPLEX NETWORKS; SOCIAL NETWORKS; MANAGEMENT; SYSTEMS; WEB AB Webcaches, content distribution networks, peer-to-peer file-sharing networks, distributed file systems, and data grids all have in common that they involve a community of users who use shared data. In each case, overall system performance can be improved significantly by first identifying and then exploiting the structure of community's data access patterns. We propose a novel perspective for analyzing data access workloads that considers the implicit relationships that form among users based on the data they access. We propose a new structure-the interest-sharing graph-that captures common user interests in data and justify its utility with studies on four data-sharing systems: a high-energy physics collaboration, the Web, the Kazaa peer-to-peer network, and a BitTorrent file-sharing community. We find small-world patterns in the interest-sharing graphs of all four communities. We investigate analytically and experimentally some of the potential causes that lead to this pattern and conclude that user preferences play a major role. The significance of small-world patterns is twofold: it provides a rigorous support to intuition and it suggests the potential to exploit these naturally emerging patterns. As a proof of concept, we design and evaluate an information dissemination system that exploits the small-world interest-sharing graphs by building an interest-aware network overlay. We show that this approach leads to improved information dissemination performance. C1 [Iamnitchi, Adriana] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33637 USA. [Ripeanu, Matei; Santos-Neto, Elizeu] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. [Foster, Ian] Univ Chicago, Chicago, IL 60637 USA. [Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. RP Iamnitchi, A (reprint author), Univ S Florida, Dept Comp Sci & Engn, 4202 E Fowler Ave, Tampa, FL 33637 USA. EM anda@cse.usf.edu; matei@ece.ubc.ca; elizeus@ece.ubc.ca; foster@cs.uchicago.edu FU US National Science Foundation (NSF) [CNS-0831785] FX The authors are grateful to Ruth Pordes and Gabriele Garzoglio of Fermi National Accelerator Laboratory for facilitating access to the D0 traces, to Nathaniel Leibowitz for the access to the Kazaa traces, and to Nazareno Andrade who helped with the BitSoup data collection. Adriana Iamnitchi was partially supported under US National Science Foundation (NSF) grant CNS-0831785. NR 62 TC 14 Z9 14 U1 0 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD JUL PY 2011 VL 22 IS 7 BP 1120 EP 1134 DI 10.1109/TPDS.2010.170 PG 15 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 767QM UT WOS:000290871100005 ER PT J AU Jiang, YL Tian, K Shen, XP Zhang, JH Chen, J Tripathi, R AF Jiang, Yunlian Tian, Kai Shen, Xipeng Zhang, Jinghe Chen, Jie Tripathi, Rahul TI The Complexity of Optimal Job Co-Scheduling on Chip Multiprocessors and Heuristics-Based Solutions SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Co-scheduling; shared cache; CMP scheduling; cache contention; perfect matching; integer programming AB In Chip Multiprocessors (CMPs) architecture, it is common that multiple cores share some on-chip cache. The sharing may cause cache thrashing and contention among co-running jobs. Job co-scheduling is an approach to tackling the problem by assigning jobs to cores appropriately so that the contention and consequent performance degradations are minimized. Job co-scheduling includes two tasks: the estimation of co-run performance, and the determination of suitable co-schedules. Most existing studies in job co-scheduling have concentrated on the first task but relies on simple techniques (e. g., trying different schedules) for the second. This paper presents a systematic exploration to the second task. The paper uncovers the computational complexity of the determination of optimal job co-schedules, proving its NP-completeness. It introduces a set of algorithms, based on graph theory and Integer/Linear Programming, for computing optimal co-schedules or their lower bounds in scenarios with or without job migrations. For complex cases, it empirically demonstrates the feasibility for approximating the optimal effectively by proposing several heuristics-based algorithms. These discoveries may facilitate the assessment of job co-schedulers by providing necessary baselines, as well as shed insights to the development of co-scheduling algorithms in practical systems. C1 [Jiang, Yunlian; Tian, Kai; Shen, Xipeng] Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA. [Zhang, Jinghe] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA. [Chen, Jie] Thomas Jefferson Natl Accelerator Facil, Sci Comp Grp, Newport News, VA 23606 USA. [Tripathi, Rahul] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA. RP Jiang, YL (reprint author), Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA. EM jiang@cs.wm.edu; ktian@cs.wm.edu; xshen@cs.wm.edu; jing2009@cs.unc.edu; chen@jlab.org; tripathi@cse.usf.edu FU US National Science Foundation (NSF) [0720499, 0811791, 0954015]; IBM CAS; University of South Florida FX The authors thank Cliff Stein from Columbia University and William Cook from Georgia Tech for their helpful comments on perfect matching algorithms. This material is based upon work supported by the US National Science Foundation (NSF) under Grant No. 0720499 and 0811791 and 0954015 and IBM CAS Fellowship. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or IBM. Research of Rahul Tripathi was supported by the New Researcher Grant of the University of South Florida. This paper extends our earlier publications in the 2008 PACT [16] and 2009 ACM Computing Frontiers [27] conferences with three improvements. First, it presents the challenges and solutions of optimal job co-scheduling in a systematic way, unifying the proofs and algorithms published in the two previous papers into a single theoretical framework. Second, it introduces an Integer Programming formulation of the optimal co-scheduling problem and the use of the Linear Programming relaxed form for efficiently computing the co-scheduling lower bounds (Section 4.2). Third, it adds a set of new experimental results, including the empirical confirmation of the optimality of the polynomial-time optimal co-scheduling algorithm (Section 6.2.1), the validation of the IP/LP models in determining optimal schedules or lower bounds (Section 6.2.2), and the results of the co-scheduling algorithms on a new set of real jobs when job migrations are allowed (Section 6.3). Finally, it reveals some insights for the development of practical co-scheduling systems by examining the results in a holistic manner (Section 7). NR 30 TC 7 Z9 7 U1 0 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD JUL PY 2011 VL 22 IS 7 BP 1192 EP 1205 DI 10.1109/TPDS.2010.193 PG 14 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 767QM UT WOS:000290871100011 ER PT J AU Burke, KB Stapleton, AJ Vaughan, B Zhou, XJ Kilcoyne, ALD Belcher, WJ Dastoor, PC AF Burke, Kerry B. Stapleton, Andrew J. Vaughan, Ben Zhou, Xiaojing Kilcoyne, A. L. David Belcher, Warwick J. Dastoor, Paul C. TI Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales SO NANOTECHNOLOGY LA English DT Article ID PHASE-SEPARATION; PHOTOVOLTAIC DEVICES; AQUEOUS DISPERSION; BLENDS; PERFORMANCE AB Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene- 2,7-diyl-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1: 1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers. C1 [Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.] Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. [Burke, Kerry B.] CSIRO Energy Technol, Newcastle, NSW 2300, Australia. [Kilcoyne, A. L. David] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Dastoor, PC (reprint author), Univ Newcastle, Ctr Organ Elect, Callaghan, NSW 2308, Australia. EM Paul.Dastoor@newcastle.edu.au RI Burke, Kerry/C-9627-2011; DASTOOR, PAUL/G-7189-2013; Stapleton, Andrew /M-7611-2014; Kilcoyne, David/I-1465-2013 OI Burke, Kerry/0000-0002-4977-1426; Stapleton, Andrew /0000-0003-1198-1572; FU University of Newcastle; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Deming Zhu of the EMX unit at UoN for assistance with TEM. PhD scholarships from the University of Newcastle (AS and BV) are gratefully acknowledged. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 18 TC 33 Z9 33 U1 1 U2 38 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 1 PY 2011 VL 22 IS 26 AR 265710 DI 10.1088/0957-4484/22/26/265710 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 765OY UT WOS:000290719500048 PM 21586810 ER PT J AU Pattengale, ND Aberer, AJ Swenson, KM Stamatakis, A Moret, BME AF Pattengale, Nicholas D. Aberer, Andre J. Swenson, Krister M. Stamatakis, Alexandros Moret, Bernard M. E. TI Uncovering Hidden Phylogenetic Consensus in Large Data Sets SO IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS LA English DT Article DE Phylogeny; consensus methods; bootstrapping; support values; MAST ID TREES; INFORMATION; AGREEMENT AB Many of the steps in phylogenetic reconstruction can be confounded by "rogue" taxa-taxa that cannot be placed with assurance anywhere within the tree, indeed, whose location within the tree varies with almost any choice of algorithm or parameters. Phylogenetic consensus methods, in particular, are known to suffer from this problem. In this paper, we provide a novel framework to define and identify rogue taxa. In this framework, we formulate a bicriterion optimization problem, the relative information criterion, that models the net increase in useful information present in the consensus tree when certain taxa are removed from the input data. We also provide an effective greedy heuristic to identify a subset of rogue taxa and use this heuristic in a series of experiments, with both pathological examples from the literature and a collection of large biological data sets. As the presence of rogue taxa in a set of bootstrap replicates can lead to deceivingly poor support values, we propose a procedure to recompute support values in light of the rogue taxa identified by our algorithm; applying this procedure to our biological data sets caused a large number of edges to move from "unsupported" to "supported" status, indicating that many existing phylogenies should be recomputed and reevaluated to reduce any inaccuracies introduced by rogue taxa. We also discuss the implementation issues encountered while integrating our algorithm into RAxML v7.2.7, particularly those dealing with scaling up the analyses. This integration enables practitioners to benefit from our algorithm in the analysis of very large data sets (up to 2,500 taxa and 10,000 trees, although we present the results of even larger analyses). C1 [Pattengale, Nicholas D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Aberer, Andre J.; Stamatakis, Alexandros] Heidelberg Inst Theoret Studies, Sci Comp Grp, D-69118 Heidelberg, Germany. [Swenson, Krister M.] Univ Ottawa, Lab Innovat Bioinformat, Ottawa, ON K1N 6N5, Canada. [Swenson, Krister M.] Univ Quebec, Lab Combinatoire & Informat Math, Montreal, PQ H2P 2K7, Canada. [Moret, Bernard M. E.] EPFL IC IIF LCBB, EPFL, Swiss Fed Inst Technol, Lab Computat Biol & Bioinformat, CH-1015 Lausanne, Switzerland. RP Pattengale, ND (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ndpatte@sandia.gov; Andre.Aberer@h-its.org; akswenson@uottawa.ca; Alexandros.Stamatakis@h-its.org; bernard.moret@epfl.ch RI Stamatakis, Alexandros/B-8740-2009; OI Moret, Bernard/0000-0003-1549-4544 NR 22 TC 14 Z9 14 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1545-5963 J9 IEEE ACM T COMPUT BI JI IEEE-ACM Trans. Comput. Biol. Bioinform. PD JUL-AUG PY 2011 VL 8 IS 4 BP 902 EP 911 DI 10.1109/TCBB.2011.28 PG 10 WC Biochemical Research Methods; Computer Science, Interdisciplinary Applications; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Biochemistry & Molecular Biology; Computer Science; Mathematics GA 762CD UT WOS:000290449000005 PM 21301032 ER PT J AU Dera, P Lazarz, JD Prakapenka, VB Barkley, M Downs, RT AF Dera, Przemyslaw Lazarz, John D. Prakapenka, Vitali B. Barkley, Madison Downs, Robert T. TI New insights into the high-pressure polymorphism of SiO2 cristobalite SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE High pressure; Phase transitions; Metastability; Polymorphism; Silica ID SILICA POLYMORPHS; ALPHA-CRISTOBALITE; POWDER DIFFRACTION; QUARTZ; ATOMS AB Single-crystal X-ray diffraction experiments with SiO2 alpha-cristobalite reveal that the well-known reversible displacive phase transition to cristobalite-II, which occurs at approximately 1.8 GPa, can be suppressed by rapid pressure increase, leading to an overpressurized metastable state, persisting to pressure as high as 10 GPa. In another, slow pressure increase experiment, the monoclinic high-pressure phase-II was observed to form at similar to 1.8 GPa, in agreement with earlier in situ studies, and its crystal structure has been unambiguously determined. Single-crystal data have been used to refine the structure models of both phases over the range of pressure up to the threshold of formation of cristobalite X-I at similar to 12 GPa, providing important constraints on the feasibility of the two competing silica densification models proposed in the literature, based on quantum mechanical calculations. Preliminary diffraction data obtained for cristobalite X-I reveal a monoclinic unit cell that contradicts the currently assumed model. C1 [Dera, Przemyslaw; Lazarz, John D.; Prakapenka, Vitali B.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Barkley, Madison; Downs, Robert T.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Dera, P (reprint author), Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Bldg 434A,9700 S Cass Ave, Argonne, IL 60439 USA. EM dera@cars.uchicago.edu RI Dera, Przemyslaw/F-6483-2013 FU National Science Foundation-Earth Sciences [EAR-0622171]; Department of Energy-Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; CDAC FX We would like to thank the anonymous reviewers for useful suggestions that helped to improve the manuscript. This work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-0622171) and Department of Energy-Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Funding for MB and RTD was provided by the CDAC program. NR 27 TC 24 Z9 25 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD JUL PY 2011 VL 38 IS 7 BP 517 EP 529 DI 10.1007/s00269-011-0424-5 PG 13 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 762PS UT WOS:000290492500002 ER PT J AU Archibald, R Fann, G Shelton, W AF Archibald, Rick Fann, George Shelton, William TI Adaptive discontinuous Galerkin methods in multiwavelets bases SO APPLIED NUMERICAL MATHEMATICS LA English DT Article DE Multiwavelets; Discontinuous Galerkin ID EQUATIONS; SCHEMES AB We use a multiwavelet basis with the Discontinuous Galerkin (DG) method to produce a multi-scale DG method. We apply this Multiwavelet DG method to convection and convection-diffusion problems in multiple dimensions. Merging the DG method with multiwavelets allows the adaptivity in the DG method to be resolved through manipulation of multiwavelet coefficients rather than grid manipulation. Additionally, the Multiwavelet DG method is tested on non-linear equations in one dimension and on the cubed sphere. Published by Elsevier B.V. on behalf of IMACS. C1 [Archibald, Rick; Fann, George; Shelton, William] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Archibald, R (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM archibaldrk@ornl.gov; fanngi@ornl.gov; sheltonwajr@ornl.gov RI Archibald, Rick/I-6238-2016 OI Archibald, Rick/0000-0002-4538-9780 FU [DE-AC05-00OR22725] FX The submitted manuscript has been authored by a contractor [UT-Battelle, manager of Oak Ridge National Laboratory (ORNL)] of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 19 TC 9 Z9 9 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9274 EI 1873-5460 J9 APPL NUMER MATH JI Appl. Numer. Math. PD JUL PY 2011 VL 61 IS 7 BP 879 EP 890 DI 10.1016/j.apnum.2011.02.005 PG 12 WC Mathematics, Applied SC Mathematics GA 759XI UT WOS:000290281700006 ER PT J AU Lehman, JH Terrones, M Mansfield, E Hurst, KE Meunier, V AF Lehman, John H. Terrones, Mauricio Mansfield, Elisabeth Hurst, Katherine E. Meunier, Vincent TI Evaluating the characteristics of multiwall carbon nanotubes SO CARBON LA English DT Review ID CHEMICAL-VAPOR-DEPOSITION; RAMAN-SCATTERING; THERMOGRAVIMETRIC ANALYSIS; PYROELECTRIC DETECTOR; ELECTRONIC-STRUCTURE; OPTICAL-PROPERTIES; GRAPHENE LAYERS; SURFACE-AREA; OXIDATION; CVD AB During the past 20 years, multiwall carbon nanotubes (MWCNTs) have become an important industrial material. Hundreds of tons are produced each year. This review is a survey of the scientific literature, motivated by industrial requirements and guidelines for environment, health and safety compliance. Sampling, size, area, density, color, crystallinity, as well as purity compared to properties of non-MWCNT carbon and catalyst metals, are presented. No single measurement tool provides a complete characterization; therefore, we summarize methods that include scanning electron microscopy, transmission electron microscopy (TEM), fast Fourier transform of high-resolution TEM, Raman spectroscopy, reflectance and thermogravimetric analysis. Fourier transform infrared spectroscopy reveals information with regard to functional groups interacting the tube surface. Brunauer-Emmett-Teller (BET) analysis is reviewed as the basis for evaluating specific surface area. We extend the review by presenting taxonomy of defects present in MWCNTs. Finally, we provide an appendix from documentary standards that are pertinent and reasonable for bulk measurements. Published by Elsevier Ltd. C1 [Lehman, John H.] Natl Inst Stand & Technol, Div Optoelect, Phys Measurement Lab, Boulder, CO 80305 USA. [Terrones, Mauricio] Shinshu Univ, Res Ctr Exot Nanocarbons JST, Nagano 3808553, Japan. [Terrones, Mauricio] Penn State Univ, Dept Mat Sci & Engn, Dept Phys, Davey Lab 104, University Pk, PA 16802 USA. [Terrones, Mauricio] Penn State Univ, Mat Res Inst, Davey Lab 104, University Pk, PA 16802 USA. [Mansfield, Elisabeth] Natl Inst Stand & Technol, Div Mat Reliabil, Mat Measurement Lab, Boulder, CO 80305 USA. [Hurst, Katherine E.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Lehman, JH (reprint author), Natl Inst Stand & Technol, Div Optoelect, Phys Measurement Lab, 325 Broadway, Boulder, CO 80305 USA. EM lehman@boulder.nist.gov RI Mansfield, Elisabeth/C-5258-2012; Meunier, Vincent/F-9391-2010; Terrones, Mauricio/B-3829-2014 OI Mansfield, Elisabeth/0000-0003-2463-0966; Meunier, Vincent/0000-0002-7013-179X; FU JST-Japan FX Thanks to Prof. M.S. Dresslhaus for helpful feedback regarding this review. M.T. thanks JST-Japan for funding the Research Center for Exotic NanoCarbons, under the Japanese regional Innovation Strategy Program by the Excellence. Thanks to Robert Keller for comments regarding imaging. NR 113 TC 261 Z9 264 U1 23 U2 211 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2011 VL 49 IS 8 BP 2581 EP 2602 DI 10.1016/j.carbon.2011.03.028 PG 22 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 757KM UT WOS:000290083900001 ER PT J AU Potts, JR Lee, SH Alam, TM An, J Stoller, MD Piner, RD Ruoff, RS AF Potts, Jeffrey R. Lee, Sun Hwa Alam, Todd M. An, Jinho Stoller, Meryl D. Piner, Richard D. Ruoff, Rodney S. TI Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization SO CARBON LA English DT Article ID EXFOLIATED GRAPHITE OXIDE; SINGLE GRAPHENE SHEETS; AQUEOUS DISPERSIONS; ELASTIC PROPERTIES; ORGANIC-SOLVENTS; NANOCOMPOSITES; NANOSHEETS; REDUCTION; INCLUSIONS AB The morphology and thermomechanical properties of composites of poly(methyl methacrylate) (PMMA) and chemically modified graphene (CMG) fillers were investigated. For composites made by in situ polymerization, large shifts in the glass transition temperature were observed with loadings as low as 0.05 wt.% for both chemically-reduced graphene oxide (RG-O) and graphene oxide (G-O)-filled composites. The elastic modulus of the composites improved by as much as 28% at just 1 wt.% loading. Mori-Tanaka theory was used to quantify dispersion, suggesting platelet aspect ratios greater than 100 at low loadings and a lower quality of dispersion at higher loadings. Fracture strength increased for G-O/PMMA composites but decreased for RG-O/PMMA composites. Wide angle X-ray scattering suggested an exfoliated morphology of both types of CMG fillers dispersed in the PMMA matrix, while transmission electron microscopy revealed that the platelets adopt a wrinkled morphology when dispersed in the matrix. Both techniques suggested similar exfoliation and dispersion of both types of CMG filler. Structural characterization of the resulting composites using gel permeation chromatography and solid state nuclear magnetic resonance showed no change in the polymer structure with increased loading of CMG filler. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Potts, Jeffrey R.; An, Jinho; Stoller, Meryl D.; Piner, Richard D.; Ruoff, Rodney S.] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA. [Potts, Jeffrey R.; An, Jinho; Stoller, Meryl D.; Piner, Richard D.; Ruoff, Rodney S.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Lee, Sun Hwa] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Alam, Todd M.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87185 USA. RP Ruoff, RS (reprint author), Univ Texas Austin, Dept Mech Engn, 1 Univ Stn C2200, Austin, TX 78712 USA. EM r.ruoff@mail.utexas.edu RI Lee, Sun Hwa/N-6779-2014; Ruoff, Rodney/K-3879-2015 OI Lee, Sun Hwa/0000-0003-1368-1274; FU Laboratory Directed Research and Development (LDRD); National Institute for Nano-Engineering at Sandia National Laboratories FX The authors would like to thank Prof. Don Paul for use of the melt compounding and injection molding equipment, Prof. Ken Liechti for use of mechanical testing equipment, and Prof. Chris Bielawski for use of the GPC and IR spectrometer. This work was supported (in part) by the Laboratory Directed Research and Development (LDRD) program and the National Institute for Nano-Engineering at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy's National Nuclear Security Administration. NR 32 TC 90 Z9 90 U1 5 U2 108 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD JUL PY 2011 VL 49 IS 8 BP 2615 EP 2623 DI 10.1016/j.carbon.2011.02.023 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 757KM UT WOS:000290083900003 ER PT J AU Roberts, HLL Chang, L Cloet, IC Roberts, CD AF Roberts, Hannes L. L. Chang, Lei Cloet, Ian C. Roberts, Craig D. TI Masses of Ground- and Excited-State Hadrons SO FEW-BODY SYSTEMS LA English DT Article ID DYSON-SCHWINGER EQUATIONS; JONA-LASINIO MODEL; DECUPLET BARYONS; LADDER APPROXIMATION; FADDEEV APPROACH; QUARK-MODEL; NJL MODEL; QCD; NUCLEON; PHYSICS AB We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain. C1 [Roberts, Hannes L. L.; Chang, Lei; Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Cloet, Ian C.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Roberts, Hannes L. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chang, Lei; Roberts, Craig D.] Peking Univ, Dept Phys, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Chang, Lei; Roberts, Craig D.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Roberts, Craig D.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cdroberts@anl.gov OI Roberts, Craig/0000-0002-2937-1361 FU Forschungszentrum Julich GmbH; U. S. Department of Energy, Office of Nuclear Physics [DE-FG03-97ER4014, DE-AC02-06CH11357]; Department of Energy's Science Undergraduate Laboratory FX We acknowledge valuable discussions with A. Bashir, M. Doring, S. Krewald, T.S-H. Lee, C. Hanhart and S. M. Schmidt. This work was supported by: Forschungszentrum Julich GmbH; the U. S. Department of Energy, Office of Nuclear Physics, contract nos. DE-FG03-97ER4014 and DE-AC02-06CH11357; and the Department of Energy's Science Undergraduate Laboratory Internship programme. NR 70 TC 47 Z9 47 U1 0 U2 3 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 J9 FEW-BODY SYST JI Few-Body Syst. PD JUL PY 2011 VL 51 IS 1 BP 1 EP 25 DI 10.1007/s00601-011-0225-x PG 25 WC Physics, Multidisciplinary SC Physics GA 756TS UT WOS:000290038200001 ER PT J AU Renshaw, J Holland, SD Thompson, RB Anderegg, J AF Renshaw, Jeremy Holland, Stephen D. Thompson, R. Bruce Anderegg, James TI Vibration-induced tribological damage to fracture surfaces via vibrothermography SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article DE Vibrothermography; Fracture surface; Crack; Friction; Thermography AB Vibrothermography is a nondestructive evaluation technique that uses a temperature-sensitive infrared (IR) camera that observes vibration-induced heat generation at defects, such as cracks, to detect and locate defects within a structure. Vibrothermography has been hindered by issues of repeatability even between consecutive experimental excitations on the same sample. This paper presents experimental evidence of tribological damage - or microscopic changes - that can occur on rubbing crack faces resulting from vibration-induced frictional heat generation. The observed changes include plastic deformation, fretting, adhesive wear, oxidation, and phase transformations, such as melting. These tribological damage mechanisms on the rubbing crack faces are partly responsible for the non-repeatability of vibrothermographic testing. These mechanisms can be minimized by limiting vibrational stresses, thus improving vibrothermographic repeatability. (C) 2011 Elsevier Ltd All rights reserved. C1 [Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce] Iowa State Univ, Ctr NDE, Ames, IA 50011 USA. [Anderegg, James] Ames Lab, Ames, IA 50010 USA. RP Renshaw, J (reprint author), Iowa State Univ, Ctr NDE, 1917 Scholl Rd, Ames, IA 50011 USA. EM jeremy.renshaw@areva.com FU Air Force Research Laboratory [FA8650-04-C-5228] FX This material is based upon work supported by the Air Force Research Laboratory under Contract #FA8650-04-C-5228 at Iowa State University's Center for NDE. NR 17 TC 6 Z9 8 U1 1 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 EI 1879-3452 J9 INT J FATIGUE JI Int. J. Fatigue PD JUL PY 2011 VL 33 IS 7 BP 849 EP 857 DI 10.1016/j.ijfatigue.2011.01.005 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 751FM UT WOS:000289602900003 ER PT J AU Bacuta, C Vassilevski, PS Zhang, SY AF Bacuta, Constantin Vassilevski, Panayot S. Zhang, Shangyou TI A New Approach For Solving Stokes Systems Arising from a Distributive Relaxation Method SO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS LA English DT Article DE distribution relaxation; penalty method; Stokes systems; Uzawa algorithm AB The distributed relaxation method for the Stokes problem has been advertised as an adequate change of variables that leads to a lower triangular system with Laplace operators on the main diagonal for which multigrid methods are very efficient. We show that under high regularity of the Laplacian, the transformed system admits almost block-lower triangular form. We analyze the distributed relaxation method and compare it with other iterative methods for solving the Stokes system. We also present numerical experiments illustrating the effectiveness of the transformation which is well established for certain finite difference discretizations of Stokes problems. (C) 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 898-914, 2011 C1 [Bacuta, Constantin; Vassilevski, Panayot S.; Zhang, Shangyou] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA. [Bacuta, Constantin; Vassilevski, Panayot S.; Zhang, Shangyou] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. RP Bacuta, C (reprint author), Univ Delaware, Dept Math Sci, Newark, DE 19716 USA. EM bacuta@math.udel.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [DMS-0713125, O1SE-0438765]; LLNL FX Contract grant sponsor: U.S. Department of Energy by Lawrence Livermore National Laboratory; contract grant number: DE-AC52-07NA27344; Contract grant sponsor: NSF; contract grant numbers: DMS-0713125, O1SE-0438765; Contract grant sponsor: LLNL NR 11 TC 2 Z9 3 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-159X J9 NUMER METH PART D E JI Numer. Meth. Part Differ. Equ. PD JUL PY 2011 VL 27 IS 4 BP 898 EP 914 DI 10.1002/num.20560 PG 17 WC Mathematics, Applied SC Mathematics GA 749BV UT WOS:000289438000010 ER PT J AU Liraz-Zaltsman, S Alexandrovich, AG Trembovler, V Fishbein, I Yaka, R Shohami, E Biegon, A AF Liraz-Zaltsman, Sigal Alexandrovich, Alexander G. Trembovler, Victoria Fishbein, Ianai Yaka, Rami Shohami, Esther Biegon, Anat TI Regional Sensitivity to Neuroinflammation: In Vivo and In Vitro Studies SO SYNAPSE LA English DT Article DE neuroinflammation; regional sensitivity; autoradiography; cognitive deficits; LPS; peripheral benzodiazepine receptors; translocator protein ID PERIPHERAL BENZODIAZEPINE-RECEPTORS; CENTRAL-NERVOUS-SYSTEM; TRAUMATIC BRAIN-INJURY; CLOSED-HEAD INJURY; PROTEIN 18 KDA; ACTIVATED MICROGLIA; NMDA RECEPTORS; BINDING-SITES; RAT-BRAIN; COGNITIVE IMPAIRMENT AB Background: Neuroinflammation is involved in several acute-onset neuropathologies such as meningitis, encephalitis, stroke, and traumatic brain injury as well as in neurodegenerative diseases. All of these patholologies are associated with cognitive deficits. Using a model of pure neuroinflammation (intracisternal injection of endotoxin in mice), we tested the hypothesis that brain regions involved in cognition are the most vulnerable to inflammatory insults, and this vulnerability is an inherent property of neocortical neurons. Methods: Mice (n = 10/group) injected with endotoxin (LPS) or saline in the cisterna magna underwent neurobehavioral and cognitive testing followed by quantitative autoradiographic assessment of regional neuroinflammation with [3H]PK11195, an established marker of microgliosis. In parallel, cocultures of cortical and striatal neurons taken from embryonic day 19 rat embryos or postnatal day 1 mice expressing green fluorescent protein were exposed for 24 h to the proinflammatory cytokine TNFalpha, glutamate, or a combination of the two agents. Results: LPS-treated mice exhibited significant deficits in memory and significant increases in specific PK11195 binding in cortical and hippocampal regions, but not in striatum. Cultured neurons of cortical origin showed significantly lower survival rate relative to striatal neurons in response to TNFalpha, glutamate, or a combination of the two agents. Furthermore, TNFalpha exerted neuroprotective rather than neurotoxic effects in the striatal but not in the cortical neurons. Conclusions: These results suggest that the cortex is inherently more sensitive than the striatum to the deleterious effects of neuroinflammation, and may offer an explanation for the preponderance of cognitive deficits in neuropathologies with a neuroinflammatory component. Synapse 65: 634-642, 2011. (C) 2010 Wiley-Liss, Inc. C1 [Liraz-Zaltsman, Sigal; Biegon, Anat] Sheba Med Ctr, Joseph Sagol Neurosci Ctr, Ramat Gan, Israel. [Liraz-Zaltsman, Sigal; Alexandrovich, Alexander G.; Trembovler, Victoria; Yaka, Rami; Shohami, Esther] Hebrew Univ Jerusalem, Sch Pharm, Dept Pharmacol, IL-91120 Jerusalem, Israel. [Yaka, Rami] Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot, Israel. [Biegon, Anat] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Biegon, A (reprint author), Bldg 490 Med, Upton, NY 11973 USA. EM biegon@bnl.gov FU BSF [2005-021-01] FX Contract grant sponsor: BSF; Contract grant number: 2005-021-01 NR 40 TC 11 Z9 11 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-4476 J9 SYNAPSE JI Synapse PD JUL PY 2011 VL 65 IS 7 BP 634 EP 642 DI 10.1002/syn.20889 PG 9 WC Neurosciences SC Neurosciences & Neurology GA 748WY UT WOS:000289424900010 PM 21108236 ER PT J AU Tsai, A Tucker, D Groves, C AF Tsai, Alex Tucker, David Groves, Craig TI Improved Controller Performance of Selected Hybrid SOFC-GT Plant Signals Based on Practical Control Schemes SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB This paper compares and demonstrates the efficacy of implementing two practical single input single output multiloop control schemes on the dynamic performance of selected signals of a solid oxide fuel cell gas turbine (SOFC-GT) hybrid simulation facility. The hybrid plant located at the U. S. Department of Energy National Energy Technology Laboratory in Morgantown, WV is capable of simulating the interaction between a 350 kW solid oxide fuel cell and a 120 kW gas turbine using a hardware in the loop configuration. Previous studies have shown that the thermal management of coal based SOFC-GT hybrid systems is accomplished by the careful control of the cathode air stream within the fuel cell (FC). Decoupled centralized and dynamic decentralized control schemes are tested for one critical airflow bypass loop to regulate cathode FC airflow and modulation of turbine electric load to maintain synchronous turbine speed during system transients. Improvements to the studied multivariate architectures include: feed-forward control for disturbance rejection, antiwindup compensation for actuator saturation, gain scheduling for adaptive operation, bumpless transfer for manual to auto switching, and adequate filter design for the inclusion of derivative action. Controller gain tuning is accomplished by Skogestad's internal model control tuning rules derived from empirical first order plus delay time transfer function models of the hybrid facility. Avoidance of strong input-output coupling interactions is achieved via relative gain array, Niederlinski index, and decomposed relative interaction analysis, following recent methodologies in proportional integral derivative control theory for multivariable processes. [DOI: 10.1115/1.4002253] C1 [Tsai, Alex; Tucker, David] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Groves, Craig] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Tsai, A (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26505 USA. EM alex.tsai@netl.doe.gov; david.tucker@netl.doe.gov; cgroves3@gatech.edu FU Oak Ridge Institute for Science and Education FX The authors would like to acknowledge Ms. Susan Shoemaker for her invaluable insight and assistance in the programming and design of HYPER's control algorithms. This research was possible in part, thanks to a postdoctoral fellowship offered by the Oak Ridge Institute for Science and Education. NR 18 TC 1 Z9 1 U1 1 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2011 VL 133 IS 7 AR 071702 DI 10.1115/1.4002253 PG 11 WC Engineering, Mechanical SC Engineering GA 740PW UT WOS:000288807900007 ER PT J AU Lin, ZP Li, SD Liu, M Tsai, SY Duh, JG Liu, MM Xu, F AF Lin, Zhiping Li, Shandong Liu, Ming Tsai, Su-Yueh Duh, Jenq-Gong Liu, Meimei Xu, Feng TI The magnetic entropy change in La0.8Ce0.2Fe11.4Si1.6Bx compounds prepared by copper-mold casting SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetocaloric effect; Copper-mold casting; Thermal lag; Magnetic hysteresis ID METAMAGNETIC TRANSITION; PHASE-TRANSITION; ROOM-TEMPERATURE; LA(FEXSI1-X)(13); LAFE11.4SI1.6; GD-5(SI2GE2); LA AB The magnetocaloric effect (MCE) of La0.8Ce0.2Fe11.4Si1.6Bx (x = 0.0-0.5) compounds, prepared by a copper-mold casting (CMC) method, has been investigated. Comparing with the conventional arc-melting (CAM) method, the relatively homogenous composition and microstructure were achieved in the precursor alloys prepared by the CMC method. As a result, the annealing time is dramatically shortened from several weeks for CAM alloys to 2 h for CMC alloys, suggesting that CMC method is a time-saving and energy-saving method for fabrication of MCE alloys. On the other hand, it is revealed that B addition gives rise to an enhancement of Curie temperature (T-C), a reduction of thermal lag and magnetic hysteresis and a broadening of working temperature span as well. Although the peak value of magnetic entropy change decreases with B content, various B-contained compounds hold close refrigerant capacities. Comprehensively considering magnetocaloric properties of the B-contained La0.8Ce0.2Fe11.4Si1.6Bx compounds, it can be concluded that the B-contained compounds prepared by CMC method are promising candidates of magnetocaloric materials in practical application. (C) 2011 Elsevier B. V. All rights reserved. C1 [Lin, Zhiping; Li, Shandong] Fujian Normal Univ, Dept Phys, Fuzhou 350007, Peoples R China. [Liu, Ming] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Tsai, Su-Yueh] Natl Tsing Hua Univ, Precis Instrument Ctr, EPMA Lab, Hsinchu 30013, Taiwan. [Duh, Jenq-Gong] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. [Liu, Meimei] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 350201, Zhejiang, Peoples R China. [Xu, Feng] Nanjing Univ Sci & Technol, Dept Mat Sci & Engn, Nanjing 210094, Peoples R China. RP Li, SD (reprint author), Fujian Normal Univ, Dept Phys, Fuzhou 350007, Peoples R China. EM dylsd007@yahoo.com.cn RI Liu, Ming/B-4143-2009 OI Liu, Ming/0000-0002-6310-948X FU Program for New Century Excellent Talents in University [NCET-08-0631]; NSFC [11074040, 10904071]; Ministry of Economics, Taiwan; [2010J06001]; [2009H0019]; [SBK2009 22570]; [2008100217]; [98-EC-17-A-08-S1-003] FX This work was financially supported by the Program for New Century Excellent Talents in University (NCET-08-0631), NSFC (11074040 and 10904071), 2010J06001, 2009H0019, SBK2009 22570, 2008100217 and 98-EC-17-A-08-S1-003, (Ministry of Economics, Taiwan). NR 23 TC 8 Z9 8 U1 3 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JUL PY 2011 VL 323 IS 13 BP 1741 EP 1744 DI 10.1016/j.jmmm.2010.12.038 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 736IM UT WOS:000288486700002 ER PT J AU Mitri, FG Fellah, ZEA AF Mitri, F. G. Fellah, Z. E. A. TI Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid SO ULTRASONICS LA English DT Article DE Acoustic radiation force; Cylindrical diverging waves; Progressive waves; Rigid cylinder; Soft cylinder ID BESSEL BEAM; SOUND FIELD; SPHERE; TWEEZERS AB Background and motivation: Previous works investigating the radiation force of diverging spherical progressive waves incident upon spherical particles have demonstrated the direction of reversal of the force when the particle is subjected to a curved wave-front. In this communication, the analysis is extended to the case of diverging cylindrical progressive waves incident upon a rigid or a soft cylinder in a nonviscous fluid with explicit calculations for the radiation force function (which is the radiation force per unit energy density and unit cross-sectional surface) not shown in [F.G. Mitri, Ultrasonics 50 (2010) 620-627]. Method: A closed-form solution presented previously in [F.G. Mitri, Ultrasonics 50 (2010) 620-627] is used to plot the radiation force function with particular emphasis on the difference from the results of incident plane progressive waves versus the size parameter ka (k is the wave number and a is the cylinder's radius) and the distance of the cylinder from the acoustic source r(0). Results: Radiation force function calculations for the rigid cylinder unexpectedly reveal that under specific conditions determined by the frequency of the acoustic field, the radius of the cylinder, as well as the distance to the acoustic source, the force becomes attractive (negative force). In addition, the numerical results show that the radiation force on a rigid cylinder does not generally obey the inverse-distance law with respect to the distance from the source. Conclusion and potential applications: These results suggest that it may be possible, under specific conditions, to pull a cylindrical structure back toward the acoustic source using progressive cylindrical diverging waves. They may also provide a means to predict the radiation force required to manipulate non-destructively a single cylindrical structure. Potential applications include the design of a new generation of acoustic tweezers operating using a single beam of progressive waves (in contrast to the traditional version of acoustical tweezers in which an acoustic standing wave field is produced using two counter-propagating acoustic fields) for investigations in the field of flow cytometry, particle manipulation and entrapment. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mitri, F. G.] Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11, Los Alamos, NM 87545 USA. [Fellah, Z. E. A.] CNRS UPR 7051, Lab Mecan & Acoust, F-13009 Marseille, France. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11, MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory [LDRD-X9N9] FX The financial support provided through a Director's fellowship (LDRD-X9N9) from Los Alamos National Laboratory is gratefully acknowledged. Disclosure: this unclassified publication, with the following Reference No. LA-UR 10-08260, has been approved for unlimited public release under DUSA ENSCI. NR 23 TC 13 Z9 13 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X EI 1874-9968 J9 ULTRASONICS JI Ultrasonics PD JUL PY 2011 VL 51 IS 5 BP 523 EP 526 DI 10.1016/j.ultras.2010.12.004 PG 4 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 730DW UT WOS:000288014000001 PM 21339000 ER PT J AU Mitri, FG AF Mitri, F. G. TI Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited (vol 50, pg 620, 2010) SO ULTRASONICS LA English DT Correction C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11, MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 1 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0041-624X J9 ULTRASONICS JI Ultrasonics PD JUL PY 2011 VL 51 IS 5 BP 645 EP 645 DI 10.1016/j.ultras.2010.12.013 PG 1 WC Acoustics; Radiology, Nuclear Medicine & Medical Imaging SC Acoustics; Radiology, Nuclear Medicine & Medical Imaging GA 730DW UT WOS:000288014000018 ER PT J AU Yoon, KJ Stevenson, JW Marina, OA AF Yoon, Kyung Joong Stevenson, Jeffry W. Marina, Olga A. TI Effect of nickel substitution on defect chemistry, electrical properties, and dimensional stability of calcium-doped yttrium chromite SO SOLID STATE IONICS LA English DT Article DE Doped yttrium chromite; Defect model; Electrical conductivity; Chemical expansion ID OXIDE FUEL-CELLS; THERMAL TRANSPORT-PROPERTIES; LANTHANUM CHROMITES; INTERCONNECT MATERIAL; SEEBECK COEFFICIENT; HIGH-TEMPERATURE; CONDUCTIVITY; LACRO3; NONSTOICHIOMETRY; EXPANSION AB The effect of nickel substitution on defect chemistry, electrical properties, and dimensional stability of calcium-doped yttrium chromite was studied for use as an interconnect material in high temperature solid oxide fuel cells (SOFCs). The compositions of Y0.8Ca0.2Cr1-xNixO3 +/-delta(x = 0-0.15), prepared using the glycine nitrate process, showed single phase orthorhombic perovskite structures over a wide range of oxygen partial pressures (4.6 x 10(-20) atm <= pO(2)<= 0.21 atm at 900 degrees C). X-ray diffraction (XRD) analysis indicated that most of the nickel ions replacing chromium ions are divalent and act as acceptor dopants, leading to a substantial increase in conductivity. In particular, the conductivity at 900 degrees C in air increased from 10 S/cm to 34 S/cm with 15% nickel substitution, and an increase in charge carrier density was confirmed by Seebeck measurements, which validated the predominant Ni2+ oxidation state. A point defect model was derived, and the relationship between electrical conductivity and oxygen partial pressure was successfully fitted into the proposed model. The defect modeling results indicated that nickel substitution improves the stability of calcium-doped yttrium chromite toward reduction and suppresses the oxygen vacancy formation, which results in significantly increased electrical conductivity in reducing environment. The electrical conductivity of Y0.8Ca0.2Cr0.85Ni0.15O3 +/-delta at 900 degrees C in reducing atmosphere (pO(2)=10(-17) atm) was 5.8 S/cm, which was more than an order of magnitude higher than that of Y0.8Ca0.2CrO3 +/-delta (0.2 S/cm). Improved stability in reducing atmosphere was further confirmed by dilatometry measurements showing reduced isothermal "chemical" expansion, and the isothermal expansion in reducing atmosphere (pO(2)=10(-17) atm) at 900 degrees C decreased from 0.07% for Y0.8Ca0.2CrO3 +/-delta to 0.03% for Y0.8Ca0.2Cr0.85Ni0.15O3 +/-delta. Based on these results, enhanced electrical performance and mechanical integrity is expected with nickel substitution on calcium-doped yttrium chromite in SOFC operating conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yoon, Kyung Joong; Stevenson, Jeffry W.; Marina, Olga A.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Yoon, KJ (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM kyungjoong.yoon@pnl.gov FU U.S. Department of Energy; [DE-AC06-76RLO 1830] FX The authors appreciate the XRD analysis performed by Carolyn N. Cramer. The work summarized in this paper was funded by the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. NR 40 TC 5 Z9 5 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD JUN 30 PY 2011 VL 193 IS 1 BP 60 EP 65 DI 10.1016/j.ssi.2011.04.008 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 795BH UT WOS:000292946000010 ER PT J AU Smathers, RL Galligan, JJ Stewart, BJ Petersen, DR AF Smathers, Rebecca L. Galligan, James J. Stewart, Benjamin J. Petersen, Dennis R. TI Overview of lipid peroxidation products and hepatic protein modification in alcoholic liver disease SO CHEMICO-BIOLOGICAL INTERACTIONS LA English DT Article; Proceedings Paper CT 18th International Conference on Biological Reactive Intermediates CY JUL 15-18, 2010 CL Parc Recerca Biomedica, Barcelona, SPAIN HO Parc Recerca Biomedica DE Alcoholic liver disease; Oxidative stress; Proteomics; Hepatic 4-HNE modified proteins ID ACID-BINDING PROTEIN; ENDOPLASMIC-RETICULUM STRESS; PEROXIREDOXIN 6; COVALENT MODIFICATION; IN-VITRO; ETHANOL; INJURY; MODEL; RAT; MALONDIALDEHYDE AB Objectives: Oxidative stress is one component of alcoholic liver disease (ALD) that is manifested in the peroxidation of cellular lipids producing the electrophile, 4-hydroxynonenal (4-HNE). This electrophile is proposed to modify essential cellular proteins resulting in loss of protein function and cellular homeostasis. Studies were initiated to identify hepatic proteins that are targets of 4-HNE modification and determine their relationship with progression of the early stages of ALD. Methods: Rat and mouse models were developed using the Lieber-DeCarli diet to simulate early stages of ALD consisting of fatty liver (steatosis) and hepatocellular injury indicated by a 1.5-2-fold elevation of plasma ALT activity. Liver samples obtained from control and ethanol treated animals were subjected to two-dimensional electrophoresis and immunoblotting using polyclonal antibodies generated against 4-HNE epitopes for detection of proteins modified by 4-HNE. Following identification of 4-HNE adducted proteins, the respective recombinant proteins modified with physiologic concentrations of 4-HNE were evaluated to determine the functional consequences of 4-HNE modification. Results: One group of proteins identified included Hsp70. Hsp90 and protein disulfide isomerase (PDI), all of which are involved in protein folding or processing are targets of adduction. In vitro assays indicated significant impairment of the protein activities following modification with physiologically relevant concentrations of 4-HNE. Liver fatty acid binding protein. L-FABP, was also identified as a target and additional studies revealed that the levels of this protein were significantly decreased because of chronic ethanol ingestion. Erk1/2 was identified as a target for modification and subsequently determined to have impaired activity. Conclusions: Inhibition of Hsp70, Hsp90 and PDI function could be involved in initiation of the early phases of ER stress contributing to stimulation and accumulation of hepatic lipids. Likewise, impairment of L-FABP activity could also disrupt lipid transport also contributing to steatosis. The modification and inhibition of Erk1/2 by 4-HNE may also contribute to the decreased hepatocellular proliferation associated with ALD. Collectively, these results provide new information concerning the mechanisms whereby the modification of hepatic proteins by 4-HNE contributes to ALD. Published by Elsevier Ireland Ltd C1 [Smathers, Rebecca L.; Petersen, Dennis R.] Univ Colorado Denver, Dept Pharmaceut Sci, Mol Toxicol Program, Aurora, CO 80045 USA. [Galligan, James J.] Univ Colorado Denver, Dept Pharmacol, Aurora, CO 80045 USA. [Stewart, Benjamin J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Petersen, DR (reprint author), Univ Colorado Denver, Dept Pharmaceut Sci, Mol Toxicol Program, Mail Stop C238-P15,Res Complex 2,Room 3013,12700, Aurora, CO 80045 USA. EM Dennis.Petersen@uchsc.edu RI McCullough, Rebecca/I-4081-2014; Galligan, James/A-5041-2015 FU NIAAA NIH HHS [5 F31 AA018898-02, F31 AA018898, F31 AA018898-02, R37 AA009300, R37 AA009300-15, R37AA09300]; NIDDK NIH HHS [R01 DK074487, R01 DK074487-01, R01 DK074487-01A2] NR 36 TC 57 Z9 63 U1 0 U2 9 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0009-2797 J9 CHEM-BIOL INTERACT JI Chem.-Biol. Interact. PD JUN 30 PY 2011 VL 192 IS 1-2 SI SI BP 107 EP 112 DI 10.1016/j.cbi.2011.02.021 PG 6 WC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Toxicology GA 788HD UT WOS:000292435100018 PM 21354120 ER PT J AU Bell, D Berchuck, A Birrer, M Chien, J Cramer, DW Dao, F Dhir, R DiSaia, P Gabra, H Glenn, P Godwin, AK Gross, J Hartmann, L Huang, M Huntsman, DG Iacocca, M Imielinski, M Kalloger, S Karlan, BY Levine, DA Mills, GB Morrison, C Mutch, D Olvera, N Orsulic, S Park, K Petrelli, N Rabeno, B Rader, JS Sikic, BI Smith-McCune, K Sood, AK Bowtell, D Penny, R Testa, JR Chang, K Dinh, HH Drummond, JA Fowler, G Gunaratne, P Hawes, AC Kovar, CL Lewis, LR Morgan, MB Newsham, IF Santibanez, J Reid, JG Trevino, LR Wu, YQ Wang, M Muzny, DM Wheeler, DA Gibbs, RA Getz, G Lawrence, MS Cibulskis, K Sivachenko, AY Sougnez, C Voet, D Wilkinson, J Bloom, T Ardlie, K Fennell, T Baldwin, J Gabriel, S Lander, ES Ding, L Fulton, RS Koboldt, DC McLellan, MD Wylie, T Walker, J O'Laughlin, M Dooling, DJ Fulton, L Abbott, R Dees, ND Zhang, Q Kandoth, C Wendl, M Schierding, W Shen, D Harris, CC Schmidt, H Kalicki, J Delehaunty, KD Fronick, CC Demeter, R Cook, L Wallis, JW Lin, L Magrini, VJ Hodges, JS Eldred, JM Smith, SM Pohl, CS Vandin, F Raphael, BJ Weinstock, GM Mardis, R Wilson, RK Meyerson, M Winckler, W Getz, G Verhaak, RGW Carter, SL Mermel, CH Saksena, G Nguyen, H Onofrio, RC Lawrence, MS Hubbard, D Gupta, S Crenshaw, A Ramos, AH Ardlie, K Chin, L Protopopov, A Zhang, JH Kim, TM Perna, I Xiao, Y Zhang, H Ren, G Sathiamoorthy, N Park, RW Lee, E Park, PJ Kucherlapati, R Absher, DM Waite, L Sherlock, G Brooks, JD Li, JZ Xu, J Myers, RM Laird, PW Cope, L Herman, JG Shen, H Weisenberger, DJ Noushmehr, H Pan, F Triche, T Berman, BP Van den Berg, DJ Buckley, J Baylin, SB Spellman, PT Purdom, E Neuvial, P Bengtsson, H Jakkula, LR Durinck, S Han, J Dorton, S Marr, H Choi, YG Wang, V Wang, NJ Ngai, J Conboy, JG Parvin, B Feiler, HS Speed, TP Gray, JW Levine, DA Socci, ND Liang, Y Taylor, BS Schultz, N Borsu, L Lash, AE Brennan, C Viale, A Sander, C Ladanyi, M Hoadley, KA Meng, S Du, Y Shi, Y Li, L Turman, YJ Zang, D Helms, EB Balu, S Zhou, X Wu, J Topal, MD Hayes, DN Perou, CM Getz, G Voet, D Saksena, G Zhang, JNH Zhang, H Wu, CJ Shukla, S Cibulskis, K Lawrence, MS Sivachenko, A Jing, R Park, RW Liu, Y Park, PJ Noble, M Chin, L Carter, H Kim, D Karchin, R Spellman, PT Purdom, E Neuvial, P Bengtsson, H Durinck, S Han, J Korkola, JE Heiser, LM Cho, RJ Hu, Z Parvin, B Speed, TP Gray, JW Schultz, N Cerami, E Taylor, BS Olshen, A Reva, B Antipin, Y Shen, R Mankoo, P Sheridan, R Ciriello, G Chang, WK Bernanke, JA Borsu, L Levine, DA Ladanyi, M Sander, C Haussler, D Benz, CC Stuart, JM Benz, SC Sanborn, JZ Vaske, CJ Zhu, J Szeto, C Scott, GK Yau, C Hoadley, KA Du, Y Balu, S Hayes, DN Perou, CM Wilkerson, MD Zhang, N Akbani, R Baggerly, KA Yung, WK Mills, GB Weinstein, JN Penny, R Shelton, T Grimm, D Hatfield, M Morris, S Yena, P Rhodes, P Sherman, M Paulauskis, J Millis, S Kahn, A Greene, JM Sfeir, R Jensen, MA Chen, J Whitmore, J Alonso, S Jordan, J Chu, A Zhang, JH Barker, A Compton, C Eley, G Ferguson, M Fielding, P Gerhard, DS Myles, R Schaefer, C Shaw, KRM Vaught, J Vockley, JB Good, PJ Guyer, MS Ozenberger, B Peterson, J Thomson, E AF Bell, D. Berchuck, A. Birrer, M. Chien, J. Cramer, D. W. Dao, F. Dhir, R. DiSaia, P. Gabra, H. Glenn, P. Godwin, A. K. Gross, J. Hartmann, L. Huang, M. Huntsman, D. G. Iacocca, M. Imielinski, M. Kalloger, S. Karlan, B. Y. Levine, D. A. Mills, G. B. Morrison, C. Mutch, D. Olvera, N. Orsulic, S. Park, K. Petrelli, N. Rabeno, B. Rader, J. S. Sikic, B. I. Smith-McCune, K. Sood, A. K. Bowtell, D. Penny, R. Testa, J. R. Chang, K. Dinh, H. H. Drummond, J. A. Fowler, G. Gunaratne, P. Hawes, A. C. Kovar, C. L. Lewis, L. R. Morgan, M. B. Newsham, I. F. Santibanez, J. Reid, J. G. Trevino, L. R. Wu, Y. -Q. Wang, M. Muzny, D. M. Wheeler, D. A. Gibbs, R. A. Getz, G. Lawrence, M. S. Cibulskis, K. Sivachenko, A. Y. Sougnez, C. Voet, D. Wilkinson, J. Bloom, T. Ardlie, K. Fennell, T. Baldwin, J. Gabriel, S. Lander, E. S. Ding, L. Fulton, R. S. Koboldt, D. C. McLellan, M. D. Wylie, T. Walker, J. O'Laughlin, M. Dooling, D. J. Fulton, L. Abbott, R. Dees, N. D. Zhang, Q. Kandoth, C. Wendl, M. Schierding, W. Shen, D. Harris, C. C. Schmidt, H. Kalicki, J. Delehaunty, K. D. Fronick, C. C. Demeter, R. Cook, L. Wallis, J. W. Lin, L. Magrini, V. J. Hodges, J. S. Eldred, J. M. Smith, S. M. Pohl, C. S. Vandin, F. Raphael, B. J. Weinstock, G. M. Mardis, R. Wilson, R. K. Meyerson, M. Winckler, W. Getz, G. Verhaak, R. G. W. Carter, S. L. Mermel, C. H. Saksena, G. Nguyen, H. Onofrio, R. C. Lawrence, M. S. Hubbard, D. Gupta, S. Crenshaw, A. Ramos, A. H. Ardlie, K. Chin, L. Protopopov, A. Zhang, Juinhua Kim, T. M. Perna, I. Xiao, Y. Zhang, H. Ren, G. Sathiamoorthy, N. Park, R. W. Lee, E. Park, P. J. Kucherlapati, R. Absher, D. M. Waite, L. Sherlock, G. Brooks, J. D. Li, J. Z. Xu, J. Myers, R. M. Laird, P. W. Cope, L. Herman, J. G. Shen, H. Weisenberger, D. J. Noushmehr, H. Pan, F. Triche, T., Jr. Berman, B. P. Van den Berg, D. J. Buckley, J. Baylin, S. B. Spellman, P. T. Purdom, E. Neuvial, P. Bengtsson, H. Jakkula, L. R. Durinck, S. Han, J. Dorton, S. Marr, H. Choi, Y. G. Wang, V. Wang, N. J. Ngai, J. Conboy, J. G. Parvin, B. Feiler, H. S. Speed, T. P. Gray, J. W. Levine, D. A. Socci, N. D. Liang, Y. Taylor, B. S. Schultz, N. Borsu, L. Lash, A. E. Brennan, C. Viale, A. Sander, C. Ladanyi, M. Hoadley, K. A. Meng, S. Du, Y. Shi, Y. Li, L. Turman, Y. J. Zang, D. Helms, E. B. Balu, S. Zhou, X. Wu, J. Topal, M. D. Hayes, D. N. Perou, C. M. Getz, G. Voet, D. Saksena, G. Zhang, Junihua Zhang, H. Wu, C. J. Shukla, S. Cibulskis, K. Lawrence, M. S. Sivachenko, A. Jing, R. Park, R. W. Liu, Y. Park, P. J. Noble, M. Chin, L. Carter, H. Kim, D. Karchin, R. Spellman, P. T. Purdom, E. Neuvial, P. Bengtsson, H. Durinck, S. Han, J. Korkola, J. E. Heiser, L. M. Cho, R. J. Hu, Z. Parvin, B. Speed, T. P. Gray, J. W. Schultz, N. Cerami, E. Taylor, B. S. Olshen, A. Reva, B. Antipin, Y. Shen, R. Mankoo, P. Sheridan, R. Ciriello, G. Chang, W. K. Bernanke, J. A. Borsu, L. Levine, D. A. Ladanyi, M. Sander, C. Haussler, D. Benz, C. C. Stuart, J. M. Benz, S. C. Sanborn, J. Z. Vaske, C. J. Zhu, J. Szeto, C. Scott, G. K. Yau, C. Hoadley, K. A. Du, Y. Balu, S. Hayes, D. N. Perou, C. M. Wilkerson, M. D. Zhang, N. Akbani, R. Baggerly, K. A. Yung, W. K. Mills, G. B. Weinstein, J. N. Penny, R. Shelton, T. Grimm, D. Hatfield, M. Morris, S. Yena, P. Rhodes, P. Sherman, M. Paulauskis, J. Millis, S. Kahn, A. Greene, J. M. Sfeir, R. Jensen, M. A. Chen, J. Whitmore, J. Alonso, S. Jordan, J. Chu, A. Zhang, Jinghui Barker, A. Compton, C. Eley, G. Ferguson, M. Fielding, P. Gerhard, D. S. Myles, R. Schaefer, C. Shaw, K. R. Mills Vaught, J. Vockley, J. B. Good, P. J. Guyer, M. S. Ozenberger, B. Peterson, J. Thomson, E. CA Canc Genome Atlas Res Network TI Integrated genomic analyses of ovarian carcinoma SO NATURE LA English DT Article ID HIGH-THROUGHPUT ANNOTATION; GYNECOLOGIC-ONCOLOGY-GROUP; GRADE SEROUS CARCINOMA; BRCA MUTATION CARRIERS; CLEAR-CELL CARCINOMA; SOMATIC MUTATIONS; CANCER STATISTICS; DRIVER MUTATIONS; HYBRID SELECTION; MUTANT-CELLS AB A catalogue of molecular aberrations that cause ovarian cancer is critical for developing and deploying therapies that will improve patients' lives. The Cancer Genome Atlas project has analysed messenger RNA expression, microRNA expression, promoter methylation and DNA copy number in 489 high-grade serous ovarian adenocarcinomas and the DNA sequences of exons from coding genes in 316 of these tumours. Here we report that high-grade serous ovarian cancer is characterized by TP53 mutations in almost all tumours (96%); low prevalence but statistically recurrent somatic mutations in nine further genes including NF1, BRCA1, BRCA2, RB1 and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three microRNA subtypes, four promoter methylation subtypes and a transcriptional signature associated with survival duration, and shed new light on the impact that tumours with BRCA1/2 (BRCA1 or BRCA2) and CCNE1 aberrations have on survival. Pathway analyses suggested that homologous recombination is defective in about half of the tumours analysed, and that NOTCH and FOXM1 signalling are involved in serous ovarian cancer pathophysiology. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Bell, D.] Mayo Clin, Div Anat Pathol, Rochester, MN 55905 USA. [Berchuck, A.] Duke Univ, Div Gynecol Oncol, Dept Obstet & Gynecol, Med Ctr, Durham, NC 27708 USA. [Berchuck, A.] Duke Univ, Duke Inst Genome Sci & Policy, Med Ctr, Durham, NC 27708 USA. [Birrer, M.] Harvard Univ, Sch Med, Dept Med, Boston, MA 02114 USA. [Birrer, M.; Imielinski, M.] Massachusetts Gen Hosp, Boston, MA 02114 USA. [Chien, J.] Mayo Clin, Div Expt Pathol, Rochester, MN 55905 USA. [Cramer, D. W.] Brigham & Womens Hosp, Dept Obstet & Gynecol, Epidemiol Ctr, Boston, MA 02115 USA. [Levine, D. A.] Mem Sloan Kettering Canc Ctr, Dept Surg, New York, NY 10065 USA. [Dhir, R.] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15213 USA. [DiSaia, P.] Univ Calif Irvine, Gynecol Oncol Grp, Irvine, CA 92697 USA. [Gabra, H.] Univ London Imperial Coll Sci Technol & Med, Dept Surg & Canc, Ovarian Canc Act Res Ctr, London W12 0NN, England. [Glenn, P.; Smith-McCune, K.] Univ Calif San Francisco, Dept Obstet Gynecol & Reprod Serv, San Francisco, CA 94143 USA. [Godwin, A. K.] Fox Chase Canc Ctr, Dept Med Oncol, Womens Canc Program, Philadelphia, PA 19111 USA. [Gross, J.; Karlan, B. Y.; Orsulic, S.] Univ Calif Los Angeles, Canc Res Inst, Samuel Oschin Comprehens Canc Inst, Cedars Sinai Med Ctr,Geffen Sch Med, Los Angeles, CA 90048 USA. [Hartmann, L.] Mayo Clin, Div Med Oncol, Rochester, MN 55905 USA. [Huang, M.] Fox Chase Canc Ctr, Dept Pathol, Philadelphia, PA 19111 USA. [Huntsman, D. G.; Kalloger, S.] British Columbia Canc Agcy, Ctr Translat & Appl Genom, Vancouver, BC V5Z 1G1, Canada. [Iacocca, M.; Rabeno, B.] Christiana Care Hlth Syst, Dept Pathol, Newark, DE 19718 USA. [Karlan, B. Y.] Univ Calif Los Angeles, Dept Obstet & Gynecol, Cedars Sinai Med Ctr, Geffen Sch Med, Los Angeles, CA 90048 USA. [Mills, G. B.] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA. Univ Texas MD Anderson Canc Ctr, Kleberg Ctr Mol Markers, Houston, TX 77030 USA. [Morrison, C.] Roswell Pk Canc Inst, Dept Pathol & Lab Med, Buffalo, NY 14263 USA. [Morrison, C.] Roswell Pk Canc Inst, Div Mol Pathol, Buffalo, NY 14263 USA. [Mutch, D.] Washington Univ, Div Gynecol Oncol, Dept Obstet & Gynecol, Sch Med St Louis, St Louis, MO 63110 USA. [Park, K.] Mem Sloan Kettering Canc Ctr, Dept Pathol, New York, NY 10065 USA. [Petrelli, N.] Helen F Graham Canc Ctr Christina Care, Dept Surg, Newark, DE 19713 USA. [Rader, J. S.] Med Coll Wisconsin, Human & Mol Genet Ctr, Dept Obstet & Gynecol, Milwaukee, WI 53226 USA. [Sikic, B. I.] Stanford Univ, Dept Med, Div Oncol, Sch Med, Palo Alto, CA 94304 USA. [Sood, A. K.] Univ Texas MD Anderson Canc Ctr, Dept Gynecol Oncol, Houston, TX 77230 USA. [Sood, A. K.] Univ Texas MD Anderson Canc Ctr, Ctr RNA Interference & Noncoding RNA, Houston, TX 77230 USA. [Bowtell, D.] Peter MacCallum Canc Ctr, Div Res, Melbourne, Vic 8006, Australia. [Penny, R.; Shelton, T.; Grimm, D.; Hatfield, M.; Morris, S.; Yena, P.; Rhodes, P.; Sherman, M.; Paulauskis, J.; Millis, S.] Internat Genom Consortium, Phoenix, AZ 85004 USA. [Testa, J. R.] Fox Chase Canc Ctr, Canc Biol Program, Philadelphia, PA 19111 USA. [Chang, K.; Dinh, H. H.; Drummond, J. A.; Fowler, G.; Gunaratne, P.; Hawes, A. C.; Kovar, C. L.; Lewis, L. R.; Morgan, M. B.; Newsham, I. F.; Santibanez, J.; Reid, J. G.; Trevino, L. R.; Wu, Y. -Q.; Wang, M.; Muzny, D. M.; Wheeler, D. A.; Gibbs, R. A.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Sougnez, C.; Winckler, W.; Getz, G.] MIT, Eli & Edythe L Broad Inst, Canc Genome Project, Cambridge, MA 02142 USA. [Sougnez, C.; Winckler, W.; Getz, G.] MIT, Eli & Edythe L Broad Inst, Med Resequencing Project, Cambridge, MA 02142 USA. [Cibulskis, K.; Sougnez, C.; Wilkinson, J.; Bloom, T.; Fennell, T.; Baldwin, J.; Gabriel, S.; Winckler, W.; Getz, G.; Crenshaw, A.] Harvard Univ, Cambridge, MA 02142 USA. [Lander, E. S.] MIT, Dept Biol, Cambridge, MA 02142 USA. [Lander, E. S.] Harvard Univ, Dept Syst Biol, Boston, MA 02115 USA. [Ding, L.; Fulton, R. S.; Koboldt, D. C.; McLellan, M. D.; Wylie, T.; Walker, J.; O'Laughlin, M.; Dooling, D. J.; Fulton, L.; Abbott, R.; Dees, N. D.; Zhang, Q.; Kandoth, C.; Wendl, M.; Schierding, W.; Shen, D.; Harris, C. C.; Schmidt, H.; Kalicki, J.; Delehaunty, K. D.; Fronick, C. C.; Demeter, R.; Cook, L.; Wallis, J. W.; Lin, L.; Magrini, V. J.; Hodges, J. S.; Eldred, J. M.; Smith, S. M.; Pohl, C. S.; Weinstock, G. M.; Mardis, R.; Wilson, R. K.] Washington Univ, Sch Med St Louis, Genome Ctr, Dept Genet, St Louis, MO 63108 USA. [Vandin, F.; Raphael, B. J.] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA. [Vandin, F.; Raphael, B. J.] Brown Univ, Ctr Computat Mol Biol, Providence, RI 02912 USA. [Mardis, R.; Wilson, R. K.] Washington Univ, Siteman Canc Ctr, Sch Med St Louis, St Louis, MO 63108 USA. [Meyerson, M.; Verhaak, R. G. W.; Carter, S. L.; Mermel, C. H.; Hubbard, D.; Ramos, A. H.] Dana Farber Canc Inst, Dept Med Oncol, Boston, MA 02115 USA. [Meyerson, M.; Hubbard, D.; Ramos, A. H.] Dana Farber Canc Inst, Ctr Canc Genome Discovery, Boston, MA 02115 USA. [Chin, L.; Protopopov, A.; Zhang, Juinhua; Perna, I.; Xiao, Y.; Zhang, H.; Ren, G.; Zhang, Junihua; Wu, C. J.; Shukla, S.; Liu, Y.] Dana Farber Canc Inst, Belfer Inst Appl Canc Sci, Dept Med Oncol, Boston, MA 02115 USA. [Chin, L.] Harvard Univ, Sch Med, Dept Dermatol, Boston, MA 02115 USA. [Kim, T. M.; Park, R. W.; Lee, E.; Park, P. J.; Park, R. W.] Harvard Univ, Ctr Biomed Informat, Sch Med, Boston, MA 02115 USA. [Sathiamoorthy, N.] Partners Ctr Personalized Genet Med, Cambridge, MA 02139 USA. Childrens Hosp, Informat Program, Boston, MA 02115 USA. [Kucherlapati, R.] Harvard Univ, Dept Genet, Sch Med, Boston, MA 02115 USA. [Absher, D. M.; Waite, L.; Myers, R. M.; Speed, T. P.] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Brooks, J. D.; Sander, C.] Stanford Univ, Dept Urol, Sch Med, Stanford, CA 94305 USA. [Li, J. Z.; Xu, J.] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. [Laird, P. W.; Shen, H.; Weisenberger, D. J.; Noushmehr, H.; Pan, F.; Triche, T., Jr.; Berman, B. P.; Van den Berg, D. J.; Buckley, J.] Univ So Calif, Epigenome Ctr, Los Angeles, CA 90089 USA. [Cope, L.] Johns Hopkins Univ, Biometry & Clin Trials Div, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA. [Herman, J. G.; Baylin, S. B.] Johns Hopkins Univ, Div Canc Biol, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21231 USA. [Purdom, E.; Neuvial, P.; Bengtsson, H.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 95720 USA. [Choi, Y. G.; Ngai, J.] Univ Calif Berkeley, Dept Mol & Cellular Biol, Berkeley, CA 95720 USA. [Wang, V.] Univ Houston, Dept Biol & Biochem, Houston, TX 77004 USA. [Speed, T. P.] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3052, Australia. [Socci, N. D.; Liang, Y.; Taylor, B. S.; Schultz, N.; Lash, A. E.; Sander, C.; Cerami, E.; Reva, B.; Antipin, Y.; Mankoo, P.; Sheridan, R.; Ciriello, G.] Mem Sloan Kettering Canc Ctr, Computat Biol Ctr, New York, NY 10065 USA. [Borsu, L.; Ladanyi, M.] Mem Sloan Kettering Canc Ctr, Human Oncol & Pathogenesis Program, Dept Pathol, New York, NY 10065 USA. [Brennan, C.] Mem Sloan Kettering Canc Ctr, Dept Neurosurg, New York, NY 10065 USA. [Viale, A.] Mem Sloan Kettering Canc Ctr, Genom Core Lab, New York, NY 10065 USA. Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA. [Topal, M. D.] Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. [Meng, S.; Du, Y.; Shi, Y.; Li, L.; Turman, Y. J.; Zang, D.; Helms, E. B.; Balu, S.; Zhou, X.; Wu, J.; Topal, M. D.; Hayes, D. N.; Wilkerson, M. D.] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA. [Hayes, D. N.] Univ N Carolina, Dept Internal Med, Div Med Oncol, Chapel Hill, NC 27599 USA. [Carter, H.; Kim, D.; Karchin, R.] Johns Hopkins Univ, Dept Biomed Engn, Inst Computat Med, Baltimore, MD 21231 USA. [Olshen, A.; Shen, R.] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA. Weill Cornell Grad Sch Med Sci, Dept Physiol & Biophys, New York, NY 10065 USA. [Bernanke, J. A.] Cornell Univ, Weill Med Coll, New York, NY 10065 USA. [Benz, S. C.; Sanborn, J. Z.] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Benz, S. C.; Sanborn, J. Z.] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Santa Cruz, CA 95064 USA. Univ Calif Santa Cruz, Howard Hughes Med Inst, Santa Cruz, CA 95064 USA. [Benz, C. C.; Yau, C.] Buck Inst Age Res, Novato, CA 94945 USA. Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [Zhang, N.; Akbani, R.; Baggerly, K. A.] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA. [Yung, W. K.] Univ Texas MD Anderson Canc Ctr, Dept Neurooncol, Houston, TX 77030 USA. [Kahn, A.; Greene, J. M.; Sfeir, R.; Jensen, M. A.; Chen, J.; Whitmore, J.; Alonso, S.; Jordan, J.; Chu, A.] SRAInternational, Fairfax, VA 22033 USA. St Jude Childrens Res Hosp, Dept Biotechnol, Memphis, TN 38105 USA. [Compton, C.; Eley, G.; Fielding, P.; Gerhard, D. S.; Myles, R.; Schaefer, C.; Shaw, K. R. Mills; Vaught, J.; Vockley, J. B.] NCI, NIH, Bethesda, MD 20892 USA. [Ferguson, M.] MLF Consulting, Arlington, MA 02474 USA. [Good, P. J.; Guyer, M. S.; Ozenberger, B.; Peterson, J.; Thomson, E.] NHGRI, NIH, Bethesda, MD 20892 USA. RP Spellman, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM spellmap@ohsu.edu RI sander, chris/H-1452-2011; Karchin, Rachel/A-3385-2010; Lester, Jenny/B-5933-2012; Meyerson, Matthew/E-7123-2012; Sherlock, Gavin/E-9110-2012; Laird, Peter/G-8683-2012; Weinstock, George/C-6314-2013; Noushmehr, Houtan/C-9692-2013; Vaske, Charles/D-6018-2013; Reva, Boris/B-6436-2014; Berman, Benjamin/D-5942-2014; Bowtell, David/H-1007-2016 OI Benz, Stephen/0000-0002-4067-0602; Triche, Tim/0000-0001-5665-946X; Park, Kay/0000-0001-8989-2938; Brennan, Cameron/0000-0003-4064-8891; Hayes, D. Neil/0000-0001-6203-7771; Kandoth, Cyriac/0000-0002-1345-3573; Lash, Alex/0000-0003-3787-1590; Sherlock, Gavin/0000-0002-1692-4983; Perou, Charles/0000-0001-9827-2247; Chien, Jeremy/0000-0003-4744-8374; Schultz, Nikolaus/0000-0002-0131-4904; Weinstock, George/0000-0002-2997-4592; Noushmehr, Houtan/0000-0003-4051-8114; Vaske, Charles/0000-0001-8151-6612; Reva, Boris/0000-0002-8805-389X; Bowtell, David/0000-0001-9089-7525 FU USA National Institutes of Health [U24CA143840, U24CA143882, U24CA143731, U24CA143835, U24CA143845, U24CA143858, U24CA144025, U24CA143866, U24CA143867, U24CA143848, U24CA143843, R21CA135877] FX We thank J. Palchik, A. Mirick and Julia Zhang for administrative coordination of TCGA activities. This work was supported by the following grants from the USA National Institutes of Health: U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561, U24CA126563, U24CA143840, U24CA143882, U24CA143731, U24CA143835, U24CA143845, U24CA143858, U24CA144025, U24CA143882, U24CA143866, U24CA143867, U24CA143848, U24CA143843 and R21CA135877. NR 51 TC 1448 Z9 1467 U1 31 U2 299 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD JUN 30 PY 2011 VL 474 IS 7353 BP 609 EP 615 DI 10.1038/nature10166 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 785CF UT WOS:000292204300032 ER PT J AU Kim, JH Kim, YN Bi, ZH Manthiram, A Paranthaman, MP Huq, A AF Kim, Jung-Hyun Kim, Young Nam Bi, Zhonghe Manthiram, Arumugam Paranthaman, M. Parans Huq, Ashfia TI High temperature phase stabilities and electrochemical properties of InBaCo4-xZnxO7 cathodes for intermediate temperature solid oxide fuel cells SO ELECTROCHIMICA ACTA LA English DT Article DE SOFC; Cathode; InBaCo4-xZnxO7; X-ray diffraction; Electrochemical properties ID TRANSPORT-PROPERTIES; THERMAL-EXPANSION; CAPABILITY AB InBaCo4-xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4-xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 degrees C and 700 degrees C for 100 h, and chemical stability against a Gd(0.2)Ce(0.8)o(1.9) (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo(4-x)Zn(x)o(7) (x = 1, 1.5, 2) specimens were determined to be 8.6 x 10(-6) to 9.6 x 10(-6)/degrees C in the range of 80-900 degrees C, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4-xZnxO7 +GDC (50:50 wt.%) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4-xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kim, Jung-Hyun; Huq, Ashfia] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Kim, Young Nam; Manthiram, Arumugam] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA. [Kim, Young Nam; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Bi, Zhonghe; Paranthaman, M. Parans] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Huq, A (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM huqa@ornl.gov RI bi, zhonghe/E-7901-2011; Bi, zhonghe/D-7377-2012; Kim, Jung-Hyun/I-5273-2013; Huq, Ashfia/J-8772-2013; Paranthaman, Mariappan/N-3866-2015 OI Kim, Jung-Hyun/0000-0002-4598-4686; Huq, Ashfia/0000-0002-8445-9649; Paranthaman, Mariappan/0000-0003-3009-8531 FU Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ORISE postdoctoral fellowship; Welch Foundation [F-1254]; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This work was sponsored by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory. A portion of the characterization effort was conducted at both ORNL SHaRE user facility and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Jung-Hyun Kim and Zhonghe Bi acknowledge the support of the ORISE postdoctoral fellowship. Ashfia Huq acknowledges Spallation Neutron Source for financial support which is supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Financial support for the work done at the University of Texas at Austin by the Welch Foundation grant F-1254 is gratefully acknowledged by Young Nam Kim and Arumugam Manthiram. NR 18 TC 12 Z9 12 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD JUN 30 PY 2011 VL 56 IS 16 BP 5740 EP 5745 DI 10.1016/j.electacta.2011.04.047 PG 6 WC Electrochemistry SC Electrochemistry GA 788EK UT WOS:000292428000041 ER PT J AU Prellier, W Christen, HM Dubourdieu, C Triscone, JM AF Prellier, Wilfrid Christen, Hans M. Dubourdieu, Catherine Triscone, Jean-Marc TI Proceedings of the EMRS 2010 Summer Meeting Symposium E: Frontiers of Multifunctional Oxides Preface SO THIN SOLID FILMS LA English DT Editorial Material C1 [Prellier, Wilfrid] ENSICAEN, Lab CRISMAT, CNRS, Caen, France. [Christen, Hans M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dubourdieu, Catherine] IBM TJ Watson Res Ctr, Yorktown Hts, NY USA. [Triscone, Jean-Marc] Univ Geneva, CH-1211 Geneva 4, Switzerland. RP Prellier, W (reprint author), ENSICAEN, Lab CRISMAT, CNRS, Caen, France. EM Wilfrid.Prellier@ensicaen.fr; christenhm@ornl.gov; dubour@us.ibm.com; Jean-Marc.Triscone@unige.ch RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 NR 0 TC 0 Z9 0 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD JUN 30 PY 2011 VL 519 IS 17 SI SI BP 5721 EP 5721 DI 10.1016/j.tsf.2011.05.004 PG 1 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 787CJ UT WOS:000292353900001 ER PT J AU Yakes, M Tringides, MC AF Yakes, M. Tringides, M. C. TI Probing the Buried Pb/Si(111) Interface with SPA LEED and STM on Si(111)-Pb alpha root 3x root 3 SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GROWTH; FILMS; PB; TEMPERATURES; ISLANDS; LATTICE; HEIGHT AB High resolution spot profile analysis low energy electron diffraction (SPA-LEED) and variable temperature scanning tunneling microscopy (STM) have been used to observe the growth of Pb on the Pb/Si(111)-alpha root 3x root 3 phase, which is driven by quantum size effects (QSE). A change in the rotation of the Pb grown islands with respect to the Si substrate has been observed with increasing coverage theta. At lower coverage, separated two-step islands are grown and are aligned with the [1 (1) over bar0] axis of the substrate. With increasing coverage above 1.5 ML, of the islands coalesce and form a bilayer, with additional islands grown on top. The preferred Pb island orientation changes to 5.6 degrees with respect to the [1 (1) over bar0] direction. These changes at the metal/semiconductor buried interface are obtained both with SPA LEED and STM as changes to the period of the Moire pattern. The method of analysis of the corrugation period and rotation angle of the Moire pattern measured with diffraction and STM can be applied to obtain the structure of buried metal/substrate interfaces in other epitaxial systems. C1 [Tringides, M. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tringides, MC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM tringides@ameslab.gov RI Yakes, Michael/E-5510-2011 NR 33 TC 12 Z9 12 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 30 PY 2011 VL 115 IS 25 SI SI BP 7096 EP 7104 DI 10.1021/jp1124266 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 780XU UT WOS:000291895500043 PM 21591682 ER PT J AU Whitley, HD DuBois, JL Whaley, KB AF Whitley, Heather D. DuBois, Jonathan L. Whaley, K. Birgitta TI Theoretical Analysis of the Anomalous Spectral Splitting of Tetracene in He-4 Droplets SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SUPERFLUID-HELIUM DROPLETS; BOSE-EINSTEIN CONDENSATION; DER-WAALS COMPLEXES; AROMATIC MOLECULE; MAXIMUM-ENTROPY; LIQUID-HELIUM; PHTHALOCYANINE; CLUSTERS; SPECTROSCOPY; DYNAMICS AB We present a theoretical analysis of the electronic absorption spectra of tetracene in He-4 droplets based on many body quantum simulations. Using the path integral ground state approach, we calculate one- and two-body reduced density matrices of the most strongly localized He atoms near the molecule surface and use these to investigate the helium ground-state quantum coherence and correlations when tetracene is in its electronic ground and excited states. We identify a trio of quasi-one-dimensional, strongly localized atoms adsorbed along the long axis of the molecule that show some quantum coherence among themselves but far less with the remaining solvating helium. We evaluate the single-particle natural orbitals of the localized He atoms by diagonalization of the one-body density matrix and use these to construct single- and many-particle solvating helium basis states with which the zero-phonon spectral features of the tetracene-He-4(N) absorption spectrum are then calculated. The absorption spectrum resulting from the three-body density matrix for the strongly bound trio of helium atoms is in very good agreement with the experimental data, accounting quantitatively for the anomalous splitting of the zero-phonon line [Hartmann, M.; Lindinger, A.; Toennies, J. P.; Vilesov, A. F. Chem. Phys. 1998, 239, 139; Krasnokutski, S.; Rouille, G.; Huisken, F. Chem. Phys. Lett. 2005, 406, 386]. Our results indicate that the combination of strong localization and the quasi-one-dimensional nature of trios of helium atoms adsorbed along the long axis of tetracene leads to a quantum coherent, yet highly correlated ground state for the helium density closest to the molecule. The spectroscopic analysis shows that this feature accounts quantitatively for the anomalous splittings and hitherto unexplained fine structure observed in the absorption spectra of tetracene and suggests that it may be responsible for the corresponding zero-phonon splittings in other quasi-one-dimensional planar aromatic molecules. C1 [Whitley, Heather D.; DuBois, Jonathan L.; Whaley, K. Birgitta] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Whitley, Heather D.; DuBois, Jonathan L.; Whaley, K. Birgitta] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Whitley, Heather D.; DuBois, Jonathan L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Whaley, KB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM whaley@berkeley.edu OI DuBois, Jonathan/0000-0003-3154-4273; Whitley, Heather/0000-0002-2344-8698 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We are grateful to Prof. J. P. Toennies for initial discussions that inspired us to investigate the anomalous zero-phonon splitting of tetracene in helium droplets and to A. Slenzcka and R Lehnig for discussion of their experimental data. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 43 TC 10 Z9 10 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUN 30 PY 2011 VL 115 IS 25 SI SI BP 7220 EP 7233 DI 10.1021/jp2003003 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 780XU UT WOS:000291895500058 PM 21574641 ER PT J AU Kwon, TH Kneafsey, TJ Rees, EVL AF Kwon, Tae-Hyuk Kneafsey, Timothy J. Rees, Emily V. L. TI Thermal Dissociation Behavior and Dissociation Enthalpies of Methane-Carbon Dioxide Mixed Hydrates SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CLAPEYRONS EQUATION; GUEST SIZE; CO2; HEAT; VALIDITY; NUMBER AB Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO(2)) and/or production of methane (CH(4)) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH(4) and CO(2) hydrate (CH(4)-CO(2) mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH(4)-CO(2) mixed hydrates. We prepared CH(4)-CO(2) mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH(4)-CO(2) mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH(4)-CO(2) compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO(2) concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO(2) than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO(2) in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO(2) concentration in the vapor phase enriched the hydrate in CO(2). The dissociation enthalpy of the CH(4)-CO(2) mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH(4)-CO(2) mixed hydrate lays between the limiting values of pure CH(4) hydrate and CO(2) hydrate, increasing with the CO(2) fraction in the hydrate phase. C1 [Kwon, Tae-Hyuk; Kneafsey, Timothy J.; Rees, Emily V. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Kwon, TH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thkwon@lbl.gov RI Kwon, Tae-Hyuk/F-2183-2013; Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU ConocoPhillips [LB09005884]; LBNL; U.S. Department of Energy [DE-AC02-05CH11231]; Korean Government [NRF-2009-352-D00299] FX The authors are grateful to anonymous reviewers for valuable comments and suggestions. Support for this research was provided by ConocoPhillips under Agreement Number LB09005884 with LBNL, by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2009-352-D00299). NR 26 TC 5 Z9 5 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUN 30 PY 2011 VL 115 IS 25 BP 8169 EP 8175 DI 10.1021/jp111490w PG 7 WC Chemistry, Physical SC Chemistry GA 780YB UT WOS:000291896200014 PM 21604671 ER PT J AU Yang, L Taylor, R de Jong, WA Hase, WL AF Yang, Li Taylor, Ramona de Jong, Wibe A. Hase, William L. TI A Model DMMP/TiO2 (110) Intermolecular Potential Energy Function Developed from ab Initio Calculations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DIMETHYL METHYLPHOSPHONATE DMMP; TIO2 ANATASE 101; MOLECULAR-DYNAMICS; TIO2(110) SURFACE; ROOM-TEMPERATURE; 1ST-ROW ELEMENTS; MAGNESIUM-OXIDE; ALUMINUM-OXIDE; BASIS-SET; ADSORPTION AB A hierarchy of electronic structure calculations, scalings, and fittings were used to develop an analytic intermolecular potential for dimethyl methylphosphonate (DMMP) interacting with the TiO2 rutile (110) surface. The MP2/aug-cc-pVDZ (6-311+G** for Ti) level of theory, with basis set superposition error (BSSE) corrections, was used to calculate multiple intermolecular potential curves between TiO5H6 as a model for the Ti and O atoms of the TiO2 surface, and CH3OH and O=P(CH3)(OH)(2) as models for different types of atoms comprising DMMP. Each intermolecular potential energy emphasized a particular atom-atom interaction, and the curves were fit simultaneously by a sum of two-body potentials between the atoms of the two interacting molecules. The resulting analytic intermolecular potential gives DMMP/TiO5H6 potential curves in excellent agreement with those calculated using MP2/aug-cc-pVDZ (6-311+G** for Ti) theory. MP2 theory with the smaller basis set, 6-31++G** (6-31G** for Ti), gives DMMP/TiO5H6 potential energy curves similar to those found using MP2/aug-cc-pVDZ (6-311+G** for Ti), suggesting the smaller basis set may be used to describe DMMP interactions with larger cluster models of the TiO2 surface. The TiO5H6 cluster does not model either the 6-fold coordinated Ti atoms or the bridging 0 atoms of the TiO2 (110) surface, and to also model these atoms MP2/6-31++G** (6-31G** for Ti) theory was used to calculate potential energy. curves for DMMP interacting with the larger Ti3O13H14 cluster and much large cluster Ti11O40H36 cluster. The two-body potential energy curves for DMMP/TiO5H6 were scaled to fit both the DMMP/Ti3O13H14 and DMMP/Ti11O40H36 potential energy curves. The resulting parameters for the 5- and 6-fold coordinated Ti atoms and bridging and bulk 0 atoms were used to develop an analytic intermolecular potential for DMMP interacting with rutile TiO2 (110). C1 [Yang, Li; Hase, William L.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Taylor, Ramona] Spectral Sci Inc, Burlington, MA 01803 USA. [de Jong, Wibe A.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. RP Hase, WL (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM bill.hase@ttu.edu RI DE JONG, WIBE/A-5443-2008 OI DE JONG, WIBE/0000-0002-7114-8315 FU Army Research Office [HDTRA1-07-C-0098]; Robert A. Welch Foundation [D-0005]; High-Performance Computing Center (HPCC) at Texas Tech University; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX This material is based upon work supported by the Army Research Office under Contract HDTRA1-07-C-0098 and the Robert A. Welch Foundation under Grant D-0005. Support was also provided by the High-Performance Computing Center (HPCC) at Texas Tech University, under the direction of Dr. Philip W. Smith. The research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors acknowledge important conversations with Hans Lischka and Adelia Aquino. NR 59 TC 8 Z9 8 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 30 PY 2011 VL 115 IS 25 BP 12403 EP 12413 DI 10.1021/jp1112137 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 780XZ UT WOS:000291896000023 ER PT J AU Srivastava, R Docherty, H Singh, JK Cummings, PT AF Srivastava, Rajat Docherty, Hugh Singh, Jayant K. Cummings, Peter T. TI Phase Transitions of Water in Graphite and Mica Pores SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROPHOBIC SURFACES; HYDRATION WATER; SIMPLE LIQUIDS; CONFINEMENT; SIMULATION; DYNAMICS; FLUIDS; VISCOSITY; HEAT AB We report all-atom molecular dynamics simulations of water confined in graphite and mica slit pores of variable size ranging from 10 to 60 angstrom. For each pore size, we demonstrate that the confinement not only reduces the critical temperature of the water but also introduces inhomogeneity in the system that, in turn, results in different vapor liquid coexistence densities at different layers of the pore. We report, in detail, the contribution of different layers toward the vapor liquid phase diagram of the confined water in graphite and mica slit pores. We also present the hydrogen bonding (HB) distribution in various layers and the ordering of water molecules near the surface of pore. Bond orientational order calculations of water near the surface of the pores indicate that water molecules tend to order near the mica surface whereas the ordering is absent for the case of graphite pores. C1 [Srivastava, Rajat; Singh, Jayant K.] Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India. [Docherty, Hugh; Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Cummings, Peter T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Singh, JK (reprint author), Indian Inst Technol, Dept Chem Engn, Kanpur 208016, Uttar Pradesh, India. EM jayantks@iitk.ac.in; petercummings@vanderbilt.edu RI Singh, Jayant/A-1820-2011; srivastava, Rajat/P-5151-2014; Cummings, Peter/B-8762-2013 OI srivastava, Rajat/0000-0003-0731-2755; Cummings, Peter/0000-0002-9766-2216 FU Department of Science and Technology, Govt. of India [SR/S3/CE/061/2009]; U.S. National Science Foundation [CHE-0626259]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61] FX The research of R.S. and J.K.S. was supported by the Department of Science and Technology, Govt. of India. (grant no. SR/S3/CE/061/2009). H.D. was supported by the U.S. National Science Foundation through grant CHE-0626259. P.T.C.'s contribution to this research was supported as part of the Fluid Interface Reactions, Structure and Transport Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. ERKCC61. NR 40 TC 19 Z9 19 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 30 PY 2011 VL 115 IS 25 BP 12448 EP 12457 DI 10.1021/jp2003563 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 780XZ UT WOS:000291896000028 ER PT J AU Liu, JC Keskin, S Sholl, DS Johnson, JK AF Liu, Jinchen Keskin, Seda Sholl, David S. Johnson, J. Karl TI Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH4/H-2 and CO2/CH4 Mixtures in ZIFs SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZEOLITIC IMIDAZOLATE FRAMEWORKS; METAL-ORGANIC FRAMEWORKS; CANONICAL MONTE-CARLO; CARBON-DIOXIDE; DYNAMICS SIMULATIONS; ATOMISTIC SIMULATIONS; CO2 CAPTURE; SEPARATION; TRANSPORT; MEMBRANE AB Adsorption and diffusion of CO2/CH4 and CH4/H-2 mixtures were computed in zeolite imidazolate frameworks (ZIFs), ZIF-68 and ZIF-70, using atomically detailed simulations. Adsorption selectivity, diffusion selectivity, and membrane selectivity of ZIFs were calculated based on the results of atomistic simulations. Mixture adsorption isotherms predicted by the ideal adsorbed solution theory agree well with the results of molecular simulations for both ZIFs. Mixture diffusivity calculations indicate that diffusion of CH4 is increased with increasing concentration of H-2 in the CH4/H-2 mixture, while the diffusivity of H-2 decreases with increasing CH4 concentration. In contrast, the diffusivity of CH4 is essentially independent of the concentration of CO2 in the CO2/CH4 mixture, while CO2 diffusivity decreases with increased CH4 loading, even though the diffusivity of CH4 is substantially larger than that of CO2. This unusual behavior can be explained in terms of differences in adsorption site preferences due to charge-quadrupole interactions. C1 [Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Liu, Jinchen; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Keskin, Seda] Koc Univ, Dept Chem & Biol Engn, TR-34450 Istanbul, Turkey. [Sholl, David S.] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. RP Johnson, JK (reprint author), Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. EM karlj@pitt.edu RI Johnson, Karl/E-9733-2013 OI Johnson, Karl/0000-0002-3608-8003 FU RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in CO2 capture under the RES contract DE-FE0004000. NR 43 TC 54 Z9 55 U1 10 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 30 PY 2011 VL 115 IS 25 BP 12560 EP 12566 DI 10.1021/jp203053h PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 780XZ UT WOS:000291896000041 ER PT J AU Kwak, JH Peden, CHF Szanyi, J AF Kwak, Ja Hun Peden, Charles H. F. Szanyi, Janos TI Using a Surface-Sensitive Chemical Probe and a Bulk Structure Technique to Monitor the gamma- to theta-Al2O3 Phase Transformation SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PENTACOORDINATED AL3+ IONS; UV RAMAN-SPECTROSCOPY; THERMAL EVOLUTION; ALUMINA SURFACES; NANOPARTICLES; TEMPERATURE; GAMMA-AL2O3; MORPHOLOGY; TIO2; AREA AB In this work, we investigated the phase transformation of gamma-Al2O3 to theta-Al2O3 by ethanol TPD and XRD. Ethanol TPD showed remarkable sensitivity toward the surface structures of the aluminas studied. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225, 245, and 320 degrees C over gamma-, theta-, and alpha-Al2O3, respectively. Ethanol TPD over a gamma-Al2O3 sample calcined at 800 degrees C clearly shows that the surface of the resulting material possesses theta-alumina characteristics, even though only the gamma-alumina phase was detected by XRD. These results strongly suggest that the gamma-to-theta phase transformation of alumina initiates at oxide particle surfaces. The results obtained are also consistent with our previous finding that the presence of penta-coordinated Al3+ sites, formed on the (100) facets of the alumina surface, is strongly correlated with the thermal stability of gamma-alumina. C1 [Kwak, Ja Hun; Peden, Charles H. F.; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Kwak, JH (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. EM kwak@pnl.gov RI Kwak, Ja Hun/J-4894-2014; OI Peden, Charles/0000-0001-6754-9928 FU U.S. Department of Energy (DOE), Basic Energy Sciences, Division of Chemical Sciences; DOE; DOE's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL); Battelle Memorial Institute [DE-AC05-76RL01830] FX We gratefully acknowledge the U.S. Department of Energy (DOE), Basic Energy Sciences, Division of Chemical Sciences, and the DOE's Vehicle Technologies Program for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. NR 20 TC 21 Z9 21 U1 1 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUN 30 PY 2011 VL 115 IS 25 BP 12575 EP 12579 DI 10.1021/jp203541a PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 780XZ UT WOS:000291896000043 ER PT J AU Golosova, NO Kozlenko, DP Kolesnikov, AI Kazimirov, VY Smirnov, MB Jirak, Z Savenko, BN AF Golosova, N. O. Kozlenko, D. P. Kolesnikov, A. I. Kazimirov, V. Yu. Smirnov, M. B. Jirak, Z. Savenko, B. N. TI Evolution of the phonon density of states of LaCoO3 over the spin state transition SO PHYSICAL REVIEW B LA English DT Article ID OPTICAL PHONONS; MOLECULES; OXIDES AB The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4-120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spin state transition and relevant orbital-phonon coupling. C1 [Golosova, N. O.; Kozlenko, D. P.; Kazimirov, V. Yu.; Savenko, B. N.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Smirnov, M. B.] St Petersburg State Univ, Dept Phys, St Petersburg 194508, Russia. [Jirak, Z.] Inst Phys, Prague 16253 6, Czech Republic. RP Golosova, NO (reprint author), Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna 141980, Russia. RI Smirnov, Mikhail/G-9551-2013; Kazimirov, Viacheslav/O-1834-2013; Jirak, Zdenek/G-6281-2014; Kolesnikov, Alexander/I-9015-2012 OI Smirnov, Mikhail/0000-0002-4292-1989; Kolesnikov, Alexander/0000-0003-1940-4649 FU Department of Energy (DOE) [DE-AC02-06CH11357, DE-AC05-00OR22725]; [MD-696.2010.2]; [RFBR 10-02-90043-Bel_a]; [02.740.11.0542] FX Work at Argonne National Laboratory was supported by the Department of Energy (DOE) under contract DE-AC02-06CH11357, and work at Oak Ridge National Laboratory was managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. Work at Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research was partially supported by grants MD-696.2010.2, RFBR 10-02-90043-Bel_a, and state contract 02.740.11.0542. NR 35 TC 4 Z9 4 U1 3 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2011 VL 83 IS 21 AR 214305 DI 10.1103/PhysRevB.83.214305 PG 6 WC Physics, Condensed Matter SC Physics GA 785TH UT WOS:000292252300004 ER PT J AU Kogan, VG Kirtley, JR AF Kogan, V. G. Kirtley, J. R. TI Meissner response of superconductors with inhomogeneous penetration depths SO PHYSICAL REVIEW B LA English DT Article AB We discuss the Meissner response to a known field source of superconductors having inhomogeneities in their penetration depth. We simplify the general problem by assuming that the perturbations of the fields by the penetration depth inhomogeneities are small. We present expressions for inhomogeneities in several geometries, but concentrate for comparison with experiment on planar defects, perpendicular to the sample surfaces, with superfluid densities different from the rest of the samples. These calculations are relevant for magnetic microscopies, such as Scanning Superconducting Quantum Interference Device (SQUID) and Magnetic Force Microscope, which image the local diamagnetic susceptibility of a sample. C1 [Kogan, V. G.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kirtley, J. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Kirtley, J. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Kogan, VG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU DOE-Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE- AC02-07CH11358]; NSF [PHY-0425897]; French NanoSciences Foundation FX We thank K. Moler for many discussions and support. We also thank H. Bluhm for showing us how the ac/dc module in Comsol can be used for the solution of London's equations. The work of V. K. was supported by the DOE-Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE- AC02-07CH11358. The work of J.K. was supported in part by the NSF Grant No. PHY-0425897 and by the French NanoSciences Foundation. NR 9 TC 3 Z9 3 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2011 VL 83 IS 21 AR 214521 DI 10.1103/PhysRevB.83.214521 PG 9 WC Physics, Condensed Matter SC Physics GA 785TH UT WOS:000292252300007 ER PT J AU Ma, QL Wang, SG Wei, HX Liu, HF Zhang, XG Han, XF AF Ma, Q. L. Wang, S. G. Wei, H. X. Liu, H. F. Zhang, X. -G. Han, X. F. TI Evidence for magnon excitation contribution to the magnetoresistance behavior during thermal annealing in CoFeB/MgO/CoFeB magnetic tunnel junctions SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; SPECTRA AB For sputteredCoFeB/MgO/CoFeB magnetic tunnel junctions, it is well known that the tunnel magnetoresistance (TMR) ratio increases with increasing annealing temperature (T-a) up to a critical value (T-p), and then decreases with further increasing T-a, resulting in a peak around T-p. The improved crystallinity of the MgO barrier and CoFeB electrodes due to annealing has been considered as the main reason for the enhancement of the TMR ratio, especially for T-a < T-p. In this work, the evidence is provided that the magnon excitation plays a great contribution to the magnetoresistance (MR) behavior in annealed samples based on the measurement of dynamic conductance and inelastic electron tunneling (IET) spectra. The magnon activation energy (E-c) obtained from the fits for IET spectra exhibits a similar temperature dependence with that of the TMR ratio. A detailed analysis shows that the magnon excitation, together with improved crystallinity of the MgO barrier and CoFeB layers, is the main contribution to the annealing-temperature-dependent MR behavior. C1 [Ma, Q. L.; Wang, S. G.; Wei, H. X.; Liu, H. F.; Han, X. F.] Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. [Zhang, X. -G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. RP Ma, QL (reprint author), Chinese Acad Sci, State Key Lab Magnetism, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China. EM Sgwang@aphy.iphy.ac.cn RI Wang, Shouguo/C-3078-2014; Wang, Shouguo/D-5710-2016; Ma, Qinli/H-2508-2011 OI Wang, Shouguo/0000-0001-6130-7071; Wang, Shouguo/0000-0002-4488-2645; FU National Basic Research Program of China (MOST) [2009CB929203, 2010CB934400]; National Natural Science Foundation of China (NSFC) [50972163, 50721001, 10934009, 10904167]; ORNL by the Division of Scientific User Facilities, US DOE FX Q.L.M. is thankful for support from the SFI/MOST IrelandChina project for his visit to Trinity College, Dublin, where he prepared the samples. We thank Dr. T. Hesjedal at Clarendon Laboratory of the University of Oxford for helpful discussions. This work was supported by the National Basic Research Program of China (MOST under Grants No. 2009CB929203 and No. 2010CB934400), and the National Natural Science Foundation of China (NSFC under Grants No. 50972163, No. 50721001, No. 10934009, and No. 10904167). Partial support was from the international joint projects of NSFC-the Royal Society (UK), NSFC-Australia DEST, and the K. C. Wong Education Foundation, Hong Kong. A portion of this research was conducted at the CNMS sponsored at ORNL by the Division of Scientific User Facilities, US DOE. NR 33 TC 12 Z9 12 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2011 VL 83 IS 22 AR 224430 DI 10.1103/PhysRevB.83.224430 PG 4 WC Physics, Condensed Matter SC Physics GA 785TN UT WOS:000292253000004 ER PT J AU Yao, YX Wang, CZ Ho, KM AF Yao, Y. X. Wang, C. Z. Ho, K. M. TI Including many-body screening into self-consistent calculations: Tight-binding model studies with the Gutzwiller approximation SO PHYSICAL REVIEW B LA English DT Article ID STRONGLY CORRELATED SYSTEMS; RANDOM-PHASE-APPROXIMATION; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE; TRANSITION; SPECTRA; NI AB We introduce a scheme to include many-body screening processes explicitly into a set of self-consistent equations for electronic-structure calculations using the Gutzwiller approximation. The method is illustrated by the application to a tight-binding model describing the strongly correlated gamma-Ce system. With the inclusion of the 5d electrons into the local Gutzwiller projection subspace, the correct input Coulomb repulsion U-ff between the 4f electrons for gamma-Ce in the calculations can be pushed far beyond the usual screened value U-ff(scr) and close to the bare atomic value U-bare(ff). This indicates that the d-f many-body screening is the dominant contribution to the screening of Uff in this system. The method provides a promising way toward the ab initio Gutzwiller density functional theory. C1 [Yao, Y. X.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Yao, YX (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Yao, Yongxin/B-7320-2008; OI Wang, Chong/0000-0003-4489-4344 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-07CH11358] FX We are grateful to J. Schmalian for useful discussions. Work at the Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-07CH11358. NR 32 TC 11 Z9 11 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2011 VL 83 IS 24 AR 245139 DI 10.1103/PhysRevB.83.245139 PG 6 WC Physics, Condensed Matter SC Physics GA 785TV UT WOS:000292254000001 ER PT J AU Ziegler, D Gava, P Guttinger, J Molitor, F Wirtz, L Lazzeri, M Saitta, AM Stemmer, A Mauri, F Stampfer, C AF Ziegler, D. Gava, P. Guettinger, J. Molitor, F. Wirtz, L. Lazzeri, M. Saitta, A. M. Stemmer, A. Mauri, F. Stampfer, C. TI Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory SO PHYSICAL REVIEW B LA English DT Article ID BILAYER GRAPHENE; ELECTRON TRANSISTOR; CARBON AB We present Kelvin probe force microscopy measurements of single-and few-layer graphene resting on SiO2 substrates. We compare the layer thickness dependency of the measured surface potential with ab initio density functional theory calculations of the work function for substrate-doped graphene. The ab initio calculations show that the work function of single-and bilayer graphene is mainly given by a variation of the Fermi energy with respect to the Dirac point energy as a function of doping, and that electrostatic interlayer screening only becomes relevant for thicker multilayer graphene. From the Raman G-line shift and the comparison of the Kelvin probe data with the ab initio calculations, we independently find an interlayer screening length in the order of four to five layers. Furthermore, we describe in-plane variations of the work function, which can be attributed to partial screening of charge impurities in the substrate, and result in a nonuniform charge density in single-layer graphene. C1 [Ziegler, D.; Stemmer, A.] ETH, Nanotechnol Grp, CH-8092 Zurich, Switzerland. [Gava, P.; Lazzeri, M.; Saitta, A. M.; Mauri, F.] Univ Paris 6 7, CNRS IPGP, F-75015 Paris, France. [Guettinger, J.; Molitor, F.; Stampfer, C.] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Wirtz, L.] CNRS, UMR 8520, Dept ISEN, IEMN, F-59652 Villeneuve Dascq, France. [Stampfer, C.] Rhein Westfal TH Aachen, JARA FIT & II, Inst Phys, D-52074 Aachen, Germany. RP Ziegler, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dziegler@lbl.gov RI Stampfer, Christoph/K-3147-2013; Guttinger, Johannes/F-3290-2014; Saitta, Antonino Marco/D-9605-2015; mauri, francesco/K-5726-2012; Lazzeri, Michele/N-7615-2016 OI Stampfer, Christoph/0000-0002-4958-7362; Guttinger, Johannes/0000-0002-3630-9515; Saitta, Antonino Marco/0000-0002-3298-2040; mauri, francesco/0000-0002-6666-4710; Lazzeri, Michele/0000-0002-6644-6617 FU Swiss National Science Foundation; NCCR Nanoscience; IDRIS supercomputing center [096128] FX The authors wish to thank D. Bishop, P. Brouwer, K. Ensslin, F. Guinea, T. Ihn, and R. W. Stark for helpful discussions and C. Hierold for providing access to the Raman spectrometer. Support by the ETH FIRST Lab and financial support by the Swiss National Science Foundation and NCCR Nanoscience are gratefully acknowledged. Calculations were performed at the IDRIS supercomputing center (Project No. 096128). NR 41 TC 69 Z9 69 U1 9 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 30 PY 2011 VL 83 IS 23 AR 235434 DI 10.1103/PhysRevB.83.235434 PG 7 WC Physics, Condensed Matter SC Physics GA 785TQ UT WOS:000292253400008 ER PT J AU Hong, L Novikov, VN Sokolov, AP AF Hong, L. Novikov, V. N. Sokolov, A. P. TI Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids SO PHYSICAL REVIEW E LA English DT Article ID DIAMOND-ANVIL CELL; LENGTH SCALE; SUPERCOOLED LIQUIDS; TEMPERATURE-DEPENDENCE; STRUCTURAL GLASSES; PHOTON-CORRELATION; MOLECULAR LIQUIDS; ELEVATED PRESSURE; PROPYLENE-GLYCOL; ALPHA-RELAXATION AB There are various arguments and models connecting the characteristic length associated with the boson peak vibrations xi to the length scale of dynamical heterogeneity L-het. xi is usually defined as the ratio of the transverse sound velocity to the boson peak frequency. Here we present pressure, temperature, and molecular weight dependencies of xi, estimated using light scattering, in a few molecular and polymeric glass formers. These dependencies are compared with respective dependencies of the activation volume Delta V-# in the same materials. Good agreement is found for the pressure and molecular weight dependencies of xi and Delta V-# measured at the glass transition temperature T-g. These results provide more evidence for a possible relationship between the sensitivity of structural relaxation to density (activation volume) and the heterogeneity volume. However, contrary to the expectations for L-het, xi does not decrease with temperature above T-g in most of the studied materials. The temperature dependence of xi is compared to that of L-het in glycerol and orthoterphenyl (OTP) estimated from literature data. The analysis shows a clear difference in the behavior of xi (T) and Delta V-#(T) at temperatures above T-g, although Delta V-#(T)(1/3) and L-het(T) have similar temperature dependence. Possible reasons for the observed difference are discussed. C1 [Hong, L.] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Novikov, V. N.; Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Novikov, V. N.; Sokolov, A. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Novikov, V. N.] Russian Acad Sci, IA&E, Novosibirsk 630090, Russia. RP Hong, L (reprint author), Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. EM novikov@utk.edu RI hong, liang/D-5647-2012 FU Division of Materials Sciences and Engineering, DOE Office of Basic Energy Sciences; ORNL [5843]; RFBR [09-02-01297a] FX A.P.S. acknowledges the support from the Division of Materials Sciences and Engineering, DOE Office of Basic Energy Sciences. V.N.N acknowledges the financial support from the LDRD Program of ORNL, managed by UT-Battelle, LLC, LOIS#: 5843, for DOE, and from the RFBR (Grant No. 09-02-01297a). NR 65 TC 22 Z9 22 U1 1 U2 37 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD JUN 30 PY 2011 VL 83 IS 6 AR 061508 DI 10.1103/PhysRevE.83.061508 PN 1 PG 10 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 785WO UT WOS:000292263600006 PM 21797373 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Aoki, M Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Camacho-Perez, E Carrasco-Lizarraga, MA Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Garcia-Bellido, A Gavrilov, V Gay, P Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Guo, F Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hubacek, Z Huske, N Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jamin, D Jayasinghe, A Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kulikov, S Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M de Sa, RL Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Novaes, SF Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Garzon, GJOY Padilla, M Pal, A Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petridis, K Petrillo, G Petroff, P Piegaia, R Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Polozov, P Popov, AV Prewitt, M Price, D Prokopenko, N Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Salcido, P Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stolin, V Stoyanova, DA Strauss, M Strom, D Stutte, L Suter, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Aoki, M. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guillemin, T. Guo, F. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jamin, D. Jayasinghe, A. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kulikov, S. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Novaes, S. F. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Padilla, M. Pal, A. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Piegaia, R. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Salcido, P. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, M. Strom, D. Stutte, L. Suter, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. TI Bounds on an Anomalous Dijet Resonance in W plus jets Production in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a study of the dijet invariant mass spectrum in events with two jets produced in association with a W boson in data corresponding to an integrated luminosity of 4.3 fb(-1) collected with the D0 detector at root s = 1.96 TeV. We find no evidence for anomalous resonant dijet production and derive upper limits on the production cross section of an anomalous dijet resonance recently reported by the CDF Collaboration, investigating the range of dijet invariant mass from 110 to 170 GeV/c(2). The probability of the D0 data being consistent with the presence of a dijet resonance with 4 pb production cross section at 145 GeV/c(2) is 8 x 10(-6). C1 [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Maciel, A. K. A.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Barreto, J.; Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol, Hefei, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, LPNHE, CNRS, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Deterre, C.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IPHC, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.; Wicke, D.] Berg Univ Wuppertal, Fac Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Kulikov, S.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; Peters, K.; Peters, Y.; Petridis, K.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Wang, M. H. L. S.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Salcido, P.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Kirby, M. H.; Schellman, H.; Welty-Rieger, L.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ Sci & Technol, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Carrasco-Lizarraga, M. A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Landsberg, G.; Narain, M.; Parihar, V.; Partridge, R.; Zivkovic, L.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Pal, A.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Univ Buenos Aires, Buenos Aires, DF, Argentina. RI Gutierrez, Phillip/C-1161-2011; bu, xuebing/D-1121-2012; Alves, Gilvan/C-4007-2013; Yip, Kin/D-6860-2013; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; Novaes, Sergio/D-3532-2012; Santos, Angelo/K-5552-2012; Mercadante, Pedro/K-1918-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015 OI Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; Novaes, Sergio/0000-0003-0471-8549; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107 FU DOE (USA); NSF (USA); CEA (France); CNRS (France) [IN2P3]; FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF(Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC Program (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 26 TC 54 Z9 54 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2011 VL 107 IS 1 AR 011804 DI 10.1103/PhysRevLett.107.011804 PG 7 WC Physics, Multidisciplinary SC Physics GA 785UM UT WOS:000292256400006 PM 21797537 ER PT J AU Adamson, P Auty, DJ Ayres, DS Backhouse, C Barr, G Bishai, M Blake, A Bock, GJ Boehnlein, DJ Bogert, D Cavanaugh, S Cherdack, D Childress, S Coelho, JAB Coleman, SJ Corwin, L Cronin-Hennessy, D Danko, IZ de Jong, JK Devenish, NE Diwan, MV Dorman, M Escobar, CO Evans, JJ Falk, E Feldman, GJ Frohne, MV Gallagher, HR Gomes, RA Goodman, MC Gouffon, P Graf, N Gran, R Grant, N Grzelak, K Habig, A Harris, D Hartnell, J Hatcher, R Himmel, A Holin, A Huang, X Hylen, J Ilic, J Irwin, GM Isvan, Z Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kopp, S Kordosky, M Kreymer, A Lang, K Lefeuvre, G Ling, J Litchfield, PJ Loiacono, L Lucas, P Mann, WA Marshak, ML Mayer, N McGowan, AM Mehdiyev, R Meier, JR Messier, MD Miller, WH Mishra, SR Mitchell, J Moore, CD Morfin, J Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nicholls, TC Nowak, JA Oliver, WP Orchanian, M Paley, J Patterson, RB Pawloski, G Pearce, GF Petyt, DA Phan-Budd, S Pittam, R Plunkett, RK Qiu, X Ratchford, J Raufer, TM Rebel, B Rodrigues, PA Rosenfeld, C Rubin, HA Sanchez, MC Schneps, J Schreiner, P Sharma, R Shanahan, P Sousa, A Stamoulis, P Strait, M Tagg, N Talaga, RL Tetteh-Lartey, E Thomas, J Thomson, MA Tinti, G Toner, R Torretta, D Tzanakos, G Urheim, J Vahle, P Viren, B Walding, JJ Weber, A Webb, RC White, C Whitehead, L Wojcicki, SG Zwaska, R AF Adamson, P. Auty, D. J. Ayres, D. S. Backhouse, C. Barr, G. Bishai, M. Blake, A. Bock, G. J. Boehnlein, D. J. Bogert, D. Cavanaugh, S. Cherdack, D. Childress, S. Coelho, J. A. B. Coleman, S. J. Corwin, L. Cronin-Hennessy, D. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. J. Falk, E. Feldman, G. J. Frohne, M. V. Gallagher, H. R. Gomes, R. A. Goodman, M. C. Gouffon, P. Graf, N. Gran, R. Grant, N. Grzelak, K. Habig, A. Harris, D. Hartnell, J. Hatcher, R. Himmel, A. Holin, A. Huang, X. Hylen, J. Ilic, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. Kordosky, M. Kreymer, A. Lang, K. Lefeuvre, G. Ling, J. Litchfield, P. J. Loiacono, L. Lucas, P. Mann, W. A. Marshak, M. L. Mayer, N. McGowan, A. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Miller, W. H. Mishra, S. R. Mitchell, J. Moore, C. D. Morfin, J. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nicholls, T. C. Nowak, J. A. Oliver, W. P. Orchanian, M. Paley, J. Patterson, R. B. Pawloski, G. Pearce, G. F. Petyt, D. A. Phan-Budd, S. Pittam, R. Plunkett, R. K. Qiu, X. Ratchford, J. Raufer, T. M. Rebel, B. Rodrigues, P. A. Rosenfeld, C. Rubin, H. A. Sanchez, M. C. Schneps, J. Schreiner, P. Sharma, R. Shanahan, P. Sousa, A. Stamoulis, P. Strait, M. Tagg, N. Talaga, R. L. Tetteh-Lartey, E. Thomas, J. Thomson, M. A. Tinti, G. Toner, R. Torretta, D. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Walding, J. J. Weber, A. Webb, R. C. White, C. Whitehead, L. Wojcicki, S. G. Zwaska, R. TI Active to Sterile Neutrino Mixing Limits from Neutral-Current Interactions in MINOS SO PHYSICAL REVIEW LETTERS LA English DT Article ID MUON NEUTRINO; OSCILLATIONS; SEARCH AB Results are reported from a search for active to sterile neutrino oscillations in the MINOS long-baseline experiment, based on the observation of neutral-current neutrino interactions, from an exposure to the NuMI neutrino beam of 7.07 x 10(20) protons on target. A total of 802 neutral-current event candidates is observed in the Far Detector, compared to an expected number of 754 +/- 28(stat) +/- 37(syst) for oscillations among three active flavors. The fraction f(s) of disappearing nu(mu) that may transition to nu(s) is found to be less than 22% at the 90% C.L. C1 [Ayres, D. S.; Goodman, M. C.; Huang, X.; McGowan, A. M.; Paley, J.; Phan-Budd, S.; Sanchez, M. C.; Schreiner, P.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Stamoulis, P.; Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Bishai, M.; Diwan, M. V.; Jaffe, D. E.; Ling, J.; Viren, B.; Whitehead, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Mualem, L.; Newman, H. B.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Mitchell, J.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Coelho, J. A. B.; Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Harris, D.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Morfin, J.; Plunkett, R. K.; Rebel, B.; Sharma, R.; Shanahan, P.; Torretta, D.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Gomes, R. A.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Cavanaugh, S.; Feldman, G. J.; Sanchez, M. C.; Sousa, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [Graf, N.; Rubin, H. A.; White, C.] IIT, Div Phys, Chicago, IL 60616 USA. [Corwin, L.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Sanchez, M. C.] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA. [Dorman, M.; Evans, J. J.; Holin, A.; Nichol, R. J.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Cronin-Hennessy, D.; Kasahara, S. M. S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Nowak, J. A.; Petyt, D. A.; Strait, M.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Backhouse, C.; Barr, G.; de Jong, J. K.; Pittam, R.; Rodrigues, P. A.; Tinti, G.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Danko, I. Z.; Isvan, Z.; Naples, D.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Grant, N.; Hartnell, J.; Ilic, J.; Litchfield, P. J.; Nicholls, T. C.; Pearce, G. F.; Raufer, T. M.] Sci & Technol Facil Council, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ling, J.; Mishra, S. R.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Qiu, X.; Wojcicki, S. G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Devenish, N. E.; Falk, E.; Hartnell, J.; Lefeuvre, G.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Tetteh-Lartey, E.; Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Kopp, S.; Lang, K.; Loiacono, L.; Mehdiyev, R.; Ratchford, J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Warsaw Univ, Dept Phys, PL-00681 Warsaw, Poland. [Coleman, S. J.; Kordosky, M.; Nelson, J. K.; Vahle, P.; Walding, J. J.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Adamson, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Nowak, Jaroslaw/P-2502-2016; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Qiu, Xinjie/C-6164-2012; Gomes, Ricardo/B-6899-2008; Coelho, Joao/D-3546-2013; Tinti, Gemma/I-5886-2013; Evans, Justin/P-4981-2014; Gouffon, Philippe/I-4549-2012 OI Hartnell, Jeffrey/0000-0002-1744-7955; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Nowak, Jaroslaw/0000-0001-8637-5433; Ling, Jiajie/0000-0003-2982-0670; COLEMAN, STEPHEN/0000-0002-4621-9169; Corwin, Luke/0000-0001-7143-3821; Gomes, Ricardo/0000-0003-0278-4876; Evans, Justin/0000-0003-4697-3337; Gouffon, Philippe/0000-0001-7511-4115 FU U.S. DOE; UK STFC; U.S. NSF; State and University of Minnesota; University of Athens, Greece; Brazil's FAPESP; CNPq; CAPES FX This work was supported by the U.S. DOE; the UK STFC; the U.S. NSF; the State and University of Minnesota; the University of Athens, Greece; and Brazil's FAPESP, CNPq, and CAPES. We gratefully acknowledge the Minnesota DNR, the crew of the Soudan Underground Laboratory, and the personnel of Fermilab for their contribution to this effort. NR 41 TC 76 Z9 76 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 30 PY 2011 VL 107 IS 1 AR 011802 DI 10.1103/PhysRevLett.107.011802 PG 5 WC Physics, Multidisciplinary SC Physics GA 785UM UT WOS:000292256400004 ER PT J AU Parnell, JJ Callister, SJ Rompato, G Nicora, CD Pasa-Tolic, L Williamson, A Pfrender, ME AF Parnell, J. Jacob Callister, Stephen J. Rompato, Giovanni Nicora, Carrie D. Pasa-Tolic, Ljiljana Williamson, Ashley Pfrender, Michael E. TI Time-course analysis of the Shewanella amazonensis SB2B proteome in response to sodium chloride shock SO SCIENTIFIC REPORTS LA English DT Article ID MASS-SPECTROMETRY; PUTREFACIENS MR-1; BACILLUS-SUBTILIS; ESCHERICHIA-COLI; SOFTWARE PACKAGE; BRANCHED-CHAIN; FATTY-ACID; GROWTH; STRESS; HYPERSALINE AB Shewanellae are microbial models for environmental stress response; however, the sequential expression of mechanisms in response to stress is poorly understood. Here we experimentally determine the response mechanisms of Shewanella amazonensis SB2B during sodium chloride stress using a novel liquid chromatography and accurate mass-time tag mass spectrometry time-course proteomics approach. The response of SB2B involves an orchestrated sequence of events comprising increased signal transduction associated with motility and restricted growth. Following a metabolic shift to branched chain amino acid degradation, motility and cellular replication proteins return to pre-perturbed levels. Although sodium chloride stress is associated with a change in the membrane fatty acid composition in other organisms, this is not the case for SB2B as fatty acid degradation pathways are not expressed and no change in the fatty acid profile is observed. These findings suggest that shifts in membrane composition may be an indirect physiological response to high NaCl stress. C1 [Parnell, J. Jacob; Rompato, Giovanni] Utah State Univ, Ctr Integrated BioSyst, Logan, UT 84322 USA. [Parnell, J. Jacob; Rompato, Giovanni] Utah State Univ, Dept Biol, Logan, UT 84322 USA. [Callister, Stephen J.; Nicora, Carrie D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Pasa-Tolic, Ljiljana] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Williamson, Ashley] Logan High Sch, Logan, UT 84321 USA. [Pfrender, Michael E.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. RP Parnell, JJ (reprint author), Utah State Univ, Ctr Integrated BioSyst, Logan, UT 84322 USA. EM jacob.parnell@usu.edu FU NSF [DEB-021212487]; USDA CSREES [2006- 34526-17001]; Utah Agricultural Experiment Station at Utah State University [8199]; DOE [DE-AC05-76RLO 1830] FX Funding for this research was provided by NSF grant DEB-021212487 to MEP, a grant from USDA CSREES 2006- 34526-17001 and supported by the Utah Agricultural Experiment Station at Utah State University as journal paper number 8199. A portion of the research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multi-program national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 47 TC 4 Z9 4 U1 1 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JUN 29 PY 2011 VL 1 AR 25 DI 10.1038/srep00025 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 835OY UT WOS:000296046900001 PM 22355544 ER PT J AU Tang, KH Barry, K Chertkov, O Dalin, E Han, CS Hauser, LJ Honchak, BM Karbach, LE Land, ML Lapidus, A Larimer, FW Mikhailova, N Pitluck, S Pierson, BK Blankenship, RE AF Tang, Kuo-Hsiang Barry, Kerrie Chertkov, Olga Dalin, Eileen Han, Cliff S. Hauser, Loren J. Honchak, Barbara M. Karbach, Lauren E. Land, Miriam L. Lapidus, Alla Larimer, Frank W. Mikhailova, Natalia Pitluck, Samuel Pierson, Beverly K. Blankenship, Robert E. TI Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus SO BMC GENOMICS LA English DT Article ID AUTOTROPHIC CO2 FIXATION; PHOTOSYNTHESIS GENE-CLUSTER; ISOCYCLIC RING FORMATION; GREEN-SULFUR BACTERIUM; BLUE COPPER PROTEINS; 3-HYDROXYPROPIONATE CYCLE; REACTION CENTERS; CARBON FIXATION; HELIOBACTERIUM-MODESTICALDUM; ROSEIFLEXUS-CASTENHOLZII AB Background: Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods: The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results: Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH: quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. Conclusions: The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis. C1 [Tang, Kuo-Hsiang; Honchak, Barbara M.; Karbach, Lauren E.; Blankenship, Robert E.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Tang, Kuo-Hsiang; Honchak, Barbara M.; Karbach, Lauren E.; Blankenship, Robert E.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Barry, Kerrie; Dalin, Eileen; Pitluck, Samuel] DOE Joint Genome Inst, Lawrence Berkeley Lab, Walnut Creek, CA 94598 USA. [Barry, Kerrie; Dalin, Eileen; Pitluck, Samuel] DOE Joint Genome Inst, Prod Genom Facil, Walnut Creek, CA 94598 USA. [Chertkov, Olga; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Los Alamos, NM 87544 USA. [Chertkov, Olga; Han, Cliff S.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. [Hauser, Loren J.; Land, Miriam L.; Larimer, Frank W.] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Biosci Div, Oak Ridge, TN 37831 USA. [Pierson, Beverly K.] Univ Puget Sound, Dept Biol, Tacoma, WA 98416 USA. RP Blankenship, RE (reprint author), Washington Univ, Dept Biol, Campus Box 1137, St Louis, MO 63130 USA. EM Blankenship@wustl.edu RI Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Land, Miriam/A-6200-2011 OI Lapidus, Alla/0000-0003-0427-8731; Land, Miriam/0000-0001-7102-0031 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank the contribution of Alex Copeland, Susan Lucas, Tijana Glavina del Rio, Nancy Hammon, Hope N. Tice, Jeremy Schmutz, Thomas S. Brettin, David Bruce, Chris Detter, Nikos C. Kyrpides, and Paul Richardson for gene sequencing, assembling and annotation. NR 124 TC 38 Z9 282 U1 3 U2 27 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD JUN 29 PY 2011 VL 12 AR 334 DI 10.1186/1471-2164-12-334 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 803JK UT WOS:000293577400001 PM 21714912 ER PT J AU Koenigsmann, C Santulli, AC Gong, KP Vukmirovic, MB Zhou, WP Sutter, E Wong, SS Adzic, RR AF Koenigsmann, Christopher Santulli, Alexander C. Gong, Kuanping Vukmirovic, Miomir B. Zhou, Wei-ping Sutter, Eli Wong, Stanislaus S. Adzic, Radoslav R. TI Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PLATINUM-MONOLAYER ELECTROCATALYSTS; FUEL-CELL ELECTROCATALYSTS; O-2 REDUCTION; DURABILITY ENHANCEMENT; METAL NANOWIRES; NANOPARTICLES; CARBON; SURFACES; CATHODE; NANOSTRUCTURES AB We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 +/- 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by similar to 1.5 fold after a simulated catalyst lifetime. C1 [Koenigsmann, Christopher; Santulli, Alexander C.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Gong, Kuanping; Vukmirovic, Miomir B.; Zhou, Wei-ping; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu; adzic@bnl.gov RI zhou, weiping/C-6832-2012 OI zhou, weiping/0000-0002-8058-7280 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Department of Energy [DE-AC02-98CH10886] FX Research (including support for S.S.W. and electrochemical experiments) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We also acknowledge that this work was done in part or in whole at the Center for Functional Nanomaterials at Brookhaven National Laboratory, supported by the Department of Energy under contract no. DE-AC02-98CH10886. S.S.W. thanks the Alfred P. Sloan Foundation for experimental supplies necessary for the synthesis reactions. NR 66 TC 257 Z9 260 U1 57 U2 395 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUN 29 PY 2011 VL 133 IS 25 BP 9783 EP 9795 DI 10.1021/ja111130t PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 788IX UT WOS:000292439700035 PM 21644515 ER PT J AU Thorne, PW Brohan, P Titchner, HA McCarthy, MP Sherwood, SC Peterson, TC Haimberger, L Parker, DE Tett, SFB Santer, BD Fereday, DR Kennedy, JJ AF Thorne, Peter W. Brohan, Philip Titchner, Holly A. McCarthy, Mark P. Sherwood, Steve C. Peterson, Thomas C. Haimberger, Leopold Parker, David E. Tett, Simon F. B. Santer, Benjamin D. Fereday, David R. Kennedy, John J. TI A quantification of uncertainties in historical tropical tropospheric temperature trends from radiosondes SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE-CHANGE; TIME-SERIES; DATA SET; RECORDS; BIASES; REANALYSIS; PRODUCTS; NETWORK; QUALITY; SURFACE AB The consistency of tropical tropospheric temperature trends with climate model expectations remains contentious. A key limitation is that the uncertainties in observations from radiosondes are both substantial and poorly constrained. We present a thorough uncertainty analysis of radiosonde-based temperature records. This uses an automated homogenization procedure and a previously developed set of complex error models where the answer is known a priori. We perform a number of homogenization experiments in which error models are used to provide uncertainty estimates of real-world trends. These estimates are relatively insensitive to a variety of processing choices. Over 1979-2003, the satellite-equivalent tropical lower tropospheric temperature trend has likely (5-95% confidence range) been between -0.01 K/decade and 0.19 K/decade (0.05-0.23 K/decade over 1958-2003) with a best estimate of 0.08 K/decade (0.14 K/decade). This range includes both available satellite data sets and estimates from models (based upon scaling their tropical amplification behavior by observed surface trends). On an individual pressure level basis, agreement between models, theory, and observations within the troposphere is uncertain over 1979 to 2003 and nonexistent above 300 hPa. Analysis of 1958-2003, however, shows consistent model-data agreement in tropical lapse rate trends at all levels up to the tropical tropopause, so the disagreement in the more recent period is not necessarily evidence of a general problem in simulating long-term global warming. Other possible reasons for the discrepancy since 1979 are: observational errors beyond those accounted for here, end-point effects, inadequate decadal variability in model lapse rates, or neglected climate forcings. C1 [Thorne, Peter W.; Brohan, Philip; Titchner, Holly A.; McCarthy, Mark P.; Parker, David E.; Fereday, David R.; Kennedy, John J.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Thorne, Peter W.] N Carolina State Univ, Cooperat Inst Climate & Satellites, Asheville, NC 28801 USA. [Thorne, Peter W.; Peterson, Thomas C.] NOAA, Natl Climat Data Ctr, Asheville, NC 28801 USA. [Santer, Benjamin D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. [Haimberger, Leopold] Univ Vienna, Dept Meteorol & Geophys, A-1090 Vienna, Austria. [Sherwood, Steve C.] Univ New S Wales, Climate Change Res Ctr, Sydney, NSW 2052, Australia. [Tett, Simon F. B.] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland. RP Thorne, PW (reprint author), Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. EM Peter.Thorne@noaa.gov RI Santer, Benjamin/F-9781-2011; Sherwood, Steven/B-5673-2008; Tett, Simon/B-1504-2013; Thorne, Peter/F-2225-2014 OI Sherwood, Steven/0000-0001-7420-8216; Tett, Simon/0000-0001-7526-560X; Thorne, Peter/0000-0003-0485-9798 FU Joint DECC; Defra Integrated Climate Programme - DECC/Defra [GA01101] FX Many Met Office research staff allowed their computers to be used to complete the monthly and pentad ensembles over Christmas 2007 and Christmas 2008. Steve Sherwood, Leo Haimberger, and Thomas Peterson received within-UK travel costs from the Met Office under the Integrated Climate Program while undertaking portions of this work. Discussions with Matt Menne and Claude Williams of NOAA NCDC on a related project helped focus some of the work. Met Office authors were supported by the Joint DECC and Defra Integrated Climate Programme - DECC/Defra (GA01101). NCDC graphics team helped improve figure clarity. NR 50 TC 26 Z9 26 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUN 29 PY 2011 VL 116 AR D12116 DI 10.1029/2010JD015487 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 787MK UT WOS:000292380500003 ER PT J AU Wang, LL Johnson, DD AF Wang, Lin-Lin Johnson, Duane D. TI Ternary tetradymite compounds as topological insulators SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; SINGLE DIRAC CONE; WAVE BASIS-SET; ELECTRON-GAS; SURFACE; BI2TE3 AB Ternary tetradymites Bi(2)Te(2)S, Bi(2)Te(2)Se, and Bi(2)Se(2)Te are found to be stable, bulk topological insulators via theory, showing band inversion between group V and VI p(z) orbitals. We identify Bi(2)Se(2)Te as a good candidate to study massive Dirac fermions, with a (111) cleavage-surface-derived Dirac point (DP) isolated in the bulk-band gap at the Fermi energy (E(f))-like Bi(2)Se(3) but with a spin texture alterable by layer chemistry. In contrast, Bi(2)Te(2)S and Bi(2)Te(2)Se (111) behave like Bi(2)Te(3), with a DP below E(f) buried in bulk bands. Bi(2)Te(2)S offers large bulk resistivity needed for devices. C1 [Wang, Lin-Lin; Johnson, Duane D.] Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. [Johnson, Duane D.] Iowa State Univ Sci & Technol, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Wang, LL (reprint author), Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. EM llw@ameslab.gov; ddj@ameslab.gov OI Johnson, Duane/0000-0003-0794-7283 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; DoE [DE-AC02-07CH11358] FX Work at Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Ames Laboratory is operated for DoE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 28 TC 45 Z9 45 U1 2 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2011 VL 83 IS 24 AR 241309 DI 10.1103/PhysRevB.83.241309 PG 4 WC Physics, Condensed Matter SC Physics GA 785HV UT WOS:000292219500001 ER PT J AU Wee, SH Specht, ED Cantoni, C Zuev, YL Maroni, V Wong-Ng, W Liu, GY Haugan, TJ Goyal, A AF Wee, Sung Hun Specht, Eliot D. Cantoni, Claudia Zuev, Yuri L. Maroni, Victor Wong-Ng, Winnie Liu, Guangyao Haugan, Timothy J. Goyal, Amit TI Formation of stacking faults and their correlation with flux pinning and critical current density in Sm-doped YBa2Cu3O7-(delta) films SO PHYSICAL REVIEW B LA English DT Article ID EPITAXIAL NDBA2CU3O7-DELTA FILMS; SELF-ASSEMBLED NANODOTS; PULSED-LASER DEPOSITION; YBA2CU3O7-DELTA FILMS; THIN-FILMS; DEFECTS; GROWTH; BAZRO3; LAYER AB A correlation between flux-pinning characteristics and stacking faults (SFs) formed by Sm substitution on Y and Ba sites was found in Sm-doped YBa2Cu3O7-delta films. It was confirmed that 223-type-SFs, Y2Ba2Cu3Ox, composed of extra Y and O planes aligned parallel to the ab-planes formed via Sm substitution on the Y site and increased in number with increasing Sm doping on the Ba site. The number density of 223 SFs is correlated strongly with the enhancement in ab-plane-correlated flux pinning, resulting in a sharpening of the H parallel to ab peak in the plot of critical current density versus magnetic field orientation. C1 [Wee, Sung Hun; Specht, Eliot D.; Cantoni, Claudia; Zuev, Yuri L.; Goyal, Amit] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zuev, Yuri L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Maroni, Victor] Argonne Natl Lab, Argonne, IL 60439 USA. [Wong-Ng, Winnie; Liu, Guangyao] NIST, Div Ceram, Gaithersburg, MD 20899 USA. [Haugan, Timothy J.] USAF, AFRL RZPG, Res Lab, Wright Patterson AFB, OH 45433 USA. RP Wee, SH (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wees@ornl.gov RI Specht, Eliot/A-5654-2009; Cantoni, Claudia/G-3031-2013 OI Specht, Eliot/0000-0002-3191-2163; Cantoni, Claudia/0000-0002-9731-2021 FU US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability Advanced Cables and Conductors [DE-AC05-00OR22725]; UT-Battelle, LLC; Office of Basic Energy Sciences, US DOE; Argonne National Laborator [DE-AC02-06CH11357]; UChicago Argonne, LLC; US DOE, Office of Science, Office of Basic Energy Sciences FX We would like to thank SuperPower Inc. for providing the Hastelloy substrates with the multilayer configuration of IBAD MgO layer, homoepitaxial MgO layer, and epitaxial LaMnO3. This research was sponsored by the US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability Advanced Cables and Conductors under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, managing contractor for Oak Ridge National Laboratory. Research also supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US DOE. Use of Raman instrumentation at Argonne's Center for Nanoscale Materials was supported by the US DOE, Office of Science, Office of Basic Energy Sciences. The work performed at the Argonne National Laboratory was carried out under Contract DE-AC02-06CH11357 between UChicago Argonne, LLC, and the US DOE. NR 24 TC 7 Z9 7 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUN 29 PY 2011 VL 83 IS 22 AR 224520 DI 10.1103/PhysRevB.83.224520 PG 6 WC Physics, Condensed Matter SC Physics GA 785HK UT WOS:000292218200007 ER PT J AU Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Cheng, CH Doll, DA Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Munerato, M Negrini, M Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Simi, G Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Bunger, C Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Lewis, P Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Cheng, C. H. Doll, D. A. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Simi, G. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Amplitude analysis of B-0 -> K+ pi(-) pi(0) and evidence of direct CP violation in B -> K * pi decays SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS; MESONS AB We analyze the decay B-0 -> K+ pi(-) pi(0) with a sample of 4.54 x 10(8) B (B) over bar events collected by the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, and extract the complex amplitudes of seven interfering resonances over the Dalitz plot. These results are combined with amplitudes measured in B-0 -> K-S(0)pi(+)pi(-) decays to construct isospin amplitudes from B-0 -> K* pi and B-0 -> rho K decays. We measure the phase of the isospin amplitude Phi(3/2), useful in constraining the Cabibbo-Kobayashi-Maskawa unitarity triangle angle gamma and evaluate a CP rate asymmetry sum rule sensitive to the presence of new physics operators. We measure direct CP violation in B-0 -> K*(+) pi(-) decays at the level of 3 sigma when measurements from both B-0 -> K+ pi(-) pi(0) and B-0 -> K-S(0) pi(+) pi(-) decays are combined. C1 [Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.] Univ Calif Riverside, Riverside, CA 92521 USA. [Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Bettoni, D.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Denis Diderot Paris7, Univ Paris 06, IN2P3 CNRS, Phys Theor & Hautes Energies Lab, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] Ctr Saclay, SPP, Irfu, CEA, F-91191 Gif Sur Yvette, France. [Gaz, A.; Adametz, A.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Dept Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Martinez Vidal, F*/L-7563-2014 OI Raven, Gerhard/0000-0002-2897-5323; Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti, Simone/0000-0002-6385-3508; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Martinez Vidal, F*/0000-0001-6841-6035 FU US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A.P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We thank Michael Gronau, Dan Pirjol, and Jonathan Rosner for useful discussions. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A.P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 29 TC 14 Z9 14 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD JUN 29 PY 2011 VL 83 IS 11 AR 112010 DI 10.1103/PhysRevD.83.112010 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 785PF UT WOS:000292240300001 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Bazterra, V Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Camacho-Perez, E Carrasco-Lizarraga, MA Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Novaes, SF Nunnemann, T Obrant, G Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, M Strom, D Stutte, L Suter, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Welty-Rieger, L White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Bazterra, V. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Novaes, S. F. Nunnemann, T. Obrant, G. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, M. Strom, D. Stutte, L. Suter, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Welty-Rieger, L. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Resonant WW and WZ Production in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article AB We search for resonant WW or WZ production by using up to 5: 4 fb(-1) of integrated luminosity collected by the D0 experiment in run II of the Fermilab Tevatron Collider. The data are consistent with the standard model background expectation, and we set limits on a resonance mass by using the sequential standard model W' boson and the Randall-Sundrum model graviton G as benchmarks. We exclude a sequential standard model W' boson in the mass range 180-690 GeV and a Randall-Sundrum graviton in the range 300-754 GeV at 95% C. L. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.; Rangel, M. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Alton, A.; Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Han, L.; Liu, Y.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Grivaz, J. -F.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Irfu, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.; Wicke, D.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.; Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Head, T.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Suter, L.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Univ Illinois, De Kalb, IL 60115 USA. [Kirby, M. H.; Schellman, H.; Welty-Rieger, L.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Carrasco-Lizarraga, M. A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Caughron, S.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Boos, Eduard/D-9748-2012; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Dudko, Lev/D-7127-2012; Gutierrez, Phillip/C-1161-2011; Mercadante, Pedro/K-1918-2012; Alves, Gilvan/C-4007-2013; Yip, Kin/D-6860-2013; Bolton, Tim/A-7951-2012; Fisher, Wade/N-4491-2013; Deliot, Frederic/F-3321-2014 OI Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Novaes, Sergio/0000-0003-0471-8549; Dudko, Lev/0000-0002-4462-3192; Yip, Kin/0000-0002-8576-4311; FU DOE (USA); NSF (USA); CEA (France); CNRS (France) [IN2P3]; FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT (Czech Republic); GACR (Czech Republic); CRC (Canada); NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS (China); CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 33 TC 17 Z9 17 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUN 29 PY 2011 VL 107 IS 1 AR 011801 DI 10.1103/PhysRevLett.107.011801 PG 7 WC Physics, Multidisciplinary SC Physics GA 785PM UT WOS:000292241000003 ER PT J AU Spilde, M Lanzirotti, A Qualls, C Phillips, G Ali, AM Agenbroad, L Appenzeller, O AF Spilde, Mike Lanzirotti, Antonio Qualls, Clifford Phillips, Genevieve Ali, Abdul-Mehdi Agenbroad, Larry Appenzeller, Otto TI Biologic Rhythms Derived from Siberian Mammoths' Hairs SO PLOS ONE LA English DT Article ID LIFE AB Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was,31 cms/year and,16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna. C1 [Spilde, Mike] Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Lanzirotti, Antonio] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Qualls, Clifford] Univ New Mexico, Dept Math, Albuquerque, NM 87131 USA. [Qualls, Clifford] Univ New Mexico, Dept Stat, Albuquerque, NM 87131 USA. [Phillips, Genevieve] Univ New Mexico, Canc Res & Treatment Ctr, Fluorescence Microscopy Facil, Albuquerque, NM 87131 USA. [Ali, Abdul-Mehdi] Univ New Mexico, Analyt Chem Lab, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. [Agenbroad, Larry] Mammoth Site, Hot Springs, SD USA. [Appenzeller, Otto] New Mexico Hlth Enhancement & Marathon Clin Res F, Albuquerque, NM USA. RP Spilde, M (reprint author), Univ New Mexico, Inst Meteorit, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. EM oarun@unm.edu FU New Mexico Health Enhancement and Marathon Clinics (NMHEMC) Research Foundation FX This work was supported by the New Mexico Health Enhancement and Marathon Clinics (NMHEMC) Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 13 TC 3 Z9 3 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 29 PY 2011 VL 6 IS 6 AR e21705 DI 10.1371/journal.pone.0021705 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 786FZ UT WOS:000292290100057 PM 21747920 ER PT J AU Bednarcik, J Michalik, S Sikorski, M Curfs, C Wang, XD Jiang, JZ Franz, H AF Bednarcik, J. Michalik, S. Sikorski, M. Curfs, C. Wang, X. D. Jiang, J. Z. Franz, H. TI Thermal expansion of a La-based bulk metallic glass: insight from in situ high-energy x-ray diffraction SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ALLOYS; LIQUID; SPACE; DIAMETER AB Constant-rate heating experiments using a fast x-ray camera (time resolution of 2.7 s) reveal detailed information about the thermal stability of La62Al14(Cu5/6Ag1/6)(14)Ni5Co5 (at.%) bulk metallic glass. Analyzing diffraction patterns in reciprocal space yields the thermal expansion of the amorphous alloy providing insight into the thermally activated relaxation effects and kinetics of the glass transition. The glass transition appears as a break in the value of the coefficient of volume thermal expansion. Furthermore, real space analysis based on the reduced pair distribution function G(r) allows one to follow in situ the changes in the local atomic structure of the amorphous material during constant-rate heating. C1 [Bednarcik, J.; Michalik, S.; Sikorski, M.; Franz, H.] DESY, D-22603 Hamburg, Germany. [Michalik, S.] Safarik Univ, Fac Sci, Inst Phys, Kosice 04154, Slovakia. [Sikorski, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Curfs, C.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Wang, X. D.; Jiang, J. Z.] Zhejiang Univ, ICNSM, Hangzhou 310027, Peoples R China. [Wang, X. D.; Jiang, J. Z.] Zhejiang Univ, Dept Mat Sci & Engn, Lab New Struct Mat, Hangzhou 310027, Peoples R China. RP Bednarcik, J (reprint author), DESY, Notkestr 85, D-22603 Hamburg, Germany. EM jozef.bednarcik@desy.de RI Curfs, Caroline/K-5898-2013; Michalik, Stefan/G-8039-2014 FU DAAD fellowship; Zhejiang University-Helmholtz cooperation fund; Slovak Ministry of Education [VEGA 10167/10]; National Natural Science Foundation of China [51071141, 50701038, 60776014, 60876002, 10804096]; Ministry of Education of China; Department of Science and Technology of Zhejiang province; Zhejiang University FX We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities in using beamline ID11. SM thanks Deutscher Akademischer Austausch Dienst for providing the DAAD fellowship. Financial supports from Zhejiang University-Helmholtz cooperation fund, the Slovak Ministry of Education (project VEGA 10167/10), the National Natural Science Foundation of China (Grant Nos 51071141, 50701038, 60776014, 60876002 and 10804096), the Ministry of Education of China (Program for Changjiang Scholars), the Department of Science and Technology of Zhejiang province and Zhejiang University are gratefully acknowledged. NR 23 TC 19 Z9 19 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 29 PY 2011 VL 23 IS 25 AR 254204 DI 10.1088/0953-8984/23/25/254204 PG 8 WC Physics, Condensed Matter SC Physics GA 775BX UT WOS:000291433000007 ER PT J AU Lauter, V Muller-Buschbaum, P Lauter, H Petry, W AF Lauter, Valeria Mueller-Buschbaum, Peter Lauter, Hans Petry, Winfried TI Morphology of thin nanocomposite films of asymmetric diblock copolymer and magnetite nanoparticles SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID SPECULAR NEUTRON-SCATTERING; BLOCK-COPOLYMER; REFLECTIVITY; COMPOSITES; SEPARATION; MIXTURES; POLYMERS; SURFACES; SOLVENT; DIAGRAM AB Thin self-assembled nanocomposite films of an asymmetric diblock copolymer and nanoparticles are fabricated. The morphologies of the films of the diblock copolymer poly(styrene-block-n-butyl methacrylate), P(Sd-b-BMA), with different volume fractions of large magnetite Fe(3)O(4) nanoparticles are studied before and after annealing. Neutron reflectometry reveals remarkable evidence that confining asymmetric copolymer to a limit of two layers forces the film, after the annealing, to form a mixed cylindrical-lamellar two-layer structure. This complex morphology is very stable and is preserved after the incorporation of nanoparticles up to 10% volume fraction. The other striking result is that the monodispersed nanoparticles with affinity to the polystyrene (PS) domain and with a size of 10 nm, which is close to the size of the PS chains, are assembled by the diblock copolymer matrix, so the distribution of the nanoparticles is reduced solely to the PS domain of the film. Our studies demonstrate that for asymmetric block copolymers in thin film geometry the self-assembly is strongly influenced by the interfacial and surface energies of the blocks and substrate. C1 [Lauter, Valeria; Lauter, Hans] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Mueller-Buschbaum, Peter; Petry, Winfried] Tech Univ Munich, Phys Dept E13, Lehrstuhl Funkti Mat, D-85747 Garching, Germany. RP Lauter, V (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Spallat Neutron Source, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM lauterv@ornl.gov RI Petry, Winfried/K-4998-2016; Muller-Buschbaum, Peter/C-3397-2017 OI Petry, Winfried/0000-0001-5208-7070; Muller-Buschbaum, Peter/0000-0002-9566-6088 FU BMBF (German Ministry of Research and Education) [03DU03MU]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX We thank Dr Orlova and G P Gordeev for the preparation of the nanoparticles, and M Jernenkov for his participation in the early stage of this study and his help with the AFM measurements. This work was supported by the BMBF (German Ministry of Research and Education) grant No 03DU03MU; Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 41 TC 3 Z9 3 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUN 29 PY 2011 VL 23 IS 25 AR 254215 DI 10.1088/0953-8984/23/25/254215 PG 6 WC Physics, Condensed Matter SC Physics GA 775BX UT WOS:000291433000018 PM 21654048 ER PT J AU Yoon, H Ansong, C McDermott, JE Gritsenko, M Smith, RD Heffron, F Adkins, JN AF Yoon, Hyunjin Ansong, Charles McDermott, Jason E. Gritsenko, Marina Smith, Richard D. Heffron, Fred Adkins, Joshua N. TI Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella SO BMC SYSTEMS BIOLOGY LA English DT Article ID ENTERICA SEROVAR TYPHIMURIUM; PATHOGENICITY ISLAND 2; III SECRETION; MEMBRANE-VESICLES; PROTEOMIC ANALYSIS; MASS-SPECTROMETRY; GENE-EXPRESSION; TYPHOID-FEVER; ACCURATE MASS; IDENTIFICATION AB Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two of these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens. C1 [Ansong, Charles; McDermott, Jason E.; Gritsenko, Marina; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Yoon, Hyunjin; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97239 USA. RP Adkins, JN (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Joshua.adkins@pnl.gov RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; McDermott, Jason/0000-0003-2961-2572 FU National Institute of Allergy and Infectious Diseases NIH/DHHS [Y1-AI-4894-01, Y1-AI-840101]; NIH National Center for Research Resources [RR 018522]; U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER); DOE [DE-AC05- 76RLO1830] FX We would like to thank George Niemann, Roslyn Brown, Liang Shi, and Penny Colton for helpful discussions. For additional technical assistance we would like to thank Ron Moore and Matt Monroe for proteomic analysis and Aurelie Snyder for immunofluorescence microscopy. This work was supported in part by the National Institute of Allergy and Infectious Diseases NIH/DHHS through interagency agreements Y1-AI-4894-01 and Y1-AI-840101 (project website http://www.SysBEP.org with links to raw proteomics and transcriptomics data). This work used instrumentation and capabilities developed under support from the NIH National Center for Research Resources (Grant RR 018522) and the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER). Significant portions of this work were performed using EMSL, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05- 76RLO1830. NR 73 TC 18 Z9 18 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1752-0509 J9 BMC SYST BIOL JI BMC Syst. Biol. PD JUN 28 PY 2011 VL 5 AR 100 DI 10.1186/1752-0509-5-100 PG 16 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA 803PK UT WOS:000293593000001 PM 21711513 ER PT J AU Worsley, MA Kucheyev, SO Kuntz, JD Olson, TY Han, TYJ Hamza, AV Satcher, JH Baumann, TF AF Worsley, Marcus A. Kucheyev, Sergei O. Kuntz, Joshua D. Olson, Tammy Y. Han, T. Yong-Jin Hamza, Alex V. Satcher, Joe H., Jr. Baumann, Theodore F. TI Carbon Scaffolds for Stiff and Highly Conductive Monolithic Oxide-Carbon Nanotube Composites SO CHEMISTRY OF MATERIALS LA English DT Article ID MECHANICAL-PROPERTIES; TITANIUM-DIOXIDE; ANATASE TIO2; NANOCOMPOSITES; NANOPARTICLES; FABRICATION; CAPABILITY; CATALYSTS; AEROGELS; SUPPORT AB The ultra low density, high electrical conductivity, and mechanical robustness of carbon nanotube aerogels (SWNT-CA) make them ideal scaffolds around which to create novel composites. Here we report on the synthesis and characterization of oxide/carbon nanotube composites fabricated through the sol-gel deposition of oxide coatings (SiO(2), SnO(2) or TiO(2)) on SWNT-CA. The porous network of the SWNT-CA scaffold is retained after the deposition and drying process. In each case, the deposited oxide appears to form a uniform coating on the surfaces of aerogel ligaments. The composite materials exhibit high electrical conductivity (similar to 100 S/m) and enhanced mechanical properties relative to the uncoated SWNT-CA support. In addition, the oxide/SWNT-CA composites possess high surface areas (as high as 742 m(2)/g) and large mesopore volumes (as high as 2.2 cm(3)/g). This approach offers viability in engineering new oxide/CNT composites for applications such as energy storage, sensing, and catalysis. C1 [Worsley, Marcus A.; Kucheyev, Sergei O.; Kuntz, Joshua D.; Olson, Tammy Y.; Han, T. Yong-Jin; Hamza, Alex V.; Satcher, Joe H., Jr.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Worsley, MA (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 E Ave, Livermore, CA 94550 USA. EM worsley1@llnl.gov RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; DOE Office of Energy Efficiency and Renewable Energy FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the DOE Office of Energy Efficiency and Renewable Energy. NR 57 TC 25 Z9 25 U1 2 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUN 28 PY 2011 VL 23 IS 12 BP 3054 EP 3061 DI 10.1021/cm200426k PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 780YL UT WOS:000291897300007 ER PT J AU Maskey, S Pierce, F Perahia, D Grest, GS AF Maskey, Sabina Pierce, Flint Perahia, Dvora Grest, Gary S. TI Conformational study of a single molecule of poly para phenylene ethynylenes in dilute solutions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE conducting polymers; electro-optical effects; macromolecules; molecular dynamics method; solutions ID CONJUGATED POLYMER; DYNAMICS AB The conformation of single molecules of dialkyl poly para phenylene ethynylenes (PPEs), electro-active polymers, is studied in solutions using molecular dynamics simulations. The conformation of conjugated polymers affects their electro-optical properties and therefore is critical to their current and potential uses, though only limited theoretical knowledge is available regarding the factors that control their configuration. The present study investigates the affects of molecular parameters including molecular weight of the polymer and chemical structure of the side chains of PPEs in different solvents on the conformation of the polymers. The PPEs are modeled atomistically where the solvents are modeled both implicitly and explicitly. The study finds that PPEs assume extended configuration which is affected by the length of the polymer backbone and the nature and length of substituting side chains. While the polymer remains extended, local dynamics is retained and no long range correlations are observed within the backbone. The results are compared with scattering experiments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3604820] C1 [Maskey, Sabina; Pierce, Flint; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [Pierce, Flint; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Maskey, S (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM gsgrest@sandia.gov NR 17 TC 8 Z9 8 U1 0 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2011 VL 134 IS 24 AR 244906 DI 10.1063/1.3604820 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 786TX UT WOS:000292331900061 PM 21721663 ER PT J AU Merer, AJ Steeves, AH Baraban, JH Bechtel, HA Field, RW AF Merer, Anthony J. Steeves, Adam H. Baraban, Joshua H. Bechtel, Hans A. Field, Robert W. TI Cis-trans isomerization in the S-1 state of acetylene: Identification of cis-well vibrational levels SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; fluorescence; infrared spectra; isomerisation; isotope shifts; organic compounds; radiative lifetimes; resonant states; rotational states; ultraviolet spectra; vibrational states; Zeeman effect ID X BAND SYSTEM; LASER-INDUCED FLUORESCENCE; AB-INITIO MO; EXCITED-STATES; (A)OVER-TILDE(1)A(U) STATE; PARTIAL DEPERTURBATION; TRIPLET PERTURBATIONS; ROTATION CONSTANTS; STATIONARY-POINTS; WAVELENGTH BANDS AB A systematic analysis of the S-1-trans ((A) over tilde (1)A(u)) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm(-1). Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46 175 cm(-1). Its C-13 isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S-1-cis isomer ((A) over tilde (1)A(2)). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)] of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the C-13 isotope shift of the 46 175 cm(-1) level (assigned here as cis-3(1)6(1)). The S-1-cis zero-point level is deduced to lie near 44 900 cm(-1), and the nu(6) vibrational frequency of the S-1-cis well is found to be roughly 565 cm(-1); these values are in remarkably good agreement with the results of recent ab initio calculations. The 46 175 cm(-1) vibrational level is found to have a 3.9 cm(-1) staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3599091] C1 [Steeves, Adam H.; Baraban, Joshua H.; Bechtel, Hans A.; Field, Robert W.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Merer, Anthony J.] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Merer, Anthony J.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Steeves, Adam H.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA. [Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Field, RW (reprint author), MIT, Dept Chem, Cambridge, MA 02139 USA. EM rwfield@mit.edu FU U.S. Department of Energy (DOE) [DE-FG0287ER13671]; Academia Sinica, Taiwan; Natural Sciences and Engineering Research Council of Canada; NSF FX We thank Dr. Jon Hougen (NIST, Gaithersburg) for valuable discussions on the group theory aspects, and Dr. Michelle (Silva) Clark for recording the 13C2H2 data. At MIT, this work was supported by the U.S. Department of Energy (DOE) Grant No. DE-FG0287ER13671. A.J.M. thanks the Academia Sinica, Taiwan, for the award of a Distinguished Visiting Professorship, and the Natural Sciences and Engineering Research Council of Canada for partial support of this work. J. H. Baraban acknowledges the support of a NSF Graduate Research Fellowship. NR 47 TC 16 Z9 16 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2011 VL 134 IS 24 AR 244310 DI 10.1063/1.3599091 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 786TX UT WOS:000292331900031 PM 21721633 ER PT J AU Prinz, JH Chodera, JD Pande, VS Swope, WC Smith, JC Noe, F AF Prinz, Jan-Hendrik Chodera, John D. Pande, Vijay S. Swope, William C. Smith, Jeremy C. Noe, Frank TI Optimal use of data in parallel tempering simulations for the construction of discrete-state Markov models of biomolecular dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE biochemistry; macromolecules; Markov processes; molecular biophysics; molecular dynamics method; organic compounds; probability; solvation ID HISTOGRAM ANALYSIS METHOD; PROTEIN-FOLDING KINETICS; MOLECULAR-DYNAMICS; MONTE-CARLO; COMPUTER EXPERIMENTS; CLASSICAL FLUIDS; REPLICA-EXCHANGE; PEPTIDE; TEMPERATURE; EQUATIONS AB Parallel tempering (PT) molecular dynamics simulations have been extensively investigated as a means of efficient sampling of the configurations of biomolecular systems. Recent work has demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be used to construct the Markov models describing biomolecular dynamics at each simulated temperature. While this approach describes the temperature-dependent kinetics, it does not make optimal use of all available PT data, instead estimating the rates at a given temperature using only data from that temperature. This can be problematic, as some relevant transitions or states may not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent properties can suffer from the false assumption that data collected from different temperatures are uncorrelated. We propose here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and provides estimates of transition probabilities even for transitions not observed at the temperature of interest. Further, the method allows the kinetics to be estimated at temperatures other than those at which simulations were run. We illustrate this method by applying it to the generation of a Markov model of the conformational dynamics of the solvated terminally blocked alanine peptide. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3592153] C1 [Prinz, Jan-Hendrik] Heidelberg Univ, Inst Comp Sci IWR, D-69126 Heidelberg, Germany. [Prinz, Jan-Hendrik] FU Berlin, DFG Res Ctr Matheon, D-14195 Berlin, Germany. [Chodera, John D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA. [Pande, Vijay S.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Swope, William C.] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Noe, Frank] FU Berlin, DFG Res Ctr Matheon, D-14195 Berlin, Germany. RP Prinz, JH (reprint author), Heidelberg Univ, Inst Comp Sci IWR, Neuenheimer Feld 368, D-69126 Heidelberg, Germany. EM jan-hendrik.prinz@fu-berlin.de; jchodera@berkeley.edu; pande@stanford.edu; swope@almaden.ibm.com; smithjc@ornl.gov; noe@math.fu-berlin.de RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Chodera, John/0000-0003-0542-119X FU German Research Foundation (DFG) [IGK 710, 725/2]; HHMI; IBM; National Institutes of Health (NIH) [GM34993]; NSF [NSF CHE-0535616]; California Institute for Quantitative Biosciences (QB3); NIH [RO1 GM062868]; DFG Research Center Matheon; U.S. Department of Energy [ERKJE84/ERKPE84] FX The authors would like to thank Jed W. Pitera (IBM Almaden), Nicolae-Viorel Buchete (UCD Dublin), and Gerhard Hummer (NIH) for stimulating conversations during the execution of this work. J.-H.P. gratefully acknowledges funding from the German Research Foundation (DFG) through the award of a doctoral scholarship in the International Graduiertenkolleg IGK 710: "Complex processes: Modeling, Simulation and Optimization." J.D.C. gratefully acknowledges support from HHMI and IBM predoctoral fellowship programs, National Institutes of Health (NIH) Grant No. GM34993 through Ken A. Dill (UCSF), and NSF grant for Cyberinfrastructure (Grant No. NSF CHE-0535616), and a California Institute for Quantitative Biosciences (QB3) Distinguished Postdoctoral Fellowship at various points throughout this work. V. S. P. acknowledges support from NIH RO1 GM062868. J.H.P. and F.N. acknowledge support from DFG Research Center Matheon and DFG Grant No. 725/2. J.C.S. acknowledges funding from the U.S. Department of Energy "Multiscale Mathematics" SciDAC and Genomes-to life program (Grant No. ERKJE84/ERKPE84. NR 44 TC 23 Z9 23 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2011 VL 134 IS 24 AR 244108 DI 10.1063/1.3592153 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 786TX UT WOS:000292331900011 PM 21721613 ER PT J AU Tao, H Allison, TK Wright, TW Stooke, AM Khurmi, C van Tilborg, J Liu, Y Falcone, RW Belkacem, A Martinez, TJ AF Tao, H. Allison, T. K. Wright, T. W. Stooke, A. M. Khurmi, C. van Tilborg, J. Liu, Y. Falcone, R. W. Belkacem, A. Martinez, T. J. TI Ultrafast internal conversion in ethylene. I. The excited state lifetime SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; excited states; molecular dynamics method; nonradiative transitions; organic compounds; perturbation theory; photoelectron spectra; time resolved spectra ID RESOLVED PHOTOELECTRON-SPECTROSCOPY; CIS-TRANS PHOTOISOMERIZATION; QUANTUM MOLECULAR-DYNAMICS; HIGH-ORDER HARMONICS; AB-INITIO; POLYATOMIC-MOLECULES; NONADIABATIC DYNAMICS; REGION; ENERGY; ISOMERIZATION AB Using a combined theoretical and experimental approach, we investigate the non-adiabatic dynamics of the prototypical ethylene (C2H4) molecule upon pi -> pi* excitation. In this first part of a two part series, we focus on the lifetime of the excited electronic state. The femtosecond time-resolved photoelectron spectrum (TRPES) of ethylene is simulated based on our recent molecular dynamics simulation using the ab initio multiple spawning method with multi-state second order perturbation theory [H. Tao, B. G. Levine, and T. J. Martinez, J. Phys. Chem. A 113, 13656 (2009)]. We find excellent agreement between the TRPES calculation and the photoion signal observed in a pumpprobe experiment using femtosecond vacuum ultraviolet (h nu = 7.7 eV) pulses for both pump and probe. These results explain the apparent discrepancy over the excited state lifetime between theory and experiment that has existed for ten years, with experiments [e. g., P. Farmanara, V. Stert, and W. Radloff, Chem. Phys. Lett. 288, 518 (1998) and K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, J. Phys. Chem. A 112, 7514 (2008)] reporting much shorter lifetimes than predicted by theory. Investigation of the TRPES indicates that the fast decay of the photoion yield originates from both energetic and electronic factors, with the energetic factor playing a larger role in shaping the signal. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3604007] C1 [Allison, T. K.; Wright, T. W.; Stooke, A. M.; Khurmi, C.; van Tilborg, J.; Liu, Y.; Falcone, R. W.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. [Tao, H.; Martinez, T. J.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Tao, H.; Martinez, T. J.] Stanford Univ, PULSE Inst, Stanford, CA 94305 USA. [Tao, H.; Martinez, T. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94309 USA. [Allison, T. K.; Stooke, A. M.; Liu, Y.; Falcone, R. W.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wright, T. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Belkacem, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ultrafast Xray Sci Lab, Berkeley, CA 94720 USA. EM abelkacem@lbl.gov; Todd.Martinez@stanford.edu RI Martinez, Todd/F-4306-2010 OI Martinez, Todd/0000-0002-4798-8947 FU U.S. Department of Energy (DOE) [DE-AC02-7600515]; U.S. Department of Energy Office of Basic Energy Sciences [DE-AC02-05CH1123, DE-FG-52-06NA26212]; Fannie and John Hertz Foundation FX The theory work was performed under U.S. Department of Energy (DOE) Contract No. DE-AC02-7600515. The experiment was supported by the U.S. Department of Energy Office of Basic Energy Sciences, under Contracts Nos. DE-AC02-05CH1123, and DE-FG-52-06NA26212. We acknowledge W. G. Glover, C. R. Evenhuis and T. Mori for helpful discussion. A. M. Stooke gratefully acknowledges the full support of the Fannie and John Hertz Foundation. We thank A. Stolow for helpful discussions. We acknowledge C. Caleman, M. Bergh, H. Merdji, and M. P. Hertlein for help with the apparatus in its early stages. NR 46 TC 53 Z9 53 U1 7 U2 55 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2011 VL 134 IS 24 AR 244306 DI 10.1063/1.3604007 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 786TX UT WOS:000292331900027 PM 21721629 ER PT J AU Ward, DK Zhou, XW Wong, BM Doty, FP Zimmerman, JA AF Ward, D. K. Zhou, X. W. Wong, B. M. Doty, F. P. Zimmerman, J. A. TI Accuracy of existing atomic potentials for the CdTe semiconductor compound SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE ab initio calculations; atomic forces; cadmium compounds; crystal growth from vapour; elastic constants; II-VI semiconductors; melting; molecular dynamics method; semiconductor growth; vacancies (crystal); zinc compounds ID FILM SOLAR-CELLS; BOND-ORDER POTENTIALS; CDZNTE RADIATION DETECTORS; MOLECULAR-DYNAMICS; MULTICOMPONENT SYSTEMS; CADMIUM TELLURIDE; LATTICE-DYNAMICS; SINGLE-CRYSTALS; MONTE-CARLO; X-RAY AB CdTe and CdTe-based Cd1-xZnxTe (CZT) alloys are important semiconductor compounds that are used in a variety of technologies including solar cells, radiation detectors, and medical imaging devices. Performance of such systems, however, is limited due to the propensity of nano- and micro-scale defects that form during crystal growth and manufacturing processes. Molecular dynamics simulations offer an effective approach to study the formation and interaction of atomic scale defects in these crystals, and provide insight on how to minimize their concentrations. The success of such a modeling effort relies on the accuracy and transferability of the underlying interatomic potential used in simulations. Such a potential must not only predict a correct trend of structures and energies of a variety of elemental and compound lattices, defects, and surfaces but also capture correct melting behavior and should be capable of simulating crystalline growth during vapor deposition as these processes sample a variety of local configurations. In this paper, we perform a detailed evaluation of the performance of two literature potentials for CdTe, one having the Stillinger-Weber form and the other possessing the Tersoff form. We examine simulations of structures and the corresponding energies of a variety of elemental and compound lattices, defects, and surfaces compared to those obtained from ab initio calculations and experiments. We also perform melting temperature calculations and vapor deposition simulations. Our calculations show that the Stillinger-Weber parameterization produces the correct lowest energy structure. This potential, however, is not sufficiently transferrable for defect studies. Origins of the problems of these potentials are discussed and insights leading to the development of a more transferrable potential suitable for molecular dynamics simulations of defects in CdTe crystals are provided. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3596746] C1 [Ward, D. K.; Doty, F. P.] Sandia Natl Labs, Radiat & Nucl Detect Mat & Anal Dept, Livermore, CA 94550 USA. [Zhou, X. W.; Zimmerman, J. A.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Wong, B. M.] Sandia Natl Labs, Dept Chem Mat, Livermore, CA 94550 USA. RP Ward, DK (reprint author), Sandia Natl Labs, Radiat & Nucl Detect Mat & Anal Dept, Livermore, CA 94550 USA. EM donward@sandia.gov RI Wong, Bryan/B-1663-2009 OI Wong, Bryan/0000-0002-3477-8043 FU NNSA/DOE Office of Nonproliferation Research and Development [DE-AC04-94AL85000] FX This work is supported by the NNSA/DOE Office of Nonproliferation Research and Development, Proliferation Detection Program, Advanced Materials Portfolio. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 97 TC 24 Z9 24 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUN 28 PY 2011 VL 134 IS 24 AR 244703 DI 10.1063/1.3596746 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 786TX UT WOS:000292331900051 PM 21721653 ER PT J AU Borovsky, JE Cayton, TE AF Borovsky, Joseph E. Cayton, Thomas E. TI Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID CENTRAL PLASMA SHEET; WAVE-PARTICLE INTERACTIONS; CORONAL MASS EJECTIONS; SELF-CONSISTENT THEORY; SOLAR-WIND; POLYTROPIC INDEX; RELATIVISTIC ELECTRONS; CHARGED-PARTICLES; MAGNETIC CLOUDS; MAGNETOSPHERIC PARTICLES AB The specific entropy (entropy density) S is examined for the outer electron radiation belt at geosynchronous orbit and for the energetic electron population in the Earth's magnetotail. The outer electron radiation belt is measured with the SOPA detectors on board six geosynchronous satellites and the energetic electrons of the magnetotail are measured with instrumentation on board 12 Global Positioning Satellites (GPS) with a magnetic field model used to map the GPS orbit to the magnetotail. Density n and temperature T values are determined from relativistic Maxwellian fits to the electron measurements, enabling the specific entropy S to be calculated. For low temperatures the nonrelativstic specific entropy is S = T/n(2/3); for a relativistic Maxwellian distribution a relativistically correct expression for S = S(T,n) is derived and used. The outer electron radiation belt at geosynchronous orbit local midnight (n similar to 3 x 10(-4) cm(-3) and T similar to 140 keV) and the energetic-electron population in the magnetotail (n similar to 1 x 10(-4) cm(-3) and T similar to 50 keV) statistically have the same specific entropy. Hence the two populations are probably the same. This implies adiabatic transport (1) from the magnetotail to the dipole (where the magnetotail electrons are the source of the outer electron radiation belt) or (2) from the dipole to the magnetotail (where the magnetotail electrons are leakage from the radiation belt). C1 [Borovsky, Joseph E.; Cayton, Thomas E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Borovsky, Joseph E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Borovsky, JE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jborovsky@lanl.gov FU NASA Living; U.S. Department of Energy; Star TRT Program FX The authors wish to thank Evan Noveroske for providing the BDD and CXD data files, to thank Mick Denton for preparing data sets, and to thank Joachim Birn and Mick Denton for stimulating conversations. This work was supported by the NASA Living with a Star TR&T Program and by the U.S. Department of Energy. NR 143 TC 19 Z9 19 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUN 28 PY 2011 VL 116 AR A06216 DI 10.1029/2011JA016470 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 787RM UT WOS:000292394400003 ER PT J AU Chopdekar, RV Nelson-Cheeseman, BB Liberati, M Arenholz, E Suzuki, Y AF Chopdekar, R. V. Nelson-Cheeseman, B. B. Liberati, M. Arenholz, E. Suzuki, Y. TI Role of magnetic anisotropy in spin-filter junctions SO PHYSICAL REVIEW B LA English DT Article ID LARGE MAGNETORESISTANCE; THIN-FILMS; MAGNETOTRANSPORT; FE3O4 AB We have fabricated oxide-based spin-filter junctions in which we demonstrate that magnetic anisotropy can be used to tune the transport behavior of spin-filter junctions. We have demonstrated spin-filtering behavior in La0.7Sr0.3MnO3/CoCr2O4/Fe3O4 and La0.7Sr0.3MnO3/MnCr2O4/Fe3O4 junctions where the interface anisotropy plays a significant role in determining transport behavior. Detailed studies of chemical and magnetic structure at the interfaces indicate that abrupt changes in magnetic anisotropy across the nonisostructural interface is the cause of the significant suppression of junction magnetoresistance in junctions with MnCr2O4 barrier layers. C1 [Chopdekar, R. V.; Nelson-Cheeseman, B. B.; Suzuki, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chopdekar, R. V.] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA. [Liberati, M.; Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Suzuki, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Chopdekar, RV (reprint author), Paul Scherrer Inst, Lab Micro & Nanotechnol, CH-5232 Villigen, Switzerland. EM rvc2@cornell.edu RI Chopdekar, Rajesh/D-2067-2009 OI Chopdekar, Rajesh/0000-0001-6727-6501 FU National Science Foundation [DMR 0604277]; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Angelica Stacy for the use of her theta-2 theta diffractometer, Kin Man Yu from the Lawrence Berkeley National Laboratory Materials Science Division for taking RBS spectra, and Franklin Wong for transmission electron microscopy on spinel heterostructures. This research is supported by the National Science Foundation (Grant No. DMR 0604277). The Advanced Light Source and the National Center for Electron Microscopy are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 8 Z9 8 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUN 28 PY 2011 VL 83 IS 22 AR 224426 DI 10.1103/PhysRevB.83.224426 PG 8 WC Physics, Condensed Matter SC Physics GA 784UE UT WOS:000292182900005 ER PT J AU Guyer, RA Kim, HA Derome, D Carmeliet, J TenCate, J AF Guyer, R. A. Kim, H. Alicia Derome, Dominique Carmeliet, Jan TenCate, J. TI Hysteresis in modeling of poroelastic systems: Quasistatic equilibrium SO PHYSICAL REVIEW E LA English DT Article ID NUCLEPORE; DYNAMICS; HELIUM; SOUND; WAVE AB The behavior of hysteretic, coupled elastic and fluid systems is modeled. The emphasis is on quasistatic equilibrium in response to prescribed chemical potential (mu) protocols and prescribed stress (sigma) protocols. Hysteresis arises in these models either from the presence of hysterons or from the presence of self-trapping internal fields. This latter mechanism is modeled in finite element calculations which serve to illustrate the creation of hysteresis in a range of circumstances that go from conventionally hysteretic systems, a sandstone, to systems like a wood fiber. An essential ingredient in the behavior of these systems, the interaction between the mechanical variables and the fluid variables, is accorded special attention. The proper venue for the exploration of these systems is (mu, sigma) space and appropriate mu protocols, sigma protocols, and combined mu-sigma protocols. C1 [Guyer, R. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Guyer, R. A.] Univ Nevada, Dept Phys, Reno, NV 89577 USA. [Kim, H. Alicia] Univ Bath, Dept Mech Engn, Bath BA2 7AY, Avon, England. [Derome, Dominique] EMPA, Swiss Fed Lab Mat Sci & Technol, Wood Lab, CH-8600 Dubendorf, Switzerland. [Carmeliet, Jan] ETH, HIL E46 3, CH-8093 Zurich, Switzerland. [Carmeliet, Jan] EMPA, Swiss Fed Lab Mat Sci & Technol, Lab Bldg Sci & Technol, CH-8600 Dubendorf, Switzerland. [TenCate, J.] Earth & Environm Sci MS D443 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Guyer, RA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM guyer@physics.umass.edu; h.a.kim@bath.ac.uk; Dominique.Derome@empa.ch; Jan.Carmeliet@empa.ch; tencate@lanl.gov OI Kim, Hyunsun Alicia/0000-0002-5629-2466 NR 19 TC 0 Z9 0 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUN 28 PY 2011 VL 83 IS 6 AR 061408 DI 10.1103/PhysRevE.83.061408 PN 1 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 785WA UT WOS:000292261900004 PM 21797365 ER PT J AU Macridin, A Spentzouris, P Amundson, J Spentzouris, L McCarron, D AF Macridin, Alexandru Spentzouris, Panagiotis Amundson, James Spentzouris, Linda McCarron, Daniel TI Coupling impedance and wake functions for laminated structures with an application to the Fermilab Booster SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB We calculate the impedance and wake functions for laminated structures with parallel-plane and circular geometries in the ultrarelativistic limit. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between flat and circular geometry impedances is presented. We apply our calculation in a state-of-the-art beam dynamics simulation of the Fermilab Booster which includes nonlinear optics, laminated wakefields, and space charge impedance. The latter can have a significant effect away from the ultrarelativistic limit. Even though the simulations and the comparison with the experiment are done at the Booster injection energy, where the relativistic factor gamma = 1.42, we find good agreement between our calculation of the coherent tune shift and recent experimental measurements. C1 [Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Spentzouris, Linda; McCarron, Daniel] IIT, Chicago, IL 60616 USA. RP Macridin, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU United States Department of Energy [DE-AC02-07CH11359]; DOE Office of High Energy Physics; NSF [0237162]; Office of Science of the U. S. Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357] FX We thank Alexey Burov, Valeri Lebedev, and K. Y. Ng for fruitful discussions. We also thank Yuri Alexahin, William Pellico, and William Marsh for help with beam studies. This work was supported by the United States Department of Energy under Contract No. DE-AC02-07CH11359, the ComPASS project, funded through the Scientific Discovery through Advanced Computing program in the DOE Office of High Energy Physics, and NSF Grant No. 0237162. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, as well as resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 22 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUN 28 PY 2011 VL 14 IS 6 AR 061003 DI 10.1103/PhysRevSTAB.14.061003 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 784VE UT WOS:000292185600001 ER PT J AU Chhabra, SR Joachimiak, MP Petzold, CJ Zane, GM Price, MN Reveco, SA Fok, V Johanson, AR Batth, TS Singer, M Chandonia, JM Joyner, D Hazen, TC Arkin, AP Wall, JD Singh, AK Keasling, JD AF Chhabra, Swapnil R. Joachimiak, Marcin P. Petzold, Christopher J. Zane, Grant M. Price, Morgan N. Reveco, Sonia A. Fok, Veronica Johanson, Alyssa R. Batth, Tanveer S. Singer, Mary Chandonia, John-Marc Joyner, Dominique Hazen, Terry C. Arkin, Adam P. Wall, Judy D. Singh, Anup K. Keasling, Jay D. TI Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough SO PLOS ONE LA English DT Article ID ESCHERICHIA-COLI; MASS-SPECTROMETRY; GLOBAL ANALYSIS; VULGATIS HILDENBOROUGH; PURIFICATION; METHYLATION; COMPLEXES; ACETYLATION; PEPTIDES; AFFINITY AB Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction. C1 [Chhabra, Swapnil R.; Joachimiak, Marcin P.; Zane, Grant M.; Price, Morgan N.; Singer, Mary; Chandonia, John-Marc; Joyner, Dominique; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Singh, Anup K.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. [Chhabra, Swapnil R.; Joachimiak, Marcin P.; Petzold, Christopher J.; Price, Morgan N.; Reveco, Sonia A.; Fok, Veronica; Johanson, Alyssa R.; Batth, Tanveer S.; Chandonia, John-Marc; Arkin, Adam P.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Singer, Mary; Joyner, Dominique; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Chandonia, John-Marc] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Zane, Grant M.; Wall, Judy D.] Univ Missouri, Dept Biochem, Columbia, MO USA. [Zane, Grant M.; Wall, Judy D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO USA. [Singh, Anup K.] Sandia Natl Labs, Biosyst Res Dept, Livermore, CA USA. [Arkin, Adam P.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Arkin, Adam P.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Chhabra, Swapnil R.; Petzold, Christopher J.; Reveco, Sonia A.; Fok, Veronica; Johanson, Alyssa R.; Batth, Tanveer S.; Hazen, Terry C.; Arkin, Adam P.; Singh, Anup K.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. RP Chhabra, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Virtual Inst Microbial Stress & Survival, Berkeley, CA 94720 USA. EM srchhabra@lbl.gov; mpjoachimiak@lbl.gov RI Keasling, Jay/J-9162-2012; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012; OI Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993; Zane, Grant/0000-0002-3357-3097 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was part of the U.S. Department of Energy Genomics Sciences program: ENIGMA is a Scientific Focus Area Program supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 63 TC 9 Z9 9 U1 1 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 28 PY 2011 VL 6 IS 6 AR e21470 DI 10.1371/journal.pone.0021470 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 784FW UT WOS:000292142800026 PM 21738675 ER PT J AU de Vries, LE Valles, Y Agerso, Y Vaishampayan, PA Garcia-Montaner, A Kuehl, JV Christensen, H Barlow, M Francino, MP AF de Vries, Lisbeth E. Valles, Yvonne Agerso, Yvonne Vaishampayan, Parag A. Garcia-Montaner, Andrea Kuehl, Jennifer V. Christensen, Henrik Barlow, Miriam Francino, M. Pilar TI The Gut as Reservoir of Antibiotic Resistance: Microbial Diversity of Tetracycline Resistance in Mother and Infant SO PLOS ONE LA English DT Article ID STREPTOCOCCUS-GALLOLYTICUS; FECAL MICROBIOTA; GENES; BACTERIA; SEQUENCE; TET(W); BACTEROIDES; TRANSPOSON; ELEMENTS; PCR AB The microbiota in the human gastrointestinal tract (GIT) is highly exposed to antibiotics, and may be an important reservoir of resistant strains and transferable resistance genes. Maternal GIT strains can be transmitted to the offspring, and resistances could be acquired from birth. This is a case study using a metagenomic approach to determine the diversity of microorganisms conferring tetracycline resistance (Tc(r)) in the guts of a healthy mother-infant pair one month after childbirth, and to investigate the potential for horizontal transfer and maternal transmission of Tc(r) genes. Fecal fosmid libraries were functionally screened for Tc(r), and further PCR-screened for specific Tc(r) genes. Tc(r) fosmid inserts were sequenced at both ends to establish bacterial diversity. Mother and infant libraries contained Tc(r), although encoded by different genes and organisms. Tc(r) organisms in the mother consisted mainly of Firmicutes and Bacteroidetes, and the main gene detected was tet(O), although tet(W) and tet(X) were also found. Identical Tc(r) gene sequences were present in different bacterial families and even phyla, which may indicate horizontal transfer within the maternal GIT. In the infant library, Tc(r) was present exclusively in streptococci carrying tet(M), tet(L) and erm(T) within a novel composite transposon, Tn6079. This transposon belongs to a family of broad host range conjugative elements, implying a potential for the joint spread of tetracycline and erythromycin resistance within the infant's gut. In addition, although not found in the infant metagenomic library, tet(O) and tet(W) could be detected in the uncloned DNA purified from the infant fecal sample. This is the first study to reveal the diversity of Tc(r) bacteria in the human gut, to detect a likely transmission of antibiotic resistance from mother to infant GITs and to indicate the possible occurrence of gene transfers among distantly related bacteria coinhabiting the GIT of the same individual. C1 [de Vries, Lisbeth E.; Christensen, Henrik] Univ Copenhagen, Dept Vet Dis Biol, Frederiksberg, Denmark. [de Vries, Lisbeth E.; Agerso, Yvonne] Tech Univ Denmark, Natl Food Inst, DK-2800 Lyngby, Denmark. [Valles, Yvonne; Garcia-Montaner, Andrea; Francino, M. Pilar] Univ Valencia, Inst Cavanilles, Ctr Super Invest Salut Publ, Unitat Mixta Invest Genom & Salut, Valencia, Spain. [Vaishampayan, Parag A.; Kuehl, Jennifer V.; Francino, M. Pilar] Joint Genome Inst, Dept Energy, Evolutionary Genom Program, Walnut Creek, CA USA. [Barlow, Miriam; Francino, M. Pilar] Univ Calif Merced, Sch Nat Sci, Merced, CA USA. RP de Vries, LE (reprint author), Univ Copenhagen, Dept Vet Dis Biol, Frederiksberg, Denmark. EM francino_pil@gva.es RI Francino, M. Pilar/H-9090-2015 OI Francino, M. Pilar/0000-0002-4510-5653 FU Danish Research Council for Technology and Production Sciences [274-05-0117]; NIH (National Institutes of Health, USA) [R01 DK66288]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was partly funded by a grant from The Danish Research Council for Technology and Production Sciences (274-05-0117) and by a grant R01 DK66288 from NIH (National Institutes of Health, USA) to MPF. Part of this work was performed at the U.S. Department of Energy Joint Genome Institute. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 42 TC 36 Z9 36 U1 6 U2 35 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 28 PY 2011 VL 6 IS 6 AR e21644 DI 10.1371/journal.pone.0021644 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 784FW UT WOS:000292142800051 PM 21738748 ER PT J AU Jiang, YY Sirinupong, N Brunzelle, J Yang, Z AF Jiang, Yuanyuan Sirinupong, Nualpun Brunzelle, Joseph Yang, Zhe TI Crystal Structures of Histone and p53 Methyltransferase SmyD2 Reveal a Conformational Flexibility of the Autoinhibitory C-Terminal Domain SO PLOS ONE LA English DT Article ID FUNCTIONAL-ANALYSIS; HSP90; CHROMATIN; PROTEIN; PROLIFERATION; METHYLATION; SPECIFICITY; DROSOPHILA; ENCODES; COMPLEX AB SmyD2 belongs to a new class of chromatin regulators that control gene expression in heart development and tumorigenesis. Besides methylation of histone H3 K4, SmyD2 can methylate non-histone targets including p53 and the retinoblastoma tumor suppressor. The methyltransferase activity of SmyD proteins has been proposed to be regulated by autoinhibition via the intra-and interdomain bending of the conserved C-terminal domain (CTD). However, there has been no direct evidence of a conformational change in the CTD. Here, we report two crystal structures of SmyD2 bound either to the cofactor product S-adenosylhomocysteine or to the inhibitor sinefungin. SmyD2 has a two-lobed structure with the active site located at the bottom of a deep crevice formed between the CTD and the catalytic domain. By extensive engagement with the methyltransferase domain, the CTD stabilizes the autoinhibited conformation of SmyD2 and restricts access to the catalytic site. Unexpectedly, despite that the two SmyD2 structures are highly superimposable, significant differences are observed in the first two helices of the CTDs: the two helices bend outwards and move away from the catalytic domain to generate a less closed conformation in the sinefungin-bound structure. Although the overall fold of the individual domains is structurally conserved among SmyD proteins, SmyD2 appear to be a conformational "intermediate'' between a close form of SmyD3 and an open form of SmyD1. In addition, the structures reveal that the CTD is structurally similar to tetratricopeptide repeats (TPR), a motif through which many cochaperones bind to the heat shock protein Hsp90. Our results thus provide the first evidence for the intradomain flexibility of the TPR-like CTD, which may be important for the activation of SmyD proteins by Hsp90. C1 [Jiang, Yuanyuan; Sirinupong, Nualpun; Yang, Zhe] Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI 48202 USA. [Brunzelle, Joseph] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Jiang, YY (reprint author), Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI 48202 USA. EM zyang@med.wayne.edu FU American Heart Association (AHA) FX This work was supported, in part, by the American Heart Association (AHA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 36 TC 21 Z9 21 U1 1 U2 11 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUN 28 PY 2011 VL 6 IS 6 AR e21640 DI 10.1371/journal.pone.0021640 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 784FW UT WOS:000292142800049 PM 21738746 ER EF