FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Jiang, DE Meng, D Wu, JZ AF Jiang, De-en Meng, Dong Wu, Jianzhong TI Density functional theory for differential capacitance of planar electric double layers in ionic liquids SO CHEMICAL PHYSICS LETTERS LA English DT Article ID GLASSY-CARBON; TEMPERATURE; SURFACE; INTERFACES; MODEL; ELECTROLYTE; CHARGE; FLUIDS; SIZE AB The differential capacitance of electric double layers in ionic liquids and its correlation with the surface charge density, ion size and concentration are studied within the framework of the classical density functional theory (DFT). As prescribed by previous analytical theories, DFT is able to reproduce the transition in the differential capacitance versus the surface potential curve from the 'camel' shape to the 'bell' shape when the ionic density increases. However, DFT predicts alternating layers of cations and anions at the charged surface that cannot be described by the classical Gouy-Chapman-Stern model and its modifications. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Meng, Dong; Wu, Jianzhong] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov; jwu@engr.ucr.edu RI Jiang, De-en/D-9529-2011; Wu, Jianzhong/I-5164-2013; Meng, Dong/D-8328-2014; OI Jiang, De-en/0000-0001-5167-0731; Meng, Dong/0000-0003-1763-6411; Wu, Jianzhong/0000-0002-4582-5941 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; National Science Foundation [NSF-CBET-0852353]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. ERKCC61 (D.J.). Additional support (J.W.) is provided by the National Science Foundation (NSF-CBET-0852353). This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 51 Z9 51 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD MAR 10 PY 2011 VL 504 IS 4-6 BP 153 EP 158 DI 10.1016/j.cplett.2011.01.072 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 730HI UT WOS:000288024000008 ER PT J AU Santra, R Yakovlev, VS Pfeifer, T Loh, ZH AF Santra, Robin Yakovlev, Vladislav S. Pfeifer, Thomas Loh, Zhi-Heng TI Theory of attosecond transient absorption spectroscopy of strong-field-generated ions SO PHYSICAL REVIEW A LA English DT Article ID REAL-TIME OBSERVATION; TRANSITION-STATES; CHEMICAL-REACTION; WAVE-PACKET; FEMTOSECOND; BACTERIORHODOPSIN; ISOMERIZATION; DYNAMICS; SPECTRA; MOTION AB Strong-field ionization generally produces ions in a superposition of ionic eigenstates. This superposition is generally not fully coherent and must be described in terms of a density matrix. A recent experiment [ E. Goulielmakis et al., Nature (London) 466, 739 (2010)] employed attosecond transient absorption spectroscopy to determine the density matrix of strong-field-generated Kr+ ions. The experimentally observed degree of coherence of the strong-field-generated Kr+ ions is well reproduced by a recently developed multichannel strong-field-ionization theory, but there is significant disagreement between experiment and theory with respect to the degree of alignment of the Kr+ ions. In the present paper, the theory underlying attosecond transient absorption spectroscopy of strong-field-generated ions is developed. The theory is formulated in such a way that the nonperturbative nature of the strong-field-ionization process is systematically taken into account. The impact of attosecond pulse propagation effects on the interpretation of experimental data is investigated both analytically and numerically. It is shown that attosecond pulse propagation effects cannot explain why the experimentally determined degree of alignment of strong-field-generated Kr+ ions is much smaller than predicted by existing theory. C1 [Santra, Robin] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. [Santra, Robin] Univ Hamburg, Dept Phys, D-20355 Hamburg, Germany. [Santra, Robin] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Yakovlev, Vladislav S.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Yakovlev, Vladislav S.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Pfeifer, Thomas] Max Planck Inst Nucl Phys, D-69117 Heidelberg, Germany. [Loh, Zhi-Heng] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Loh, Zhi-Heng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Loh, Zhi-Heng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Santra, R (reprint author), DESY, Ctr Free Elect Laser Sci, Notkestr 85, D-22607 Hamburg, Germany. RI Loh, Zhi-Heng/B-6952-2011; Santra, Robin/E-8332-2014; Yakovlev, Vladislav/C-4091-2015 OI Loh, Zhi-Heng/0000-0001-9729-9632; Santra, Robin/0000-0002-1442-9815; Yakovlev, Vladislav/0000-0002-0648-9375 FU National Science Foundation [NSF PHY05-51164, CHE-0742662, EEC-0310717]; DFG Cluster of Excellence: Munich-Centre for Advanced Photonics (MAP); Max-Planck-Gesellschaft FX We thank E. Goulielmakis, N. Rohringer, D. Charalambidis, S. R. Leone, and F. Krausz for fruitful discussions. This research was supported in part by the National Science Foundation under Grant No. NSF PHY05-51164. V.Y. acknowledges support by the DFG Cluster of Excellence: Munich-Centre for Advanced Photonics (MAP). T. P. acknowledges support from an MPRG grant of the Max-Planck-Gesellschaft. Z.-H.L. is supported by the National Science Foundation (Grants No. CHE-0742662 and No. EEC-0310717). NR 43 TC 57 Z9 57 U1 1 U2 34 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR 10 PY 2011 VL 83 IS 3 AR 033405 DI 10.1103/PhysRevA.83.033405 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 732SQ UT WOS:000288210400005 ER PT J AU Noda, S Haight, RC Nelson, RO Devlin, M O'Donnell, JM Chatillon, A Granier, T Belier, G Taieb, J Kawano, T Talou, P AF Noda, S. Haight, R. C. Nelson, R. O. Devlin, M. O'Donnell, J. M. Chatillon, A. Granier, T. Belier, G. Taieb, J. Kawano, T. Talou, P. TI Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on U-235 and Pu-239 using the double time-of-flight technique SO PHYSICAL REVIEW C LA English DT Article ID SCIENCE AB Prompt fission neutron spectra from U-235 and Pu-239 were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg U-235 and 90 mg Pu-239 detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced gamma-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra. C1 [Chatillon, A.; Granier, T.; Belier, G.; Taieb, J.] DIF, DAM, CEA, F-91297 Arpajon, France. [Kawano, T.; Talou, P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Noda, S (reprint author), Kyushu Univ, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan. EM haight@lanl.gov RI Devlin, Matthew/B-5089-2013 OI Devlin, Matthew/0000-0002-6948-2154 FU US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX One of the authors (S.N.) would like to thank Kyushu Industrial Technology Center for supporting his stay at Los Alamos to perform this work and S. A. Wender and J. Carlson for accepting him to be a visiting graduate school student in Los Alamos National Laboratory. He also thanks K. Ishibashi and N. Shigyo of Kyushu University for valuable discussions. We thank D. G. Madland for providing the Los Alamos model input parameters. This work was carried out in part under the agreement between the US Department of Energy and the French Commissariat a l'Energie Atomique on fundamental science supporting stockpile stewardship. The experimental measurements benefited from the use of the LANSCE accelerator facility. The work at Los Alamos was carried out under the auspices of the US Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 30 TC 19 Z9 19 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD MAR 10 PY 2011 VL 83 IS 3 AR 034604 DI 10.1103/PhysRevC.83.034604 PG 10 WC Physics, Nuclear SC Physics GA 732TQ UT WOS:000288213000005 ER PT J AU Perdue, BA Ahmed, MW Henshaw, SS Seo, PN Stave, S Weller, HR Martel, PP Teymurazyan, A AF Perdue, B. A. Ahmed, M. W. Henshaw, S. S. Seo, P. -N. Stave, S. Weller, H. R. Martel, P. P. Teymurazyan, A. TI Cross sections for the three-body photodisintegration of He-3 at E-gamma=12.8, 13.5, and 14.7 MeV SO PHYSICAL REVIEW C LA English DT Article ID DEUTERON PHOTODISINTEGRATION AB The absolute differential cross sections for the He-3(gamma,n)pp reaction were measured as a function of outgoing neutron scattering angle and energy at the incident gamma-ray energies of 12.8, 13.5, and 14.7 MeV to within a precision better than +/- 6%. Both the absolute cross sections and the neutron energy distributions at each incident gamma-ray energy agree with the state-of-the-art theoretical results when the Coulomb interaction in the final state is included. C1 [Perdue, B. A.; Ahmed, M. W.; Henshaw, S. S.; Seo, P. -N.; Stave, S.; Weller, H. R.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Martel, P. P.; Teymurazyan, A.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. RP Perdue, BA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM perdue@tunl.duke.edu FU US Department of Energy, Office of Nuclear Physics [DE-FG02-97ER41033] FX The authors thank A. Deltuva for providing calculations and for helpful discussions. This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-97ER41033. NR 22 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR 10 PY 2011 VL 83 IS 3 AR 034003 DI 10.1103/PhysRevC.83.034003 PG 10 WC Physics, Nuclear SC Physics GA 732TQ UT WOS:000288213000002 ER PT J AU Willingale, L Nilson, PM Thomas, AGR Cobble, J Craxton, RS Maksimchuk, A Norreys, PA Sangster, TC Scott, RHH Stoeckl, C Zulick, C Krushelnick, K AF Willingale, L. Nilson, P. M. Thomas, A. G. R. Cobble, J. Craxton, R. S. Maksimchuk, A. Norreys, P. A. Sangster, T. C. Scott, R. H. H. Stoeckl, C. Zulick, C. Krushelnick, K. TI High-Power, Kilojoule Class Laser Channeling in Millimeter-Scale Underdense Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID ION-BEAMS; PULSES; DYNAMICS AB Experiments were performed using the OMEGA EP laser, operating at 740 J of energy in 8 ps (90 TW), which provides extreme conditions relevant to fast ignition studies. A carbon and hydrogen plasma plume was used as the underdense target and the interaction of the laser pulse propagating and channeling through the plasma was imaged using proton radiography. The early time expansion, channel evolution, filamentation, and self-correction of the channel was measured on a single shot via this method. A channel wall modulation was observed and attributed to surface waves. After around 50 ps, the channel had evolved to show bubblelike structures, which may be due to postsoliton remnants. C1 [Willingale, L.; Thomas, A. G. R.; Maksimchuk, A.; Zulick, C.; Krushelnick, K.] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA. [Nilson, P. M.; Craxton, R. S.; Sangster, T. C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Cobble, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Norreys, P. A.; Scott, R. H. H.] Rutherford Appleton Lab, STFC, Cent Laser Facil, Didcot OX11 0QX, Oxon, England. RP Willingale, L (reprint author), Univ Michigan, Ctr Ultrafast Opt Sci, 2200 Bonisteel Blvd, Ann Arbor, MI 48109 USA. RI Thomas, Alexander/D-8210-2011; OI Thomas, Alexander/0000-0003-3206-8512 FU NSF/DOE [0903557]; National Laser Users' Facility (NLUF); DOE [DE-FG52-09NA29041] FX The authors gratefully acknowledge technical assistance from the staff of the Laboratory for Laser Energetics and the OSIRIS Consortium (UCLA and IST, Portugal), for the use of the OSIRIS 2.0 framework. The simulations were run on GlowWorm (NSF/DOE Grant No. 0903557), part of the Nyx cluster. This work was supported by the National Laser Users' Facility (NLUF) and the DOE (Grant No. DE-FG52-09NA29041). NR 36 TC 30 Z9 30 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 10 PY 2011 VL 106 IS 10 AR 105002 DI 10.1103/PhysRevLett.106.105002 PG 4 WC Physics, Multidisciplinary SC Physics GA 732SL UT WOS:000288209900002 PM 21469797 ER PT J AU Krishnan, M Elliott, KW Geddes, CGR van Mourik, RA Leemans, WP Murphy, H Clover, M AF Krishnan, Mahadevan Elliott, Kristi Wilson Geddes, C. G. R. van Mourik, R. A. Leemans, W. P. Murphy, H. Clover, M. TI Electromagnetically driven, fast opening and closing gas jet valve SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID ELECTRON-BEAMS; ACCELERATOR AB The design and performance are presented of an electromagnetically driven gas valve [M. Krishnan, J. Wright, and T. Ma, Proceedings of the 13th Advanced Accelerator Concepts Workshop, Santa Cruz, CA, AIP Conf. Proc. No. 1086 (AIP, New York, 2008)] that opens in < 100 mu s, closes in < 500 mu s, and can operate at pressures of similar to 1000 psia to drive supersonic nozzles. Such a valve has applications to laser-plasma accelerators, where the fast opening and closing would allow sharper edges to the flow and also allow higher rep-rate operation without loading the vacuum chamber. The valve action is effected by a flyer plate accelerated by the electromagnetic impulse of a low inductance, spiral wound, strip-line coil driven by a capacitor. Gas flows out of the valve when the seal between this flyer plate and the valve seat is broken. The electromagnetic force greatly exceeds the restoring forces provided by a spring and the gas pressure against the valve seat. Piezoresistive sensor and laser interferometer measurements of flow show that the valve opens in similar to 100 mu s for all pressures up to 800 psia. The closing time is 500 mu s, set by the spring constant and mass. The prototype valve has been operated with helium at 0.5 Hz and at 500 psia for similar to 1 hour at a time with no cooling. C1 [Krishnan, Mahadevan; Elliott, Kristi Wilson] Alameda Appl Sci Corp, San Leandro, CA 94577 USA. [Geddes, C. G. R.; van Mourik, R. A.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Murphy, H.; Clover, M.] Sci Applicat Int Corp, La Jolla, CA 92121 USA. RP Krishnan, M (reprint author), Alameda Appl Sci Corp, San Leandro, CA 94577 USA. FU U.S. Department of Energy [DE-FG02-08ER85030]; High Energy Physics grants [DE-AC02-05CH11231]; [NA-22] FX This research was supported by the U.S. Department of Energy SBIR Grant No. DE-FG02-08ER85030, by High Energy Physics grants including No. DE-AC02-05CH11231, and by NA-22. NR 13 TC 9 Z9 9 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 10 PY 2011 VL 14 IS 3 AR 033502 DI 10.1103/PhysRevSTAB.14.033502 PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 732UU UT WOS:000288216000001 ER PT J AU Davis, MJ Skodje, RT Tomlin, AS AF Davis, Michael J. Skodje, Rex T. Tomlin, Alison S. TI Global Sensitivity Analysis of Chemical-Kinetic Reaction Mechanisms: Construction and Deconstruction of the Probability Density Function SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID COUPLED REACTION SYSTEMS; METHANE FLAME MODEL; UNCERTAINTY ANALYSIS; HYDROGEN COMBUSTION; RATE COEFFICIENTS; CHEMISTRY; HDMR; REPRESENTATIONS; QUANTIFICATION; OXIDATION AB This paper investigates global sensitivity analysis as applied to reaction mechanisms. It uses the HDMR (high-dimensional model representation) expansion and the features of the sensitivity indices to, explore the probability density function (pdf) of predicted target outputs that results from the uncertainties in the rate coefficients. We study the auto ignition of H-2/O-2 mixtures, where the pdf describes the uncertainty in ignition delay times due to the uncertainties in the rate coefficients. The global sensitivity analysis in conjunction with the HDMR expansion allows for the deconstruction of the pdf in several different ways. These deconstructions allow the features of the pdf to be understood in terms of the constitute reactions in much finer detail than the study of a variance decomposition alone. C1 [Davis, Michael J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Skodje, Rex T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Tomlin, Alison S.] Univ Leeds, Sch Proc Environm & Mat Engn, Leeds, W Yorkshire, England. RP Davis, MJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Bldg 200, Argonne, IL 60439 USA. FU Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy [DE-AC02-06CH11357] FX A.S.T. thanks Tilo Ziehn for helpful advice. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, under contract number DE-AC02-06CH11357. NR 63 TC 25 Z9 25 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 10 PY 2011 VL 115 IS 9 BP 1556 EP 1578 DI 10.1021/jp108017t PG 23 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 727WF UT WOS:000287832900012 PM 21314140 ER PT J AU Lacina, D Reilly, J Celebi, Y Wegrzyn, J Johnson, J Graetz, J AF Lacina, David Reilly, James Celebi, Yusuf Wegrzyn, James Johnson, John Graetz, Jason TI Regeneration of Aluminum Hydride Using Trimethylamine SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE; TERTIARY AMINES; TI AB Aluminum hydride is an attractive reducing agent and energy storage compound possessing a low decomposition temperature and a high gravimetric and volumetric hydrogen density. However, it is thermodynamically unstable at room temperature and requires extremely high pressures to form the hydride from aluminum and hydrogen gas. Here, we describe an alternate method of synthesizing AlH(3) using Ti-catalyzed Al powder, H(2), and trimethylamine (TMA) to form an alane adduct. The formation of trimethylamine alane occurs at modest hydrogen pressures (similar to 100 bar), forming the 2:1 bis complex (2 trimethylamine/AlH(3)). Along with the hydrogenation product, mono (1:1) and bis (2:1) standards of TMA-AlH(3) were prepared and characterized using X-ray diffraction and Raman spectroscopy. X-ray absorption spectroscopy of the reaction products showed that the Ti catalyst remains with the unreacted Al powder after hydrogenation and is not present in the alane adduct. We also demonstrate that TMA can be transaminated with triethylamine to form triethylamine alane, which can easily be separated to recover AlH(3). C1 [Lacina, David; Reilly, James; Celebi, Yusuf; Wegrzyn, James; Johnson, John; Graetz, Jason] Brookhaven Natl Lab, Dept Sustainable Energies Technol, Upton, NY 11973 USA. RP Graetz, J (reprint author), Brookhaven Natl Lab, Dept Sustainable Energies Technol, Upton, NY 11973 USA. EM graetz@bnl.gov FU Office of Basic Energy Sciences; Metal Hydride Center of Excellence, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-AC02-98CH1-886]; National Institute of Biomedical Imaging and Bioengineering (NIBIB) [P30-EB-009998] FX D.L. and J.G. acknowledge support from the Office of Basic Energy Sciences and JR., Y.C., J.J., and J.W. from the Metal Hydride Center of Excellence, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, under Contract No. DE-AC02-98CH1-886. Synchrotron studies were supported by the Center for Synchrotron Biosciences Grant, P30-EB-009998, from the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The authors thank Weimin Zhou for her assistance. NR 24 TC 15 Z9 15 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 10 PY 2011 VL 115 IS 9 BP 3789 EP 3793 DI 10.1021/jp1106263 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 727WI UT WOS:000287833200037 ER PT J AU Voet, VSD Pick, TE Park, SM Moritz, M Hammack, AT Urban, JJ Ogletree, DF Olynick, DL Helms, BA AF Voet, Vincent S. D. Pick, Teresa E. Park, Sang-Min Moritz, Manuel Hammack, Aaron T. Urban, Jeffrey J. Ogletree, D. Frank Olynick, Deirdre L. Helms, Brett A. TI Interface Segregating Fluoralkyl-Modified Polymers for High-Fidelity Block Copolymer Nanoimprint Lithography SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-ASSEMBLED NANOLITHOGRAPHY; FLASH IMPRINT LITHOGRAPHY; ELECTRON-BEAM LITHOGRAPHY; SOFT LITHOGRAPHY; THIN-FILMS; PATTERNS; FABRICATION; TEMPLATES; ARRAYS; NANOFABRICATION AB Block copolymer (BCP) lithography is a powerful technique to write periodic arrays of nanoscale features into substrates at exceptionally high densities. In order to place these features at will on substrates, nanoimprint offers a deceptively clear path toward high throughput production: nanoimprint molds are reusable, promote graphoepitaxial alignment of BCP microdomains within their topography, and are efficiently aligned with respect to the substrate using interferometry. Unfortunately, when thin films of BCPs are subjected to thermal nanoimprint, there is an overwhelming degree of adhesion at the mold polymer interface, which compromises the entire process. Here we report the synthesis of additives to mitigate adhesion based on either PS or PDMS with short, interface-active fluoroalkyl chains. When blended with PS-b-PDMS BCPs and subjected to a thermal nanoimprint, fluoroalkyl-modified PS in particular is observed to substantially reduce film adhesion to the mold, resulting in a nearly defect-free nanoimprint. Subsequent lithographic procedures revealed excellent graphoepitaxial alignment of sub-10 nm BCP microdomains, a critical step toward lower-cost, high-throughput nanofabrication. C1 [Voet, Vincent S. D.; Pick, Teresa E.; Park, Sang-Min; Moritz, Manuel; Hammack, Aaron T.; Urban, Jeffrey J.; Ogletree, D. Frank; Olynick, Deirdre L.; Helms, Brett A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Olynick, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dlolynick@lbl.gov; bahelms@lbl.gov RI Hammack, Aaron/A-4843-2011; Ogletree, D Frank/D-9833-2016; OI Hammack, Aaron/0000-0002-8966-5978; Ogletree, D Frank/0000-0002-8159-0182; Helms, Brett/0000-0003-3925-4174 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231] FX Bryan Cord for mold fabrication and Yeon Sik Jung, Xiaogan Liang, and Andre Kirchner for helpful discussions. All work was performed at the Molecular Foundry and was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 30 Z9 30 U1 3 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 9 PY 2011 VL 133 IS 9 BP 2812 EP 2815 DI 10.1021/ja1094292 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 749HN UT WOS:000289455200006 PM 21322559 ER PT J AU Terazono, Y Kodis, G Bhushan, K Zaks, J Madden, C Moore, AL Moore, TA Fleming, GR Gust, D AF Terazono, Yuichi Kodis, Gerdenis Bhushan, Kul Zaks, Julia Madden, Christopher Moore, Ana L. Moore, Thomas A. Fleming, Graham R. Gust, Devens TI Mimicking the Role of the Antenna in Photosynthetic Photoprotection SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; ENERGY-DISSIPATION; HEXAPHENYLBENZENE; MECHANISM; SYSTEMS; PROTEIN; EXCITATION; PLANTS; MODEL AB One mechanism used by plants to protect against damage from excess sunlight is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here we report a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ, When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. Their excited-state lifetimes are long enough to permit harvesting of the excitation energy for photoinduced charge separation or other work. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to readily perform useful photochemistry. C1 [Terazono, Yuichi; Kodis, Gerdenis; Bhushan, Kul; Madden, Christopher; Moore, Ana L.; Moore, Thomas A.; Gust, Devens] Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA. [Terazono, Yuichi; Kodis, Gerdenis; Bhushan, Kul; Madden, Christopher; Moore, Ana L.; Moore, Thomas A.; Gust, Devens] Arizona State Univ, Ctr Bioinspired Solar Fuel Prod, Tempe, AZ 85287 USA. [Zaks, Julia] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Zaks, Julia; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fleming, Graham R.] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. RP Moore, AL (reprint author), Arizona State Univ, Dept Chem & Biochem, Ctr Bioenergy & Photosynth, Tempe, AZ 85287 USA. EM GRFleming@lbl.gov; gust@asu.edu FU Helios Solar Energy Research Center, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001016]; Science Foundation Arizona FX This work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. G.K. was supported as part of the Center for Bio-Inspired Solar Fuel Production, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001016. C.M. thanks the Science Foundation Arizona for financial support. NR 28 TC 48 Z9 48 U1 2 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 9 PY 2011 VL 133 IS 9 BP 2916 EP 2922 DI 10.1021/ja107753f PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 749HN UT WOS:000289455200028 PM 21314185 ER PT J AU Zheng, J Liu, C Sawaya, MR Vadla, B Khan, S Woods, RJ Eisenberg, D Goux, WJ Nowick, JS AF Zheng, Jing Liu, Cong Sawaya, Michael R. Vadla, Balraju Khan, Shafiullah Woods, R. Jeremy Eisenberg, David Goux, Warren J. Nowick, James S. TI Macrocyclic beta-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SOLID-STATE NMR; PAIRED HELICAL FILAMENTS; AMYLOID FIBRIL GROWTH; UNNATURAL AMINO-ACID; ALZHEIMERS-DISEASE; QUATERNARY STRUCTURE; PRION PROTEIN; THIOFLAVIN T; MICROTUBULES; OLIGOMERS AB This paper describes studies of a series of macrocyclic beta-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic beta-sheet peptides comprise a pentapeptide "upper" strand, two delta-linked ornithine turn units, and a "lower" strand comprising two additional residues and the beta-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through beta-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 beta-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of beta-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design. C1 [Zheng, Jing; Vadla, Balraju; Khan, Shafiullah; Woods, R. Jeremy; Nowick, James S.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Liu, Cong; Sawaya, Michael R.; Eisenberg, David] UCLA DOE Inst Genom & Prote, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Goux, Warren J.] Univ Texas Dallas, Dept Chem, Richardson, TX 75080 USA. RP Nowick, JS (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. EM jsnowick@uci.edu RI Eisenberg, David/E-2447-2011; liu, cong/H-1103-2011 FU National Institutes of Health [GM-49076]; Pakistan Higher Education Commission FX J.S.N. and J.Z. thank the National Institutes of Health (GM-49076) for grant support. D.E. and M.R.S. thank the HHMI and National Institutes of Health (AG-029430). S.K. thanks the Pakistan Higher Education Commission for fellowship support. NR 71 TC 46 Z9 47 U1 4 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 9 PY 2011 VL 133 IS 9 BP 3144 EP 3157 DI 10.1021/ja110545h PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 749HN UT WOS:000289455200054 PM 21319744 ER PT J AU Lee, CF Hauenstein, AV Fleming, JK Gasper, WC Engelke, V Sankaran, B Bernstein, SI Huxford, T AF Lee, Chi F. Hauenstein, Arthur V. Fleming, Jonathan K. Gasper, William C. Engelke, Valerie Sankaran, Banumathi Bernstein, Sanford I. Huxford, Tom TI X-ray Crystal Structure of the UCS Domain-Containing UNC-45 Myosin Chaperone from Drosophila melanogaster SO STRUCTURE LA English DT Article ID CAENORHABDITIS-ELEGANS; CRYSTALLOGRAPHIC ANALYSIS; KARYOPHERIN ALPHA; REPEAT PROTEINS; BUDDING YEAST; GENE; RECOGNITION; EXPRESSION; HOMOLOG; DEPENDS AB UCS proteins, such as UNC-45, influence muscle contraction and other myosin-dependent motile processes. We report the first X-ray crystal structure of a UCS domain-containing protein, the UNC-45 myosin chaperone from Drosophila melanogaster (DmUNC-45). The structure reveals that the central and UCS domains form a contiguous arrangement of 17 consecutive helical layers that arrange themselves into five discrete armadillo repeat subdomains. Small-angle X-ray scattering data suggest that free DmUNC-45 adopts an elongated conformation and exhibits flexibility in solution. Protease sensitivity maps to a conserved loop that contacts the most carboxy-terminal UNC-45 armadillo repeat subdomain. Amino acid conservation across diverse UCS proteins maps to one face of this carboxyterminal subdomain, and the majority of mutations that affect myosin-dependent cellular activities lie within or around this region. Our crystallographic, biophysical, and biochemical analyses suggest that DmUNC-45 function is afforded by its flexibility and by structural integrity of its UCS domain. C1 [Hauenstein, Arthur V.; Fleming, Jonathan K.; Engelke, Valerie; Huxford, Tom] San Diego State Univ, Dept Chem & Biochem, Struct Biochem Lab, San Diego, CA 92182 USA. [Lee, Chi F.; Gasper, William C.; Bernstein, Sanford I.] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Huxford, T (reprint author), San Diego State Univ, Dept Chem & Biochem, Struct Biochem Lab, 5500 Campanile Dr, San Diego, CA 92182 USA. EM thuxford@sciences.sdsu.edu OI Bernstein, Sanford/0000-0001-7094-5390 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH/NIAMS [R01-AR055958]; American Cancer Society [RSG-08-287-01-GMC]; California Metabolic Research Foundation FX The authors thank Y. Suzuki for assistance in the wet lab, C. Ralston and P.H. Zwart for support during synchrotron data collection, G.L. Hura for assistance with SAXS data collection and analysis, F. Kippert and D. Gerloff for ARM repeat analysis, and D.-B. Huang and F. Bazan for helpful discussion. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research is funded by NIH/NIAMS grant R01-AR055958 to S.I.B. T.H. is the recipient of an American Cancer Society grant RSG-08-287-01-GMC. Research in the Department of Chemistry & Biochemistry at SDSU is supported in part by the California Metabolic Research Foundation. NR 43 TC 15 Z9 15 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD MAR 9 PY 2011 VL 19 IS 3 BP 397 EP 408 DI 10.1016/j.str.2011.01.002 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 739CG UT WOS:000288689400014 PM 21397190 ER PT J AU Denton, RE Thomsen, MF Takahashi, K Anderson, RR Singer, HJ AF Denton, R. E. Thomsen, M. F. Takahashi, K. Anderson, R. R. Singer, H. J. TI Solar cycle dependence of bulk ion composition at geosynchronous orbit SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ELECTRON-DENSITY; INNER MAGNETOSPHERE; FIELD; PLASMASPHERE; SPACECRAFT; PLASMAPAUSE; DYNAMICS; MODEL; HE+ AB While the average ion mass M (normalized to amu) of bulk plasma at geosynchronous orbit has been calculated at solar maximum (during the era of the Combined Release and Radiation Effects Satellite (CRRES)), the solar cycle dependence of bulk ion composition at geosynchronous orbit is not known. Here, we use measurements of mass density rho(m) from Alfven wave frequencies measured by the Geostationary Operational Environmental Satellites and ion density measurements by the Magnetospheric Particle Analyzer (MPA) on Los Alamos National Laboratory (LANL) spacecraft to establish the solar cycle dependence of bulk ion composition. We show that there is a strong correlation between the yearly median value of rho(m), rho(m),(yr-med), and the yearly average of the solar EUV flux F(10.7), F(10.7,yr-av); log(10)(rho(m,yr-med)) similar or equal to 0.5089 + 0.003607F(10.7,yr-av) (for rho(m) values adjusted to a magnetic latitude MLAT of 8 degrees). We calibrate the measurements of the MPA instrument on one spacecraft to those from another by using yearly median density values. Then, using close conjunctions of LANL spacecraft with CRRES (for which we have inferred values of rho(m) and n(e)), we calibrate the ideal theoretical value of MPA ion density n(MPA-th) (the value that MPA would measure if it measured all the ions) to the observed values directly measured by the instrument, n(MPA-obs). We find that n(MPA-th) is approximately 1.47 times the value of nMPA-obs measured by the LANL 1994 spacecraft. Using the yearly median values of rm as a function of F(10.7), the yearly median values of n(MPA-th) from the MPA instruments, and a model for the concentration of He+, we are able to calculate the solar cycle dependence of the average ion mass M and the O+ concentration eta(O+) equivalent to n(O+)/n(e). We find that M is typically similar to 3.8 at solar maximum and near unity at solar minimum. Typical values of eta(O+) vary by 2 orders of magnitude over the solar cycle, from about 0.2 at solar maximum to similar to 2 x 10(-3) at solar minimum. Furthermore, our results also demonstrate that the typical concentration of He+ must also be very low at solar minimum. Since the median yearly values of density are low, characteristic of the plasma trough, our results are most applicable to that region. Considering, however, that the plasmasphere and plume typically have a low concentration of O+, the concentration of O+ at geosynchronous orbit at solar minimum is likely to be low for all conditions (with the possible exception of very low densities for which the high-energy component might dominate). C1 [Denton, R. E.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Anderson, R. R.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52245 USA. [Singer, H. J.] NOAA, Space Weather Predict Ctr, Boulder, CO 80305 USA. [Takahashi, K.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Denton, RE (reprint author), Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. EM richard.e.denton@dartmouth.edu; mthomsen@lanl.gov; kazue.takahashi@jhuapl.edu; roger-r-anderson@uiowa.edu; richard.e.denton@dartmouth.edu FU NSF [ATM-0632740, ATM-0751007]; NASA [NNX08AI36G]; U.S. Department of Energy FX Work at Dartmouth College (RED) and the Applied Physics Laboratory (KT) was supported by NSF grant ATM-0632740. Work at Dartmouth College was further supported by NSF grant ATM-0751007 and by NASA grant NNX08AI36G (Heliophysics Theory Program). Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy. NR 26 TC 17 Z9 17 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 9 PY 2011 VL 116 AR A03212 DI 10.1029/2010JA016027 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 734JS UT WOS:000288331000001 ER PT J AU Tseng, WL Johnson, RE Thomsen, MF Cassidy, TA Elrod, MK AF Tseng, Wei-Ling Johnson, Robert E. Thomsen, Michelle F. Cassidy, Timothy A. Elrod, Meredith K. TI Neutral H-2 and H-2(+) ions in the Saturnian magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID MOLECULAR-HYDROGEN; TITANS ATMOSPHERE; CROSS-SECTIONS; ICY MOON; ENCELADUS; RINGS; PLASMA; CLOUD; MODEL; SATELLITES AB The Saturnian system is immersed in an extended cloud of neutrals. Although water vapor ejected from Enceladus' south pole is the dominant neutral source, photolysis and radiolysis of ices can release H2O, O-2, and H-2 from the icy ring particles and the icy satellites, and Titan's atmosphere is a source of H-2. Once ionized, these neutrals are the source of the observed magnetospheric plasma. To understand the H-2(+) ion densities observed by the Cassini plasma spectrometer (CAPS), we developed a Monte Carlo test particle model to simulate the spatial morphology of the neutral H-2 cloud and the resulting H-2(+) ion source rates. The H-2 lifetime is constrained by its local chemistry, which is computed from the latest plasma measurements by Cassini CAPS data. The main rings, Enceladus' water torus, Rhea, and Titan are considered as the primary sources of H-2 in our model. It is seen that H-2 accumulates over Saturn's main rings because of thermal accommodation with the ring particles, and Titan is the dominant source of H-2 in the outer magnetosphere (>similar to 6 RS). From similar to 6 to similar to 2.5 RS, photodissociation of water from Enceladus and H-2 scattered from the ring atmosphere are comparable sources. The newly formed H-2(+) ions are lost by collisions with the ring particles inside similar to 2.5 R-S, by interchange processes in the middle magnetosphere, and by flow down the tail in the outer magnetosphere. The density distribution of H-2(+) estimated from our ion source rates roughly agrees with CAPS observations, and we show that the H-2(+) density near the equator over the main rings is at least 1 order of magnitude smaller than O-2(+), possibly consistent with the nondetection of H-2(+) by CAPS at Saturn orbit insertion. C1 [Tseng, Wei-Ling; Johnson, Robert E.; Elrod, Meredith K.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA. [Cassidy, Timothy A.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Thomsen, Michelle F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tseng, WL (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22903 USA. EM wt7b@virginia.edu FU NASA; U.S. Department of Energy FX We thank H. T. Smith and A. Rymer for useful discussions and comments. This work is supported by a grant from NASA's Planetary Atmosphere's Program and by a NASA Cassini data analysis grant. Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy with funding from NASA's Cassini project. NR 74 TC 12 Z9 12 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 9 PY 2011 VL 116 AR A03209 DI 10.1029/2010JA016145 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 734JS UT WOS:000288331000004 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Field theory for a fermionic ladder with generic intrachain interactions SO PHYSICAL REVIEW B LA English DT Article ID CUPRATE SUPERCONDUCTORS; MOTT INSULATOR; NORMAL-STATE; TEMPERATURE; SR14CU24O41; CROSSOVER AB An effective low-energy field theory is developed for a system of two chains. The main novelty of the approach is that it allows one to treat generic intrachain repulsive interactions of arbitrary strength. The chains are coupled by direct tunneling and four-fermion interactions. At low-energies, the individual chains are described as Luttinger liquids with an arbitrary ratio of spin v(s) and charge v(c) velocities. A judicious choice of the basis for the decoupled chains greatly simplifies the description and allows one to separate high-and low-energy degrees of freedom. In a direct analogy to the bulk cuprates, the resulting effective field theory distinguishes between three qualitatively different regimes: (i) small doping (v(c) << v(s)), (ii) optimal doping (v(s) approximate to v(c)), and (iii) large doping (v(s) << v(c)). I discuss the excitation spectrum and derive expressions for the electron spectral function, which turns out to be highly incoherent. The degree of incoherence increases when one considers an array of ladders (stripe phase). C1 Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. FU US DOE [DE-AC02-98CH 10886] FX I am grateful to A. Chubukov, P. Chudzinski, F. H. L. Essler, T. Giamarchi, P. D. Johnson, T. M. Rice, J. M. Tranquada, and J. Rameau for valuable discussions and encouragement, and to D. Poilblanc for bringing me up to date with respect to the numerical work on the problem. My greatest thanks are to A. A. Nersesyan, who took the trouble to read the manuscript and made extremely valuable comments. This research was supported by the US DOE under Contract No. DE-AC02-98CH 10886. NR 45 TC 14 Z9 14 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR 9 PY 2011 VL 83 IS 10 AR 104405 DI 10.1103/PhysRevB.83.104405 PG 13 WC Physics, Condensed Matter SC Physics GA 732CD UT WOS:000288159700008 ER PT J AU Ibanez-Sandoval, A Ortiz, ME Velazquez, V Galindo-Uribarri, A Hess, PO Sun, Y AF Ibanez-Sandoval, A. Ortiz, M. E. Velazquez, V. Galindo-Uribarri, A. Hess, P. O. Sun, Y. TI Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei SO PHYSICAL REVIEW C LA English DT Article ID SUPERDEFORMED BANDS; ENHANCED-DEFORMATION; REGION; PR-131; STABILITY; ISOTOPES; HEAVY; LINE AB A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A = 130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the Pr-125,Pr-127,Pr-129,Pr-131,Pr-133 isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J((2)), kinetic moment of inertia J((1)), the crossing of rotational bands, and backbending effects. C1 [Ibanez-Sandoval, A.; Ortiz, M. E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Velazquez, V.] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico. [Galindo-Uribarri, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hess, P. O.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China. [Sun, Y.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Sun, Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ibanez-Sandoval, A.] Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect, Unidad Zacatenco, Mexico City 07738, DF, Mexico. RP Ibanez-Sandoval, A (reprint author), Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico. RI Hess, Peter/F-1664-2014; Sun, Yang/P-2417-2015 FU DGAPA [102301]; CONACyT (Mexico) [IN121809-2]; University of Tennessee; Shanghai Pu-Jiang program; National Natural Science Foundation of China [10875077, 11075103]; Chinese Major State Basic Research Development Program [2007CB815005]; US Department of Energy [DE-AC05-00OR22725] FX We acknowledge financial help from DGAPA, PAEP (102301), CONACyT (Mexico), PAPIIT (IN121809-2), and the University of Tennessee. YS was supported by the Shanghai Pu-Jiang program, the National Natural Science Foundation of China under Contract Nos. 10875077 and 11075103, and the Chinese Major State Basic Research Development Program through Grant No. 2007CB815005. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 32 TC 12 Z9 12 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR 9 PY 2011 VL 83 IS 3 AR 034308 DI 10.1103/PhysRevC.83.034308 PG 7 WC Physics, Nuclear SC Physics GA 732CL UT WOS:000288160700001 ER PT J AU Frankfurt, L Strikman, M Weiss, C AF Frankfurt, L. Strikman, M. Weiss, C. TI Transverse nucleon structure and diagnostics of hard parton-parton processes at LHC SO PHYSICAL REVIEW D LA English DT Article ID EXCLUSIVE ELECTROPRODUCTION; J/PSI MESONS; HERA; PHOTOPRODUCTION; ENERGY; QCD AB We propose a new method to determine at what transverse momenta particle production in high-energy pp collisions is governed by hard parton-parton processes. Using information on the transverse spatial distribution of partons obtained from hard exclusive processes in ep/gamma p scattering, we evaluate the impact parameter distribution of pp collisions with a hard parton-parton process as a function of p(T) of the produced parton (jet). We find that the average pp impact parameters in such events depend very weakly on p(T) in the range 2 < p(T) < few 100 GeV, while they are much smaller than those in minimum-bias inelastic collisions. The impact parameters in turn govern the observable transverse multiplicity in such events (in the direction perpendicular to the trigger particle or jet). Measuring the transverse multiplicity as a function of p(T) thus provides an effective tool for determining the minimum p(T) for which a given trigger particle originates from a hard parton-parton process. Additional tests of the proposed geometric correlations are possible by measuring the dependence on the trigger rapidity. Various strategies for implementing this method are outlined. C1 [Frankfurt, L.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Strikman, M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Weiss, C.] Ctr Theory, Jefferson Lab, Newport News, VA 23606 USA. RP Frankfurt, L (reprint author), Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. FU U.S. Department of Energy [DE-AC05-06OR23177]; Binational Science Foundation FX We thank J. D. Bjorken for inspiring conversations on related aspects of pp collisions; P. Bartalini, E. Nurse, P. Skands, and B. Webber for very useful discussions of current MC models and the LHC data; and Yu. Dokshitzer for discussion of color flow effects. Two of us (L. F. and M. S.) would like to thank the Yukawa International Program for Quark-Hadron Sciences for hospitality during the initial stage of this study. M. S. also acknowledges the hospitality of the CERN Theory Institute "The First Heavy Ion Collisions at the LHC" during part of the work on this project. This research was supported by the U.S. Department of Energy and the Binational Science Foundation. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 35 TC 41 Z9 41 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 9 PY 2011 VL 83 IS 5 AR 054012 DI 10.1103/PhysRevD.83.054012 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 732CQ UT WOS:000288161400001 ER PT J AU Glenzer, SH MacGowan, BJ Meezan, NB Adams, PA Alfonso, JB Alger, ET Alherz, Z Alvarez, LF Alvarez, SS Amick, PV Andersson, KS Andrews, SD Antonini, GJ Arnold, PA Atkinson, DP Auyang, L Azevedo, SG Balaoing, BNM Baltz, JA Barbosa, F Bardsley, GW Barker, DA Barnes, AI Baron, A Beeler, RG Beeman, BV Belk, LR Bell, JC Bell, PM Berger, RL Bergonia, MA Bernardez, LJ Berzins, LV Bettenhausen, RC Bhandarkar, SD Bishop, CL Bond, EJ Bopp, DR Borgman, JA Bower, JR Bowers, GA Bowers, MW Boyle, DT Bradley, DK Bragg, JL Braucht, J Brinkerhoff, DL Browning, DF Brunton, GK Burkhart, SC Burns, SR Burns, KE Burr, B Burrows, LM Butlin, RK Cahayag, NJ Callahan, DA Cardinale, PS Carey, RW Carlson, JW Casey, AD Castro, C Celeste, JR Chakicherla, AY Chambers, FW Chan, C Chandrasekaran, H Chang, C Chapman, RF Charron, K Chen, Y Christensen, MJ Churby, AJ Clancy, TJ Cline, BD Clowdus, LC Cocherell, DG Coffield, FE Cohen, SJ Costa, RL Cox, JR Curnow, GM Dailey, MJ Danforth, PM Darbee, R Datte, PS Davis, JA Deis, GA Demaret, RD Dewald, EL Di Nicola, P Di Nicola, JM Divol, L Dixit, S Dobson, DB Doppner, T Driscoll, JD Dugorepec, J Duncan, JJ DuPuy, PC Dzenitis, EG Eckart, MJ Edson, SL Edwards, GJ Edwards, MJ Edwards, OD Edwards, PW Ellefson, JC Ellerbee, CH Erbert, GV Estes, CM Fabyan, WJ Fallejo, RN Fedorov, M Felker, B Fink, JT Finney, MD Finnie, LF Fischer, MJ Fisher, JM Fishler, BT Florio, JW Foxworthy, CB Franks, RM Frazier, T Frieder, G Fung, T Gawinski, GN Gibson, CR Giraldez, E Glenn, SM Golick, BP Gonzales, H Gonzales, SA Gonzales, MJ Griffin, KL Grippen, J Gross, SM Gschweng, PH Gururangan, G Gu, K Haan, SW Hahn, SR Haid, BJ Hamblen, JE Hammel, BA Hamza, AV Hardy, DL Hart, DR Hartley, RG Haynam, CA Heestand, GM Hermann, MR Hermes, GL Hey, DS Hibbard, RL Hicks, DG Hinkel, DE Hipple, DL Hitchcock, JD Hodtwalker, DL Holder, JP Hollis, JD Holtmeier, GM Huber, SR Huey, AW Hulsey, DN Hunter, SL Huppler, TR Hutton, MS Izumi, N Jackson, JL Jackson, MA Jancaitis, KS Jedlovec, DR Johnson, B Johnson, MC Johnson, T Johnston, MP Jones, OS Kalantar, DH Kamperschroer, JH Kauffman, RL Keating, GA Kegelmeyer, LM Kenitzer, SL Kimbrough, JR King, K Kirkwood, RK Klingmann, JL Knittel, KM Kohut, TR Koka, KG Kramer, SW Krammen, JE Krauter, KG Krauter, GW Krieger, EK Kroll, JJ La Fortune, KN Lagin, LJ Lakamsani, VK Landen, OL Lane, SW Langdon, AB Langer, SH Lao, N Larson, DW Latray, DA Lau, GT Le Pape, S Lechleiter, BL Lee, Y Lee, TL Li, J Liebman, JA Lindl, JD Locke, SF Loey, HK London, RA Lopez, FJ Lord, DM Lowe-Webb, RR Lown, JG Ludwigsen, AP Lum, NW Lyons, RR Ma, T MacKinnon, AJ Magat, MD Maloy, DT Malsbury, TN Markham, G Marquez, RM Marsh, AA Marshall, CD Marshall, SR Maslennikov, IL Mathisen, DG Mauger, GJ Mauvais, MY McBride, JA McCarville, T McCloud, JB McGrew, A McHale, B MacPhee, AG Meeker, JF Merill, JS Mertens, EP Michel, PA Miller, MG Mills, TE Milovich, JL Miramontes-Ortiz, R Montesanti, RC Montoya, MM Moody, J Moody, JD Moreno, KA Morris, J Morriston, KM Nelson, JR Neto, M Neumann, JD Ng, E Ngo, QM Olejniczak, BL Olson, RE Orsi, NL Owens, MW Padilla, EH Pannell, TM Parham, TG Patterson, RW Pavel, G Prasad, RR Pendleton, D Penko, FA Pepmeier, BL Petersen, DE Phillips, TW Pigg, D Piston, KW Pletcher, KD Powell, CL Radousky, HB Raimondi, BS Ralph, JE Rampke, RL Reed, RK Reid, WA Rekow, VV Reynolds, JL Rhodes, JJ Richardson, MJ Rinnert, RJ Riordan, BP Rivenes, AS Rivera, AT Roberts, CJ Robinson, JA Robinson, RB Robison, SR Rodriguez, OR Rogers, SP Rosen, MD Ross, GF Runkel, M Runtal, AS Sacks, RA Sailors, SF Salmon, JT Salmonson, JD Saunders, RL Schaffer, JR Schindler, TM Schmitt, MJ Schneider, MB Segraves, KS Shaw, MJ Sheldrick, ME Shelton, RT Shiflett, MK Shiromizu, SJ Shor, M Silva, LL Silva, SA Skulina, KM Smauley, DA Smith, BE Smith, LK Solomon, AL Sommer, S Soto, JG Spafford, NI Speck, DE Springer, PT Stadermann, M Stanley, F Stone, TG Stout, EA Stratton, PL Strauser, RJ Suter, LJ Sweet, W Swisher, MF Tappero, JD Tassano, JB Taylor, JS Tekle, EA Thai, C Thomas, CA Thomas, A Throop, AL Tietbohl, GL Tillman, JM Town, RPJ Townsend, SL Tribbey, KL Trummer, DJ Truong, JH Vaher, JL Valadez, MC Van Arsdall, PJ Van Prooyen, AJ de Dios, EOV Vergino, MD Vernon, SP Vickers, JL Villanueva, GT Vitalich, MA Vonhof, SA Wade, FE Wallace, RJ Warren, CT Warrick, AL Watkins, J Weaver, S Wegner, PJ Weingart, MA Wen, J White, KS Whitman, PK Widmann, K Widmayer, CC Wilhelmsen, K Williams, EA Williams, WH Willis, L Wilson, EF Wilson, BA Witte, MC Work, K Yang, PS Young, BK Youngblood, KP Zacharias, RA Zapata, PG Zhang, H Zielinski, JS Kline, JL Kyrala, GA Niemann, C Kilkenny, JD Nikroo, A Van Wonterghem, BM Atherton, LJ Moses, EI AF Glenzer, S. H. MacGowan, B. J. Meezan, N. B. Adams, P. A. Alfonso, J. B. Alger, E. T. Alherz, Z. Alvarez, L. F. Alvarez, S. S. Amick, P. V. Andersson, K. S. Andrews, S. D. Antonini, G. J. Arnold, P. A. Atkinson, D. P. Auyang, L. Azevedo, S. G. Balaoing, B. N. M. Baltz, J. A. Barbosa, F. Bardsley, G. W. Barker, D. A. Barnes, A. I. Baron, A. Beeler, R. G. Beeman, B. V. Belk, L. R. Bell, J. C. Bell, P. M. Berger, R. L. Bergonia, M. A. Bernardez, L. J. Berzins, L. V. Bettenhausen, R. C. Bhandarkar, S. D. Bishop, C. L. Bond, E. J. Bopp, D. R. Borgman, J. A. Bower, J. R. Bowers, G. A. Bowers, M. W. Boyle, D. T. Bradley, D. K. Bragg, J. L. Braucht, J. Brinkerhoff, D. L. Browning, D. F. Brunton, G. K. Burkhart, S. C. Burns, S. R. Burns, K. E. Burr, B. Burrows, L. M. Butlin, R. K. Cahayag, N. J. Callahan, D. A. Cardinale, P. S. Carey, R. W. Carlson, J. W. Casey, A. D. Castro, C. Celeste, J. R. Chakicherla, A. Y. Chambers, F. W. Chan, C. Chandrasekaran, H. Chang, C. Chapman, R. F. Charron, K. Chen, Y. Christensen, M. J. Churby, A. J. Clancy, T. J. Cline, B. D. Clowdus, L. C. Cocherell, D. G. Coffield, F. E. Cohen, S. J. Costa, R. L. Cox, J. R. Curnow, G. M. Dailey, M. J. Danforth, P. M. Darbee, R. Datte, P. S. Davis, J. A. Deis, G. A. Demaret, R. D. Dewald, E. L. Di Nicola, P. Di Nicola, J. M. Divol, L. Dixit, S. Dobson, D. B. Doppner, T. Driscoll, J. D. Dugorepec, J. Duncan, J. J. DuPuy, P. C. Dzenitis, E. G. Eckart, M. J. Edson, S. L. Edwards, G. J. Edwards, M. J. Edwards, O. D. Edwards, P. W. Ellefson, J. C. Ellerbee, C. H. Erbert, G. V. Estes, C. M. Fabyan, W. J. Fallejo, R. N. Fedorov, M. Felker, B. Fink, J. T. Finney, M. D. Finnie, L. F. Fischer, M. J. Fisher, J. M. Fishler, B. T. Florio, J. W. Foxworthy, C. B. Franks, R. M. Frazier, T. Frieder, G. Fung, T. Gawinski, G. N. Gibson, C. R. Giraldez, E. Glenn, S. M. Golick, B. P. Gonzales, H. Gonzales, S. A. Gonzales, M. J. Griffin, K. L. Grippen, J. Gross, S. M. Gschweng, P. H. Gururangan, G. Gu, K. Haan, S. W. Hahn, S. R. Haid, B. J. Hamblen, J. E. Hammel, B. A. Hamza, A. V. Hardy, D. L. Hart, D. R. Hartley, R. G. Haynam, C. A. Heestand, G. M. Hermann, M. R. Hermes, G. L. Hey, D. S. Hibbard, R. L. Hicks, D. G. Hinkel, D. E. Hipple, D. L. Hitchcock, J. D. Hodtwalker, D. L. Holder, J. P. Hollis, J. D. Holtmeier, G. M. Huber, S. R. Huey, A. W. Hulsey, D. N. Hunter, S. L. Huppler, T. R. Hutton, M. S. Izumi, N. Jackson, J. L. Jackson, M. A. Jancaitis, K. S. Jedlovec, D. R. Johnson, B. Johnson, M. C. Johnson, T. Johnston, M. P. Jones, O. S. Kalantar, D. H. Kamperschroer, J. H. Kauffman, R. L. Keating, G. A. Kegelmeyer, L. M. Kenitzer, S. L. Kimbrough, J. R. King, K. Kirkwood, R. K. Klingmann, J. L. Knittel, K. M. Kohut, T. R. Koka, K. G. Kramer, S. W. Krammen, J. E. Krauter, K. G. Krauter, G. W. Krieger, E. K. Kroll, J. J. La Fortune, K. N. Lagin, L. J. Lakamsani, V. K. Landen, O. L. Lane, S. W. Langdon, A. B. Langer, S. H. Lao, N. Larson, D. W. Latray, D. A. Lau, G. T. Le Pape, S. Lechleiter, B. L. Lee, Y. Lee, T. L. Li, J. Liebman, J. A. Lindl, J. D. Locke, S. F. Loey, H. K. London, R. A. Lopez, F. J. Lord, D. M. Lowe-Webb, R. R. Lown, J. G. Ludwigsen, A. P. Lum, N. W. Lyons, R. R. Ma, T. MacKinnon, A. J. Magat, M. D. Maloy, D. T. Malsbury, T. N. Markham, G. Marquez, R. M. Marsh, A. A. Marshall, C. D. Marshall, S. R. Maslennikov, I. L. Mathisen, D. G. Mauger, G. J. Mauvais, M. -Y. McBride, J. A. McCarville, T. McCloud, J. B. McGrew, A. McHale, B. MacPhee, A. G. Meeker, J. F. Merill, J. S. Mertens, E. P. Michel, P. A. Miller, M. G. Mills, T. E. Milovich, J. L. Miramontes-Ortiz, R. Montesanti, R. C. Montoya, M. M. Moody, J. Moody, J. D. Moreno, K. A. Morris, J. Morriston, K. M. Nelson, J. R. Neto, M. Neumann, J. D. Ng, E. Ngo, Q. M. Olejniczak, B. L. Olson, R. E. Orsi, N. L. Owens, M. W. Padilla, E. H. Pannell, T. M. Parham, T. G. Patterson, R. W. Pavel, G. Prasad, R. R. Pendleton, D. Penko, F. A. Pepmeier, B. L. Petersen, D. E. Phillips, T. W. Pigg, D. Piston, K. W. Pletcher, K. D. Powell, C. L. Radousky, H. B. Raimondi, B. S. Ralph, J. E. Rampke, R. L. Reed, R. K. Reid, W. A. Rekow, V. V. Reynolds, J. L. Rhodes, J. J. Richardson, M. J. Rinnert, R. J. Riordan, B. P. Rivenes, A. S. Rivera, A. T. Roberts, C. J. Robinson, J. A. Robinson, R. B. Robison, S. R. Rodriguez, O. R. Rogers, S. P. Rosen, M. D. Ross, G. F. Runkel, M. Runtal, A. S. Sacks, R. A. Sailors, S. F. Salmon, J. T. Salmonson, J. D. Saunders, R. L. Schaffer, J. R. Schindler, T. M. Schmitt, M. J. Schneider, M. B. Segraves, K. S. Shaw, M. J. Sheldrick, M. E. Shelton, R. T. Shiflett, M. K. Shiromizu, S. J. Shor, M. Silva, L. L. Silva, S. A. Skulina, K. M. Smauley, D. A. Smith, B. E. Smith, L. K. Solomon, A. L. Sommer, S. Soto, J. G. Spafford, N. I. Speck, D. E. Springer, P. T. Stadermann, M. Stanley, F. Stone, T. G. Stout, E. A. Stratton, P. L. Strauser, R. J. Suter, L. J. Sweet, W. Swisher, M. F. Tappero, J. D. Tassano, J. B. Taylor, J. S. Tekle, E. A. Thai, C. Thomas, C. A. Thomas, A. Throop, A. L. Tietbohl, G. L. Tillman, J. M. Town, R. P. J. Townsend, S. L. Tribbey, K. L. Trummer, D. J. Truong, J. H. Vaher, J. L. Valadez, M. C. Van Arsdall, P. J. Van Prooyen, A. J. de Dios, E. O. Vergel Vergino, M. D. Vernon, S. P. Vickers, J. L. Villanueva, G. T. Vitalich, M. A. Vonhof, S. A. Wade, F. E. Wallace, R. J. Warren, C. T. Warrick, A. L. Watkins, J. Weaver, S. Wegner, P. J. Weingart, M. A. Wen, J. White, K. S. Whitman, P. K. Widmann, K. Widmayer, C. C. Wilhelmsen, K. Williams, E. A. Williams, W. H. Willis, L. Wilson, E. F. Wilson, B. A. Witte, M. C. Work, K. Yang, P. S. Young, B. K. Youngblood, K. P. Zacharias, R. A. Zapata, P. G. Zhang, H. Zielinski, J. S. Kline, J. L. Kyrala, G. A. Niemann, C. Kilkenny, J. D. Nikroo, A. Van Wonterghem, B. M. Atherton, L. J. Moses, E. I. TI Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums (vol 106, 085004, 2011) SO PHYSICAL REVIEW LETTERS LA English DT Correction C1 [Van Wonterghem, B. M.; Atherton, L. J.; Moses, E. I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Stadermann, Michael /A-5936-2012; Barker, David/A-5671-2013; Whitman, Pamela/B-2336-2013; Michel, Pierre/J-9947-2012; MacKinnon, Andrew/P-7239-2014; IZUMI, Nobuhiko/J-8487-2016 OI Stadermann, Michael /0000-0001-8920-3581; MacKinnon, Andrew/0000-0002-4380-2906; IZUMI, Nobuhiko/0000-0003-1114-597X NR 1 TC 8 Z9 8 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 9 PY 2011 VL 106 IS 10 AR 109903 DI 10.1103/PhysRevLett.106.109903 PG 2 WC Physics, Multidisciplinary SC Physics GA 732DB UT WOS:000288163100011 ER PT J AU Jiang, W Williams, W Bailey, K Davis, AM Hu, SM Lu, ZT O'Connor, TP Purtschert, R Sturchio, NC Sun, YR Mueller, P AF Jiang, W. Williams, W. Bailey, K. Davis, A. M. Hu, S. -M. Lu, Z. -T. O'Connor, T. P. Purtschert, R. Sturchio, N. C. Sun, Y. R. Mueller, P. TI Ar-39 Detection at the 10(-16) Isotopic Abundance Level with Atom Trap Trace Analysis SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETOOPTICAL TRAP; KR-81; ARGON; GAS AB Atom trap trace analysis, a laser-based atom counting method, has been applied to analyze atmospheric Ar-39 (half-life = 269 yr), a cosmogenic isotope with an isotopic abundance of 8 x 10(-16). In addition to the superior selectivity demonstrated in this work, the counting rate and efficiency of atom trap trace analysis have been improved by 2 orders of magnitude over prior results. The significant applications of this new analytical capability lie in radioisotope dating of ice and water samples and in the development of dark matter detectors. C1 [Jiang, W.; Williams, W.; Bailey, K.; Lu, Z. -T.; O'Connor, T. P.; Mueller, P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Davis, A. M.; Lu, Z. -T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Davis, A. M.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Hu, S. -M.; Sun, Y. R.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Lu, Z. -T.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Purtschert, R.] Univ Bern, CH-3012 Bern, Switzerland. [Sturchio, N. C.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. RP Jiang, W (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Mueller, Peter/E-4408-2011; Jiang, Wei/E-5582-2011; Hu, Shuiming/C-4287-2008; Purtschert, Roland/N-7108-2016 OI Mueller, Peter/0000-0002-8544-8191; Hu, Shuiming/0000-0002-1565-8468; Purtschert, Roland/0000-0002-4734-7664 FU Department of Energy, Office of Nuclear Physics [DEAC02-06CH11357]; National Science Foundation, Division of Earth Sciences [EAR-0651161]; National Natural Science Foundation of China [90921006] FX We thank Y. Ding for his extensive contribution during the early stage of this project. We also thank C.-F. Cheng, J. P. Greene, and R. J. Holt for their contributions to this work. This work is supported by the Department of Energy, Office of Nuclear Physics, under Contract No. DEAC02-06CH11357, and by National Science Foundation, Division of Earth Sciences, under Grant No. EAR-0651161. S.-M. H. acknowledges support from National Natural Science Foundation of China (Grant No. 90921006). NR 19 TC 20 Z9 20 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 9 PY 2011 VL 106 IS 10 AR 103001 DI 10.1103/PhysRevLett.106.103001 PG 4 WC Physics, Multidisciplinary SC Physics GA 732DB UT WOS:000288163100002 PM 21469788 ER PT J AU Schmieder, R Edwards, R AF Schmieder, Robert Edwards, Robert TI Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets SO PLOS ONE LA English DT Article ID BURROWS-WHEELER TRANSFORM; HUMAN MICROBIOME PROJECT; SHORT READ ALIGNMENT; GENERATION; TOOL; BLAST AB High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions. Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (>150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq, we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences. This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods. DeconSeq's web interface is simple and user-friendly. The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq's results reveal whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/. C1 [Schmieder, Robert; Edwards, Robert] San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. [Schmieder, Robert] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA. [Edwards, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Schmieder, R (reprint author), San Diego State Univ, Dept Comp Sci, San Diego, CA 92182 USA. EM rschmied@sciences.sdsu.edu; redwards@cs.sdsu.edu FU National Science Foundation [DBI 0850356] FX This work was supported by grant DBI 0850356 Advances in Bioinformatics from the National Science Foundation (http://www.nsf.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 146 Z9 147 U1 2 U2 29 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 9 PY 2011 VL 6 IS 3 AR e17288 DI 10.1371/journal.pone.0017288 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 732FR UT WOS:000288170900009 PM 21408061 ER PT J AU Bauer, ED Tobash, PH Mitchell, JN Kennison, JA Ronning, F Scott, BL Thompson, JD AF Bauer, E. D. Tobash, P. H. Mitchell, J. N. Kennison, J. A. Ronning, F. Scott, B. L. Thompson, J. D. TI Magnetic order in Pu2M3Si5 (M = Co, Ni) SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID HEAT; TRANSPORT; BEHAVIOR; SYSTEMS AB The physical properties including magnetic susceptibility, specific heat, and electrical resistivity of two new plutonium compounds Pu2M3Si5 (M = Co, Ni) are reported. Pu2Ni3Si5 crystallizes in the orthorhombic U2Co3Si5 structure type, which can be considered a variant of the BaAl4 tetragonal structure, while Pu2Co3Si5 adopts the closely related monoclinic Lu2Co3Si5 type. Magnetic order is observed in both compounds, with Pu2Ni3Si5 ordering ferromagnetically at T-C = 65 K then undergoing a transition into an antiferromagnetic state below T-N = 35 K. Two successive magnetic transitions are also observed at T-mag1 = 38 K and T-mag2 = 5 K in Pu2Co3Si5. Specific heat measurements reveal that these two materials have a moderately enhanced Sommerfeld coefficient gamma similar to 100 mJ/mol Pu K-2 in the magnetic state with comparable RKKY and Kondo energy scales. C1 [Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Kennison, J. A.; Ronning, F.; Scott, B. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bauer, ED (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM edbauer@lanl.gov RI Bauer, Eric/D-7212-2011; Mitchell, Jeremy/E-2875-2010; Scott, Brian/D-8995-2017; OI Mitchell, Jeremy/0000-0001-7109-3505; Scott, Brian/0000-0003-0468-5396; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX Work at Los Alamos National Laboratory was performed under the auspices of the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 20 TC 3 Z9 3 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094223 DI 10.1088/0953-8984/23/9/094223 PG 5 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900024 PM 21339576 ER PT J AU Lawrence, JM Wang, CH Christianson, AD Bauer, ED AF Lawrence, J. M. Wang, C. H. Christianson, A. D. Bauer, E. D. TI Heavy fermion scaling: uranium versus cerium and ytterbium compounds SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID NEUTRON-SCATTERING; BAND MAGNETISM; F-ELECTRONS; INTERMETALLICS; FLUCTUATIONS; METALS; UPT3 AB In an effort to explore the differences between rare-earth-based and uranium-based heavy fermion (HF) compounds that reflect the underlying difference between local 4f moments and itinerant 5f moments we analyze scaling laws that relate the low temperature neutron spectra of the primary ('Kondo-esque') spin fluctuation to the specific heat and susceptibility. While the scaling appears to work very well for the rare earth intermediate valence (IV) compounds, for a number of key uranium compounds the scaling laws fail badly. There are two main reasons for this failure. First, the presence of antiferromagnetic (AF) fluctuations, which contribute significantly to the specific heat, alters the scaling ratios. Second, the scaling laws require knowledge of the high temperature moment degeneracy, which is often undetermined for itinerant 5f electrons. By making plausible corrections for both effects, better scaling ratios are obtained for some uranium compounds. We point out that, while both the uranium HF compounds and the rare earth IV compounds have spin fluctuation characteristic energies of order 5-25 meV, they differ in that the AF fluctuations that are usually seen in the uranium compounds are never seen in the rare earth IV compounds. This suggests that the 5f itineracy increases the f-f exchange relative to the rare earth case. C1 [Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Wang, C. H.; Christianson, A. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lawrence, JM (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM jmlawren@uci.edu RI Bauer, Eric/D-7212-2011; christianson, andrew/A-3277-2016; OI christianson, andrew/0000-0003-3369-5884; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DOE/BES/DMSE) [DE-FG02-03ER46036]; Scientific User Facilities Division of the DOE/BES FX Research at UC Irvine was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DOE/BES/DMSE) under Award DE-FG02-03ER46036. Work at Los Alamos National Laboratory was performed under the auspices of the DOE/BES/DMSE. Work at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division of the DOE/BES. NR 31 TC 3 Z9 3 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094210 DI 10.1088/0953-8984/23/9/094210 PG 6 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900011 PM 21339563 ER PT J AU Ronning, F Batista, C AF Ronning, Filip Batista, Cristian TI Strongly correlated electron systems SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Editorial Material C1 [Ronning, Filip; Batista, Cristian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ronning, F (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Ronning, Filip/0000-0002-2679-7957 NR 0 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 090201 DI 10.1088/0953-8984/23/9/090201 PG 2 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900001 PM 21339553 ER PT J AU Su, JJ Dubi, Y Wolfle, P Balatsky, AV AF Su, Jung-Jung Dubi, Yonatan Woelfle, Peter Balatsky, Alexander V. TI A charge density wave in the hidden order state of URu2Si2 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; FERMI-SURFACE; EXCITATIONS; SYSTEM AB We argue that the hidden order (HO) state in URu2Si2 will induce a charge density wave. The modulation vector of the charge density wave will be twice that of the hidden order state, Q(CDW) = 2Q(HO). To illustrate how the charge density wave arises we use a Ginzburg-Landau theory that contains a coupling of the charge density wave amplitude to the square of the HO order parameter Delta(HO). This simple analysis allows us to predict the intensity and temperature dependence of the charge density wave order parameter in terms of the susceptibilities and coupling constants used in the Ginzburg-Landau analysis. C1 [Su, Jung-Jung; Dubi, Yonatan; Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Su, Jung-Jung; Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Woelfle, Peter] Karlsruhe Inst Technol, Inst Theory Condensed Matter, D-76128 Karlsruhe, Germany. [Woelfle, Peter] Karlsruhe Inst Technol, Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany. RP Su, JJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jungksu@lanl.gov RI Dubi, Yonatan/G-5304-2013; Woelfle, Peter/N-8046-2013 FU US Deptartment of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; UCOP [TR01]; DFG research unit 'Quantum phase transitions' FX The authors enjoyed fruitful discussions with J C Davis, M J Graf, B Gaulin, G Kotliar, G Luke, E Hassinger and J Mydosh. This work was supported by the US Deptartment of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396 and by UCOP TR01 and by the DFG research unit 'Quantum phase transitions' (PW). NR 21 TC 7 Z9 7 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094214 DI 10.1088/0953-8984/23/9/094214 PG 4 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900015 PM 21339567 ER PT J AU Yang, XD Riseborough, PS Durakiewicz, T AF Yang, Xiaodong Riseborough, Peter S. Durakiewicz, Tomasz TI Temperature dependence of hybridization gaps in metallic heavy-fermion systems SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID POLARON MOTION; CE3BI4PT3; SEMICONDUCTORS; SPECTRUM AB There is evidence that a number of heavy-fermion/mixed-valence materials show hybridization gaps either at the Fermi energy or close to it. In the former case, a heavy-fermion semiconducting state ensues, and in the latter case, the system remains metallic at low temperatures. In either case, there are significant indications that the electronic structure is extremely temperature dependent. In particular, there is evidence from spectroscopic and transport properties that the gap closes at high temperatures and also that the heavy-quasiparticle bands disappear at high temperatures. The magnitudes of the gaps scale with the effective quasiparticle masses. We present a phenomenological model that exhibits a temperature dependence which is consistent with the above behavior. The model is based on a periodic array of Anderson impurities in which the electron correlations are represented by the coupling to bosons with Einstein spectra. The model can be approximately solved in a systematic manner. The solution consists of semi-analytic expressions which represent the temperature dependences of the coherent and incoherent structures in the electronic excitation spectra. We shall compare the hybridization gaps predicted by the theory for the metallic case and those inferred from photoemission experiments on UPd2Al3. C1 [Yang, Xiaodong; Riseborough, Peter S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Durakiewicz, Tomasz] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM USA. RP Yang, XD (reprint author), Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. RI Riseborough, Peter/D-4689-2011; OI Durakiewicz, Tomasz/0000-0002-1980-1874 FU US Department of Energy, Office of Basic Energy Sciences, Materials Science [DEFG02-84ER45872]; NSF [DMR-0084402] FX This work was supported by a grant from the US Department of Energy, Office of Basic Energy Sciences, Materials Science through award DEFG02-84ER45872. The SRC is supported by the NSF under Award No. DMR-0084402. NR 22 TC 7 Z9 7 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094211 DI 10.1088/0953-8984/23/9/094211 PG 7 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900012 PM 21339564 ER PT J AU Zhao, S MacLaughlin, DE Bernal, OO Mackie, JM Marques, C Janssen, Y Aronson, MC AF Zhao, S. MacLaughlin, D. E. Bernal, O. O. Mackie, J. M. Marques, C. Janssen, Y. Aronson, M. C. TI Magnetic transition and spin fluctuations in the unconventional antiferromagnetic compound Yb3Pt4 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID QUANTUM PHASE-TRANSITIONS; HEAVY-FERMION METALS; CRYSTAL-STRUCTURE; CRITICALITY; ELECTRON; SYSTEMS; RELAXATION AB Muon spin rotation and relaxation measurements have been carried out on the unconventional antiferromagnet Yb3Pt4. Oscillations are observed below T-N = 2.22(1) K, consistent with the antiferromagnetic (AFM) Neel temperature observed in bulk experiments. In agreement with neutron diffraction experiments the oscillation frequency omega(mu)(T)/2 pi follows an S = 1/2 mean-field temperature dependence, yielding a quasistatic local field of 1.71(2) kOe at T = 0. A crude estimate gives an ordered moment of similar to 0.66 mu(B) at T = 0, comparable to 0.81 mu(B) from neutron diffraction. As T -> T-N from above the dynamic relaxation rate lambda(d) exhibits no critical slowing down, consistent with a mean-field transition. In the AFM phase a T-linear fit to lambda(d)(T), appropriate to a Fermi liquid, yields highly enhanced values of lambda(d)/T and the Korringa constant (K mu T)-T-2/lambda(d), with K-mu the estimated muon Knight shift. A strong suppression of lambda(d) by applied field is observed in the AFM phase. These properties are consistent with the observed large Sommerfeld-Wilson and Kadowaki-Woods ratios in Yb3Pt4 (although the data do not discriminate between Fermi-liquid and non-Fermi-liquid states), and suggest strong enhancement of q approximate to 0 spin correlations between large-Fermi-volume band quasiparticles in the AFM phase of Yb3Pt4. C1 [Zhao, S.; MacLaughlin, D. E.; Mackie, J. M.] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. [Bernal, O. O.] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Marques, C.; Janssen, Y.; Aronson, M. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Marques, C.; Aronson, M. C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Zhao, S (reprint author), Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA. EM songruiz@ucr.edu FU US NSF (Riverside) [0801407]; US NSF (Los Angeles) [0604105]; US NSF (Stony Brook) [0405961] FX We are grateful for the generous technical assistance from the CMMS staff at TRIUMF. We would like to thank D A Rose, W Beyermann, and J Morales for their help with the measurements. This work was supported by the US NSF, Grants 0801407 (Riverside), 0604105 (Los Angeles), and 0405961 (Stony Brook). NR 34 TC 0 Z9 0 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094220 DI 10.1088/0953-8984/23/9/094220 PG 6 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900021 PM 21339573 ER PT J AU Park, T Sidorov, VA Lee, H Ronning, F Bauer, ED Sarrao, JL Thompson, JD AF Park, Tuson Sidorov, V. A. Lee, H. Ronning, F. Bauer, E. D. Sarrao, J. L. Thompson, J. D. TI Unconventional quantum criticality in the pressure-induced heavy-fermion superconductor CeRhIn5 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID DEPENDENCE; METALS AB The lack of superconductivity in several candidate materials that exhibit a non-spin density wave quantum critical point has raised the question of whether the associated spectra of quantum fluctuations are beneficial to forming superconducting electron pairs. Here we discuss the possibility that the prototypical heavy-fermion antiferromagnet CeRhIn5 may be the first example of unconventional superconductors where superconductivity arises from Kondo-breakdown quantum criticality. C1 [Park, Tuson] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Park, Tuson; Sidorov, V. A.; Lee, H.; Ronning, F.; Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Sidorov, V. A.] RAS, Vereschagin Inst High Pressure Phys, Troitsk 142190, Russia. RP Park, T (reprint author), Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. EM tp8701@skku.edu RI Bauer, Eric/D-7212-2011; Park, Tuson/A-1520-2012; OI Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU US Department of Energy, Office of Science, Division of Materials Science and Engineering; Los Alamos LDRD program; Korean government (MEST) [2010-0000613]; Sungkyunkwan University; POSCO TJ Park Foundation FX Work at Los Alamos was performed under the auspices of the US Department of Energy, Office of Science, Division of Materials Science and Engineering and supported in part by the Los Alamos LDRD program. Work at Sungkyunkwan University was supported by the National Research Foundation (NRF) grant (2010-0000613) funded by the Korean government (MEST). TP acknowledges support from the Samsung Research Fund, Sungkyunkwan University (2009) and the Science Fellowship, POSCO TJ Park Foundation. NR 23 TC 4 Z9 4 U1 1 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 9 PY 2011 VL 23 IS 9 SI SI AR 094218 DI 10.1088/0953-8984/23/9/094218 PG 5 WC Physics, Condensed Matter SC Physics GA 722PX UT WOS:000287447900019 PM 21339571 ER PT J AU Kim, H Tanatar, MA Song, YJ Kwon, YS Prozorov, R AF Kim, H. Tanatar, M. A. Song, Yoo Jang Kwon, Yong Seung Prozorov, R. TI Nodeless two-gap superconducting state in single crystals of the stoichiometric iron pnictide LiFeAs SO PHYSICAL REVIEW B LA English DT Article ID SUPERFLUID DENSITY; PENETRATION DEPTH; T-C; PRESSURE; HEAT; GAP AB The variations of in- and inter-plane London penetration depths, Delta lambda(T), were measured using a tunnel diode resonator in single crystals of the intrinsic pnictide superconductor LiFeAs. This compound appears to be in the clean limit with a residual resistivity of 4 (T -> 0) to 8 (T-c) mu Omega cm and a residual resistivity ratio of 65 to 35, respectively. The superfluid density rho(s)(T) = lambda(2)(0)/lambda(2)(T) is well described by the self-consistent two-gap gamma model. Together with the previous data, our results support the universal evolution of the superconducting gap from nodeless to nodal upon departure from optimal doping even in clean systems. We also conclude that pair-breaking scattering plays an important role in the deviation of the low-temperature behavior of lambda(T) from the exponential in Fe-based compounds. C1 [Kim, H.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Kim, H.; Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Song, Yoo Jang; Kwon, Yong Seung] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. RP Kim, H (reprint author), Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008 OI Prozorov, Ruslan/0000-0002-8088-6096 FU US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358]; Ministry of Education, Science and Technology [2010-0007487]; Alfred P. Sloan Foundation FX We thank S. Borisenko, S. Bud'ko, P. Canfield, A. Chubukov, D. Evtushinsky, P. Hirschfeld, V. Kogan, Y. Matsuda, and I. Mazin for useful discussions. Work at The Ames Laboratory was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Work at SKKU was partially supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (Contract No. 2010-0007487). R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 66 TC 67 Z9 67 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR 9 PY 2011 VL 83 IS 10 AR 100502 DI 10.1103/PhysRevB.83.100502 PG 4 WC Physics, Condensed Matter SC Physics GA 732CD UT WOS:000288159700001 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, C Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Petzold, A Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Garzia, I Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Osipenkov, I. L. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Petzold, A. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Albert, J. Banerjee, Sw Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Measurements of branching fractions, polarizations, and direct CP-violation asymmetries in B+ -> rho K-0*(+) and B+ -> f(0)(980)K*(+) decays SO PHYSICAL REVIEW D LA English DT Article AB We present measurements of the branching fractions, longitudinal polarization, and direct CP-violation asymmetries for the decays B+ -> rho K-0*(+) and B+ -> f(0)(980)K*(+) with a sample of (467 +/- 5) x 10(6)B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at the SLAC National Accelerator Laboratory. We observe B+ -> rho K-0*(+) with a significance of 5: 3 sigma and measure the branching fraction B(B+ -> rho K-0*(+)) = (4.6 +/- 1.0 +/- 0.4) x 10(-6), the longitudinal polarization f(L) = 0.78 +/- 0.12 +/- 0.03, and the CP-violation asymmetry A(CP) = 0.31 +/- 0.13 +/- 0.03. We observe B+ -> f(0)(980)K*(+) and measure the branching fraction B(B+ -> f(0)(980)K*(+)) x B(f(0)(980) -> pi(+)pi(-)) = (4.2 +/- 0.6 +/- 0.3) x 10(-6) and the CP-violation asymmetry A(CP) = 0.15 +/- 0.12 +/- 0.03. The first uncertainty quoted is statistical and the second is systematic. C1 [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] INFN Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.; Osipenkov, I. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] INFN Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl Phys & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3, CNRS,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, IRFU, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Carpinelli, Massimo/0000-0002-8205-930X; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Martinelli, Maurizio/0000-0003-4792-9178; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821 FU SLAC; DOE; NSF (USA); NSERC (Canada); CEA; CNRS-IN2P3 (France); BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 29 TC 6 Z9 6 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 8 PY 2011 VL 83 IS 5 AR 051101 DI 10.1103/PhysRevD.83.051101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731PG UT WOS:000288121000001 ER PT J AU Song, YK Gao, JH Liang, ZT Wang, XN AF Song, Yu-kun Gao, Jian-hua Liang, Zuo-tang Wang, Xin-Nian TI Twist-4 contributions to the azimuthal asymmetry in semi-inclusive deeply inelastic scattering SO PHYSICAL REVIEW D LA English DT Article ID MUON PROTON-SCATTERING; PARTON ENERGY-LOSS; POWER CORRECTIONS; HADRONIC SCATTERING; LEPTOPRODUCTION; NUCLEI; QCD; DISTRIBUTIONS; MODEL; HERA AB We calculate the differential cross section for the unpolarized semi-inclusive deeply inelastic scattering process e(-) + N -> e(-) + q + X in leading order of perturbative QCD and up to twist-4 in power corrections and study, in particular, the azimuthal asymmetry < cos2 phi >. The final results are expressed in terms of transverse momentum dependent parton matrix elements of the target nucleon up to twist-4. We also apply it to e(-) + A -> e(-) + q + X and illustrate numerically the nuclear dependence of the azimuthal asymmetry < cos2 phi > by using a Gaussian ansatz for the transverse momentum dependent parton matrix elements. C1 [Song, Yu-kun; Liang, Zuo-tang] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Gao, Jian-hua] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Wang, Xin-Nian] Huazhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Song, YK (reprint author), Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. RI Song, Yu-kun/B-6625-2011; Gao, Jianhua/O-9550-2014; OI Wang, Xin-Nian/0000-0002-9734-9967; Song, Yu-kun/0000-0003-1854-5167 FU National Natural Science Foundation of China [10975092, 11035003]; China Postdoctoral Science Foundation [20090460736]; Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the National Natural Science Foundation of China under Approval No. 10975092 and Approval No. 11035003, the China Postdoctoral Science Foundation funded project under Contract No. 20090460736, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 and with the framework of the JET Collaboration. NR 47 TC 16 Z9 16 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD MAR 8 PY 2011 VL 83 IS 5 AR 054010 DI 10.1103/PhysRevD.83.054010 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731PG UT WOS:000288121000004 ER PT J AU McLachlan, MA McComb, DW Ryan, MP Morozovska, AN Eliseev, EA Payzant, EA Jesse, S Seal, K Baddorf, AP Kalinin, SV AF McLachlan, Martyn A. McComb, David W. Ryan, Mary P. Morozovska, Anna N. Eliseev, Eugene A. Payzant, E. Andrew Jesse, Stephen Seal, Katyayani Baddorf, Arthur P. Kalinin, Sergei V. TI Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID THIN-FILM; PHOTONIC CRYSTALS; MICROSCOPY; OPALS AB We describe the characterization, ferroelectric phase stability and polarization switching in strain-free assemblies of PbZr0.3Ti0.7O3 (PZT) nanostructures. The 3-dimensionally ordered macroporous structures present uniquely large areas and volumes of PZT where the microstructure is spatially modulated and the composition is homogeneous. Variable temperature powder X-ray diffraction (XRD) studies show that the global structure is crystalline and tetragonal at room temperature and undergoes a reversible tetragonal to cubic phase transition on heating/cooling. The measured phase-transition temperature is 50-60 degrees C lower than bulk PZT of the same composition. The local ferroelectric properties were assessed using piezoresponse force spectroscopy that reveal an enhanced piezoresponse from the nanostructured films and demonstrate that the switching polarization can be spatially mapped across these structures. An enhanced piezoresponse is observed in the nanostructured films which we attribute to the formation of strain free films, thus for the first time we are able to assess the effects of crystallite-size independently of internal stress. Corresponding polarization distributions have been calculated for the bulk and nanostructured materials using a direct variational method and Landau-Ginzburg-Devonshire (LGD) theory. By correlating local and global characterization techniques we have for the first time unambiguously demonstrated the formation of tetragonal and ferroelectric PZT in large volume nanostructured architectures. With the wide range of materials available that can be formed into such controlled architectures we conclude that this study opens a pathway for the effective studies of nanoscale ferroelectrics in uniquely large volumes. C1 [McLachlan, Martyn A.; McComb, David W.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [McLachlan, Martyn A.; McComb, David W.; Ryan, Mary P.] Univ London Imperial Coll Sci Technol & Med, London Ctr Nanotechnol, London SW7 2AZ, England. [Morozovska, Anna N.] Natl Acad Sci Ukraine, V Lashkarev Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Payzant, E. Andrew; Jesse, Stephen; Seal, Katyayani; Baddorf, Arthur P.; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP McLachlan, MA (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM martyn.mclachlan@imperial.ac.uk RI Payzant, Edward/B-5449-2009; Kalinin, Sergei/I-9096-2012; McLachlan, Martyn/J-6679-2012; Jesse, Stephen/D-3975-2016; Baddorf, Arthur/I-1308-2016; McComb, David/A-7808-2010; OI Payzant, Edward/0000-0002-3447-2060; Kalinin, Sergei/0000-0001-5354-6152; McLachlan, Martyn/0000-0003-3136-1661; Jesse, Stephen/0000-0002-1168-8483; Baddorf, Arthur/0000-0001-7023-2382; Ryan, Mary/0000-0001-8582-3003 FU Royal Academy of Engineering/EPSRC; Ministry of Science and Education of Ukraine [UU30/004]; National Science Foundation [DMR-0908718]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS 2008-235] FX MAM gratefully acknowledges support from a Royal Academy of Engineering/EPSRC Research Fellowship. The authors thank Dr Qi Zhang (Cranfield, UK) for the preparation of the PZT sol and useful discussions. The Ministry of Science and Education of Ukraine (UU30/004) and National Science Foundation (DMR-0908718) sponsored research in part (ANM and EEA). A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (CNMS 2008-235). NR 33 TC 12 Z9 12 U1 2 U2 26 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD MAR 8 PY 2011 VL 21 IS 5 BP 941 EP 947 DI 10.1002/adfm.201002038 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730JA UT WOS:000288028400014 ER PT J AU Son, SK Young, L Santra, R AF Son, Sang-Kil Young, Linda Santra, Robin TI Impact of hollow-atom formation on coherent x-ray scattering at high intensity SO PHYSICAL REVIEW A LA English DT Article ID FREE-ELECTRON-LASER; K-SHELL; FLUORESCENCE YIELDS; AUGER RATES; DYNAMICS; CLUSTERS; PULSES; CRYSTALLOGRAPHY; PHOTOIONIZATION; DIFFRACTION AB X-ray free-electron lasers (FELs) are promising tools for structural determination of macromolecules via coherent x-ray scattering. During ultrashort and ultraintense x-ray pulses with an atomic-scale wavelength, samples are subject to radiation damage and possibly become highly ionized, which may influence the quality of x-ray scattering patterns. We develop a toolkit to treat detailed ionization, relaxation, and scattering dynamics for an atom within a consistent theoretical framework. The coherent x-ray scattering problem including radiation damage is investigated as a function of x-ray FEL parameters such as pulse length, fluence, and photon energy. We find that the x-ray scattering intensity saturates at a fluence of similar to 10(7) photon/angstrom(2) per pulse but can be maximized by using a pulse duration much shorter than the time scales involved in the relaxation of the inner-shell vacancy states created. Under these conditions, both inner-shell electrons in a carbon atom are removed, and the resulting hollow atom gives rise to a scattering pattern with little loss of quality for a spatial resolution > 1 angstrom. Our numerical results predict that in order to scatter from a carbon atom 0.1 photon per x-ray pulse, within a spatial resolution of 1.7 angstrom, a fluence of 1 x 10(7) photons/angstrom(2) per pulse is required at a pulse length of 1 fs and a photon energy of 12 keV. By using a pulse length of a few hundred attoseconds, one can suppress even secondary ionization processes in extended systems. The present results suggest that high-brightness attosecond x-ray FELs would be ideal for single-shot imaging of individual macromolecules. C1 [Son, Sang-Kil; Santra, Robin] DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. [Young, Linda] Argonne Natl Lab, Argonne, IL 60439 USA. [Santra, Robin] Univ Hamburg, Dept Phys, D-20355 Hamburg, Germany. RP Son, SK (reprint author), DESY, Ctr Free Elect Laser Sci, D-22607 Hamburg, Germany. EM sangkil.son@cfel.de; young@anl.gov; robin.santra@cfel.de RI Santra, Robin/E-8332-2014; Son, Sang-Kil/J-7637-2016 OI Santra, Robin/0000-0002-1442-9815; Son, Sang-Kil/0000-0001-5395-632X FU Chemical Sciences, Geo-sciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX We thank Stefan Pabst for helpful discussions. This work was partially supported by the Chemical Sciences, Geo-sciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy (Grant No. DE-AC02-06CH11357). NR 90 TC 76 Z9 77 U1 2 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD MAR 8 PY 2011 VL 83 IS 3 AR 033402 DI 10.1103/PhysRevA.83.033402 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 731OQ UT WOS:000288119400009 ER PT J AU Neufeld, RB AF Neufeld, R. B. TI Thermal field theory derivation of the source term induced by a fast parton from the quark energy-momentum tensor SO PHYSICAL REVIEW D LA English DT Article ID GLUON PLASMA; COLLISIONS; MATTER; COLLABORATION; PERSPECTIVE; RADIATION; NUCLEI AB I derive the distribution of energy and momentum transmitted from a fast parton to a medium of thermalized quarks, or the source term, in perturbative thermal field theory directly from the quark energy-momentum tensor. The fast parton is coupled to the medium by adding an interaction term to the Lagrangian. The thermal expectation value of the energy-momentum tensor source term is then evaluated using standard Feynman rules at finite temperature. It is found that local excitations, which are important for exciting an observable Mach cone structure, fall sharply as a function of the energy of the fast parton. This may have implications for the trigger p(T) dependence of measurements of azimuthal dihadron particle correlations in heavy-ion collisions. In particular, a conical emission pattern would be less likely to be observed for increasing trigger p(T). I show that the results presented in this paper can be generalized to more realistic modeling of fast parton propagation, such as through a time-dependent interaction term, in future studies. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. FU US Department of Energy, Office of Science [DE-AC52-06NA25396] FX I wish to thank Margaret Carrington, Berndt Muller, and Ivan Vitev for helpful comments and discussion. This work was supported in part by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396. NR 44 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 8 PY 2011 VL 83 IS 6 AR 065012 DI 10.1103/PhysRevD.83.065012 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731PL UT WOS:000288121600006 ER PT J AU Bousso, R Freivogel, B Leichenauer, S Rosenhaus, V AF Bousso, Raphael Freivogel, Ben Leichenauer, Stefan Rosenhaus, Vladimir TI A Geometric Solution to the Coincidence Problem, and the Size of the Landscape as the Origin of Hierarchy SO PHYSICAL REVIEW LETTERS LA English DT Article ID COSMOLOGICAL CONSTANT AB Weinberg's seminal prediction of the cosmological constant relied on a provisional method for regulating eternal inflation which has since been put aside. We show that a modern regulator, the causal patch, improves agreement with observation, removes many limiting assumptions, and yields additional powerful results. Without assuming necessary conditions for observers such as galaxies or entropy production, the causal patch measure predicts the coincidence of vacuum energy and present matter density. Their common scale, and thus the enormous size of the visible Universe, originates in the number of metastable vacua in the landscape. C1 [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bousso, Raphael; Leichenauer, Stefan; Rosenhaus, Vladimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Freivogel, Ben] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Freivogel, Ben] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. RP Bousso, R (reprint author), Univ Calif Berkeley, Ctr Theoret Phys, Berkeley, CA 94720 USA. FU Berkeley Center for Theoretical Physics; National Science Foundation [0855653]; fqxi [RFP2-08-06]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Berkeley Center for Theoretical Physics, by the National Science Foundation (award number 0855653), by fqxi grant RFP2-08-06, and by the US Department of Energy under Contract DE-AC02-05CH11231. VR is supported by an NSF graduate fellowship. NR 23 TC 23 Z9 23 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 8 PY 2011 VL 106 IS 10 AR 101301 DI 10.1103/PhysRevLett.106.101301 PG 4 WC Physics, Multidisciplinary SC Physics GA 731QC UT WOS:000288123300004 PM 21469783 ER PT J AU Huang, CK Albright, BJ Yin, L Wu, HC Bowers, KJ Hegelich, BM Fernandez, JC AF Huang, C-K Albright, B. J. Yin, L. Wu, H-C Bowers, K. J. Hegelich, B. M. Fernandez, J. C. TI Improving beam spectral and spatial quality by double-foil target in laser ion acceleration SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID HIGH-INTENSITY LASER; PROTON-BEAMS; SOLID TARGETS; FAST IGNITION; PLASMA; ELECTRON; PULSES AB Mid-Z ion driven fast ignition inertial fusion requires ion beams of hundreds of MeV energy and < 10% energy spread. The break-out afterburner (BOA) is one mechanism proposed to generate such beams; however, the late stages of the BOA tend to produce too large of an energy spread. Here we show how use of a second target foil placed behind a nm-scale foil can substantially reduce the temperature of the comoving electrons and improve the ion beam energy spread, leading to ion beams of energy hundreds of MeV and 6% energy spread. C1 [Huang, C-K; Albright, B. J.; Yin, L.; Wu, H-C; Bowers, K. J.; Hegelich, B. M.; Fernandez, J. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Huang, CK (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM huangck@lanl.gov RI Fernandez, Juan/H-3268-2011; Hegelich, Bjorn/J-2689-2013; OI Fernandez, Juan/0000-0002-1438-1815; Albright, Brian/0000-0002-7789-6525; Huang, Chengkun/0000-0002-3176-8042; Yin, Lin/0000-0002-8978-5320 FU DOE by the Los Alamos National Security/Los Alamos National Laboratory (LANL); LDRD FX We acknowledge useful discussions with T.J.T. Kwan and M. H. Key. This work was performed under the auspices of DOE by the Los Alamos National Security/Los Alamos National Laboratory (LANL), and supported by LDRD. Simulations were performed on Institutional Computing facilities/Roadrunner at LANL and Jaguar at Oak Ridge National Laboratory. NR 26 TC 7 Z9 7 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 8 PY 2011 VL 14 IS 3 AR 031301 DI 10.1103/PhysRevSTAB.14.031301 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 731QH UT WOS:000288123800002 ER PT J AU Li, YJ Yang, LY Krinsky, S AF Li, Yongjun Yang, Lingyun Krinsky, Samuel TI Efficient cascaded parameter scan approach for studying top-off safety in storage rings SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID OPERATION AB We introduce a new algorithm, which we call the cascaded parameter scan method, to efficiently carry out the scan over magnet parameters in the safety analysis for top-off injection in synchrotron radiation storage rings. In top-off safety analysis, one must track particles populating phase space through a beam line containing magnets and apertures and clearly demonstrate that, for all possible magnet settings and errors, all particles are lost on scrapers within the properly shielded region. In the usual approach, if one considers m magnets and scans each magnet through n setpoints, then one must carry out n(m) tracking runs. In the cascaded parameter scan method, the number of tracking runs is reduced to n x m. This reduction of exponential to linear dependence on the number of setpoints n greatly reduces the required computation time and allows one to more densely populate phase space and to increase the number n of setpoints scanned for each magnet. C1 [Li, Yongjun; Yang, Lingyun; Krinsky, Samuel] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, YJ (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. FU Department of Energy [DE-AC02-98CH10886] FX The authors would like to express their thanks to H. Nishimura and C. Steier from LBNL, and A. Terebilo and B. Hettel from SLAC for providing their simulation codes and sharing their experience at ALS and SSRL. We also thank B. Parker, M. Rehak, and C. Spataro for calculating magnet field profiles, and S. Sharma, H. Hsueh, L. Doom, and A. Hussain for providing the NSLS-II vacuum physical aperture information. This work was supported by Department of Energy Contract No. DE-AC02-98CH10886. NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD MAR 8 PY 2011 VL 14 IS 3 AR 033501 DI 10.1103/PhysRevSTAB.14.033501 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 731QH UT WOS:000288123800003 ER PT J AU Jin, GB Choi, ES Guertin, RP Booth, CH Albrecht-Schmitt, TE AF Jin, Geng Bang Choi, Eun Sang Guertin, Robert P. Booth, Corwin H. Albrecht-Schmitt, Thomas E. TI Syntheses, Structure, Magnetism, and Optical Properties of the Ordered Interlanthanide Copper Chalcogenides Ln(2)YbCuQ(5) (Ln = La, Ce, Pr, Nd, Sm; Q=5, Se): Evidence for Unusual Magnetic Ordering in Sm2YbCuS5 SO CHEMISTRY OF MATERIALS LA English DT Article DE structural characterization; magnetic materials; optical materials ID METAL LANTHANIDE CHALCOGENIDES; COMPOSITION CUMS2 M; CRYSTAL-STRUCTURE; RARE-EARTH; PHYSICAL-PROPERTIES; 870 K; ELECTRONIC-STRUCTURES; LAYERED-OXYSULFIDE; NOUVEAUX SULFURES; BAND-STRUCTURE AB Ln(2)YbCuQ(5) (Ln = La, Ce, Pr, Nd, Sm; Q = S, Se) have been prepared by direct reaction of the elements in Sb(2)Q(3) (Q = S, Se) fluxes at 900 degrees C. All compounds have been characterized by single-crystal X-ray diffraction methods and are isotypic. The structure of Ln(2)YbCuQ(5) consists of one-dimensional (1)(infinity)[YbCuQ(5)](6-) ribbons extending along the b-axis that are connected by larger Ln(3+) ions. Each ribbon is constructed from two single chains of [YbQ(6)] octahedra with one double chain of [CuQ(5)] trigonal bipyramids in the middle. All three chains connect with each other via edge-sharing. There are two crystallographically unique Ln atoms, one octahedral Yb site, and two disordered Cu positions inside of distorted Qs trigonal bipyramids. Both Ln atoms are surrounded by eight Q atoms in bicapped trigonal prisms. The magnetic properties of Ln(2)YbCuQ(5) have been characterized using magnetic susceptibility and heat capacity measurements, while their optical properties have been explored using UV-vis-NIR diffuse reflectance spectroscopy. Ce2YbCuSe5, La2YbCuS5, Ce2YbCuS5, and Pr2YbCuS5 are Curie-Weiss paramagnets. La2YbCuSe5 and Nd2YbCuS5 show evidence for short-range antiferromagnetic ordering at low temperatures. Sm2YbCuS5 shows magnetic ordering at 5.9 K, followed by negative magnetization at low external fields. The band gaps of La2YbCuSe5, Ce2YbCuSe5, La2YbCuS5, Ce2YbCuS5, Pr2YbCuS5, Nd2YbCuS5, and Sm2YbCuS5 are 1.15, 1.05, 1.45, 1.37, 1.25, 1.35, and 1.28 eV, respectively. C1 [Jin, Geng Bang; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Jin, Geng Bang; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Choi, Eun Sang] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Choi, Eun Sang] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Guertin, Robert P.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Booth, Corwin H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Albrecht-Schmitt, TE (reprint author), Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. EM talbrec1@nd.edu FU U.S. Department of Energy (DOE) [DE-FG02-02ER45963]; National Science Foundation [DMR-1004459, DMR-0084173]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences (OBES), Office of Science (OS); U.S. Department of Energy [DE-FG02-01ER15187]; U.S. DOE [DE-AC02-05CH11231]; State of Florida; Department of Energy; [NSF-DMR 0203532] FX This work was supported by the U.S. Department of Energy (DOE), under Grant DE-FG02-02ER45963 through the EPSCoR Program, and by the National Science Foundation, through No. DMR-1004459. Funds for purchasing the UV-vis-NIR spectrometer used in these studies were provided through the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences (OBES), Office of Science (OS), Heavy Elements Program, U.S. Department of Energy, under Grant No. DE-FG02-01ER15187. E.S.C. acknowledges support from NSF-DMR 0203532. C.H.B. acknowledges support from the Director, OS, OBES, of the U.S. DOE, under Contract No. DE-AC02-05CH11231. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the Department of Energy. NR 64 TC 17 Z9 17 U1 4 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAR 8 PY 2011 VL 23 IS 5 BP 1306 EP 1314 DI 10.1021/cm103347u PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 726ZP UT WOS:000287767200031 ER PT J AU Liu, XF Peaslee, D Jost, CZ Baumann, TF Majzoub, EH AF Liu, Xiangfeng Peaslee, David Jost, Christopher Z. Baumann, Theodore F. Majzoub, Eric H. TI Systematic Pore-Size Effects of Nanoconfinement of LiBH4: Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Applications SO CHEMISTRY OF MATERIALS LA English DT Article DE hydrogen storage; borohydride; nanoconfinement; porous carbon ID NANOPOROUS CARBON; MELT INFILTRATION; REVERSIBILITY; NANOCOMPOSITES; 1ST-PRINCIPLES; BOROHYDRIDES; CONFINEMENT; DESORPTION; STABILITY; HYDRIDES AB The effects of nanoconfinement on the structural phase transition, H-2 release and uptake, and the emission of toxic diborane (B2H6) on desorption of LiBH4 have been comprehensively investigated in the presence of various porous hard carbon templates at a variety of pore sizes. Calorimetry signatures of both the structural phase transition and melting of nanoconfined LiBH4 shifted to a lower temperature with respect to the bulk, finally vanishing below a pore size around 4 nm. The desorption of LiBH4 confined in these nanoporous carbons shows a systematic and monotonic decrease in the desorption temperature and concomitantly, mass spectroscopic analysis indicated a gradual reduction of the partial pressure of B2H6 with decreasing pore size, suggesting that formation of stable closoborane salts may be avoided by interrupting the reaction pathway. This represents a major breakthrough in the reversibility of boron-based hydrogen storage systems, where capacity is lost in the formation of stable B-H species on cycling. Different carbon preparation techniques suggest that the confinement size, and not solely surface interactions, may be used to tune the properties of complex hydrides for kinetic and reaction pathway improvements for hydrogen storage applications. C1 [Liu, Xiangfeng; Peaslee, David; Jost, Christopher Z.; Majzoub, Eric H.] Univ Missouri, Ctr Nanosci, St Louis, MO 63121 USA. [Liu, Xiangfeng; Peaslee, David; Jost, Christopher Z.; Majzoub, Eric H.] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA. [Baumann, Theodore F.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Majzoub, EH (reprint author), Univ Missouri, Ctr Nanosci, 1 Univ Blvd, St Louis, MO 63121 USA. EM majzoube@umsl.edu FU U.S. Department of Energy through the office Energy Efficiency and Renewable Energy [DE-AC04-94AL85000] FX This work was funded by the U.S. Department of Energy in the Hydrogen, Fuel Cells, and Infrastructure Technologies Program through the office Energy Efficiency and Renewable Energy under Contract DE-AC04-94AL85000. We are grateful to Dr. David Osborn and Dr. Dan Zhou for assistance with TEM measurement. NR 33 TC 80 Z9 81 U1 2 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD MAR 8 PY 2011 VL 23 IS 5 BP 1331 EP 1336 DI 10.1021/cm103546g PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 726ZP UT WOS:000287767200034 ER PT J AU Ginsberg, NS Davis, JA Ballottari, M Cheng, YC Bassi, R Fleming, GR AF Ginsberg, Naomi S. Davis, Jeffrey A. Ballottari, Matteo Cheng, Yuan-Chung Bassi, Roberto Fleming, Graham R. TI Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE photosynthetic light harvesting; polarized multidimensional spectroscopy; photosystem II supercomplex ID 2-DIMENSIONAL IR-SPECTROSCOPY; PLANT ANTENNA PROTEIN; ENERGY-TRANSFER; PHOTOSYSTEM-II; ARCHITECTURE; ABSORPTION; DYNAMICS; LHCII AB The CP29 light harvesting complex from green plants is a pigment-protein complex believed to collect, conduct, and quench electronic excitation energy in photosynthesis. We have spectroscopically determined the relative angle between electronic transition dipole moments of its chlorophyll excitation energy transfer pairs in their local protein environments without relying on simulations or an X-ray crystal structure. To do so, we measure a basis set of polarized 2D electronic spectra and isolate their absorptive components on account of the tensor relation between the light polarization sequences used to obtain them. This broadly applicable advance further enhances the acuity of polarized 2D electronic spectroscopy and provides a general means to initiate or feed back on the structural modeling of electronically-coupled chromophores in condensed phase systems, tightening the inferred relations between the spatial and electronic landscapes of ultrafast energy flow. We also discuss the pigment composition of CP29 in the context of light harvesting, energy channeling, and photoprotection within photosystem II. C1 [Ginsberg, Naomi S.; Cheng, Yuan-Chung; Fleming, Graham R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. [Davis, Jeffrey A.] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Hawthorn, Vic 3122, Australia. [Ballottari, Matteo; Bassi, Roberto] Univ Verona, Dept Sci & Technol, I-37134 Verona, Italy. [Cheng, Yuan-Chung] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan. RP Fleming, GR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Phys Biosci Div, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Cheng, Yuan-Chung/A-6566-2008; Davis, Jeffrey/C-6090-2008; OI Cheng, Yuan-Chung/0000-0003-0125-4267; Davis, Jeffrey/0000-0003-4537-4084; Ballottari, Matteo/0000-0001-8410-3397; bassi, roberto/0000-0002-4140-8446 FU Division of Chemical Sciences, Office of Basic Energy Sciences of the Department of Energy [DE-AC03-76SF000098]; Lawrence Berkeley National Laboratory; Australian Research Council FX This work was funded by the Division of Chemical Sciences, Office of Basic Energy Sciences of the Department of Energy through Grant DE-AC03-76SF000098. N.S.G. acknowledges support from a Seaborg Fellowship from Lawrence Berkeley National Laboratory, and J.A.D. from the Australian Research Council Discovery Project. NR 31 TC 32 Z9 32 U1 1 U2 31 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 8 PY 2011 VL 108 IS 10 BP 3848 EP 3853 DI 10.1073/pnas.1012054108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 731PA UT WOS:000288120400011 PM 21321222 ER PT J AU Guo, ZJ Gibson, M Sitha, S Chu, S Mohanty, U AF Guo, Zuojun Gibson, Meghan Sitha, Sanyasi Chu, Steven Mohanty, Udayan TI Role of large thermal fluctuations and magnesium ions in t-RNA selectivity of the ribosome SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE rare events; magnesium binding sites; biomolecular machinery ID METAL-IONS; ACTIVATED EVENTS; TRANSLATION; MOLECULES; DYNAMICS; RIBOZYME; SUBUNIT AB The fidelity of translation selection begins with the base pairing of codon-anticodon complex between the m-RNA and tRNAs. Binding of cognate and near-cognate tRNAs induces 30S subunit of the ribosome to wrap around the ternary complex, EF-Tu(GTP)aa-tRNA. We have proposed that large thermal fluctuations play a crucial role in the selection process. To test this conjecture, we have developed a theoretical technique to determine the probability that the ternary complex, as a result of large thermal fluctuations, forms contacts leading to stabilization of the GTPase activated state. We argue that the configurational searches for such processes are in the tail end of the probability distribution and show that the probability for this event is localized around the most likely configuration. Small variations in the repositioning of cognate relative to near-cognate complexes lead to rate enhancement of the cognate complex. The binding energies of over a dozen unique site- bound magnesium structural motifs are investigated and provide insights into the nature of interaction of divalent metal ions with the ribosome. C1 [Guo, Zuojun; Gibson, Meghan; Sitha, Sanyasi; Mohanty, Udayan] Boston Coll, Dept Chem, Chestnut Hill, MA 02467 USA. [Chu, Steven] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Steven] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Chu, S (reprint author), US DOE, 1000 Independence Ave SW, Washington, DC 20585 USA. EM schu@hq.doe.gov; mohanty@bc.edu RI guo, zuojun/E-8061-2012 OI guo, zuojun/0000-0001-5197-7194 FU National Science Foundation (NSF), Air Force Office of Scientific Research (AFOSR); Packard Foundation FX S.C. acknowledges the support of the National Science Foundation (NSF), Air Force Office of Scientific Research (AFOSR), and Packard Foundation during the single molecule ribosome studies. U.M. thanks the NSF for support and the John Simon Guggenheim Memorial Foundation for a fellowship. NR 38 TC 3 Z9 3 U1 1 U2 10 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 8 PY 2011 VL 108 IS 10 BP 3947 EP 3951 DI 10.1073/pnas.1100671108 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 731PA UT WOS:000288120400028 PM 21368154 ER PT J AU Heo, MY Maslov, S Shakhnovich, E AF Heo, Muyoung Maslov, Sergei Shakhnovich, Eugene TI Topology of protein interaction network shapes protein abundances and strengths of their functional and nonspecific interactions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE genotype-phenotype relationship; a multi-scale evolutionary model cell; evolution of protein interface ID CELL; SPECIFICITY; EXPRESSION; INSIGHTS; SITES; YEAST AB How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a "frustration" effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins. C1 [Heo, Muyoung; Shakhnovich, Eugene] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Maslov, Sergei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Shakhnovich, E (reprint author), Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. EM shakhnovich@chemistry.harvard.edu RI Maslov, Sergei/C-2397-2009 OI Maslov, Sergei/0000-0002-3701-492X FU Brookhaven National Laboratory, Division of Material Science, US Department of Energy [DE-AC02-98CH10886]; National Institutes of Health FX Work at the Brookhaven National Laboratory was carried out under Contract DE-AC02-98CH10886, Division of Material Science, US Department of Energy. Work at Harvard University was supported by the National Institutes of Health. NR 28 TC 48 Z9 48 U1 0 U2 15 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 8 PY 2011 VL 108 IS 10 BP 4258 EP 4263 DI 10.1073/pnas.1009392108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 731PA UT WOS:000288120400081 PM 21368118 ER PT J AU McIntyre, NR Franco, R Shelnutt, JA Ferreira, GC AF McIntyre, Neil R. Franco, Ricardo Shelnutt, John A. Ferreira, Gloria C. TI Nickel(II) Chelatase Variants Directly Evolved from Murine Ferrochelatase: Porphyrin Distortion and Kinetic Mechanism SO BIOCHEMISTRY LA English DT Article ID RESONANCE RAMAN-SPECTRA; PROTOPORPHYRIN-IX; ACTIVE-SITE; METAL-ION; N-METHYLPROTOPORPHYRIN; MOUSE FERROCHELATASE; HEME-BIOSYNTHESIS; TERMINAL ENZYME; PRODUCT RELEASE; VINYL GROUPS AB The heme biosynthetic pathway culminates with the ferrochelatase-catalyzed ferrous iron chelation into protoporphyrin IX to form protoheme. The catalytic mechanism of ferrochelatase has been proposed to involve the stabilization of a nonplanar porphyrin to present the pyrrole nitrogens to the metal ion substrate. Previously, we hypothesized that the ferrochelatase-induced nonplanar distortions of the porphyrin substrate impose selectivity for the divalent metal ion incorporated into the porphyrin ring and facilitate the release of the metalated porphyrin through its reduced affinity for the enzyme. Using resonance Raman spectroscopy, the structural properties of porphyrins bound to the active site of directly evolved Ni(2+)-chelatase variants are now examined with regard to the mode and extent of porphyrin deformation and related to the catalytic properties of the enzymes. The Ni(2+)-chelatase variants (S143T, F323L, and S143T/F323L), which were directly evolved to exhibit an enhanced Ni(2+)-chelatase activity over that of the parent wild-type ferrochelatase, induced a weaker saddling deformation of the porphyrin substrate. Steady-state kinetic parameters of the evolved variants for Ni(2+)- and Fe(2+)-chelatase activities increased compared to those of wild-type ferrochelatase. In particular, the reduced porphyrin saddling deformation correlated with increased catalytic efficiency toward the metal ion substrate (Ni(2+) or Fe(2+)). The results lead us to propose that the decrease in the induced protoporphyrin IX saddling mode is associated with a less stringent metal ion preference by ferrochelatase and a slower porphyrin chelation step. C1 [Shelnutt, John A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87185 USA. [McIntyre, Neil R.; Ferreira, Gloria C.] Univ S Florida, Coll Med, Dept Mol Med, Tampa, FL 33612 USA. [Ferreira, Gloria C.] Univ S Florida, H Lee Moffitt Canc Ctr, Tampa, FL 33612 USA. [Ferreira, Gloria C.] Univ S Florida, Res Inst, Tampa, FL 33612 USA. [Ferreira, Gloria C.] Univ S Florida, Dept Chem, Tampa, FL 33612 USA. [Franco, Ricardo] Univ Nova Lisboa, Dept Quim, REQUIMTE, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal. [Shelnutt, John A.] Univ Georgia, Dept Chem, Athens, GA 30602 USA. RP Shelnutt, JA (reprint author), Sandia Natl Labs, Adv Mat Lab, POB 5800, Albuquerque, NM 87185 USA. EM jasheln@unm.edu; gferreir@health.usf.edu RI Ferreira, Gloria/A-4709-2012; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, FMN/M-5611-2013; REQUIMTE, UCIBIO/N-9846-2013; Franco, Ricardo/C-5247-2008 OI Franco, Ricardo/0000-0002-5139-2871 FU National Institutes of Health [GM080270]; AHA [0655091B]; United States Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000]; FLAD (Luso-American Foundation, Portugal) FX This work was supported by National Institutes of Health Grant GM080270 and AHA Grant 0655091B to G.C.F. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC0494AL85000. FLAD (Luso-American Foundation, Portugal) is gratefully acknowledged for financial support to this work. NR 62 TC 10 Z9 10 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD MAR 8 PY 2011 VL 50 IS 9 BP 1535 EP 1544 DI 10.1021/bi101170p PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 727CB UT WOS:000287773900012 PM 21222436 ER PT J AU Zhang, S Shao, YY Liao, HG Liu, J Aksay, IA Yin, GP Lin, YH AF Zhang, Sheng Shao, Yuyan Liao, Hong-gang Liu, Jun Aksay, Ilhan A. Yin, Geping Lin, Yuehe TI Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation SO CHEMISTRY OF MATERIALS LA English DT Article DE carbon materials; catalysis and catalysts; electrochemistry ID SPHERICAL POLYELECTROLYTE BRUSHES; GOLD-PLATINUM NANOPARTICLES; FUEL-CELLS; ELECTROCATALYTIC ACTIVITY; FUNCTIONALIZED GRAPHENE; AU NANOPARTICLES; GRAPHITE OXIDE; CATALYSTS; ELECTROOXIDATION; SURFACE C1 [Zhang, Sheng; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Zhang, Sheng; Shao, Yuyan; Liao, Hong-gang; Liu, Jun; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. RI Shao, Yuyan/A-9911-2008; Aksay, Ilhan/B-9281-2008; Zhang, Sheng/H-2452-2011; Lin, Yuehe/D-9762-2011; Liao, hong-gang/M-2476-2015 OI Shao, Yuyan/0000-0001-5735-2670; Zhang, Sheng/0000-0001-7532-1923; Lin, Yuehe/0000-0003-3791-7587; FU LDRD program; DOE's Office of Biological and Environmental Research; Battelle [DE-AC05-76RL01830]; China Scholarship Council; PNNL; Natural Science Foundation of China [50872027]; ARRA/AFOSR [FA9550-09-1-0523] FX This work was done at the Pacific Northwest National Laboratory (PNNL) and was supported by a LDRD program. The characterization was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the DOE by Battelle under Contract DE-AC05-76RL01830. S.Z. acknowledges a fellowship from the China Scholarship Council and PNNL to perform this work at PNNL. We acknowledge Dr. C. M. Wang for TEM characterization. G.Y. acknowledges the support from the Natural Science Foundation of China (No. 50872027). I.A.A. acknowledges support from ARRA/AFOSR under Grant No. FA9550-09-1-0523. NR 33 TC 242 Z9 244 U1 24 U2 252 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD MAR 8 PY 2011 VL 23 IS 5 BP 1079 EP 1081 DI 10.1021/cm101568z PG 3 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 726ZP UT WOS:000287767200001 ER PT J AU Screpanti, E De Antoni, A Alushin, GM Petrovic, A Melis, T Nogales, E Musacchio, A AF Screpanti, Emanuela De Antoni, Anna Alushin, Gregory M. Petrovic, Arsen Melis, Tiziana Nogales, Eva Musacchio, Andrea TI Direct Binding of Cenp-C to the Mis12 Complex Joins the Inner and Outer Kinetochore SO CURRENT BIOLOGY LA English DT Article ID BUDDING YEAST KINETOCHORE; CENTROMERE PROTEIN-C; CHROMOSOME SEGREGATION; DNA-BINDING; MOLECULAR ARCHITECTURE; MICROTUBULE ATTACHMENT; FUNCTIONAL DISSECTION; MITOTIC CHECKPOINT; A NUCLEOSOMES; RECOGNITION AB Kinetochores are proteinaceous scaffolds implicated in the formation of load-bearing attachments of chromosomes to microtubules during mitosis. Kinetochores contain distinct chromatin- and microtubule-binding interfaces, generally defined as the inner and outer kinetochore, respectively (reviewed in [1]). The constitutive centromere-associated network (CCAN) and the Knl1-Mis12-Ndc80 complexes (KMN) network are the main multisubunit protein assemblies in the inner and outer kinetochore, respectively. The point of contact between the CCAN and the KMN network is unknown. Cenp-C is a conserved CCAN component whose central and C-terminal regions have been implicated in chromatin binding and dimerization [2-10]. Here, we show that a conserved motif in the N-terminal region of Cenp-C binds directly and with high affinity to the Mis12 complex. Expression in He La cells of the isolated N-terminal motif of Cenp-C prevents outer kinetochore assembly, causing chromosome missegregation. The KMN network is also responsible for kinetochore recruitment of the components of the spindle assembly checkpoint, and we observe checkpoint impairment in cells expressing the Cenp-C N-terminal segment. Our studies unveil a crucial and likely universal link between the inner and outer kinetochore. C1 [Screpanti, Emanuela; De Antoni, Anna; Petrovic, Arsen; Melis, Tiziana; Musacchio, Andrea] European Inst Oncol, Dept Expt Oncol, I-20139 Milan, Italy. [Alushin, Gregory M.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Musacchio, Andrea] Max Planck Inst Mol Physiol, D-44227 Dortmund, Germany. RP Musacchio, A (reprint author), European Inst Oncol, Dept Expt Oncol, Via Adamello 16, I-20139 Milan, Italy. EM andrea.musacchio@ifom-ieo-campus.it OI Musacchio, Andrea/0000-0003-2362-8784 FU Association for International Cancer Research [7/07]; European Research Council [KINCON]; Integrated Project MitoSys [241548]; Italian Association for Cancer Research (AIRC); Cariplo Foundation; Human Frontier Science Program; National Institute of General Medical Sciences; National Institutes of Health; Italian Foundation for Cancer Research (FIRC) FX We thank Sebastiano Pasqualato, Silvia Monzani, and Lucia Massimiliano for providing reagents and the members of the Musacchio laboratory for many helpful discussions. Work in the Musacchio laboratory is generously funded by the Association for International Cancer Research, Programmi Integrati di Oncologia Strategici 7/07, the FP7 European Research Council contract KINCON and the Integrated Project MitoSys (grant agreement number 241548), the Italian Association for Cancer Research (AIRC), the Cariplo Foundation, and the Human Frontier Science Program. Work in the Nogales laboratory is funded by the National Institute of General Medical Sciences. G.M.A. is partially funded by a National Institutes of Health training grant. E.S. is supported by a fellowship of the Italian Foundation for Cancer Research (FIRC). E.N. is a Howard Hughes Medical Institute Investigator. NR 40 TC 119 Z9 119 U1 0 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 J9 CURR BIOL JI Curr. Biol. PD MAR 8 PY 2011 VL 21 IS 5 BP 391 EP 398 DI 10.1016/j.cub.2010.12.039 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 733XX UT WOS:000288298900020 PM 21353556 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, AM Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocci, A Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bona, M Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Comune, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedes, G Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Dennis, C Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S Georgatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitra, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bona, M. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Comune, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Rocha Gesualdi Mello, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedes, G. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Dennis, C. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hott, T. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitra, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norniella Francisco, O. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Study of jet shapes in inclusive jet production in pp collisions at root s=7 TeV using the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC SCATTERING; PARTON DISTRIBUTIONS; HERA; CALORIMETER; QCD; PHOTOPRODUCTION; FRAGMENTATION; ENERGIES; NUCLEUS; TESTS AB Jet shapes have been measured in inclusive jet production in proton-proton collisions at root s = 7 TeV using 3 pb(-1) of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-k(t) algorithm with transverse momentum 30 GeV < p(T) < 600 GeV and rapidity in the region vertical bar y vertical bar < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and nonperturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Bella, L. Aperio; Arnaez, O.; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Norniella Francisco, O.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11001, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bansil, H. S.; Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; McMahon, T. J.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Typaldos, D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cristinziani, M.; Desch, K.; Fischer, P.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Dingfelder, J.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Ilha Fundao, BR-21945970 Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn Bucharest Magurele, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Gildemeister, O.; Godlewski, J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grafstroem, P.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltrana, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Cn Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Cn Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Cn Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Cn Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, CNRS, IN2P3, Lab Phys Corpusculaire,Clermont Univ, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Boelaert, N.; Capua, M.; Crosetti, G.; Dam, M.; Driouichi, C.; Facius, K.; Fazio, S.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; La Rotonda, L.; Lundquist, J.; Mackeprang, R.; Mastroberardino, A.; Morello, G.; Petersen, T. C.; Rensch, B.; Salvatore, D.; Schioppa, M.; Simonyan, M.; Susinno, G.; Tassi, E.; Xella, S.] INFN Grp Collegato Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] CNRS, IN2P3, LPSC, FR-38026 Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Jp Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Jp Hiroshima 7315193, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Jp Kobe 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto, Jp Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto, Jp Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Natl Univ La Plata, Dept Fis, FCE, IFLP,CONICET UNLP, RA-1900 La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Coluccia, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Cazzato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; McMahon, T. R.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Baker, S.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS,IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Benchouk, C.; Bernardet, K.; Bousson, N.; Cerna, C.; Clemens, J. C.; Coadou, Y.; Correard, S.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Randall Lab 2477, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Acerbi, E.; Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Banfi, D.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Lombardo, V. P.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN Sez Milano, IT-20133 Milan, Italy. [Acerbi, E.; Aleppo, M.; Andreazza, A.; Banfi, D.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Koletsou, I.; Lazzaro, A.; Lombardo, V. P.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, RU-117924 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Romaniouk, A.; Smirnov, S. Yu] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Jp Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Complesso Univ Monte St Angelo, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Ru Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Bruncko, D.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Conde Muino, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, PT-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, IT-00185 Rome, Italy. [Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, RUPHE, Fac Sci Ain Chock, Ma Casablanca, Morocco. CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [Cherkaoui El Moursli, R.; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Virchaux, M.] CEA, DSM IRFU, Ctr Etud Saclay, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.; Taylor, G.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Jp Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Au Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Tw Taipei 11529, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Il Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Il Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Joo, K. K.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Losty, M. J.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Jp Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN Grp Collegato Udine, IT-34014 Trieste, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona IMB CNM CSIC, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, Sw; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Gesamthsch Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, IN2P3, Ctr Calcul, F-69622 Villeurbanne, France. [Aguilar-Saavedra, J. A.; Castro, N. F.] LIP, Coimbra, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, P-1200 Lisbon, Portugal. [Arfaoui, S.] CPPM, Marseille, France. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bold, T.; Grabowska-Bold, I.] AGH Univ Sci & Technol, FPACS, Krakow, Poland. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, P-3000 Coimbra, Portugal. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Ottawa, ON, Canada. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1200 Lisbon, Portugal. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Guler, H.] Univ Montreal, Montreal, PQ, Canada. [Hill, D.; Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, ASGC, Taipei 115, Taiwan. [Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Onofre, A.] Univ Minho, Dept Fis, P-4719 Braga, Portugal. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Urquijo, P.; Vickey, T.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Yu, J.] CEA, Gif Sur Yvette, France. [Wu, Y.; Yuan, L.] LPNHE, Paris, France. [Zhong, J.] Nanjing Univ, Nanjing, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Akimov, Andrey/N-1769-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tassi, Enrico/K-3958-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Nemecek, Stanislav/C-3487-2012; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Losada, Marta/B-2261-2010; Gutierrez, Phillip/C-1161-2011; valente, paolo/A-6640-2010; Rotaru, Marina/A-3097-2011; Stoicea, Gabriel/B-6717-2011; Buttar, Craig/D-3706-2011; de Groot, Nicolo/A-2675-2009; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Jakubek, Jan/E-6530-2011; Conde Muino, Patricia/F-7696-2011; Robson, Aidan/G-1087-2011; Bauer, Florian/G-8816-2011; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Casado, Pilar/H-1484-2015; BESSON, NATHALIE/L-6250-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; la rotonda, laura/B-4028-2016 OI Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Peleganchuk, Sergey/0000-0003-0907-7592; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; valente, paolo/0000-0002-5413-0068; Rotaru, Marina/0000-0003-3303-5683; Stoicea, Gabriel/0000-0002-7511-4614; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Santos, Helena/0000-0003-1710-9291; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; la rotonda, laura/0000-0002-6780-5829 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR, and VSC CR, Czech Republic; DNRF, DNSRC, and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG, and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF, and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK), and BNL (USA) and in the Tier-2 facilities worldwide. NR 49 TC 28 Z9 28 U1 4 U2 48 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD MAR 8 PY 2011 VL 83 IS 5 AR 052003 DI 10.1103/PhysRevD.83.052003 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731PG UT WOS:000288121000002 ER PT J AU Webster, KD Crow, A Fletcher, DA AF Webster, Kevin D. Crow, Ailey Fletcher, Daniel A. TI An AFM-Based Stiffness Clamp for Dynamic Control of Rigidity SO PLOS ONE LA English DT Article ID SINGLE-CELL RESPONSE; OPTICAL TWEEZERS; FORCE; SUBSTRATE; MECHANICS AB Atomic force microscopy (AFM) has become a powerful tool for measuring material properties in biology and imposing mechanical boundary conditions on samples from single molecules to cells and tissues. Constant force or constant height can be maintained in an AFM experiment through feedback control of cantilever deflection, known respectively as a 'force clamp' or 'position clamp'. However, stiffness, the third variable in the Hookean relation F= kx that describes AFM cantilever deflection, has not been dynamically controllable in the same way. Here we present and demonstrate a 'stiffness clamp' that can vary the apparent stiffness of an AFM cantilever. This method, employable on any AFM system by modifying feedback control of the cantilever, allows rapid and reversible tuning of the stiffness exposed to the sample in a way that can decouple the role of stiffness from force and deformation. We demonstrated the AFM stiffness clamp on two different samples: a contracting fibroblast cell and an expanding polyacrylamide hydrogel. We found that the fibroblast, a cell type that secretes and organizes the extracellular matrix, exhibited a rapid, sub-second change in traction rate (dF/dt) and contraction velocity (dx/dt) in response to step changes in stiffness between 1-100 nN/mu m. This response was independent of the absolute contractile force and cell height, demonstrating that cells can react directly to changes in stiffness alone. In contrast, the hydrogel used in our experiment maintained a constant expansion velocity (dx/dt) over this range of stiffness, while the traction rate (dF/dt) changed with stiffness, showing that passive materials can also behave differently in different stiffness environments. The AFM stiffness clamp presented here, which is applicable to mechanical measurements on both biological and non-biological samples, may be used to investigate cellular mechanotransduction under a wide range of controlled mechanical boundary conditions. C1 [Webster, Kevin D.; Crow, Ailey; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Webster, KD (reprint author), Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. EM fletch@berkeley.edu FU NSF IGERT [DGE-0333455]; NIH [R01 GM072736]; NCI PS-OC [1U54CA143836-01] FX NSF IGERT DGE-0333455 (www.nsf.gov), NIH R01 GM072736 (www.nih.gov), NCI PS-OC 1U54CA143836-01 (www.cancer.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 28 TC 22 Z9 22 U1 1 U2 28 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 8 PY 2011 VL 6 IS 3 AR e17807 DI 10.1371/journal.pone.0017807 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 732FI UT WOS:000288170000061 PM 21408137 ER PT J AU Leonard, F AF Leonard, Francois TI Reduced Joule heating in nanowires SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON NANOWIRES; TRANSPORT AB The temperature distribution in nanowires due to Joule heating is studied analytically using a continuum model and a Green's function approach. We show that the temperatures reached in nanowires can be much lower than that predicted by bulk models of Joule heating, due to heat loss at the nanowire surface that is important at nanoscopic dimensions, even when the thermal conductivity of the environment is relatively low. In addition, we find that the maximum temperature in the nanowire scales weakly with length, in contrast to the bulk system. A simple criterion is presented to assess the importance of these effects. The results have implications for the experimental measurements of nanowire thermal properties, for thermoelectric applications, and for controlling thermal effects in nanowire electronic devices. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561772] C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Leonard, F (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM fleonar@sandia.gov FU Sandia National Laboratories; United States Department of Energy [DEAC01-94-AL85000] FX This project is supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DEAC01-94-AL85000. NR 11 TC 11 Z9 11 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 7 PY 2011 VL 98 IS 10 AR 103101 DI 10.1063/1.3561772 PG 3 WC Physics, Applied SC Physics GA 733QH UT WOS:000288277200062 ER PT J AU Sales, DL Guerrero, E Rodrigo, JF Galindo, PL Yanez, A Shafi, M Khatab, A Mari, RH Henini, M Novikov, S Chisholm, MF Molina, SI AF Sales, D. L. Guerrero, E. Rodrigo, J. F. Galindo, P. L. Yanez, A. Shafi, M. Khatab, A. Mari, R. H. Henini, M. Novikov, S. Chisholm, M. F. Molina, S. I. TI Distribution of bismuth atoms in epitaxial GaAsBi SO APPLIED PHYSICS LETTERS LA English DT Article ID MOLECULAR-BEAM EPITAXY; GAAS1-XBIX; GROWTH AB The distribution of Bi atoms in epitaxial GaAs((1-x)) Bi(x) is analyzed through aberration-corrected Z-contrast images. The relation between the atomic number and the intensity of the images allows quantifying the distribution of Bi atoms in this material. A bidimensional map of Bi atoms is extracted showing areas where nanoclustering is possible and evidencing the location of Bi at As-substitutional positions in the lattice. The distribution of Bi atoms differs from a random spatial pattern of Bi atoms in the material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562376] C1 [Sales, D. L.; Guerrero, E.; Rodrigo, J. F.; Molina, S. I.] Univ Cadiz, Dept Ciencia Mat & IM & QI, Fac Ciencias, Cadiz 11510, Spain. [Galindo, P. L.; Yanez, A.] Univ Cadiz, Dept Lenguajes & Sistemas Informat, Cadiz 11510, Spain. [Shafi, M.; Khatab, A.; Mari, R. H.; Henini, M.; Novikov, S.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Chisholm, M. F.] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA. RP Sales, DL (reprint author), Univ Cadiz, Dept Ciencia Mat & IM & QI, Fac Ciencias, Campus Rio San Pedro S-N, Cadiz 11510, Spain. EM david.sales@uca.es RI Guerrero Vazquez, Elisa/F-5407-2010; Henini, Mohamed/E-8520-2012; Sales, David/K-9453-2014; GALINDO, PEDRO/L-6183-2014; Molina, Sergio/A-8241-2008 OI Guerrero Vazquez, Elisa/0000-0002-8320-0811; Novikov, Sergei/0000-0002-3725-2565; Henini, Mohamed/0000-0001-9414-8492; Sales, David/0000-0001-6652-514X; GALINDO, PEDRO/0000-0003-0892-8113; Molina, Sergio/0000-0002-5221-2852 FU Spanish MCI [TEC2008-06756-C03-02, TEC2008-06756-C03-03, CSD2009-00013]; Junta de Andalucia (PAI research groups [TEP-120, TIC-145, P08-TEP-03516, P09-TEP-5403]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. DOE; UK EPSRC FX This work was supported by the Spanish MCI (Grant Nos. TEC2008-06756-C03-02 and TEC2008-06756-C03-03 and Consolider-Ingenio 2010 IMAGINE, CSD2009-00013), the Junta de Andalucia (PAI research groups TEP-120 and TIC-145; projects P08-TEP-03516 and P09-TEP-5403), the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. DOE, and the UK EPSRC. NR 15 TC 19 Z9 19 U1 0 U2 36 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 7 PY 2011 VL 98 IS 10 AR 101902 DI 10.1063/1.3562376 PG 3 WC Physics, Applied SC Physics GA 733QH UT WOS:000288277200015 ER PT J AU Vieira, SMC Hsieh, GW Unalan, HE Dag, S Amaratunga, GAJ Milne, WI AF Vieira, Sara M. C. Hsieh, Gen-Wen Unalan, Husnu E. Dag, Sefa Amaratunga, Gehan A. J. Milne, William I. TI Thin-film transistors based on poly, (3,3 '''-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambient stability SO APPLIED PHYSICS LETTERS LA English DT Article AB The ambient stability of thin-film transistors (TFTs) based on zinc oxide (ZnO) nanowires embedded in poly (3,3'''-dialkyl-quarterthiophene) was monitored through time dependence of electrical characteristics over a period of 16 months. The hybrid-based TFT showed an initial hole mobility in the linear regime of 4.2 x 10(-4) cm(2)/V s. After 16 months storage in ambient conditions (exposed to air, moisture, and light) the mobility decreased to 2.3 x 10(-5) cm(2)/V s. Comparatively the organic-based TFT lost total carrier mobility after one month storage making the hybrid-based TFTs more suitable for transistor applications when improved stability combined with structural flexibility are required. (C) 2011 American Institute of Physics. [doi:10.1063/1.3560982] C1 [Vieira, Sara M. C.] INESC MN, P-1000029 Lisbon, Portugal. [Hsieh, Gen-Wen; Amaratunga, Gehan A. J.; Milne, William I.] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England. [Unalan, Husnu E.] Middle E Tech Univ, Dept Met & Mat Engn, TR-06531 Ankara, Turkey. [Dag, Sefa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Computat Res Div, Berkeley, CA 94720 USA. [Vieira, Sara M. C.] IN, P-1000029 Lisbon, Portugal. RP Vieira, SMC (reprint author), INESC MN, Rua Alves Redol 9, P-1000029 Lisbon, Portugal. EM svieira@inesc-mn.pt RI Unalan, Husnu/F-8392-2012 OI Unalan, Husnu/0000-0003-3667-179X FU Portuguese Foundation of Science and Technology (FCT); Overseas Research Studentships Award; Cambridge Overseas Trust; DOE/SC/BES/MSED [DOE-AC0205CH11231] FX One of the authors (S.M.C.V.) acknowledges the Portuguese Foundation of Science and Technology (FCT) through the Ciencia2007 program. Another author (G.-W.H.) would like to thank the Overseas Research Studentships Award and Cambridge Overseas Trust for financial support. The work performed by another author (S.D.) was supported by DOE/SC/BES/MSED under Contract No. DOE-AC0205CH11231. NR 14 TC 1 Z9 1 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 7 PY 2011 VL 98 IS 10 AR 102106 DI 10.1063/1.3560982 PG 3 WC Physics, Applied SC Physics GA 733QH UT WOS:000288277200032 ER PT J AU Doughty, B Haber, LH Hackett, C Leone, SR AF Doughty, Benjamin Haber, Louis H. Hackett, Christina Leone, Stephen R. TI Photoelectron angular distributions from autoionizing 4s(1)4p(6)6p(1) states in atomic krypton probed with femtosecond time resolution SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID RESONANT MULTIPHOTON IONIZATION; PHOTOIONIZATION CONTINUUM; ABSORPTION-SPECTRA; EXCITED-STATES; THRESHOLD; BARIUM; XENON; KR; DISSOCIATION; ELECTRONS AB Photoelectron angular distributions (PADs) are obtained for a pair of 4s(1)4p(6)6p(1) (a singlet and a triplet) autoionizing states in atomic krypton. A high-order harmonic pulse is used to excite the pair of states and a time-delayed 801 nm ionization pulse probes the PADs to the final 4s(1)4p(6) continuum with femtosecond time resolution. The ejected electrons are detected with velocity map imaging to retrieve the time-resolved photoelectron spectrum and PADs. The PAD for the triplet state is inherently separable by virtue of its longer autoionization lifetime. Measuring the total signal over time allows for the PADs to be extracted for both the singlet state and the triplet state. Anisotropy parameters for the triplet state are measured to be beta(2) = 0.55 +/- 0.17 and beta(4) = -0.01 +/- 0.10, while the singlet state yields beta(2) = 2.19 +/- 0.18 and beta(4) = 1.84 +/- 0.14. For the singlet state, the ratio of radial transition dipole matrix elements, X, of outgoing S to D partial waves and total phase shift difference between these waves, Delta, are determined to be X = 0.56 +/- 0.08 and Delta = 2.19 +/- 0.11 rad. The continuum quantum defect difference between the S and D electron partial waves is determined to be -0.15 +/- 0.03 for the singlet state. Based on previous analyses, the triplet state is expected to have anisotropy parameters independent of electron kinetic energy and equal to beta(2) = 5/7 and beta(4) = -12/7. Deviations from the predicted values are thought to be a result of state mixing by spin-orbit and configuration interactions in the intermediate and final states; theoretical calculations are required to quantify these effects. (c) 2011 American Institute of Physics. [doi:10.1063/1.3547459] C1 [Doughty, Benjamin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Doughty, B (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016 OI Doughty, Benjamin /0000-0001-6429-9329 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, US Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge many useful and stimulating conversations with Dr. Zhi-Heng Loh and Dr. Daniel Strasser. Financial support is provided by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, US Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 10 Z9 10 U1 1 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 094307 DI 10.1063/1.3547459 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300028 PM 21384969 ER PT J AU Duda, JC Saltonstall, CB Norris, PM Hopkins, PE AF Duda, John C. Saltonstall, Christopher B. Norris, Pamela M. Hopkins, Patrick E. TI Assessment and prediction of thermal transport at solid-self-assembled monolayer junctions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MOLECULAR JUNCTIONS; DYNAMICS; CONDUCTANCE AB Self-assembled monolayers (SAMs) have recently garnered much interest due to their unique electrical, chemical, and thermal properties. Several studies have focused on thermal transport across solid-SAM junctions, demonstrating that interface conductance is largely insensitive to changes in SAM length. In the present study, we have investigated the vibrational spectra of alkanedithiol-based SAMs as a function of the number of methylene groups forming the molecular backbone via Hartree-Fock methods. In the case of Au-alkanedithiol junctions, it is found that despite the addition of nine new vibrational modes per added methylene group, only one of these modes falls below the maximum phonon frequency of Au. In addition, the alkanedithiol one-dimensional density of normal modes (modes per unit energy per unit length) is nearly constant regardless of chain length, explaining the observed insensitivity. Furthermore, we developed a diffusive transport model intended to predict interface conductance at solid-SAM junctions. It is shown that this predictive model is in an excellent agreement with prior experimental data available in the literature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3557823] C1 [Duda, John C.; Saltonstall, Christopher B.; Norris, Pamela M.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Duda, John C.; Hopkins, Patrick E.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Duda, JC (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM duda@virginia.edu; cbs4b@virginia.edu; pamela@virginia.edu; pehopki@sandia.gov RI Duda, John/A-7214-2011 FU National Science Foundation; LDRD through the Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX J.C.D. is appreciative for funding from the National Science Foundation Graduate Research Fellowship Program. C. B. S. is appreciative for funding from U.Va. through the form of a Commonwealth Fellowship, as well as C. O. Trindle at U.Va. for his insightful discussions regarding the density of quantum states. P. E. H. is appreciative for funding from the LDRD program office through the Sandia National Laboratories Harry S. Truman Fellowship Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 29 TC 12 Z9 12 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 094704 DI 10.1063/1.3557823 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300053 PM 21384994 ER PT J AU Kay, JJ Paterson, G Costen, ML Strecker, KE McKendrick, KG Chandler, DW AF Kay, Jeffrey J. Paterson, Grant Costen, Matthew L. Strecker, Kevin E. McKendrick, Kenneth G. Chandler, David W. TI Communication: Direct angle-resolved measurements of collision dynamics with electronically excited molecules: NO(A(2)Sigma(+))+Ar SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIFFERENTIAL CROSS-SECTIONS; ENERGY-TRANSFER; BIMOLECULAR REACTIONS AB We report direct doubly differential (quantum state and angle-resolved) scattering measurements involving short-lived electronically excited molecules using crossed molecular beams. In our experiment, supersonic beams of nitric oxide and argon atoms collide at 90 degrees. In the crossing region, NO molecules are excited to the A(2)Sigma(+) state by a pulsed nanosecond laser, undergo rotationally inelastic collisions with Ar atoms, and are then detected 400 ns later (approximately twice the radiative lifetime of the A(2)Sigma(+) state) by 1 + 1' multiphoton ionization via the E-2 Sigma(+) state. The velocity distributions of the scattered molecules are recorded using velocity-mapped ion imaging. The resulting images provide a direct measurement of the state-to-state differential scattering cross sections. These results demonstrate that sufficient scattering events occur during the short lifetimes typical of molecular excited states (similar to 200 ns, in this case) to allow spectroscopically detected quantum-state-resolved measurements of products of excited-state collisions. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563016] C1 [Paterson, Grant; Costen, Matthew L.; McKendrick, Kenneth G.] Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Kay, Jeffrey J.; Strecker, Kevin E.; Chandler, David W.] Sandia Natl Labs, Livermore, CA 94550 USA. RP McKendrick, KG (reprint author), Heriot Watt Univ, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. EM k.g.mckendrick@hw.ac.uk; chand@sandia.gov RI McKendrick, Kenneth/C-7235-2014; Costen, Matthew/K-5178-2012 OI McKendrick, Kenneth/0000-0001-8979-2195; Costen, Matthew/0000-0002-6491-9812 NR 16 TC 15 Z9 15 U1 2 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 091101 DI 10.1063/1.3563016 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300001 PM 21384942 ER PT J AU Paz, SA Leiva, EPM Jellinek, J Mariscal, MM AF Paz, S. A. Leiva, E. P. M. Jellinek, J. Mariscal, M. M. TI Properties of rotating nanoalloys formed by cluster collision: A computer simulation study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID NANOPARTICLES; NANOCLUSTERS AB Results of dynamical simulations of collision-induced formation and properties of bimetallic nanoparticles are presented and analyzed. The analysis includes the effects of the collision energy and the impact parameter. For nonzero impact parameters, the formed (in many cases Janus-type) nanoparticles are rotating. The energy of the rotating nanoparticles is decomposed into the rotational and vibrational components, and the structural effects of these components are analyzed. Comparison is made with the case of the corresponding homoatomic systems, formed by collision of nanoparticles with the same elemental composition. (c) 2011 American Institute of Physics. [doi:10.1063/1.3556530] C1 [Paz, S. A.; Leiva, E. P. M.; Mariscal, M. M.] Univ Nacl Cordoba, Fac Cs Quim, Dept Matemat & Fis, INFIQC, RA-5000 Cordoba, Argentina. [Jellinek, J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Paz, SA (reprint author), Univ Nacl Cordoba, Fac Cs Quim, Dept Matemat & Fis, INFIQC, RA-5000 Cordoba, Argentina. EM marmariscal@fcq.unc.edu.ar RI Mariscal, Marcelo /G-1849-2011; Paz, Sergio/P-1308-2014 OI Paz, Sergio/0000-0001-9471-0502 FU CONICET PIP [11220080100983, 946, 00340, 01581]; CONICET; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, US Department of Energy [DE-AC-02-06CH11357] FX The authors wishes to thank CONICET PIP: 11220080100983, Secyt-UNC, Program BID (PICT 2006 No. 946, PICT 2007 No. 00340, and PME 2006 No. 01581) for financial support. S.A.P thanks CONICET for a fellowship. J.J. was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, US Department of Energy under Contract No. DE-AC-02-06CH11357. NR 19 TC 4 Z9 4 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 094701 DI 10.1063/1.3556530 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300050 PM 21384991 ER PT J AU Vukmirovic, N Wang, LW AF Vukmirovic, Nenad Wang, Lin-Wang TI Overlapping fragments method for electronic structure calculation of large systems SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ALKYL FUNCTIONAL-GROUP; II FORCE-FIELDS; MOLECULAR-DYNAMICS; ALKANE MOLECULES; QUANTUM DOTS; POLYMERS; SEMICONDUCTORS; PSEUDOPOTENTIALS; SIMULATIONS; DERIVATION AB We present a method for the calculation of the electronic structure of systems that contain tens of thousands of atoms. The method is based on the division of the system into mutually overlapping fragments and the representation of the single-particle Hamiltonian in the basis of eigenstates of these fragments. In practice, for the range of the system size that we studied (up to tens of thousands of atoms), the dominant part of the calculation scales linearly with the size of the system when all the states within a fixed energy interval are required. The method is highly suitable for making good use of parallel computing architectures. We illustrate the method by applying it to diagonalize the single-particle Hamiltonian obtained using the density functional theory based charge patching method in the case of amorphous alkane and polythiophene polymers. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3560956] C1 [Vukmirovic, Nenad; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Vukmirovic, Nenad] Univ Belgrade, Comp Sci Lab, Inst Phys Belgrade, Belgrade 11080, Serbia. RP Vukmirovic, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM nenad.vukmirovic@ipb.ac.rs RI Vukmirovic, Nenad/D-9489-2011 OI Vukmirovic, Nenad/0000-0002-4101-1713 FU DMS/BES/SC of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Science and Technological Development of the Republic of Serbia [ON171017]; European Commission FX This work was supported by the DMS/BES/SC of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It used the resources of the National Energy Research Scientific Computing Center (NERSC) and the INCITE project allocations within the National Center for Computational Sciences (NCCS). In the last stages of this work, NV was supported by the Ministry of Science and Technological Development of the Republic of Serbia, under Project No. ON171017, and the European Commission under EU FP7 projects PRACE-1IP, HP-SEE, and EGI-InSPIRE. NR 36 TC 11 Z9 11 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 094119 DI 10.1063/1.3560956 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300021 PM 21384962 ER PT J AU Hodovanets, H Mun, ED Thaler, A Bud'ko, SL Canfield, PC AF Hodovanets, H. Mun, E. D. Thaler, A. Bud'ko, S. L. Canfield, P. C. TI Thermoelectric power of Ba(Fe1-xRux)(2)As-2 and Ba(Fe1-xCox)(2)As-2: Possible changes of Fermi surface with and without changes in electron count SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; TRANSITION; METAL; PRESSURE; STATE AB Temperature-dependent, in-plane, thermoelectric power (TEP) data are presented for Ba(Fe1-xRux)(2)As-2 (0 <= x <= 0.36) single crystals. The previously outlined x-T phase diagram for this system is confirmed. The analysis of TEP evolution with Ru doping suggests significant changes in the electronic structure, correlations, and/or scattering occurring near similar to 7%, similar to 30%, and possibly similar to 20% of Ru-doping levels. These results are compared with an extended set of TEP data for the electron-doped Ba(Fe1-xCox)(2)As-2 series for which initial angle-resolved photoemission spectroscopy and transport studies have identified x similar to 0.02 as the concentration at which the Lifshitz transition takes place. In addition to x similar to 0.02 the Co levels of x approximate to 0.11 and 0.22 are identified as concentrations at which similar changes occur. C1 [Hodovanets, H.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Hodovanets, H (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU US Department of Energy by Iowa State University [DE-AC02-07CH11358]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; State of Iowa through the Iowa State University FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. S. L. B. and P. C. C. were supported in part by the State of Iowa through the Iowa State University. Discussions (P. C. C., S. L. B.) about "TEP as a wonder measurement" with Bryan Coles are fondly remembered. The help of A. Kracher and W. E. Straszheim in the elemental analysis of the crystals and of J. Q. Yan, N. Ni, and S. Ran in synthesis is greatly appreciated. NR 41 TC 13 Z9 13 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD MAR 7 PY 2011 VL 83 IS 9 AR 094508 DI 10.1103/PhysRevB.83.094508 PG 5 WC Physics, Condensed Matter SC Physics GA 730XG UT WOS:000288070100008 ER PT J AU Ong, KP Singh, DJ Wu, P AF Ong, Khuong P. Singh, David J. Wu, Ping TI Analysis of the thermoelectric properties of n-type ZnO SO PHYSICAL REVIEW B LA English DT Article ID AL-DOPED ZNO; THERMAL-CONDUCTIVITY; ZINC-OXIDE; CERAMICS; PERFORMANCE; (ZN1-YMGY)(1-X)ALXO; GA AB We report an investigation of the temperature- and doping-dependent thermoelectric behavior of n-type ZnO. The results are based on a combination of experimental data from the literature and calculated transport functions obtained from Boltzmann transport theory applied to the first-principles electronic structure. From this we obtain the dependence of the figure of merit ZT on doping and temperature. We find that improvement of the lattice thermal conductivity is essential for obtaining high ZT in n-type ZnO. C1 [Ong, Khuong P.; Wu, Ping] Inst High Performance Comp, Singapore 138632, Singapore. [Singh, David J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ong, KP (reprint author), Inst High Performance Comp, 1 Fusionopolis Way, Singapore 138632, Singapore. RI Singh, David/I-2416-2012; OI Ong, Khuong/0000-0003-2835-441X FU US Department of Energy, Basic Energy Sciences, through the S3TEC Energy Frontier Research Center; Institute of High Performance Computing (IHPC); Agency of Science, Technology, and Research (A*STAR) FX This work was supported by the US Department of Energy, Basic Energy Sciences, through the S3TEC Energy Frontier Research Center (D.J.S.), the Institute of High Performance Computing (IHPC) (K.P.O. and P.W.), and the Agency of Science, Technology, and Research (A*STAR) (K.P.O. and P.W.). D.J.S. is very grateful for the hospitality of the IHPC where a portion of this work was performed. NR 42 TC 120 Z9 120 U1 14 U2 121 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR 7 PY 2011 VL 83 IS 11 AR 115110 DI 10.1103/PhysRevB.83.115110 PG 5 WC Physics, Condensed Matter SC Physics GA 730XP UT WOS:000288071100002 ER PT J AU Talbayev, D Trugman, SA Lee, S Yi, HT Cheong, SW Taylor, AJ AF Talbayev, D. Trugman, S. A. Lee, Seongsu Yi, Hee Taek Cheong, S-W Taylor, A. J. TI Long-wavelength magnetic and magnetoelectric excitations in the ferroelectric antiferromagnet BiFeO3 SO PHYSICAL REVIEW B LA English DT Article ID MULTIFERROICS; TEMPERATURE; FILMS AB We present a terahertz spectroscopic study of magnetic excitations in ferroelectric antiferromagnet BiFeO3. We interpret the observed spectrum of long-wavelength magnetic resonance modes in terms of the normal modes of thematerial's cycloidal antiferromagnetic structure. We find that the modulated Dzyaloshinski-Moriya interaction leads to a splitting of the out-of-plane resonance modes. We also assign one of the observed absorption lines to an electromagnon excitation that results from the magnetoelectric coupling between the ferroelectric polarization and the cycloidal magnetic structure of BiFeO3. C1 [Talbayev, D.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Trugman, S. A.; Taylor, A. J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Lee, Seongsu; Yi, Hee Taek; Cheong, S-W] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Lee, Seongsu; Yi, Hee Taek; Cheong, S-W] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Talbayev, D (reprint author), Yale Univ, Dept Chem, POB 208107, New Haven, CT 06520 USA. EM diyar.talbayev@yale.edu RI Talbayev, Diyar/C-5525-2009; Yi, Hee Taek/F-6399-2010; OI Talbayev, Diyar/0000-0003-3537-1656; Trugman, Stuart/0000-0002-6688-7228 FU DOE [DE-FG02-07ER46382]; LDRD program; Center for Integrated Nanotechnologies FX The work at Los Alamos National Laboratory was supported by the LDRD program and by the Center for Integrated Nanotechnologies. The work at Rutgers University was supported by the DOE grant no. DE-FG02-07ER46382. NR 31 TC 30 Z9 31 U1 0 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR 7 PY 2011 VL 83 IS 9 AR 094403 DI 10.1103/PhysRevB.83.094403 PG 5 WC Physics, Condensed Matter SC Physics GA 730XG UT WOS:000288070100004 ER PT J AU Nikolov, N Schunck, N Nazarewicz, W Bender, M Pei, J AF Nikolov, N. Schunck, N. Nazarewicz, W. Bender, M. Pei, J. TI Surface symmetry energy of nuclear energy density functionals SO PHYSICAL REVIEW C LA English DT Article ID HARMONIC-OSCILLATOR BASIS; FOCK-BOGOLYUBOV EQUATIONS; GROUND-STATE PROPERTIES; NEUTRON-DRIP-LINE; MEAN-FIELD MODELS; FISSION-BARRIERS; MASS FORMULA; SUPERHEAVY NUCLEI; SKYRME FORCES; COLLECTIVE DYNAMICS AB We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis. C1 [Nikolov, N.; Schunck, N.; Nazarewicz, W.; Pei, J.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nikolov, N.; Schunck, N.; Nazarewicz, W.; Pei, J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Schunck, N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Bender, M.] Univ Bordeaux 1, IN2P3, CENBG, UMR5797, F-33175 Gradignan, France. RP Nikolov, N (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Pei, Junchen/E-3532-2010; Bender, Michael/B-9004-2009; OI Schunck, Nicolas/0000-0002-9203-6849 FU US Department of Energy (DOE) [DE-FC02-09ER41583, DE-FG02-96ER40963]; National Nuclear Security Administration under the Stewardship Science Academic Alliances through DOE [DE-FG52-09NA29461]; NEUP [DE-AC07-05ID14517, 00091100]; United States Department of Energy Office of Science [DE-AC52-07NA27344 Clause B-9999, Clause H-9999]; American Recovery and Reinvestment Act [111-5]; DOE by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Useful discussions with J. Skalski, A. Staszczak, M. Stoitsov, and P. G. Reinhard are gratefully appreciated. This work was supported by the US Department of Energy (DOE) under Contracts No. DE-FC02-09ER41583 (UNEDF SciDAC Collaboration), No. DE-FG02-96ER40963 (University of Tennessee); by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Grant No. DE-FG52-09NA29461; and by the NEUP Grant No. DE-AC07-05ID14517 (Subgrant No. 00091100). Funding was also provided by the United States Department of Energy Office of Science, Nuclear Physics Program pursuant to Contract DE-AC52-07NA27344 Clause B-9999, Clause H-9999 and the American Recovery and Reinvestment Act, Pub. L. 111-5. This work was partly performed under the auspices of the DOE by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Computational resources were provided by the National Center for Computational Sciences at Oak Ridge National Laboratory. NR 146 TC 48 Z9 48 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR 7 PY 2011 VL 83 IS 3 AR 034305 DI 10.1103/PhysRevC.83.034305 PG 15 WC Physics, Nuclear SC Physics GA 730XX UT WOS:000288072000003 ER PT J AU Barger, V Shaughnessy, G Yencho, B AF Barger, Vernon Shaughnessy, Gabe Yencho, Brian TI Many leptons at the LHC from the next-to-minimal supersymmetric standard model SO PHYSICAL REVIEW D LA English DT Article ID MSSM; PROGRAM; NMSSM AB We present a benchmark in the parameter space of the next-to-minimal supersymmetric standard model (NMSSM) that provides for a dramatic multilepton signal and no jets containing 5 or more leptons resulting from the cascade decays of the third lightest neutralino, chi(0)(3), and the lightest chargino, chi(+/-)(1), via light charged sleptons. This is a very clean signal with almost no standard model (SM) background. In some cases, a total signal of >= 3 leptons + 0 jets can be detected at the 5 sigma level at the LHC running at root s = 7 TeV with approximately 3 fb(-1) of data and with less than 1 fb(-1) when running at root s = 14 TeV. In addition, kinematic edges in the invariant mass distributions of 2, 3, and 4 leptons are easily detectable with large integrated luminosities (similar to 600 fb(-1)) which can lead to simple measurements of the mass differences of heavy particles in the decay chains, including all combinations of the three lightest neutralinos. C1 [Barger, Vernon; Yencho, Brian] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU U.S. Department of Energy [DE-FG02-95ER40896, DE-AC02-06CH11357, DE-FG02-91ER40684]; Wisconsin Alumni Research Foundation FX The authors would like to thank the referee for the constructive comments that were given and W. Zhu and P. Langacker for their valuable early participation in this study. This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG02-95ER40896, DE-AC02-06CH11357, DE-FG02-91ER40684 and in part by the Wisconsin Alumni Research Foundation. NR 41 TC 5 Z9 5 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 7 PY 2011 VL 83 IS 5 AR 055006 DI 10.1103/PhysRevD.83.055006 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 730YC UT WOS:000288072500008 ER PT J AU Carena, M Draper, P Heinemeyer, S Liu, T Wagner, CEM Weiglein, G AF Carena, Marcela Draper, Patrick Heinemeyer, Sven Liu, Tao Wagner, Carlos E. M. Weiglein, Georg TI Probing the Higgs sector of high-scale supersymmetry-breaking models at the Tevatron SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; LOCAL SUPERSYMMETRY; PARTICLE PHYSICS; MASS-SPECTRUM; SUPERGRAVITY; MSSM; BOSONS; SEARCH; UNIFICATION; HIERARCHY AB A canonical signature of the minimal supersymmetric standard model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and standard model (SM)-like couplings to the electroweak gauge bosons. In this paper we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY) breaking, including the constrained MSSM, minimal gauge-mediated SUSY breaking, and minimal anomaly-mediated SUSY breaking. We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb(-1) per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb(-1), our projection shows that evidence at the 3 sigma level for the light Higgs boson could be expected in extended regions of parameter space. C1 [Carena, Marcela] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, Marcela; Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Heinemeyer, Sven] CSIC UC, Inst Fis Cantabria, E-39005 Santander, Spain. [Liu, Tao] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wagner, Carlos E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Wagner, Carlos E. M.] Univ Chicago, KICP, Chicago, IL 60637 USA. [Wagner, Carlos E. M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Weiglein, Georg] DESY, D-22607 Hamburg, Germany. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU European Community [MRTN-CT-2006-035505]; U.S. Department of Energy (DOE) [DE-AC02-07CH11359]; U.S. DOE, Division of HEP [DE-AC02-06CH11357]; DOE [DE-FGO2-96-ER40956]; DOE at University of California, Santa Barbara [DE-FG02-91ER40618] FX This work was supported in part by the European Community's Marie-Curie Research Training Network under Contract No. MRTN-CT-2006-035505 "Tools and Precision Calculations for Physics Discoveries at Colliders." Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy (DOE). Work at ANL is supported in part by the U.S. DOE, Division of HEP, Contract No. DE-AC02-06CH11357. This work was supported in part by the DOE under Task TeV of Contract No. DE-FGO2-96-ER40956. T. L. is supported by DOE Grant No. DE-FG02-91ER40618 at University of California, Santa Barbara. M. C. and C. W. would like to thank the Aspen Center for Physics, where part of this work was completed. NR 81 TC 5 Z9 5 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 7 PY 2011 VL 83 IS 5 AR 055007 DI 10.1103/PhysRevD.83.055007 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 730YC UT WOS:000288072500009 ER PT J AU Backhaus, S Turitsyn, K Ecke, RE AF Backhaus, Scott Turitsyn, Konstantin Ecke, R. E. TI Convective Instability and Mass Transport of Diffusion Layers in a Hele-Shaw Geometry SO PHYSICAL REVIEW LETTERS LA English DT Article ID SATURATED POROUS LAYER; CARBON-DIOXIDE; BOUNDARY-CONDITIONS; SALINE AQUIFERS; MEDIA; STABILITY; STORAGE; FLUID; ONSET; FLOW AB We consider experimentally the instability and mass transport of flow in a Hele-Shaw geometry. In an initially stable configuration, a lighter fluid (water) is located over a heavier fluid (propylene glycol). The fluids mix via diffusion with some regions of the resulting mixture being heavier than either pure fluid. Density-driven convection occurs with downward penetrating dense fingers that transport mass much more effectively than diffusion alone. We investigate the initial instability and the quasisteady state. The convective time and velocity scales, finger width, wave number selection, and normalized mass transport are determined for 6000 < Ra < 90 000. The results have important implications for determining the time scales and rates of dissolution trapping of carbon dioxide in brine aquifers proposed as possible geologic repositories for sequestering carbon dioxide. C1 [Backhaus, Scott] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Turitsyn, Konstantin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Turitsyn, Konstantin; Ecke, R. E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Backhaus, S (reprint author), Los Alamos Natl Lab, MPA CMMS, POB 1663, Los Alamos, NM 87545 USA. EM backhaus@lanl.gov RI Backhaus, Scott/F-4285-2012; Turitsyn, Konstantin/K-5978-2012; OI Turitsyn, Konstantin/0000-0002-7997-8962; Backhaus, Scott/0000-0002-0344-6791; Ecke, Robert/0000-0001-7772-5876 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; U.S. Department of Energy through the LANL/LDRD [20100025DR] FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program (No. 20100025DR) for this work. NR 17 TC 61 Z9 61 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 7 PY 2011 VL 106 IS 10 AR 104501 DI 10.1103/PhysRevLett.106.104501 PG 4 WC Physics, Multidisciplinary SC Physics GA 730YY UT WOS:000288074700005 PM 21469794 ER PT J AU Hohlfeld, E Mahadevan, L AF Hohlfeld, Evan Mahadevan, L. TI Unfolding the Sulcus SO PHYSICAL REVIEW LETTERS LA English DT Article ID BOUNDARY; GELS AB Sulci are localized furrows on the surface of soft materials that form by a compression-induced instability. We unfold this instability by breaking its natural scale and translation invariance, and compute a limiting bifurcation diagram for sulcfication showing that it is a scale-free, subcritical nonlinear instability. In contrast with classical nucleation, sulcification is continuous, occurs in purely elastic continua and is structurally stable in the limit of vanishing surface energy. During loading, a sulcus nucleates at a point with an upper critical strain and an essential singularity in the linearized spectrum. On unloading, it quasistatically shrinks to a point with a lower critical strain, explained by breaking of scale symmetry. At intermediate strains the system is linearly stable but nonlinearly unstable with no energy barrier. Simple experiments confirm the existence of these two critical strains. C1 [Hohlfeld, Evan] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Hohlfeld, Evan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Hohlfeld, E (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. FU Kavli Institute; Harvard MRSEC FX We thank D. Cuvelier for help with the experiments and the Kavli Institute and the Harvard MRSEC for support. NR 18 TC 90 Z9 90 U1 0 U2 33 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 7 PY 2011 VL 106 IS 10 AR 105702 DI 10.1103/PhysRevLett.106.105702 PG 4 WC Physics, Multidisciplinary SC Physics GA 730YY UT WOS:000288074700007 PM 21469809 ER PT J AU Rong, CB Zhang, Y Kramer, MJ Liu, JP AF Rong, Chuan-bing Zhang, Ying Kramer, M. J. Liu, J. Ping TI Correlation between microstructure and first-order magnetization reversal in the SmCo5/alpha-Fe nanocomposite magnets SO PHYSICS LETTERS A LA English DT Article DE First-order reversal curve; Nanocomposite magnets; Magnetostatic and intergranular exchange interactions ID COMPOSITE PERMANENT-MAGNETS AB SmCo5/alpha-Fe nanocomposite magnets with different morphology have been fabricated by ball milling of the micrometer sized SmCo5 and alpha-Fe powders. The alpha-Fe grains vary from elongated nano-strips to spherical nanoparticles with increasing milling time. The inter-phase exchange coupling is enhanced with increasing milling time due to reduced grain size. The first-order reversal curves (FORCs) are taken to identify optimal conditions for exchange coupling. It has been found that the stripped morphology results in weak inter-phase exchange coupling, while enhanced exchange coupling is observed with further reduction of the soft-phase grain size. Compared with the measurement of demagnetization curves, FORC analysis provides more information on the magnetostatic as well as the exchange interactions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Rong, Chuan-bing; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Zhang, Ying; Kramer, M. J.] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, USDOE, Ames, IA 50011 USA. RP Rong, CB (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM crong@uta.edu; pliu@uta.edu FU US Office of Naval Research/MURI [N00014-05-1-049]; US DoD/DARPA/ARO [W911NF-08-1-0249]; University of Texas-Arlington; US Department of Energy, Office of Basic Energy Science [DE-AC02-07CH11358] FX This work has been supported in part by the US Office of Naval Research/MURI project under grant N00014-05-1-049, US DoD/DARPA/ARO under grant W911NF-08-1-0249, and by the University of Texas-Arlington. The microscopy was performed at the Ames laboratory which is supported in part by the US Department of Energy, Office of Basic Energy Science, under contract DE-AC02-07CH11358. NR 19 TC 11 Z9 12 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD MAR 7 PY 2011 VL 375 IS 10 BP 1329 EP 1332 DI 10.1016/j.physleta.2011.02.006 PG 4 WC Physics, Multidisciplinary SC Physics GA 731XY UT WOS:000288145100010 ER PT J AU Sun, YG Yang, WG Ren, Y Wang, L Lei, CH AF Sun, Yugang Yang, Wenge Ren, Yang Wang, Lin Lei, Changhui TI Multiple-Step Phase Transformation in Silver Nanoplates Under High Pressure SO SMALL LA English DT Article ID SIZE DEPENDENCE; AG; NANOCRYSTALS; GROWTH; CALIBRATION; STABILITY; GAUGE; PD C1 [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Yang, Wenge; Wang, Lin] Carnegie Inst Washington, Geophys Lab, HPSynC, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Wang, Lin] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Lei, Changhui] Univ Illinois, Ctr Microanal Mat, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010; Yang, Wenge/H-2740-2012; WANG, LIN/G-7884-2012 OI Sun, Yugang /0000-0001-6351-6977; FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy [DE-SC0001057, DE-FG02-07ER46453, DE-FG02-07ER46471]; DOE-NNSA; DOE-BES; NSF FX Use of the Center for Nanoscale Materials, Advanced Photon Source, and the Electron Microscopy Center for Materials Research at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. HPSynC is supported as part of EFree, an Energy Frontier Research Center funded by the US Department of Energy under Award DE-SC0001057. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. Characterizations were also carried out by partially using the Center for Microanalysis of Materials Facilities in Frederick Seitz Materials Research Laboratory, University of Illinois, partially supported by the U.S. Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. NR 22 TC 14 Z9 14 U1 1 U2 32 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1613-6810 J9 SMALL JI Small PD MAR 7 PY 2011 VL 7 IS 5 BP 606 EP 611 DI 10.1002/smll.201002201 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 731BS UT WOS:000288081900011 PM 21370464 ER PT J AU Glister, J Ron, G Lee, BW Gilman, R Sarty, AJ Strauch, S Higinbotham, DW Piasetzky, E Allada, K Armstrong, W Arrington, J Arenhovel, H Beck, A Benmokhtar, F Berman, BL Boeglin, W Brash, E Camsonne, A Calarco, J Chen, JP Choi, S Chudakov, E Coman, L Craver, B Cusanno, F Dumas, J Dutta, C Feuerbach, R Freyberger, A Frullani, S Garibaldi, F Hansen, JO Holmstrom, T Hyde, CE Ibrahim, H Ilieva, Y de Jager, CW Jiang, X Jones, MK Kang, H Kelleher, A Khrosinkova, E Kuchina, E Kumbartzki, G LeRose, JJ Lindgren, R Markowitz, P Beck, SMT McCullough, E Meekins, D Meziane, M Meziani, ZE Michaels, R Moffit, B Norum, BE Oh, Y Olson, M Paolone, M Paschke, K Perdrisat, CF Potokar, M Pomatsalyuk, R Pomerantz, I Puckett, A Punjabi, V Qian, X Qiang, Y Ransome, RD Reyhan, M Roche, J Rousseau, Y Saha, A Sawatzky, B Schulte, E Schwamb, M Shabestari, M Shahinyan, A Shneor, R Sirca, S Slifer, K Solvignon, P Song, J Sparks, R Subedi, R Urciuoli, GM Wang, K Wojtsekhowski, B Yan, X Yao, H Zhan, X Zhu, X AF Glister, J. Ron, G. Lee, B. W. Gilman, R. Sarty, A. J. Strauch, S. Higinbotham, D. W. Piasetzky, E. Allada, K. Armstrong, W. Arrington, J. Arenhoevel, H. Beck, A. Benmokhtar, F. Berman, B. L. Boeglin, W. Brash, E. Camsonne, A. Calarco, J. Chen, J. P. Choi, S. Chudakov, E. Coman, L. Craver, B. Cusanno, F. Dumas, J. Dutta, C. Feuerbach, R. Freyberger, A. Frullani, S. Garibaldi, F. Hansen, J. -O. Holmstrom, T. Hyde, C. E. Ibrahim, H. Ilieva, Y. de Jager, C. W. Jiang, X. Jones, M. K. Kang, Hyekoo Kelleher, A. Khrosinkova, E. Kuchina, E. Kumbartzki, G. LeRose, J. J. Lindgren, R. Markowitz, P. Beck, S. May-Tal McCullough, E. Meekins, D. Meziane, M. Meziani, Z. -E. Michaels, R. Moffit, B. Norum, B. E. Oh, Y. Olson, M. Paolone, M. Paschke, K. Perdrisat, C. F. Potokar, M. Pomatsalyuk, R. Pomerantz, I. Puckett, A. Punjabi, V. Qian, X. Qiang, Y. Ransome, R. D. Reyhan, M. Roche, J. Rousseau, Y. Saha, A. Sawatzky, B. Schulte, E. Schwamb, M. Shabestari, M. Shahinyan, A. Shneor, R. Sirca, S. Slifer, K. Solvignon, P. Song, J. Sparks, R. Subedi, R. Urciuoli, G. M. Wang, K. Wojtsekhowski, B. Yan, X. Yao, H. Zhan, X. Zhu, X. TI Polarization observables in deuteron photodisintegration below 360 MeV SO PHYSICS LETTERS B LA English DT Article DE Deuteron photodisintegration; Polarization; Meson-baryon model ID PROTON POLARIZATION; PHOTO-DISINTEGRATION; PION THRESHOLD; ELECTROMAGNETIC REACTIONS; DIBARYON RESONANCES; MESON RETARDATION; ASYMMETRY; ENERGIES; REGION; DYNAMICS AB High precision measurements of induced and transferred recoil proton polarization in d((gamma) over right arrow, (p) over right arrow )n have been performed for photon energies of 277-357 MeV and theta(cm) = 20 degrees-120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used. (C) 2011 Elsevier B.V. All rights reserved. C1 [Glister, J.; Sarty, A. J.; McCullough, E.] St Marys Univ, Halifax, NS B3H 3C3, Canada. [Glister, J.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. [Ron, G.; Piasetzky, E.; Pomerantz, I.; Shneor, R.] Tel Aviv Univ, IL-69978 Tel Aviv, Israel. [Lee, B. W.; Choi, S.; Kang, Hyekoo; Oh, Y.; Song, J.; Yan, X.] Seoul Natl Univ, Seoul 151747, South Korea. [Gilman, R.; Higinbotham, D. W.; Camsonne, A.; Chen, J. P.; Chudakov, E.; Feuerbach, R.; Freyberger, A.; Hansen, J. -O.; de Jager, C. W.; Jones, M. K.; LeRose, J. J.; Meekins, D.; Michaels, R.; Pomatsalyuk, R.; Saha, A.; Sparks, R.; Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Gilman, R.; Dumas, J.; Jiang, X.; Kuchina, E.; Kumbartzki, G.; Ransome, R. D.; Reyhan, M.; Rousseau, Y.; Schulte, E.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Strauch, S.; Paolone, M.] Univ S Carolina, Columbia, SC 29208 USA. [Allada, K.; Dutta, C.] Univ Kentucky, Lexington, KY 40506 USA. [Armstrong, W.; Meziani, Z. -E.; Sawatzky, B.; Yao, H.] Temple Univ, Philadelphia, PA 19122 USA. [Arrington, J.; Solvignon, P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Arenhoevel, H.; Schwamb, M.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Beck, A.; Beck, S. May-Tal] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel. [Benmokhtar, F.] Univ Maryland, Baltimore, MD 21201 USA. [Berman, B. L.; Ilieva, Y.] George Washington Univ, Washington, DC 20052 USA. [Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [Brash, E.] Christopher Newport Univ, Newport News, VA 23606 USA. [Calarco, J.] Univ New Hampshire, Durham, NH 03824 USA. [Coman, L.; Craver, B.; Lindgren, R.; Norum, B. E.; Paschke, K.; Sawatzky, B.; Shabestari, M.; Slifer, K.; Wang, K.] Univ Virginia, Charlottesville, VA 22094 USA. [Cusanno, F.; Frullani, S.; Garibaldi, F.; Urciuoli, G. M.] Ist Nazl Fis Nucl, Sez Sanita, I-00161 Rome, Italy. [Cusanno, F.; Frullani, S.; Garibaldi, F.; Urciuoli, G. M.] Ist Super Sanita, Fis Lab, I-00161 Rome, Italy. [Holmstrom, T.] Longwood Univ, Farmville, VA 23909 USA. [Hyde, C. E.; Ibrahim, H.] Old Dominion Univ, Norfolk, VA 23508 USA. [Hyde, C. E.] Univ Clermont Ferrand, CNRS, IN2P3, F-63177 Aubiere, France. [Ibrahim, H.] Cairo Univ, Giza 12613, Egypt. [Kelleher, A.; Meziane, M.; Moffit, B.; Perdrisat, C. F.] Coll William & Mary, Williamsburg, VA 23187 USA. [Khrosinkova, E.; Subedi, R.] Kent State Univ, Kent, OH 44242 USA. [Olson, M.] St Norbert Coll, Green Bay, WI 54115 USA. [Potokar, M.; Sirca, S.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Pomatsalyuk, R.] NSC Kharkov Inst Phys & Technol, UA-61108 Kharkov, Ukraine. [Puckett, A.; Qiang, Y.; Zhan, X.] MIT, Cambridge, MA 02139 USA. [Punjabi, V.] Norfolk State Univ, Norfolk, VA 23504 USA. [Qian, X.; Zhu, X.] Duke Univ, Durham, NC 27708 USA. [Roche, J.] Ohio Univ, Athens, OH 45701 USA. [Shahinyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Glister, J (reprint author), TRIUMF, 2004 Westbrook Mall, Vancouver, BC V6T 2A3, Canada. EM jglister@jiab.org RI Higinbotham, Douglas/J-9394-2014; Zhu, Xiaofeng/B-9493-2011; Arrington, John/D-1116-2012; Sarty, Adam/G-2948-2014 OI Higinbotham, Douglas/0000-0003-2758-6526; Hyde, Charles/0000-0001-7282-8120; Qian, Xin/0000-0002-7903-7935; Arrington, John/0000-0002-0702-1328; FU US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [PHY 9213864, PHY 9213869]; Israel Science Foundation; Korea Science Foundation; US-Israeli Bi-National Scientific Foundation; Natural Sciences and Engineering Research Council of Canada; Killam Trusts; Walter C. Sumner Foundation; Deutsche Forschungsgemeinschaft [SFB 443]; DOE [DE-AC05-06OR23177] FX We thank the Jefferson Lab physics and accelerator divisions for their contributions. This work was supported by the US Department of Energy (including contract DE-AC02-06CH11357), the US National Science Foundation, the Israel Science Foundation, the Korea Science Foundation, the US-Israeli Bi-National Scientific Foundation, the Natural Sciences and Engineering Research Council of Canada, the Killam Trusts Fund, the Walter C. Sumner Foundation and the Deutsche Forschungsgemeinschaft (SFB 443). Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility under DOE contract DE-AC05-06OR23177. The polarimeter was funded by the US National Science Foundation, grants PHY 9213864 and PHY 9213869. NR 48 TC 2 Z9 2 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 7 PY 2011 VL 697 IS 3 BP 194 EP 198 DI 10.1016/j.physletb.2011.01.061 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 730NY UT WOS:000288041900004 ER PT J AU France, R Jiang, CS Ptak, AJ AF France, R. Jiang, C. -S. Ptak, A. J. TI In situ strain relaxation comparison between GaAsBi and GaInAs grown by molecular-beam epitaxy SO APPLIED PHYSICS LETTERS LA English DT Article ID DISLOCATION DENSITY; MISFIT DISLOCATION; INGAAS/GAAS; HETEROEPITAXY; KINETICS AB The strain relaxation of GaAsBi is studied in order to determine both the maximum thickness before dislocations form for various misfits and the potential of GaAsBi for usage in the compositionally graded buffer of lattice-mismatched devices. Low-misfit GaAsBi epilayers are grown and compared with GaInAs, a well-studied material currently used in compositional grades. Relaxation behavior and dislocation energetics are compared using in situ wafer curvature. Samples are grown using molecular-beam epitaxy under similar conditions with misfit up to -0.81%. GaAsBi begins to relax at a lower thickness than GaInAs of the same mismatch. This leads to the majority of GaAsBi strain relaxation occurring with less material growth than comparable GaInAs. However, GaAsBi has greater residual strain than GaInAs after 2 mu m of growth. These results indicate that GaAsBi requires less elastic energy to form dislocations and more elastic energy to either encourage glide or multiply dislocations than GaInAs. GaAsBi shows less surface roughness than GaInAs for all samples, ruling out roughness as a source of dislocations and hindered glide in these alloys. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562952] C1 [France, R.; Jiang, C. -S.; Ptak, A. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP France, R (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ryan.france@nrel.gov RI jiang, chun-sheng/F-7839-2012 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The authors would like to thank J. F. Geisz, M. A. Steiner, and W. E. McMahon for useful conversations. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 22 TC 7 Z9 7 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD MAR 7 PY 2011 VL 98 IS 10 AR 101908 DI 10.1063/1.3562952 PG 3 WC Physics, Applied SC Physics GA 733QH UT WOS:000288277200021 ER PT J AU McGregor, D Burton-Pye, BP Howell, RC Mbomekalle, IM Lukens, WW Bian, F Mausolf, E Poineau, F Czerwinski, KR Francesconi, LC AF McGregor, Donna Burton-Pye, Benjamin P. Howell, Robertha C. Mbomekalle, Israel M. Lukens, Wayne W., Jr. Bian, Fang Mausolf, Edward Poineau, Frederic Czerwinski, Kenneth R. Francesconi, Lynn C. TI Synthesis, Structure Elucidation, and Redox Properties of Tc-99 Complexes of Lacunary Wells-Dawson Polyoxometalates: Insights into Molecular Tc-99-Metal Oxide Interactions SO INORGANIC CHEMISTRY LA English DT Article ID W-183 NMR CHARACTERIZATION; LANTHANIDE COMPLEXES; HETEROPOLYTUNGSTATE DERIVATIVES; ELECTRONIC-PROPERTIES; CRYSTAL-STRUCTURE; CHEMICAL-SHIFTS; GAMMA-ISOMER; KEGGIN; P-31; TUNGSTODIPHOSPHATES AB The isotope Tc-99 (beta(max), 293.7; half-life, 2.1 x 10(5) years) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at the Hanford and Savannah River sites. Understanding and controlling the extensive redox chemistry of Tc-99 is important in identifying tunable strategies to separate Tc-99 from spent fuel and from waste tanks and, once separated, to identify and develop an appropriately stable waste form for Tc-99. Polyoxometalates (POMs), nanometer-sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated Tc-99. In this study, Tc-99 complexes of the (alpha(2)-P2W17O61)(10-) and (alpha(1)-P2W17O61)(10-) isomers were prepared. Ethylene glycol was used as a "transfer ligand" to minimize the formation of TcO2 center dot xH(2)O. The solution structures, formulations, and purity of (TcO)-O-V(alpha(1)/alpha(2)-P2W17O61)(7-) were determined by multinuclear NMR. X-ray absorption spectroscopy of the complexes is in agreement with the formulation and structures determined from P-31 and W-183 NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the (TcO)-O-V(alpha(1)-P2W17O61)(7-) species compared to the (TcO)-O-V(alpha(2)-P2W17O61)(7-) analog. The alpha(1) defect is unique in that a basic oxygen atom is positioned toward the alpha(1) site, and the (TcO)-O-V center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the Rev analogs are about 200 mV more difficult to reduce in accordance with periodic trends. C1 [McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Bian, Fang; Francesconi, Lynn C.] CUNY Hunter Coll, New York, NY 10065 USA. [McGregor, Donna; Bian, Fang; Francesconi, Lynn C.] CUNY, Grad Ctr, New York, NY 10016 USA. [Lukens, Wayne W., Jr.] EO Lawrence Berkeley Natl Lab LBNL, Glenn T Seaborg Ctr, Div Chem Sci, Berkeley, CA 94720 USA. [Mausolf, Edward; Poineau, Frederic; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. RP Francesconi, LC (reprint author), CUNY Hunter Coll, 695 Pk Ave, New York, NY 10065 USA. EM lfrances@hunter.cuny.edu FU Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231, DE-AC02-06CH11357]; NSF [CHE 0414218, CHE 0750118]; Heavy Element Chemistry, Office of Science, Department of Energy [DE-FG02-09ER16097]; NIH-Research Centers in Minority Institutions [RR03037-08] FX Part of this work was performed at Lawrence Berkeley National Laboratory and was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. DOE, Office of Basic Energy Sciences. Use of the Advanced Photon Source at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We are grateful to the NSF (Grant Nos. CHE 0414218 and CH E 0750118) for the research performed at Hunter College. We are also grateful to DE-FG02-09ER16097 (Heavy Element Chemistry, Office of Science, Department of Energy) for support of this work. The research Infrastructure at Hunter College is partially supported by NIH-Research Centers in Minority Institutions Grant RR03037-08. NR 66 TC 12 Z9 12 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD MAR 7 PY 2011 VL 50 IS 5 BP 1670 EP 1681 DI 10.1021/ic102111t PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 725ZO UT WOS:000287685600010 PM 21268605 ER PT J AU Li, X Shew, CY Liu, Y Pynn, R Liu, E Herwig, KW Smith, GS Robertson, JL Chen, WR AF Li, Xin Shew, Chwen-Yang Liu, Yun Pynn, Roger Liu, Emily Herwig, Kenneth W. Smith, Gregory S. Robertson, J. Lee Chen, Wei-Ren TI Prospect for characterizing interacting soft colloidal structures using spin-echo small angle neutron scattering SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID STAR POLYMERS; COPOLYMER MICELLES; DENDRIMERS; SYSTEMS; TRANSITIONS; PARTICLES; LIQUIDS; SANS AB Spin-echo small angle neutron scattering (SESANS) provides a new experimental tool for structural investigation. Due to the action of spin-echo encoding, SESANS measures a spatial correlation function in real space, as opposed to the structure factor S(Q), I (Q), in momentum (Q) space measured by conventional small angle neutron scattering. To establish the usefulness of SESANS in structural characterization, particularly for interacting colloidal suspensions, we have previously conducted a theoretical study of the SESANS correlation functions for model systems consisting of particles with uniform density profiles [X. Li, C.-Y. Shew, Y. Liu, R. Pynn, E. Liu, K. W. Herwig, G. S. Smith, J. L. Robertson, and W.-R. Chen J. Chem. Phys. 132, 174509 (2010)]. Within the same framework, we explore in the present paper the prospect of using SESANS to investigate the structural characteristics of colloidal systems consisting of particles with nonuniform intraparticle mass distribution. As an example, a Gaussian model of interacting soft colloids is used to investigate the manifestation of structural softness in a SESANS measurement. The exploration shows a characteristically different SESANS correlation function for interacting soft colloids, in comparison to that of a uniform hard sphere system. The difference arises from the Abel transform imbedded in the mathematical formalism bridging the SESANS spectra and the spatial autocorrelation function. (c) 2011 American Institute of Physics. [doi:10.1063/1.3559451] C1 [Li, Xin; Pynn, Roger; Herwig, Kenneth W.; Smith, Gregory S.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Li, Xin; Liu, Emily] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Shew, Chwen-Yang] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Liu, Yun] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Pynn, Roger] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Robertson, J. Lee] Oak Ridge Natl Lab, Neutron Facil Dev Div, Oak Ridge, TN 37831 USA. [Chen, Wei-Ren] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Chen, WR (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM chenw@ornl.gov RI Herwig, Kenneth/F-4787-2011; Liu, Yun/F-6516-2012; Li, Xin/K-9646-2013; Smith, Gregory/D-1659-2016 OI Liu, Yun/0000-0002-0944-3153; Li, Xin/0000-0003-0606-434X; Smith, Gregory/0000-0001-5659-1805 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); City University of New York; U.S. Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering [ER46279]; U.S. Department of Energy [DE-FG07-07ID14889]; U.S. Nuclear Regulatory Commission [NRC-38-08-950] FX K.W.H., G.S.S., J.L.R., and W.R.C. acknowledge the support of the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE) for Oak Ridge National Laboratory's Spallation Neutron Source and High Flux Isotope Reactor. C.Y.S. was partially supported by the PSC grants of the City University of New York. R.P. was supported by U.S. Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering (Grant No. ER46279). X.L. and E.L. were supported in part by U.S. Department of Energy, under NERI-C Award No. DE-FG07-07ID14889, and U.S. Nuclear Regulatory Commission, under Award No. NRC-38-08-950. NR 60 TC 5 Z9 5 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD MAR 7 PY 2011 VL 134 IS 9 AR 094504 DI 10.1063/1.3559451 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 731DA UT WOS:000288085300041 PM 21384982 ER PT J AU Abramowicz, H Abt, I Adamczykm, L Adamus, M Aggarwal, R Antonelli, S Antonioli, P Antonov, A Arneodo, M Aushev, V Aushev, Y Bachynska, O Bamberger, A Barakbaev, AN Barbagli, G Bari, G Barreiro, F Bartsch, D Basile, M Behnke, O Behr, J Behrens, U Bellagamba, L Bertolin, A Bhadra, S Bindi, M Blohm, C Bokhonov, V Bold, T Boos, EG Borras, K Boscherini, D Bot, D Boutle, SK Brock, I Brownson, E Brugnera, R Brummer, N Bruni, A Bruni, G Brzozowska, B Bussey, PJ Butterworth, JM Bylsma, B Caldwell, A Capua, M Carlin, R Catterall, CD Chekanov, S Chwastowski, J Ciborowski, J Ciesielski, R Cifarelli, L Cindolo, F Contin, A Cooper-Sarkar, AM Coppola, N Corradi, M Corriveau, F Costa, M D'Agostini, G Dal Corso, F del Peso, J Dementiev, RK De Pasquale, S Derrick, M Devenish, RCE Dobur, D Dolgoshein, BA Dolinska, G Doyle, AT Drugakov, V Durkin, LS Dusini, S Eisenberg, Y Ermolov, PF Eskreys, A Fang, S Fazio, S Ferrando, J Ferrero, MI Figiel, J Forrest, M Foster, B Fourletov, S Gach, G Galas, A Gallo, E Garfagnini, A Geiser, A Gialas, I Gladilin, LK Gladkov, D Glasman, C Gogota, O Golubkov, YA Gottlicher, P Grabowska-Bold, I Grebenyuk, J Gregor, I Grigorescu, G Grzelak, G Gueta, O Gwenlan, C Haas, T Hain, W Hamatsu, R Hart, JC Hartmann, H Hartner, G Hilger, E Hochman, D Hori, R Horton, K Huttmann, A Iacobucci, G Ibrahim, ZA Iga, Y Ingbir, R Ishitsuka, M Jakob, HP Januschek, F Jimenez, M Jones, TW Jungst, M Kadenko, I Kahle, B Kamauddin, B Kananov, S Kanno, T Karshon, U Karstens, F Katkov, II Kaurg, M Kaur, P Keramidas, A Khein, LA Kim, JY Kisielewska, D Kitamura, S Klanner, R Klein, U Koffeman, E Kooijman, P Korol, I Korzhavina, IA Kotanski, A Kotz, U Kowalski, H Kulinski, P Kuprash, O Kuze, M Lee, A Levchenko, BB Levy, A Libov, V Limentani, S Ling, TY Lisovyi, M Lobodzinska, E Lohmann, W Lohr, B Lohrmann, E Loizides, JH Long, KR Longhin, A Lontkovskyi, D Lukina, OY Luniak, P Maeda, J Magill, S Makarenko, I Malka, J Mankel, R Margotti, A Marini, G Martin, JF Mastroberardino, A Mattingly, MCK Melzer-Pellmann, IA Miglioranzi, S Idris, FM Monaco, V Montanari, A Morris, JD Mujkic, K Musgrave, B Nagano, K Namsoo, T Nania, R Nicholass, D Nigro, A Ning, Y Noor, U Notz, D Nowak, RJ Nuncio-Quiroz, AE Oh, BY Okazaki, N Oliver, K Olkiewicz, K Onishchuk, Y Papageorgiu, K Parenti, A Paul, E Pawlak, JM Pawlik, B Pelfer, PC Pellegrino, A Perlanski, W Perrey, H Piotrzkowski, K Plucinski, P Pokrovskiy, NS Polini, A Proskuryakov, AS Przybycien, M Raval, A Reeder, DD Reisert, B Ren, Z Repond, J Ri, YD Robertson, A Roloff, P Ron, E Rubinsky, I Ruspa, M Sacchi, R Salii, A Samson, U Sartorelli, G Savin, AA Saxon, DH Schioppa, M Schlenstedt, S Schleper, P Schmidke, WB Schneekloth, U Schonberg, V Schorner-Sadenius, T Schwartz, J Sciulli, F Shcheglova, LM Shehzadi, R Shimizu, S Singh, I Skillicorn, IO Slominski, W Smith, WH Sola, V Solano, A Son, D Sosnovtsev, V Spiridonov, A Stadie, H Stanco, L Stern, A Stewart, TP Stifutkin, A Stopa, P Suchkov, S Susinno, G Suszycki, L Sztuk-Dambietz, J Szuba, D Szuba, J Tapper, AD Tassi, E Terron, J Theedt, T Tiecke, H Tokushuku, K Tomalak, O Tomaszewska, J Tsurugai, T Turcatov, M Tymieniecka, T Uribe-Estrada, C Vazquez, M Verbytskyi, A Viazlo, O Vlasov, NN Volynets, O Walczak, R Abdullah, WATW Whitmore, JJ Whyte, J Wiggers, L Wing, M Wlasenko, M Wolf, G Wolfe, H Wrona, K Yagues-Molina, AG Yamada, S Yamazaki, Y Yoshida, R Youngman, C Zarnecki, AF Zawiejski, L Zenaiev, O Zeuner, W Zhautykov, BO Zhmak, N Zhou, C Zichichi, A Zolko, M Zotkin, DS Zulkapli, Z AF Abramowicz, H. Abt, I. Adamczykm, L. Adamus, M. Aggarwal, R. Antonelli, S. Antonioli, P. Antonov, A. Arneodo, M. Aushev, V. Aushev, Y. Bachynska, O. Bamberger, A. Barakbaev, A. N. Barbagli, G. Bari, G. Barreiro, F. Bartsch, D. Basile, M. Behnke, O. Behr, J. Behrens, U. Bellagamba, L. Bertolin, A. Bhadra, S. Bindi, M. Blohm, C. Bokhonov, V. Bold, T. Boos, E. G. Borras, K. Boscherini, D. Bot, D. Boutle, S. K. Brock, I. Brownson, E. Brugnera, R. Bruemmer, N. Bruni, A. Bruni, G. Brzozowska, B. Bussey, P. J. Butterworth, J. M. Bylsma, B. Caldwell, A. Capua, M. Carlin, R. Catterall, C. D. Chekanov, S. Chwastowski, J. Ciborowski, J. Ciesielski, R. Cifarelli, L. Cindolo, F. Contin, A. Cooper-Sarkar, A. M. Coppola, N. Corradi, M. Corriveau, F. Costa, M. D'Agostini, G. Dal Corso, F. del Peso, J. Dementiev, R. K. De Pasquale, S. Derrick, M. Devenish, R. C. E. Dobur, D. Dolgoshein, B. A. Dolinska, G. Doyle, A. T. Drugakov, V. Durkin, L. S. Dusini, S. Eisenberg, Y. Ermolov, P. F. Eskreys, A. Fang, S. Fazio, S. Ferrando, J. Ferrero, M. I. Figiel, J. Forrest, M. Foster, B. Fourletov, S. Gach, G. Galas, A. Gallo, E. Garfagnini, A. Geiser, A. Gialas, I. Gladilin, L. K. Gladkov, D. Glasman, C. Gogota, O. Golubkov, Yu. A. Goettlicher, P. Grabowska-Bold, I. Grebenyuk, J. Gregor, I. Grigorescu, G. Grzelak, G. Gueta, O. Gwenlan, C. Haas, T. Hain, W. Hamatsu, R. Hart, J. C. Hartmann, H. Hartner, G. Hilger, E. Hochman, D. Hori, R. Horton, K. Huettmann, A. Iacobucci, G. Ibrahim, Z. A. Iga, Y. Ingbir, R. Ishitsuka, M. Jakob, H. -P. Januschek, F. Jimenez, M. Jones, T. W. Juengst, M. Kadenko, I. Kahle, B. Kamauddin, B. Kananov, S. Kanno, T. Karshon, U. Karstens, F. Katkov, I. I. Kaurg, M. Kaur, P. Keramidas, A. Khein, L. A. Kim, J. Y. Kisielewska, D. Kitamura, S. Klanner, R. Klein, U. Koffeman, E. Kooijman, P. Korol, Ie. Korzhavina, I. A. Kotanski, A. Koetz, U. Kowalski, H. Kulinski, P. Kuprash, O. Kuze, M. Lee, A. Levchenko, B. B. Levy, A. Libov, V. Limentani, S. Ling, T. Y. Lisovyi, M. Lobodzinska, E. Lohmann, W. Loehr, B. Lohrmann, E. Loizides, J. H. Long, K. R. Longhin, A. Lontkovskyi, D. Lukina, O. Yu. Luniak, P. Maeda, J. Magill, S. Makarenko, I. Malka, J. Mankel, R. Margotti, A. Marini, G. Martin, J. F. Mastroberardino, A. Mattingly, M. C. K. Melzer-Pellmann, I. -A. Miglioranzi, S. Idris, F. Mohamad Monaco, V. Montanari, A. Morris, J. D. Mujkic, K. Musgrave, B. Nagano, K. Namsoo, T. Nania, R. Nicholass, D. Nigro, A. Ning, Y. Noor, U. Notz, D. Nowak, R. J. Nuncio-Quiroz, A. E. Oh, B. Y. Okazaki, N. Oliver, K. Olkiewicz, K. Onishchuk, Yu. Papageorgiu, K. Parenti, A. Paul, E. Pawlak, J. M. Pawlik, B. Pelfer, P. C. Pellegrino, A. Perlanski, W. Perrey, H. Piotrzkowski, K. Plucinski, P. Pokrovskiy, N. S. Polini, A. Proskuryakov, A. S. Przybycien, M. Raval, A. Reeder, D. D. Reisert, B. Ren, Z. Repond, J. Ri, Y. D. Robertson, A. Roloff, P. Ron, E. Rubinsky, I. Ruspa, M. Sacchi, R. Salii, A. Samson, U. Sartorelli, G. Savin, A. A. Saxon, D. H. Schioppa, M. Schlenstedt, S. Schleper, P. Schmidke, W. B. Schneekloth, U. Schoenberg, V. Schoerner-Sadenius, T. Schwartz, J. Sciulli, F. Shcheglova, L. M. Shehzadi, R. Shimizu, S. Singh, I. Skillicorn, I. O. Slominski, W. Smith, W. H. Sola, V. Solano, A. Son, D. Sosnovtsev, V. Spiridonov, A. Stadie, H. Stanco, L. Stern, A. Stewart, T. P. Stifutkin, A. Stopa, P. Suchkov, S. Susinno, G. Suszycki, L. Sztuk-Dambietz, J. Szuba, D. Szuba, J. Tapper, A. D. Tassi, E. Terron, J. Theedt, T. Tiecke, H. Tokushuku, K. Tomalak, O. Tomaszewska, J. Tsurugai, T. Turcatov, M. Tymieniecka, T. Uribe-Estrada, C. Vazquez, M. Verbytskyi, A. Viazlo, O. Vlasov, N. N. Volynets, O. Walczak, R. Abdullah, W. A. T. Wan Whitmore, J. J. Whyte, J. Wiggers, L. Wing, M. Wlasenko, M. Wolf, G. Wolfe, H. Wrona, K. Yaguees-Molina, A. G. Yamada, S. Yamazaki, Y. Yoshida, R. Youngman, C. Zarnecki, A. F. Zawiejski, L. Zenaiev, O. Zeuner, W. Zhautykov, B. O. Zhmak, N. Zhou, C. Zichichi, A. Zolko, M. Zotkin, D. S. Zulkapli, Z. CA ZEUS Collaboration TI Measurement of the energy dependence of the total photon-proton cross section at HERA SO PHYSICS LETTERS B LA English DT Article DE Photoproduction; Total cross section; Energy dependence ID OF-MASS ENERGY; CENTRAL TRACKING DETECTOR; ZEUS BARREL CALORIMETER; LOW Q(2); LOW X; DESIGN; CONSTRUCTION; SCATTERING; IDENTIFICATION; REPRESENTATION AB The energy dependence of the photon-proton total cross section, sigma(gamma p)(tot), was determined from e(+) p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the gamma p system in the range 194 < W < 296 GeV. This is the first determination of the W dependence of sigma(gamma p)(tot) from a single experiment at high W. Parameterizing sigma(gamma p)(tot) alpha W-2 epsilon, epsilon = 0.111 +/- 0.009 (stat.) +/- 0.036 (syst.) was obtained. (c) 2011 Elsevier B.V. All rights reserved. C1 [Abramowicz, H.; Chekanov, S.; Derrick, M.; Gueta, O.; Ingbir, R.; Kananov, S.; Levy, A.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. [Musgrave, B.; Nicholass, D.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mattingly, M. C. K.] Andrews Univ, Berrien Springs, MI 49104 USA. [Antonelli, S.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Sartorelli, G.; Zichichi, A.] INFN Bologna, Bologna, Italy. [Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.] Univ Bologna, Bologna, Italy. [Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Paul, E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Morris, J. D.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Aggarwal, R.; Kaurg, M.; Kaur, P.; Singh, I.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dept Phys, I-87036 Cosenza, Italy. [Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Cosenza, Italy. [Kim, J. Y.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Ibrahim, Z. A.; Kamauddin, B.; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Zulkapli, Z.] Univ Malaya, Jabatan Fiz, Kuala Lumpur 50603, Malaysia. [Ning, Y.; Ren, Z.; Sciulli, F.] Columbia Univ, Nevis Labs, Irvington, NY 10027 USA. [Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Adamczykm, L.; Bold, T.; Gach, G.; Grabowska-Bold, I.; Kisielewska, D.; Przybycien, M.; Suszycki, L.; Szuba, J.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Kotanski, A.; Slominski, W.] Jagellonian Univ, Dept Phys, Krakow, Poland. [Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Bot, D.; Ciesielski, R.; Coppola, N.; Fang, S.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Mujkic, K.; Namsoo, T.; Notz, D.; Parenti, A.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. [Drugakov, V.; Lohmann, W.; Schlenstedt, S.] Deutsch Elektronen Synchrotron DESY, Zeuthen, Germany. [Barbagli, G.; Gallo, E.; Pelfer, P. C.] INFN Florence, Florence, Italy. [Pelfer, P. C.] Univ Florence, Florence, Italy. [Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.] Univ Freiburg, Fak Phys, D-7800 Freiburg, Germany. [Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland. [Gialas, I.; Papageorgiu, K.; Ri, Y. D.] Univ Aegean, Dept Engn Management & Finance, Chios, Greece. [Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Stadie, H.; Sztuk-Dambietz, J.; Tassi, E.; Turcatov, M.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Long, K. R.; Tapper, A. D.] Univ London Imperial Coll Sci Technol & Med, High Energy Nucl Phys Grp, London, England. [Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.] Minist Educ & Sci Kazakhstan, Inst Phys & Technol, Alma Ata, Kazakhstan. [Aushev, V.; Aushev, Y.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zenaiev, O.; Zhmak, N.; Zolko, M.] Natl Acad Sci, Inst Nucl Res, Kiev, Ukraine. [Aushev, V.; Aushev, Y.; Bokhonov, V.; Dolinska, G.; Gogota, O.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Tomalak, O.; Viazlo, O.; Volynets, O.; Zenaiev, O.; Zhmak, N.; Zolko, M.] Kiev Natl Univ, Kiev, Ukraine. [Son, D.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Piotrzkowski, K.] Catholic Univ Louvain, Inst Phys Nucl, B-1348 Louvain, Belgium. [Barreiro, F.; del Peso, J.; Glasman, C.; Ron, E.; Terron, J.; Uribe-Estrada, C.] Univ Autonoma Madrid, Dept Fis Teor, Madrid, Spain. [Corriveau, F.; Schwartz, J.; Zhou, C.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Tsurugai, T.] Meiji Gakuin Univ, Fac Gen Educ, Yokohama, Kanagawa, Japan. [Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia. [Abramowicz, H.; Abt, I.; Caldwell, A.; Reisert, B.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] NIKHEF, Amsterdam, Netherlands. [Grigorescu, G.; Keramidas, A.; Koffeman, E.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Wiggers, L.] Univ Amsterdam, Amsterdam, Netherlands. [Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.] Univ Oxford, Dept Phys, Oxford, England. [Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Garfagnini, A.; Limentani, S.; Longhin, A.; Stanco, L.] INFN Padova, Padua, Italy. [Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.] Univ Padua, Dipartimento Fis, Padua, Italy. [Oh, B. Y.; Whitmore, J. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Iga, Y.] Polytech Univ, Sagamihara, Kanagawa, Japan. [D'Agostini, G.; Marini, G.; Nigro, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [D'Agostini, G.; Marini, G.; Nigro, A.] Ist Nazl Fis Nucl, Rome, Italy. [Hart, J. C.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Hori, R.; Okazaki, N.; Shimizu, S.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Hamatsu, R.; Kitamura, S.] Tokyo Metropolitan Univ, Dept Phys, Tokyo, Japan. [Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arneodo, M.; Costa, M.; Ferrero, M. I.; Monaco, V.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.] Ist Nazl Fis Nucl, I-10125 Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Fourletov, S.; Martin, J. F.; Stewart, T. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.] UCL, Dept Phys & Astron, London, England. [Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.] Warsaw Univ, Inst Expt Phys, Warsaw, Poland. [Adamus, M.; Plucinski, P.; Tymieniecka, T.] Inst Nucl Studies, PL-00681 Warsaw, Poland. [Eisenberg, Y.; Hochman, D.; Karshon, U.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.] York Univ, Dept Phys, N York, ON M3J 1P3, Canada. [Chwastowski, J.] Cracow Univ Technol, Fac Phys Math & Appl Comp Sci, Krakow, Poland. [Spiridonov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Szuba, D.] INP, Krakow, Poland. RP Levy, A (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Phys, IL-69978 Tel Aviv, Israel. EM levy@alzt.tau.ac.il RI IBRAHIM, ZAINOL ABIDIN/C-1121-2010; Ferrando, James/A-9192-2012; Gladilin, Leonid/B-5226-2011; Katkov, Igor/E-2627-2012; Golubkov, Yury/E-1643-2012; Fazio, Salvatore /G-5156-2010; Doyle, Anthony/C-5889-2009; Levchenko, B./D-9752-2012; Proskuryakov, Alexander/J-6166-2012; Dementiev, Roman/K-7201-2012; Korzhavina, Irina/D-6848-2012; Wiggers, Leo/B-5218-2015; Tassi, Enrico/K-3958-2015; Suchkov, Sergey/M-6671-2015; De Pasquale, Salvatore/B-9165-2008; dusini, stefano/J-3686-2012; Capua, Marcella/A-8549-2015; OI Ferrando, James/0000-0002-1007-7816; Gladilin, Leonid/0000-0001-9422-8636; Katkov, Igor/0000-0003-3064-0466; Doyle, Anthony/0000-0001-6322-6195; Wiggers, Leo/0000-0003-1060-0520; De Pasquale, Salvatore/0000-0001-9236-0748; dusini, stefano/0000-0002-1128-0664; Capua, Marcella/0000-0002-2443-6525; Longhin, Andrea/0000-0001-9103-9936; Raval, Amita/0000-0003-0164-4337 NR 47 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD MAR 7 PY 2011 VL 697 IS 3 BP 184 EP 193 DI 10.1016/j.physletb.2011.01.051 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 730NY UT WOS:000288041900003 ER PT J AU Jinek, M Coyle, SM Doudna, JA AF Jinek, Martin Coyle, Scott M. Doudna, Jennifer A. TI Coupled 5 ' Nucleotide Recognition and Processivity in Xrn1-Mediated mRNA Decay SO MOLECULAR CELL LA English DT Article ID PROMOTES TRANSCRIPTION TERMINATION; SACCHAROMYCES-CEREVISIAE; ENDONUCLEOLYTIC CLEAVAGE; FLAP ENDONUCLEASE-1; RIBOSOMAL-RNA; CRYSTAL-STRUCTURE; P-BODIES; EXORIBONUCLEASE; DEGRADATION; EXONUCLEASE AB Messenger RNA decay plays a central role in the regulation and surveillance of eukaryotic gene expression. The conserved multidomain exoribonuclease Xrn1 targets cytoplasmic RNA substrates marked by a 5' monophosphate for processive 5'-to-3' degradation by an unknown mechanism. Here, we report the crystal structure of an Xrn1-substrate complex. The single-stranded substrate is held in place by stacking of the 5'-terminal trinucleotide between aromatic side chains while a highly basic pocket specifically recognizes the 5' phosphate. Mutations of residues involved in binding the 5'-terminal nucleotide impair Xrn1 processivity. The substrate recognition mechanism allows Xrn1 to couple processive hydrolysis to duplex melting in RNA substrates with sufficiently long single-stranded 5' overhangs. The Xrn1 substrate complex structure thus rationalizes the exclusive specificity of Xrn1 for 5'-monophosphorylated substrates, ensuring fidelity of mRNA turnover, and posits a model for translocation-coupled unwinding of structured RNA substrates. C1 [Jinek, Martin; Coyle, Scott M.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Jinek, Martin/0000-0002-7601-210X FU Human Frontier Science Program; National Institutes of Health FX We thank the staff at beamline 8.2.2 of the Advanced Light Source (Lawrence Berkeley National Laboratory) for support during X-ray data measurement. We thank D. King for mass spectrometry and S. Lorenz for dynamic light-scattering analysis. We are grateful to J. Cate and E. Conti for discussions and to members of the J.A.D. laboratory for critical reading of the manuscript. M.J. was supported by a Long-Term Fellowship from the Human Frontier Science Program. J.A.D. is a Howard Hughes Medical Institute Investigator. This work was funded in part by the National Institutes of Health. NR 46 TC 46 Z9 46 U1 1 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD MAR 4 PY 2011 VL 41 IS 5 BP 600 EP 608 DI 10.1016/j.molcel.2011.02.004 PG 9 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 731ZU UT WOS:000288150700012 PM 21362555 ER PT J AU Chiolo, I Minoda, A Colmenares, SU Polyzos, A Costes, SV Karpen, GH AF Chiolo, Irene Minoda, Aki Colmenares, Serafin U. Polyzos, Aris Costes, Sylvain V. Karpen, Gary H. TI Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair SO CELL LA English DT Article ID DNA-DAMAGE; DROSOPHILA; STABILITY; GENE; PROTEIN-1; TELOMERES; MEIOSIS; SEGREGATION; CENTROMERES; SMC5-SMC6 AB Double-strand breaks (DSBs) in heterochromatic repetitive DNAs pose significant threats to genome integrity, but information about how such lesions are processed and repaired is sparse. We observe dramatic expansion and dynamic protrusions of the heterochromatin domain in response to ionizing radiation (IR) in Drosophila cells. We also find that heterochromatic DSBs are repaired by homologous recombination (HR) but with striking differences from euchromatin. Proteins involved in early HR events (resection) are rapidly recruited to DSBs within heterochromatin. In contrast, Rad51, which mediates strand invasion, only associates with DSBs that relocalize outside of the domain. Heterochromatin expansion and relocalization of foci require checkpoint and resection proteins. Finally, the Smc5/6 complex is enriched in heterochromatin and is required to exclude Rad51 from the domain and prevent abnormal recombination. We propose that the spatial and temporal control of DSB repair in heterochromatin safeguards genome stability by preventing aberrant exchanges between repeats. C1 [Chiolo, Irene; Minoda, Aki; Colmenares, Serafin U.; Polyzos, Aris; Costes, Sylvain V.; Karpen, Gary H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. [Karpen, Gary H.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Chiolo, I (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Genome Dynam, Berkeley, CA 94720 USA. EM iechiolo@lbl.gov; karpen@fruitfly.org RI Costes, Sylvain/D-2522-2013; Minoda, Aki/D-5335-2017 OI Costes, Sylvain/0000-0002-8542-2389; Minoda, Aki/0000-0002-2927-5791 FU FIRC; Unesco; Ruth Kirchstein NIH [1F32GM086111]; U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Associazione Italiana per la Ricerca sul Cancro FX This work was supported by postdoctoral fellowships from FIRC and Unesco to I. C., by Ruth Kirchstein NIH Postdoctoral Fellowship to S. U. C. (1F32GM086111), and by the Low Dose Radiation Research Program U.S. Department of Energy (DOE) (DE-AC02-05CH11231) to S. V. C. and G. H. K. We are grateful to P.-O. Mari for assistance with the NIR experiments and to S. Elgin, J. Kadonaga, B. Mellone, and D. Rio for reagents. We thank H. V. Le, R. Kunitake, and C. Pham for their help; A. Dernburg, E. Dunleavy, J. Swenson, and W. Zhang for comments on the manuscript; S. Langley for advice on ChIP-array data analysis; C-Y. Chen for software development; and the Karpen lab for sharing reagents and helpful discussions. NR 47 TC 176 Z9 176 U1 1 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAR 4 PY 2011 VL 144 IS 5 BP 732 EP 744 DI 10.1016/j.cell.2011.02.012 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 730CE UT WOS:000288007100012 PM 21353298 ER PT J AU Wickliffe, KE Lorenz, S Wemmer, DE Kuriyan, J Rape, M AF Wickliffe, Katherine E. Lorenz, Sonja Wemmer, David E. Kuriyan, John Rape, Michael TI The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2 SO CELL LA English DT Article ID ANAPHASE-PROMOTING COMPLEX; DEGRADATION; INSIGHTS; REVEALS; POLYUBIQUITINATION; PERFORMANCE; ACTIVATION; TARGETS; ENZYMES AB Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential noncovalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis. C1 [Wickliffe, Katherine E.; Lorenz, Sonja; Wemmer, David E.; Kuriyan, John; Rape, Michael] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Lorenz, S (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM slorenz@berkeley.edu; mrape@berkeley.edu OI Lorenz, Sonja/0000-0002-9639-2381 FU NIH [GM 68933, GM68933, RR15756, GM83064]; NSF [BBS 0119304, BBS 8720134] FX We thank H. J. Meyer for Ub-L-cycA; A. Williamson for golden extracts; members of the Rape and Kuriyan labs, J. Winger, S. Kassube, and J. Kirsch for discussions; J. Schaletzky for reading the manuscript and suggestions; J. Pelton for help with NMR experiments; D. King and T. Iavarone for mass spectrometry; and the staff at beamline 12.3.1 at LBNL for technical support. NMR instrumentation and operation were supported by NIH-GM 68933, NIH GM68933, NSF BBS 0119304 and NIH RR15756, and NSF BBS 8720134. S. L. is a fellow of The Leukemia & Lymphoma Society. M. R. is a Pew fellow and is supported by NIH GM83064 and an NIH New Innovator Award. NR 30 TC 135 Z9 137 U1 2 U2 26 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD MAR 4 PY 2011 VL 144 IS 5 BP 769 EP 781 DI 10.1016/j.cell.2011.01.035 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 730CE UT WOS:000288007100015 PM 21376237 ER PT J AU Zhang, RF Lin, ZJ Zhao, YS Veprek, S AF Zhang, R. F. Lin, Z. J. Zhao, Y. S. Veprek, S. TI Superhard materials with low elastic moduli: Three-dimensional covalent bonding as the origin of superhardness in B6O SO PHYSICAL REVIEW B LA English DT Article ID OSMIUM DIBORIDE; HARD MATERIAL; NANOCOMPOSITES; COATINGS; PRESSURE; DIAMOND; SEARCH; SOLIDS; DESIGN; NANO AB Using first-principles calculations, we show that, in spite of its relatively low shear modulus, boron suboxide (B6O) is superhard because of its high shear strength of >= 38 GPa which originates from three-dimensional covalently bonded network of B-12 icosahedral units connected by boron and oxygen atoms. We further demonstrate that the high shear resistance of B6O is related to strong B-B covalent bonds that connect the B-12 units. These results challenge the concept of design intrinsically superhard materials based on high elastic moduli only. C1 [Zhang, R. F.; Veprek, S.] Tech Univ Munich, Dept Chem, D-85747 Munich, Germany. [Lin, Z. J.; Zhao, Y. S.] Los Alamos Natl Lab, LANSCE Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Zhao, Y. S.] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. RP Zhang, RF (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Munich, Germany. EM zjlin6@gmail.com; stan.veprek@lrz.tum.de RI Lujan Center, LANL/G-4896-2012; Veprek, Stan/C-1248-2008; Lin, Zhijun/A-5543-2010 OI Veprek, Stan/0000-0002-6016-3093; FU Los Alamos National Security LLC under DOE [DEAC52-06NA25396] FX We would like to thank A. S. Argon and Maritza Veprek-Heijman for helpful comments on the manuscript and G. Kresse for valuable advice for the application of VASP. Work at Los Alamos is supported by Los Alamos National Security LLC under DOE contact DEAC52-06NA25396. NR 35 TC 28 Z9 28 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD MAR 4 PY 2011 VL 83 IS 9 AR 092101 DI 10.1103/PhysRevB.83.092101 PG 4 WC Physics, Condensed Matter SC Physics GA 730BF UT WOS:000288003000001 ER PT J AU Gando, A Gando, Y Ichimura, K Ikeda, H Inoue, K Kibe, Y Kishimoto, Y Koga, M Minekawa, Y Mitsui, T Morikawa, T Nagai, N Nakajima, K Nakamura, K Narita, K Shimizu, I Shimizu, Y Shirai, J Suekane, F Suzuki, A Takahashi, H Takahashi, N Takemoto, Y Tamae, K Watanabe, H Xu, BD Yabumoto, H Yoshida, H Yoshida, S Enomoto, S Kozlov, A Murayama, H Grant, C Keefer, G Piepke, A Banks, TI Bloxham, T Detwiler, JA Freedman, SJ Fujikawa, BK Han, K Kadel, R O'Donnell, T Steiner, HM Dwyer, DA McKeown, RD Zhang, C Berger, BE Lane, CE Maricic, J Miletic, T Batygov, M Learned, JG Matsuno, S Sakai, M Horton-Smith, GA Downum, KE Gratta, G Efremenko, Y Perevozchikov, O Karwowski, HJ Markoff, DM Tornow, W Heeger, KM Decowski, MP AF Gando, A. Gando, Y. Ichimura, K. Ikeda, H. Inoue, K. Kibe, Y. Kishimoto, Y. Koga, M. Minekawa, Y. Mitsui, T. Morikawa, T. Nagai, N. Nakajima, K. Nakamura, K. Narita, K. Shimizu, I. Shimizu, Y. Shirai, J. Suekane, F. Suzuki, A. Takahashi, H. Takahashi, N. Takemoto, Y. Tamae, K. Watanabe, H. Xu, B. D. Yabumoto, H. Yoshida, H. Yoshida, S. Enomoto, S. Kozlov, A. Murayama, H. Grant, C. Keefer, G. Piepke, A. Banks, T. I. Bloxham, T. Detwiler, J. A. Freedman, S. J. Fujikawa, B. K. Han, K. Kadel, R. O'Donnell, T. Steiner, H. M. Dwyer, D. A. McKeown, R. D. Zhang, C. Berger, B. E. Lane, C. E. Maricic, J. Miletic, T. Batygov, M. Learned, J. G. Matsuno, S. Sakai, M. Horton-Smith, G. A. Downum, K. E. Gratta, G. Efremenko, Y. Perevozchikov, O. Karwowski, H. J. Markoff, D. M. Tornow, W. Heeger, K. M. Decowski, M. P. TI Constraints on theta(13) from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND SO PHYSICAL REVIEW D LA English DT Article ID SOLAR-NEUTRINO OBSERVATIONS; FISSION-PRODUCTS; SPECTRUM; FUTURE; FLUX AB We present new constraints on the neutrino oscillation parameters Delta m(21)(2), theta(12), and theta(13) from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10(32) target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis (theta(13) = 0) of the KamLAND and solar data yields the best-fit values tan(2)theta(12) = 0.444(-0.030)(+0.036) and Delta m(21)(2) = 7.50(-0.20)(+0.19) x 10(-5) eV(2); a three-flavor analysis with theta(13) as a free parameter yields the best-fit values tan(2)theta(12) = 0.452(-0.033)(+0.035), Delta m(21)(2) = 7.50(-0.20)(+0.19) x 10(-5) eV(2), and sin(2)theta(13) = 0.020(-0.016)(+0.016). This theta(13) interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global theta(13) analysis, incorporating the CHOOZ, atmospheric, and accelerator data, which indicates sin(2)theta(13) = 0.009(-0.007)(+0.013). A nonzero value is suggested, but only at the 79% C.L. C1 [Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Inoue, K.; Koga, M.; Nakamura, K.; Enomoto, S.; Kozlov, A.; Murayama, H.; Piepke, A.; Freedman, S. J.; Fujikawa, B. K.; Horton-Smith, G. A.; Efremenko, Y.; Heeger, K. M.; Decowski, M. P.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.; Decowski, M. P.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.; Decowski, M. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Keefer, G.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Grant, C.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Lane, C. E.; Maricic, J.; Miletic, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Horton-Smith, G. A.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Downum, K. E.; Gratta, G.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Efremenko, Y.; Perevozchikov, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Durham, NC 27707 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Chapel Hill, NC 27599 USA. [Heeger, K. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Decowski, M. P.] Nikhef, NL-1098 XG Amsterdam, Netherlands. RP Gando, A (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. RI Decowski, Patrick/A-4341-2011; Murayama, Hitoshi/A-4286-2011; Horton-Smith, Glenn/A-4409-2011; Han, Ke/D-3697-2017; OI Horton-Smith, Glenn/0000-0001-9677-9167; Han, Ke/0000-0002-1609-7367; Zhang, Chao/0000-0003-2298-6272 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [16002002]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; U.S. Department of Energy (DOE) [DE-FG03-00ER41138, DE-AC02-05CH11231, DE-FG02-01ER41166]; DOE FX The KamLAND experiment is supported by the Grant-in-Aid for Specially Promoted Research under Grant No. 16002002 of the Japanese Ministry of Education, Culture, Sports, Science and Technology; the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; and under the U.S. Department of Energy (DOE) Grants No. DE-FG03-00ER41138, DE-AC02-05CH11231, and DE-FG02-01ER41166, as well as other DOE grants to individual institutions. The reactor data are provided by courtesy of the following electric associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikoku, and Kyushu Electric Power Companies, Japan Atomic Power Company, and Japan Atomic Energy Agency. The Kamioka Mining and Smelting Company has provided service for activities in the mine. NR 45 TC 146 Z9 146 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 4 PY 2011 VL 83 IS 5 AR 052002 DI 10.1103/PhysRevD.83.052002 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 730BV UT WOS:000288005500002 ER PT J AU Simon, JI Hutcheon, ID Simon, SB Matzel, JEP Ramon, EC Weber, PK Grossman, L DePaolo, DJ AF Simon, Justin I. Hutcheon, Ian D. Simon, Steven B. Matzel, Jennifer E. P. Ramon, Erick C. Weber, Peter K. Grossman, Lawrence DePaolo, Donald J. TI Oxygen Isotope Variations at the Margin of a CAI Records Circulation Within the Solar Nebula SO SCIENCE LA English DT Article ID SHOCK-WAVE MODEL; REFRACTORY INCLUSIONS; CARBONACEOUS CHONDRITES; PROTOPLANETARY NEBULA; RICH INCLUSIONS; CHONDRULE; ALLENDE; DISKS; TRANSPORT; COMPONENT AB Micrometer-scale analyses of a calcium-, aluminum-rich inclusion (CAI) and the characteristic mineral bands mantling the CAI reveal that the outer parts of this primitive object have a large range of oxygen isotope compositions. The variations are systematic; the relative abundance of O-16 first decreases toward the CAI margin, approaching a planetary-like isotopic composition, then shifts to extremely O-16-rich compositions through the surrounding rim. The variability implies that CAIs probably formed from several oxygen reservoirs. The observations support early and short-lived fluctuations of the environment in which CAIs formed, either because of transport of the CAIs themselves to distinct regions of the solar nebula or because of varying gas composition near the proto-Sun. C1 [Simon, Justin I.] NASA, Lyndon B Johnson Space Ctr, Astromat Res Off KR111, Houston, TX 77058 USA. [Simon, Justin I.; DePaolo, Donald J.] Univ Calif Berkeley, Ctr Isotope Geochem, Berkeley, CA 94720 USA. [Hutcheon, Ian D.; Matzel, Jennifer E. P.; Ramon, Erick C.; Weber, Peter K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Simon, Steven B.; Grossman, Lawrence] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Simon, JI (reprint author), NASA, Lyndon B Johnson Space Ctr, Astromat Res Off KR111, Houston, TX 77058 USA. EM justin.i.simon@nasa.gov RI Simon, Justin/D-7015-2011 FU Institute of Geophysics and Planetary Physics at LLNL; NASA; U.S. Department of Energy at LLNL [DE-AC52-07NA27344] FX This work was supported by grants from the Institute of Geophysics and Planetary Physics at LLNL (J.I.S. and D.J.D.), the NASA Origins program (I.D.H., J.E.P.M., and J.I.S.), and the NASA Cosmochemistry program (L.G. and I.D.H.). Work was performed under the auspices of the U.S. Department of Energy at LLNL under contract DE-AC52-07NA27344. NR 27 TC 41 Z9 41 U1 1 U2 14 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD MAR 4 PY 2011 VL 331 IS 6021 BP 1175 EP 1178 DI 10.1126/science.1197970 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 729SN UT WOS:000287971200037 PM 21385711 ER PT J AU Mladek, A Sponer, J Sumpter, BG Fuentes-Cabrera, M Sponer, JE AF Mladek, Arnost Sponer, Jiri Sumpter, Bobby G. Fuentes-Cabrera, Miguel Sponer, Judit E. TI On the Geometry and Electronic Structure of the As-DNA Backbone SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; SUGAR-PHOSPHATE BACKBONE; ARSENATE(V) TRIESTERS; MOLECULAR-MECHANICS; ENERGIES; KINETICS; VAN; COMPLEXES; MODEL AB High-level quantum chemical calculations have been applied to investigate the geometry and electronic properties of the arsenate analogue of the DNA backbone. The optimized geometries as well as hyperconjugation effects along the C3'-O3'-X-O5'-C5', linkage (X = R,As) exhibit a remarkable similarity for both arsenates and phosphates. This suggests that arsenates, if present, might serve as a potential substitute for phosphates in the DNA backbone. C1 [Mladek, Arnost; Sponer, Jiri; Sponer, Judit E.] Acad Sci Czech Republic, Inst Biophys, CZ-61265 Brno, Czech Republic. [Sumpter, Bobby G.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. [Sumpter, Bobby G.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Sponer, JE (reprint author), Acad Sci Czech Republic, Inst Biophys, Kralovopolska 135, CZ-61265 Brno, Czech Republic. EM fuentescabma@ornl.gov; judit@ncbr.chemi.muni.cz RI Mladek, Arnost/D-9204-2012; Sponer, Jiri/D-9467-2012; Sponer, Judit/D-9918-2012; Sumpter, Bobby/C-9459-2013; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU Academy of Sciences of the Czech Republic [AVOZ50040507, AVOZ50040702]; Ministry of Education of the Czech Republic [LC06030]; Grant Agency of the Academy of Sciences of the Czech Republic [IAA400040802]; Grant Agency of the Czech Republic [P208/10/2302, 203/09/1476, P208/11/1822, 203/09/H046]; Center for Nanophase Materials Sciences; Division of Scientific User Facilities, U.S. Department of Energy (USDOE); Office of Science, USDOE [DEAC02-05CH11231]; National Science Foundation FX The authors are very indebted to Prof. S. A. Benner for helpful discussions. This work was supported by the Academy of Sciences of the Czech Republic (Grant Numbers AVOZ50040507, AVOZ50040702), by the Ministry of Education of the Czech Republic (Grant Number LC06030), by the Grant Agency of the Academy of Sciences of the Czech Republic (Grant Number IAA400040802), and the Grant Agency of the Czech Republic (Grant Numbers P208/10/2302, 203/09/1476, P208/11/1822, and 203/09/H046). Work at Oak Ridge National Laboratory (ORNL) was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, U.S. Department of Energy (USDOE), and used resources of the National Center for Computational Sciences, ORNL, supported by the Office of Science, USDOE. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. It also used an allocation of advanced computing resources supported by the National Science Foundation; these computations were performed on Kraken (a Cray XTS) at the National Institute for Computational Sciences (http://www.nics.tennessee.edu/). A.M., and J.S. thank Zdenek Salvet for the maintenance of the computing facilities of the Brno group. The access to the MetaCentrum computing facilities provided under the research intent MSM6383917201 is also highly appreciated. NR 21 TC 8 Z9 8 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD MAR 3 PY 2011 VL 2 IS 5 BP 389 EP 392 DI 10.1021/jz200015n PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730SF UT WOS:000288053900009 ER PT J AU Zhang, H Long, Y Cao, Q Zou, M Gschneidner, KA Pecharsky, VK AF Zhang, H. Long, Y. Cao, Q. Zou, M. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Effect of Ca on the microstructure and magnetocaloric effects in the La1-xCaxFe11.5Si1.5 compounds SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Lanthanum iron silicide; Magnetic hysteresis; Magnetocaloric effect; Scanning electron microscopy (SEM) ID MAGNETIC ENTROPY CHANGE; LAFE13-XSIX INTERMETALLIC COMPOUNDS; ELECTRON METAMAGNETIC TRANSITION; PARTIAL SUBSTITUTION; ROOM-TEMPERATURE; REDUCTION; EXPANSION; LA AB The effect of Ca on the microstructure and magnetocaloric effects has been investigated in the La1-xCaxFe11.5Si1.5 (x = 0, 0.1, 0.2 and 0.3) compounds. The introduction of Ca leads to the appearance of minor alpha-Fe and Ca-rich phases, which affects the actual compositions of the main phases for the Ca containing samples. With increasing the Ca concentration, the Curie temperature T-C increases from 183 to 208 K, and the maximum magnetic entropy changes vertical bar Delta S vertical bar at the respective T-C with a magnetic field change from 0 to 5 T are 21.3, 19.5, 16.9, and 11.2 J/kgK for x = 0, 0.1, 0.2, and 0.3, respectively. The nature of the magnetic transition changes from first-order to second-order with an increase in Ca concentration, which leads to a reduction of the hysteresis and a decrease of the magnetic entropy change. However, the relative cooling power for La1-xCaxFe11.5Si1.5 compounds remains comparable with or even larger than that of other magnetocaloric materials over a wide temperature range. The higher T-C and the smaller hysteresis in comparison with those of the parent compound suggest that the La1-xCaxFe11.5Si1.5 compounds could be suitable candidates for magnetic refrigerants in the corresponding temperature range. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, H.; Long, Y.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Zhang, H.; Cao, Q.; Zou, M.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Cao, Q.; Zou, M.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Zhang, H (reprint author), Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. EM zhanghuxt@gmail.com FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science; National Science Foundation of China; National High Technology Research and Development program of China; National Basic Research Program of China FX The Ames Laboratory is operated by Iowa State University for the U.S. Department of Energy under contract No. DE-AC02-07CH11358. Work at Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science. H. Z.'s work at the Ames Laboratory was also supported by the National Science Foundation of China, the National High Technology Research and Development program of China and the National Basic Research Program of China. The authors also wish to thank Dr. Yaroslav Mudryk for his assistance in some of the experimental aspects of this research. NR 33 TC 7 Z9 8 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD MAR 3 PY 2011 VL 509 IS 9 BP 3746 EP 3750 DI 10.1016/j.jallcom.2010.12.194 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 729RI UT WOS:000287968000009 ER PT J AU Li, WB Miao, XY Luk, TS Zhang, P AF Li, Wenbing Miao, Xiaoyu Luk, Ting Shan Zhang, Peng TI Reporter-Embedded TiO2 Core-Mixed Metal Shell Nanoparticles with Enormous Average Surface-Enhanced Raman Scattering Enhancement Factors SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID GOLD NANOPARTICLE; AQUEOUS-SOLUTION; SERS DETECTION; NEAR-FIELD; SPECTROSCOPY; NANOSHELLS; ELECTRODES; MONOLAYERS; MOLECULES; GROWTH AB We report the development of Raman reporter-embedded TiO2 nanoparticles coated with mixed Ag and Au shells, showing enormous ensemble surface-enhanced Raman scattering (SERS) enhancement factors (up to 10(10)). Effects of shell composition on the enhancement are investigated both experimentally and theoretically. Colloidal TiO2 nanoparticles are first tagged with meso-tetra(4-carboxyphenyl)porphine or tris(2,2'-bipyridyl)ruthenium(II) chloride, used as reporter molecules. They are subsequently coated with either a Ag shell or a mixed Au-Ag shell with different compositions. The resulting nanostructures are characterized by UV-visible spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, particle size analyzer, and Raman spectroscopy. These Raman reporter-embedded TiO2 core-metal shell nanoparticles exhibit reproducible SERS signals of the reporter molecules with very high average enhancement factors. Interestingly, depending on the excitation wavelength, bimetallic Au-Ag shell nanostructures with proper Au/Ag ratios display higher enhancement factors than Ag-only shell. Simulation results based on equivalent dielectric functions show a very good match with the experimental observations. C1 [Zhang, Peng] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Li, Wenbing] New Mexico Inst Min & Technol, Dept Chem, Socorro, NM 87801 USA. [Miao, Xiaoyu; Luk, Ting Shan] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87123 USA. RP Zhang, P (reprint author), Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. EM peng.zhang@uc.edu FU Natural Science Foundation [CHE-0632071]; National Center for Research Resources (NCRR) of the National Institutes of Health [RR-016480]; U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL-85000] FX Support from the Natural Science Foundation (CHE-0632071) and the National Center for Research Resources (NCRR) of the National Institutes of Health (RR-016480) is gratefully acknowledged. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL-85000). NR 38 TC 6 Z9 6 U1 3 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 3 PY 2011 VL 115 IS 8 BP 3318 EP 3326 DI 10.1021/jp1116849 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 725HX UT WOS:000287636900019 ER PT J AU Chen, TL Mullins, DR AF Chen, T. -L. Mullins, D. R. TI Adsorption and Reaction of Acetaldehyde over CeOX(111) Thin Films SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CERIUM OXIDE; SINGLE-CRYSTAL; CARBON BOND; ZINC-OXIDE; SURFACES; METHANOL; SPECTROSCOPY; TIO2(110); ACETONE; FORMALDEHYDE AB This study reports the interaction of acetaldehyde with well-ordered CeOX(111) thin film surfaces. The fully oxidized CeO2(111) surface shows a weak interaction with I acetaldehyde with the sole desorption product (TPD) being the parent molecule at 210 K. The chemisorbed molecule binds to the surface as the eta(1)-acetaldehyde species rather than through a bridge-bonded dioxy configuration. Acetaldehyde chemisorbs strongly on reduced CeO2-X(111) with nonrecombinative and recombinative acetaldehyde desorbing at 405 and 550-600 K, respectively. Deoxygenation and dehydration also occur, producing ethylene and acetylene at 580 and 620 K, respectively. Acetaldehyde initially adsorbs in the eta(1) configuration and then converts to a carbanion species with both C=C and C=O bond character above 300 K. C1 [Chen, T. -L.; Mullins, D. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-ACO5-00OR22725]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Government [DE-AC0S-00OR22725] FX The research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-ACO5-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. This paper has been authored by a contractor of the U.S. Government under Contract No. DE-AC0S-00OR22725. NR 41 TC 24 Z9 24 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 3 PY 2011 VL 115 IS 8 BP 3385 EP 3392 DI 10.1021/jp110429s PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 725HX UT WOS:000287636900028 ER PT J AU Shkrob, IA Marin, TM Adhikary, A Sevilla, MD AF Shkrob, Ilya A. Marin, Timothy M. Adhikary, Amitava Sevilla, Michael D. TI Photooxidation of Nucleic Acids on Metal Oxides: Physicochemical and Astrobiological Perspectives SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ELECTRON-SPIN-RESONANCE; STRAND BREAK FORMATION; TEMPLATE-DIRECTED SYNTHESIS; BASE CATION RADICALS; AQUEOUS-SOLUTION; AMINO-ACIDS; PHOTOCATALYTIC DECOMPOSITION; UV-RADIATION; ACETIC-ACID; TIO2 NANOPARTICLES AB Photocatalytic oxidation of nucleic acid components on aqueous metal oxides (TiO(2), alpha-FeOOH, and alpha-Fe(2)O(3)) has been studied. The oxidation of purine nucleotides results in the formation of the purine radical cations and sugar phosphate radicals, whereas the oxidation of pyrirnidine nucleotides other than thymine results in the oxidation of only the sugar phosphate. The oxidation of the thymine (and to a far less extent for the 5-methylcytosine) derivatives results in deprotonation from the methyl group of the base. Some single-stranded (ss) oligoribonudeotides and wild-type ss RNA were oxidized at purine sites. In contrast, double-stranded (ds) oligoribonucleotides and DNA were not oxidized. These results account for observations suggesting that cellular ds DNA is not damaged by exposure to photoirradiated TiO(2), nanoparticles inserted into the cell, whereas ss RNA is extensively damaged. The astrobiological import of our observations is that the rapid degradation of monomer nucleotides makes them poor targets as biosignatures, whereas duplex DNA is a better target as it is resilient to oxidative diagenesis. Another import of our studies is that ds DNA (as opposed to ss RNA) appears to be optimized to withstand oxidative stress due to both the advantageous polymer morphology and the subtle details of its radical chemistry. This peculiarity may account for the preference for DNA over RNA as a "molecule of life" provided that metal oxides served as the template for synthesis of polynucleotides, as suggested by Orgel and others. C1 [Shkrob, Ilya A.; Marin, Timothy M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Marin, Timothy M.] Benedictine Univ, Dept Chem, Lisle, IL 60532 USA. [Adhikary, Amitava; Sevilla, Michael D.] Oakland Univ, Dept Chem, Rochester, MI 48309 USA. RP Shkrob, IA (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shkrob@anl.gov FU Office of Science, Division of Chemical Sciences, US-DOE [DE-AC-02-06CH11357]; NASA Planetary Division Mars Fundamental Research [NNH08AI65I]; NCI [CA045424] FX LAS thanks S. D. Chemerisov, T. Rajh, N. Dimitrijevic, H. J. Cleaves, and D. Catling for useful discussions. This work was supported by the Office of Science, Division of Chemical Sciences, US-DOE, under contract No. DE-AC-02-06CH11357, and the NASA Planetary Division Mars Fundamental Research grant No. NNH08AI65I. MDS and AA acknowledge support from NCI ROI CA045424. NR 102 TC 9 Z9 10 U1 2 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD MAR 3 PY 2011 VL 115 IS 8 BP 3393 EP 3403 DI 10.1021/jp110682c PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 725HX UT WOS:000287636900029 PM 21399705 ER PT J AU Robert, T Vanoli, F Chiolo, I Shubassi, G Bernstein, KA Rothstein, R Botrugno, OA Parazzoli, D Oldani, A Minucci, S Foiani, M AF Robert, Thomas Vanoli, Fabio Chiolo, Irene Shubassi, Ghadeer Bernstein, Kara A. Rothstein, Rodney Botrugno, Oronza A. Parazzoli, Dario Oldani, Amanda Minucci, Saverio Foiani, Marco TI HDACs link the DNA damage response, processing of double-strand breaks and autophagy SO NATURE LA English DT Article ID HISTONE DEACETYLASE INHIBITORS; SACCHAROMYCES-CEREVISIAE; HOMOLOGOUS RECOMBINATION; VALPROIC ACID; END RESECTION; CHECKPOINT; YEAST; REPAIR; ACETYLATION; ACTIVATION AB Protein acetylation is mediated by histone acetyltransferases (HATs) and deacetylases (HDACs), which influence chromatin dynamics, protein turnover and the DNA damage response. ATM and ATR mediate DNA damage checkpoints by sensing double-strand breaks and single-strand-DNA-RFA nucleofilaments, respectively. However, it is unclear how acetylation modulates the DNA damage response. Here we show that HDAC inhibition/ablation specifically counteracts yeast Mec1 (orthologue of human ATR) activation, double-strand-break processing and single-strand-DNA-RFA nucleofilament formation. Moreover, the recombination protein Sae2 (human CtIP) is acetylated and degraded after HDAC inhibition. Two HDACs, Hda1 and Rpd3, and one HAT, Gcn5, have key roles in these processes. We also find that HDAC inhibition triggers Sae2 degradation by promoting autophagy that affects the DNA damage sensitivity of hda1 and rpd3 mutants. Rapamycin, which stimulates autophagy by inhibiting Tor, also causes Sae2 degradation. We propose that Rpd3, Hda1 and Gcn5 control chromosome stability by coordinating the ATR checkpoint and double-strand-break processing with autophagy. C1 [Robert, Thomas; Vanoli, Fabio; Chiolo, Irene; Shubassi, Ghadeer; Foiani, Marco] Fdn IFOM, I-20139 Milan, Italy. [Chiolo, Irene] LBNL, Dept Genome Biol, Berkeley, CA 94710 USA. [Bernstein, Kara A.; Rothstein, Rodney] Columbia Univ, Dept Genet & Dev, Med Ctr, New York, NY 10032 USA. [Botrugno, Oronza A.; Minucci, Saverio] European Inst Oncol, I-20139 Milan, Italy. [Parazzoli, Dario; Oldani, Amanda] Cogentech, I-20139 Milan, Italy. [Minucci, Saverio; Foiani, Marco] Univ Milan, DSBB, I-20139 Milan, Italy. RP Foiani, M (reprint author), Fdn IFOM, IFOM IEO Campus,Via Adamello 16, I-20139 Milan, Italy. EM saverio.minucci@ifom-ieo-campus.it; marco.foiani@ifom-ieo-campus.it RI Minucci, Saverio/J-9669-2012; Foiani, Marco/M-8234-2014; Bernstein, Kara/S-4943-2016 OI Foiani, Marco/0000-0003-4795-834X; Bernstein, Kara/0000-0003-2247-6459 FU Italian Association for Cancer Research; Telethon; European Community (GENICA); Italian Ministry of Health; FRM; EMBO; HFSP; FIRC; [GM50237]; [GM67055]; [GM088413] FX We thank S. Piatti, M. P. Longhese, M. Grunstein, J. K. Tyler, A. Pellicioli, M. Costanzo, R. Brost, M. Vogelauer, D. Klionsky, T. Roberts and C. Bertoli for reagents and technical suggestions, J. Barlow for DNA damage foci analysis, A. Sartori and S. Ferrari for communicating unpublished results, C. Lucca, D. Branzei, R. Bermejo and the members of our laboratories for comments. Work in M. F. laboratory was supported by grants from the Italian Association for Cancer Research and partially from Telethon, European Community (GENICA) and the Italian Ministry of Health. T. R. was supported by fellowships from FRM and EMBO and I.C. was supported by a short fellowship from HFSP and from FIRC. This work was also supported by GM50237 (to R.R.), GM67055 (to R.R.) and GM088413 (to K.B.). NR 47 TC 177 Z9 184 U1 9 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD MAR 3 PY 2011 VL 471 IS 7336 BP 74 EP 79 DI 10.1038/nature09803 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 729BY UT WOS:000287924100036 PM 21368826 ER PT J AU Nasseripour, R Berman, BL Adhikari, KP Adikaram, D Anghinolfi, M Ball, J Battaglieri, M Batourine, V Bedlinskiy, I Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Carman, DS Casey, L Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dickson, R Djalali, C Doughty, D Dupre, R Egiyan, H El Alaoui, A El Fassi, L Fegan, S Fradi, A Gabrielyan, MY Gilfoyle, GP Giovanetti, KL Girod, FX Goetz, JT Gohn, W Gothe, RW Graham, L Griffioen, KA Guegan, B Hafidi, K Hakobyan, H Hanretty, C Heddle, D Holtrop, M Hyde, CE Ilieva, Y Ireland, DG Isupov, EL Keller, D Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Konczykowski, P Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Kvaltine, ND Livingston, K Lu, HY MacGregor, IJD Mayer, M McAndrew, J McKinnon, B Micherdzinska, AM Mirazita, M Moriya, K Moreno, B Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Ni, A Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Paolone, M Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Perrin, Y Pisano, S Pozdniakov, S Price, JW Procureur, S Protopopescu, D Ripani, M Ritchie, BG Rosner, G Rossi, P Sabatie, F Saini, MS Salgado, C Schott, D Schumacher, RA Seraydaryan, H Sharabian, YG Smith, ES Smith, GD Sober, DI Sokhan, D Stepanyan, SS Stepanyan, S Stoler, P Strauch, S Suleiman, R Taiuti, M Tang, W Taylor, CE Tedeschi, DJ Tkachenko, S Ungaro, M Vernarsky, B Vineyard, MF Voutier, E Watts, DP Weinstein, LB Weygand, DP Wood, MH Zhao, B Zhao, ZW AF Nasseripour, R. Berman, B. L. Adhikari, K. P. Adikaram, D. Anghinolfi, M. Ball, J. Battaglieri, M. Batourine, V. Bedlinskiy, I. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Carman, D. S. Casey, L. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dickson, R. Djalali, C. Doughty, D. Dupre, R. Egiyan, H. El Alaoui, A. El Fassi, L. Fegan, S. Fradi, A. Gabrielyan, M. Y. Gilfoyle, G. P. Giovanetti, K. L. Girod, F. X. Goetz, J. T. Gohn, W. Gothe, R. W. Graham, L. Griffioen, K. A. Guegan, B. Hafidi, K. Hakobyan, H. Hanretty, C. Heddle, D. Holtrop, M. Hyde, C. E. Ilieva, Y. Ireland, D. G. Isupov, E. L. Keller, D. Khandaker, M. Khetarpal, P. Kim, A. Kim, W. Klein, A. Klein, F. J. Konczykowski, P. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Kvaltine, N. D. Livingston, K. Lu, H. Y. MacGregor, I. J. D. Mayer, M. McAndrew, J. McKinnon, B. Micherdzinska, A. M. Mirazita, M. Moriya, K. Moreno, B. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Ni, A. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Paolone, M. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Perrin, Y. Pisano, S. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Ripani, M. Ritchie, B. G. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salgado, C. Schott, D. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Smith, E. S. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stepanyan, S. Stoler, P. Strauch, S. Suleiman, R. Taiuti, M. Tang, W. Taylor, C. E. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vernarsky, B. Vineyard, M. F. Voutier, E. Watts, D. P. Weinstein, L. B. Weygand, D. P. Wood, M. H. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Coherent photoproduction of pi(+) from He-3 SO PHYSICAL REVIEW C LA English DT Article ID PION-PHOTOPRODUCTION; CLAS; RESONANCE; THRESHOLD; REGION; SYSTEM; H-3 AB We have measured the differential cross section for the gamma He-3 ->pi(+)t reaction. This reaction was studied using the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid He-3 target. The differential cross sections for the gamma He-3 ->pi(+)t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model. C1 [Nasseripour, R.; Berman, B. L.; Briscoe, W. J.; Micherdzinska, A. M.; Munevar, E.; Niccolai, S.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Dupre, R.; El Alaoui, A.; El Fassi, L.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Morrison, B.; Pasyuk, E.; Ritchie, B. G.] Arizona State Univ, Tempe, AZ 85287 USA. [Goetz, J. T.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Dey, B.; Dickson, R.; Lu, H. Y.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Casey, L.; Collins, P.; Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Konczykowski, P.; Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Gabrielyan, M. Y.; Khetarpal, P.; Schott, D.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Taiuti, M.] Univ Genoa, I-16146 Genoa, Italy. [Cole, P. L.; Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [De Sanctis, E.; Mirazita, M.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ripani, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Fradi, A.; Guegan, B.; Niccolai, S.; Pisano, S.; Sokhan, D.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, A.; Kim, W.; Kuznetsov, V.; Ni, A.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Perrin, Y.; Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, Lab Phys Subatom & Cosmol Grenoble,Inst Polytech, Grenoble, France. [Suleiman, R.] MIT, Cambridge, MA 02139 USA. [Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Keller, D.; Niculescu, G.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Adikaram, D.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Sabatie, F.; Seraydaryan, H.; Weinstein, L. B.] Old Dominion Univ, Norfolk, VA 23529 USA. [Biselli, A. S.; Stoler, P.; Ungaro, M.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Isupov, E. L.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Graham, L.; Ilieva, Y.; Paolone, M.; Strauch, S.; Tedeschi, D. J.; Tkachenko, S.] Univ S Carolina, Columbia, SC 29208 USA. [Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Egiyan, H.; Girod, F. X.; Heddle, D.; Klein, F. J.; Kubarovsky, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Ireland, D. G.; Livingston, K.; MacGregor, I. J. D.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Smith, G. D.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Kvaltine, N. D.; Zhao, Z. W.] Univ Virginia, Charlottesville, VA 22901 USA. [Egiyan, H.; Griffioen, K. A.; Zhao, B.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Hakobyan, H.; Paremuzyan, R.; Sharabian, Y. G.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Nasseripour, R (reprint author), George Washington Univ, Washington, DC 20052 USA. RI Osipenko, Mikhail/N-8292-2015; Adikaram, Dasuni/D-1539-2016; Adikaram, D/H-7128-2016; Ireland, David/E-8618-2010; MacGregor, Ian/D-4072-2011; Lu, Haiyun/B-4083-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012 OI Osipenko, Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Sabatie, Franck/0000-0001-7031-3975; FU US Department of Energy [DE-FG02-95ER40901]; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; French Centre National de la Recherche Scientifique; French Commissariat a l'Energie Atomique; National Reseach Foundation of Korea; UK Science and Technology Facilities Council (STFC); Scottish Universities Physics Alliance (SUPA); United States Department of Energy [DE-AC05-84ER40150] FX We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at Jefferson Lab that made this experiment possible. This work was supported by the US Department of Energy under grant DE-FG02-95ER40901, the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat a l'Energie Atomique, the National Reseach Foundation of Korea, the UK Science and Technology Facilities Council (STFC), and Scottish Universities Physics Alliance (SUPA). The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. NR 26 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD MAR 3 PY 2011 VL 83 IS 3 AR 034001 DI 10.1103/PhysRevC.83.034001 PG 11 WC Physics, Nuclear SC Physics GA 729OQ UT WOS:000287960700001 ER PT J AU Neufeld, RB Vitev, I Zhang, BW AF Neufeld, R. B. Vitev, Ivan Zhang, Ben-Wei TI Physics of Z(0)/gamma*-tagged jets at energies available at the CERN Large Hadron Collider SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; LHC; COLLISIONS AB Electroweak bosons produced in conjunction with jets in high-energy collider experiments is one of the principal final-state channels that can be used to test the accuracy of perturbative quantum chromodynamics calculations and to assess the potential to uncover new physics through comparison between data and theory. In this article we present results for the Z(0)/gamma* + jet production cross sections at the CERN Large Hadron Collider (LHC) at leading and next-to-leading orders. In proton-proton reactions we elucidate up to O(G(F)alpha(2)(s)) the constraints that jet tagging via the Z(0)/gamma* decay dileptons provides on the momentum distribution of jets. In nucleus-nucleus reactions we demonstrate that tagged jets can probe important aspects of the dynamics of quark and gluon propagation in hot and dense nuclear matter and characterize the properties of the medium-induced parton showers in ways not possible with more inclusive measurements. Finally, we present specific predictions for the anticipated suppression of the Z(0)/gamma* + jet production cross section in the quark-gluon plasma that is expected to be created in central lead-lead collisions at the LHC relative to the naive superposition of independent nucleon-nucleon scatterings. C1 [Neufeld, R. B.; Vitev, Ivan; Zhang, Ben-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Ben-Wei] Cent China Normal Univ, Key Lab Quark & Lepton Phys, Minist Educ, Wuhan, Peoples R China. RP Neufeld, RB (reprint author), Los Alamos Natl Lab, Div Theoret, MS B238, Los Alamos, NM 87545 USA. EM neufeld@lanl.gov; ivitev@lanl.gov; bwzhang@iopp.ccnu.edu.cn FU US Department of Energy, Office of Science [DE-AC52-06NA25396]; Laboratory Directed Research and Development program at Los Alamos National Laboratory; Ministry of Education of China [NCET-09-0411]; National Natural Science Foundation of China [11075062]; CCNU [CCNU09A02001] FX We thank J. M. Campbell, R. K. Ellis, and G. Hasketh for illuminating discussions, clarification of the D0 experimental acceptance for Z0/gamma* + jet, and assistance with the implementation of the MCFM code. This research is supported by the US Department of Energy, Office of Science, under Contract No. DE-AC52-06NA25396 and in part by the Laboratory Directed Research and Development program at Los Alamos National Laboratory, by the Ministry of Education of China with Program No. NCET-09-0411, by National Natural Science Foundation of China with Project No. 11075062, and by CCNU with Project No. CCNU09A02001. NR 39 TC 31 Z9 31 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR 3 PY 2011 VL 83 IS 3 AR 034902 DI 10.1103/PhysRevC.83.034902 PG 14 WC Physics, Nuclear SC Physics GA 729OQ UT WOS:000287960700003 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, C Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Petzold, A Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Garzia, I Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Pennington, MR Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF del Amo Sanchez, P. Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Osipenkov, I. L. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Petzold, A. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. Firmino da Costa, J. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Lopes Pegna, D. Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Franco Sevilla, M. Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Albert, J. Banerjee, Sw Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Pennington, M. R. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Dalitz plot analysis of D-s(+) -> K+ K- pi(+) SO PHYSICAL REVIEW D LA English DT Article ID SCALAR MESONS; SCATTERING AB We perform a Dalitz plot analysis of about 100 000 D-s(+) decays to K+ K- pi(+) and measure the complex amplitudes of the intermediate resonances which contribute to this decay mode. We also measure the relative branching fractions of D-s(+) -> K+ K+ pi(-) and D-s(+) -> K+ K+ K-. For this analysis we use a 384 fb(-1) data sample, recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider running at center-of-mass energies near 10.58 GeV. C1 [del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] INFN Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.; Osipenkov, I. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Petzold, A.; Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] INFN Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] INFN Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fisiche, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, IN2P3,Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Chilton, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch; Zito, M.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Pennington, M. R.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. [Pennington, M. R.] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. RP Sanchez, PD (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Oyanguren, Arantza/K-6454-2014; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Calabrese, Roberto/G-4405-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; dong, liaoyuan/A-5093-2015; OI Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Oyanguren, Arantza/0000-0002-8240-7300; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Calabrese, Roberto/0000-0002-1354-5400; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Cibinetto, Gianluigi/0000-0002-3491-6231; dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508 FU BABAR; SLAC; US Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 28 TC 26 Z9 26 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 3 PY 2011 VL 83 IS 5 AR 052001 DI 10.1103/PhysRevD.83.052001 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 729OU UT WOS:000287961100001 ER PT J AU Robertson, BA Doran, PJ Loomis, ER Robertson, JR Schemske, DW AF Robertson, Bruce A. Doran, Patrick J. Loomis, Elizabeth R. Robertson, J. Roy Schemske, Douglas W. TI Avian Use of Perennial Biomass Feedstocks as Post-Breeding and Migratory Stopover Habitat SO PLOS ONE LA English DT Article ID GRASSLAND BIRDS; FARMLAND BIODIVERSITY; PASSERINE MIGRANTS; UNITED-STATES; LANDSCAPE; CONSERVATION; ASSOCIATIONS; ABUNDANCE; COMPETITION; DIVERSITY AB Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and species of state and national conservation concern ( e. g. Henslow's Sparrow, Ammodramus henslowii). Avian species richness was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity. Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds. C1 [Robertson, Bruce A.; Loomis, Elizabeth R.] Michigan State Univ, Kellogg Biol Stn, US DOE, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Doran, Patrick J.] Nature Conservancy, Lansing, MI USA. [Schemske, Douglas W.] Michigan State Univ, Dept Plant Biol, US DOE, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Robertson, BA (reprint author), Michigan State Univ, Kellogg Biol Stn, US DOE, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM RobertsonBr@si.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. NR 76 TC 14 Z9 15 U1 1 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 3 PY 2011 VL 6 IS 3 AR e16941 DI 10.1371/journal.pone.0016941 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 729QI UT WOS:000287965200009 PM 21390274 ER PT J AU van Passel, MWJ Kant, R Zoetendal, EG Plugge, CM Derrien, M Malfatti, SA Chain, PSG Woyke, T Palva, A de Vos, WM Smidt, H AF van Passel, Mark W. J. Kant, Ravi Zoetendal, Erwin G. Plugge, Caroline M. Derrien, Muriel Malfatti, Stephanie A. Chain, Patrick S. G. Woyke, Tanja Palva, Airi de Vos, Willem M. Smidt, Hauke TI The Genome of Akkermansia muciniphila, a Dedicated Intestinal Mucin Degrader, and Its Use in Exploring Intestinal Metagenomes SO PLOS ONE LA English DT Article ID GUT MICROBIOTA; DIVERSITY; BACTERIA; TOOL; PROKARYOTES; RESISTANCE; SELECTION; SEQUENCE; INFANTS; TRACT AB Background: The human gastrointestinal tract contains a complex community of microbes, fulfilling important health-promoting functions. However, this vast complexity of species hampers the assignment of responsible organisms to these functions. Recently, Akkermansia muciniphila, a new species from the deeply branched phylum Verrucomicrobia, was isolated from the human intestinal tract based on its capacity to efficiently use mucus as a carbon and nitrogen source. This anaerobic resident is associated with the protective mucus lining of the intestines. Methodology/Principal Findings: In order to uncover the functional potential of A. muciniphila, its genome was sequenced and annotated. It was found to contain numerous candidate mucinase-encoding genes, but lacking genes encoding canonical mucus-binding domains. Numerous phage-associated sequences found throughout the genome indicate that viruses have played an important part in the evolution of this species. Furthermore, we mined 37 GI tract metagenomes for the presence, and genetic diversity of Akkermansia sequences. Out of 37, eleven contained 16S ribosomal RNA gene sequences that are > 95% identical to that of A. muciniphila. In addition, these libraries were found to contain large amounts of Akkermansia DNA based on average nucleotide identity scores, which indicated in one subject co-colonization by different Akkermansia phylotypes. An additional 12 libraries also contained Akkermansia sequences, making a total of similar to 16 Mbp of new Akkermansia pangenomic DNA. The relative abundance of Akkermansia DNA varied between,0.01% to nearly 4% of the assembled metagenomic reads. Finally, by testing a large collection of full length 16S sequences, we find at least eight different representative species in the genus Akkermansia. Conclusions/Significance: These large repositories allow us to further mine for genetic heterogeneity and species diversity in the genus Akkermansia, providing novel insight towards the functionality of this abundant inhabitant of the human intestinal tract. C1 [van Passel, Mark W. J.; Zoetendal, Erwin G.; Plugge, Caroline M.; Derrien, Muriel; de Vos, Willem M.; Smidt, Hauke] Wageningen Univ, Microbiol Lab, Wageningen, Netherlands. [Kant, Ravi; Palva, Airi; de Vos, Willem M.] Univ Helsinki, Fac Vet Med, Dept Vet Biosci, Helsinki, Finland. [Malfatti, Stephanie A.; Chain, Patrick S. G.; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA USA. [Malfatti, Stephanie A.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chain, Patrick S. G.] Los Alamos Natl Lab, Los Alamos, NM USA. RP van Passel, MWJ (reprint author), Wageningen Univ, Microbiol Lab, Wageningen, Netherlands. EM mark.vanpassel@wur.nl RI chain, patrick/B-9777-2013; Kant, Ravi/F-7025-2013; OI Smidt, Hauke/0000-0002-6138-5026; Derrien, Muriel/0000-0001-8841-9153; Chain, Patrick/0000-0003-3949-3634 FU Netherlands Organization for Scientific Research (NWO); Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX MWJvP and WMdV are funded by the Netherlands Organization for Scientific Research (NWO) via a VENI and SPINOZA grant. RK was supported by the Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland. The work conducted by the U. S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 82 Z9 151 U1 4 U2 52 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 3 PY 2011 VL 6 IS 3 AR e16876 DI 10.1371/journal.pone.0016876 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 729QI UT WOS:000287965200007 PM 21390229 ER PT J AU Wang, DY Valiev, M Garrett, BC AF Wang, Dunyou Valiev, Marat Garrett, Bruce C. TI CH2Cl2+OH- Reaction in Aqueous Solution: A Combined Quantum Mechanical and Molecular Mechanics Study SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID AB-INITIO; CHLORINATED METHANES; FREE-ENERGIES; SIMULATIONS; DYNAMICS; IONS; HYDRATION; SOLVENTS; KINETICS; DENSITY AB The CH2Cl2 + OH- reaction in aqueous solution was investigated using combined quantum mechanical and molecular mechanics approach. We present analysis of the reactant, transition, and product state structures and calculate the free energy reaction profile through the CCSD(T) level of the theory for the reactive region. Our results show that the aqueous environment has a significant impact on the reaction process, raising the reaction barrier by similar to 17 kcal/mol and the reaction energy by similar to 20 kcal/mol. While solvation effects play a predominant role, we also find sizable contributions from solvent-induced polarization effects. C1 [Valiev, Marat; Garrett, Bruce C.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Valiev, Marat; Garrett, Bruce C.] Pacific NW Natl Lab, Fundamental & Computat Sci Div, Richland, WA 99352 USA. [Wang, Dunyou] Shandong Normal Univ, Coll Phys & Elect, Jinan 250014, Shandong, Peoples R China. RP Valiev, M (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM marat.valiev@pnl.gov RI Garrett, Bruce/F-8516-2011 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; DOE's Office of Biological and Environmental Research; DOE [DE-AC06-76RLO-1830] FX The work at Pacific Northwest National Laboratory (PNNL) was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. Computational resources were provided by the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) funded by DOE's Office of Biological and Environmental Research. Battelle operates PNNL for DOE under Contract DE-AC06-76RLO-1830. D.W. thanks the Taishan Scholarship fund for supporting his work NR 38 TC 10 Z9 10 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD MAR 3 PY 2011 VL 115 IS 8 BP 1380 EP 1384 DI 10.1021/jp109287r PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 725HS UT WOS:000287636400010 PM 21306146 ER PT J AU Vukmirovic, N Wang, LW AF Vukmirovic, Nenad Wang, Lin-Wang TI Density of States and Wave Function Localization in Disordered Conjugated Polymers: A Large Scale Computational Study SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CHARGE-CARRIER MOBILITY; ELECTRONIC-STRUCTURE; SEMICONDUCTING POLYMERS; CONFORMATIONAL DISORDER; ORGANIC TRANSISTORS; TRANSPORT; SOLIDS; CHAIN AB We present large-scale calculations of electronic structure of strongly disordered conjugated polymers. The calculations have been performed using the density functional theory based charge patching method for the construction of single-particle Hamiltonian and the overlapping fragments method for the efficient diagonalization of that Hamiltonian. We find that the hole states are localized due to the fluctuations of the electrostatic potential and not by the breaks in the conjugation of the polymer chain. The tail of the density of hole states exhibits an exponentially decaying behavior. The main features of the electronic structure of the system can be described by an one-dimensional nearest neighbor tight-binding model with a correlated Gaussian distribution of on-site energies and constant off-site coupling elements. C1 [Vukmirovic, Nenad; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Vukmirovic, Nenad] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia. RP Vukmirovic, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM nenad.vukmirovic@ipb.ac.rs RI Vukmirovic, Nenad/D-9489-2011 OI Vukmirovic, Nenad/0000-0002-4101-1713 FU DMS/BES/SC of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Science and Technological Development of the Republic of Serbia [ON171017]; European Commission under EU FX This work was supported by the DMS/BES/SC of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. It used the resources of National Energy Research Scientific Computing Center (NERSC) and the INCITE project allocations within the National Center for Computational Sciences (NCCS). In the last stages of this work, N.V. was supported by the Ministry of Science and Technological Development of the Republic of Serbia, under project No. ON171017, and the European Commission under EU FP7 projects PRACE-IIP, HP-SEE, and EGI-InSPIRE. NR 42 TC 29 Z9 29 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 3 PY 2011 VL 115 IS 8 BP 1792 EP 1797 DI 10.1021/jp1114527 PG 6 WC Chemistry, Physical SC Chemistry GA 725HV UT WOS:000287636700008 PM 21291182 ER PT J AU Lins, RD Devanathan, R Dupuis, M AF Lins, Roberto D. Devanathan, Ram Dupuis, Michel TI Modeling the Nanophase Structural Dynamics of Phenylated Sulfonated Poly Ether Ether Ketone Ketone (Ph-SPEEKK) Membranes As a Function of Hydration SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PROTON-EXCHANGE MEMBRANES; FUEL-CELL APPLICATIONS; ATOMISTIC SIMULATIONS; PROTOGENIC GROUP; PHOSPHONIC ACID; NAFION MEMBRANE; HYDRONIUM IONS; WATER; TEMPERATURE; ELECTROLYTES AB Solvated phenylated sulfonated poly ether ether ketone ketone (Ph-SPEEKK) membranes in the presence of hydronium ions were modeled by classical molecular dynamics simulations. The characterization of the nanophase structure and dynamics of such membranes was carried out as a function of the water content A, where A is the number of water molecules per sulfonate group, for A values of 3.5, 6, 11, 25, and 40. Analysis of pair correlation functions supports the experimental observation of membrane swelling upon hydration as well the increase in water and hydronium ion diffusion with increasing lambda. Whereas the average number of hydrogen bonds between hydronium ions and sulfonate groups is dramatically affected by the hydration level, the average lifetime of the hydrogen bonds remains essentially constant The membrane is found to be relatively rigid, and its overall flexibility shows little dependence on water content. Compared with Nafion, water and ion diffusion coefficients are considerably smaller at lower hydration levels and room temperature. However, at higher A values of 25 and 40, these coefficients are comparable to those in Nafion at a A value of 16. This study also shows that water diffusion in Ph-SPEEKK membranes at low hydration levels can be significantly improved by raising the temperature with important implications for proton conductivity. C1 [Devanathan, Ram; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Lins, Roberto D.] Fed Univ Pernambuco UFPE, Dept Fundamental Chem, BR-50740540 Recife, PE, Brazil. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Devanathan, Ram/C-7247-2008; Lins, Roberto/J-7511-2012 OI Devanathan, Ram/0000-0001-8125-4237; Lins, Roberto/0000-0002-3983-8025 FU CNPq; INCT-LNAMI; FACEPE; Department of Energy's (DOE) Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; National Energy Research Scientific Computing Center (NERSC); Office of Science of DOE [DE-AC02-05CH11231]; DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; DOE by Battelle Memorial Institute [DE-AC05-76RLO1830] FX R.D.L. acknowledges CNPq, INCT-LNAMI, and FACEPE for partial support. Computer time was provided by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's (DOE) Office of Biological and Environmental Research located at Pacific Northwest National Laboratory, and the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of DOE under contract no. DE-AC02-05CH11231. This work is supported by the DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. NR 29 TC 13 Z9 13 U1 0 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD MAR 3 PY 2011 VL 115 IS 8 BP 1817 EP 1824 DI 10.1021/jp110331m PG 8 WC Chemistry, Physical SC Chemistry GA 725HV UT WOS:000287636700011 PM 21291226 ER PT J AU You, FQ Pinto, JM Capon, E Grossmann, IE Arora, N Megan, L AF You, Fengqi Pinto, Jose M. Capon, Elisabet Grossmann, Ignacio E. Arora, Nikhil Megan, Larry TI Optimal Distribution-Inventory Planning of Industrial Gases. I. Fast Computational Strategies for Large-Scale Problems SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT International-Mexican Congress on Chemical Reaction Engineering (IMCCRE) CY JUN 06-10, 2010 CL City of Ixtapa-Zihuatanejo, MEXICO ID SUPPLY CHAIN DESIGN; FLEXIBLE PROCESS NETWORKS; ROUTING PROBLEM; STOCHASTIC INVENTORY; DEMAND UNCERTAINTY; MODELS; MANAGEMENT; OPTIMIZATION; REPLENISHMENT; DECOMPOSITION AB In this paper, we address the optimization of industrial gas distribution systems, which consist of plants and customers, as well as storage tanks, trucks, and trailers. A mixed-integer linear programming (MILP) model is presented to minimize the total capital and operating costs, and to integrate short-term distribution planning decisions for the vehicle routing with long-term inventory decisions for sizing storage tanks at customer locations, In order to optimize asset allocation in the industrial gas distribution network by incorporating operating decisions, the model also takes into account the synergies among delivery schedule, tank sizes, customer locations, and inventory profiles. To effectively solve large-scale instances, we propose two fast computational strategies. The first approach is a two-level solution strategy based on the decomposition of the full-scale MILP model into an upper level route selection-tank sizing Model and a lower level reduced routing model. The second approach is based on a continuous approximation method, which estimates the operational cost at the strategic level and determines the trade-off with the capital cost from tank sizing. Three case studies including instances with up to 200 customers are presented to illustrate the applications of the Models and the performance of the proposed solution methods. C1 [You, Fengqi; Capon, Elisabet; Grossmann, Ignacio E.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [You, Fengqi] Argonne Natl Lab, Argonne, IL 60439 USA. [Pinto, Jose M.; Arora, Nikhil; Megan, Larry] Praxair Inc, Danbury, CT 06810 USA. RP Grossmann, IE (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM grossmann@cmu.edu RI You, Fengqi/F-6894-2011; Capon Garcia, Elisabet/H-5165-2013; Oliveira, Luciano/N-4674-2014; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU Praxair, Inc.; Pennsylvania Infrastructure Technology Alliance (PITA); National Science Foundation [DMI-0556090, OCI-0750826]; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors acknowledge financial support from Praxair, Inc., the Pennsylvania Infrastructure Technology Alliance (PITA), and the National Science Foundation under Grants DMI-0556090 and OCI-0750826. E.C. also wishes to thank the Spanish Ministerio de Educacion y Ciencia for the FPU program. F.Y. is partially supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 50 TC 15 Z9 15 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAR 2 PY 2011 VL 50 IS 5 BP 2910 EP 2927 DI 10.1021/ie1017578 PG 18 WC Engineering, Chemical SC Engineering GA 725HI UT WOS:000287635400053 ER PT J AU You, FQ Pinto, JM Grossmann, IE Megan, L AF You, Fengqi Pinto, Jose M. Grossmann, Ignacio E. Megan, Larry TI Optimal Distribution-Inventory Planning of Industrial Gases. II. MINLP Models and Algorithms for Stochastic Cases SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT International-Mexican Congress on Chemical Reaction Engineering (IMCCRE) CY JUN 06-10, 2010 CL City of Ixtapa-Zihuatanejo, MEXICO ID SUPPLY CHAIN DESIGN; PETROLEUM REFINERIES; DEMAND UNCERTAINTY; BATCH PLANTS; OPTIMIZATION; MANAGEMENT AB In this article, we consider inventory-distribution planning under uncertainty for industrial gas supply chains by extending the continuous approximation solution strategy proposed in part I of this work. A stochastic inventory approach is proposed and incorporated into a multiperiod two-stage stochastic mixed-integer nonlinear programming (MINLP) model to handle uncertainty In demand and loss or addition of customers. This nonconvex MINLP formulation takes into account customer synergies and simultaneously predicts the optimal sizes of customers' storage tanks, the safety stock levels, and the estimated delivery cost for replenishments. To globally optimize this stochastic MINLP problem with modest computational time, we develop a tailored branch-and-refine algorithm based on successive piecewise-linear approximation. The solution from the stochastic MINLP is fed into a detailed routing model with a shorter planning horizon to determine the optimal deliveries, replenishments, and inventories. A clustering-based heuristic is proposed for solving the routing model with reasonable computational effort. Three case studies including instances with up to 200 customers are presented to demonstrate the effectiveness of the proposed stochastic models and solution algorithms. C1 [You, Fengqi; Grossmann, Ignacio E.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [You, Fengqi] Argonne Natl Lab, Argonne, IL 60439 USA. [Pinto, Jose M.; Megan, Larry] Praxair Inc, Danbury, CT 06810 USA. RP Grossmann, IE (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM grossmann@cmu.edu RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU Praxair, Inc.; Pennsylvania Infrastructure Technology Alliance; National Science Foundation [DMI-0556090, OCI-0750826]; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors acknowledge financial support from Praxair, Inc.; the Pennsylvania Infrastructure Technology Alliance, and the National Science Foundation under Grants DMI-0556090 and OCI-0750826. F.Y. is partially supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 24 TC 37 Z9 37 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD MAR 2 PY 2011 VL 50 IS 5 BP 2928 EP 2945 DI 10.1021/ie101758u PG 18 WC Engineering, Chemical SC Engineering GA 725HI UT WOS:000287635400054 ER PT J AU Xiong, G Huang, XJ Leake, S Newton, MC Harder, R Robinson, IK AF Xiong, Gang Huang, Xiaojing Leake, Steven Newton, Marcus C. Harder, Ross Robinson, Ian K. TI Coherent x-ray diffraction imaging of ZnO nanostructures under confined illumination SO NEW JOURNAL OF PHYSICS LA English DT Article ID CRYSTALS; STRAIN AB Coherent x-ray diffraction imaging has been used to study a single ZnO nanorod in a confined illuminating condition. The focused beam size is smaller than the length of the nanorod, and the diffraction intensity is strongly dependent on the illumination position. The density maps show that the nanorod width in the radial direction is around 210 nm and has a length of 1.5 mu m, in agreement with the scanning electron microscope measurement. Reconstructed phase maps show a maximum phase change of 0.8 radians. The reconstructed direct space structures reveal the exit wavefront profile, which includes that of the focused x-ray beam. The beam profile presents in reconstructions some 'hill and valley' surface features with a typical size of a few tens of nanometres and are attributed to the noise due to the slow variation of the focused beam intensity along the boundary. A single ZnO tetrapod has been investigated with the same method to recover the beam profile in the horizontal direction. C1 [Xiong, Gang; Huang, Xiaojing; Leake, Steven; Newton, Marcus C.; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Huang, Xiaojing; Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Leake, Steven] Swiss Light Source, Villigen, Switzerland. [Robinson, Ian K.] UK & Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Xiong, G (reprint author), UCL, London Ctr Nanotechnol, London WC1H 0AH, England. EM ganxiong@hotmail.com RI Huang, Xiaojing/K-3075-2012; Newton, Marcus/C-3135-2014 OI Huang, Xiaojing/0000-0001-6034-5893; FU European Research Council [227711]; US National Science Foundation [DMR-9724294]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project is supported by the European Research Council as an FP7 Advanced grant 'Nanosculpture', code 227711. The measurements were carried out at APS beamline 34-ID-C, built with US National Science Foundation grant DMR-9724294 and operated by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 22 TC 5 Z9 5 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD MAR 2 PY 2011 VL 13 AR 033006 DI 10.1088/1367-2630/13/3/033006 PG 11 WC Physics, Multidisciplinary SC Physics GA 744AK UT WOS:000289063800003 ER PT J AU Floyd, WC Klemm, PJ Smiles, DE Kohlgruber, AC Pierre, VC Mynar, JL Frechet, JMJ Raymond, KN AF Floyd, William C., III Klemm, Piper J. Smiles, Danil E. Kohlgruber, Ayano C. Pierre, Valerie C. Mynar, Justin L. Frechet, Jean M. J. Raymond, Kenneth N. TI Conjugation Effects of Various Linkers on Gd(III) MRI Contrast Agents with Dendrimers: Optimizing the Hydroxypyridinonate (HOPO) Ligands with Nontoxic, Degradable Esteramide (EA) Dendrimers for High Relaxivity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FAST WATER EXCHANGE; COMPLEXES; RELAXATION; STABILITY; NUMBER AB One essential requirement for more sensitive gadolinium-based MRI contrast agents is to slow the molecular tumbling of the gadolinium(III) ion, which increases the gadolinium's relaxivity (i.e., its ability to speed up the NMR relaxation of nearby water molecules). One route to this is through conjugation to high-molecular-weight polymers such as dendrimers. In this work, amine-functionalized TREN-bis(1,2-HOPO)-TAM-ethylamine and TREN-bis(1-Me-3,2-HOPO)-TAM-ethylamine ligands have been synthesized and attached to biocompatible 40 kDa ester-amide (EA)- and poly-L-lysine (PLL)-based dendrimers capable of binding up to eight gadolinium complexes. These conjugates have T(1) relaxivities of up to 38.14 +/- 0.02 mM(-1) s(-1) per gadolinium at 37 degrees C, corresponding to relaxivities of up to 228 mM(-1) s(-1) per dendrimer molecule. This relaxivity expressed on a "per Gd" basis is several times that of the small-molecule complexes and an order of magnitude higher than that of current commercial agents. Because of their high performance and low toxicity, these macromolecules may constitute an attractive complement to currently available gadolinium(III)-based contrast agents. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU NIH [R01 EB 002047, HL069832] FX The authors acknowledge NIH Grant R01 EB 002047 and NIH Grant HL069832. We acknowledge Kyle Broaders for assistance with cell studies, Dr. Christopher M. Andolina, and Adam D. Hill. NR 22 TC 58 Z9 59 U1 7 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 2 PY 2011 VL 133 IS 8 BP 2390 EP 2393 DI 10.1021/ja110582e PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 733VJ UT WOS:000288291300016 PM 21294571 ER PT J AU Shustova, NB Peryshkov, DV Kuvychko, IV Chen, YS Mackey, MA Coumbe, CE Heaps, DT Confait, BS Heine, T Phillips, JP Stevenson, S Dunsch, L Popov, AA Strauss, SH Boltalina, OV AF Shustova, Natalia B. Peryshkov, Dmitry V. Kuvychko, Igor V. Chen, Yu-Sheng Mackey, Mary A. Coumbe, Curtis E. Heaps, David T. Confait, Bridget S. Heine, Thomas Phillips, J. Paige Stevenson, Steven Dunsch, Lothar Popov, Alexey A. Strauss, Steven H. Boltalina, Olga V. TI Poly(perfluoroalkylation) of Metallic Nitride Fullerenes Reveals Addition-Pattern Guidelines: Synthesis and Characterization of a Family of Sc3N@C-80(CF3)(n) (n=2-16) and Their Radical Anions SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ORGANIC PHOTOVOLTAIC DEVICES; I-H SC3N-AT-C-80; ENDOHEDRAL METALLOFULLERENES; CRYSTALLOGRAPHIC CHARACTERIZATION; TRIFLUOROMETHYL DERIVATIVES; STRUCTURE ELUCIDATION; CRYSTAL-STRUCTURE; FILTER APPROACH; CAGE ISOMERS AB A family of highly stable (poly)perfluoroalkylated metallic nitride cluster fullerenes was prepared in high-temperature reactions and characterized by spectroscopic (MS, F-19 NMR, UV-vis/NIR, ESR), structural and electro-chemical methods. For two new compounds, Sc3N@C-80(CF3)(10) and Sc3N@C-80(CF3)(12), single crystal X-ray structures are determined. Addition pattern guidelines for endohedral fullerene derivatives with bulky functional groups are formulated as a result of experimental (F-19 NMR spectroscopy and single crystal X-ray diffraction) studies and exhaustive quantum chemical calculations of the structures of Sc3N@C-80(CF3)(n) (n = 2-16). Electrochemical studies revealed that Sc3N@C-80(CF3)(n) derivatives are easier to reduce than Sc3N@C-80, the shift of E-1/2 in potentials ranging from +0.11 V (n = 2) to +0.42 V (n = 10). Stable radical anions of Sc3N@C-80(CF3)(n) were generated in solution and characterized by ESR spectroscopy, revealing their Sc-45 hyperfine structure. Facile further functionalizations via cycloadditions or radical additions were achieved for trifluoromethylated Sc3N@C-80 making them attractive versatile platforms for the design of molecular and supramolecular materials of fundamental and practical importance. C1 [Mackey, Mary A.; Coumbe, Curtis E.; Heaps, David T.; Confait, Bridget S.; Phillips, J. Paige; Stevenson, Steven] Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. [Shustova, Natalia B.; Peryshkov, Dmitry V.; Kuvychko, Igor V.; Strauss, Steven H.; Boltalina, Olga V.] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA. [Chen, Yu-Sheng] Univ Chicago, Adv Photon Source, ChemMatCARS Beamline, Argonne, IL 60439 USA. [Heine, Thomas] Jacobs Univ, Sch Engn & Sci, D-28759 Bremen, Germany. [Dunsch, Lothar; Popov, Alexey A.] Leibniz Inst Solid State & Mat Res, Dept Electchem & Conducting Polymers, D-01069 Dresden, Germany. RP Phillips, JP (reprint author), Univ So Mississippi, Dept Chem & Biochem, Hattiesburg, MS 39406 USA. EM janice.phillips@usm.edu; steven.stevenson@usm.edu; l.dunsch@ifw-dresden.de; a.popov@ifw-dresden.de; steven.strauss@colostate.edu; olga.boltalina@colostate.edu RI Heine, Thomas/H-4907-2011; Heine, Thomas/H-5446-2011; Popov, Alexey/A-9937-2011; Peryshkov, Dmitry/B-8706-2008; OI Heine, Thomas/0000-0003-2379-6251; Popov, Alexey/0000-0002-7596-0378; Shustova, Natalia/0000-0003-3952-1949; Stevenson, Steven/0000-0003-3576-4062; Peryshkov, Dmitry/0000-0002-5653-9502 FU Alexander von Humboldt Foundation; U.S. NSF [CHE-0707223, CHE-1012468, CHE-0822838, CHE-0547988, CHE-0847481]; Colorado State University Research Foundation; National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the Alexander von Humboldt Foundation (A.A.P., O.V.B.), the U.S. NSF (CHE-0707223, CHE-1012468, CHE-0822838, CHE-0547988, CHE-0847481), and the Colorado State University Research Foundation. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant Number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We acknowledge Dr. Z. Mazej for making KMnF4 sample. NR 77 TC 40 Z9 40 U1 5 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 2 PY 2011 VL 133 IS 8 BP 2672 EP 2690 DI 10.1021/ja109462j PG 19 WC Chemistry, Multidisciplinary SC Chemistry GA 733VJ UT WOS:000288291300054 PM 21294511 ER PT J AU Zhuang, ZY Jewett, AI Kuttimalai, S Bellesia, G Gnanakaran, S Shea, JE AF Zhuang, Zhuoyun Jewett, Andrew I. Kuttimalai, Silvan Bellesia, Giovanni Gnanakaran, S. Shea, Joan-Emma TI Assisted Peptide Folding by Surface Pattern Recognition SO BIOPHYSICAL JOURNAL LA English DT Article ID INTRINSICALLY UNSTRUCTURED PROTEINS; NONPOLAR AMINO-ACIDS; AMYLOID BETA-PEPTIDE; DISORDERED PROTEINS; CONFORMATIONAL-CHANGES; SECONDARY STRUCTURE; GLOBULAR-PROTEINS; 4-HELIX BUNDLE; MODEL PROTEINS; FOLDED STATES AB Natively disordered proteins belong to a unique class of biomolecules whose function is related to their flexibility and their ability to adopt desired conformations upon binding to substrates. In some cases these proteins can bind multiple partners, which can lead to distinct structures and promiscuity in functions. In other words, the capacity to recognize molecular patterns on the substrate is often essential for the folding and function of intrinsically disordered proteins. Biomolecular pattern recognition is extremely relevant both in vivo (e.g., for oligomerization, immune response, induced folding, substrate binding, and molecular switches) and in vitro (e.g., for biosensing, catalysis, chromatography, and implantation). Here, we use a minimalist computational model system to investigate how polar/nonpolar patterns on a surface can induce the folding of an otherwise unstructured peptide. We show that a model peptide that exists in the bulk as a molten globular state consisting of many interconverting structures can fold into either a helix-coil-helix or an extended helix structure in the presence of a complementary designed patterned surface at low hydrophobicity (3.7%) or a uniform surface at high hydrophobicity (50%). However, we find that a carefully chosen surface pattern can bind to and catalyze the folding of a natively unfolded protein much more readily or effectively than a surface with a noncomplementary or uniform distribution of hydrophobic residues. C1 [Zhuang, Zhuoyun; Jewett, Andrew I.; Kuttimalai, Silvan; Shea, Joan-Emma] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Shea, Joan-Emma] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bellesia, Giovanni; Gnanakaran, S.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. RP Shea, JE (reprint author), Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. EM shea@chem.ucsb.edu OI Gnanakaran, S/0000-0002-9368-3044 FU David and Lucile Packard Foundation; National Science Foundation [MCB-0642088]; Institute for Multiscale Materials Studies, University of California-Santa Barbara/Los Alamos National Laboratory FX This research was funded by the David and Lucile Packard Foundation, the National Science Foundation (MCB-0642088), and the Institute for Multiscale Materials Studies, University of California-Santa Barbara/Los Alamos National Laboratory. NR 65 TC 15 Z9 15 U1 0 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 EI 1542-0086 J9 BIOPHYS J JI Biophys. J. PD MAR 2 PY 2011 VL 100 IS 5 BP 1306 EP 1315 DI 10.1016/j.bpj.2010.12.3735 PG 10 WC Biophysics SC Biophysics GA 730QP UT WOS:000288049400019 PM 21354404 ER PT J AU De-Santiago, J Cervantes-Cota, JL AF De-Santiago, Josue Cervantes-Cota, Jorge L. TI Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term SO PHYSICAL REVIEW D LA English DT Article ID K-INFLATION; MAPS AB We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels. C1 [Cervantes-Cota, Jorge L.] LBNL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Cervantes-Cota, Jorge L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. EM josue@ciencias.unam.mx; jorge.cervantes@inin.gob.mx OI Cervantes-Cota, Jorge L./0000-0002-3057-6786 FU UC MEXUS-CONACYT; CONACYT [84133-F, 210405] FX J. L. C. C. thanks the Berkeley Center for Cosmological Physics for hospitality, and gratefully acknowledges support from a UC MEXUS-CONACYT Grant, and a CONACYT Grant No. 84133-F. J. D. S. acknowledges a CONACYT Grant No. 210405. NR 34 TC 25 Z9 25 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 2 PY 2011 VL 83 IS 6 AR 063502 DI 10.1103/PhysRevD.83.063502 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 728ZD UT WOS:000287912100002 ER PT J AU Duan, HY Friedland, A AF Duan, Huaiyu Friedland, Alexander TI Self-Induced Suppression of Collective Neutrino Oscillations in a Supernova SO PHYSICAL REVIEW LETTERS LA English DT Article ID MATTER AB We investigate collective flavor oscillations of supernova neutrinos at late stages of the explosion. We first show that the frequently used single-angle (averaged coupling) approximation predicts oscillations close to, or perhaps even inside, the neutrinosphere, potentially invalidating the basic neutrino transport paradigm. Fortunately, we also find that the single-angle approximation breaks down in this regime; in the full multiangle calculation, the oscillations start safely outside the transport region. The new suppression effect is traced to the interplay between the dispersion in the neutrino-neutrino interactions and the vacuum oscillation term. C1 [Duan, Huaiyu; Friedland, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Duan, HY (reprint author), Los Alamos Natl Lab, Div Theoret, MS B285, Los Alamos, NM 87545 USA. FU DOE Office of Science; LANL FX We thank S. Reddy for useful feedback. We gladly acknowledge the use of supercomputing resources at LANL through the Institutional Computing Program. This work was supported by the DOE Office of Science and the LANL LDRD program. NR 35 TC 46 Z9 46 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD MAR 2 PY 2011 VL 106 IS 9 AR 091101 DI 10.1103/PhysRevLett.106.091101 PG 4 WC Physics, Multidisciplinary SC Physics GA 728ZN UT WOS:000287913400005 PM 21405613 ER PT J AU Kucheyev, SO Wang, YM Hamza, AV Worsley, MA AF Kucheyev, S. O. Wang, Y. M. Hamza, A. V. Worsley, M. A. TI Light-ion-irradiation-induced thermal spikes in nanoporous silica SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID ABSOLUTE CROSS-SECTION; RADIATION COMPACTION; SENSING INDENTATION; VYCOR GLASS; SCATTERING; AEROGELS; RELAXATION; ADHESION; STRESS; SOLIDS AB Improving mechanical properties of low-density nanoporous solids has been a long standing challenge. Here, we study how alpha particle bombardment and thermal annealing can be used to improve mechanical properties of nanoporous silica aerogels analysed by depth-sensing nanoindentation. Data suggest that light-ion irradiation creates non-melting thermal spikes in unconstrained nanoligaments of the aerogel, resulting in improved ligament connectivity. C1 [Kucheyev, S. O.; Wang, Y. M.; Hamza, A. V.; Worsley, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kucheyev@llnl.gov RI Worsley, Marcus/G-2382-2014; Wang, Yinmin (Morris)/F-2249-2010 OI Worsley, Marcus/0000-0002-8012-7727; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU US DOE by LLNL [DE-AC52-07NA27344] FX The authors thank J H Satcher Jr for generously providing the nanoporous silica monolith used in this study. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344. NR 34 TC 8 Z9 8 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD MAR 2 PY 2011 VL 44 IS 8 AR 085406 DI 10.1088/0022-3727/44/8/085406 PG 5 WC Physics, Applied SC Physics GA 719HP UT WOS:000287195000018 ER PT J AU Tobash, PH Jiang, Y Ronning, F Booth, CH Thompson, JD Scott, BL Bauer, ED AF Tobash, P. H. Jiang, Yu Ronning, F. Booth, C. H. Thompson, J. D. Scott, B. L. Bauer, E. D. TI Synthesis, structure and physical properties of YbNi3Al9.23 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CRYSTAL-STRUCTURE; YB; ANTIFERROMAGNET; BETA-YBALB4; GROWTH AB The physical properties of YbNi3Al9.23(1), including the crystal structure, magnetization, specific heat, valence, and electrical resistivity, are reported. Single crystal x-ray diffraction reveals that the compound crystallizes with the rhombohedral space group R32 and has unit cell parameters a = 7.2443(3) angstrom and c = 27.251(3) angstrom with some crystallographic disorder at Al sites. The compound orders antiferromagnetically at T-N = 3 K despite the presence of strong ferromagnetic correlations, accompanied by a spin-flop-like transition to a moment-aligned state above 0.1 T. X-ray absorption spectroscopy and magnetic susceptibility measurements indicate a localized Yb3+ electronic configuration, while the Sommerfeld coefficient for the magnetically ordered state was determined as approximately 135 mJ mol(-1) K-2, suggesting moderately heavy fermion behavior. Therefore, these data indicate a balance between competing Ruderman-Kittel-Kasuya-Yosida (RKKY) and Kondo interactions in YbNi3Al9.23(1) with a somewhat dominant RKKY interaction that leads to a relatively high ordering temperature. C1 [Tobash, P. H.; Ronning, F.; Thompson, J. D.; Scott, B. L.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jiang, Yu; Booth, C. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tobash, PH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Bauer, Eric/D-7212-2011; Booth, Corwin/A-7877-2008; Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU Los Alamos National Laboratory; US Department of Energy (DOE) Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Los Alamos Laboratory; Office of Science, Office of Basic Energy Sciences (OBES), of the US DOE [DE-AC02-05CH11231] FX Paul H Tobash acknowledges financial support from Los Alamos National Laboratory through the Seaborg Fellowship. Work at Los Alamos was performed under the auspices of the US Department of Energy (DOE) Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and was funded in part by the Los Alamos Laboratory Directed Research and Development program. Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the US DOE under Contract No. DE-AC02-05CH11231. Xray absorption data were collected at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the DOE/OBES. NR 22 TC 7 Z9 7 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD MAR 2 PY 2011 VL 23 IS 8 AR 086002 DI 10.1088/0953-8984/23/8/086002 PG 6 WC Physics, Condensed Matter SC Physics GA 719UJ UT WOS:000287235700015 PM 21411905 ER PT J AU Kou, R Shao, YY Mei, DH Nie, ZM Wang, DH Wang, CM Viswanathan, VV Park, S Aksay, IA Lin, YH Wang, Y Liu, J AF Kou, Rong Shao, Yuyan Mei, Donghai Nie, Zimin Wang, Donghai Wang, Chongmin Viswanathan, Vilayanur V. Park, Sehkyu Aksay, Ilhan A. Lin, Yuehe Wang, Yong Liu, Jun TI Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID INDIUM TIN OXIDE; TOTAL-ENERGY CALCULATIONS; MEMBRANE FUEL-CELLS; WAVE BASIS-SET; OXYGEN REDUCTION; FUNCTIONALIZED GRAPHENE; CATALYST SUPPORT; GRAPHITE OXIDE; PLATINUM; DURABILITY AB Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. C1 [Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V.; Park, Sehkyu; Lin, Yuehe; Wang, Yong; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yong.wang@pnl.gov; jun.liu@pnl.gov RI Park, Sehkyu/E-5153-2010; Mei, Donghai/D-3251-2011; Aksay, Ilhan/B-9281-2008; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013; Mei, Donghai/A-2115-2012; Wang, Donghai/L-1150-2013 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Mei, Donghai/0000-0002-0286-4182; Wang, Donghai/0000-0001-7261-8510 FU U.S. Department of Energy's (DOE's) Office of Energy; DOE's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76L01830]; EMSL under Computational Design of Catalysts [gc34000]; ARRA/AFOSR [FA9550-09-1-0523] FX This work is supported by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Program. The characterization was performed using facilities at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76L01830. The computing time was granted by EMSL under Computational Design of Catalysts (gc34000). The authors thank Wayne Cosby (PNNL) for reviewing the manuscript. IAA acknowledges support from an ARRA/AFOSR Grant (No. FA9550-09-1-0523). NR 41 TC 233 Z9 238 U1 14 U2 272 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD MAR 2 PY 2011 VL 133 IS 8 BP 2541 EP 2547 DI 10.1021/ja107719u PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 733VJ UT WOS:000288291300038 PM 21302925 ER PT J AU Campbell, MS Mullins, JI Hughes, JP Celum, C Wong, KG Raugi, DN Sorensen, S Stoddard, JN Zhao, H Deng, WJ Kahle, E Panteleeff, D Baeten, JM McCutchan, FE Albert, J Leitner, T Wald, A Corey, L Lingappa, JR AF Campbell, Mary S. Mullins, James I. Hughes, James P. Celum, Connie Wong, Kim G. Raugi, Dana N. Sorensen, Stefanie Stoddard, Julia N. Zhao, Hong Deng, Wenjie Kahle, Erin Panteleeff, Dana Baeten, Jared M. McCutchan, Francine E. Albert, Jan Leitner, Thomas Wald, Anna Corey, Lawrence Lingappa, Jairam R. CA Partners Prevention HSV HIV TI Viral Linkage in HIV-1 Seroconverters and Their Partners in an HIV-1 Prevention Clinical Trial SO PLOS ONE LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; HETEROSEXUAL TRANSMISSION; MOLECULAR EPIDEMIOLOGY; INFECTED INDIVIDUALS; SEQUENCE ALIGNMENT; WEB SERVER; VARIANTS; IDENTIFICATION; PROGRESSION; EVOLUTION AB Background: Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519) was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners. Methodology/Principal Findings: We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of >= 50%. Adjudicators classified each seroconversion, finding 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%). Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters. Conclusions/Significance: In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage determination process. C1 [Campbell, Mary S.; Mullins, James I.; Celum, Connie; Baeten, Jared M.; Wald, Anna; Corey, Lawrence; Lingappa, Jairam R.] Univ Washington, Sch Med, Dept Med, Seattle, WA 98195 USA. [Mullins, James I.; Wong, Kim G.; Raugi, Dana N.; Sorensen, Stefanie; Stoddard, Julia N.; Zhao, Hong; Deng, Wenjie] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. [Mullins, James I.; Corey, Lawrence] Univ Washington, Sch Med, Dept Lab Med, Seattle, WA 98195 USA. [Hughes, James P.] Univ Washington, Sch Med, Dept Biostat, Seattle, WA USA. [Celum, Connie; Kahle, Erin; Panteleeff, Dana; Baeten, Jared M.; Lingappa, Jairam R.] Univ Washington, Sch Med, Dept Global Hlth, Seattle, WA USA. [McCutchan, Francine E.] Bill & Melinda Gates Fdn, Seattle, WA USA. [Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Wald, Anna] Univ Washington, Sch Med, Dept Epidemiol, Seattle, WA USA. [Lingappa, Jairam R.] Univ Washington, Sch Med, Dept Pediat, Seattle, WA 98195 USA. [Wald, Anna; Corey, Lawrence] Fred Hutchinson Canc Inst, Vaccine & Infect Dis Div, Seattle, WA USA. RP Campbell, MS (reprint author), Univ Washington, Sch Med, Dept Med, Seattle, WA 98195 USA. EM jmullins@uw.edu RI Wald, Anna/B-6272-2012 OI Wald, Anna/0000-0003-3486-6438 FU Bill and Melinda Gates Foundation [26469]; University of Washington Center for AIDS Research (UW CFAR) [AI-27757]; National Institutes of Health [AI029168, AI074424] FX This work was part of the Partners in Prevention HSV/HIV Transmission Study funded by the Bill and Melinda Gates Foundation (grant ID #26469). Some computational analyses were also supported by a grant through the University of Washington Center for AIDS Research (UW CFAR, AI-27757) Computational Biology Core. National Institutes of Health grants to JPH (AI029168) and MSC (AI074424) provided additional support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 42 TC 43 Z9 44 U1 1 U2 5 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD MAR 2 PY 2011 VL 6 IS 3 AR e16986 DI 10.1371/journal.pone.0016986 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 729FF UT WOS:000287933300004 PM 21399681 ER PT J AU Candy, JV AF Candy, James V. TI Harbor Defense: A Model-Based Response To Nuclear Terrorism SO SEA TECHNOLOGY LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Candy, JV (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD MAR PY 2011 VL 52 IS 3 BP 10 EP 13 PG 4 WC Engineering, Ocean SC Engineering GA 871FY UT WOS:000298724500002 ER PT J AU Dahari, H Guedj, J Rong, L Nettles, RE Cotler, SJ Layden, TJ Perelson, AS AF Dahari, H. Guedj, J. Rong, L. Nettles, R. E. Cotler, S. J. Layden, T. J. Perelson, A. S. TI NEW INSIGHTS INTO THE MECHANISM OF ACTION OF INTERFERON-ALPHA AND BMS-790052: A MULTI-SCALE MATHEMATICAL MODELING APPROACH SO JOURNAL OF HEPATOLOGY LA English DT Meeting Abstract CT 46th Annual Meeting of the European-Association-for-the-Study-of-the-Liver (EASL) CY 2011 CL Berlin, GERMANY SP European Assoc Study Liver (EASL) C1 [Dahari, H.; Guedj, J.; Perelson, A. S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Dahari, H.; Cotler, S. J.; Layden, T. J.] Univ Illinois, Dept Med, Chicago, IL USA. [Rong, L.] Oakland Univ, Dept Math & Stat, Rochester, MI 48063 USA. [Rong, L.] Oakland Univ, Ctr Biomed Res, Rochester, MI 48063 USA. [Nettles, R. E.] Bristol Myers Squibb Res & Dev, Dept Discovery Med & Clin Pharmacol, Princeton, NJ USA. EM daharih@uic.edu NR 0 TC 0 Z9 0 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-8278 J9 J HEPATOL JI J. Hepatol. PD MAR PY 2011 VL 54 SU 1 MA 1201 BP S474 EP S474 PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 856GC UT WOS:000297625602340 ER PT J AU Dahari, H Barretto, N Sainz, BJ Guedj, J Perelson, AS Uprichard, SL AF Dahari, H. Barretto, N. Sainz, B. J. Guedj, J. Perelson, A. S. Uprichard, S. L. TI MODELING INTERFERON-ALPHA MEDIATED INHIBITION KINETICS OF INTRACELLULAR AND EXTRACELLULAR HCVRNA DURING HCV INFECTION IN VITRO SO JOURNAL OF HEPATOLOGY LA English DT Meeting Abstract CT 46th Annual Meeting of the European-Association-for-the-Study-of-the-Liver (EASL) CY 2011 CL Berlin, GERMANY SP European Assoc Study Liver (EASL) C1 [Dahari, H.; Barretto, N.; Sainz, B. J.; Uprichard, S. L.] Univ Illinois, Chicago, IL USA. [Dahari, H.; Guedj, J.; Perelson, A. S.] Los Alamos Natl Lab, Los Alamos, NM USA. EM daharih@uic.edu NR 0 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-8278 J9 J HEPATOL JI J. Hepatol. PD MAR PY 2011 VL 54 SU 1 MA 776 BP S312 EP S312 PG 1 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 856GC UT WOS:000297625601354 ER PT J AU Yelle, DJ Ralph, J Frihart, CR AF Yelle, Daniel J. Ralph, John Frihart, Charles R. TI Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1. Catalyzed reactions with wood models and wood polymers SO HOLZFORSCHUNG LA English DT Article DE beta-aryl-ether; ball-milled wood (MW); carbamate; cellobiose; holocellulose; heteronuclear single quantum coherence (HSQC); methyl 4-O-methyl-beta-D-glucopyranoside; milled-wood lignin (MWL); phenylcoumaran; phenyl isocyanate; pinoresinol; Pinus taeda; polymeric methylene diphenyl diisocyanate (pMDI); solution-state NMR ID PHENYL ISOCYANATE; MOISTURE-CONTENT; CELLULOSE; KINETICS; GALACTOGLUCOMANNAN; PHENYLISOCYANATE; DIISOCYANATE; DERIVATIVES AB To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with the pMDI model compound. One-bond (13)C-(1)H correlation (HSQC) experiments on derivatized and dissolved ball-milled wood revealed which hydroxyl group positions of the cell wall polymers reacted with the pMDI model compound to form carbamates. The chemical shifts of the derivatized model compounds correspond precisely to the chemical shifts of derivatized wood polymers. These model experiments will be taken as a basis in the next phase of our research (Part 2), in which the reactions of pMDI model compounds will be studied with intact wood cell walls under conditions similar to those used in oriented strand-board production. C1 [Yelle, Daniel J.; Frihart, Charles R.] US Forest Serv, US Forest Prod Lab, USDA, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Enzyme Inst, Dept Biochem, Madison, WI USA. [Ralph, John] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Yelle, DJ (reprint author), US Forest Serv, US Forest Prod Lab, USDA, 1 Gifford Pinchot Dr, Madison, WI 53726 USA. EM dyelle@fs.fed.us FU Office of Science (BER), U.S. Department of Energy [DE-AI02-06ER64299]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX We thank Dr. Hoon Kim, Dr. Fachuang Lu (Department of Biochemistry, University of Wisconsin-Madison) and Dr. Takuya Akiyama (Wood Chemistry Laboratory, Department of Biomaterial Sciences, The University of Tokyo, Japan) for their enlightening discussions on lignin chemistry and plant cell wall dissolution. We thank Sally Ralph and Kolby Hirth (U.S. Forest Products Laboratory) for their insightful discussions on the NMR experiments. This research made use of 500 MHz instruments at the U.S. Dairy Forage Research Center and National Magnetic Resonance Facility at the University of Wisconsin-Madison. Support for this research came from the Office of Science (BER), U.S. Department of Energy, Interagency agreement No. DE-AI02-06ER64299 and in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 56 TC 13 Z9 13 U1 2 U2 23 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0018-3830 J9 HOLZFORSCHUNG JI Holzforschung PD MAR PY 2011 VL 65 IS 2 BP 131 EP 143 DI 10.1515/HF.2011.028 PG 13 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 734WP UT WOS:000288372500001 ER PT J AU Yelle, DJ Ralph, J Frihart, CR AF Yelle, Daniel J. Ralph, John Frihart, Charles R. TI Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 2. Non-catalyzed reactions with the wood cell wall SO HOLZFORSCHUNG LA English DT Article DE beta-aryl ether; 4-benzylphenyl isocyanate; carbamate; cell wall; heteronuclear single quantum coherence (HSQC); gamma-hydroxyls; Pinus taeda; phenylcoumaran; phenyl isocyanate; polymeric methylene diphenyl diisocyanate (pMDI); solution-state NMR ID N-15 CP/MAS NMR; ADHESIVE BONDLINE; METHYL ISOCYANATE; MOISTURE-CONTENT; SOUTHERN PINE; INTERPHASE; CHEMISTRY; KINETICS; PULSES; HSQC AB Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR-compatible solvent system containing dimethylsulfoxide-d(6) and N-methylimidazole-d(6), in which the wood polymers remain largely intact. High-resolution solution-state two-dimensional NMR correlation experiments, based on (13)C-(1)H one-bond heteronuclear single quantum coherence, allow structural analysis of the major cell wall components. This technique was applied to loblolly pine that was treated with polymeric methylene diphenyl diisocyanate (pMDI) related model compounds under controlled moisture and temperature conditions. Chemical shifts of carbamates formed between the pMDI model compounds and loblolly pine were determined. The results show that: (a) under dry conditions and a high concentration of isocyanate, carbamates will form preferentially with side-chain hydroxyl groups on beta-aryl ether and phenylcoumaran-linked lignin units in a swelling solvent; (b) phenyl isocyanate is more capable of derivatization in the cell wall than the bulkier 4-benzylphenyl isocyanate; (c) at 5% and 14% moisture content, detectable carbamates on lignin side-chains dramatically decrease; and (d) under typical conditions of industrial oriented strand-board production in a hot press at 5% and 14% moisture content, no carbamate formation was detected. C1 [Yelle, Daniel J.; Frihart, Charles R.] US Forest Serv, US Forest Prod Lab, USDA, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Enzyme Inst, Dept Biochem, Madison, WI USA. [Ralph, John] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Yelle, DJ (reprint author), US Forest Serv, US Forest Prod Lab, USDA, 1 Gifford Pinchot Dr, Madison, WI 53726 USA. EM dyelle@fs.fed.us FU Office of Science (BER), U.S. Department of Energy [DE-AI02-06ER64299]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494] FX We thank Sally Ralph and Kolby Hirth (U.S. Forest Products Laboratory) for their insightful discussions on the NMR experiments. This research made use of a 500 MHz NMR instrument at the U.S. Dairy Forage Research Center, Madison, WI, USA. Support for this research was funded from the Office of Science (BER), U.S. Department of Energy, Interagency agreement no. DE-AI02-06ER64299 and in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 53 TC 5 Z9 5 U1 1 U2 17 PU WALTER DE GRUYTER & CO PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0018-3830 J9 HOLZFORSCHUNG JI Holzforschung PD MAR PY 2011 VL 65 IS 2 BP 145 EP 154 DI 10.1515/HF.2011.029 PG 10 WC Forestry; Materials Science, Paper & Wood SC Forestry; Materials Science GA 734WP UT WOS:000288372500002 ER PT J AU Bertoni, MI Hudelson, S Newman, BK Fenning, DP Dekkers, HFW Cornagliotti, E Zuschlag, A Micard, G Hahn, G Coletti, G Lai, B Buonassisi, T AF Bertoni, M. I. Hudelson, S. Newman, B. K. Fenning, D. P. Dekkers, H. F. W. Cornagliotti, E. Zuschlag, A. Micard, G. Hahn, G. Coletti, G. Lai, B. Buonassisi, T. TI Influence of defect type on hydrogen passivation efficacy in multicrystalline silicon solar cells SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE hydrogen passivation; defects; dislocations; iron; multicrystalline silicon ID BEAM-INDUCED CURRENT; GRAIN-BOUNDARIES; RECOMBINATION; CHARACTER AB We examine the effectiveness of hydrogen passivation as a function of defect type and microstructure at grain boundaries (GBs) in multicrystalline silicon. We analyze a solar cell with alternating mm-wide bare and SiN(x)-coated stripes using laser-beam-induced current, electron backscatter diffraction, X-ray fluorescence microscopy, and defect etching to correlate pre- and post-hydrogenation recombination activity with GB character, density of iron-silicide nanoprecipitates, and dislocations. A strong correlation was found between GB recombination activity and the nature/density of etch pits along the boundaries, while iron silicide precipitates above detection limits were found to play a less significant role. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Bertoni, M. I.; Hudelson, S.; Newman, B. K.; Fenning, D. P.; Buonassisi, T.] MIT, Cambridge, MA 02139 USA. [Dekkers, H. F. W.; Cornagliotti, E.] IMEC VZW, B-3001 Louvain, Belgium. [Zuschlag, A.; Micard, G.; Hahn, G.] Univ Konstanz, Dept Phys, D-78457 Constance, Germany. [Coletti, G.] ECN Solar Energy, NL-1755 LE Petten, Netherlands. [Lai, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Buonassisi, T (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM buonassisi@mit.edu RI Buonassisi, Tonio/J-2723-2012; Hahn, Giso/D-3111-2013; OI Micard, Gabriel/0000-0002-5933-3008; Fenning, David/0000-0002-4609-9312 FU U.S. Department of Energy [DE-FG36-09GO19001]; National Science Foundation; Clare Boothe Luce Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX S. Bernardis, K. Hartman and Y.S. Lee are acknowledged for experimental assistance. Support for this research was provided by the U.S. Department of Energy, under contract number DE-FG36-09GO19001, and through the generous support of Doug and Barbara Spreng and the Chesonis Family Foundation. S. Hudelson and D. P. Fenning acknowledge the support of the National Science Foundation, and B. K. Newman support of the Clare Boothe Luce Foundation. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. NR 27 TC 16 Z9 16 U1 4 U2 28 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAR PY 2011 VL 19 IS 2 BP 187 EP 191 DI 10.1002/pip.1008 PG 5 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 731UQ UT WOS:000288135300010 ER PT J AU Lischka, H Muller, T Szalay, PG Shavitt, I Pitzer, RM Shepard, R AF Lischka, Hans Mueller, Thomas Szalay, Peter G. Shavitt, Isaiah Pitzer, Russell M. Shepard, Ron TI COLUMBUS-a program system for advanced multireference theory calculations SO WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE LA English DT Article ID NONADIABATIC COUPLING TERMS; SIZE-EXTENSIVE MODIFICATION; UNITARY-GROUP APPROACH; MR-CI LEVEL; ANALYTIC EVALUATION; EXCITED-STATES; FORMALDEHYDE; CHEMISTRY; FORMALISM; DYNAMICS AB The COLUMBUS Program System allows high-level quantum chemical calculations based on the multiconfiguration self-consistent field, multireference configuration interaction with singles and doubles, and the multireference averaged quadratic coupled cluster methods. The latter method includes size-consistency corrections at the multireference level. Nonrelativistic (NR) and spin-orbit calculations are available within multireference configuration interaction (MRCI). A prominent feature of COLUMBUS is the availability of analytic energy gradients and nonadiabatic coupling vectors for NR MRCI. This feature allows efficient optimization of stationary points and surface crossings (minima on the crossing seam). Typical applications are systematic surveys of energy surfaces in ground and excited states including bond breaking. Wave functions of practically any sophistication can be constructed limited primarily by the size of the CI expansion rather than by its complexity. A massively parallel CI step allows state-of-the art calculations with up to several billion configurations. Electrostatic embedding of point charges into the molecular Hamiltonian gives access to quantum mechanical/molecular mechanics calculations for all wave functions available in COLUMBUS. The analytic gradient modules allow on-the-fly nonadiabatic photodynamical simulations of interesting chemical and biological problems. Thus, COLUMBUS provides a wide range of highly sophisticated tools with which a large variety of interesting quantum chemical problems can be studied. (C) 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 191-199 DOI: 10.1002/wcms.25 C1 [Lischka, Hans] Univ Vienna, Inst Theoret Chem, Vienna, Austria. [Mueller, Thomas] Julich Supercomp Ctr, Inst Adv Simulat, Julich, Germany. [Szalay, Peter G.] Eotvos Lorand Univ, Inst Chem, Lab Theoret Chem, Budapest, Hungary. [Shavitt, Isaiah] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Pitzer, Russell M.] Ohio State Univ, Dept Chem, Columbus, OH 43210 USA. [Shepard, Ron] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Lischka, H (reprint author), Univ Vienna, Inst Theoret Chem, Vienna, Austria. EM Hans.Lischka@univie.ac.at RI Lischka, Hans/A-8802-2015; Szalay, Peter/C-8879-2015 OI Szalay, Peter/0000-0003-1885-3557 NR 37 TC 74 Z9 75 U1 2 U2 24 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1759-0876 J9 WIRES COMPUT MOL SCI JI Wiley Interdiscip. Rev.-Comput. Mol. Sci. PD MAR-APR PY 2011 VL 1 IS 2 BP 191 EP 199 DI 10.1002/wcms.25 PG 9 WC Chemistry, Multidisciplinary; Mathematical & Computational Biology SC Chemistry; Mathematical & Computational Biology GA 835AB UT WOS:000296004500004 ER PT J AU Foster, I Kacsuk, P AF Foster, Ian Kacsuk, Peter TI Untitled SO JOURNAL OF GRID COMPUTING LA English DT Editorial Material C1 [Kacsuk, Peter] MTA SZTAKI, Budapest, Hungary. [Foster, Ian] Argonne Natl Lab, Chicago, IL USA. [Foster, Ian] Univ Chicago, Chicago, IL 60637 USA. [Kacsuk, Peter] Univ Westminster, London W1R 8AL, England. RP Kacsuk, P (reprint author), MTA SZTAKI, Budapest, Hungary. EM kacsuk@sztaki.hu RI Foster, Ian/A-1357-2007 OI Foster, Ian/0000-0003-2129-5269 NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-7873 EI 1572-9184 J9 J GRID COMPUT JI J. Comput. PD MAR PY 2011 VL 9 IS 1 SI SI BP 1 EP 2 DI 10.1007/s10723-011-9182-3 PG 2 WC Computer Science, Information Systems; Computer Science, Theory & Methods SC Computer Science GA 808JF UT WOS:000293973300001 ER PT J AU Lusk, MT Mattsson, AE AF Lusk, Mark T. Mattsson, Ann E. TI High-performance computing for materials design to advance energy science SO MRS BULLETIN LA English DT Article AB The development of new materials typically requires an iterative sequence of synthesis and characterization, but high-performance computing (HPC) adds another dimension to the process: materials can be synthesized and/or characterized virtually as well, and it is often an overlapping quilt of data from these four aspects of design that is used to develop a new material. This is made possible, in large measure, by the algorithms and hardware collectively referred to as HPC. Prominent within this developing approach to materials design is the increasingly important role that quantum mechanical analysis techniques have come to play. These techniques are reviewed with an emphasis on their application to materials design. This issue of MRS Bulletin highlights specific examples of how such HPC tools are used to advance energy science research in the areas of nuclear fission, electrochemical batteries, photovoltaic energy conversion, hydrocarbon catalysis, hydrogen storage, clathrate hydrates, and nuclear fusion. C1 [Lusk, Mark T.] Colorado Sch Mines, Golden, CO 80401 USA. [Mattsson, Ann E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lusk, MT (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM mlusk@mines.edu; aematts@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX M. T. L., director of the Golden Energy Computing Organization at the Colorado School of Mines, would like to thank the Renewable Energy Materials Research Science and Engineering Center (REMERSEC) for its support and encouragement of this theme issue. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 4 Z9 4 U1 0 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD MAR PY 2011 VL 36 IS 3 BP 169 EP 177 DI 10.1557/mrs.2011.30 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 798TA UT WOS:000293233800013 ER PT J AU Franceschetti, A AF Franceschetti, Alberto TI Nanostructured materials for improved photoconversion SO MRS BULLETIN LA English DT Article ID MULTIPLE EXCITON GENERATION; CDSE QUANTUM DOTS; PSEUDOPOTENTIAL CALCULATIONS; VIBRATIONAL PROPERTIES; CARBON NANOTUBES; COLLOIDAL PBSE; SOLAR-CELLS; SILICON; SEMICONDUCTORS; NANOCRYSTALS AB The drive to make solar energy competitive with conventional energy sources has prompted the investigation of new photoconversion technologies, often referred to as third-generation photovoltaics, which have both lower cost and improved efficiency compared to existing technologies. In that framework, nanostructured materials, such as nanocrystals, nanowires, and nanotubes, occupy a prominent place because of their potential advantages over crystalline or thin-film photovoltaics technologies-high tunability of the bandgap via size control, strong band-edge absorption coefficient, efficient multiple-exciton generation by a single photon, and possibly high up-conversion efficiency. The ability to control the size, shape, composition, and surface termination of nanostructures provides new degrees of freedom that are inaccessible in conventional solar cell architectures. At the same time, the ability to explore this vast configuration space by synthesis and characterization alone is limited, which makes computational interrogation of the electronic and optical properties of nanostructures particularly valuable. In recent years, the convergence of new algorithms and new computational capabilities has made it possible for the first time to perform accurate electronic-structure calculations for large nanostructures. This article reviews recent developments in both semi-empirical and first-principles atomistic electronic structure methods that have led to accurate predictions and to a better understanding of carrier generation, relaxation, and recombination processes in nanostructured materials. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Franceschetti, A (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Alberto.franceschetti@nrel.gov NR 48 TC 4 Z9 4 U1 4 U2 19 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD MAR PY 2011 VL 36 IS 3 BP 192 EP 197 DI 10.1557/mrs.2011.35 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 798TA UT WOS:000293233800016 ER PT J AU Scholten, O Buitink, S Falcke, H James, CW Mevius, M Singh, K Stappers, B Ter Veen, S AF Scholten, Olaf Buitink, S. Falcke, H. James, C. W. Mevius, M. Singh, K. Stappers, B. Ter Veen, S. TI Ultra-high-energy cosmic ray and neutrino detection using the Moon SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT Cosmic Ray International Seminars (CRIS 2010) CY SEP 13-17, 2010 CL Catania, ITALY ID CERENKOV RADIATION; RADIO-EMISSION; AIR-SHOWERS; ELECTRON; PULSES; CHARGE; LOFAR AB When Ultra-high-energy (UHE) neutrinos or cosmic rays interact in the lunar surface they will initiate a particle cascade. These cascades have a sizeable negative charge excess and radiate coherent Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observing these pulses with radio telescopes on the Earth lies around 150 MHz. With 47.6 hours of observation time with the Westerbork Synthesis Radio Telescope array we are able to set a limit on the UHE neutrino as well as the UHE cosmic-ray flux. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit. C1 [Scholten, Olaf; Mevius, M.; Singh, K.] Univ Groningen, KVI, Groningen, Netherlands. [Buitink, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Falcke, H.; James, C. W.; Ter Veen, S.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Falcke, H.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Singh, K.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Stappers, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP Scholten, O (reprint author), Univ Groningen, KVI, Groningen, Netherlands. RI James, Clancy/G-9178-2015; Falcke, Heino/H-5262-2012; OI James, Clancy/0000-0002-6437-6176; Falcke, Heino/0000-0002-2526-6724; Buitink, Stijn/0000-0002-6177-497X NR 40 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD MAR-APR PY 2011 VL 212-13 BP 128 EP 133 DI 10.1016/j.nuclphysbps.2011.03.018 PG 6 WC Physics, Particles & Fields SC Physics GA 799AC UT WOS:000293253600018 ER PT J AU Barabash, RI Bei, H Ice, GE Gao, YF Barabash, OM AF Barabash, R. I. Bei, H. Ice, G. E. Gao, Y. F. Barabash, O. M. TI 3-D x-ray strain microscopy in two-phase composites at submicron length scales SO JOM LA English DT Article ID DIFFRACTION; DEFORMATION; BEHAVIOR; NEUTRON AB Renewed interest in composite materials is driven by the fact that their mechanical properties can be superior to those of individual constituent phases. Interfaces between the phases and the properties of individual phases are the two key elements responsible for the unique micro-mechanisms of plastic deformation in composites. In this research summary we show how the depth-dependent residual strain distributed in the two phases and partitioned across the composite interfaces can be directly measured at submicron length-scales using x-ray microdiffraction and compared to a detailed simulation within the framework of micromechanical stress analysis. Interface strength is determined from the analysis of the so-called "slip zone" caused by the near-surface stress relaxation. Two examples are discussed: Mo-NiAl and AG-15 composites. C1 [Barabash, R. I.; Bei, H.; Ice, G. E.; Barabash, O. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Barabash, R. I.; Gao, Y. F.; Barabash, O. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Gao, Yanfei/F-9034-2010; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Scientific Users Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. X-ray microbeam measurements were performed at the 34-ID-E at the Advanced Photon Source. The use of the APS was supported by the Scientific Users Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We gratefully acknowledge Dr. J. Vitek (ORNL) for most valuable comments and suggestions. NR 17 TC 7 Z9 7 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD MAR PY 2011 VL 63 IS 3 BP 30 EP 34 DI 10.1007/s11837-011-0042-1 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 733IZ UT WOS:000288257700005 ER PT J AU Zhang, S Benson, SV H-Garcia, C AF Zhang, S. Benson, S. V. H-Garcia, C. TI Observation and measurement of temperature rise and distribution on GaAs photo-cathode wafer with a 532 nm drive laser and a thermal imaging camera SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Photo-cathode; Electron sources; Beam injection and extraction AB Significant temperature rise and gradient are observed from a GaAs photo-cathode wafer irradiated at various power density levels with over 20W laser power at 532 nm wavelength. The laser power absorption and dissipated thermal distribution are measured. The result shows a clear indication that proper removal of laser induced heat from the cathode needs to be considered seriously when designing a high average current or low quantum efficiency photo-cathode electron gun. The measurement method presented here provides a useful way to obtain information about both temperature and thermal profiles and also applies to cathode heating study with other heating devices such as electrical heaters. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, S.; Benson, S. V.; H-Garcia, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Zhang, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM shukui@jlab.org FU Office of Naval Research; DOE [DE-AC05-060R23171] FX Authored by Jefferson Science Associates, LLC under US DOE Contract no. DEAC0506OR23177. The US Government retains a nonexclusive, paidup, irrevocable, worldwide license to publish or reproduce this manuscript for US Government purposes.; The authors thank T. Powers for the kind assistance with the FLIR camera. We also thank M. Poelker and M. Stutzman for very helpful technical discussion. This work is supported by Office of Naval Research and DOE Contract DE-AC05-060R23171. NR 3 TC 4 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD MAR 1 PY 2011 VL 631 IS 1 BP 22 EP 25 DI 10.1016/j.nima.2010.12.132 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 730OA UT WOS:000288042100004 ER PT J AU Schneider, ZV Musgraves, JD Simmons-Potter, K Potter, BG Boyle, TJ AF Schneider, Z. V. Musgraves, J. D. Simmons-Potter, K. Potter, B. G., Jr. Boyle, T. J. TI Photoinduced formation of thin-film structures in titanium alkoxides via direct deposition from solution and from spin-coated solid-state precursor films SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID SUBSTITUTED AROMATIC KETONES; GEL FILMS; CHEMICAL-MODIFICATION; IRRADIATION; GRATINGS AB The photoinduced formation of thin film structures from a Ti-alkoxide precursor (OPy)(2)Ti(TAP)(2), where OPy = OC6H6N, TAP = OC6H2[CH2N(CH3)(2)](3)-2,4,6, was demonstrated via direct deposition from a pyridine-based solution and by optical illumination of a solid-state spin-coated thin film of the compound. Photopatterned physical relief structures were produced using both of these deposition methods and feature sizes as small as similar to 1 mu m were readily achieved. Surface investigations of the material's nanostructure revealed that films photo-deposited from solution exhibited nanometer-scale surface roughness with evenly distributed surface porosity (similar to 10 nm sized pores) while films produced through the illumination of spin-coated thin films exhibited, in comparison, a reduction in surface roughness. Vibrational spectra were compared with the results of quantum chemical computations (density-functional theory) of potential photoproducts in an attempt to identify and distinguish the dominant structural groups resulting from the optical processing of each precursor form (i.e., solution versus solid-state). It was determined that ultraviolet irradiation for both thin-film formation techniques resulted in a disruption of the ligand groups, facilitating the initiation of hydrolysis and condensation reactions in the films. C1 [Schneider, Z. V.; Musgraves, J. D.; Simmons-Potter, K.; Potter, B. G., Jr.] Univ Arizona, Tucson, AZ 85721 USA. [Boyle, T. J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Simmons-Potter, K (reprint author), Univ Arizona, Tucson, AZ 85721 USA. EM kspotter@ece.arizona.edu RI Musgraves, J David/D-9260-2011 OI Musgraves, J David/0000-0003-4575-5119 FU United States Department of Energy, Office of Basic Energy Sciences; University of Arizona; State of Arizona; TRIF; Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by the United States Department of Energy, Office of Basic Energy Sciences. Partial support was also provided by the University of Arizona, State of Arizona, TRIF Optics Initiative program and by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 20 TC 0 Z9 0 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2011 VL 26 IS 6 BP 754 EP 762 DI 10.1557/jmr.2010.34 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 793MD UT WOS:000292826200004 ER PT J AU Kucheyev, SO Lord, KA Hamza, AV AF Kucheyev, S. O. Lord, K. A. Hamza, A. V. TI Room-temperature creep of nanoporous silica SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MECHANICAL-PROPERTIES; SENSING INDENTATION; AEROGELS; XEROGELS; STRESS; GLASS AB We show that low-density nanoporous silica monoliths (aerogels), in contrast to the case of full-density silica, exhibit pronounced time-dependent deformation during indentation at room temperature. Logarithmic indentation creep and stress relaxation are revealed, with an exponential dependency of the creep constant on the applied stress. Such time-dependent deformation is attributed to stress corrosion fracture of nanoligaments that have a large surface-to-bulk atomic fraction. C1 [Kucheyev, S. O.; Lord, K. A.; Hamza, A. V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kucheyev, SO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kucheyev@llnl.gov FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344] FX The authors thank J.H. Satcher, Jr. for providing the nanoporous silica monolith used in this study. This work was performed under the auspices of the U.S. Department of Energy (DOE) by LLNL under Contract DE-AC52-07NA27344. NR 20 TC 3 Z9 3 U1 4 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2011 VL 26 IS 6 BP 781 EP 784 DI 10.1557/jmr.2010.68 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 793MD UT WOS:000292826200008 ER PT J AU Thomasset, M Fernandez-Manjarres, JF Douglas, GC Frascaria-Lacoste, N Raquin, C Hodkinson, TR AF Thomasset, Muriel Fernandez-Manjarres, Juan F. Douglas, Gerry C. Frascaria-Lacoste, Nathalie Raquin, Christian Hodkinson, Trevor R. TI MOLECULAR AND MORPHOLOGICAL CHARACTERIZATION OF RECIPROCAL F-1 HYBRID ASH (FRAXINUS EXCELSIOR x FRAXINUS ANGUSTIFOLIA, OLEACEAE) AND PARENTAL SPECIES REVEALS ASYMMETRIC CHARACTER INHERITANCE SO INTERNATIONAL JOURNAL OF PLANT SCIENCES LA English DT Article DE Fraxinus; morphology; hybrids; microsatellites ID SPATIAL GENETIC-STRUCTURE; QUERCUS-PETRAEA; COMPUTER-PROGRAM; STOMATAL DENSITY; LEAF MORPHOLOGY; PLANT HYBRIDS; HYBRIDIZATION; L.; POPULATIONS; ROBUR AB Hybridization between Fraxinus excelsior and Fraxinus angustifolia is common. However, identifying hybrids in natural populations is difficult because the closely related parental species share many morphological characters and the inheritance pattern of these characters in hybrids is unknown. We evaluated how morphological characters are inherited and whether morphological and molecular markers can efficiently discriminate artificial first-generation hybrids. Reciprocal F-1 hybrids of F. excelsior with F. angustifolia were examined using six microsatellite DNA marker loci and 14 morphological characters. Plants were divided into four groups (F. angustifolia, F. excelsior, the F-1 hybrid with F. angustifolia as the maternal parent, and the F-1 hybrid with F. excelsior as the maternal parent). The F-1 hybrids showed intermediate morphology in most characters, and the range of variation overlapped with the parental species. Canonical discriminant analysis using only the morphological traits separated the four groups without any overlap between the two parental species. F-1 hybrids from different maternal parent species could therefore be distinguished. A further analysis that combined molecular and morphological traits allowed clear separation of the four groups and strongly confirmed the a priori defined groups. Our results suggest that intermediate characters can be expected in F-1 hybrids of ash but differences may be observed due to maternal/paternal effects. C1 [Thomasset, Muriel; Hodkinson, Trevor R.] Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland. [Thomasset, Muriel; Douglas, Gerry C.] TEAGASC, Kinsealy Res Ctr, Agr & Food Dev Author, Dublin 17, Ireland. [Fernandez-Manjarres, Juan F.; Frascaria-Lacoste, Nathalie; Raquin, Christian] CNRS, F-91405 Orsay, France. [Fernandez-Manjarres, Juan F.; Frascaria-Lacoste, Nathalie; Raquin, Christian] Univ Paris 11, UMR 8079, F-91405 Orsay, France. [Fernandez-Manjarres, Juan F.; Frascaria-Lacoste, Nathalie; Raquin, Christian] AgroParis Tech, F-75231 Paris, France. RP Thomasset, M (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland. EM thomassm@tcd.ie RI Hodkinson, Trevor/F-6850-2014 OI Hodkinson, Trevor/0000-0003-1384-7270 FU COFORD (Council for Forest Research and Development); Teagasc Walsh PhD Fellowship FX We would like to thank Paola Bertolino for her assistance with the microsatellite analysis. This work was supported by COFORD (Council for Forest Research and Development) and is part of the project "Identifying the scale of suspected hybrid ash (F. excelsior x F. angustifolia) in Ireland and its potential for genetic pollution of indigenous ash germplasm, ASHGEN.'' M. Thomasset was supported by a Teagasc Walsh PhD Fellowship Scheme. NR 59 TC 4 Z9 4 U1 3 U2 14 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 1058-5893 J9 INT J PLANT SCI JI Int. J. Plant Sci. PD MAR-APR PY 2011 VL 172 IS 3 BP 423 EP 433 DI 10.1098/658169 PG 11 WC Plant Sciences SC Plant Sciences GA 791HC UT WOS:000292654700011 ER PT J AU Zea, H Luhrs, CC Phillips, J AF Zea, Hugo Luhrs, Claudia C. Phillips, Jonathan TI Reductive/expansion synthesis of zero valent submicron and nanometal particles SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID ASSISTED COMBUSTION SYNTHESIS; THERMAL-DECOMPOSITION; PLASMA TORCH; ELECTRICAL CHARACTERIZATION; ULTRAFINE PARTICLES; CARBON NANOFIBERS; THIN-FILMS; UREA; NANOPARTICLES; EVAPORATION AB Upon rapid heating to a high temperature (similar to 800 degrees C), mixtures of nitrate compounds and urea created nano and submicron metal particles. The process (reductive/expansion synthesis, RES) results in atomic scale mixing. The product formed from mixed-nitrate (Fe + Ni) salts and urea created true metallic alloy. Unlike other product-from-powder synthesis processes, this process produced only zero valent metal. Initial work suggests this method is a scalable and efficient means for making metallic nanoparticles. Although this is primarily a phenomenological report, a preliminary model is presented: Initially, nitrates decompose to oxide; thus in the absence of urea metal oxide particles form, as in the case of combustion synthesis. In the case of urea/nitrate mixtures, there is a "convolution" of decomposition processes. Urea decomposes to yield reducing gases, leading to the formation of metal rather than oxide. Rapid "expansion" of gas leads to "shattering," resulting in highly dispersed particles. C1 [Luhrs, Claudia C.; Phillips, Jonathan] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Phillips, Jonathan] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Zea, Hugo] Univ Nacl Colombia, Dept Ingn Quim & Ambiental, Bogota, Colombia. RP Phillips, J (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM jcbc@cableone.net RI Phillips, Jonathan/D-3760-2011 NR 64 TC 5 Z9 6 U1 1 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD MAR PY 2011 VL 26 IS 5 BP 672 EP 681 DI 10.1557/jmr.2010.66 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 793LS UT WOS:000292824900006 ER PT J AU Mahalatkar, K Kuhlman, J Huckaby, ED O'Brien, T AF Mahalatkar, K. Kuhlman, J. Huckaby, E. D. O'Brien, T. TI Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel SO OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES LA English DT Article ID BUBBLE PROPERTIES; REACTOR SYSTEM AB Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel - Numerical studies using Computational Fluid Dynamics (CFD) have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185). There have been extensive experimental studies in Chemical Looping Combustion (CLC), however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particle-particle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. C1 [Kuhlman, J.; Huckaby, E. D.; O'Brien, T.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Mahalatkar, K.; Kuhlman, J.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Mahalatkar, K.] ANSYS Inc, Morgantown, WV 26505 USA. RP O'Brien, T (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM kar982@gmail.com; john.kuhlman@mail.wvu.edu; e.david.huckaby@netl.doe.gov; thomas.obrien@netl.doe.gov FU U.S. Department of Energy; RDS [DE-AC26-04NT41817]; National Energy Technology Laboratory FX The authors gratefully acknowledge the financial support of the U.S. Department of Energy, Carbon Sequestration and Gasification Programs, administered at the National Energy Technology Laboratory. KM was provided support through RDS contract DE-AC26-04NT41817. NR 21 TC 3 Z9 4 U1 1 U2 12 PU EDITIONS TECHNIP PI PARIS 15 PA 27 RUE GINOUX, 75737 PARIS 15, FRANCE SN 1294-4475 J9 OIL GAS SCI TECHNOL JI Oil Gas Sci. Technol. PD MAR-APR PY 2011 VL 66 IS 2 SI SI BP 301 EP 311 DI 10.2516/ogst/2010021 PG 11 WC Energy & Fuels; Engineering, Chemical; Engineering, Petroleum SC Energy & Fuels; Engineering GA 787IV UT WOS:000292370700014 ER PT J AU McIntyre, SM Ferguson, JW Witte, TM Houk, RS AF McIntyre, Sally M. Ferguson, Jill Wisnewski Witte, Travis M. Houk, R. S. TI Measurement of gas kinetic temperatures for polyatomic ions in inductively coupled plasma-mass spectrometry: Validation and refinements SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Inductively coupled plasma mass spectrometry; ICP-MS; Inductively coupled plasma; Ion extraction ICP-MS ID ELECTRONIC PARTITION-FUNCTIONS; ICP-MS; HIGH-RESOLUTION; PROBE MEASUREMENTS; POTENTIAL CURVES; INTERFACE; INTERFERENCES; EXTRACTION; DENSITY; ATOMS AB The general method of comparing measured ion ratios to calculated ion ratios to determine a gas kinetic temperature (T(gas)) is reviewed. Various mathematical refinements to the calculated partition functions are examined for their effect on the determined T(gas). It is found that (a) excited electronic states should be included for ArO(+), neutral NO, and O(2); (b) a 10% error in solvent load, sample gas flow rate, vibrational constant (omega), rotational constant (B) or measured ion ratio produces only a 1 to 3% error in T(gas); (c) a 10% error in dissociation energy (D(o)) creates nearly a 10% error in T(gas); and (d) high temperature corrections to the partition functions produce minimal change and can generally be neglected. (C) 2011 Elsevier B.V. All rights reserved. C1 [McIntyre, Sally M.; Ferguson, Jill Wisnewski; Witte, Travis M.; Houk, R. S.] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. EM rshouk@iastate.edu FU National Science Foundation through the Institute for Physical Research and Technology at ISU [CHE-0309381]; U. S. Department of Energy, Office of Nuclear Nonproliferation [NA-22]; Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX This research was supported by the National Science Foundation (award no. CHE-0309381) through the Institute for Physical Research and Technology at ISU. The ICP-MS instrument was obtained with funds provided by the U. S. Department of Energy, Office of Nuclear Nonproliferation (NA-22) and the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 48 TC 7 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD MAR-APR PY 2011 VL 66 IS 3-4 BP 248 EP 254 DI 10.1016/j.sab.2011.02.003 PG 7 WC Spectroscopy SC Spectroscopy GA 787FI UT WOS:000292361600005 ER PT J AU Jones, RN Preston, BL AF Jones, Roger N. Preston, Benjamin L. TI Adaptation and risk management SO WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE LA English DT Article ID GLOBAL CLIMATE-CHANGE; PRECIPITATION CHANGE; IMPACT ASSESSMENTS; POLICY; PROBABILITIES; VULNERABILITY; UNCERTAINTY; INFORMATION; PROJECTIONS; DECISIONS AB Adaptation assessment methods are compatible with the international risk management standard ISO:31000. Risk management approaches are increasingly being recommended for adaptation assessments at both national and local levels. Two orientations to assessments can commonly be identified: top-down and bottom-up, and prescriptive and diagnostic. Combinations of these orientations favor different types of assessments. The choice of orientation can be related to uncertainties in prediction and taking action, in the type of adaptation and in the degree of system stress. Adopting multiple viewpoints is to be encouraged, especially in complex situations. The bulk of current guidance material is consistent with top-down and predictive approaches, thus is most suitable for risk scoping and identification. Abroad range of material from within and beyond the climate change literature can be used to select methods to be used in assessing and implementing adaptation. The framing of risk, correct formulation of the questions being investigated and assessment methodology are critical aspects of the scoping phase. Only when these issues have been addressed should be issue of specific methods and tools be addressed. The reorientation of adaptation from an assessment focused solely on anthropogenic climate change to broader issues of vulnerability/resilience, sustainable development and disaster risk, especially through a risk management framework, can draw from existing policy and management understanding in communities, professions and agencies, incorporating existing agendas, knowledge, risks, and issues they already face. (C) 2011 John Wiley & Sons, Ltd. WIREs Clim Change 2011 2 296-308 DOI: 10.1002/wcc.97 C1 [Jones, Roger N.] Victoria Univ, Ctr Strateg Econ Studies, Melbourne, Vic 8001, Australia. [Preston, Benjamin L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Jones, RN (reprint author), Victoria Univ, Ctr Strateg Econ Studies, Melbourne, Vic 8001, Australia. EM roger.jones@vu.edu.au RI Jones, Roger/A-2880-2009; Preston, Benjamin/B-9001-2012; Brooks, Katya/J-4975-2014 OI Jones, Roger/0000-0001-6970-2797; Preston, Benjamin/0000-0002-7966-2386; NR 71 TC 33 Z9 33 U1 1 U2 33 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-7780 EI 1757-7799 J9 WIRES CLIM CHANGE JI Wiley Interdiscip. Rev.-Clim. Chang. PD MAR-APR PY 2011 VL 2 IS 2 BP 296 EP 308 DI 10.1002/wcc.97 PG 13 WC Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 778WI UT WOS:000291739700011 ER PT J AU Lohmuller, T Aydin, D Schwieder, M Morhard, C Louban, I Pacholski, C Spatz, JP AF Lohmueller, Theobald Aydin, Daniel Schwieder, Marco Morhard, Christoph Louban, Ilia Pacholski, Claudia Spatz, Joachim P. TI Nanopatterning by block copolymer micelle nanolithography and bioinspired applications SO BIOINTERPHASES LA English DT Review ID DIP-PEN NANOLITHOGRAPHY; SELF-ASSEMBLED MONOLAYERS; WELL-DEFINED SIZES; X-RAY-LITHOGRAPHY; CELL-ADHESION; OPTICAL-PROPERTIES; GOLD NANOPARTICLES; METAL NANOPARTICLES; ORDERED ARRAYS; COLLOIDAL LITHOGRAPHY AB This comprehensive overview of block copolymer micelle nanolithography (BCMN) will discuss the synthesis of inorganic nanoparticle arrays by means of micellar diblock copolymer approach and the resulting experimental control of individual structural parameters of the nanopattern, e. g., particle density and particle size. Furthermore, the authors will present a combinational approach of BCMN with conventional fabrication methods, namely, photolithography and electron beam lithography, which combines the advantages of high-resolution micronanopatterning with fast sample processing rates. In addition, the authors will demonstrate how these nanoparticle assemblies can be transferred to polymer substrates with a wide range of elasticity. In the second part of this report the authors will introduce some of the most intriguing applications of BCMN in biology and materials science: The authors will demonstrate how nanoparticle arrays may be used as anchor points to pattern functional proteins with single molecule resolution for studying cellular adhesion and present a technological roadmap to high-performance nanomaterials by highlighting recent applications for biomimetic optics and nanowires. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3536839] C1 [Lohmueller, Theobald] Max Planck Inst Met Res, Dept New Mat & Biosyst, D-70569 Stuttgart, Germany. Heidelberg Univ, Dept Biophys Chem, INF253, D-69120 Heidelberg, Germany. RP Lohmuller, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM spatz@mf.mpg.de RI Pacholski, Claudia/F-8527-2014; Lohmueller, Theobald/J-2754-2014; Spatz, Joachim/A-1107-2017 OI Pacholski, Claudia/0000-0003-1620-5783; Lohmueller, Theobald/0000-0003-2699-7067; Spatz, Joachim/0000-0003-3419-9807 FU Max Planck Society FX Financial support by the Max Planck Society is highly appreciated. The work benefited greatly from structural suggestions and corrections provided by Nina Grunze. NR 149 TC 55 Z9 55 U1 11 U2 104 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1934-8630 EI 1559-4106 J9 BIOINTERPHASES JI Biointerphases PD MAR PY 2011 VL 6 IS 1 BP MR1 EP MR12 DI 10.1116/1.3536839 PG 12 WC Biophysics; Materials Science, Biomaterials SC Biophysics; Materials Science GA 770SG UT WOS:000291108200001 PM 21428688 ER PT J AU Kugland, NL Constantin, CG Doppner, T Neumayer, P Glenzer, SH Niemann, C AF Kugland, N. L. Constantin, C. G. Doeppner, T. Neumayer, P. Glenzer, S. H. Niemann, C. TI Characterization of a spherically bent quartz crystal for K alpha x-ray imaging of laser plasmas using a focusing monochromator geometry SO JOURNAL OF INSTRUMENTATION LA English DT Article DE X-ray generators and sources; X-ray monochromators; Plasma diagnostics - interferometry, spectroscopy and imaging ID CURVED DIFFRACTORS; RADIOGRAPHY; MICROSCOPY; SCATTERING; FACILITY; OPTICS AB We have measured the key spectrometric properties (peak reflectivity, reflection curve width, and Bragg angle offset) of a spherically bent quartz 200 crystal using the x-ray emission from a laser-produced Ar plasma. This crystal can image Ar K a x-rays at near-normal incidence (theta(B) approximate to 81 degrees); our technique operates the same crystal as a high-throughput focusing monochromator on the Rowland circle at angles far from normal incidence (theta(B) approximate to 68 degrees) to make a reflection curve with He-like x-rays from the same laser plasma. This approach, which is applicable to many commonly imaged x-ray emission lines and corresponding spherically bent crystals, permits the experimentalist to obtain an in-situ crystal characterization in the same reflection order as that used for operation. C1 [Kugland, N. L.; Constantin, C. G.; Niemann, C.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Kugland, N. L.; Doeppner, T.; Glenzer, S. H.; Niemann, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Neumayer, P.] GSI Helmholtzzentrum, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Neumayer, P.] GSI Helmholtzzentrum, Div Res, D-64291 Darmstadt, Germany. [Neumayer, P.] Frankfurt Inst Adv Studies FIAS, D-60438 Frankfurt, Germany. RP Kugland, NL (reprint author), Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. EM kugland@ucla.edu FU U.S. Department of Energy by the Lawrence Livermore National Laboratory, through the Institute for Laser Science and Applications [DE-AC52-07NA27344]; DOE [DE-PS02-07ER07-28]; LDRD [08-ERI-002]; LLNL FX We would like to thank Jeff Koch, Kramer Akli, and Daniel Hey at LLNL, and Guy Bennett at Sandia National Laboratory, for helpful discussions. We also thank the staff of the Jupiter Laser Facility for their support. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory, through the Institute for Laser Science and Applications, under Contract No. DE-AC52-07NA27344. This work was also supported by DOE Grant No. DE-PS02-07ER07-28 (Plasma Physics Junior Faculty Award Program), LDRD Grant No. 08-ERI-002 and the LLNL Lawrence Scholar Program. NR 44 TC 2 Z9 2 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD MAR PY 2011 VL 6 AR T03002 DI 10.1088/1748-0221/6/03/T03002 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 773WP UT WOS:000291342500011 ER PT J AU Tiwari, R Cervero, R Schipper, L AF Tiwari, Reena Cervero, Robert Schipper, Lee TI More hot times on less hot air: CO2 reduction as a co-benefit of good development and transport SO ROAD & TRANSPORT RESEARCH LA English DT Article AB Could the 3Ds of sustainable urbanism (density, diversity and design) forwarded by Cervero, be combined with Schipper's ASIF identity (Emissions = Activity x Mode Shares x Energy Intensity of each Mdoe x CO2 Content of each Energy source) to estimate the components of travel that yield emissions and the more recent ASIF2 paradigm (avoid, shift, improve and finance) strategies to address changes in these components that reduce emissions? Could that, in turn, help in avoiding the worsening transport and CO2 problem in a sprawling city like Perth by redirecting the likely growth in residential and commercial development and transport into more planned, dense communities and corridors? A Master Class on 'Cities: Green or Red, Transport and Urban Design in the context of Climate Change', was held in Perth in August 2009. This class employed the combined D+D+D model and ASIF2 paradigm for the development scenarios of a sustainable green town, the Bentley Technology Precinct, located in the car-oriented city of Perth. The success of the outcomes measured by undertaking an audit for place-making, vehicle kilometres travelled (VKT) and carbon dioxide (CO2) reductions, and findings from the Master Class are presented. C1 [Tiwari, Reena] Curtin Univ Technol, Dept Urban & Reg Planning, Perth, WA 6845, Australia. [Cervero, Robert] Univ Calif Berkeley, Dept City & Reg Planning, Berkeley, CA 94720 USA. [Cervero, Robert] Univ Calif Berkeley, Univ Calif Transportat Ctr, Berkeley, CA 94720 USA. [Cervero, Robert] Univ Calif Berkeley, Inst Urban & Reg Dev, Berkeley, CA 94720 USA. [Schipper, Lee] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Schipper, Lee] IEA, Paris, France. [Schipper, Lee] World Bank, VVS Tekniska Foerening Stockholm, OECD Dev Ctr, Washington, DC USA. [Schipper, Lee] Stockholm Environm Inst, Stockholm, Sweden. RP Tiwari, R (reprint author), Curtin Univ Technol, Dept Architecture & Urban Planning, Fac Built Environm, GPO Box U1987, Perth, WA 6845, Australia. EM r.tiwari@curtin.edu.au NR 24 TC 0 Z9 0 U1 0 U2 4 PU ARRB GROUP LTD PI VERMOUTH SOUTH PA 500 BURWOOD HIGHWAY, VERMOUTH SOUTH, VIC 3133, AUSTRALIA SN 1037-5783 J9 ROAD TRANSP RES JI Road Transp. Res. PD MAR PY 2011 VL 20 IS 1 SI SI BP 4 EP 19 PG 16 WC Transportation SC Transportation GA 773CN UT WOS:000291284700002 ER PT J AU Das, P Sutherland, BM AF Das, Prolay Sutherland, Betsy M. TI Processing of abasic DNA clusters in hApeI-silenced primary fibroblasts exposed to low doses of X-irradiation SO JOURNAL OF BIOSCIENCES LA English DT Article DE Abasic clusters; ApeI; clustered DNA damage; low-dose X-rays; primary fibroblasts ID HUMAN HEMATOPOIETIC-CELLS; BASE EXCISION-REPAIR; IONIZING-RADIATION; MAMMALIAN-CELLS; DAMAGE CLUSTERS; INTERFERING RNA; SITES; SIRNA; SENSITIVITY; DEFICIENCY AB Clustered damage in DNA includes two or more closely spaced oxidized bases, strand breaks or abasic sites that are induced by high- or low-linear-energy-transfer (LET) radiation, and these have been found to be repair-resistant and potentially mutagenic. In the present study we found that abasic clustered damages are also induced in primary human fibroblast cells by low-LET X-rays even at very low doses. In response to the induction of the abasic sites, primary fibroblasts irradiated by low doses of X-rays in the range 10-100 cGy showed dose-dependent up-regulation of the DNA repair enzyme, ApeI. We found that the abasic clusters in primary fibroblasts were more lethal to cells when hApeI enzyme expression was down-regulated by transfecting primary fibroblasts with hApeI siRNA as determined by clonogenic survival assay. Endonuclease activity of hApeI was found to be directly proportional to hApeI gene-silencing efficiency. The DNA repair profile showed that processing of abasic clusters was delayed in hApeI-siRNA-silenced fibroblasts, which challenges the survival of the cells even at very low doses of X-rays. Thus, the present study is the first to attempt to understand the induction of cluster DNA damage at very low doses of low-LET radiation in primary human fibroblasts and their processing by DNA repair enzyme ApeI and their relation with the survival of the cells. C1 [Das, Prolay] Indian Inst Technol Patna, Dept Chem, Patna 800013, Bihar, India. [Sutherland, Betsy M.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Das, P (reprint author), Indian Inst Technol Patna, Dept Chem, Patna 800013, Bihar, India. EM prolay@iitp.ac.in FU Office of Biological and Environmental Research of the US Department of Energy; Office of Biological and Physical Research of the National Aeronautic and Space Administration (NASA) [BO-086] FX Antisense RNAs (ApeI siRNAs) were a kind gift from Dr Murat Saparbaev of Univ Paris-Sud, Institut Gustave Roussy, Villejuif Cedex, France, and is gratefully acknowledged. We thank Ms Paula V Bennett for her help with X-ray irradiation, human DNA preparation and transfection experiments. We also thank Dr J Sutherland and Mr J Trunk for use of the image system. This work was supported by grants from the Low Dose Program of the Office of Biological and Environmental Research of the US Department of Energy co-sponsored by the Office of Biological and Physical Research of the National Aeronautic and Space Administration (NASA) to Dr (Late) Betsy M Sutherland (BO-086). NR 36 TC 7 Z9 7 U1 0 U2 2 PU INDIAN ACAD SCIENCES PI BANGALORE PA C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA SN 0250-5991 J9 J BIOSCIENCES JI J. Biosci. PD MAR PY 2011 VL 36 IS 1 BP 105 EP 116 DI 10.1007/s12038-011-9008-2 PG 12 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 769UP UT WOS:000291044100014 PM 21451252 ER PT J AU Sumner, J Bird, L Dobos, H AF Sumner, Jenny Bird, Lori Dobos, Hillary TI Carbon taxes: a review of experience and policy design considerations SO CLIMATE POLICY LA English DT Review DE carbon tax; climate change policies; domestic policy instruments; GHG reductions; policy formation ID CLIMATE-CHANGE; ISSUES AB State and local governments in the USA are evaluating a wide range of policies to reduce carbon emissions, including carbon taxes, which have existed internationally for nearly 20 years. In this article, existing carbon tax policies, both internationally and in the USA, are reviewed, and carbon policy design and effectiveness are analysed. Design considerations include which sectors to tax, where to set the tax rate, how to use tax revenues, what the impact will be on consumers, and how to ensure that emissions reduction goals are achieved. Emissions reductions that are due to carbon taxes can be difficult to measure, although some jurisdictions quantify reductions in overall emissions, others examine impacts that are due to programmes funded by carbon tax revenues. C1 [Sumner, Jenny; Bird, Lori; Dobos, Hillary] Strateg Energy Anal Ctr, Market & Policy Impact Anal Grp, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Sumner, J (reprint author), Strateg Energy Anal Ctr, Market & Policy Impact Anal Grp, Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jenny.sumner@nrel.gov NR 46 TC 20 Z9 22 U1 4 U2 14 PU JAMES & JAMES SCIENCE PUBLISHERS LTD/EARTHSCAN PI LONDON PA 8-12 CAMDEN HIGH STREET, NW1 0JH LONDON, ENGLAND SN 1469-3062 J9 CLIM POLICY JI Clim. Policy PD MAR PY 2011 VL 11 IS 2 BP 922 EP 943 DI 10.3763/cpol.2010.0093 PG 22 WC Environmental Studies; Public Administration SC Environmental Sciences & Ecology; Public Administration GA 765XN UT WOS:000290742800006 ER PT J AU Leinweber, D AF Leinweber, David TI Avoiding a Billion Dollar Federal Financial Technology Rat Hole SO JOURNAL OF PORTFOLIO MANAGEMENT LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Ctr Innovat Financial Technol, Berkeley, CA 94720 USA. RP Leinweber, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Ctr Innovat Financial Technol, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 2 U2 4 PU INST INVESTOR INC PI NEW YORK PA 225 PARK AVE SOUTH, NEW YORK, NY 10003 USA SN 0095-4918 J9 J PORTFOLIO MANAGE JI J. Portf. Manage. PD SPR PY 2011 VL 37 IS 3 BP 1 EP 2 DI 10.3905/jpm.2011.37.3.001 PG 2 WC Business, Finance SC Business & Economics GA 759DI UT WOS:000290220400001 ER PT J AU Cusack, DF Silver, WL Torn, MS Burton, SD Firestone, MK AF Cusack, Daniela F. Silver, Whendee L. Torn, Margaret S. Burton, Sarah D. Firestone, Mary K. TI Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests SO ECOLOGY LA English DT Article DE C-13 NMR; extracellular enzymes; fertilization; Luquillo Experimental Forest, Puerto Rico; nitrogen deposition; nuclear magnetic resonance; nutrient availability; phospholipid fatty acid analysis; PLFA ID FUNGUS GLOMUS-INTRARADICES; LITTER DECOMPOSITION; ENZYME-ACTIVITY; PUERTO-RICO; NUTRIENT LIMITATION; MYCORRHIZAL FUNGI; SECONDARY FOREST; CARBON-CYCLE; N-DEPOSITION; FATTY-ACIDS AB Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and C-13 nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types. C1 [Cusack, Daniela F.; Silver, Whendee L.; Firestone, Mary K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Torn, Margaret S.; Firestone, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Burton, Sarah D.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. RP Cusack, DF (reprint author), Univ Calif Los Angeles, Dept Geog, 1255 Bunche Hall,Box 951524, Los Angeles, CA 90095 USA. EM dcusack@geog.ucla.edu RI Silver, Whendee/H-1118-2012; Torn, Margaret/D-2305-2015 FU NSF GSRF; NSF DDIG; UC-Berkeley; NSF [DEB 0543558, DEB-008538, DEB-0218039, DEB 0345002]; U.S. DOE [DE-AC02-05CH11231]; DOE's Office of Biological and Environmental Research at the Pacific Northwest National Lab [25398]; USDA [9900975] FX Funding was provided by NSF GSRF, NSF DDIG, and UC-Berkeley BASC grants to D. F. Cusack; NSF grants DEB 0543558 to W. Silver; DEB-008538 and DEB-0218039 to ITES, and UPR as part of the NSF LTER in the Luquillo Experimental Forest; the CCR Division of the U.S. DOE Contract No. DE-AC02-05CH11231 to M. S. Torn; and NSF DEB 0345002 to M. K. Firestone. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research at the Pacific Northwest National Lab (grant 25398). Additional infrastructural support was provided by the International Institute for Tropical Forestry, USDA-FS. We thank W. H. McDowell and J. Macy for establishing the fertilization experiment, and we acknowledge USDA grant 9900975 to W. H. McDowell. D. Herman, C. Torrens, and S. Weintraub assisted in the lab and field. NR 76 TC 80 Z9 104 U1 32 U2 265 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD MAR PY 2011 VL 92 IS 3 BP 621 EP 632 DI 10.1890/10-0459.1 PG 12 WC Ecology SC Environmental Sciences & Ecology GA 763CC UT WOS:000290529800012 PM 21608471 ER PT J AU Lutz, BD Bernhardt, ES Roberts, BJ Mulholland, PJ AF Lutz, Brian D. Bernhardt, Emily S. Roberts, Brian J. Mulholland, Patrick J. TI Examining the coupling of carbon and nitrogen cycles in Appalachian streams: the role of dissolved organic nitrogen SO ECOLOGY LA English DT Article DE dissolved organic carbon (DOC); dissolved organic matter (DOM); dissolved organic nitrogen (DON); Great Smoky Mountains National Park, USA; nitrate; nitrogen saturation; stream; temperate forests; watershed ID FOREST ECOSYSTEMS; TERRESTRIAL ECOSYSTEMS; MARINE ECOSYSTEMS; TEMPERATE FORESTS; NEW-YORK; WATERSHEDS; EXPORT; BIOAVAILABILITY; SATURATION; DEPOSITION AB Although regional and global models of nitrogen (N) cycling typically focus on nitrate, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds and thus the dominant form of dissolved N in many streams. Our understanding of the processes controlling DON export from temperate forests is poor. In pristine systems, where biological N limitation is common, N contained in recalcitrant organic matter (OM) can dominate watershed N losses. This recalcitrant OM often has moderately constrained carbon : nitrogen (C:N) molar ratios (similar to 25-55) and therefore, greater DON losses should be observed in sites where there is greater total dissolved organic carbon (DOC) loss. In regions where anthropogenic N pollution is high, it has been suggested that increased inorganic N availability can reduce biological demand for organic N and therefore increase watershed DON losses. This would result in a positive correlation between inorganic and organic N concentrations across sites with varying N availability. In four repeated synoptic surveys of stream water chemistry from forested watersheds along an N loading gradient in the southern Appalachians, we found surprisingly little correlation between DON and DOC concentrations. Further, we found that DON concentrations were always significantly correlated with watershed N loading and stream water [NO(3)(-)] but that the direction of this relationship was negative in three of the four surveys. The C:N molar ratio of dissolved organic matter (DOM) in streams draining watersheds with high N deposition was very high relative to other freshwaters. This finding, together with results from bioavailability assays in which we directly manipulated C and N availabilities, suggests that heterotrophic demand for labile C can increase as a result of dissolved inorganic N (DIN) loading, and that heterotrophs can preferentially remove N-rich molecules from DOM. These results are inconsistent with the two prevailing hypotheses that dominate interpretations of watershed DON loss. Therefore, we propose a new hypothesis, the indirect carbon control hypothesis, which recognizes that heterotrophic demand for N-rich DOM can keep stream water DON concentrations low when N is not limiting and heterotrophic demand for labile C is high. C1 [Lutz, Brian D.; Bernhardt, Emily S.] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Lutz, Brian D.] Duke Univ, Univ Program Ecol, Durham, NC 27708 USA. [Roberts, Brian J.; Mulholland, Patrick J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Roberts, Brian J.] Louisiana Univ Marine Consortium, DeFelice Marine Ctr, Chauvin, LA 70344 USA. RP Lutz, BD (reprint author), Duke Univ, Dept Biol, Box 90338, Durham, NC 27708 USA. EM brian.lutz@duke.edu RI Mulholland, Patrick/C-3142-2012; Bernhardt, Emily/D-9940-2011 OI Bernhardt, Emily/0000-0003-3031-621X FU Duke University; U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation GRFP FX The authors thank Brooke Hassett for assistance with laboratory analyses. Insightful comments from members of the Stroud Water Research Center offered valuable perspective on data interpretation. Conversations with members of the Bernhardt Lab improved the manuscript. Nitrogen deposition data for Great Smoky Mountains National Park were made available by the Cary Institute for Ecosystem Studies, Millbrook, New York, USA. This research effort was supported by Duke University, the U.S. Department of Energy's Program for Ecosystem Research, and a National Science Foundation GRFP (to Brian D. Lutz). Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 44 TC 20 Z9 22 U1 0 U2 71 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD MAR PY 2011 VL 92 IS 3 BP 720 EP 732 PG 13 WC Ecology SC Environmental Sciences & Ecology GA 763CC UT WOS:000290529800021 PM 21608480 ER PT J AU Willson, JD Hopkins, WA AF Willson, John D. Hopkins, William A. TI Prey morphology constrains the feeding ecology of an aquatic generalist predator SO ECOLOGY LA English DT Article DE Ambystoma talpoideum; banded watersnakes; feeding performance; intra-oral transport; Lepomis marginatus; locomotor performance; Nerodia fasciata; prey handling; specific dynamic action ID HABITAT STRUCTURAL COMPLEXITY; SNAKES THAMNOPHIS-ELEGANS; JUVENILE GARTER SNAKES; DYNAMIC ACTION; LOCOMOTORY PERFORMANCE; ELAPHE-QUADRIVIRGATA; SPRINT PERFORMANCE; HANDLING BEHAVIOR; FORAGING ECOLOGY; NERODIA-FASCIATA AB Resource availability and accessibility are primary factors guiding the distribution and abundance of organisms. For generalists, prey availability reflects both prey abundance and differences in quality among prey taxa. Although some aspects of prey quality, such as nutritional composition, are well studied, our understanding of how prey morphology contributes to overall prey quality is limited. Because snakes cannot reduce prey size by mastication, many aspects of their feeding ecology (e.g., maximum prey size, feeding performance, and the degree of postprandial locomotor impairment) may be affected by prey shape. We conducted a uniquely comprehensive comparison of prey quality for a generalist species, the banded watersnake (Nerodia fasciata), using prey that were similar in mass and presumably similar in nutritional composition but different in shape and habitat association. Specifically, we compared nutritional composition and shape of paedomorphic salamanders (Ambystoma talpoideum) and sunfish (Lepomis marginatus) and used a series of repeated-measures experiments to examine feeding performance (number of prey consumed, maximum prey size, and intra-oral transport time), digestive metabolism (specific dynamic action, SDA), and postprandial locomotor performance of snakes fed Ambystoma and Lepomis. Cost of digestion was similar between the prey types, likely reflecting their similar nutritional composition. However, snakes consumed larger Ambystoma than Lepomis and intra-oral transport time was much shorter for Ambystoma. Snakes fed Lepomis also suffered greater reduction in crawling speed than those fed Ambystoma. These differences highlight the need for behaviorally integrated approaches to understanding prey quality and support field observations of the importance of amphibian prey for juvenile watersnakes. C1 [Willson, John D.; Hopkins, William A.] Virginia Polytech Inst & State Univ, Dept Fisheries & Wildlife Sci, Blacksburg, VA 24061 USA. [Willson, John D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Willson, JD (reprint author), Virginia Polytech Inst & State Univ, Dept Fisheries & Wildlife Sci, 100 Cheatham Hall, Blacksburg, VA 24061 USA. EM willsonj@vt.edu FU National Science Foundation [I0B-0615361]; Society for Integrative and Comparative Biology; Department of Energy [DE-FC-09-075R22506] FX We thank J. Whitfield Gibbons for his support and encouragement. Additionally, we thank Andrew Durso and Evan Eskew for collecting data on prey availability and Sarah DuRant, Brian Todd, and Christopher Winne for advice on design and statistical analyses. Michael Dorcas, Sarah DuRant, J. Whitfield Gibbons, and Jerry Husak provided insightful comments on the manuscript. Snakes and prey were collected under South Carolina Department of Natural Resources scientific collection permits (G-05-03), and procedures used in the study were approved by the University of Georgia animal care and use committee (AUP A2005-10102-c2). This research was supported by the National Science Foundation (Graduate Research Fellowship to J. D. Willson and I0B-0615361 to W. A. Hopkins), a Grant-in-aid of Research to J. D. Willson from the Society for Integrative and Comparative Biology, and the Department of Energy under Award Number DE-FC-09-075R22506. NR 53 TC 10 Z9 10 U1 3 U2 28 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 J9 ECOLOGY JI Ecology PD MAR PY 2011 VL 92 IS 3 BP 744 EP 754 DI 10.1890/10-0781.1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 763CC UT WOS:000290529800023 PM 21608482 ER PT J AU Chen, K Kunz, M Tamura, N Wenk, HR AF Chen, Kai Kunz, Martin Tamura, Nobumichi Wenk, Hans-Rudolf TI Evidence for high stress in quartz from the impact site of Vredefort, South Africa SO EUROPEAN JOURNAL OF MINERALOGY LA English DT Article DE Vredefort impact site; quartz; Dauphine twinning; residual stress ID X-RAY-DIFFRACTION; PLANAR DEFORMATION FEATURES; PLASTIC-DEFORMATION; SHOCKED QUARTZ; THIN-FILMS; PROFILE ANALYSIS; TEXTURE ANALYSIS; NATURAL QUARTZ; STRAIN; DOME AB A microstructural investigation of stishovite-bearing quartzite from the Vredefort meteorite impact site in South Africa reveals features that are attributed to shock deformation. These include abundant mechanically induced Dauphine twinning, rhombohedral deformation lamellae and associated residual stresses. Mechanical twins were identified with SEM-EBSD. Residual stresses are derived from equivalent strains that are observed on Laue diffraction images measured with microfocused synchrotron X-rays. Average lattice strains of 1400 microstrains in Vredefort quartz are much higher compared to values (500) found in quartz from granite samples subject to only regional metamorphism. While the granitic quartz shows mainly normal compressive and tensile residual stresses, in Vredefort quartz, shear stresses associated with lamellar boundaries dominate. C1 [Chen, Kai; Wenk, Hans-Rudolf] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Kunz, Martin; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Wenk, HR (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. EM wenk@berkeley.edu RI Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU DOE-BES [DE-FG02-05ER15637]; NSF [EAR-0836402, 0416243]; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge support from DOE-BES (DE-FG02-05ER15637) and NSF (EAR-0836402) and access to ALS beamline 12.3.2. ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. The micro-diffraction program at the ALS beamline 12.3.2 was made possible by NSF grant # 0416243. We acknowledge help by Scott Sitzman (Oxford Instruments) with some of the EBSD measurements and thank Uwe Reimold for providing the sample. We are appreciative for comments by reviewers A. Pavese and R.J. Angel, which helped to improve the manuscript. NR 55 TC 12 Z9 14 U1 2 U2 19 PU E SCHWEIZERBARTSCHE VERLAGS PI STUTTGART PA NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY SN 0935-1221 J9 EUR J MINERAL JI Eur. J. Mineral. PD MAR PY 2011 VL 23 IS 2 BP 169 EP 178 DI 10.1127/0935-1221/2011/0023-2082 PG 10 WC Mineralogy SC Mineralogy GA 757OF UT WOS:000290096700003 ER PT J AU Park, BH Li, YR Xiong, J Jia, QX AF Park, Bae Ho Li, Y. R. Xiong, J. Jia, Q. X. TI DIELECTRIC PROPERTIES OF EPITAXIAL Ba1-xSrxTiO3 FILMS ON MgO SUBSTRATES SO FUNCTIONAL MATERIALS LETTERS LA English DT Article DE Epitaxial Ba1-xSrxTiO3; film; MgO substrate; tunability ID BARIUM STRONTIUM-TITANATE; BA0.5SR0.5TIO3 THIN-FILMS; TUNABLE DEVICES; NONLINEARITY; PERFORMANCE AB We have systematically studied the dielectric properties of epitaxial barium strontium titanate, Ba1-xSrxTiO3 (x = 0.0, 0.1, 0.2, ... , 1.0), films on MgO substrates grown by pulsed laser deposition. The dielectric properties of Ba1-xSrxTiO3 films at a frequency of 1 MHz and room temperature are a strong function of Ba/Sr ratio. The degree of electric field dependent dielectric constant is more pronounced with decrease of x values. The largest dielectric tunability and the figure of merit (or tunability/loss) are obtained at x = 0.3 and at x = 0.4, respectively. C1 [Park, Bae Ho] Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. [Li, Y. R.] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 6150054, Peoples R China. [Xiong, J.; Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Park, BH (reprint author), Konkuk Univ, Dept Phys, Div Quantum Phases & Devices, Seoul 143701, South Korea. EM baehpark@konkuk.ac.kr; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; Park, Bae Ho/D-4840-2011 FU U.S. Department of Energy; Center for Integrated Nanotechnologies (CINT); MEST [R31-2008-000-10057-0]; Korea government MEST [2008-0060004] FX We acknowledge the support of the U.S. Department of Energy through the LANL/LDRD program and the Center for Integrated Nanotechnologies (CINT) for this work. B.H.P. is partly supported by the WCU program through the NRF funded by MEST (Grant No. R31-2008-000-10057-0) and the KOSEF NRL program grant funded by the Korea government MEST (Grant No. 2008-0060004). NR 18 TC 5 Z9 5 U1 1 U2 6 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 1793-6047 J9 FUNCT MATER LETT JI Funct. Mater. Lett. PD MAR PY 2011 VL 4 IS 1 BP 41 EP 44 DI 10.1142/S1793604711001610 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 759GF UT WOS:000290228000009 ER PT J AU Groer, C Golden, B Wasil, E AF Groer, Chris Golden, Bruce Wasil, Edward TI A Parallel Algorithm for the Vehicle Routing Problem SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE vehicle routing; optimization; heuristics; metaheuristics; parallel computing ID TIME WINDOWS; DISPATCHING PROBLEM; STRATEGIES AB The vehicle routing problem (VRP) is a difficult and well-studied combinatorial optimization problem. We develop a parallel algorithm for the VRP that combines a heuristic local search improvement procedure with integer programming. We run our parallel algorithm with as many as 129 processors and are able to quickly find high-quality solutions to standard benchmark problems. We assess the impact of parallelism by analyzing our procedure's performance under a number of different scenarios. C1 [Groer, Chris] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Golden, Bruce] Univ Maryland, RH Smith Sch Business, College Pk, MD 20742 USA. [Wasil, Edward] American Univ, Kogod Sch Business, Washington, DC 20016 USA. RP Groer, C (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM cgroer@gmail.com; bgolden@rhsmith.umd.edu; ewasil@american.edu FU U.S. Government [DE-AC05-00OR22725]; American University FX The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. The third author was supported in part by a Kogod Research Professorship at American University. NR 43 TC 21 Z9 24 U1 0 U2 12 PU INFORMS PI HANOVER PA 7240 PARKWAY DR, STE 310, HANOVER, MD 21076-1344 USA SN 1091-9856 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD SPR PY 2011 VL 23 IS 2 BP 315 EP 330 DI 10.1287/ijoc.1100.0402 PG 16 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 759MC UT WOS:000290248600012 ER PT J AU Larbani, M Huang, CY Tzeng, GH AF Larbani, Moussa Huang, Chi-Yo Tzeng, Gwo-Hshiung TI A Novel Method for Fuzzy Measure Identification SO INTERNATIONAL JOURNAL OF FUZZY SYSTEMS LA English DT Article DE Choquet integral; Fuzzy integral; fuzzy measure; identification; linear programming; multiple criteria decision-making (MCDM) AB Fuzzy measure and Choquet integral are effective tools for handling complex multiple criteria decision making (MCDM) problems in which criteria are inter-dependent. The identification of a fuzzy measure requires the determination of 2(n) - 2 values when the number of criteria is n. The complexity of this problem increases exponentially, which makes it practically very difficult to solve. Many methods have been proposed to reduce the number of values to be determined including the introduction of new special fuzzy measures like the lambda -fuzzy measures. However, manipulations of the proposed methods are difficult from the aspects of high data complexity as well as low computation efficiency. Thus, this paper proposed a novel fuzzy measure identification method by reducing the data complexity to n(n - 1)/2 and enhancing the computation efficiency by leveraging a relatively small number of variables and constraints for linear programming. The proposed method was developed based on the evaluation of pair-wise additivity degrees or interdependence coefficients between the criteria. Depending on the information being provided by decision-makers on the individual density of each criterion, the fuzzy measure can be constructed by solving a simple system of linear inequalities or a linear programming problem. This novel method is validated through a supplier selection problem which occurs frequently in real-world decision-making problems. Validation results demonstrate that the newly-proposed method can model real-world MCDM problems successfully. C1 [Huang, Chi-Yo] Natl Taiwan Normal Univ, Dept Ind Educ, Taipei 106, Taiwan. [Larbani, Moussa] UMMTO Univ, Tizi Ouzou, Algeria. [Larbani, Moussa] IIUM Univ, Kuala Lumpur, Malaysia. [Larbani, Moussa; Tzeng, Gwo-Hshiung] Kainan Univ, Luchu, Taiwan. [Tzeng, Gwo-Hshiung] Chiao Tung Univ, Hsinchu, Taiwan. [Tzeng, Gwo-Hshiung] Argonne Natl Lab, Argonne, IL 60439 USA. RP Huang, CY (reprint author), Natl Taiwan Normal Univ, Dept Ind Educ, 162 He Ping E Rd,Sect 1, Taipei 106, Taiwan. EM georgeh168@gmail.com RI Tzeng, Gwo-Hshiung/B-2775-2009 OI Tzeng, Gwo-Hshiung/0000-0003-1856-7497 NR 1 TC 16 Z9 17 U1 0 U2 3 PU TAIWAN FUZZY SYSTEMS ASSOC PI TAIPEI PA NATL TAIPEI UNIV TECHNOL, 1 SEC 3 CHUNG-HSIAO E RD, TAIPEI, ROC 00000, TAIWAN SN 1562-2479 J9 INT J FUZZY SYST JI Int. J. Fuzzy Syst. PD MAR PY 2011 VL 13 IS 1 BP 24 EP 34 PG 11 WC Automation & Control Systems; Computer Science, Artificial Intelligence SC Automation & Control Systems; Computer Science GA 758TT UT WOS:000290190300004 ER PT J AU Ishida, K Stupp, P McDonald, O AF Ishida, Kanako Stupp, Paul McDonald, Olivia TI Prevalence and Correlates of Sexual Risk Behaviors Among Jamaican Adolescents SO INTERNATIONAL PERSPECTIVES ON SEXUAL AND REPRODUCTIVE HEALTH LA English DT Article ID YOUNG ADOLESCENTS; CARIBBEAN YOUTH; HEALTH; INTERCOURSE; PREGNANCY; CHILDBEARING; COMMUNITIES; MARRIAGE; VIOLENCE AB CONTEXT: Despite high levels of sexual activity and risk behaviors among Jamaican youth, few population-based studies have examined their prevalence or correlates. METHODS: The prevalence of three sexual risk behaviors was assessed using data from the 2008-2009 Jamaican Reproductive Health Survey on a subsample of adolescents aged 15-19 who neither were in a union nor had a child. Factors associated with the risk behaviors were examined separately for females and males, using bivariate analysis and multivariate logistic regression. RESULTS: In the year prior to the survey, 32% of females and 54% of males had had sexual intercourse; of those, 12% and 52%, respectively, had had more than one sexual partner, and 49% and 46% had used condoms inconsistently or not at all. School enrollment was protective against females being sexually active and males having multiple partners. Females who were enrolled in an age-appropriate or higher grade had decreased odds of using condoms inconsistently or not at all, and males who were enrolled in a lower than age-appropriate grade had a decreased risk of being sexually active. Males in the lowest wealth tercile were less likely than those in the highest tercile to have been sexually active or to have had multiple partners. Weekly attendance at religious services was protective against all three risk behaviors for both genders, with the exception of inconsistent or no condom use among males. CONCLUSIONS: Future reproductive health programs should continue to target adolescents in venues other than schools and churches, and should also address the varying needs of females and males. International Perspectives on Sexual and Reproductive Health, 37(1):6-15,doi:10.1363/3700611 C1 [Ishida, Kanako] Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Div Reprod Hlth, Atlanta, GA 30333 USA. [McDonald, Olivia] Natl Family Planning Board, Kingston, Jamaica. RP Ishida, K (reprint author), Ctr Dis Control & Prevent, Oak Ridge Inst Sci & Educ, Div Reprod Hlth, Atlanta, GA 30333 USA. EM kishida@cdc.gov NR 38 TC 12 Z9 13 U1 2 U2 6 PU ALAN GUTTMACHER INST PI NEW YORK PA 125 MAIDEN LANE, 7TH FLOOR, NEW YORK, NY 10038 USA SN 1944-0391 J9 INT PERSPECT SEX R H JI Int. Perspect. Sex Reprod. Health PD MAR PY 2011 VL 37 IS 1 BP 6 EP 15 DI 10.1363/3700611 PG 10 WC Demography; Public, Environmental & Occupational Health; Social Sciences, Biomedical SC Demography; Public, Environmental & Occupational Health; Biomedical Social Sciences GA 755UX UT WOS:000289965700001 PM 21478083 ER PT J AU Cheung, C Elor, G Hall, LJ Kumar, P AF Cheung, Clifford Elor, Gilly Hall, Lawrence J. Kumar, Piyush TI Origins of hidden sector dark matter II: collider physics SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID MIRROR UNIVERSE; SUPERSYMMETRY; NEUTRALINO AB We consider a broad class of supersymmetric theories in which dark matter (DM) is the lightest superpartner (LSP) of a hidden sector that couples very weakly to visible sector fields. Portal interactions connecting visible and hidden sectors mediate the decay of the lightest observable superpartner (LOSP) into the LSP, allowing the LHC to function as a spectacular probe of the origin of hidden sector DM. As shown in a companion paper, this general two-sector framework allows only for a handful of DM production mechanisms, each of which maps to a distinctive window in lifetimes and cross-sections for the LOSP. In the present work we perform a systematic collider study of LOSP candidates and portal interactions, and for each case evaluate the prospects for successfully reconstructing the origin of DM at the LHC. If, for instance, DM arises from Freeze-Out and Decay, this may be verified if the LOSP is a bino or right-handed slepton decaying to the LSP through a variety of portal interactions, and with an annihilation cross-section within a narrow range. On the other hand, the Freeze-In mechanism may be verified for a complimentary set of LOSP candidates, and within a narrow range of LOSP lifetimes. In all cases, the LOSP is relatively long-lived on collider time scales, leading to events with displaced vertices. Furthermore, scenarios with a charged or colored LOSP are particularly promising. C1 [Cheung, Clifford; Elor, Gilly; Hall, Lawrence J.; Kumar, Piyush] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Cheung, Clifford; Elor, Gilly; Hall, Lawrence J.; Kumar, Piyush] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Hall, Lawrence J.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Kumar, Piyush] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Cheung, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM clifford.cheung@berkeley.edu; gelor@berkeley.edu; ljhall@lbl.gov; kpiyush@phys.columbia.edu OI Kumar, Piyush/0000-0003-4894-4468 FU Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0457315] FX L.H. thanks Karsten Jedamzik, John March-Russell and Stephen West for useful discussions. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231 and by the National Science Foundation on grant PHY-0457315. NR 50 TC 12 Z9 12 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 085 DI 10.1007/JHEP03(2011)085 PG 32 WC Physics, Particles & Fields SC Physics GA 747BM UT WOS:000289295300013 ER PT J AU Taylor, PC Turner, JA AF Taylor, P. Craig Turner, John A. TI Editorial: A new tradition in Journal of Renewable and Sustainable Energy SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Editorial Material C1 [Taylor, P. Craig] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Turner, John A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Taylor, PC (reprint author), Colorado Sch Mines, Dept Phys, 1523 Illinois St, Golden, CO 80401 USA. NR 0 TC 0 Z9 0 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD MAR 1 PY 2011 VL 3 IS 2 AR 020401 DI 10.1063/1.3558884 PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 756XV UT WOS:000290049000001 ER PT J AU Qin, W Zang, QJ Lu, WC Wang, CZ Ho, KM AF Qin Wei Zang Qing-jun Lu Wen-cai Wang Cai-zhuang Ho Kai-ming TI Comparison of Si-n(+) and Ge-n(+)(n=2-15) Cationic Structures SO CHEMICAL RESEARCH IN CHINESE UNIVERSITIES LA English DT Article DE Pentagonal bipyramid motif; Tr-capped trigonal prism(TTP) motif; Si-n(+) and Ge-n(+) cluster ID SILICON CLUSTER IONS; GLOBAL-MINIMUM GEOMETRIES; SIZED GERMANIUM CLUSTERS; MOBILITY MEASUREMENTS; SEMICONDUCTOR CLUSTERS; IONIZATION-POTENTIALS; GROWTH-PATTERNS; SI-N; TRANSITION; STABILITY AB We designed and optimized a large number of the isomers of Si-12(+) at the level of density functional theory (DFT)-B3LYP/6-311++G(d) using the Gaussian 03 software package. An unambiguous structure of the Si-12(+) cluster is presented, whose IR spectrum agrees well with the experiment result. The most stable geometric structures of Ge-n(+)(n=2-15) clusters were determined by the all-electron PBE/DND method in DMol(3) of the Material Studio Package, and compared with those of the corresponding Si-n(+) geometries. Most structures of Ge-n(+) and Si-n(+) are similar except the ones of those for n=9, 12, 13 and 14, and the pentagonal bipyramid motif and the tri-capped trigonal prism(TTP) motif often appear in the Si-n(+) and Ge-n(+)(n=7-15) structures(except for Si-14(+)). C1 [Qin Wei; Zang Qing-jun; Lu Wen-cai] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Coll Phys, Qingdao 266071, Peoples R China. [Qin Wei; Lu Wen-cai] Jilin Univ, State Key Lab Theoret & Computat Chem, Inst Theoret Chem, Changchun 130021, Peoples R China. [Zang Qing-jun] Beijing Normal Univ, Coll Chem, Beijing 100875, Peoples R China. [Wang Cai-zhuang; Ho Kai-ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang Cai-zhuang; Ho Kai-ming] US DOE, Ames Lab, Ames, IA 50011 USA. RP Lu, WC (reprint author), Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Coll Phys, Qingdao 266071, Peoples R China. EM wencailu@jlu.edu.cn FU National Natural Science Foundation of China [20773047, 21043001]; Ames Laboratory [DE-AC02-07CH11358] FX Supported by the National Natural Science Foundation of China(Nos.20773047 and 21043001).; Ames Laboratory is Operated for the US Department of Energy by Iowa State University under Contract(No.DE-AC02-07CH11358) and the Director for Energy Research, Office of Basic Energy Sciences Including a Grant of Computer Time at the National Energy Research Supercomputing Center(NERSC) in Berkeley. NR 52 TC 2 Z9 2 U1 0 U2 5 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 1005-9040 J9 CHEM RES CHINESE U JI Chem. Res. Chin. Univ. PD MAR PY 2011 VL 27 IS 2 BP 313 EP 317 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA 756HH UT WOS:000290001800035 ER PT J AU Futatani, S Bos, WJT del-Castillo-Negrete, D Schneider, K Benkadda, S Farge, M AF Futatani, Shimpei Bos, Wouter J. T. del-Castillo-Negrete, Diego Schneider, Kai Benkadda, Sadruddin Farge, Marie TI Coherent vorticity extraction in resistive drift-wave turbulence: Comparison of orthogonal wavelets versus proper orthogonal decomposition SO COMPTES RENDUS PHYSIQUE LA English DT Article DE Proper orthogonal decomposition; Wavelets; Plasma turbulence; Coherent structures ID EDGE TURBULENCE; PLASMA; COMPRESSION; SIMULATION AB We assess two techniques for extracting coherent vortices out of turbulent flows: the wavelet based Coherent Vorticity Extraction (CVE) and the Proper Orthogonal Decomposition (POD). The former decomposes the flow field into an orthogonal wavelet representation and subsequent thresholding of the coefficients allows one to split the flow into organized coherent vortices with non-Gaussian statistics and an incoherent random part which is structureless. POD is based on the singular value decomposition and decomposes the flow into basis functions which are optimal with respect to the retained energy for the ensemble average. Both techniques are applied to direct numerical simulation data of two-dimensional drift-wave turbulence governed by Hasegawa Wakatani equation, considering two limit cases: the quasi-hydrodynamic and the quasi-adiabatic regimes. The results are compared in terms of compression rate, retained energy, retained enstrophy and retained radial flux, together with the enstrophy spectrum and higher order statistics. (c) 2010 Published by Elsevier Masson SAS on behalf of Academie des sciences. C1 [Farge, Marie] Ecole Normale Super, CNRS, LMD, F-75230 Paris 05, France. [Futatani, Shimpei; Benkadda, Sadruddin] Univ Aix Marseille 1, Int Inst Fus Sci, CNRS, F-13397 Marseille 20, France. [Bos, Wouter J. T.] Univ Lyon, LMFA, CNRS, Ecole Cent Lyon,UMR 5509, F-69134 Ecully, France. [del-Castillo-Negrete, Diego] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Schneider, Kai] Univ Aix Marseille 1, CNRS, M2P2, F-13453 Marseille 13, France. [Schneider, Kai] Univ Aix Marseille 1, CMI, F-13453 Marseille 13, France. RP Farge, M (reprint author), Ecole Normale Super, CNRS, LMD, 45 Rue Ulm, F-75230 Paris 05, France. EM farge@lmd.ens.fr OI Futatani, Shimpei/0000-0001-5742-5454 FU Agence Nationale de la Recherche; Oak Ridge National Laboratory [DE-AC05-00OR22725]; Ecole Centrale de Marseille; Association CEA-EURATOM; French Research Federation for Fusion Studies [V.3258.001] FX The authors acknowledge financial support from the Agence Nationale de la Recherche under contract 'M2TFP'. D.dC.N. is thankful for the support from the Oak Ridge National Laboratory, managed by UT-Battelle. LLC, for the US Department of Energy under contract DE-AC05-00OR22725. D.dC.N. also gratefully acknowledges the hospitality and financial support of the Ecole Centrale de Marseille during the elaboration of this work. K.S. and M.F. are thankful to the Association CEA-EURATOM and the French Research Federation for Fusion Studies for supporting their work within the framework of the European Fusion Development Agreement under contract V.3258.001. The views and opinions expressed herein do not necessarily reflect those of the European Commission. M.F. thanks the Wissenschaftskolleg zu Berlin for its kind hospitality while writing this paper. NR 21 TC 5 Z9 5 U1 1 U2 9 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 1631-0705 J9 CR PHYS JI C. R. Phys. PD MAR PY 2011 VL 12 IS 2 BP 123 EP 131 DI 10.1016/j.crhy.2010.12.004 PG 9 WC Astronomy & Astrophysics; Physics, Multidisciplinary SC Astronomy & Astrophysics; Physics GA 754TQ UT WOS:000289880700003 ER PT J AU Kidwell, P Lebanon, G Collins-Thompson, K AF Kidwell, Paul Lebanon, Guy Collins-Thompson, Kevyn TI Statistical Estimation of Word Acquisition With Application to Readability Prediction SO JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION LA English DT Article DE Rasch model; Readability ID FORMULA; AGE AB Models of language learning play a central role in a wide range of applications: from psycholinguistic theories of how people acquire new word knowledge, to information systems that can automatically match content to users' reading ability. Traditional methods for estimating word acquisition ages or content readability are typically based on linear regression over a small number of summary features derived from time-consuming user studies or costly expert judgments. With the increasing amounts of content available from the web and other sources, however, new statistical approaches are possible that can exploit this easily acquired data to learn more flexible, fine-grained models of language usage. We present a novel statistical model for document readability that is based on the logistic Rasch model and the quantiles of word acquisition age distributions. We use this model to estimate the distributions of word acquisition ages from empirical readability data collected from the web. We then demonstrate that the estimated acquisition distributions are very effective in predicting both global and local document readability. We also compare the estimated distributions with word acquisition data from existing oral studies, revealing interesting historical trends as well as differences between oral and written word acquisition grade levels. C1 [Kidwell, Paul] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lebanon, Guy] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Collins-Thompson, Kevyn] Microsoft Res, Redmond, WA 98052 USA. RP Kidwell, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kidwellpaul@gmail.com; lebanon@cc.gatech.edu; kevynct@microsoft.com FU NSF [DMS-0604486]; LLNL [DE-AC52-07NA27344] FX Paul Kidwell is Statistician, Lawrence Livermore National Laboratory, Livermore, CA 94550 (E-mail: kidwellpaul@gmail.com). Guy Lebanon is Assistant Professor, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332 (E-mail: lebanon@cc.gatech.edu). Kevyn Collins-Thompson is Researcher, Microsoft Research, Redmond, WA 98052 (E-mail: kevynct@microsoft.com). The authors thank Joshua Dillon for downloading the weekly reader data and preprocessing it. Constructive comments by the editor and reviewers helped improve the paper. The work described in this paper was funded in part by NSF grant DMS-0604486 and prepared in accordance with LLNL contract DE-AC52-07NA27344. NR 20 TC 0 Z9 0 U1 0 U2 4 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0162-1459 J9 J AM STAT ASSOC JI J. Am. Stat. Assoc. PD MAR PY 2011 VL 106 IS 493 BP 21 EP 30 DI 10.1198/jasa.2010.ap09318 PG 10 WC Statistics & Probability SC Mathematics GA 754QI UT WOS:000289871200003 ER PT J AU Jacobs, GK Keller, M AF Jacobs, Gary K. Keller, Martin TI Opening a black box: how microbial ecology can inform global climate models SO MICROBIAL BIOTECHNOLOGY LA English DT Editorial Material ID PERMAFROST C1 [Jacobs, Gary K.; Keller, Martin] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Jacobs, GK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. RI Keller, Martin/C-4416-2012 NR 7 TC 0 Z9 0 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD MAR PY 2011 VL 4 IS 2 SI SI BP 118 EP 120 PG 3 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 753BK UT WOS:000289739000007 ER PT J AU Simmons, BA AF Simmons, Blake A. TI Synthetic enzymes: catalysis on demand SO MICROBIAL BIOTECHNOLOGY LA English DT Editorial Material C1 [Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA. [Simmons, Blake A.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. RP Simmons, BA (reprint author), Sandia Natl Labs, Livermore, CA USA. NR 6 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1751-7907 J9 MICROB BIOTECHNOL JI Microb. Biotechnol. PD MAR PY 2011 VL 4 IS 2 SI SI BP 130 EP 131 PG 2 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 753BK UT WOS:000289739000016 ER PT J AU He, Q Chu, YH Heron, JT Yang, SY Liang, WI Kuo, CY Lin, HJ Yu, P Liang, CW Zeches, RJ Kuo, WC Juang, JY Chen, CT Arenholz, E Scholl, A Ramesh, R AF He, Q. Chu, Y. -H. Heron, J. T. Yang, S. Y. Liang, W. I. Kuo, C. Y. Lin, H. J. Yu, P. Liang, C. W. Zeches, R. J. Kuo, W. C. Juang, J. Y. Chen, C. T. Arenholz, E. Scholl, A. Ramesh, R. TI Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics SO NATURE COMMUNICATIONS LA English DT Article ID FERROMAGNETISM; INTERFACES; OXIDES AB Magnetoelectrics and multiferroics present exciting opportunities for electric-field control of magnetism. However, there are few room-temperature ferromagnetic-ferroelectrics. Among the various types of multiferroics the bismuth ferrite system has received much attention primarily because both the ferroelectric and the antiferromagnetic orders are quite robust at room temperature. Here we demonstrate the emergence of an enhanced spontaneous magnetization in a strain-driven rhombohedral and super-tetragonal mixed phase of BiFeO(3). Using X-ray magnetic circular dichroism-based photoemission electron microscopy coupled with macroscopic magnetic measurements, we find that the spontaneous magnetization of the rhombohedral phase is significantly enhanced above the canted antiferromagnetic moment in the bulk phase, as a consequence of a piezomagnetic coupling to the adjacent tetragonal-like phase and the epitaxial constraint. Reversible electric-field control and manipulation of this magnetic moment at room temperature is also shown. C1 [He, Q.; Yang, S. Y.; Yu, P.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Chu, Y. -H.; Liang, W. I.; Liang, C. W.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Heron, J. T.; Zeches, R. J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kuo, C. Y.; Lin, H. J.; Chen, C. T.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Kuo, W. C.; Juang, J. Y.] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan. [Arenholz, E.; Scholl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP He, Q (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM midt@berkeley.edu; yhc@cc.nctu.edu.tw RI Ying-Hao, Chu/A-4204-2008; Dom, Rekha/B-7113-2012; He, Qing/E-3202-2010; Yu, Pu/F-1594-2014; Scholl, Andreas/K-4876-2012 OI Ying-Hao, Chu/0000-0002-3435-9084; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy [DE-AC02-05CH11231]; National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; National Science Council, ROC. [NSC 099-2811-M-009-003]; NDSEG; SRC; NSF-MRSEC FX The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract DE-AC02-05CH11231. The authors from Berkeley acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory. Y.H.C. also acknowledges the support of the National Science Council, ROC., under contract NSC 099-2811-M-009-003. Partial support of NDSEG and SRC Graduate fellowships and from the NSF-MRSEC are gratefully acknowledged. NR 26 TC 80 Z9 82 U1 11 U2 125 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2011 VL 2 AR 225 DI 10.1038/ncomms1221 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756AC UT WOS:000289982600015 PM 21407191 ER PT J AU Janovjak, H Sandoz, G Isacoff, EY AF Janovjak, H. Sandoz, G. Isacoff, E. Y. TI A modern ionotropic glutamate receptor with a K+ selectivity signature sequence SO NATURE COMMUNICATIONS LA English DT Article ID HORIZONTAL GENE-TRANSFER; ION CHANNELS; FUNCTIONAL-CHARACTERIZATION; SUBUNIT; EXPRESSION; ALIGNMENT; VOLTAGE; KAINATE; CLONING; DESIGN AB Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and gates non-selective cation channels. The origins of glutamate receptors are not well understood as they differ structurally and functionally from simple bacterial ligand-gated ion channels. Here we report the discovery of an ionotropic glutamate receptor that combines the typical eukaryotic domain architecture with the 'TXVGYG' signature sequence of the selectivity filter found in K+ channels. This receptor exhibits functional properties intermediate between bacterial and eukaryotic glutamate-gated ion channels, suggesting a link in the evolution of ionotropic glutamate receptors. C1 [Janovjak, H.; Sandoz, G.; Isacoff, E. Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Sandoz, G.] CNRS, Inst Pharmacol Mol & Cellulaire, F-06560 Valbonne, France. [Janovjak, H.; Sandoz, G.; Isacoff, E. Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Sandoz, G.] Univ Nice Sophia Antipolis, F-06560 Valbonne, France. [Isacoff, E. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Isacoff, E. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 271 Life Sci Addit, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Janovjak, Harald/O-9070-2016; OI Janovjak, Harald/0000-0002-8023-9315; Sandoz, Guillaume/0000-0003-1251-0852 FU NIH [R01 NS35549, PN2EY018241]; NSF/FIBR [0623527]; European Molecular Biology Organization; French National Center for Scientific Research (CNRS); Fulbright Foundation; Philippe Foundation FX We thank E. Gladyshev and I. Arkhipova for A. vaga genomic DNA and P. Burkhardt, L. Chen and N. King for helpful discussions; S. Nabavi Nouri for technical assistance; A. Reiner for his gift of the GluK2 expression vector and S.A. Nichols and K. Sjolander for advice on phylogenetic analysis. The work was supported by NIH grants R01 NS35549 and PN2EY018241 and NSF/FIBR 0623527 (E.Y.I.), a postdoctoral fellowship of the European Molecular Biology Organization (H.J.), by the French National Center for Scientific Research (CNRS) (G.S.) and the Fulbright Foundation (G.S.), Philippe Foundation (G.S.) NR 27 TC 17 Z9 17 U1 1 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD MAR PY 2011 VL 2 AR 232 DI 10.1038/ncomms1231 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 756AC UT WOS:000289982600022 PM 21407198 ER PT J AU Agiral, A Nozaki, T Nakase, M Yuzawa, S Okazaki, K Gardeniers, JGE AF Agiral, Anil Nozaki, Tomohiro Nakase, Masahiko Yuzawa, Shuhei Okazaki, Ken Gardeniers, J. G. E. (Han) TI Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor SO CHEMICAL ENGINEERING JOURNAL LA English DT Article; Proceedings Paper CT 11th International Conference on Microreaction Technology (IMRET) CY MAR 08-10, 2010 CL Kyoto, JAPAN DE Gas-to-liquids; Microreactor; Microplasma; Discharge; Partial oxidation; Methane; Methanol; Oxygenate; Hydrogen peroxide ID DIELECTRIC-BARRIER DISCHARGE; PARTIAL OXIDATION; AMBIENT-TEMPERATURES; SELECTIVE OXIDATION; C-C; METHANE; REACTOR; FORMALDEHYDE; MICROPLASMA; ACTIVATION AB A multi-phase flow non-thermal plasma microreactor based on dielectric barrier discharge has been developed for partial oxidation of methane to liquid oxygenates at atmospheric pressure. A pulsed water injection method has been used to remove condensable liquid components from the active discharge region. The effect of the pulsed water injection on methane conversion, yield of oxygenates and hydrogen peroxide (H2O2) formation as an intermediate oxidation product is discussed. H2O2 has been found to oxidize formaldehyde in the post-discharge liquid. The overall kinetics of the gas-to-liquids process is described by dividing process into three different stages: electron impact dissociation of methane and oxygen and radical reactions in the gas phase followed by condensation of oxygenates and oxidation in the post-discharge liquid. (C) 2010 Elsevier B.V. All rights reserved. C1 [Agiral, Anil] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Agiral, Anil; Gardeniers, J. G. E. (Han)] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Nozaki, Tomohiro; Nakase, Masahiko; Yuzawa, Shuhei; Okazaki, Ken] Tokyo Inst Technol, Dept Mech & Control Engn, Meguro Ku, Tokyo 1528552, Japan. RP Agiral, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aagiral@lbl.gov RI Gardeniers, Johannes/B-6309-2013; Nozaki, Tomohiro/J-2492-2014 OI Gardeniers, Johannes/0000-0003-0581-2668; Nozaki, Tomohiro/0000-0002-0312-5138 FU Technology Foundation STW; applied science division of NWO; Ministry of Economic Affairs, The Netherlands [06626]; MEXT, Japan [20656038]; "Multidisciplinary Education and Research Center for Energy Science", MEXT, Japan FX This research was supported by the Technology Foundation STW, applied science division of NWO and the technology program of the Ministry of Economic Affairs, The Netherlands, project number 06626 and the Grant-in-Aid for Exploratory Research (20656038), MEXT, Japan. A.A. was supported in part by the Global COE program, "Multidisciplinary Education and Research Center for Energy Science", MEXT, Japan. NR 47 TC 12 Z9 12 U1 2 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1385-8947 EI 1873-3212 J9 CHEM ENG J JI Chem. Eng. J. PD MAR 1 PY 2011 VL 167 IS 2-3 SI SI BP 560 EP 566 DI 10.1016/j.cej.2010.10.050 PG 7 WC Engineering, Environmental; Engineering, Chemical SC Engineering GA 752PH UT WOS:000289704200022 ER PT J AU Nesbitt, JE Johnson, SE Pickett, LM Siebers, DL Lee, SY Naber, JD AF Nesbitt, Jaclyn E. Johnson, Samuel E. Pickett, Lyle M. Siebers, Dennis L. Lee, Seong-Young Naber, Jeffrey D. TI Minor Species Production from Lean Premixed Combustion and Their Impact on Autoignition of Diesel Surrogates SO ENERGY & FUELS LA English DT Article ID N-HEPTANE; IGNITION DELAY; DIAGNOSTICS; EXTINCTION; OXIDATION; MIXTURES; PRESSURE; HYDROGEN; FUEL; OIL AB Formation of minor species, including NO, NO2, and OH, during the premixed burn and cool-down in a constant-volume combustion vessel (CV) was modeled to investigate the effect of these species on the chemical kinetics portion of the ignition delay of n-heptane used as a diesel surrogate. Control parameters included ambient temperature, pressure, and diluent level (EGR) matched to typical diesel engine conditions. For the preburn model, the GRI 3.0 mechanism was used with experimentally determined heat loss from the CV. Subsequently, the cool-down premixed burn products served as reactant inputs and were mixed stoichiometrically with n-heptane, modeled using a reduced reaction mechanism modified to include NO and NO2. Results computed with premixed burn constituents were compared to those using dry air and air plus ideal combustion residuals with the impact of dilution on ignition delay examined. A sensitivity analysis was performed to characterize the influence of OH and NOx levels on ignition delay. The preburn kinetics simulation showed OH concentrations above equilibrium; however, OH was below 100 ppb during the cool-down when fuel spray and ignition would occur. In contrast, the slow chemistry due to the low temperature (1750 K) prevents NO formation from reaching equilibrium levels; rather, levels are frozen in the 10-30 ppm range as the cool-down proceeded. This NO level is of the same order for cylinder charge concentrations in modern diesels when using 20-50% EGR rates producing 100-200 ppm in the exhaust. The ignition delay predictions showed that minor species of NO, NO2, and OH shorten the ignition delay by 3% relative to dry air, while being 6% longer when compared with the simulated dilution of 7.6% residuals (19% O-2), typical of internal residuals in an engine. These kinetics effects are small in comparison to changes in oxygen concentration (from 21 to 15%) associated with EGR, which show a 170% increase in ignition delay. C1 [Naber, Jeffrey D.] Michigan Technol Univ, Dept Mech Engn, Alternate Fuels Combust Lab, Houghton, MI 49931 USA. [Pickett, Lyle M.; Siebers, Dennis L.] Sandia Natl Labs, Combust Res Facil, Livermore, CA USA. RP Naber, JD (reprint author), Michigan Technol Univ, Dept Mech Engn, Alternate Fuels Combust Lab, 1011 RL Smith Bldg,1400 Townsend Dr, Houghton, MI 49931 USA. EM jnaber@mtu.edu FU National Science Foundation [0619585, 0333401]; Chrysler FX This material is based on work supported by the National Science Foundation under Grant No. 0619585. The work was supported by funding provided from Chrysler through their graduate fellowship program. Additional support was provided by the Advanced Power Systems Research Center and Sustainable Futures Institute of Michigan Technological University, as well as the NSF IGERT program under Grant No. 0333401. Acknowledgement is also given to Sandia National Laboratory for their collaboration and support in development of the Michigan Technological University combustion vessel. NR 55 TC 7 Z9 7 U1 2 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2011 VL 25 IS 3 BP 926 EP 936 DI 10.1021/ef101411f PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 751JL UT WOS:000289613300009 ER PT J AU Vasu, SS Davidson, DF Hanson, RK AF Vasu, Subith S. Davidson, David F. Hanson, Ronald K. TI Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O-2 + CO2 -> HO2 + CO2 SO ENERGY & FUELS LA English DT Article ID CO/H-2 FUEL BLENDS; KINETIC MECHANISM; CARBON-MONOXIDE; HIGH-PRESSURE; ELEVATED PRESSURES; WIDE-RANGE; COMBUSTION; OH; HYDROGEN; OXIDATION AB Ignition delay times for stoichiometric syngas mixture with large excess of CO2 were measured behind reflected shcok waves in the following range temperatures of 974-,1106K, pressure of 101-2.6 atm, and a syngas/air mixture of H-2 = 8.91% mechanisms show that will validated mechanisms are able to capture the trends in data. Sensitivity analyses indiacte the importance of the chain branching. H + O-2 = O + OH (RI) reaction along with the termination H + O-2 + CO2 (R2) reaction for the entire experimental range. Measurement of K-2 was the carried out near 1300k and 8 atm in separate experiments using widely used GRI-Mech V3.0 natural gas mechanism.Hence we are recommend the low pressure limiting expression provided by GRI-Mech v3.0 mechanism, k(0()Co2) =4.2 x 10(18) x T[K](-.86) (cm(6/)mol(2/)s) for use with kinetic modeling for the range T = 800-1305 K and p= 1-8 atm. To the best of our knowledge, we present the first ignition delay times for H-2/CO mixtures with CO2 addition and the first high-temperature(T > 900k) determination of K-2 C1 [Vasu, Subith S.; Davidson, David F.; Hanson, Ronald K.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Vasu, SS (reprint author), Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. EM subith@gmail.com OI Vasu, Subith/0000-0002-4164-3163 FU U.S. Department of Energy, Office of Basic Energy Sciences; Raytheon FX This research was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, with Dr. Wade Sisk as contract monitor. Partial financial support from Raytheon is also appreciated. NR 55 TC 14 Z9 14 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2011 VL 25 IS 3 BP 990 EP 997 DI 10.1021/ef1015928 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 751JL UT WOS:000289613300016 ER PT J AU Myshakin, EM Anderson, BJ Rose, K Boswell, R AF Myshakin, Evgeniy M. Anderson, Brian J. Rose, Kelly Boswell, Ray TI Simulations of Variable Bottomhole Pressure Regimes to Improve Production from the Double-Unit Mount Elbert, Milne Point Unit, North Slope Alaska Hydrate Deposit SO ENERGY & FUELS LA English DT Article ID METHANE HYDRATE; GAS-PRODUCTION; POROUS-MEDIA; DISSOCIATION; PERMEABILITY; STABILITY; BEHAVIOR AB Gas production was predicted from a reservoir model based on the Mount Elbert gas hydrate accumulation located on the Alaska North slope at various simulator submodels and production scenarios. Log, core, and fluid measurements were used to provide a comprehensive reservoir description. These data were incorporated with experimentally derived saturations, porosities, permeability values, parameters for capillary pressure, and relative permeability functions. The modeled reservoir exposed to depressurization at a constant bottomhole pressure (2.7 MPa) has shown limited production potential due to its low temperature profile. To improve production the bottomhole pressure was allowed to vary from 2.7 (above the quadruple point) to 2.0 MPa over a 15-year period. The results indicate that gas production was nearly doubled in comparison with a constant-pressure regime. Extensive ice formation and hydrate reformation that could severely hinder gas production were avoided in the variable-pressure regime system. A use of permeability variation coupled with porosity change is shown to be crucial to predict those phenomena at a reservoir scale. C1 [Myshakin, Evgeniy M.; Anderson, Brian J.; Rose, Kelly; Boswell, Ray] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Myshakin, Evgeniy M.] URS, Pittsburgh, PA 15236 USA. [Anderson, Brian J.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Myshakin, EM (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Evgeniy.Myshakin@netl.doe.gov OI Boswell, Ray/0000-0002-3824-2967 FU National Energy Technology Laboratory's Office of Research and Development [DE-FE0004000, Subtask 4000.4.605.261.001] FX E.M. and BA. performed this work under contract DE-FE0004000, Subtask 4000.4.605.261.001 in support of the National Energy Technology Laboratory's Office of Research and Development. We thank R Hunter (ASRC Energy) for sharing permeability data used in the paper and W. Winters (U.S. Geological Survey) for providing valuable comments for the Simulation details section. NR 67 TC 9 Z9 9 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2011 VL 25 IS 3 BP 1077 EP 1091 DI 10.1021/ef101407b PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 751JL UT WOS:000289613300027 ER PT J AU Seol, Y Myshakin, E AF Seol, Yongkoo Myshakin, Evgeniy TI Experimental and Numerical Observations of Hydrate Reformation during Depressurization in a Core-Scale Reactor SO ENERGY & FUELS LA English DT Article ID DECOMPOSITION; ENERGY AB Gas hydrate has been predicted to reform around a wellbore during depressurization-based gas production from gas hydrate bearing reservoirs. This process has an adverse effect on gas production rates and it requires time and sometimes special measures to resume gas flow to producing wells. Due to lack of applicable field data, laboratory scale experiments remain a valuable source of information to study hydrate reformation. In this work, we report laboratory experiments and Complementary numerical simulations executed to investigate the hydrate reformation phenomenon. gas production from a pressure vessel filled with hydrate bearing sand was induced by depressurization with and without heat flux through the boundaries. Hydrate decomposition was monitored with a medical X-ray CT scanner and pressure and temperature measurements: CT images of the hydrate bearing sample were processed to provide 3-dimensional data of heterogeneous porosity and phase saturations suitable for numerical simulations. In the experiments, gas hydrate refoimation was observed only in the case of no-heat supply from surroundings, a finding consistent with numerical simulation. By allowing gas production on either side of the core, numerical simulations showed that initial hydrate distribution patterns affect gas distribution and flow inside the sample.This a direct consequence of the heterogeneous pore network resulting in varying hydraulic properties of the hydrate bearing sediment C1 [Seol, Yongkoo; Myshakin, Evgeniy] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Myshakin, Evgeniy] URS, Pittsburgh, PA 15236 USA. RP Seol, Y (reprint author), Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Yongkoo.Seol@netl.doe.gov FU National Energy Technology Laboratory's Office of Research and Development [DE-FE0004000, Subtask 4000.4.605.261.001] FX We greatly benefited from the reviews by Ray Boswell and Timothy Kneafsey, and technical support from Karl Jarvis and Brian Tennant. E.M. performed this work under contract DE-FE0004000, Subtask 4000.4.605.261.001 in support of the National Energy Technology Laboratory's Office of Research and Development. NR 25 TC 18 Z9 21 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2011 VL 25 IS 3 BP 1099 EP 1110 DI 10.1021/ef1014567 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 751JL UT WOS:000289613300029 ER PT J AU Siriwardane, RV Poston, JA Robinson, C Simonyi, T AF Siriwardane, Ranjani V. Poston, James A. Robinson, Clark Simonyi, Thomas TI Effect of Additives on Decomposition of Sodium Carbonate: Precombustion CO2 Capture Sorbent Regeneration SO ENERGY & FUELS LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; WARM GAS TEMPERATURES; THERMAL-DECOMPOSITION; XPS SPECTRA; SULFATES; ZINC AB The effect of various additives on the decomposition of sodium carbonate (Na2CO3) was evaluated using temperature-programmed desorption, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Incorporation of additives, CaO and Ca(OH)(2), had a significant effect on lowering the decomposition temperature of Na2CO3, while CaCO3, SiO2, and Al2O3 had no effect. The amount of additive, sweep gas flow rate, and heating rate were also found to play a significant role in altering the decomposition temperature of Na2CO3. The formation of a carbonate-type intermediate in the presence of CaO and Ca(OH)(2) may have promoted the decomposition of Na2CO3. C1 [Siriwardane, Ranjani V.; Poston, James A.; Robinson, Clark; Simonyi, Thomas] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Robinson, Clark; Simonyi, Thomas] Parsons Infrastruct & Technol Grp, Pittsburgh, PA 15129 USA. RP Siriwardane, RV (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM ranjani.siriwardane@netl.doe.gov NR 26 TC 5 Z9 5 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD MAR PY 2011 VL 25 IS 3 BP 1284 EP 1293 DI 10.1021/ef101486m PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 751JL UT WOS:000289613300052 ER PT J AU Privman, V Solenov, D AF Privman, Vladimir Solenov, Dmitry TI A Special Issue on Novel Biochemical and Physical Information Processing Systems SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Editorial Material C1 [Privman, Vladimir] Clarkson Univ, Dept Phys, Potsdam, NY 13676 USA. [Solenov, Dmitry] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM USA. [Privman, Vladimir] Clarkson Univ, Dept Chem & Biomol Sci, Potsdam, NY USA. [Privman, Vladimir] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY USA. RP Privman, V (reprint author), Clarkson Univ, Dept Phys, Potsdam, NY 13676 USA. RI Solenov, Dmitry/H-6250-2012 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD MAR PY 2011 VL 8 IS 3 BP 293 EP 294 DI 10.1166/jctn.2011.1692 PG 2 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 752NG UT WOS:000289698100001 ER PT J AU Solenov, D Mozyrsky, D AF Solenov, Dmitry Mozyrsky, Dmitry TI Cold Atom Qubits SO JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE LA English DT Article DE Cold Atoms; Qubits; Bose-Einstein Condensate; Josephson Tunneling ID NEUTRAL ATOMS; DYNAMICS AB We discuss a laser-trapped cold-atom superfluid qubit system. Each qubit is proposed as a macroscopic two-state system based on a set of Bose-Einstein condensate (BEC) currents circulating in a ring, cut with a Josephson barrier. We review the effective low energy description of a single BEC ring. In particular, it is demonstrated that such system has a set of metastable current states which, for certain range of parameters, form an effective two-state system, or a qubit. We show how this qubit can be initialized and manipulated with currently available laser-trapping techniques. We also discuss mechanisms of coupling several such ring qubits as well as measuring individual qubit-ring systems. C1 [Solenov, Dmitry; Mozyrsky, Dmitry] Los Alamos Natl Lab, Theoret Div T4, Los Alamos, NM 87545 USA. RP Solenov, D (reprint author), Los Alamos Natl Lab, Theoret Div T4, POB 1663, Los Alamos, NM 87545 USA. RI Solenov, Dmitry/H-6250-2012; OI Mozyrsky, Dima/0000-0001-5305-4617 FU US DOE FX We thank M. G. Boshier, I. Martin, V. Privman, and E. Timmermans for valuable discussions and comments. Dmitry Solenov acknowledges stimulating conversations with R. Kalas. The work is supported by the US DOE. NR 33 TC 4 Z9 4 U1 0 U2 3 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1546-1955 J9 J COMPUT THEOR NANOS JI J. Comput. Theor. Nanosci. PD MAR PY 2011 VL 8 IS 3 BP 481 EP 489 DI 10.1166/jctn.2011.1713 PG 9 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 752NG UT WOS:000289698100021 ER PT J AU Zhang, H Zheng, LL Fang, HS AF Zhang, Hui Zheng, Lili Fang, Haisheng TI Hot zone design for controlled growth to mitigate cracking in laser crystal growth SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 16th International Conference on Crystal Growth (ICCG16)/14th International Conference on Vapor Growth and Epitaxy (ICVGE14) CY AUG 08-13, 2010 CL Beijing, PEOPLES R CHINA SP Int Org Crystal Growth (IOCG), Chinese Assoc Crystal Growth (CASG) DE Defect; Stresses; Czochralski method; Single crystal growth; Oxides; Laser diode AB Cracking is a major problem during large diameter crystal growth. The objective of this work is to design an effective hot zone for a controlled growth of Yb:S-FAP [Yb(3+):Sr(5)(PO(4))(3)F] laser crystal by the Czochralski technology and effective cooling that can reduce stress. Theoretical and numerical analyses are performed to study the causes of cracking, mitigate the major cracking, as well as reduce cooling time. In the current system, three locations in the crystal are prone to crack, such as the top shoulder of the crystal, the middle portion above the crucible edge, and the bottom tail portion. Based on numerical simulations, we propose a new hot zone design and cooling procedure to grow and cool large diameter crystal without cracking. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zheng, Lili] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China. [Zhang, Hui] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Fang, Haisheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Zheng, LL (reprint author), Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China. EM zhenglili@tsinghua.edu.cn NR 5 TC 3 Z9 3 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 1 PY 2011 VL 318 IS 1 BP 695 EP 699 DI 10.1016/j.jcrysgro.2010.11.130 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 751YM UT WOS:000289653900151 ER PT J AU Xu, Y Frontzek, M Mazilu, I Loser, W Behr, G Buchner, B Liu, L AF Xu, Y. Frontzek, M. Mazilu, I. Loeser, W. Behr, G. Buechner, B. Liu, L. TI Floating zone crystal growth of selected R2PdSi3 ternary silicides SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 16th International Conference on Crystal Growth (ICCG16)/14th International Conference on Vapor Growth and Epitaxy (ICVGE14) CY AUG 08-13, 2010 CL Beijing, PEOPLES R CHINA SP Int Org Crystal Growth (IOCG), Chinese Assoc Crystal Growth (CASG) DE Floating zone technique; Single crystal growth; Rare earth compounds; Magnetic materials ID RARE-EARTH SILICIDES; INTERMETALLIC COMPOUNDS; MAGNETIC-ANOMALIES; SINGLE-CRYSTALS; MAGNETORESISTANCE; ANISOTROPY; DY2PDSI3; TB2PDSI3; ER2PDSI3; GD2PDSI3 AB Substitution of various rare earths R within the class of R2PdSi3 single crystals with hexagonal AlB2-type crystallographic structure reveals the systematic dependence of anisotropic magnetic properties governed by the interplay of crystal-electric field effects and magnetic two-ion interactions. Here we compare the floating zone (FZ) crystal growth with radiation heating of compounds with R=Tb, Tm, Pr and Gd. The congruent melting behavior enabled moderate growth velocities of 3-5 mm h(-1). The composition of the crystals, except of Tb2PdSi3, is slightly Pd-depleted with respect to the nominal concentration 16.7 at% Pd. Thin precipitates of RSi secondary phases were detected in the crystal matrix. Their phase fraction can be diminished by growth from appropriate feed rod compositions and/or annealing treatments. The compounds exhibit antiferromagnetic order below the Neel temperatures T-N: 23.6 K (Tb2PdSi3), 1.8 K (Tm2PdSi3), 2.17 K (Pr2PdSi3) and 22 K (Cd2PdSi3) with different grades of magnetic anisotropy. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved. C1 [Xu, Y.; Mazilu, I.; Loeser, W.; Behr, G.; Buechner, B.] IFW Dresden, Leibniz Inst Solid State & Mat Res, Dresden, Germany. [Xu, Y.; Liu, L.] NW Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China. [Frontzek, M.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37830 USA. RP Xu, Y (reprint author), IFW Dresden, Leibniz Inst Solid State & Mat Res, Dresden, Germany. EM xuyiku23@hotmail.com RI Frontzek, Matthias/C-5146-2012; Buchner, Bernd/E-2437-2016 OI Frontzek, Matthias/0000-0001-8704-8928; Buchner, Bernd/0000-0002-3886-2680 NR 21 TC 5 Z9 7 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 1 PY 2011 VL 318 IS 1 BP 942 EP 946 DI 10.1016/j.jcrysgro.2010.11.138 PG 5 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 751YM UT WOS:000289653900205 ER PT J AU Klimczuk, T Wang, CH Xu, Q Lawrence, J Durakiewicz, T Ronning, F Llobet, A Bauer, ED Griveau, JC Sadowski, W Zandbergen, HW Thompson, JD Cava, RJ AF Klimczuk, T. Wang, C. H. Xu, Q. Lawrence, J. Durakiewicz, T. Ronning, F. Llobet, A. Bauer, E. D. Griveau, J-C. Sadowski, W. Zandbergen, H. W. Thompson, J. D. Cava, R. J. TI Crystal growth of CsCl-type Yb0.24Sn0.76Ru SO JOURNAL OF CRYSTAL GROWTH LA English DT Article; Proceedings Paper CT 16th International Conference on Crystal Growth (ICCG16)/14th International Conference on Vapor Growth and Epitaxy (ICVGE14) CY AUG 08-13, 2010 CL Beijing, PEOPLES R CHINA SP Int Org Crystal Growth (IOCG), Chinese Assoc Crystal Growth (CASG) DE X-ray diffraction; Single crystal growth; Rare earth compounds ID SUPERCONDUCTIVITY AB The Yb-Ru-Sn ternary system was investigated and a new material, Yb0.24Sn0.76Ru, with a simple cubic crystal structure, was discovered. Yb0.24Sn0.76Ru has a smaller lattice parameter a = 3.217(4) angstrom, than its isostructural YbRu analogue (a = 3.360 angstrom). Both X-ray diffraction and electron microscopy techniques were used to refine the crystal structure of Yb0.24Sn0.76Ru. It was found that a new compound forms in the CsCl structure, with Ru on the la site and a (Yb,Sn) mixture on site 1b. The XRD Rietveld analysis provides the occupation of Yb equal to 0.24, in agreement with the single crystal nano-electron diffraction refinement, which gives the occupation 0.21. (C) 2010 Elsevier B.V. All rights reserved. C1 [Klimczuk, T.; Griveau, J-C.] Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, D-76125 Karlsruhe, Germany. [Klimczuk, T.; Wang, C. H.; Durakiewicz, T.; Ronning, F.; Llobet, A.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Wang, C. H.; Lawrence, J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Xu, Q.; Zandbergen, H. W.] Delft Univ Technol, Natl Ctr HREM, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands. [Sadowski, W.] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland. [Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Xu, Q.] Univ Antwerp, Vison Vis Lab, B-2020 Antwerp, Belgium. RP Klimczuk, T (reprint author), Commiss European Communities, Joint Res Ctr, Inst Transuranium Elements, Postfach 2340, D-76125 Karlsruhe, Germany. EM Tomasz.Klimczuk@ec.europa.eu RI Bauer, Eric/D-7212-2011; Llobet, Anna/B-1672-2010; Klimczuk, Tomasz/M-1716-2013; OI Klimczuk, Tomasz/0000-0003-2602-5049; Durakiewicz, Tomasz/0000-0002-1980-1874; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 NR 9 TC 1 Z9 1 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-0248 J9 J CRYST GROWTH JI J. Cryst. Growth PD MAR 1 PY 2011 VL 318 IS 1 BP 1005 EP 1008 DI 10.1016/j.jcrysgro.2010.10.045 PG 4 WC Crystallography; Materials Science, Multidisciplinary; Physics, Applied SC Crystallography; Materials Science; Physics GA 751YM UT WOS:000289653900220 ER PT J AU Badger, S Campbell, JM Ellis, RK AF Badger, Simon Campbell, John M. Ellis, R. K. TI QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE NLO Computations; Hadronic Colliders; QCD ID ONE-LOOP AMPLITUDES; GENERALIZED UNITARITY; MASSIVE PARTONS; YANG-MILLS; ANNIHILATION; FERMIONS AB We perform an analytic calculation of the one-loop amplitude for the W-boson mediated process 0 -> d (u) over barQ (Q) over bar(l) over barl retaining the mass for the quark Q. The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron + hadron -> W(-> e nu)b (b) over bar with massive b-quarks is included in the program MCFM. A comparison is performed with previous published work. C1 [Badger, Simon] Niels Bohr Inst, Niels Bohr Int Acad & Discovery Ctr, DK-2100 Copenhagen, Denmark. [Campbell, John M.; Ellis, R. K.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Badger, S (reprint author), Niels Bohr Inst, Niels Bohr Int Acad & Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. EM simon.badger@nbi.dk; johnmc@fnal.gov; ellis@fnal.gov OI Badger, Simon/0000-0002-8089-9209 FU Danish Natural Science Research Council [10-084954]; United States Department of Energy [DE-AC02-07CH11359] FX We are happy to acknowledge useful discussions with Fabrizio Caola and Kirill Melnikov. The work of SB has been supported in part by Danish Natural Science Research Council grant 10-084954. Fermilab is operated by Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the United States Department of Energy. NR 39 TC 26 Z9 26 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 027 DI 10.1007/JHEP03(2011)027 PG 40 WC Physics, Particles & Fields SC Physics GA 747BL UT WOS:000289295200027 ER PT J AU Cheng, HC Huang, WC Low, I Menon, A AF Cheng, Hsin-Chia Huang, Wei-Chih Low, Ian Menon, Arjun TI Goldstini as the decaying dark matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID PAMELA; FERMI; CONSTRAINTS; GRAVITINO; BARYONS AB We consider a new scenario for supersymmetric decaying dark matter without R-parity violation in theories with goldstini, which arise if supersymmetry is broken independently by multiple sequestered sectors. The uneaten goldstino naturally has a long lifetime and decays into three-body final states including the gravitino, which escapes detection, and two visible particles. The goldstini low-energy effective interactions are derived, which can be non-universal and allow the dark matter to be leptophilic, in contrast to the case of a single sector supersymmetry breaking. In addition, the three-body decay with a missing particle gives a softer spectrum. Consequently, it is possible to fit both the e(+)/e(-) excess observed by the PAMELA and the e(+) + e(-) measurements by the Fermi-LAT using universal couplings to all three lepton flavors or 100% branching fraction into electrons/positrons, both of which are disfavored in the conventional scenario of dark matter decays into two or four visible particles without missing energy. C1 [Cheng, Hsin-Chia] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Huang, Wei-Chih; Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Huang, Wei-Chih; Low, Ian] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Menon, Arjun] IIT, Chicago, IL 60616 USA. RP Cheng, HC (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM cheng@physics.ucdavis.edu; weichihhuang2008@u.northwestern.edu; ilow@northwestern.edu; amenon@iit.edu FU U.S. Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-91ER40674, DE-FG02-94ER40840] FX We would like to thank Spencer Chang and Carlos Wagner for useful discussion. We are also grateful to Gabe Shaughnessy and Shashank Shalgar for assistance in generating the figures. H.-C. C. thanks the hospitality of Northwestern University, where this work was initiated, and Fermilab, where part of this work was performed. This work is supported in part by the U.S. Department of Energy under contracts DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-91ER40674 and DE-FG02-94ER40840. NR 43 TC 11 Z9 11 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 019 DI 10.1007/JHEP03(2011)019 PG 20 WC Physics, Particles & Fields SC Physics GA 747BL UT WOS:000289295200019 ER PT J AU Cheung, C Elor, G Hall, LJ Kumar, P AF Cheung, Clifford Elor, Gilly Hall, Lawrence J. Kumar, Piyush TI Origins of hidden sector dark matter I: cosmology SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Beyond Standard Model ID GRAVITINO AB We present a systematic cosmological study of a universe in which the visible sector is coupled, albeit very weakly, to a hidden sector comprised of its own set of particles and interactions. Assuming that dark matter (DM) resides in the hidden sector and is charged under a stabilizing symmetry shared by both sectors, we determine all possible origins of weak-scale DM allowed within this broad framework. We show that DM can arise only through a handful of mechanisms, lending particular focus to Freeze-Out and Decay and Freeze-In, as well as their variations involving late time re-annihilations of DM and DM particle anti-particle asymmetries. Much like standard Freeze-Out, where the abundance of DM depends only on the annihilation cross-section of the DM particle, these mechanisms depend only on a very small subset of physical parameters, many of which may be measured directly at the LHC. In particular, we show that each DM production mechanism is associated with a distinctive window in lifetimes and cross-sections for particles which may be produced in the near future. We evaluate prospects for employing the LHC to definitively reconstruct the origin of DM in a companion paper. C1 [Cheung, Clifford; Elor, Gilly; Hall, Lawrence J.; Kumar, Piyush] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Cheung, Clifford; Elor, Gilly; Hall, Lawrence J.; Kumar, Piyush] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Hall, Lawrence J.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Kumar, Piyush] Columbia Univ, Dept Phys, New York, NY 10027 USA. RP Cheung, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM clifford.cheung@berkeley.edu; gelor@berkeley.edu; ljhall@lbl.gov; kpiyush@phys.columbia.edu OI Kumar, Piyush/0000-0003-4894-4468 FU US Department of Energy [DE-AC02-05CH11231, DE-FG02-92ER-40699]; National Science Foundation [PHY-0457315] FX L. H. thanks John March-Russell and Stephen West for useful discussions. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231 and by the National Science Foundation on grant PHY-0457315. The work of PK is also supported in part by the US Department of Energy contract DE-FG02-92ER-40699. NR 15 TC 29 Z9 29 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 042 DI 10.1007/JHEP03(2011)042 PG 31 WC Physics, Particles & Fields SC Physics GA 747BL UT WOS:000289295200042 ER PT J AU Gillioz, M von Manteuffel, A Schwaller, P Wyler, D AF Gillioz, Marc von Manteuffel, Andreas Schwaller, Pedro Wyler, Daniel TI The little skyrmion: new dark matter for little Higgs models SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Solitons Monopoles and Instantons; Technicolor and Composite Models ID FIELD-THEORY; MASS; TECHNIBARYON; SOLITONS; CHARGES; DECAY AB We study skyrmions in the littlest Higgs model and discuss their possible role as dark matter candidates. Stable massive skyrmions can exist in the littlest Higgs model also in absence of an exact parity symmetry, since they carry a conserved topological charge due to the non-trivial third homotopy group of the SU(5)/SO(5) coset. We find a spherically symmetric skyrmion solution in this coset. The effects of gauge fields on the skyrmion solutions are analyzed and found to lead to an upper bound on the skyrmion mass. The relic abundance is in agreement with the observed dark matter density for reasonable parameter choices. C1 [Gillioz, Marc; von Manteuffel, Andreas; Schwaller, Pedro; Wyler, Daniel] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Schwaller, Pedro] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Schwaller, Pedro] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Gillioz, M (reprint author), Univ Zurich, Inst Theoret Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM gillioz@physik.uzh.ch; manteuffel@physik.uzh.ch; pschwaller@hep.anl.gov; wyler@physik.uzh.ch OI Gillioz, Marc/0000-0001-9220-4681 FU Schweizer Nationalfonds; U.S. Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357, DE-FG02-84ER40173] FX The authors would like to thank Ayres Freitas, Cosmas Zachos and Roberto Auzzi for valuable comments on the manuscript, and Timo Schmidt and Tom Ilmanen for useful discussions. This work was supported in part by the Schweizer Nationalfonds and by the U.S. Department of Energy, Division of High Energy Physics, under Contract DE-AC02-06CH11357 and DE-FG02-84ER40173. NR 47 TC 5 Z9 5 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 048 DI 10.1007/JHEP03(2011)048 PG 28 WC Physics, Particles & Fields SC Physics GA 747BL UT WOS:000289295200048 ER PT J AU Huber, P Kopp, J AF Huber, Patrick Kopp, Joachim TI Two experiments for the price of one? The role of the second oscillation maximum in long baseline neutrino experiments SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Neutrino Physics; Beyond Standard Model ID EXPERIMENT-SIMULATOR; SUPERBEAMS AB We investigate the quantitative impact that data from the second oscillation maximum has on the performance of wide band beam neutrino oscillation experiments. We present results for the physics sensitivities to standard three flavor oscillation, as well as results for the sensitivity to non-standard interactions. The quantitative study is performed using an experimental setup similar to the Fermilab to DUSEL Long Baseline Neutrino Experiment (LBNE). We find that, with the single exception of sensitivity to the mass hierarchy, the second maximum plays only a marginal role due to the experimental difficulties to obtain a statistically significant and sufficiently background-free event sample at low energies. This conclusion is valid for both water Cerenkov and liquid argon detectors. Moreover, we con firm that non-standard neutrino interactions are very hard to distinguish experimentally from standard three-flavor effects and can lead to a considerable loss of sensitivity to theta(13),the mass hierarchy and CP violation. C1 [Huber, Patrick] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Kopp, Joachim] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Huber, P (reprint author), Virginia Tech, Dept Phys, Robeson Hall, Blacksburg, VA 24061 USA. EM pahuber@vt.edu; jkopp@fnal.gov RI Kopp, Joachim/B-5866-2013 FU US Department of Energy [DE-AC02-07CH11359, DE-SC0003915] FX We are indebted to the members of the LBNE collaboration, especially Mary Bishai, Bonnie Fleming, Roxanne Guenette, Gina Rameika, Lisa Whitehead, and Geralyn 'Sam' Zeller for providing invaluable information on the parameters of the planned Fermilab neutrino beams, DUSEL detectors, and other aspects of the LBNE experiment. We are also grateful to Mattias Blennow for some very useful discussions, especially during the early stages of this project. PH would like to acknowledge the warm hospitality at the Astroparticle Physics - A Path finder to New Physics workshop at the KTH in Stockholm, during which this project was conceived, and the vTheME institute at CERN, where it was brought to completion.; Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy. This work has been in part supported by the US Department of Energy under award number DE-SC0003915. NR 54 TC 12 Z9 12 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD MAR PY 2011 IS 3 AR 013 DI 10.1007/JHEP03(2011)013 PG 28 WC Physics, Particles & Fields SC Physics GA 747BL UT WOS:000289295200013 ER PT J AU Park, JJ Lee, MW Yoon, SS Kim, HY James, SC Heister, SD Chandra, S Yoon, WH Park, DS Ryu, JH AF Park, Jung-Jae Lee, Min-Wook Yoon, Sam S. Kim, Ho-Young James, Scott C. Heister, Stephen D. Chandra, Sanjeev Yoon, Woon-Ha Park, Dong-Soo Ryu, Jungho TI Supersonic Nozzle Flow Simulations for Particle Coating Applications: Effects of Shockwaves, Nozzle Geometry, Ambient Pressure, and Substrate Location upon Flow Characteristics SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article DE nano-particle coating; nozzle optimization; shockwave; supersonic flow; thin-film deposition ID SENSITIZED SOLAR-CELL; COLD SPRAY PROCESS; ROOM-TEMPERATURE; NUMERICAL-SIMULATION; AEROSOL-DEPOSITION; OPTIMAL-DESIGN; VELOCITY; POWDER; JET AB Characteristics of supersonic flow are examined with specific regard to nano-particle thin-film coating. Effects of shockwaves, nozzle geometry, chamber pressure, and substrate location were studied computationally. Shockwaves are minimized to reduce fluctuations in flow properties at the discontinuities across diamond shock structures. Nozzle geometry was adjusted to ensure optimal expansion (i.e., P(exit) = P(ambient)), where shock formation was significantly reduced and flow kinetic energy maximized. When the ambient pressure was reduced from 1 to 0.01316 bar, the nozzle's diverging angle must be increased to yield the optimum condition of minimized adversed effects. Beyond some critical distance, substrate location did not seem to be a sensitive parameter on flow characteristics when P(amb) = 0.01316 bar; however, overly close proximity to the nozzle exit caused flow disturbances inside the nozzle, thereby adversely affecting coating gas flow. C1 [Park, Jung-Jae; Lee, Min-Wook; Yoon, Sam S.; Kim, Ho-Young] Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. [Heister, Stephen D.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Chandra, Sanjeev] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada. [Yoon, Woon-Ha; Park, Dong-Soo; Ryu, Jungho] Korea Inst Mat Sci, Funct Ceram Res Grp, Chang Won 641831, Kyungnam, South Korea. RP Lee, MW (reprint author), Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. EM skyoon@korea.ac.kr RI Lee, MW/F-2120-2013; OI James, Scott/0000-0001-7955-0491 FU Korea Institute of Energy Technology Evaluation and Planning (KETEP) [2010-3010010011]; Korea government Ministry of Knowledge Economy; National Research Foundation of Korea NRF [NRF-2010-0010217]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the New and Renewable Energy Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP, 2010-3010010011) grant and the Fundamental R&D Program for Core Technology of Materials funded by the Korea government Ministry of Knowledge Economy. The corresponding author also acknowledges that a partial support was made for this project by the National Research Foundation of Korea NRF Grant (NRF-2010-0010217). Dr. Scott James acknowledges that Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 15 Z9 15 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9630 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD MAR PY 2011 VL 20 IS 3 BP 514 EP 522 DI 10.1007/s11666-010-9542-8 PG 9 WC Materials Science, Coatings & Films SC Materials Science GA 754JH UT WOS:000289850400014 ER PT J AU Levanic, T Cater, M McDowell, NG AF Levanic, Tom Cater, Matjaz McDowell, Nate G. TI Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest SO TREE PHYSIOLOGY LA English DT Article DE climate change; dendroecology; die-off; human impact; water stress ID INDUCED TREE MORTALITY; WATER RELATIONS; STOMATAL CONTROL; CLIMATE-CHANGE; GAS-EXCHANGE; DOUGLAS-FIR; OAK DECLINE; DROUGHT; CONDUCTANCE; EMBOLISM AB Observations of forest mortality are increasing globally, but relatively little is known regarding the underlying mechanisms driving these events. Tree rings carry physiological signatures that may be used as a tool for retrospective analyses. We capitalized on a local soil water drainage event in 1982 that resulted in increased mortality within a stand of oak trees (Quercus robur), to examine the underlying physiological patterns associated with survival and death in response to soil water limitations. Pre-dawn water potentials showed more negative values for trees in the process of dying compared with those that survived. We used tree rings formed over the 123 years prior to mortality to estimate productivity from basal area increment (BAI, mm(2)), multiple xylem hydraulic parameters via anatomical measurements and crown-level gas exchange via carbon isotope discrimination (delta, parts per thousand). Oaks that died had significantly higher BAI values than trees that survived until the drainage event, after which the BAI of trees that died declined dramatically. Hydraulic diameter and conductivity of vessels in trees that died were higher than in surviving trees until the last 5 years prior to mortality, at which time both groups had similar values. Trees that died had consistently lower delta values than trees that survived. Therefore, tree mortality in this stand was associated with physiological differences prior to the onset of soil water reduction. We propose that trees that died may have been hydraulically underbuilt for dry conditions, which predisposes them to severe hydraulic constraints and subsequent mortality. Measurements of above-ground/below-ground dry mass partitioning will be critical to future tests of this hypothesis. Based on these results, it is probable that pedunculate oak trees will experience greater future mortality if climate changes cause more severe droughts than the trees have experienced previously. C1 [Levanic, Tom; Cater, Matjaz] Slovenian Forestry Inst, SL-1000 Ljubljana, Slovenia. [McDowell, Nate G.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Levanic, T (reprint author), Slovenian Forestry Inst, Vecna Pot 2, SL-1000 Ljubljana, Slovenia. EM tom.levanic@gozdis.si FU Slovenian Research Agency [P4-0107, L4-9653]; Slovenia-United States Bi-lateral Cooperation; Los Alamos National Laboratory's Lab Directed Research and Development; US Department of State's Bureau of Educational and Cultural Affairs FX This project was supported by a Program and Research group Forest Biology, Ecology and Technology (P4-0107) research grant by the Slovenian Research Agency L4-9653 to T.L., a Slovenia-United States Bi-lateral Cooperation grant to T.L. and N.M., Los Alamos National Laboratory's Lab Directed Research and Development to N.M. and a Fulbright Scholar Award (US Department of State's Bureau of Educational and Cultural Affairs) to N.M. We appreciate the assistance of Marcy Hess with cellulose extraction and stable isotope analysis. NR 70 TC 32 Z9 34 U1 1 U2 54 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X J9 TREE PHYSIOL JI Tree Physiol. PD MAR PY 2011 VL 31 IS 3 BP 298 EP 308 DI 10.1093/treephys/tpq111 PG 11 WC Forestry SC Forestry GA 753VL UT WOS:000289807700008 PM 21367747 ER PT J AU Bhardwaj, AK Jasrotia, P Hamilton, SK Robertson, GP AF Bhardwaj, A. K. Jasrotia, P. Hamilton, S. K. Robertson, G. P. TI Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity SO AGRICULTURE ECOSYSTEMS & ENVIRONMENT LA English DT Article DE Long Term Ecological Research (LTER); No-till; Reduced input; Organic; Aggregate stability; Soil carbon; Nitrification; Mineralization; Net primary productivity (NPP); Nitrogen use efficiency; Soil quality index; Corn; Maize; Soybean; Wheat ID MINIMUM DATA SET; MICROBIAL CHARACTERISTICS; AGGREGATE STABILITY; YIELD VARIABILITY; NITROGEN-CONTENT; TILLAGE SYSTEM; FOOD SECURITY; CORN YIELD; CLAY SOIL; ENERGY AB Intensively cropped agricultural production systems should be managed to improve soil quality and ecological processes and ultimately strengthen system capacity for sustained biological productivity. We examined the long-term changes (>20 years) in soil quality and productivity with incorporation of ecological management principles in a set of intensively managed row crop systems of the upper Midwest, USA. Replicated experimental treatments include corn (maize)-soybean-wheat cropping systems under four different management regimes: (a) conventional tillage and fertilizer/chemical inputs (Conventional), (b) no tillage with conventional fertilizer/chemical inputs (No-till), (c) conventional tillage with similar to 30% of conventional fertilizer/chemical inputs and a leguminous cover crop (Reduced Input), and (d) conventional tillage with no fertilizer/chemical input and a leguminous cover crop (Organic). Effects of these treatments on soils were compared by developing a soil quality index (SQI) from 19 selected soil health indicators. An old field community maintained in early succession provided a benchmark for comparison. Reduction in tillage or fertilizer (No-till, Reduced Input and Organic) resulted in increased SQI and improved crop production. The No-till (SQI= = 1.02) and Reduced Input (SQI= 1.01) systems outperformed Conventional management (SQI = 0.92) in nitrogen availability and use efficiency, soil stability and structure improvement, and microbial nitrogen processing. Improvements in soil quality corresponded with increased primary production and crop yield in these systems, illustrating the value of an ecologically defined SQI for assessing the long-term effects of fertility and tillage management regimes in agricultural production systems. (C) 2011 Elsevier B.V. All rights reserved. C1 [Bhardwaj, A. K.; Jasrotia, P.; Hamilton, S. K.; Robertson, G. P.] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Bhardwaj, A. K.; Jasrotia, P.; Hamilton, S. K.; Robertson, G. P.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Hamilton, S. K.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. [Robertson, G. P.] Michigan State Univ, Dept Crop & Soil Sci, E Lansing, MI 48824 USA. RP Bhardwaj, AK (reprint author), Michigan State Univ, WK Kellogg Biol Stn, 3700 E Gull Lake Dr, Hickory Corners, MI 49060 USA. EM ajay@msu.edu RI Hamilton, Stephen/N-2979-2014; Robertson, G/H-3885-2011 OI Hamilton, Stephen/0000-0002-4702-9017; Robertson, G/0000-0001-9771-9895 FU United States Department of Energy (DOE) through Great Lakes Bioenergy Research Center, GLBRC (Office of Science BER) [DE-FC02-07ER64494]; U.S. National Science Foundation; Michigan Agricultural Experiment Station FX We acknowledge the financial support of United States Department of Energy (DOE) through Great Lakes Bioenergy Research Center, GLBRC (Office of Science BER DE-FC02-07ER64494). Support for this research was also provided by the U.S. National Science Foundation Long-Term Ecological Research Program at the Kellogg Biological Station and by the Michigan Agricultural Experiment Station. We acknowledge the help of KBS LTER laboratory and field staff for data collection especially S. VanderWulp, C. McMinn, J. Simmons and S. Bohm. We also acknowledge an undergraduate intern, K. Oleski, for the soil stability data collection. NR 67 TC 34 Z9 35 U1 4 U2 81 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8809 EI 1873-2305 J9 AGR ECOSYST ENVIRON JI Agric. Ecosyst. Environ. PD MAR PY 2011 VL 140 IS 3-4 BP 419 EP 429 DI 10.1016/j.agee.2011.01.005 PG 11 WC Agriculture, Multidisciplinary; Ecology; Environmental Sciences SC Agriculture; Environmental Sciences & Ecology GA 746VD UT WOS:000289274900010 ER PT J AU Cheung, HY Meier, A Brown, R AF Cheung, Hoi Ying (Iris) Meier, Alan Brown, Richard TI Energy savings assessment for digital-to-analog converter boxes SO ENERGY POLICY LA English DT Article DE Set-top boxes; Electricity savings; Standby power AB The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cheung, Hoi Ying (Iris); Meier, Alan; Brown, Richard] Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, Berkeley, CA 94720 USA. [Cheung, Hoi Ying (Iris)] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. RP Cheung, HY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Energy Anal Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM hycheung@lbl.gov NR 16 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAR PY 2011 VL 39 IS 3 BP 1312 EP 1317 DI 10.1016/j.enpol.2010.12.003 PG 6 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 742UQ UT WOS:000288971100028 ER PT J AU Mills, A Phadke, A Wiser, R AF Mills, Andrew Phadke, Amol Wiser, Ryan TI Exploration of resource and transmission expansion decisions in the Western Renewable Energy Zone initiative SO ENERGY POLICY LA English DT Article DE Renewable electricity; Proactive transmission planning; Valuation ID GENERATION; POWER AB The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19% of the total delivered cost of renewable energy. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Mills, Andrew; Phadke, Amol; Wiser, Ryan] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mills, A (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM ADMills@lbl.gov RI Mills, Andrew/B-3469-2016 OI Mills, Andrew/0000-0002-9065-0458 FU US Department of Energy (Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis Division) [DE-AC02-05CH11231] FX The work described in this paper was funded by the US Department of Energy (Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis Division) under Contract no. DE-AC02-05CH11231. We would particularly like to thank Larry Mansueti (U.S. Department of Energy) for his support of this work. We also thank Tim Mason, Kevin Joyce, Josh Finn, Derek Djeu, Jagmeet Khangura, and Sally Maki (Black & Veatch Corp.) for the development of the WREZ models and for converting our results into maps; and Doug Larson and Tom Carr (WIEB), Jerry Vaninetti (Next Era Resources), Paul Smith (APS), Andy Leoni (Tri-State G&T), and Bill Pascoe (Pascoe Energy Consulting) for their leadership in the stakeholder process used to develop the WREZ models and transmission input assumptions. We appreciate the detailed technical editing of draft versions of this paper from Mark Wilson (Berkeley Lab). Finally, for reviewing earlier versions of this paper, we thank Doug Larson, Jerry Vaninetti, Paul Smith, Sally Maki, Michael Goggin (AWEA), Tom Darin (DOE), Tom Miller (PG&E), David Hurlbut (NREL), Lynn Coles (NREL), and Jeff Hein (NREL). Of course, any remaining omissions or inaccuracies are our own. NR 27 TC 13 Z9 13 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD MAR PY 2011 VL 39 IS 3 BP 1732 EP 1745 DI 10.1016/j.enpol.2011.01.002 PG 14 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 742UQ UT WOS:000288971100070 ER PT J AU Denholm, P Hand, M AF Denholm, Paul Hand, Maureen TI Grid flexibility and storage required to achieve very high penetration of variable renewable electricity SO ENERGY POLICY LA English DT Article DE Wind; Solar; Energy storage ID SOLAR PHOTOVOLTAICS PV; POWER SYSTEMS; LIMITS AB We examine the changes to the electric power system required to incorporate high penetration of variable wind and solar electricity generation in a transmission constrained grid. Simulations were performed in the Texas, US (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power meet up to 80% of the electric demand. The primary constraints on incorporation of these sources at large scale are the limited time coincidence of the resource with normal electricity demand, combined with the limited flexibility of thermal generators to reduce output. An additional constraint in the ERCOT system is the current inability to exchange power with neighboring grids. By themselves, these constraints would result in unusable renewable generation and increased costs. But a highly flexible system - with must-run baseload generators virtually eliminated - allows for penetrations of up to about 50% variable generation with curtailment rates of less than 10%. For penetration levels up to 80% of the system's electricity demand, keeping curtailments to less than 10% requires a combination of load shifting and storage equal to about one day of average demand. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Denholm, Paul; Hand, Maureen] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Denholm, P (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Paul.denholm@nrel.gov; maureen.hand@nrel.gov NR 34 TC 144 Z9 146 U1 9 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD MAR PY 2011 VL 39 IS 3 BP 1817 EP 1830 DI 10.1016/j.enpol.2011.01.019 PG 14 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 742UQ UT WOS:000288971100079 ER PT J AU Blumenthal, DJ Barton, J Beheshti, N Bowers, JE Burmeister, E Coldren, LA Dummer, M Epps, G Fang, A Ganjali, Y Garcia, J Koch, B Lal, V Lively, E Mack, J Masanovic, M McKeown, N Nguyen, K Nicholes, SC Park, H Stamenic, B Tauke-Pedretti, A Poulsen, H Sysak, M AF Blumenthal, Daniel J. Barton, John Beheshti, Neda Bowers, John E. Burmeister, Emily Coldren, Larry A. Dummer, Matt Epps, Garry Fang, Alexander Ganjali, Yashar Garcia, John Koch, Brian Lal, Vikrant Lively, Erica Mack, John Masanovic, Milan McKeown, Nick Nguyen, Kim Nicholes, Steven C. Park, Hyundai Stamenic, Biljana Tauke-Pedretti, Anna Poulsen, Henrik Sysak, Matt TI Integrated Photonics for Low-Power Packet Networking SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Optical communications; optical packet switching; photonic integration ID PAYLOAD ENVELOPE DETECTION; WAVELENGTH CONVERTER; CIRCUITS AB Communications interconnects and networks will continue to play a large role in contributing to the global carbon footprint, especially in data center and cloud-computing applications exponential growth in capacity. Key to maximizing the benefits of photonics technology is highly functional, lower power, and large-scale photonics integration. In this paper, we report on the latest advances in the photonic integration technologies used for asynchronous optical packet switching using an example photonic integrated switched optical router, the label switched optical router architecture. We report measurements of the power consumed by the photonic circuits in performing their intended function, the electronics required to bias the photonics, processing electronics, and required cooling technology. Data is presented to show that there is room (potentially greater than 10 x) for improvement in the router packet-forwarding plane. The purpose of this exercise is not to provide a comparison of all-optical versus electronic routers, rather to present a data point on actual measurements of the power contributions for various photonic integration technologies of an all-optical packet router that has been demonstrated and conclude, where the technology can move to reduce power consumption for high-capacity packet routing systems. C1 [Beheshti, Neda] Stanford Univ, Dept Comp Sci, Palo Alto, CA 94305 USA. [Epps, Garry] Cisco Syst Inc, San Jose, CA 95134 USA. [Fang, Alexander; Nicholes, Steven C.] Aurrion, Santa Barbara, CA 93117 USA. [Koch, Brian] Intel Corp, Photon Technol Labs, Santa Clara, CA 95054 USA. [Lal, Vikrant] Infinera Corp, Sunnyvale, CA 94089 USA. [Blumenthal, Daniel J.; Mack, John; Park, Hyundai; Sysak, Matt] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Tauke-Pedretti, Anna] Sandia Natl Labs, Albuquerque, NM USA. RP Blumenthal, DJ (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM danb@ece.ucsb.edu; jsbarton@ece.ucsb.edu; neda.beheshti@gmail.com; bowers@ece.ucsb.edu; eburmeis@ciena.com; coldren@ece.ucsb.edu; dummer@engr.ucsb.edu; gepps@cisco.com; alexander.fang@aurrion.com; yganjali@cs.toronto.edu; johngarcia@umail.ucsb.edu; brian.r.koch@intel.com; vlal@infinera.com; elively@ece.ucsb.edu; jmack805@gmail.com; mashan@ece.ucsb.edu; nickm@stanford.edu; kim@ece.ucsb.edu; steve.nicholes@aurrion.com; hyundaipark@gmail.com; biljana@ece.ucsb.edu; ataukep@sandia.gov; henrik@ece.ucsb.edu; matthew.n.sysak@intel.com RI zong, fico/H-4677-2011; Bowers, John/B-3486-2012 OI Bowers, John/0000-0003-4270-8296 FU Defense Advance Research Project Agency Office of Microsystems Technology (DARPA/MTO) [W911NF-04-9-0001, N66001-02-C-8026] FX Manuscript received May 12, 2010; revised July 1, 2010; accepted April 3, 2010. Date of publication January 12, 2011; date of current version April 6, 2011. This work was supported in part by Defense Advance Research Project Agency Office of Microsystems Technology (DARPA/MTO) Data in the Optical Domain (DODN) Program under Award W911NF-04-9-0001 and DARPA/MTO Chip Scale Wavelength Division Multiplexing (CSWDM) Program under Award N66001-02-C-8026. NR 29 TC 18 Z9 18 U1 0 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X EI 1558-4542 J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD MAR-APR PY 2011 VL 17 IS 2 BP 458 EP 471 DI 10.1109/JSTQE.2010.2077673 PG 14 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 749MI UT WOS:000289471200020 ER PT J AU Winters, WS Houf, WG AF Winters, W. S. Houf, W. G. TI Simulation of small-scale releases from liquid hydrogen storage systems SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Simulation; Hydrogen; Storage; Dilution; Jet; Plume AB Knowledge of the concentration field and flammability envelope from small-scale leaks is important for the safe use of hydrogen. These small-scale leaks may occur from leaky fittings or o-ring seals on liquid hydrogen-based systems. The present study focuses on steady-state leaks with large amounts of pressure drop along the leak path such that hydrogen enters the atmosphere at near atmospheric pressure (i.e. Very low Mach number). A three-stage buoyant turbulent entrainment model is developed to predict the properties (trajectory, hydrogen concentration and temperature) of a jet emanating from the leak. Atmospheric hydrogen properties (temperature and quality) at the leak plane depend on the storage pressure and whether the leak occurs from the saturated vapor space or saturated liquid space. In the first stage of the entrainment model ambient temperature air (295 K) mixes with the leaking hydrogen (20-30 K) over a short distance creating an ideal gas mixture at low temperature (similar to 65 K). During this process states of hydrogen and air are determined from equilibrium thermodynamics using models developed by NIST. In the second stage of the model (also relatively short in distance) the radial distribution of hydrogen concentration and velocity in the jet develops into a Gaussian profile characteristic of free jets. The third and by far the longest stage is the part of the jet trajectory where flow is fully developed. Results show that flammability envelopes for cold hydrogen jets are generally larger than those of ambient temperature jets. While trajectories for ambient temperature jets depend solely on the leak densimetric Froude number, results from the present study show that cold jet trajectories depend on the Froude number and the initial jet density ratio. Furthermore, the flammability envelope is influenced by the hydrogen concentration in the jet at the beginning of fully developed flow. Copyright (C) 2010, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Winters, W. S.; Houf, W. G.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Winters, WS (reprint author), Sandia Natl Labs, MS9409,7011 East Ave, Livermore, CA 94550 USA. EM winters@sandia.gov; will@sandia.gov FU U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This work was supported by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy under the Codes and Standards subprogram element managed by Antonio Ruiz. NR 8 TC 1 Z9 2 U1 1 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD MAR PY 2011 VL 36 IS 6 BP 3913 EP 3921 DI 10.1016/j.ijhydene.2010.03.075 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 747PL UT WOS:000289331800015 ER PT J AU McRaven, CP Cich, MJ Lopez, GV Sears, TJ Hurtmans, D Mantz, AW AF McRaven, C. P. Cich, M. J. Lopez, G. V. Sears, Trevor J. Hurtmans, Daniel Mantz, A. W. TI Frequency comb-referenced measurements of self- and nitrogen-broadening in the v(1) + v(3) band of acetylene SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Pressure broadening; Acetylene; Frequency comb ID MICHELSON INTERFEROMETER; SHIFT COEFFICIENTS; SPECTRAL LINES; ACETYLENE; BAND; PHASE; C2H2; STABILIZATION; TEMPERATURES; DEPENDENCE AB We report measurements of self- and nitrogen-pressure broadening of the P(11) line in the v(1) + v(3) combination band of acetylene at 195 739.649 5135(80) GHz by absorption of radiation emitted by an extended cavity diode laser referenced to a femtosecond frequency comb. Broadening, shift and narrowing parameters were determined at 296 K. For the most appropriate, hard collision, model in units of cm(-1)/atm, we find 0.146317(27), 0.047271(104) and -0.0070819(22) for the acetylene self-broadening, narrowing and shift, and 0.081129(35), 0.022940(74) and -0.0088913(25) respectively, for the nitrogen-broadening parameters. The uncertainties are expressed as one standard deviation (in parenthesis) in units of the last digit reported. These parameters are 2-3 orders of magnitude more precise than those reported in previous measurements. Similar analyses of the experimental data using soft collision and simple Voigt lineshape models were made for comparison. (C) 2011 Elsevier Inc. All rights reserved. C1 [McRaven, C. P.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [McRaven, C. P.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cich, M. J.; Lopez, G. V.; Sears, Trevor J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Hurtmans, Daniel] Univ Libre Brussels, Serv Chim Quant & Photophys Atoms Mol & Atmospher, B-10050 Brussels, Belgium. [Mantz, A. W.] Connecticut Coll, Dept Phys Astron & Astrophys, New London, CT 06320 USA. RP Sears, TJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM sears@bnl.gov RI Sears, Trevor/B-5990-2013 OI Sears, Trevor/0000-0002-5559-0154 FU Brookhaven National Laboratory; DOE [DOE-07ER46361]; NASA [PS 4990, NNX09AJ93G, NNX08AO78G]; US Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences FX Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. We are grateful for Program Development Funding awarded to TJS by Brookhaven National Laboratory which provided funds for some of the equipment used in this work. CPM gratefully acknowledges support by DOE EPSCoR grant DOE-07ER46361 for work conducted at the University of Oklahoma. AWM gratefully acknowledges support by NASA EPSCoR Grant No. PS 4990 for supporting the development of low temperature cells. The measurements and analyses were performed under grants NNX09AJ93G and NNX08AO78G from the NASA Planetary and Atmospheres program. Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the US Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences. We are grateful for the comments from an anonymous referee that resulted in changes that significantly improved this paper. NR 35 TC 17 Z9 17 U1 2 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD MAR PY 2011 VL 266 IS 1 BP 43 EP 51 DI 10.1016/j.jms.2011.02.016 PG 9 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 750ZY UT WOS:000289588300006 ER PT J AU Moridis, GJ Reagan, MT AF Moridis, George J. Reagan, Matthew T. TI Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE methane hydrates; permafrost; production AB In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability. (C) 2010 Elsevier B.V. All rights reserved. C1 [Moridis, George J.; Reagan, Matthew T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94610 USA. RP Moridis, GJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94610 USA. EM GjMoridis@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC02-05CH11231. The authors are indebted to Stefan Finsterle, John Apps, and Dan Hawkes for their thorough reviews. NR 3 TC 7 Z9 8 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD MAR PY 2011 VL 76 IS 3-4 BP 124 EP 137 DI 10.1016/j.petrol.2010.12.001 PG 14 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 750KB UT WOS:000289543900007 ER PT J AU Moridis, GJ Reagan, MT AF Moridis, George J. Reagan, Matthew T. TI Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 1. Concepts, system description, and the production base case SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE methane hydrates; permafrost; production ID SEDIMENTS; DEPRESSURIZATION; DECOMPOSITION; SIMULATION AB Gas hydrates are solid crystalline compounds in which gas molecules are lodged within the lattices of ice crystals. The amounts of hydrocarbon gases (mainly CH4) trapped in natural hydrate accumulations are enormous, leading to a recent interest in the evaluation of their potential as an energy source. Class 2 hydrate deposits are characterized by a Hydrate-Bearing Layer (HBL) underlain by a saturated water zone (WZ), and are encountered in the permafrost and in deep ocean sediments. In this numerical study of long-term gas production from permafrost-associated (PA) Class 2 deposits, we use fine grids to analyze a base case that involves a conventional vertical well with a 5 m-long production interval in the WZ that begins at the HBL base. The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, followed by a reduction in the fluid withdrawal rate. We determine that the base case can yield large volumes of gas that are produced at high rates (reaching a maximum of over 6 MMSCFD, and an average of 3.11 MMSCFD over the entire production period) for long times, while the corresponding water production declines continuously. (C) 2010 Elsevier B.V. All rights reserved. C1 [Moridis, George J.; Reagan, Matthew T.] Lawrence Berkeley Lab, Berkeley, CA 94610 USA. RP Moridis, GJ (reprint author), Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94610 USA. EM GJMoridis@lbl.gov RI Reagan, Matthew/D-1129-2015 OI Reagan, Matthew/0000-0001-6225-4928 FU Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, contract no. DE-AC02-05CH11231. The authors are indebted to Stefan Finsterle, John Apps, and Dan Hawkes for their thorough reviews. NR 27 TC 10 Z9 11 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD MAR PY 2011 VL 76 IS 3-4 BP 194 EP 204 DI 10.1016/j.petrol.2010.11.023 PG 11 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA 750KB UT WOS:000289543900014 ER PT J AU Boedo, JA Belli, EA Hollmann, E Solomon, WM Rudakov, DL Watkins, JG Prater, R Candy, J Groebner, RJ Burrell, KH Degrassie, JS Lasnier, CJ Leonard, AW Moyer, RA Porter, GD Brooks, NH Muller, S Tynan, G Unterberg, EA AF Boedo, J. A. Belli, E. A. Hollmann, E. Solomon, W. M. Rudakov, D. L. Watkins, J. G. Prater, R. Candy, J. Groebner, R. J. Burrell, K. H. Degrassie, J. S. Lasnier, C. J. Leonard, A. W. Moyer, R. A. Porter, G. D. Brooks, N. H. Muller, S. Tynan, G. Unterberg, E. A. TI Poloidally and radially resolved parallel D+ velocity measurements in the DIII-D boundary and comparison to neoclassical computations SO PHYSICS OF PLASMAS LA English DT Article ID SCRAPE-OFF-LAYER; ALCATOR C-MOD; TOROIDAL ROTATION; MAGNETIZED PLASMAS; TOKAMAK PLASMA; HIGH-BETA; CONFINEMENT; TRANSPORT; TURBULENCE; DIVERTOR AB First measurements of the D+ parallel velocity, V-parallel to(D+), in L-mode discharges in the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak boundary region at two poloidal locations, 0 similar to 0 degrees and 0 similar to 255 degrees, made using Mach probes, feature a peak with velocities of up to 80 km/s at the midplane last closed flux surface (LCFS), as high as ten times the charge exchange recombination C6+ toroidal velocity, V-phi(C6+), in the same location. The V-parallel to(D+) profiles are very asymmetric poloidally, by a factor of 8-10, and feature a local peak at the midplane. This peak, 1-2 cm wide, is located at or just inside the LCFS, and it suggests a large source of momentum in that location. This momentum source is quantified at similar to 0.31 N m by using a simple momentum transport model. This is the most accurate measurement of the effects of so called "intrinsic" edge momentum source to date. The V-parallel to(D+) measurements are quantitatively consistent with a purely neoclassical computational modeling of V-parallel to(D+) by the code NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)], using V-phi(C6+) as input, for rho similar to 0.7-0.95 at the two poloidal locations, where V-parallel to(D+) measurements exist. The midplane NEO-calculated V-parallel to(D+) grows larger than V-phi(C6+) in the steeper edge gradient region and trends to agreement with the probe-measured V-parallel to(D+) data near rho similar to 1, where the local V-parallel to(D+) velocity peak exists. The measurements and computations were made in OH and L-mode discharges on an upper single null, with ion del B-T drift away from the divertor. The rotating layer finding is similar in auxiliary heated discharges with and without external momentum input, except that at higher density the edge velocity weakens. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3559492] C1 [Boedo, J. A.; Hollmann, E.; Rudakov, D. L.; Groebner, R. J.; Moyer, R. A.; Porter, G. D.; Muller, S.; Tynan, G.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Belli, E. A.; Prater, R.; Candy, J.; Burrell, K. H.; Degrassie, J. S.; Leonard, A. W.; Brooks, N. H.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Boedo, JA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM boedo@fusion.gat.com RI Unterberg, Ezekial/F-5240-2016; OI Unterberg, Ezekial/0000-0003-1353-8865; Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC04-94AL85000, DE-AC52-07NA27344, DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy under Contract Nos. DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725. The contribution of L. Chousal, R. Hernandez, and J. Munoz is gratefully acknowledged. NR 41 TC 17 Z9 17 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032510 DI 10.1063/1.3559492 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900042 ER PT J AU Dorf, MA Kaganovich, ID Startsev, EA Davidson, RC AF Dorf, Mikhail A. Kaganovich, Igor D. Startsev, Edward A. Davidson, Ronald C. TI Collective focusing of intense ion beam pulses for high-energy density physics applications SO PHYSICS OF PLASMAS LA English DT Article ID CHAMBER-TRANSPORT; FUSION; ELECTRONS; NEUTRALIZATION AB The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson [Phys. Rev. Lett. 48, 149 (1982)] is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I), and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3557894] C1 [Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Dorf, MA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy [DE-AC02-76CH-O3073]; Princeton Plasma Physics Laboratory FX This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH-O3073 with the Princeton Plasma Physics Laboratory. NR 31 TC 1 Z9 1 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 033106 DI 10.1063/1.3557894 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900063 ER PT J AU Finnegan, SM Yin, L Kline, JL Albright, BJ Bowers, KJ AF Finnegan, S. M. Yin, L. Kline, J. L. Albright, B. J. Bowers, K. J. TI Influence of binary Coulomb collisions on nonlinear stimulated Raman backscatter in the kinetic regime SO PHYSICS OF PLASMAS LA English DT Article ID PARTICLE-IN-CELL; NATIONAL-IGNITION-FACILITY; PARAMETRIC-INSTABILITIES; LANGEVIN REPRESENTATION; LASER PERFORMANCE; PLASMA SIMULATION; PIC SIMULATIONS; SCATTERING; MODEL; LANGMUIR AB The influence of binary Coulomb collisions on trapped particle nonlinearities related to stimulated Raman scatter (SRS) in a single laser speckle is examined using one-dimensional particle-in-cell simulations. Binary Coulomb collisions are incorporated using a numerical particle-pairing algorithm that reproduces a collision integral of the Landau form. The onset of nonlinearly enhanced levels of SRS reflectivity is shown to coincide with electron trapping in the daughter plasma wave and is sensitive to the collisional scattering rate. Relaxation of trapping-induced perturbations to the electron velocity distribution via collisional velocity space diffusion is predicted to have the largest effect on the onset of SRS when the amplitude of the daughter plasma wave is smallest, and trapping-induced perturbations to the electron velocity distribution function are also small. In the absence of higher dimensional detrapping mechanisms (e.g., electron side-loss), it is shown that the onset threshold for enhanced SRS reflectivity is determined predominantly by the parallel diffusion of trapped electrons scattering from bulk thermal electrons, and that for the conditions studied here, the contribution to detrapping from perpendicular diffusion is non-negligible. Additionally, inverse bremsstrahlung heating of the bulk electrons is shown to shift the daughter plasma wave spectrum upward along the Stoke's resonance to larger wave frequency and smaller wave number, changing the linear parametric coupling conditions to SRS backscatter as a function of time. The reduction in SRS reflectivity from binary Coulomb collisions is greatest for laser intensities near the collisionless onset threshold, ulimately leading to an increase in the onset threshold laser intensity for enhanced SRS reflectivity in the kinetic regime. (C) 2011 American Institute of Physics. [doi:10.1063/1.3570659] C1 [Finnegan, S. M.; Yin, L.; Kline, J. L.; Albright, B. J.; Bowers, K. J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Finnegan, SM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. OI Albright, Brian/0000-0002-7789-6525; Yin, Lin/0000-0002-8978-5320; Kline, John/0000-0002-2271-9919 FU U.S. Deparment of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory (LANL); LANL Laboratory Directed Research and Development (LDRD) FX This work was performed under the auspices of the U.S. Deparment of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) and supported by the LANL Laboratory Directed Research and Development (LDRD) program. NR 64 TC 5 Z9 5 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032707 DI 10.1063/1.3570659 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900053 ER PT J AU Henestroza, E Logan, BG Perkins, LJ AF Henestroza, Enrique Logan, B. Grant Perkins, L. John TI Quasispherical fuel compression and fast ignition in a heavy-ion-driven X-target with one-sided illumination SO PHYSICS OF PLASMAS LA English DT Article ID FUSION; DESIGN; PHYSICS; BEAMS; GAIN AB The HYDRA radiation-hydrodynamics code [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is used to explore one-sided axial target illumination with annular and solid-profile uranium ion beams at 60 GeV to compress and ignite deuterium-tritium fuel filling the volume of metal cases with cross sections in the shape of an "X" (X-target). Quasi-three-dimensional, spherical fuel compression of the fuel toward the X-vertex on axis is obtained by controlling the geometry of the case, the timing, power, and radii of three annuli of ion beams for compression, and the hydroeffects of those beams heating the case as well as the fuel. Scaling projections suggest that this target may be capable of assembling large fuel masses resulting in high fusion yields at modest drive energies. Initial two-dimensional calculations have achieved fuel compression ratios of up to 150X solid density, with an areal density rho R of about 1 g/cm(2). At these currently modest fuel densities, fast ignition pulses of 3 MJ, 60 GeV, 50 ps, and radius of 300 mu m are injected through a hole in the X-case on axis to further heat the fuel to propagating burn conditions. The resulting burn waves are observed to propagate throughout the tamped fuel mass, with fusion yields of about 300 MJ. Tamping is found to be important, but radiation drive to be unimportant, to the fuel compression. Rayleigh-Taylor instability mix is found to have a minor impact on ignition and subsequent fuel burn-up. (C) 2011 American Institute of Physics. [doi:10.1063/1.3563589] C1 [Henestroza, Enrique; Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Perkins, L. John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Henestroza, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy by the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the support of the U.S. Department of Energy by the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231 and the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 18 TC 13 Z9 13 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032702 DI 10.1063/1.3563589 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900048 ER PT J AU Liu, C Qin, H Ma, CH Yu, XJ AF Liu, Chang Qin, Hong Ma, Chenhao Yu, Xiongjie TI A gyrokinetic collision operator for magnetized Lorentz plasmas SO PHYSICS OF PLASMAS LA English DT Article ID GRADIENT-DRIVEN TURBULENCE; GUIDING CENTER MOTION; GOLDBERGER-LOW THEORY; PARTICLE SIMULATION; EQUATIONS; TRANSPORT; MODES; FIELD; INSTABILITIES; EQUILIBRIA AB A gyrocenter collision operator for magnetized Lorentz plasmas is derived using the Fokker-Plank method. The gyrocenter collision operator consists of drift and diffusion terms in the gyrocenter coordinates, including the diffusion of the gyrocenter, which does not exist for the collision operator in the particle phase space coordinates. The gyrocenter collision operator also depends on the transverse electric field explicitly, which is crucial for the correct treatment of collisional effects and transport in the gyrocenter coordinates. The gyrocenter collision operator derived is applied to calculate the particle and heat transport fluxes in a magnetized Lorentz plasma with an electric field. The particle and heat transport fluxes calculated from our gyrocenter collision operator agree exactly with the classical Braginskii's result [S. I. Braginskii, Reviews of Plasma Physics (Consultants Bureau, New York, 1965), Vol. 1, p. 205: P. Helander and D. J. Sigmar, Collisional Transport in Magnetized Plasmas (Cambridge University, Cambridge, 2002), p. 65], which validates the correctness of our collision operator. To calculate the transport fluxes correctly, it is necessary to apply the pullback transformation associated with gyrocenter coordinate transformation in the presence of collisions, which also serves as a practical algorithm for evaluating collisional particle and heat transport fluxes in the gyrocenter coordinates. (C) 2011 American Institute of Physics. [doi:10.1063/1.3555534] C1 [Liu, Chang; Ma, Chenhao; Yu, Xiongjie] Peking Univ, Dept Phys, Beijing 100871, Peoples R China. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Liu, C (reprint author), Peking Univ, Dept Phys, Beijing 100871, Peoples R China. FU NSFC [10975012, 40731056, 11075162]; National Basic Research Program of China (973 Program) [2008CB717803, 2009GB105004, 2010GB107000]; U.S. Department of Energy (DOE) FX We thank Prof. Xiaogang Wang, Dr. Mikhail Dorf, Dr. Ronald Cohen, Dr. William Nevins, Dr. Bruce Cohen, Dr. Xueqiao Xu, and Dr. Yang Chen for fruitful discussions. This work was supported by the NSFC (Grant Nos. 10975012, 40731056, and 11075162), the National Basic Research Program of China (973 Program) (Grant Nos. 2008CB717803, 2009GB105004, and 2010GB107000), and the U.S. Department of Energy (DOE). NR 54 TC 2 Z9 2 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032502 DI 10.1063/1.3555534 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900034 ER PT J AU Olson, RE Rochau, GA Landen, OL Leeper, RJ AF Olson, R. E. Rochau, G. A. Landen, O. L. Leeper, R. J. TI X-ray ablation rates in inertial confinement fusion capsule materials SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; SHOCK PROPAGATION; ERROR BUDGET; TARGETS; SPECIFICATIONS; PERFORMANCE; BURNTHROUGH; FABRICATION; UPDATE; ROLLUP AB X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm(2)/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm(2)/ns; and for HDC, the rates range from 2 to 9 mg/cm(2)/ns. The ablation rates follow an approximate T-3 dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T-3.5. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs. (C) 2011 American Institute of Physics. [doi:10.1063/1.3566009] C1 [Olson, R. E.; Rochau, G. A.; Leeper, R. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Olson, RE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU U.S. Department of Energy [DE-AC04-94AL85000] FX Thanks to B. Spears (LLNL), D. Hicks (LLNL), C. Sorce (LLNL/URLLE), H. Xu (GA), A. Nikroo (GA), K. Moreno (GA), A. Nobile (LANL), G. Rivera (LANL), R. Sebring (LANL), C. Wild, E. Woerner, (Fraunhofer Institute) , and the Schafer target assembly and Omega operations teams. Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy under Contract DE-AC04-94AL85000. NR 22 TC 19 Z9 21 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032706 DI 10.1063/1.3566009 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900052 ER PT J AU Rose, DV Genoni, TC Clark, RE Welch, DR Stygar, WA AF Rose, D. V. Genoni, T. C. Clark, R. E. Welch, D. R. Stygar, W. A. TI Electron flow stability in magnetically insulated vacuum transmission lines SO PHYSICS OF PLASMAS LA English DT Article ID PLANAR DIODE; EQUILIBRIUM; FIELD; INSTABILITIES; SIMULATIONS; PROPAGATION; GEOMETRY; VOLTAGE; GAPS AB We evaluate the stability of electron current flow in high-power magnetically insulated transmission lines (MITLs). A detailed model of electron flow in cross-field gaps yields a dispersion relation for electromagnetic (EM) transverse magnetic waves [R. C. Davidson et al., Phys. Fluids 27, 2332 (1984)] which is solved numerically to obtain growth rates for unstable modes in various sheath profiles. These results are compared with two-dimensional (2D) EM particle-in-cell (PIC) simulations of electron flow in high-power MITLs. We find that the macroscopic properties (charge and current densities and self-fields) of the equilibrium profiles observed in the simulations are well represented by the laminar-flow model of Davidson et al. Idealized simulations of sheared flow in electron sheaths yield growth rates for both long (diocotron) and short (magnetron) wavelength instabilities that are in good agreement with the dispersion analysis. We conclude that electron sheaths that evolve self-consistently from space-charged-limited emission of electrons from the cathode in well-resolved 2D EM PIC simulations form stable profiles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567016] C1 [Rose, D. V.; Genoni, T. C.; Clark, R. E.; Welch, D. R.] Voss Sci LLC, Albuquerque, NM 87108 USA. [Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rose, DV (reprint author), Voss Sci LLC, Albuquerque, NM 87108 USA. FU Department of Energy through Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX The authors are extremely grateful for the sustained support to this research by J. Porter, K. Matzen, and L. Schneider. We thank M. Dyson and S. Welch for technical editing. This work is supported by the Department of Energy through Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 54 TC 3 Z9 3 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 033108 DI 10.1063/1.3567016 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900065 ER PT J AU Seyler, CE Martin, MR AF Seyler, C. E. Martin, M. R. TI Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches (vol 18, 012703, 2011) SO PHYSICS OF PLASMAS LA English DT Correction C1 [Seyler, C. E.] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Seyler, CE (reprint author), Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA. NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 039901 DI 10.1063/1.3559002 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900094 ER PT J AU Vay, JL Geddes, CGR Cormier-Michel, E Grote, DP AF Vay, J. -L. Geddes, C. G. R. Cormier-Michel, E. Grote, D. P. TI Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in a Lorentz boosted frame SO PHYSICS OF PLASMAS LA English DT Article ID ELECTRON-BEAMS; LASER AB The effects of hyperbolic rotation in Minkowski space resulting from the use of Lorentz boosted frames of calculation on laser propagation in plasmas are analyzed. Selection of a boost frame at the laser group velocity is shown to alter the laser spectrum, allowing the use of higher boost velocities. The technique is applied to simulations of laser driven plasma wakefield accelerators, which promise much smaller machines and whose development requires detailed simulations that challenge or exceed current capabilities. Speedups approaching the theoretical optima are demonstrated, producing the first direct simulations of stages up to 1 TeV. This is made possible by a million times speedup thanks to a frame boost with a relativistic factor gamma(b) as high as 1300, taking advantage of the rotation to mitigate an instability that limited previous work. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3559483] C1 [Vay, J. -L.; Geddes, C. G. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Cormier-Michel, E.] Tech X Corp, Boulder, CO 80303 USA. [Grote, D. P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Vay, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM jlvay@lbl.gov FU U.S. DOE [DE-AC02-05CH11231] FX This work was supported by U.S. DOE Contract No. DE-AC02-05CH11231 and U.S.-DOE SciDAC program ComPASS, and used resources of NERSC, supported by U.S. DOE Contract No. DE-AC02-05CH11231. The authors thank D. L. Bruhwiler, J. R. Cary, E. Esarey, A. Friedman, W. P. Leemans, S. F. Martins, W. B. Mori, R. D. Ryne, and C. B. Schroeder for insightful discussions. NR 26 TC 16 Z9 16 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 030701 DI 10.1063/1.3559483 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900002 ER PT J AU Yang, XL Miley, GH Flippo, KA Hora, H AF Yang, Xiaoling Miley, George H. Flippo, Kirk A. Hora, Heinrich TI Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target SO PHYSICS OF PLASMAS LA English DT Article ID LASER-PLASMA INTERACTIONS; PROTON-BEAMS; ION-ACCELERATION; DRIVEN; DENSITY; SOLIDS; PARTICLES; SYSTEMS; POWER; FUEL AB Fast Ignition (FI) is recognized as a potentially promising approach to achieve the high-energy-gain target performance needed for commercial inertial confinement fusion. Here we consider deuteron beam driven FI which provides not only the "hot spot" ignition spark, but also extra "bonus" fusion energy through reactions in the target. In this study, we estimate the impact of the added deposition energy due to the fusion reactions occurring, based on calculations using a modified energy multiplication factor F-c. The deuteron beam energy deposition range and time are also evaluated in order to estimate the desired deuteron initial energy. It is shown that an average of 30% extra energy can be gained from deuterons with 1 MeV initial energy and 12% from deuterons with 3 MeV initial energy. These results indicate that the energy benefit of this approach could be significant, but a much more comprehensive calculation is needed to realize a full 3D design for realistic experimental studies. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553444] C1 [Yang, Xiaoling; Miley, George H.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Flippo, Kirk A.] Los Alamos Natl Lab, Plasma Phys P 24, Los Alamos, NM 87545 USA. [Hora, Heinrich] Univ New S Wales, Sydney, NSW 2052, Australia. RP Miley, GH (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM xlyang@illinois.edu; ghmiley@illinois.edu; kflippo@lanl.gov; h.hora@unsw.edu.au RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU LANL LDRD under DOE [DE-AC52-06NA25396] FX The paper is dedicated to the memory of Andrei Lipson who participated in many of the studies and who unexpectedly passed away late last year. Support for parts of the work by a NPL Associate INC Plasma Physics grant and by the New York Community Trust was essential to the effort. Kirk A. Flippo is funded through LANL LDRD under DOE Contract No. DE-AC52-06NA25396. NR 42 TC 22 Z9 22 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD MAR PY 2011 VL 18 IS 3 AR 032703 DI 10.1063/1.3553444 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 745FS UT WOS:000289151900049 ER PT J AU King, JD Makowski, MA Holcomb, CT Allen, SL Hill, DN La Haye, RJ Turco, F Petty, CC Van Zeeland, MA Rhodes, TL Meyer, WH Geer, R Morse, EC AF King, J. D. Makowski, M. A. Holcomb, C. T. Allen, S. L. Hill, D. N. La Haye, R. J. Turco, F. Petty, C. C. Van Zeeland, M. A. Rhodes, T. L. Meyer, W. H. Geer, R. Morse, E. C. TI Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID D TOKAMAK; SYSTEM AB Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at rho >= 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3568827] C1 [King, J. D.; Makowski, M. A.; Holcomb, C. T.; Allen, S. L.; Hill, D. N.; Meyer, W. H.; Geer, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [King, J. D.; Morse, E. C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [La Haye, R. J.; Petty, C. C.; Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. [Turco, F.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37830 USA. [Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP King, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU US DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE [DE-FC02-04ER54698, DE-FG03-89ER51116] FX This work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under DE-AC52-07NA27344, and US DOE DE-FC02-04ER54698 and DE-FG03-89ER51116. NR 14 TC 1 Z9 1 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 033515 DI 10.1063/1.3568827 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600035 PM 21456744 ER PT J AU Lang, V Lo, CC George, RE Lyon, SA Bokor, J Schenkel, T Ardavan, A Morton, JJL AF Lang, V. Lo, C. C. George, R. E. Lyon, S. A. Bokor, J. Schenkel, T. Ardavan, A. Morton, J. J. L. TI Electrically detected magnetic resonance in a W-band microwave cavity SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ELECTRON-SPIN-RESONANCE; SILICON AB We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity. (C) 2011 American Institute of Physics. [doi:10.1063/1.3557395] C1 [Lang, V.; Morton, J. J. L.] Univ Oxford, Dept Mat, Oxford OX1 3PH, England. [Lo, C. C.; Bokor, J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [George, R. E.; Ardavan, A.; Morton, J. J. L.] Univ Oxford, Dept Phys, Clarendon Lab, CAESR, Oxford OX1 3PU, England. [Lyon, S. A.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Accelerator & Fus Res Div, Berkeley, CA 94720 USA. RP Lang, V (reprint author), Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England. EM volker.lang@materials.ox.ac.uk RI Morton, John/I-3515-2013; Bokor, Jeffrey/A-2683-2011 FU EPSRC through CAESR [EP/D048559/1]; US National Security Agency [100000080295]; Department of Energy [DE-AC02-05CH11231]; Konrad-Adenauer-Stiftung e.V.; EPSRC DTA; Royal Society; St. John's College Oxford FX The authors thank Alexei Tyryshkin for fruitful discussions and acknowledge funding from EPSRC through CAESR EP/D048559/1, and US National Security Agency under contract number 100000080295. Work at LBNL was supported by the Department of Energy under contract No. DE-AC02-05CH11231. V. L. is supported by Konrad-Adenauer-Stiftung e.V. and EPSRC DTA. A. A. and J.J.L.M. are supported by The Royal Society, J.J.L.M. from St. John's College Oxford. NR 24 TC 5 Z9 5 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 034704 DI 10.1063/1.3557395 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600064 PM 21456773 ER PT J AU Mitri, FG Garzon, FH Sinha, DN AF Mitri, F. G. Garzon, F. H. Sinha, D. N. TI Characterization of acoustically engineered polymer nanocomposite metamaterials using x-ray microcomputed tomography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID CARBON-CARBON COMPOSITES; FREQUENCIES; PARTICLES; FORCE; MEDIA; FLUID; WAVES; FIELD AB We demonstrate the fabrication of acoustically engineered diamond nanoparticles-based metamaterials and their internal microstructure characterization using x-ray microcomputed tomography (X mu CT). The state-of-the-art technique based on the radiation force of ultrasound standing (or stationary) waves in a rectangular chamber is utilized to pattern clusters of 5-nm-diameter diamond nanoparticles in parallel planes within a three-dimensional (3D) matrix of epoxy before solidification. Gradually, the periodic pattern becomes permanent with full cure of the epoxy matrix so as to form a 3D metamaterial structure. We also show that the periodicity of the pattern can be changed by selecting a different ultrasound frequency. Furthermore, X mu CT is used as a quality control tool to map the internal structure and characterize each metamaterial. The ultimate application is to use the results as a base for the development of finite-element models which take into account all the structural features to study the various metamaterial (optical, acoustical, thermal, etc.) functional properties. (C) 2011 American Institute of Physics. [doi:10.1063/1.3553207] C1 [Mitri, F. G.; Garzon, F. H.; Sinha, D. N.] Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, MPA 11, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, MPA 11, MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory (LANL) [LDRD-X9N9] FX The first author acknowledges the financial support provided through a Director's fellowship (LDRD-X9N9) from Los Alamos National Laboratory (LANL), as well as Dr. C. Pantea (MPA-11, LANL) for providing the diamond-nanoparticle powder, and Dr. M. A. Nelson (formerly at MPA-11, LANL) for assistance while using the x-ray computed tomography system. NR 48 TC 17 Z9 17 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 034903 DI 10.1063/1.3553207 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600071 PM 21456780 ER PT J AU Rais, B Skinner, CH Roquemore, AL AF Rais, B. Skinner, C. H. Roquemore, A. L. TI Note: He puff system for dust detector upgrade SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment. In this note, we report a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. Two consecutive helium puffs delivered by three 0.45 mm nozzles at an angle of 30 degrees cleared the entire 5 cm x 5 cm surface of the detector. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3545841] C1 [Rais, B.] Univ Aix Marseille 1, PACA 13001, Aix Marseille, France. [Skinner, C. H.; Roquemore, A. L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Rais, B (reprint author), Univ Aix Marseille 1, PACA 13001, Aix Marseille, France. FU US DOE [DE AC02-09CH11466] FX The authors would like to thank A. Opdenaker, M. Ono, and T. Egebo for enabling this M.Sc. thesis project to be performed in the United States, and T. Holoman, D. Labrie, T. Provost, G. Smalley for invaluable technical assistance. This work was funded by US DOE Grant No. DE AC02-09CH11466. NR 9 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 036102 DI 10.1063/1.3545841 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600096 PM 21456804 ER PT J AU Sharma, AK Smedley, J Tsang, T Rao, T AF Sharma, Avnish Kumar Smedley, John Tsang, Thomas Rao, Triveni TI Formation of subwavelength grating on molybdenum mirrors using a femtosecond Ti:sapphire laser system operating at 10 Hz SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TI-SAPPHIRE LASER; PULSES AB We report formation of subwavelength surface grating over large surface area of molybdenum mirror by multiple irradiation of amplified femtosecond laser pulses from a homemade Ti:sapphire oscillator-amplifier laser system in a raster scan configuration. The laser system delivered 2 mJ, 80 fs duration laser pulses at a pulse repetition rate of 10 Hz. Various parameters such as pulse fluence, number of pulses, laser polarization, scan speed, and scan steps were optimized to obtain uniform subwavelength gratings. Energy dispersive x-ray spectroscopy measurements were conducted to analyze the elemental composition of mirror surfaces before and after laser treatment. (C) 2011 American Institute of Physics. [doi:10.1063/1.3569763] C1 [Sharma, Avnish Kumar; Smedley, John; Tsang, Thomas; Rao, Triveni] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Sharma, Avnish Kumar] Raja Ramanna Ctr Adv Technol, Laser Plasma Div, Indore 452013, MP, India. RP Sharma, AK (reprint author), Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. EM dravnishsharma@gmail.com FU United States Department of Energy [DE-AC02-98CH10886] FX The authors gratefully acknowledge the technical support of J. Walsh and W. Smith. A.K.S. also acknowledges Dr. P. D. Gupta and Dr. P. A. Naik from RRCAT, Indore for fruitful discussion and encouragement. This work was supported by United States Department of Energy under Contract No. DE-AC02-98CH10886. NR 28 TC 3 Z9 4 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 033113 DI 10.1063/1.3569763 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600014 PM 21456724 ER PT J AU Trott, WM Castaneda, JN Torczynski, JR Gallis, MA Rader, DJ AF Trott, Wayne M. Castaneda, Jaime N. Torczynski, John R. Gallis, Michael A. Rader, Daniel J. TI An experimental assembly for precise measurement of thermal accommodation coefficients SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DENSITY-DISTRIBUTION MEASUREMENTS; PARALLEL PLATES; HEAT-TRANSFER; RAREFIED-GAS; SURFACE; TEMPERATURE; MOLECULES; HELIUM AB An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by similar to 0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3571269] C1 [Trott, Wayne M.; Castaneda, Jaime N.; Torczynski, John R.; Gallis, Michael A.; Rader, Daniel J.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Trott, WM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM wmtrott@comcast.net FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Laboratory Directed Research and Development (LDRD); Engineering Sciences Research Foundation (ESRF) at Sandia National Laboratories FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research was funded by the Laboratory Directed Research and Development (LDRD) and Engineering Sciences Research Foundation (ESRF) programs at Sandia National Laboratories. The authors thank Thomas Grasser for his invaluable technical support and Jeremy Barney for his support in automating our data acquisition processes. The collaboration of Lawrence A. Gochberg (formerly of Novellus) in sample plate preparation and helpful technical discussions is gratefully acknowledged. We also thank Murat Okandan and Leslie Phinney of Sandia National Laboratories for their help in acquiring samples of MEMS-related surface materials. NR 32 TC 19 Z9 20 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD MAR PY 2011 VL 82 IS 3 AR 035120 DI 10.1063/1.3571269 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 745EV UT WOS:000289149600093 PM 21456801 ER PT J AU Ramanathan, M Muller, HJ Mohwald, H Krastev, R AF Ramanathan, Muruganathan Mueller, Hans-Joachim Moehwald, Helmuth Krastev, Rumen TI Foam Films as Thin Liquid Gas Separation Membranes SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE foam film; permeability; thin liquid membrane; diminishing bubble; gas separation ID NEWTON BLACK FILMS; MONOLAYER PERMEABILITY; DODECYL MALTOSIDE; FREE-ENERGY; SOAP FILMS; SURFACTANT; PERMEATION; MECHANISM AB In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes. C1 [Ramanathan, Muruganathan; Mueller, Hans-Joachim; Moehwald, Helmuth; Krastev, Rumen] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany. RP Ramanathan, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. EM nmr@ornl.gov RI Ramanathan, Muruganathan/A-3641-2013; Mohwald, Helmuth/B-8265-2014 OI Ramanathan, Muruganathan/0000-0001-7008-1131; Mohwald, Helmuth/0000-0001-7833-3786 NR 34 TC 6 Z9 6 U1 4 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR PY 2011 VL 3 IS 3 BP 633 EP 637 DI 10.1021/am101126n PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 739AV UT WOS:000288685200003 PM 21314136 ER PT J AU Henning, WF AF Henning, Walter F. TI EXTREMES OF THE NUCLEAR LANDSCAPE: EXPERIMENTAL STUDIES SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 30-SEP 05, 2010 CL Zakopane, POLAND AB Increasingly more intense beams of radioactive isotopes allow moving into unknown areas of the nuclear chart and exploring the limits in nuclear binding and proton-to-neutron ratio. New aspects of nuclear structure and important results for nuclear astrophysics are obtained. The paper provides some overview of experimental developments, facilities and research results; and is intended to set the stage for the many exciting examples of research presented in these proceedings. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Henning, WF (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 1 Z9 1 U1 0 U2 1 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR-APR PY 2011 VL 42 IS 3-4 BP 379 EP 396 DI 10.5506/APhysPolB.42.379 PG 18 WC Physics, Multidisciplinary SC Physics GA 743HP UT WOS:000289009300001 ER PT J AU Satula, W Dobaczewski, J Nazarewicz, W Rafalski, M AF Satula, W. Dobaczewski, J. Nazarewicz, W. Rafalski, M. TI ISOSPIN MIXING IN NUCLEI AROUND N similar or equal to Z AND THE SUPERALLOWED beta-DECAY SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 30-SEP 05, 2010 CL Zakopane, POLAND ID PROJECTED HARTREE-FOCK; SLATER DETERMINANTS; SYMMETRY AB Theoretical approaches that use one-body densities as dynamical variables, such as Hartree-Fock or the density functional theory (DFT), break isospin symmetry both explicitly, by virtue of charge-dependent interactions, and spontaneously. To restore the spontaneously broken isospin symmetry, we implemented the isospin-projection scheme on top of the Skyrme-DFT approach. This development allows for consistent treatment of isospin mixing in both ground and exited nuclear states. In this study, we apply this method to evaluate the isospin impurities in ground states of even-even and odd-odd N similar or equal to Z nuclei. By including simultaneous isospin and angular-momentum projection, we compute the isospin-breaking corrections to the 0(+) -> 0(+) superallowed beta-decay. C1 [Satula, W.; Dobaczewski, J.; Nazarewicz, W.; Rafalski, M.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Satula, W.] AlbaNova Univ Ctr, KTH Royal Inst Technol, S-10691 Stockholm, Sweden. [Dobaczewski, J.] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Satula, W (reprint author), Univ Warsaw, Inst Theoret Phys, Hoza 69, PL-00681 Warsaw, Poland. NR 31 TC 6 Z9 6 U1 0 U2 3 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR-APR PY 2011 VL 42 IS 3-4 BP 415 EP 425 DI 10.5506/APhysPolB.42.415 PG 11 WC Physics, Multidisciplinary SC Physics GA 743HP UT WOS:000289009300004 ER PT J AU Reviol, W Sarantites, DC Chen, X Montero, M Pechenaya, OL Snyder, J Janssens, RVF Carpenter, MP Chiara, CJ Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Zhu, S Hauschild, K Lopez-Martens, A Hartley, DJ Frauendorf, S AF Reviol, W. Sarantites, D. C. Chen, X. Montero, M. Pechenaya, O. L. Snyder, J. Janssens, R. V. F. Carpenter, M. P. Chiara, C. J. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Zhu, S. Hauschild, K. Lopez-Martens, A. Hartley, D. J. Frauendorf, S. TI TIDAL WAVES AND ONSET OF COLLECTIVITY ABOVE N=126 SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Conference on Nuclear Physics - Extremes of the Nuclear Landscape CY AUG 30-SEP 05, 2010 CL Zakopane, POLAND ID NUCLEI; SPECTROSCOPY; GAMMASPHERE; OCTUPOLE; STATES AB Recent experiments in the actinide region, using Gammasphere and the evaporation residue detector HERCULES, have covered the territory between N = 126 and the center of static octupole deformation at N = 134. The (220)Th nucleus and the neighboring (218)Ra and (219)Th nuclei mark the emergence of quadrupole-octupole collectivity in this mass region. Their octupole bands have B(E1)/B(E2) ratios which are typical for the region, but the level spacings do not concur with a rotational-like behavior. In addition, a spin-dependent staggering of the B(E1)/B(E2) ratios is evident. These features can be described, based on a phonon picture, by a constant-frequency tidal-wave mode for a reflection-asymmetric nuclear surface. C1 [Reviol, W.; Sarantites, D. C.; Chen, X.; Montero, M.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Pechenaya, O. L.; Snyder, J.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Hauschild, K.; Lopez-Martens, A.] CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Hartley, D. J.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Frauendorf, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Reviol, W (reprint author), Washington Univ, Dept Chem, St Louis, MO 63130 USA. RI Hauschild, Karl/A-6726-2009; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 NR 16 TC 2 Z9 2 U1 1 U2 5 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD MAR-APR PY 2011 VL 42 IS 3-4 BP 671 EP 680 DI 10.5506/APhysPolB.42.671 PG 10 WC Physics, Multidisciplinary SC Physics GA 743HP UT WOS:000289009300043 ER PT J AU Shi, WB Ding, SY Yuan, JS AF Shi, Weibing Ding, Shi-You Yuan, Joshua S. TI Comparison of Insect Gut Cellulase and Xylanase Activity Across Different Insect Species with Distinct Food Sources SO BIOENERGY RESEARCH LA English DT Article DE Insect gut; Cellulase; Xylanase; Natural biocatalyst system ID MULBERRY LONGICORN BEETLE; TERMITE NASUTITERMES-TAKASAGOENSIS; FEEDING HIGHER TERMITE; ENZYMATIC-ACTIVITY; APRIONA-GERMARI; MOLECULAR-CLONING; LIGNIN CONTENT; GENE STRUCTURE; HYDROLYSIS; LIGNOCELLULOSE AB Insect guts represent unique natural biocatalyst systems for biocatalyst discovery and biomass deconstruction mechanism studies. In order to guide the further research for enzyme discovery and biodiversity analysis, we carried out comprehensive xylanase and cellulase activity assays for the gut contents of three insect species representing different orders and food sources. The three insect species are grasshopper (Acrididae sp.), woodborer (Cerambycidae spp.), and silkworm (Bombyx mori) to represent the wood-consuming, grass-consuming, and leaf-consuming insects from Orthoptera, Coleoptera, and Lepidoptera orders, respectively. Generally speaking, the enzyme activity assays have shown that the cellulase and xylanase activities for grasshopper and woodborer guts are significantly higher than those of silkworm under various conditions. In addition, both pH and temperature have a significant impact on the enzyme activities in the gut contents. For the grasshopper gut, the means of xylanase and cellulase activities at pH 7 were 3,397 and 404 mu M mg(-1) min(-1), which are significantly higher than the activities at pH 4 and 10 (P<0.05). However, woodborer guts have shown the highest cellulase activity at pH 10. The results suggested that systems similar to woodborer guts could be good resources for discovering alkaline-tolerant enzymes. Moreover, the enzyme activities in response to different substrate concentrations were also analyzed, which indicated that grasshopper gut had particularly high cellulase activity. The enzyme activities in response to the reaction time were also examined, and we found that the enzyme activities (micromolar per milligram per minute) of different insect gut juices in response to the increase of incubation time fit well to the power function equation (E-c = K . t(b)) with high coefficients (r(2)>0.99). The newly developed model serves well to compare the characteristics of the enzyme mixtures among different insect species, which can be applied to other studies of natural biocatalyst systems for the future. Overall, the data indicated that grasshopper and woodborer guts are valuable resources for discovering the novel biocatalysts for various biorefinery applications. C1 [Shi, Weibing; Yuan, Joshua S.] Texas A&M Univ, ARISE, College Stn, TX 77843 USA. [Shi, Weibing; Yuan, Joshua S.] Texas A&M Univ, Dept Plant Pathol & Microbiol, College Stn, TX 77843 USA. [Shi, Weibing; Yuan, Joshua S.] Texas A&M Univ, Inst Plant Genom & Biotechnol, College Stn, TX 77843 USA. [Ding, Shi-You] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Yuan, JS (reprint author), Texas A&M Univ, ARISE, College Stn, TX 77843 USA. EM syuan@tamu.edu RI Ding, Shi-You/O-1209-2013 FU Bioenergy Research Initiative of Texas Agrilife Research FX We sincerely thank Dr. L. X. Huang for providing the silkworm and mulberry leaves. We appreciate R. D. Syrenne for editing the manuscript. The research is funded by the grant for J. S. Yuan from Bioenergy Research Initiative of Texas Agrilife Research. NR 61 TC 8 Z9 9 U1 0 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2011 VL 4 IS 1 BP 1 EP 10 DI 10.1007/s12155-010-9096-0 PG 10 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 746QE UT WOS:000289261000001 ER PT J AU Laurens, LML Wolfrum, EJ AF Laurens, Lieve M. L. Wolfrum, Edward J. TI Feasibility of Spectroscopic Characterization of Algal Lipids: Chemometric Correlation of NIR and FTIR Spectra with Exogenous Lipids in Algal Biomass SO BIOENERGY RESEARCH LA English DT Article DE Microalgae; Biomass; Lipids; Infrared spectroscopy; Multivariate calibration; Chemometrics ID CORN STOVER; MICROALGAL; MICROSPECTROSCOPY; CHALLENGES; FEEDSTOCKS; BIOFUELS AB A large number of algal biofuels projects rely on a lipid screening technique for selecting a particular algal strain with which to work. We have developed a multivariate calibration model for predicting the levels of spiked neutral and polar lipids in microalgae, based on infrared (both near-infrared (NIR) and Fourier transform infrared (FTIR)) spectroscopy. The advantage of an infrared spectroscopic technique over traditional chemical methods is the direct, fast, and non-destructive nature of the screening method. This calibration model provides a fast and high-throughput method for determining lipid content, providing an alternative to laborious traditional wet chemical methods. We present data of a study based on nine levels of exogenous lipid spikes (between 1% and 3% (w/w)) of trilaurin as a triglyceride and phosphatidylcholine as a phospholipid model compound in lyophilized algal biomass. We used a chemometric approach to corrrelate the main spectral changes upon increasing phospholipid and triglyceride content in algal biomass collected from single species. A multivariate partial least squares (PLS) calibration model was built and improved upon with the addition of multiple species to the dataset. Our results show that NIR and FTIR spectra of biomass from four species can be used to accurately predict the levels of exogenously added lipids. It appears that the cross-species verification of the predictions is more accurate with the NIR models (R(2)=0.969 and 0.951 and RMECV=0.182 and 0.227% for trilaurin and phosphatidylcholine spike respectively), compared with FTIR (R(2)=0.907 and 0.464 and RMECV=0.302 and 0.767% for trilaurin and phosphatidylcholine spike, respectively). A fast high-throughput spectroscopic lipid fingerprinting method can be applied in a multitude of screening efforts that are ongoing in the microalgal research community. C1 [Laurens, Lieve M. L.; Wolfrum, Edward J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Wolfrum, EJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM Ed.Wolfrum@nrel.gov RI Laurens, Lieve/B-3545-2013; OI Wolfrum, Edward/0000-0002-7361-8931 FU US Department of Energy [DE-AC36-08-GO28308] FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, through the NREL Laboratory Directed Research and Development (LDRD) program. We would like to acknowledge the excellent technical assistance from Corinne Feehan with sample preparation and NIR and FTIR spectroscopy, Amie Sluiter and Stuart Black for advice on the NIR and FTIR spectroscopy, respectively, Al Darzins for help in obtaining the algal biomass needed for this study. We are grateful to Eric Jarvis, Al Darzins and Amie Sluiter for their critical review of the manuscript. NR 27 TC 41 Z9 42 U1 2 U2 39 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD MAR PY 2011 VL 4 IS 1 BP 22 EP 35 DI 10.1007/s12155-010-9098-y PG 14 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 746QE UT WOS:000289261000003 ER PT J AU Miller, PR Gittard, SD Edwards, TL Lopez, DM Xiao, XY Wheeler, DR Monteiro-Riviere, NA Brozik, SM Polsky, R Narayan, RJ AF Miller, Philip R. Gittard, Shaun D. Edwards, Thayne L. Lopez, DeAnna M. Xiao, Xiaoyin Wheeler, David R. Monteiro-Riviere, Nancy A. Brozik, Susan M. Polsky, Ronen Narayan, Roger J. TI Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing SO BIOMICROFLUIDICS LA English DT Article ID DRUG-DELIVERY; ASCORBIC-ACID; MICROFABRICATED MICRONEEDLES; MICRO-STEREOLITHOGRAPHY; 2-PHOTON POLYMERIZATION; OXIDATIVE STRESS; DYNAMIC MASK; VITAMIN-C; URIC-ACID; FABRICATION AB In this study, carbon fiber electrodes were incorporated within a hollow microneedle array, which was fabricated using a digital micromirror device-based stereolithography instrument. Cell proliferation on the acrylate-based polymer used in microneedle fabrication was examined with human dermal fibroblasts and neonatal human epidermal keratinocytes. Studies involving full-thickness cadaveric porcine skin and trypan blue dye demonstrated that the hollow microneedles remained intact after puncturing the outermost layer of cadaveric porcine skin. The carbon fibers underwent chemical modification in order to enable detection of hydrogen peroxide and ascorbic acid; electrochemical measurements were demonstrated using integrated electrode-hollow microneedle devices. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3569945] C1 [Miller, Philip R.; Gittard, Shaun D.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.] N Carolina State Univ, UNC, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Edwards, Thayne L.; Lopez, DeAnna M.; Xiao, Xiaoyin; Wheeler, David R.; Brozik, Susan M.; Polsky, Ronen] Sandia Natl Labs, Dept Biosensors & Nanomat, Albuquerque, NM 87185 USA. [Monteiro-Riviere, Nancy A.] N Carolina State Univ, Ctr Chem Toxicol Res & Pharmacokinet, Raleigh, NC 27606 USA. RP Narayan, RJ (reprint author), N Carolina State Univ, UNC, Joint Dept Biomed Engn, 911 Oval Dr,Campus Box 7115, Raleigh, NC 27695 USA. EM roger_narayan@unc.edu RI Narayan, Roger/J-2789-2013 OI Narayan, Roger/0000-0002-4876-9869 FU Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors acknowledge the support from Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program. NR 62 TC 30 Z9 30 U1 7 U2 51 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1932-1058 J9 BIOMICROFLUIDICS JI Biomicrofluidics PD MAR PY 2011 VL 5 IS 1 AR 013415 DI 10.1063/1.3569945 PG 14 WC Biochemical Research Methods; Biophysics; Nanoscience & Nanotechnology; Physics, Fluids & Plasmas SC Biochemistry & Molecular Biology; Biophysics; Science & Technology - Other Topics; Physics GA 745EL UT WOS:000289148400018 PM 21522504 ER PT J AU Zhang, J Xu, XK Li, P Zhang, K Small, M AF Zhang, Jie Xu, Xiao-Ke Li, Ping Zhang, Kai Small, Michael TI Node importance for dynamical process on networks: A multiscale characterization SO CHAOS LA English DT Article ID COMPLEX NETWORKS; BETWEENNESS CENTRALITY; TIME-SERIES; RANDOM-WALKS; SYNCHRONIZATION; WEB AB Defining the importance of nodes in a complex network has been a fundamental problem in analyzing the structural organization of a network, as well as the dynamical processes on it. Traditionally, the measures of node importance usually depend either on the local neighborhood or global properties of a network. Many real-world networks, however, demonstrate finely detailed structure at various organization levels, such as hierarchy and modularity. In this paper, we propose a multiscale node-importance measure that can characterize the importance of the nodes at varying topological scale. This is achieved by introducing a kernel function whose bandwidth dictates the ranges of interaction, and meanwhile, by taking into account the interactions from all the paths a node is involved. We demonstrate that the scale here is closely related to the physical parameters of the dynamical processes on networks, and that our node-importance measure can characterize more precisely the node influence under different physical parameters of the dynamical process. We use epidemic spreading on networks as an example to show that our multiscale node-importance measure is more effective than other measures. VC 2011 American Institute of Physics. [doi: 10.1063/1.3553644] C1 [Zhang, Jie] Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China. [Zhang, Jie; Xu, Xiao-Ke; Li, Ping; Small, Michael] Hong Kong Polytech Univ, Dept Elect & Informat Engn, Hong Kong, Hong Kong, Peoples R China. [Xu, Xiao-Ke] Qingdao Technol Univ, Sch Commun & Elect Engn, Qingdao 266520, Peoples R China. [Zhang, Kai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Zhang, J (reprint author), Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China. RI Small, Michael/C-9807-2010; xu, xiaoke/G-5418-2011; Li, Ping/K-7445-2016 OI Small, Michael/0000-0001-5378-1582; FU Hong Kong Polytechnic University [G-YX0N]; National Natural Science Foundation of China [61004104] FX This work is funded by Hong Kong Polytechnic University (G-YX0N). J. Zhang and Xiao-ke Xu also acknowledge the support from National Natural Science Foundation of China under Grant No. 61004104. NR 50 TC 22 Z9 24 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1054-1500 EI 1089-7682 J9 CHAOS JI Chaos PD MAR PY 2011 VL 21 IS 1 AR 016107 DI 10.1063/1.3553644 PG 6 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 745ER UT WOS:000289149100035 PM 21456849 ER PT J AU Hale, LM Zhou, X Zimmerman, JA Moody, NR Ballarini, R Gerberich, WW AF Hale, L. M. Zhou, X. Zimmerman, J. A. Moody, N. R. Ballarini, R. Gerberich, W. W. TI Phase transformations, dislocations and hardening behavior in uniaxially compressed silicon nanospheres SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Phase transformations; Dislocations; Nanostructure; Molecular dynamics; Silicon ID MONOCRYSTALLINE SILICON; MOLECULAR-DYNAMICS; NANOINDENTATION; SIMULATION; DEFORMATION; INDENTATION; ENERGY; SI AB Molecular dynamics has been used to simulate the uniaxial compression of single crystal silicon nanospheres using the Tersoff potential. The resulting yield behavior is shown to vary with changes in temperature, sphere size, and crystallographic orientation with respect to the loading direction. Only compression along the [1 0 0] crystallographic direction resulted in the formation of the beta-Sn phase. A temperature dependent hardening response is observed in all orientations independent of the beta-Sn phase transformation. Dislocation activity is detected at elevated temperatures in the largest sphere indicating a critical temperature and size for nucleation. Consequences of these dislocations to simulating strength properties at the nanoscale are discussed. (c) 2011 Elsevier B.V. All rights reserved. C1 [Hale, L. M.; Gerberich, W. W.] Univ Minnesota, Dept Mat Sci, Minneapolis, MN 55455 USA. [Zhou, X.; Zimmerman, J. A.] Sandia Natl Labs, Dept Mech Mat, Livermore, CA 94550 USA. [Moody, N. R.] Sandia Natl Labs, Dept Hydrogen & Met Sci, Livermore, CA 94550 USA. [Ballarini, R.] Univ Minnesota, Dept Civil Engn, Minneapolis, MN 55455 USA. RP Hale, LM (reprint author), 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM halex082@umn.edu RI Zimmerman, Jonathan/A-8019-2012 FU National Science Foundation [NSF_CMMI 0800896]; Air Force [AOARD-08-4131]; Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE); Petroleum Institute (PI) of Abu Dhabi; Department of Chemical Engineering and Materials Science of the University of Minnesota; Sandia, Livermore; United States Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX This work was partially supported in part (RB and LMH) by the National Science Foundation Grant NSF_CMMI 0800896. One of us (WWG) would like to acknowledge additional support of the Air Force through an AOARD-08-4131 program dedicated to understanding plasticity and fracture in hard materials and the Abu Dhabi-Minnesota Institute for Research Excellence (ADMIRE); a partnership between the Petroleum Institute (PI) of Abu Dhabi and the Department of Chemical Engineering and Materials Science of the University of Minnesota. Additionally, four of us (LMH, XZ, JAZ, and NMR) were supported by Sandia, Livermore. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DEAC04-94AL85000. NR 26 TC 8 Z9 8 U1 3 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD MAR PY 2011 VL 50 IS 5 BP 1651 EP 1660 DI 10.1016/j.commatsci.2010.12.023 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 742EY UT WOS:000288925300009 ER PT J AU Knebel, AR Coleman, CN Cliffer, KD Murrain-Hill, P McNally, R Oancea, V Jacobs, J Buddemeier, B Hick, JL Weinstock, DM Hrdina, CM Taylor, T Matzo, M Bader, JL Livinski, AA Parker, G Yeskey, K AF Knebel, Ann R. Coleman, C. Norman Cliffer, Kenneth D. Murrain-Hill, Paula McNally, Richard Oancea, Victor Jacobs, Jimmie Buddemeier, Brooke Hick, John L. Weinstock, David M. Hrdina, Chad M. Taylor, Tammy Matzo, Marianne Bader, Judith L. Livinski, Alicia A. Parker, Gerald Yeskey, Kevin TI Allocation of Scarce Resources After a Nuclear Detonation: Setting the Context SO DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS LA English DT Editorial Material DE nuclear detonation; triage; scarce resources ID PALLIATIVE CARE; SURGE CAPACITY; CONTINGENCY; DISASTER; EVENTS AB The purpose of this article is to set the context for this special issue of Disaster Medicine and Public Health Preparedness on the allocation of scarce resources in an improvised nuclear device incident. A nuclear detonation occurs when a sufficient amount of fissile material is brought suddenly together to reach critical mass and cause an explosion. Although the chance of a nuclear detonation is thought to be small, the consequences are potentially catastrophic, so planning for an effective medical response is necessary, albeit complex. A substantial nuclear detonation will result in physical effects and a great number of casualties that will require an organized medical response to save lives. With this type of incident, the demand for resources to treat casualties will far exceed what is available. To meet the goal of providing medical care (including symptomatic/palliative care) with fairness as the underlying ethical principle, planning for allocation of scarce resources among all involved sectors needs to be integrated and practiced. With thoughtful and realistic planning, the medical response in the chaotic environment may be made more effective and efficient for both victims and medical responders. (Disaster Med Public Health Preparedness. 2011;5:S20-S31) C1 [McNally, Richard; Oancea, Victor; Jacobs, Jimmie] Sci Applicat Int Corp, Mclean, VA 22102 USA. [Buddemeier, Brooke] Lawrence Livermore Natl Lab, Dept Energy, Livermore, CA USA. [Hick, John L.] Univ Minnesota, Hennepin Cty Med Ctr, Minneapolis, MN 55455 USA. [Weinstock, David M.] Harvard Univ, Sch Med, Dana Farber Canc Inst, Cambridge, MA 02138 USA. [Matzo, Marianne] Univ Oklahoma, Coll Nursing, Norman, OK 73019 USA. RP Knebel, AR (reprint author), 200 Independence Ave SW,Suite 638G, Washington, DC 20201 USA. EM ann.knebel@hhs.gov NR 30 TC 30 Z9 30 U1 1 U2 5 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60654-0946 USA SN 1935-7893 J9 DISASTER MED PUBLIC JI Dis. Med. Public Health Prep. PD MAR PY 2011 VL 5 SU 1 BP S20 EP S31 PG 12 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 739VM UT WOS:000288748000004 PM 21402809 ER PT J AU Fu, JL Axness, CL Gomez-Hernandez, JJ AF Fu, Jianlin Axness, Carl L. Jaime Gomez-Hernandez, J. TI UPSCALING TRANSMISSIVITY IN THE NEAR-WELL REGION FOR NUMERICAL SIMULATION: A COMPARISON ON UNCERTAINTY PROPAGATION SO ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS LA English DT Article DE geostatistics; well capture zone; radial flow; stochastic model; reservoir simulation; gridding ID HETEROGENEOUS POROUS-MEDIA; MONTE-CARLO METHOD; FLOW SIMULATION; SCALE-UP; PERMEABILITY; RESERVOIRS; AQUIFER AB Upscaling transmissivity near the wellbore is expected to be useful for well performance prediction. This article ascertains the need of upscaling by comparing several numerical schemes and presents an approach to upscale transmissivity in the near-well region. This approach extends the Laplacian method with skin, which was successfully applied to the parallelepiped flow case, to radial flow case in the vicinity of wellbore through a nonuniform gridding technique. Several synthetic fields with different stochastic models are chosen to check the efficiency of this method. Both flow and transport simulations are carried out in finite heterogeneous confined aquifers to evaluate the results. It is demonstrated that the proposed method improves the ability of predicting well discharge or recharge and solute transport on the coarse scale in comparison with other schemes by examining the uncertainty propagation due to upscaling. C1 [Fu, Jianlin; Axness, Carl L.; Jaime Gomez-Hernandez, J.] Univ Politecn Valencia, Dept Hydraul & Environm Engn, Valencia 46022, Spain. [Fu, Jianlin] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Axness, Carl L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fu, JL (reprint author), Univ Politecn Valencia, Dept Hydraul & Environm Engn, Valencia 46022, Spain. EM fu_jianlin_ac@yahoo.com RI Gomez-Hernandez, J. Jaime/J-6315-2013 OI Gomez-Hernandez, J. Jaime/0000-0002-0720-2196 NR 31 TC 1 Z9 1 U1 0 U2 5 PU HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG PI HONG KONG PA HUNG HOM, KOWLOON, HONG KONG, 00000, PEOPLES R CHINA SN 1994-2060 J9 ENG APPL COMP FLUID JI Eng. Appl. Comp. Fluid Mech. PD MAR PY 2011 VL 5 IS 1 BP 49 EP 66 PG 18 WC Engineering, Multidisciplinary; Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 736YA UT WOS:000288529700005 ER PT J AU Castellana, M Zdeborova, L AF Castellana, Michele Zdeborova, Lenka TI Adversarial satisfiability problem SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE message-passing algorithms; random graphs; networks ID INTERDICTION; NETWORK AB We study the adversarial satisfiability problem, where the adversary can choose whether the variables are negated in clauses or not, in order to make the resulting formula unsatisfiable. This problem belongs to a general class of adversarial optimization problems that often arise in practice and are algorithmically much harder than the standard optimization problems. We use the cavity method to compute large deviations of the entropy in the random satisfiability problem with respect to the configurations of negations. We conclude that in the thermodynamic limit the best strategy the adversary can adopt is to simply balance the number of times every variable is negated and the number of times it is not negated. We also conduct a numerical study of the problem, and find that there are very strong pre-asymptotic effects that may be due to the fact that for small sizes exponential and factorial growth is hardly distinguishable. As a side result we compute the satisfiability threshold for balanced configurations of negations, and also the random regular satisfiability, i.e. when all variables belong to the same number of clauses. C1 [Castellana, Michele] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Castellana, Michele] Univ Paris 11, UMR8626, F-91405 Orsay, France. [Castellana, Michele] CNRS, LPTMS, F-91405 Orsay, France. [Castellana, Michele; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Castellana, Michele; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Zdeborova, Lenka] CEA Saclay, Inst Phys Theor, IPhT, F-91191 Gif Sur Yvette, France. [Zdeborova, Lenka] CNRS, URA 2306, F-91191 Gif Sur Yvette, France. RP Castellana, M (reprint author), Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. EM michele.castellana@lptms.u-psud.fr; lenka.zdeborova@cea.fr RI Zdeborova, Lenka/B-9999-2014 FU DI computational center of University Paris-Sud FX We thank Cris Moore for introducing us to the adversarial SAT problem, Antonello Scardicchio for very helpful discussions, and Guilhem Semerjian for very helpful discussions and very useful comments about a preliminary version of the paper. We also acknowledge support from the DI computational center of University Paris-Sud. NR 31 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD MAR PY 2011 AR P03023 DI 10.1088/1742-5468/2011/03/P03023 PG 22 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 744BQ UT WOS:000289068100025 ER PT J AU Czaplewski, DA Ocola, LE AF Czaplewski, David A. Ocola, Leonidas E. TI Increased pattern transfer fidelity of ZEP 520A during reactive ion etching through chemical modifications by additional dosing of the electron beam resist SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID GLASS-TRANSITION TEMPERATURE; STYRENE-ACRYLIC-ACID; HIGH-RESOLUTION; ZONE PLATES; LITHOGRAPHY; FABRICATION; IMPROVEMENT; COPOLYMER; POLYMERS; BLENDS AB This article describes a postdevelopment, additional electron exposure to enhance the etch selectivity and improve pattern transfer fidelity of an electron beam resist, ZEP 520A, through chemical changes of the resist. After the critical features were patterned and developed, the resist was exposed at 5 kV accelerating voltage to a second dose of electrons ranging from 300 to 300 000 mu C/cm(2). The etch rate of the resist decreased by approximately 25% in a CHF3 and O-2 plasma. More critically, the fidelity of the pattern transfer was improved. Infrared and Raman spectroscopies were used to characterize the resist before and after electron beam exposure for doses up to 3000 mu C/cm(2). The carbonyl bonding in the polymer showed significant changes after electron beam exposure that can be associated with improvement in the etch performance of this resist. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3562272] C1 [Czaplewski, David A.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Czaplewski, DA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dczaplewski@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank Xiao-Min Lin for aid with the IR measurements, David Gosztola for aid with the Raman measurements, and Derrick Mancini and Tijana Rajh for fruitful discussions. This article has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). This work was performed at the Center for Nanoscale Materials, Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 5 Z9 5 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2011 VL 29 IS 2 AR 021601 DI 10.1116/1.3562272 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 745LD UT WOS:000289166000037 ER PT J AU Persaud, A Allen, I Dickinson, MR Schenkel, T Kapadia, R Takei, K Javey, A AF Persaud, Arun Allen, Ian Dickinson, Michael R. Schenkel, Thomas Kapadia, Rehan Takei, Kuniharu Javey, Ali TI Development of a compact neutron source based on field ionization processes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID EMISSION PROPERTIES; DESORPTION AB The authors report on the use of carbon nanofiber nanoemitters to ionize deuterium atoms for the generation of neutrons in a deuterium-deuterium reaction in a preloaded target. Acceleration voltages in the range of 50-80 kV are used. Field emission of electrons is investigated to characterize the emitters. The experimental setup and sample preparation are described and first data of neutron production are presented. Ongoing experiments to increase neutron production yields by optimizing the field emitter geometry and surface conditions are discussed. (c) 2011 American Vacuum Society. [DOI: 10.1116/1.3531929] C1 [Persaud, Arun; Allen, Ian; Dickinson, Michael R.; Schenkel, Thomas] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kapadia, Rehan; Takei, Kuniharu; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Persaud, A (reprint author), EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM apersaud@lbl.gov RI Kapadia, Rehan/B-4100-2013; Javey, Ali/B-4818-2013 OI Kapadia, Rehan/0000-0002-7611-0551; FU U.S. Department of Energy; NNSA Office of Nonproliferation Research and Engineering [NA-22]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The authors would like to thank Jeff Bramble and Dave Rodgers for their help with calibrating the neutron detector, Dave Grothe for help with the simulations, and Kin Man Yu for the ERDA measurement. This work was performed under the auspices of the U.S. Department of Energy, NNSA Office of Nonproliferation Research and Engineering (NA-22) by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 12 TC 5 Z9 5 U1 0 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD MAR PY 2011 VL 29 IS 2 AR 02B107 DI 10.1116/1.3531929 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 745LD UT WOS:000289166000053 ER PT J AU Chen, W Boehlert, CJ AF Chen, W. Boehlert, C. J. TI Texture induced anisotropy in extruded Ti-6Al-4V-xB alloys SO MATERIALS CHARACTERIZATION LA English DT Article DE Boron; Titanium alloys; Texture; Anisotropy; Tensile test ID NEUTRON-DIFFRACTION; COMPOSITES; DEFORMATION; BEHAVIOR; STRESS AB The tensile properties of extruded Ti-6Al-4V-xB alloys (wt.%) were evaluated in an orientation perpendicular to the extrusion direction at room-temperature and 455 degrees C. The extrusion process preferentially oriented the basal plane of alpha-Ti perpendicular to the extrusion axis. This strong alpha-phase texture resulted in tensile anisotropy. The tensile strength in the transverse orientation was lower than that in the longitudinal orientation, but it remained greater than that for the as-cast Ti-6Al-4V. The TiB phase was aligned in the extrusion direction and increased B content was found to weaken the alpha-phase texture, causing a weakening of tensile anisotropy. Debonding was not observed during the tensile tests in the transverse orientation, indicating a strong interface bond exists between the TiB phase and the two-phase (alpha + beta) Ti-6Al-4V matrix. (C) 2011 Elsevier Inc. All rights reserved. C1 [Chen, W.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Chen, W.; Boehlert, C. J.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. RP Chen, W (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM chenwei@ornl.gov RI Chen, Wei/C-1110-2011 FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy FX The authors are grateful to Dr. S. Tamirisakandala (FMW Composites, Inc.) and Dr. D.B. Miracle (Air Force Research Laboratory) for donating the material used in this study as well as their helpful technical support and guidance. Some of this research work was performed at the Oak Ridge National Laboratory (ORNL) SHaRE User Facility supported by the Division of Scientific User Facilities, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. In particular, Dr. Andrew Payzant and Dr. Yukinori Yamamoto of ORNL are acknowledged for their assistance in performing XRD work and sample preparation. NR 18 TC 12 Z9 13 U1 2 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1044-5803 EI 1873-4189 J9 MATER CHARACT JI Mater. Charact. PD MAR PY 2011 VL 62 IS 3 BP 333 EP 339 DI 10.1016/j.matchar.2011.01.008 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Materials Science, Characterization & Testing SC Materials Science; Metallurgy & Metallurgical Engineering GA 747MC UT WOS:000289323000012 ER PT J AU Tang, Y Yeh, CS AF Tang, Yu Yeh, Chau-Shioung TI A note on the seismic response of rigid cantilever retaining walls SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB The elasticity based dynamic response of retaining walls, attached to a semi-infinite elastic backfill stratum, has yet to be solved exactly. There are three analytical approximation approaches in the literature to simplify the equations of motion. The solutions based on these approaches can be numerically implemented. However, the frequency range for which these solutions may provide accurate results has not yet been established. In this paper, the exact frequency equation and frequency spectra for the problem under free vibration are presented first, and the three simplified equations of motion are then reviewed. Next, the exact frequency spectra are then used to assess the frequency range of applicability of the three approximation approaches. It is concluded that for all practical values of Poisson's ratio, all three approaches provide a reasonable approximation to the exact solution in the low frequency range of the first mode. The first mode response of the horizontal and rocking impedance functions, for the rigid retaining wall are then derived, based on the simplified equations of motion, and the numerical data are presented for the low frequency range identified. Published by Elsevier B.V. C1 [Tang, Yu] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Yeh, Chau-Shioung] Natl Taiwan Univ, Inst Appl Mech, Taipei, Taiwan. RP Tang, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave,Bldg 208, Argonne, IL 60439 USA. EM yutang@anl.gov; csyeh@spring.iam.ntu.edu.tw NR 7 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD MAR PY 2011 VL 241 IS 3 BP 693 EP 699 DI 10.1016/j.nucengdes.2011.01.010 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 746BK UT WOS:000289215800022 ER PT J AU Hennelly, SP Sanbonmatsu, KY AF Hennelly, Scott P. Sanbonmatsu, Karissa Y. TI Tertiary contacts control switching of the SAM-I riboswitch SO NUCLEIC ACIDS RESEARCH LA English DT Article ID TRANSCRIPTION TERMINATION CONTROL; CONTROLS GENE-EXPRESSION; MESSENGER-RNA STRUCTURE; S-ADENOSYLMETHIONINE; SENSING RIBOSWITCH; CORE HELICES; TURN MOTIF; BINDING; BACTERIA; APTAMER AB Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find that the stabilization of key tertiary contacts controls both aptamer domain collapse and the switching of the SAM-I riboswitch from the aptamer to the expression platform conformation. Our experiments demonstrate that SAM binding induces structural alterations that indirectly stabilize the aptamer domain, preventing switching toward the expression platform conformer. These results, combined with a variety of structural probing experiments performed in this study, show that the collapse and stabilization of the aptamer domain are cooperative, relying on the sum of key tertiary contacts and the bimodal stability of the kink-turn motif for function. Here, ligand binding serves to shift the equilibrium of aptamer domain structures from a more open toward a more stable collapsed form by stabilizing tertiary interactions. Our data show that the thermodynamic landscape for riboswitch operation is finely balanced to allow large conformational rearrangements to be controlled by small molecule interactions. C1 [Hennelly, Scott P.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM kys@lanl.gov FU Laboratory Directed Research and Development; Los Alamos National Laboratory FX Laboratory Directed Research and Development; Exploratory Research program at Los Alamos National Laboratory. Funding for open access charge: Los Alamos National Laboratory LDRD-ER program funds. NR 35 TC 22 Z9 22 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAR PY 2011 VL 39 IS 6 BP 2416 EP 2431 DI 10.1093/nar/gkq1096 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 745LH UT WOS:000289166400044 PM 21097777 ER PT J AU Bill, M O'Dogherty, L Baumgartner, PO AF Bill, Markus O'Dogherty, Luis Baumgartner, Peter O. TI DYNAMICS OF A PALEOECOSYSTEM REEF ASSOCIATED WITH OCEANIC CHANGE IN CARBONATE SEDIMENTARY REGIME AND CARBON CYCLING (OXFORDIAN, SWISS JURA) SO PALAIOS LA English DT Article ID PARIS BASIN FRANCE; ISOTOPE STRATIGRAPHY; CORAL-REEF; COMMUNITY STRUCTURE; RUSSIAN PLATFORM; OXYGEN-ISOTOPE; BRITISH-ISLES; FOSSIL WOOD; LONG-TERM; MIDDLE AB Herein we report an analysis of an Oxfordian (Upper Jurassic) paleoreef located in the Swiss Jura Mountains. The paleoreef is located in a Middle Oxfordian transitional interval in which sedimentation switched from marl-dominated to carbonate-dominated deposits. The paleoecosystem is composed of four successive fossil communities characterized by microsolenid corals and organisms that specialized in suspension feeding. Carbon isotopes measured from echinoid spine carbonates exhibit a positive trend from similar to 1.0 parts per thousand to 2.5 parts per thousand in delta(13)C values from the base to the top of the paleoreef. Comparison of delta(13)C curves with organic matter and belemnites shows different patterns not compatible with a global variation of the carbon cycle. Similar fossil assemblages and stratigraphic sequences identical in age are found along the continental margin of the Tethys-Atlantic Ocean. This biolithostratigraphic succession corresponds to increasing delta(13)C values of marine and biogenic carbonates, to the transition from marl-dominated to carbonate-dominated deposits, and to the development of carbonate platforms, which together suggest a change in the carbon cycling regime within the Tethys-Atlantic Ocean system. C1 [Bill, Markus] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [O'Dogherty, Luis] CASEM, Dept Ciencias Tierra, Puerto Real 11510, Spain. [Baumgartner, Peter O.] Univ Lausanne, Inst Geol & Paleontol, CH-1015 Lausanne, Switzerland. RP Bill, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mail Stop 70A 4418, Berkeley, CA 94720 USA. EM mbill@lbl.gov RI O'Dogherty, Luis/M-7664-2013; Bill, Markus/D-8478-2013 OI O'Dogherty, Luis/0000-0001-7229-2370; Bill, Markus/0000-0001-7002-2174 NR 101 TC 2 Z9 2 U1 0 U2 14 PU SEPM-SOC SEDIMENTARY GEOLOGY PI TULSA PA 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA SN 0883-1351 J9 PALAIOS JI Palaios PD MAR-APR PY 2011 VL 26 IS 3-4 BP 197 EP 211 DI 10.2110/palo.2010.p10-063r PG 15 WC Geology; Paleontology SC Geology; Paleontology GA 744XY UT WOS:000289129700009 ER PT J AU Voytchev, M Ambrosi, P Behrens, R Chiaro, P AF Voytchev, M. Ambrosi, P. Behrens, R. Chiaro, P. TI IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT European conference on individual monitoring of ionising radiation (IM) CY MAR 08-12, 2010 CL Athens, GREECE AB This paper presents IEC/SC 45B 'Radiation protection instrumentation' and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2. C1 [Voytchev, M.] IRSN DSU SERAC BIREN, F-91192 Gif Sur Yvette, France. [Ambrosi, P.; Behrens, R.] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany. [Chiaro, P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Voytchev, M (reprint author), IRSN DSU SERAC BIREN, BP 68, F-91192 Gif Sur Yvette, France. EM miroslav.voytchev@irsn.fr NR 8 TC 1 Z9 1 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2011 VL 144 IS 1-4 BP 33 EP 36 DI 10.1093/rpd/ncq296 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 745KL UT WOS:000289164200006 PM 21098629 ER PT J AU Lopez, MA Broggio, D Capello, K Cardenas-Mendez, E El-Faramawy, N Franck, D James, AC Kramer, GH Lacerenza, G Lynch, TP Navarro, JF Navarro, T Perez, B Ruhm, W Tolmachev, SY Weitzenegger, E AF Lopez, M. A. Broggio, D. Capello, K. Cardenas-Mendez, E. El-Faramawy, N. Franck, D. James, A. C. Kramer, G. H. Lacerenza, G. Lynch, T. P. Navarro, J. F. Navarro, T. Perez, B. Ruehm, W. Tolmachev, S. Y. Weitzenegger, E. TI EURADOS INTERCOMPARISON ON MEASUREMENTS AND MONTE CARLO MODELLING FOR THE ASSESSMENT OF AMERICIUM IN A USTUR LEG PHANTOM SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT European conference on individual monitoring of ionising radiation (IM) CY MAR 08-12, 2010 CL Athens, GREECE ID IN-VIVO MEASUREMENTS; KNEE AB A collaboration of the EURADOS working group on 'Internal Dosimetry' and the United States Transuranium and Uranium Registries (USTUR) has taken place to carry out an intercomparison on measurements and Monte Carlo modelling determining americium deposited in the bone of a USTUR leg phantom. Preliminary results and conclusions of this intercomparison exercise are presented here. C1 [Lopez, M. A.; Lacerenza, G.; Navarro, J. F.; Navarro, T.; Perez, B.] CIEMAT, Dept Medio Ambiente, E-28040 Madrid, Spain. [Broggio, D.; Franck, D.] DRPH SDI LEDI, Internal Dose Assessment Lab, Inst Radioprotect & Surete Nucl, F-92262 Fontenay Aux Roses, France. [Capello, K.; Cardenas-Mendez, E.; Kramer, G. H.] Radiat Protect Bur, Radiat Hlth Assessment Div, Human Monitoring Lab, Ottawa, ON K1A 1C1, Canada. [El-Faramawy, N.; Ruehm, W.; Weitzenegger, E.] Helmholtz Zentrum Munchen, Inst Radiat Protect, German Res Ctr Environm Hlth, D-85764 Neuherberg, Germany. [James, A. C.; Tolmachev, S. Y.] Washington State Univ, Coll Pharm, US Transuranium & Uranium Registries, Richland, WA 99354 USA. [Lynch, T. P.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Lopez, MA (reprint author), CIEMAT, Dept Medio Ambiente, Avda Complutense 22, E-28040 Madrid, Spain. EM ma.lopez@ciemat.es RI Tolmachev, Sergei/C-1397-2011; WSU, USTUR/I-1056-2013 OI Tolmachev, Sergei/0000-0003-0077-106X; NR 5 TC 6 Z9 7 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2011 VL 144 IS 1-4 BP 295 EP 299 DI 10.1093/rpd/ncq304 PG 5 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 745KL UT WOS:000289164200064 PM 21076141 ER PT J AU Nosske, D Blanchardon, E Bolch, WE Breustedt, B Eckerman, KF Giussani, A Harrison, JD Klein, W Leggett, RW Lopez, MA Luciani, A Zankl, M AF Nosske, D. Blanchardon, E. Bolch, W. E. Breustedt, B. Eckerman, K. F. Giussani, A. Harrison, J. D. Klein, W. Leggett, R. W. Lopez, M. A. Luciani, A. Zankl, M. TI NEW DEVELOPMENTS IN INTERNAL DOSIMETRY MODELS SO RADIATION PROTECTION DOSIMETRY LA English DT Article; Proceedings Paper CT European conference on individual monitoring of ionising radiation (IM) CY MAR 08-12, 2010 CL Athens, GREECE ID BIOKINETIC MODEL; PLUTONIUM; CONRAD AB This paper describes new biokinetic and dosimetric models, especially those being developed by ICRP which will be used in the forthcoming documents on Occupational Intakes of Radionuclides. It also presents the results of a working group within the European project CONRAD which is being continued within EURADOS. This group is implementing the new models, performing quality assurance of the model implementation (including their description) and giving guidance to the scientific community on the application of the models for individual dose assessment. C1 [Nosske, D.] Fed Off Radiat Protect, D-85764 Oberschleissheim, Germany. [Blanchardon, E.] DRPH SDI LEDI, IRSN, F-92262 Fontenay Aux Roses, France. [Bolch, W. E.] Univ Florida, Dept Nucl & Radiol Engn, Gainesville, FL USA. [Breustedt, B.; Klein, W.] Karlsruhe Inst Technol, Inst Radiat Res, D-76344 Eggenstein Leopoldshafen, Germany. [Eckerman, K. F.; Leggett, R. W.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Giussani, A.; Zankl, M.] Helmholtz Zentrum Munchen, Inst Radiat Protect, Natl Res Ctr Environm Hlth, D-85764 Neuherberg, Germany. [Harrison, J. D.] Hlth Protect Agcy, Didcot OX11 0RQ, Oxon, England. [Lopez, M. A.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Luciani, A.] ENEA, Radiat Protect Inst, I-40136 Bologna, Italy. RP Nosske, D (reprint author), Fed Off Radiat Protect, Ingolstadter Landstr 1, D-85764 Oberschleissheim, Germany. EM dnosske@bfs.de RI Zankl, Maria/M-7348-2014 OI Zankl, Maria/0000-0003-4743-970X FU European Commission [FP6-12684]; European Radiation Dosimetry Group (EURADOS) FX This work was partly financially supported by the European Commission, contract number FP6-12684, EURATOM 2005-2008, and by the European Radiation Dosimetry Group (EURADOS). NR 26 TC 2 Z9 2 U1 0 U2 9 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD MAR PY 2011 VL 144 IS 1-4 BP 314 EP 320 DI 10.1093/rpd/ncq311 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 745KL UT WOS:000289164200068 PM 21036807 ER PT J AU Dameron, AA Miller, DC George, N To, B Ginley, DS Simpson, L AF Dameron, Arrelaine A. Miller, David C. George, Nathan To, Bobby Ginley, David S. Simpson, Lin TI Tensile strain and water vapor transport testing of flexible, conductive and transparent indium-zinc-oxide/silver/indium-zinc-oxide thin films SO THIN SOLID FILMS LA English DT Article DE Indium zinc oxide; Water vapor transmission rate; Strain; Toughness; Adhesion; Sputtering; Laminate ID ATOMIC LAYER DEPOSITION; GAS-DIFFUSION BARRIERS; LIGHT-EMITTING DEVICES; CRACKING; INDENTATION; POLYMERS; AL2O3; NANOINDENTATION; PERMEATION; INTERFACE AB Thin film laminates composed of sputtered indium zinc oxide and silver, optimized for conductance and transparency, were tested for water vapor permeation as well as mechanical durability in tension. The similar to 82 nm thick optimized indium-zinc-oxide/silver/indium-zinc-oxide (IZO/Ag/IZO) films were >80% transparent in the visible range (400 nm-700 nm) with measured sheet resistances less than 5 Omega/sq. The water vapor permeation measurements using Ca test methods at several temperature/humidity conditions indicated that the addition of the thin Ag layer provided little improvement relative to a single indium-zinc-oxide (IZO) layer of similar thickness. However, the critical strain in bending tests for IZO/Ag/IZO films was improved compared to IZO films. The modulus (E similar to 113 GPa), hardness (H similar to 7 GPa), fracture toughness (K(IC) similar to 1.1 MPa.m(0.5)), and interfacial shear ("adhesion") (tau(c)similar to 16 MPa) of/related to IZO, and measured by nanoindention are consistent with other brittle ceramic thin film materials. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dameron, Arrelaine A.; Miller, David C.; George, Nathan; To, Bobby; Ginley, David S.; Simpson, Lin] Natl Renewable Energy Lab, Golden, CO 80305 USA. RP Dameron, AA (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80305 USA. EM arrelaine.dameron@nrel.gov FU Department of Energy [DE AC 36 08G028308] FX The authors gratefully acknowledge the Department of Energy for project funding under contract #DE AC 36 08G028308 and Michael Kempe, Matthew Reese, Calvin Curtis, Joshua Martin and Thomas Moricone for their efforts toward barriers testing. NR 55 TC 7 Z9 8 U1 0 U2 32 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2011 VL 519 IS 10 BP 3177 EP 3184 DI 10.1016/j.tsf.2011.01.252 PG 8 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 745OH UT WOS:000289174300031 ER PT J AU Zeng, QF Eryilmaz, O Erdemir, A AF Zeng, Qunfeng Eryilmaz, Osman Erdemir, Ali TI Analysis of plastic deformation in diamond like carbon films-steel substrate system with tribological tests SO THIN SOLID FILMS LA English DT Article DE Diamond like carbon films; Magnetron sputtering; Indentation; Plastic deformation; Tribological properties ID FINITE-ELEMENT-ANALYSIS; DLC COATINGS; RAMAN-SPECTROSCOPY; PART II; INDENTATION; BEHAVIOR; CONTACT; NANOINDENTATION; FRICTION; HYDROGEN AB The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen. DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zeng, Qunfeng] Xi An Jiao Tong Univ, Theory Lubricat & Bearing Inst, Xian 710049, Peoples R China. [Eryilmaz, Osman; Erdemir, Ali] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Zeng, QF (reprint author), Xi An Jiao Tong Univ, Theory Lubricat & Bearing Inst, Xian 710049, Peoples R China. EM zengqf1949@gmail.com RI Zeng, Qunfeng/J-2836-2013 FU Argonne National Laboratory; China Scholarship Council FX This work was supported by the Argonne National Laboratory and China Scholarship Council. NR 30 TC 12 Z9 19 U1 1 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD MAR 1 PY 2011 VL 519 IS 10 BP 3203 EP 3212 DI 10.1016/j.tsf.2011.01.102 PG 10 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 745OH UT WOS:000289174300035 ER PT J AU Hatfield, JL Boote, KJ Kimball, BA Ziska, LH Izaurralde, RC Ort, D Thomson, AM Wolfe, D AF Hatfield, J. L. Boote, K. J. Kimball, B. A. Ziska, L. H. Izaurralde, R. C. Ort, D. Thomson, A. M. Wolfe, D. TI Climate Impacts on Agriculture: Implications for Crop Production SO AGRONOMY JOURNAL LA English DT Article ID AIR CO2 ENRICHMENT; ATMOSPHERIC CARBON-DIOXIDE; WATER-USE EFFICIENCY; PHASEOLUS-VULGARIS L.; SOLANUM-TUBEROSUM L.; ROTTBOELLIA-COCHINCHINENSIS INTERFERENCE; ENDOSPERM CELL-DIVISION; HIGH-TEMPERATURE STRESS; SOYBEAN GLYCINE-MAX; LONG-TERM EXPOSURE AB Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 yr present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean [Glycine max (L.) Merr.] could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency (WUE); however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population. C1 [Hatfield, J. L.] Natl Lab Agr & Environm, Ames, IA 50011 USA. [Boote, K. J.] Univ Florida, Agron Dep, Gainesville, FL 32611 USA. [Kimball, B. A.] USDA ARS, US Arid Land Agr Res Ctr, Maricopa, AZ 85138 USA. [Ziska, L. H.] USDA, Crop Syst & Global Change Lab, Beltsville, MD 20705 USA. [Izaurralde, R. C.; Thomson, A. M.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Ort, D.] Univ Illinois, USDA ARS, Photosynth Res Unit, Urbana, IL 61801 USA. [Wolfe, D.] Cornell Univ, Dep Hort, Ithaca, NY 14853 USA. RP Hatfield, JL (reprint author), Natl Lab Agr & Environm, Ames, IA 50011 USA. EM jerry.hatfield@ars.usda.gov RI Thomson, Allison/B-1254-2010; Izaurralde, Roberto/E-5826-2012; OI Boote, Kenneth/0000-0002-1358-5496 NR 225 TC 201 Z9 210 U1 34 U2 278 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 EI 1435-0645 J9 AGRON J JI Agron. J. PD MAR-APR PY 2011 VL 103 IS 2 BP 351 EP 370 DI 10.2134/agronj2010.0303 PG 20 WC Agronomy SC Agriculture GA 740XZ UT WOS:000288829000007 ER PT J AU Izaurralde, RC Thomson, AM Morgan, JA Fay, PA Polley, HW Hatfield, JL AF Izaurralde, R. C. Thomson, A. M. Morgan, J. A. Fay, P. A. Polley, H. W. Hatfield, J. L. TI Climate Impacts on Agriculture: Implications for Forage and Rangeland Production SO AGRONOMY JOURNAL LA English DT Article ID ELEVATED ATMOSPHERIC CO2; GLOBAL ENVIRONMENTAL-CHANGES; TALLGRASS PRAIRIE ECOSYSTEM; ALTERS SPECIES COMPOSITION; CARBON-DIOXIDE ENRICHMENT; PLANT COMMUNITY STRUCTURE; HURLEY PASTURE MODEL; SHORTGRASS STEPPE; TEMPERATE GRASSLAND; LITTER QUALITY AB Projections of temperature and precipitation patterns across the United States during the next 50 yr anticipate a 1.5 to 2 degrees C warming and a slight increase in precipitation as a result of global climate change. There have been relatively few studies of climate change effects on pasture and rangeland (grazingland) species compared to those on crop species, despite the economic and ecological importance of the former. Here we review the literature on responses of pastureland and rangeland species to rising atmospheric CO(2) and climate change (temperature and precipitation) and discuss plant and management factors likely to influence pastureland and rangeland responses to change (e.g., community composition, plant competition, perennial growth habit, seasonal productivity, and management methods). Overall, the response of pastureland and rangeland species to increased [CO(2)] is consistent with the general responses of C(3) and C(4) vegetation, although exceptions exist. Both pastureland and rangeland species may experience accelerated metabolism and advanced development with rising temperature, often resulting in a longer growing season. However, soil resources will often constrain temperature effects. In general, it is expected that increases in [CO(2)] and precipitation will enhance rangeland net primary production (NPP) whereas increased air temperatures will either increase or decrease NPP. Much of the uncertainty in predicting how pastureland and rangeland species will respond to climate change is due to uncertainty in future projections of precipitation, both globally and regionally. This review reveals the need for comprehensive studies of climate change impacts on pastureland and rangeland ecosystems that include an assessment of the mediating effects of grazing regimes and mutualistic relationships (e.g., plant roots-nematodes; N-fixing organisms) as well as changes in water, carbon, and nutrient cycling. C1 [Hatfield, J. L.] USDA ARS, Natl Lab Agr & Environm, Ames, IA 50011 USA. [Izaurralde, R. C.; Thomson, A. M.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Izaurralde, R. C.; Thomson, A. M.] Univ Maryland, College Pk, MD 20740 USA. [Morgan, J. A.] USDA ARS, Crops Res Lab, Ft Collins, CO 80526 USA. [Fay, P. A.; Polley, H. W.] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA. RP Hatfield, JL (reprint author), USDA ARS, Natl Lab Agr & Environm, 2110 Univ Blvd, Ames, IA 50011 USA. EM jerry.hatfield@ars.usda.gov RI Thomson, Allison/B-1254-2010; Izaurralde, Roberto/E-5826-2012; OI Fay, Philip/0000-0002-8291-6316 NR 106 TC 30 Z9 32 U1 6 U2 71 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 J9 AGRON J JI Agron. J. PD MAR-APR PY 2011 VL 103 IS 2 BP 371 EP 381 DI 10.2134/agronj2010.0304 PG 11 WC Agronomy SC Agriculture GA 740XZ UT WOS:000288829000008 ER PT J AU Abreu, P Aglietta, M Ahn, EJ Albuquerque, IFM Allard, D Allekotte, I Allen, J Allison, P Castillo, JA Alvarez-Muniz, J Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticic, T Aramo, C Arganda, E Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Beatty, JJ Becker, BR Becker, KH Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chauvin, J Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Cotti, U Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L Deligny, O Dembinski, H Denkiewicz, A Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, J Engel, R Erdmann, M Escobar, CO Etchegoyen, A Luis, PFS Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Ferrero, A Fick, B Filevich, A Filipcic, A Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fuchs, B Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Gascon, A Gemmeke, H Gesterling, K Ghia, PL Giaccari, U Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Gonzalez, D Gonzalez, JG Gookin, B Gora, D Gorgi, A Gouffon, P Gozzini, SR Grashorn, E Grebe, S Griffith, N Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Hague, JD Hansen, P Harari, D Harmsma, S Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Holmes, VC Homola, P Horandel, JR Horneffer, A Hrabovsky, M Huege, T Insolia, A Ionita, F Italiano, A Jiraskova, S Kadija, K Kampert, KH Karhan, P Karova, T Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C Lautridou, P Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lucero, A Ludwig, M Lyberis, H Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Mertsch, P Meurer, C Micanovic, S Micheletti, MI Miller, W Miramonti, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Moura, CA Mueller, S Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Nhung, PT Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parra, A Parrisius, J Parsons, RD Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Phan, N Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Risse, M Ristori, P Rivera, H Riviere, C Rizi, V Robledo, C de Carvalho, WR Rodriguez, G Martino, JR Rojo, JR Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruhle, C Salamida, F Salazar, H Salina, G Sanchez, F Santander, M Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Schmidt, T Scholten, O Schoorlemmer, H Schovancova, JJ Schovanek, P Schroeder, F Schulte, S Schuster, D Sciutto, SJ Scuderi, M Segreto, A Semikoz, D Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stapleton, J Stasielak, J Stephan, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tamashiro, A Tapia, A Tascau, O Tcaciuc, R Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tiwari, DK Tkaczyk, W Peixoto, CJT Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Cardenas, BV Vazquez, JR Vazquez, RA Veberic, D Verzi, V Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Warner, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Westerhoff, S Whelan, BJ Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Winders, L Winnick, MG Wommer, M Wundheiler, B Yamamoto, T Younk, P Yuan, G Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Ziolkowski, M AF Abreu, P. Aglietta, M. Ahn, E. J. Albuquerque, I. F. M. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez Castillo, J. Alvarez-Muniz, J. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticic, T. Aramo, C. Arganda, E. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Beatty, J. J. Becker, B. R. Becker, K. H. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Cotti, U. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. Deligny, O. Dembinski, H. Denkiewicz, A. Di Giulio, C. Diaz, J. C. Diaz Castro, M. L. Diep, P. N. Dobrigkeit, C. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Etchegoyen, A. Luis, P. Facal San Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fuchs, B. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Gascon, A. Gemmeke, H. Gesterling, K. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Gonzalez, D. Gonzalez, J. G. Gookin, B. Gora, D. Gorgi, A. Gouffon, P. Gozzini, S. R. Grashorn, E. Grebe, S. Griffith, N. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Hague, J. D. Hansen, P. Harari, D. Harmsma, S. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Holmes, V. C. Homola, P. Horandel, J. R. Horneffer, A. Hrabovsky, M. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jiraskova, S. Kadija, K. Kampert, K. H. Karhan, P. Karova, T. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D. -H. Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lucero, A. Ludwig, M. Lyberis, H. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Mertsch, P. Meurer, C. Micanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mueller, S. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Nhung, P. T. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parra, A. Parrisius, J. Parsons, R. D. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Phan, N. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rivera, H. Riviere, C. Rizi, V. Robledo, C. Rodrigues de Carvalho, W. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Salamida, F. Salazar, H. Salina, G. Sanchez, F. Santander, M. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Schmidt, T. Scholten, O. Schoorlemmer, H. Schovancova, J. J. Schovanek, P. Schroeder, F. Schulte, S. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Semikoz, D. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stapleton, J. Stasielak, J. Stephan, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tamashiro, A. Tapia, A. Tascau, O. Tcaciuc, R. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tiwari, D. K. Tkaczyk, W. Todero Peixoto, C. J. Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Cardenas, B. Vargas Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Warner, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Winders, L. Winnick, M. G. Wommer, M. Wundheiler, B. Yamamoto, T. Younk, P. Yuan, G. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Ziolkowski, M. CA Pierre Auger Collaboration TI Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory SO ASTROPARTICLE PHYSICS LA English DT Article DE Ultra-high energy cosmic rays; Large scale anisotropies; Pierre Auger Observatory ID ENERGY-SPECTRUM; SURFACE DETECTOR; ANISOTROPY; ARRAY; ORIGIN AB We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved. C1 [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Inst Super Tecn, Lisbon, Portugal. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Parizot, E.; Ponce, V. H.; Roulet, E.; Semikoz, D.; Tristram, G.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Parizot, E.; Ponce, V. H.; Roulet, E.; Semikoz, D.; Tristram, G.] Consejo Nacl Invest Cient & Tecn, UNCuyo, CNEA, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Cordier, A.; Denkiewicz, A.; Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Lucero, A.; Melo, D.; Micheletti, M. I.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.; Zepeda, A.] FRBA, UTN, CONICET, Ctr Atom Constituyentes,Comis Nacl Energia Atom, Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.; Zaw, I.] CITEFA, Ctr Invest Laseres & Aplicac, Villa Martelli, Buenos Aires, Argentina. [Dasso, S.; Guardincerri, Y.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, P.; Tiffenberg, J.; Tueros, M.; Zaw, I.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.; Tueros, M.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Rovero, A. C.; Supanitsky, A. D.; Tamashiro, A.] UBA, CONICET, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [De La Vega, G.; Garcia, B.; Videla, M.; Will, M.] Natl Technol Univ, Fac Mendoza, CONICET, CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Santander, M.; Sato, R.; Squartini, R.] Pierre Auger So Observ, Malargue, Argentina. [Avila, G.] Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; dos Anjos, J. C.; Fuchs, B.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Diaz Castro, M. L.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, BR-22453 Rio De Janeiro, Brazil. [de Souza, V.; Todero Peixoto, C. J.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Gouffon, P.; Rodrigues de Carvalho, W.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Almeida, R. M.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Selmi-Dei, D. Pakk] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Feira De Santana, Bahia, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Moura, C. A.; Todero Peixoto, C. J.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [de Almeida, R. M.] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Karova, T.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J. J.; Schovanek, P.; Smida, R.; Travnicek, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hrabovsky, M.; Rossler, T.] Palacky Univ, RCATM, CR-77147 Olomouc, Czech Republic. [Dong, P. N.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Allard, D.; Creusot, A.; Decerprit, G.; Lachaud, C.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Orsay, France. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Chauvin, J.; Koang, D. -H.; Lebrun, D.; Montanet, F.; Riviere, C.; Stutz, A.] Univ Grenoble 1, CNRS, IN2P3, LPSC, Grenoble, France. [Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] SUBATECH, CNRS, IN2P3, Nantes, France. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany. [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Valino, I.; Weindl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Ave, M.; Bluemer, H.; Caballero-Mora, K. S.; Dembinski, H.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.; Parrisius, J.; Schmidt, T.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, D-5300 Bonn, Germany. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Mueller, G.; Nelles, A.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Kulbartz, J. K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Froehlich, U.; Pontz, M.; Risse, M.; Settimo, M.; Tcaciuc, R.; Younk, P.; Ziolkowski, M.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.; Settimo, M.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Naples Federico 2, Naples, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Insolia, A.; Italiano, A.; Pirronello, V.; Rodriguez Martino, J.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Marsella, G.; Perrone, L.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [La Rosa, G.; Segreto, A.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Morello, C.; Navarra, G.] Univ Turin, Ist Astrofis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Laquila, Italy. [Tegolo, D.] Univ Palermo, Catania, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Denkiewicz, A.] IPN CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Cotti, U.; Marquez Falcon, H. R.; Tiwari, D. K.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; De Donato, C.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Supanitsky, A. D.; Valdes Galicia, J. F.; Cardenas, B. Vargas] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfysisch Versneller Inst, Groningen, Netherlands. [Coppens, J.; Harmsma, S.; Petrovic, J.; Timmermans, C.] NIKHEF, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Creusot, A.; Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Navarro, J. L.; Navas, S.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Pelayo, R.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez-Cabo, I.; Tueros, M.; Valino, I.; Vazquez, R. A.; Zas, E.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Mertsch, P.; Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Gozzini, S. R.; Knapp, J.; Parsons, R. D.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Thomas, D.; Warner, D.; Younk, P.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Albuquerque, I. F. M.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Chou, A.; Farrar, G.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Griffith, N.; Morris, C.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] Southern Univ, Baton Rouge, LA USA. [Bohacova, M.; Cronin, J.; Luis, P. Facal San; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gesterling, K.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.; Phan, N.] Univ New Mexico, Albuquerque, NM 87131 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Winders, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] INST, Hanoi, Vietnam. RP Abreu, P (reprint author), LIP, P-1000 Lisbon, Portugal. RI Pastor, Sergio/J-6902-2014; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; de souza, Vitor/D-1381-2012; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Shellard, Ronald/G-4825-2012; Aramo, Carla/D-4317-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Fauth, Anderson/F-9570-2012; Todero Peixoto, Carlos Jose/G-3873-2012; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Assis, Pedro/D-9062-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Pech, Miroslav/G-5760-2014; Garcia Pinto, Diego/J-6724-2014; Petrolini, Alessandro/H-3782-2011; Albuquerque, Ivone/H-4645-2012; Muller, Marcio Aparecido/H-9112-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Falcke, Heino/H-5262-2012; Ebr, Jan/H-8319-2012; Anjos, Joao/C-8335-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; OI Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Shellard, Ronald/0000-0002-2983-1815; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Assis, Pedro/0000-0001-7765-3606; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Ridky, Jan/0000-0001-6697-1393; Garcia Pinto, Diego/0000-0003-1348-6735; Petrolini, Alessandro/0000-0003-0222-7594; Albuquerque, Ivone/0000-0001-7328-0136; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Ebr, Jan/0000-0001-8807-6162; Goncalves, Patricia /0000-0003-2042-3759; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Sigl, Guenter/0000-0002-4396-645X; Salamida, Francesco/0000-0002-9306-8447; Segreto, Alberto/0000-0001-7341-6603; La Rosa, Giovanni/0000-0002-3931-2269; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; Gomez Berisso, Mariano/0000-0001-5530-0180; Ravignani, Diego/0000-0001-7410-8522; Cataldi, Gabriella/0000-0001-8066-7718; Aglietta, Marco/0000-0001-8354-5388; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; de Jong, Sijbrand/0000-0002-3120-3367; Marsella, Giovanni/0000-0002-3152-8874; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Knapp, Johannes/0000-0003-1519-1383; Tiwari, Dhirendra Kumar/0000-0002-6754-3398; Mertsch, Philipp/0000-0002-2197-3421; Zamorano, Bruno/0000-0002-4286-2835; Petrera, Sergio/0000-0002-6029-1255; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246 NR 40 TC 42 Z9 43 U1 0 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2011 VL 34 IS 8 BP 627 EP 639 DI 10.1016/j.astropartphys.2010.12.007 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 742GV UT WOS:000288930200007 ER PT J AU Andreotti, E Arnaboldi, C Avignone, FT Balata, M Bandac, I Barucci, M Beeman, JW Bellini, F Brofferio, C Bryant, A Bucci, C Canonica, L Capelli, S Carbone, L Carrettoni, M Clemenza, M Cremonesi, O Creswick, RJ Di Domizio, S Dolinski, MJ Ejzak, L Faccini, R Farach, HA Ferri, E Fiorini, E Foggetta, L Giachero, A Gironi, L Giuliani, A Gorla, P Guardincerri, E Gutierrez, TD Haller, EE Kazkaz, K Kraft, S Kogler, L Maiano, C Maruyama, RH Martinez, C Martinez, M Newman, S Nisi, S Nones, C Norman, EB Nucciotti, A Orio, F Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pedretti, M Pessina, G Pirro, S Previtali, E Risegari, L Rosenfeld, C Rusconi, C Salvioni, C Sangiorgio, S Schaeffer, D Scielzo, ND Sisti, M Smith, AR Tomei, C Ventura, G Vignati, M AF Andreotti, E. Arnaboldi, C. Avignone, F. T., III Balata, M. Bandac, I. Barucci, M. Beeman, J. W. Bellini, F. Brofferio, C. Bryant, A. Bucci, C. Canonica, L. Capelli, S. Carbone, L. Carrettoni, M. Clemenza, M. Cremonesi, O. Creswick, R. J. Di Domizio, S. Dolinski, M. J. Ejzak, L. Faccini, R. Farach, H. A. Ferri, E. Fiorini, E. Foggetta, L. Giachero, A. Gironi, L. Giuliani, A. Gorla, P. Guardincerri, E. Gutierrez, T. D. Haller, E. E. Kazkaz, K. Kraft, S. Kogler, L. Maiano, C. Maruyama, R. H. Martinez, C. Martinez, M. Newman, S. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. Orio, F. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pedretti, M. Pessina, G. Pirro, S. Previtali, E. Risegari, L. Rosenfeld, C. Rusconi, C. Salvioni, C. Sangiorgio, S. Schaeffer, D. Scielzo, N. D. Sisti, M. Smith, A. R. Tomei, C. Ventura, G. Vignati, M. TI Search for beta(+)/EC double beta decay of Te-120 SO ASTROPARTICLE PHYSICS LA English DT Article DE Bolometers; Neutrino properties; Double beta decay; Electron capture; Neutrino mass ID RARE EVENTS; NEUTRINOS; TABLES; MASS AB We present a search for beta(+)/EC double beta decay of Te-120 performed with the CUORICINO experiment, an array of TeO2 cryogenic bolometers. After collecting 0.0573 kg.y of Te-120, we see no evidence of a signal and therefore set the following limits on the half-life: T(1/2)0(v) > 1.9 . 10(21) y at 90% C.L. for the Or mode and T-1/2(2v) > 7.6 . 10(19) y at 90% C.L. for the 2v mode. These results improve the existing limits by almost three orders of magnitude (four in the case of 0v mode). (C) 2011 Elsevier B.V. All rights reserved. C1 [Andreotti, E.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Carrettoni, M.; Clemenza, M.; Ferri, E.; Fiorini, E.; Foggetta, L.; Gironi, L.; Giuliani, A.; Kraft, S.; Maiano, C.; Nones, C.; Nucciotti, A.; Pattavina, L.; Pavan, M.; Rusconi, C.; Salvioni, C.; Schaeffer, D.; Sisti, M.] Univ Milano Bicocca, Dip Fis, I-20126 Milan, Italy. [Andreotti, E.; Foggetta, L.; Giuliani, A.; Nones, C.; Rusconi, C.; Salvioni, C.] Univ Insubria, Dip Fis & Matemat, I-22100 Como, Italy. [Arnaboldi, C.; Brofferio, C.; Capelli, S.; Carbone, L.; Carrettoni, M.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Giachero, A.; Gironi, L.; Kraft, S.; Maiano, C.; Martinez, M.; Nucciotti, A.; Pattavina, L.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Schaeffer, D.; Sisti, M.] Sez INFN Mi Bicocca, I-20126 Milan, Italy. [Avignone, F. T., III; Bandac, I.; Creswick, R. J.; Farach, H. A.; Martinez, C.; Newman, S.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Balata, M.; Bucci, C.; Gorla, P.; Guardincerri, E.; Nisi, S.] Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Barucci, M.; Risegari, L.; Ventura, G.] Univ Florence, Dip Fis, I-50125 Florence, Italy. [Beeman, J. W.; Bryant, A.; Haller, E. E.; Kogler, L.; Smith, A. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bellini, F.; Faccini, R.; Orio, F.; Tomei, C.; Vignati, M.] Univ Roma La Sapienza, Dip Fis, I-00185 Rome, Italy. [Bellini, F.; Faccini, R.; Orio, F.; Tomei, C.; Vignati, M.] Sez INFN Roma, I-00185 Rome, Italy. [Bryant, A.; Dolinski, M. J.; Kogler, L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Canonica, L.; Di Domizio, S.; Pallavicini, M.] Univ Genoa, Dip Fis, Genoa, Italy. [Dolinski, M. J.; Kazkaz, K.; Norman, E. B.; Pedretti, M.; Scielzo, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Canonica, L.; Di Domizio, S.; Guardincerri, E.; Pallavicini, M.] Sez INFN Genova, I-16146 Genoa, Italy. [Ejzak, L.; Maruyama, R. H.; Sangiorgio, S.] Univ Wisconsin, Madison, WI USA. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Palmieri, V.] Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. RP Fiorini, E (reprint author), Univ Milano Bicocca, Dip Fis, I-20126 Milan, Italy. EM ettore.fiorini@mib.infn.it RI Foggetta, Luca/A-4810-2010; Bellini, Fabio/D-1055-2009; Kraft-Bermuth, Saskia/G-4007-2012; Pallavicini, Marco/G-5500-2012; Martinez, Maria/K-4827-2012; Di Domizio, Sergio/L-6378-2014; Ferri, Elena/L-8531-2014; Nucciotti, Angelo/I-8888-2012; Bucci, Carlo/A-5438-2010; Giachero, Andrea/I-1081-2013; Gorla, Paolo/B-5243-2014; Sangiorgio, Samuele/F-4389-2014; Pattavina, Luca/I-7498-2015; Maruyama, Reina/A-1064-2013; Barucci, Marco/D-4209-2012; Sisti, Monica/B-7550-2013; Vignati, Marco/H-1684-2013; Gironi, Luca/P-2860-2016; capelli, silvia/G-5168-2012; OI Foggetta, Luca/0000-0002-6389-1280; Bellini, Fabio/0000-0002-2936-660X; Kraft-Bermuth, Saskia/0000-0002-0864-7912; Pallavicini, Marco/0000-0001-7309-3023; Martinez, Maria/0000-0002-9043-4691; Di Domizio, Sergio/0000-0003-2863-5895; Ferri, Elena/0000-0003-1425-3669; Nucciotti, Angelo/0000-0002-8458-1556; Giachero, Andrea/0000-0003-0493-695X; Sangiorgio, Samuele/0000-0002-4792-7802; Faccini, Riccardo/0000-0003-2613-5141; Pattavina, Luca/0000-0003-4192-849X; Maruyama, Reina/0000-0003-2794-512X; Barucci, Marco/0000-0003-0381-3376; Sisti, Monica/0000-0003-2517-1909; Vignati, Marco/0000-0002-8945-1128; Gironi, Luca/0000-0003-2019-0967; capelli, silvia/0000-0002-0300-2752; Canonica, Lucia/0000-0001-8734-206X; Gutierrez, Thomas/0000-0002-0330-6414 NR 26 TC 6 Z9 6 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD MAR PY 2011 VL 34 IS 8 BP 643 EP 648 DI 10.1016/j.astropartphys.2010.12.011 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 742GV UT WOS:000288930200009 ER PT J AU Donnelly, EH Smith, JM Farfan, EB Ozcan, I AF Donnelly, Elizabeth H. Smith, James M. Farfan, Eduardo B. Ozcan, Ibrahim TI Prenatal Radiation Exposure: Background Material for Counseling Pregnant Patients Following Exposure to Radiation SO DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS LA English DT Article DE prenatal radiation exposure; radiation health effects; radiological emergencies; fetal radiation dose; tutorial ID BOMB SURVIVORS; PO-210 AB Fetal sensitivity to radiation-induced health effects is related to gestational age, and it is highly dependent on fetal dose. Typical fetal doses from diagnostic radiology are usually below any level of concern. Although rare, significant fetal radiation doses can result from interventional medical exposures (fluoroscopically guided techniques), radiation therapy, or radiological or nuclear incidents, including terrorism. The potential health effects from these large radiation doses (possibly large enough to result in acute radiation syndrome in the expectant mother) include growth retardation, malformations, impaired brain function, and neoplasia. If exposure occurs during blastogenesis (and the embryo survives), there is a low risk for congenital abnormalities. (In all stages of gestation, radiation-induced noncancer health effects have not been reported for fetal doses below about 0.05 Gy [5 rad].) The additional risk for childhood cancer from prenatal radiation exposure is about 12% per Gy (0.12%/rad) above the background incidence. (Disaster Med Public Health Preparedness, 2011;5:62-68) C1 [Donnelly, Elizabeth H.; Smith, James M.] Ctr Dis Control & Prevent, Atlanta, GA USA. [Farfan, Eduardo B.] Savannah River Natl Lab Environm Sci & Biotechnol, Savannah, GA USA. [Ozcan, Ibrahim] Lawrence Berkeley Lab, Berkeley, CA USA. RP Donnelly, EH (reprint author), 2995 Kammeyer Ln, Chamblee, GA 30341 USA. EM edonnelly@cdc.gov NR 28 TC 7 Z9 7 U1 1 U2 5 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60654-0946 USA SN 1935-7893 J9 DISASTER MED PUBLIC JI Dis. Med. Public Health Prep. PD MAR PY 2011 VL 5 IS 1 BP 62 EP 68 DI 10.1097/DMP.0b013e3181b65941 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 730CP UT WOS:000288009100010 PM 21402828 ER PT J AU Belharouak, I Koenig, GM Ma, JW Wang, DP Amine, K AF Belharouak, Ilias Koenig, Gary M., Jr. Ma, Jiwei Wang, D. P. Amine, Khalil TI Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Lithium-ion electrodes; Composite materials; Li2MnO3; Spinel ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; CELLS; MN; NI; CO AB We report the synthesis and characterization of the composite materials Li1+x(Ni0.25Mn0.75)O2.25+x/2 and Li1+5(Ni0.25Co0.125Mn0.625)O-2.(19+x/2) (X = 0.25, 0.375, 0.5, and 0.625) via a solid-state reaction. XRD patterns and electrochemical cycling of the materials in lithium cells revealed features consistent with the presence of the high voltage spine! LiNi0.5Mn1.5O4 phase within the materials, which diminished with increasing relative lithium compositions. The cobalt-containing materials had less evidence of a spinel phase than the cobalt-free materials of equivalent relative lithium to transition metal compositions. The results presented herein provide evidence that the additional XRD features were correlated with the presence of the LiNi0.5Mn1.5O4 phase within these materials. Published by Elsevier B.V. C1 [Belharouak, Ilias; Koenig, Gary M., Jr.; Ma, Jiwei; Wang, D. P.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Belharouak, I (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM belharouak@anl.gov; amine@anl.gov RI Amine, Khalil/K-9344-2013; OI Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy; FreedomCAR; Vehicle Technologies Office; U.S. Department of Energy by UChicago Argonne, LLC [DE-ACOZ-06CH11357] FX This research was funded by the U.S. Department of Energy, FreedomCAR, and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-ACOZ-06CH11357. NR 14 TC 40 Z9 42 U1 2 U2 75 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAR PY 2011 VL 13 IS 3 BP 232 EP 236 DI 10.1016/j.elecom.2010.12.021 PG 5 WC Electrochemistry SC Electrochemistry GA 739OS UT WOS:000288728100004 ER PT J AU Loxley, PN Bettencourt, LM Kenyon, GT AF Loxley, P. N. Bettencourt, L. M. Kenyon, G. T. TI Ultra-fast detection of salient contours through horizontal connections in the primary visual cortex SO EPL LA English DT Article ID STRIATE CORTEX; MODEL; INTEGRATION; ATTENTION; V1 AB Salient features instantly attract visual attention to their location and are crucial for object recognition. Experiments in ultra-fast visual perception have shown that object recognition can be surprisingly accurate given only similar to 20 ms of observation. Such short times exclude neural dynamics of top-down feedback and require fast mechanisms of low-level feature detection. We derive a neural model of the primary visual cortex with physiologically parameterized horizontal connections that reinforce salient features, and apply it to detect salient contours on ultra-fast time scales. Model performance qualitatively matches experimental results for human perception of contours, suggesting rapid neural mechanisms involving feedforward horizontal connections can be used to distinguish low-level objects. Copyright (C) EPLA, 2011 C1 [Loxley, P. N.; Bettencourt, L. M.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Loxley, P. N.; Bettencourt, L. M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Loxley, PN (reprint author), Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. OI Loxley, Peter/0000-0003-3659-734X FU U.S. Department of Energy [20090006DR]; Center for Nonlinear Studies (CNLS) FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program project 20090006DR for this work. PNL gratefully acknowledges support from The Center for Nonlinear Studies (CNLS). NR 23 TC 2 Z9 2 U1 0 U2 3 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2011 VL 93 IS 6 AR 64001 DI 10.1209/0295-5075/93/64001 PG 5 WC Physics, Multidisciplinary SC Physics GA 742LB UT WOS:000288943800009 ER PT J AU Chen, D Hu, W Gao, F Deng, H Sun, L AF Chen, D. Hu, W. Gao, F. Deng, H. Sun, L. TI Tungsten cluster migration on nanoparticles: minimum energy pathway and migration mechanism SO EUROPEAN PHYSICAL JOURNAL B LA English DT Article ID ATOM-METHOD CALCULATIONS; CATALYTIC-ACTIVITY; TRANSITION-METALS; ADATOM CLUSTERS; SIZE; SURFACE; MODEL; PD AB Saddle point searches have been employed to investigate the migration mechanisms of W clusters on W nanoparticles, and to determine the corresponding migration energies for the possible migration paths of these clusters. The tungsten clusters containing up to four adatoms are found to prefer 2D-compact structures with relatively low binding energies. The effect of interface and vertex regions on the migration behavior of the clusters is significantly strong, as compared to that of nanoparticle size. The migration mechanisms are quite different when the clusters are located at the center of the nanoparticle and near the interface or vertex areas. Near the interfaces and vertex areas, the substrate atoms tend to participate in the migration processes of the clusters, and can join the adatoms to form a larger cluster or lead to the dissociation of a cluster via the exchange mechanism, which results in the adatom crossing the facets. The lowest energy paths are used to be determined the energy barriers for W cluster migrations (from 1- to 4-atoms) on the facets, edges and vertex regions. The calculated energy barriers for the trimers suggest that the concerted migration is more probable than the successive jumping of a single adatom in the clusters. In addition, it of interest to note that the dimer shearing is a dominant migration mechanism for the tetramer, but needs to overcome a relatively higher migration energy than other clusters. C1 [Chen, D.; Hu, W.; Deng, H.] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. [Chen, D.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sun, L.] Chinese Acad Sci, Dalian Inst Chem Phys, Mat & Thermochem Lab, Dalian 116023, Peoples R China. RP Chen, D (reprint author), Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. EM dongch04@yahoo.com.cn; fei.gao@pnl.gov RI Hu, Wangyu/B-5762-2009; Gao, Fei/H-3045-2012; Deng, Huiqiu/A-9530-2009 OI Hu, Wangyu/0000-0001-7416-3994; Deng, Huiqiu/0000-0001-8986-104X FU Chinese Academy of Sciences; National Natural Science Foundation [50671035]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830]; China Scholarship Council FX This work is supported by Chinese Academy of Sciences and the National Natural Science Foundation under contract No. 50671035. Chen wishes to acknowledge the China Scholarship Council. The calculations were performed on the supercomputers in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Gao was supported from the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. NR 35 TC 1 Z9 1 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6028 EI 1434-6036 J9 EUR PHYS J B JI Eur. Phys. J. B PD MAR PY 2011 VL 80 IS 1 BP 31 EP 40 DI 10.1140/epjb/e2011-10629-9 PG 10 WC Physics, Condensed Matter SC Physics GA 738QS UT WOS:000288657700005 ER PT J AU Zhang, H Tolbert, LM Ozpineci, B AF Zhang, Hui Tolbert, Leon M. Ozpineci, Burak TI Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Efficiency; hybrid electric vehicle (HEV); inverter; plug-in HEV (PHEV); Powertrain System Analysis Toolkit (PSAT); silicon carbide (SiC) ID POWER LOSSES; INVERTER; SYSTEM AB The application of silicon carbide (SiC) devices as battery interface, motor controller, etc., in a hybrid electric vehicle (HEV) will be beneficial due to their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole powertrain system in a HEV and, thus, the performance and cost. In this paper, the performance of HEVs is analyzed using the vehicle simulation software Powertrain System Analysis Toolkit (PSAT). Power loss models of a SiC inverter based on the test results of latest SiC devices are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs from a system standpoint and give a direct correlation between the inverter efficiency and weight and the vehicle's fuel economy. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, and the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved, and vehicles that incorporate SiC power electronics are predicted to consume less energy and have lower emissions and improved system compactness with a simplified thermal management system. For the PHEV, the benefits are even more distinct; in particular, the size of the battery bank can be reduced for optimum design. C1 [Zhang, Hui] Tuskegee Univ, Dept Elect Engn, Tuskegee, AL 36088 USA. [Tolbert, Leon M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Ctr, Knoxville, TN 37932 USA. [Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Power Syst Res Ctr, Knoxville, TN 37932 USA. RP Zhang, H (reprint author), Tuskegee Univ, Dept Elect Engn, Tuskegee, AL 36088 USA. EM hzhang18@ieee.org; tolbert@utk.edu; ozpinecib@ornl.gov OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X NR 31 TC 76 Z9 80 U1 2 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD MAR-APR PY 2011 VL 47 IS 2 BP 912 EP 921 DI 10.1109/TIA.2010.2102734 PG 10 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 738ZX UT WOS:000288682300024 ER PT J AU Paraschiv, S Foley, B Otelea, D AF Paraschiv, Simona Foley, Brian Otelea, Dan TI Diversity of HIV-1 subtype C strains isolated in Romania SO INFECTION GENETICS AND EVOLUTION LA English DT Article DE HIV-1 Romanian epidemic; Subtype C; Phylogenetic analysis ID IMMUNODEFICIENCY-VIRUS TYPE-1; RESISTANCE MUTATIONS; GENETIC DIVERSITY; CHILDREN; PROTEASE; SUSCEPTIBILITY; POLYMORPHISMS; PREVALENCE; SEQUENCES; CAPACITY AB Two unique aspects particularities of the HIV-1 epidemics in Romania are the high prevalence of subtype F1 strains and the large pediatric population infected in the late 1980s and early 1990s. During recent years, more infections with other subtypes have been seen in newly diagnosed patients. After subtype B, subtype C was the most frequent one. This subtype is prevalent in countries from sub-Saharan Africa and India, being responsible for half of the total HIV-1 infections in the world. We have identified 37 patients infected with subtype C, sequenced the reverse transcriptase and protease regions of their pol genes, and applied phylogenetic analyses to the sequences. We have also included 20 subtype F1 strains isolated from both teenagers (children at the time of diagnosis) and adults. The phylogenetic analysis was performed by using the PhyML method, the GTR (general time reversible) model of evolution and gamma distribution of variability of rates between sites, empirically calculated from the data. The epidemiological data indicates that the main route of transmission for the adult subjects was by heterosexual contact and a relatively small number of patients were possibly infected abroad. In three cases, blood transfusion prior to 1989 or surgical procedures at early ages were suspected to be the cause of the HIV infection and three other patients were most probably parenterally infected. The phylogenetic analyses showed that the Romanian C strains are very diverse overall, clustered in several groups characterized by common transmission route (transfusion/surgical procedures) or local geographical relatedness. The HIV-1 epidemics in Romania apparently followed different patterns for subtypes F and C. While subtype F1 seems to have been monoclonally introduced and extensively spread in the 80s, the subtype C strains, although present in the late 80s, failed to spread to the same extent. (c) 2010 Elsevier B.V. All rights reserved. C1 [Paraschiv, Simona; Otelea, Dan] Prof Dr Matei Bals Natl Inst Infect Dis, Mol Diagnost Lab, Bucharest 021105, Romania. [Foley, Brian] Los Alamos Natl Lab, HIV Databases, Los Alamos, NM 87545 USA. RP Paraschiv, S (reprint author), Prof Dr Matei Bals Natl Inst Infect Dis, Mol Diagnost Lab, Str Calistrat Grozovici 1,Sector 2, Bucharest 021105, Romania. EM mona@mateibals.ro OI Foley, Brian/0000-0002-1086-0296 FU Sectoral Operational Programme Human Resources Development (SOP HRD); European Social Fund; Romanian Government [POSDRU/89/1.5/S/64109] FX Paraschiv S was trained in Molecular Epidemiology analysis, attending the Basic Module of the 15th International BioInformatics Workshop on Virus Evolution and Molecular Epidemiology, held on 7-11 September 2009, Rotterdam, Netherlands, http://www.rega.kuleuven.be/cev/workshop/. This paper was supported in part by the Sectoral Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/64109. NR 35 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1348 J9 INFECT GENET EVOL JI Infect. Genet. Evol. PD MAR PY 2011 VL 11 IS 2 BP 270 EP 275 DI 10.1016/j.meegid.2010.07.002 PG 6 WC Infectious Diseases SC Infectious Diseases GA 740FO UT WOS:000288777200004 PM 20620240 ER PT J AU Erickson, MR Maerz, JC Grosse, AM AF Erickson, M. R. Maerz, J. C. Grosse, A. M. TI Dietary Analysis of the Diamondback Terrapin (Malaclemys terrapin) along the Georgia Coast SO INTEGRATIVE AND COMPARATIVE BIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Integrative-and-Comparative-Biology CY JAN 03-07, 2011 CL Salt Lake City, UT SP Soc Integrat & Comparat Biol C1 Georgia So Univ, Statesboro, GA 30460 USA. Univ Georgia, Savannah River Ecol Lab, Athens, GA 30602 USA. EM matt_erick@yahoo.com NR 0 TC 1 Z9 1 U1 0 U2 5 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1540-7063 J9 INTEGR COMP BIOL JI Integr. Comp. Biol. PD MAR PY 2011 VL 51 SU 1 BP E187 EP E187 PG 1 WC Zoology SC Zoology GA 733QP UT WOS:000288278100119 ER PT J AU Jankowski, M Kimball, D McCabe, K Fair, J AF Jankowski, Mark Kimball, David McCabe, Kirsten Fair, Jeanne TI Investigating influenza and malaria host range by surveying avian sialic acid SO INTEGRATIVE AND COMPARATIVE BIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Integrative-and-Comparative-Biology CY JAN 03-07, 2011 CL Salt Lake City, UT SP Soc Integrat & Comparat Biol C1 [Jankowski, Mark; Kimball, David; McCabe, Kirsten; Fair, Jeanne] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM mdjankowski@lanl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1540-7063 J9 INTEGR COMP BIOL JI Integr. Comp. Biol. PD MAR PY 2011 VL 51 SU 1 BP E206 EP E206 PG 1 WC Zoology SC Zoology GA 733QP UT WOS:000288278100197 ER PT J AU Wielopolski, L AF Wielopolski, Lucian TI Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH LA English DT Article DE carbon; monitoring; geological sequestration; spectroscopy; neutrons; gamma-rays; errors; minimum detectable limits ID CO2 DETECTION TECHNIQUES; TRANSPORT MODELS; SOIL; EMISSIONS; RELEASE AB There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir's integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal-and spatial-integration of carbon in soil that results from underground CO(2) seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%. C1 Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Wielopolski, L (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Bldg 490, Upton, NY 11973 USA. EM lwielo@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX Special thanks are due to L. H. Spangler, L. M., Dobeck from Montana State University at Bozeman and S. Mitra from Brookhaven National Laboratory at Upton NY, for their assistance in preparing and carrying out the experiments at the ZERT facility. Support was provided by the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886. NR 25 TC 1 Z9 1 U1 0 U2 5 PU MDPI AG PI BASEL PA KANDERERSTRASSE 25, CH-4057 BASEL, SWITZERLAND SN 1660-4601 J9 INT J ENV RES PUB HE JI Int. J. Environ. Res. Public Health PD MAR PY 2011 VL 8 IS 3 BP 818 EP 829 DI 10.3390/ijerph8030818 PG 12 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 740HI UT WOS:000288781900010 PM 21556180 ER PT J AU Morris, JP Hao, Y Foxall, W Mcnab, W AF Morris, Joseph P. Hao, Yue Foxall, William McNab, Walt TI A study of injection-induced mechanical deformation at the In Salah CO2 storage project SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Coupled processes; Computational geomechanics; Geologic sequestration; Geophysical monitoring ID CARBON-DIOXIDE; TENSILE FAULTS; HALF-SPACE; PERMEABILITY; SANDSTONE; STATE; SHEAR; FLOW AB The In Salah project (a joint venture of BP, Statoil and Sonatrach) includes a CO2 sequestration effort that has successfully injected millions of tons of CO2 into a deep saline formation close to a producing gas field in Algeria. We have performed detailed simulations of the hydromechanical response in the vicinity of the KB-502 CO2 injection well specifically because the morphology of the observed surface deformation differed from that above the other injectors at the field. We have simulated the mm-scale uplift of the overburden associated with the injection and compared the results with observed ground surface deformation measured by InSAR. By solely including conducting and bounding faults in the model we achieve better agreement with the magnitude of the observed net uplift at the ground surface, but not the shape of the uplift pattern. However, by further including flow into a hypothetical vertical extension of a fault, our simulations better match the morphology of the surface deformation. Our results indicate that the best fit is obtained through a combination of reservoir and fault pressurization, rather than either alone. However, our analysis required assumptions regarding the mechanical properties of the faults and the overburden. These results demonstrate that InSAR provides a powerful tool for gaining insight into the fate of fluid in the subsurface, but also highlight the need for detailed, accurate static geomodels. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Morris, Joseph P.; Hao, Yue; Foxall, William; McNab, Walt] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. [Morris, Joseph P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Morris, JP (reprint author), Schlumberger Doll Res Ctr, 1 Hampshire St,MD-B408, Cambridge, MA 02139 USA. EM jpmorris@slb.com FU agency of the United States government; In Salah Project JIP (a consortium of BP, Statoil and Sonatrach); U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor the Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product. process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.; This research was supported with cofounding and data provided by the In Salah Project JIP (a consortium of BP, Statoil and Sonatrach). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 40 Z9 42 U1 2 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2011 VL 5 IS 2 BP 270 EP 280 DI 10.1016/j.ijggc.2010.10.004 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 741DG UT WOS:000288842700008 ER PT J AU Cappa, F Rutqvist, J AF Cappa, Frederic Rutqvist, Jonny TI Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2 SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Hydromechanical couplings; Fault zone; Numerical simulation; Rupture; Permeability; Carbon dioxide (CO2) ID STRESS-DEPENDENT PERMEABILITY; FLUID-FLOW; INTERNAL STRUCTURE; VALVE BEHAVIOR; HYDRAULIC CONDUCTIVITY; YUCCA MOUNTAIN; SLIP; PRESSURE; ZONES; ROCK AB The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO2. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO2 from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Cappa, Frederic] Univ Nice Sophia Antipolis, GeoAzur UMR6526, Observ Cote Azur, Sophia Antipolis, France. [Cappa, Frederic; Rutqvist, Jonny] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Cappa, F (reprint author), Univ Nice Sophia Antipolis, GeoAzur UMR6526, Observ Cote Azur, Sophia Antipolis, France. EM cappa@geoazur.unice.fr; jrutqvist@lbl.gov RI Rutqvist, Jonny/F-4957-2015; Cappa, Frederic/B-4014-2017 OI Rutqvist, Jonny/0000-0002-7949-9785; Cappa, Frederic/0000-0003-4859-8024 FU Ministry of Economy, Trade and Industry Ministry (METI) of Japan; Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology; National Energy Technology Laboratory; U.S. Department of Energy [DE-AC02-05CH11231] FX The work presented in this paper was financed by the Ministry of Economy, Trade and Industry Ministry (METI) of Japan. Further funds for completing this paper were provided by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy Contract No. DE-AC02-05CH11231. Technical and editorial reviews by Alberto Mazzoldi and Dan Hawkes, Lawrence Berkeley National Laboratory are greatly appreciated. We are grateful for the constructive comments and recommendations of the two anonymous reviewers, which substantially improved this paper. NR 69 TC 104 Z9 117 U1 3 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD MAR PY 2011 VL 5 IS 2 BP 336 EP 346 DI 10.1016/j.ijggc.2010.08.005 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 741DG UT WOS:000288842700014 ER PT J AU Pan, YX Liu, GK AF Pan, Y. X. Liu, G. K. TI Influence of Mg2+ on luminescence efficiency and charge compensating mechanism in phosphor CaAl12O19:Mn4+ SO JOURNAL OF LUMINESCENCE LA English DT Article DE Charge compensation; LED phosphor; Energy transfer ID PHOTOLUMINESCENCE AB Synthesized by a modified solid state method in air and mixed with MgO, the red phosphor of CaAl12O19:yMn(4+) (y=0.001-1.5%) enhanced its photoluminescence efficiency by 3.5 times. The influence of MgO on crystal phases, luminescence intensity and spectral characteristics of the composition modified phosphor has been investigated by spectroscopic experiments and luminescence decay measurements. It is observed that the decay time of Mn4+ luminescence prolongs linearly with increase of MgO in the composition, indicating that the excitation energy transfer and non-radiative relaxation between Mn4+-Mn4+ pairs decrease. The presence of Mg2+ leads to a transformation of Mn4+-Mn4+ pairs connected with interstitial O2- to isolated Mn4+ ions and therefore eliminates energy transfer and provides charge compensation as well. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pan, Y. X.; Liu, G. K.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pan, Y. X.] Wenzhou Univ, Nanomat & Chem Key Lab, Wenzhou 325027, Peoples R China. RP Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gkliu@anl.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357] FX Work performed at Argonne National Laboratory was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357. NR 18 TC 27 Z9 27 U1 5 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD MAR PY 2011 VL 131 IS 3 BP 465 EP 468 DI 10.1016/j.jlumin.2010.11.014 PG 4 WC Optics SC Optics GA 742YA UT WOS:000288980000023 ER PT J AU Routbort, JL Singh, D Timofeeva, EV Yu, WH France, DM AF Routbort, Jules L. Singh, Dileep Timofeeva, Elena V. Yu, Wenhua France, David M. TI Pumping power of nanofluids in a flowing system SO JOURNAL OF NANOPARTICLE RESEARCH LA English DT Article DE Nanofluids; Fluid flow; Pumping power; Nanoparticle; Colloids ID HEAT-TRANSFER AB Nanofluids have the potential to increase thermal conductivities and heat transfer coefficients compared to their base fluids. However, the addition of nanoparticles to a fluid also increases the viscosity and therefore increases the power required to pump the fluid through the system. When the benefit of the increased heat transfer is larger than the penalty of the increased pumping power, the nanofluid has the potential for commercial viability. The pumping power for nanofluids has been considered previously for flow in straight tubes. In this study, the pumping power was measured for nanofluids flowing in a complete system including straight tubing, elbows, and expansions. The objective was to determine the significance of two-phase flow effects on system performance. Two types of nanofluids were used in this study: a water-based nanofluid containing 2.0-8.0 vol% of 40-nm alumina nanoparticles, and a 50/50 ethylene glycol/water mixture-based nanofluid containing 2.2 vol% of 29-nm SiC nanoparticles. All experiments were performed in the turbulent flow region in the entire test system simulating features typically found in heat exchanger systems. Experimental results were compared to the pumping power calculated from a mathematical model of the system to evaluate the system effects. The pumping power results were also combined with the heat transfer enhancement to evaluate the viability of the two nanofluids. C1 [Routbort, Jules L.; Timofeeva, Elena V.; Yu, Wenhua] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Singh, Dileep] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [France, David M.] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. RP Routbort, JL (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM routbort@anl.gov RI Timofeeva, Elena/E-6391-2010; OI Timofeeva, Elena V./0000-0001-7839-2727 FU US Department of Energy [DE-AC02-06CH11357]; Office of Vehicle Technologies FX The authors are grateful to Drs. Steve Hartline of Saint-Gobain and Yun Chang of Sasol North America Inc., for supplying the SiC-water nanofluid and the alumina nanoparticles, respectively. Roger Smith was instrumental in the design and construction of the apparatus. This work was sponsored by the Office of Vehicle Technologies and the Industrial Technology Program of the US Department of Energy under contract number DE-AC02-06CH11357. NR 12 TC 7 Z9 7 U1 1 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1388-0764 J9 J NANOPART RES JI J. Nanopart. Res. PD MAR PY 2011 VL 13 IS 3 BP 931 EP 937 DI 10.1007/s11051-010-0197-7 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 743FL UT WOS:000289003000003 ER PT J AU Medina, M Lal, S Valles, Y Takaoka, TL Dayrat, BA Boore, JL Gosliner, T AF Medina, Monica Lal, Shruti Valles, Yvonne Takaoka, Tori L. Dayrat, Benoit A. Boore, Jeffrey L. Gosliner, Terrence TI Crawling through time: Transition of snails to slugs dating back to the Paleozoic, based on mitochondrial phylogenomics SO MARINE GENOMICS LA English DT Article DE Opisthobranch; Sea slug; Mitochondrial genome; Phylogeny; Euthyneura; Shell loss ID EUTHYNEURAN GASTROPODS MOLLUSCA; RIBOSOMAL-RNA GENE; OPISTHOBRANCHIA MOLLUSCA; PHYLOGENETIC ANALYSIS; EVOLUTIONARY RELATIONSHIPS; MOLECULAR PHYLOGENY; DNA-SEQUENCE; GENOMES; CEPHALASPIDEA; CONSERVATION AB Sea slugs (Gastropoda: Opisthobranchia) are characterized by extensive morphological homoplasy. In particular, reduced or absent shells are predominant throughout the group. This trend towards shell loss has resulted in a poor fossil record. DNA-based phylogenies have been helpful in improving our understanding of the evolution of this group and major clades are emerging. We report 13 new complete opisthobranch mitochondrial genomes that provide robust support for some of these emerging nodes. We name three new clades within the Opisthobranchia, the Actopleura (Acteonoidea plus Nudipleura), Placoesophaga (Cephalaspidea plus Anaspidea), and Siphoglossa (Sacoglossa plus the Siphonaria). Finally we use molecular clock dating that suggests an earlier opisthobranch divergence than previously reported. The implications of this evolutionary scenario are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Medina, Monica; Dayrat, Benoit A.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Medina, Monica; Valles, Yvonne; Takaoka, Tori L.; Boore, Jeffrey L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lal, Shruti] Univ Calif Riverside, Genet Genom & Bioinformat Program, Riverside, CA 92521 USA. [Valles, Yvonne] CSISP, Area Genom & Salud, Valencia 46020, Spain. [Boore, Jeffrey L.] Genome Project Solut, Hercules, CA 94547 USA. [Gosliner, Terrence] Calif Acad Sci, San Francisco, CA 94118 USA. RP Medina, M (reprint author), Univ Calif, Sch Nat Sci, 5200 N Lake Rd, Merced, CA 95343 USA. EM mmedina@ucmerced.edu OI Lal, Shruti/0000-0002-2091-4307 FU US Department of Energy's Office of Science; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; NSF [DEB-0542330, DEB 0329054] FX We thank Angel Valdes for the collection of the Lifou specimens, Matt Fourcade for the help with rolling circle amplification, and Jennifer Kuehl for the help with genome annotation in DOGMA. Part of this work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. Part of this research was also supported by NSF Grants DEB-0542330 to Monica Medina and NSF DEB 0329054 to Terrence Gosliner and A. Valdes, NR 61 TC 21 Z9 22 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1874-7787 EI 1876-7478 J9 MAR GENOM JI Mar. Genom. PD MAR PY 2011 VL 4 IS 1 BP 51 EP 59 DI 10.1016/j.margen.2010.12.006 PG 9 WC Genetics & Heredity; Marine & Freshwater Biology SC Genetics & Heredity; Marine & Freshwater Biology GA 737RX UT WOS:000288587000007 PM 21429465 ER PT J AU Husain, N Obranic, S Koscinski, L Seetharaman, J Babic, F Bujnicki, JM Maravic-Vlahovicek, G Sivaraman, J AF Husain, Nilofer Obranic, Sonja Koscinski, Lukasz Seetharaman, J. Babic, Fedora Bujnicki, Janusz M. Maravic-Vlahovicek, Gordana Sivaraman, J. TI Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit SO NUCLEIC ACIDS RESEARCH LA English DT Article ID AMINOGLYCOSIDE RESISTANCE; CRYSTAL-STRUCTURE; M(1)A1408 METHYLTRANSFERASE; SUBSTRATE SELECTIVITY; BACILLUS-SUBTILIS; PROTEIN; COMPLEX; DNA; ANTIBIOTICS; SITE AB NpmA, a methyltransferase that confers resistance to aminoglycosides was identified in an Escherichia coli clinical isolate. It belongs to the kanamycin-apramycin methyltransferase (Kam) family and specifically methylates the 16S rRNA at the N1 position of A1408. We determined the structures of apo-NpmA and its complexes with S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.4, 2.7 and 1.68 A, respectively. We generated a number of NpmA variants with alanine substitutions and studied their ability to bind the cofactor, to methylate A1408 in the 30S subunit, and to confer resistance to kanamycin in vivo. Residues D30, W107 and W197 were found to be essential. We have also analyzed the interactions between NpmA and the 30S subunit by footprinting experiments and computational docking. Helices 24, 42 and 44 were found to be the main NpmA-binding site. Both experimental and theoretical analyses suggest that NpmA flips out the target nucleotide A1408 to carry out the methylation. NpmA is plasmid-encoded and can be transferred between pathogenic bacteria; therefore it poses a threat to the successful use of aminoglycosides in clinical practice. The results presented here will assist in the development of specific NpmA inhibitors that could restore the potential of aminoglycoside antibiotics. C1 [Husain, Nilofer; Sivaraman, J.] Natl Univ Singapore, Dept Biol Sci, Singapore 117543, Singapore. [Obranic, Sonja; Babic, Fedora; Maravic-Vlahovicek, Gordana] Univ Zagreb, Fac Pharm & Biochem, Dept Biochem & Mol Biol, Zagreb 10000, Croatia. [Koscinski, Lukasz; Bujnicki, Janusz M.] Adam Mickiewicz Univ, Lab Bioinformat, Inst Biotechnol & Mol Biol, Fac Biol, PL-61614 Poznan, Poland. [Seetharaman, J.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Bujnicki, Janusz M.] Int Inst Mol & Cell Biol, Lab Bioinformat & Prot Engn, PL-02109 Warsaw, Poland. RP Sivaraman, J (reprint author), Natl Univ Singapore, Dept Biol Sci, 14 Sci Dr 4, Singapore 117543, Singapore. EM iamb@genesilico.pl; gordana@pharma.hr; dbsjayar@nus.edu.sg RI Sivaraman, J/H-8028-2012 FU Biomedical Research Council (BMRC) of Singapore; A*STAR [R154000362305]; Croatian Ministry of Science [006-0982913-1219]; ICGEB [CRP/CRO08-02]; EU [043682, LSHG-CT-2005-518238]; Polish Ministry of Science and Higher Education [N301 2396 33, 188/N-DFG/2008/0]; National University of Singapore (NUS) FX Biomedical Research Council (BMRC) of Singapore (to J.S. and his team); A*STAR (grant R154000362305); Croatian Ministry of Science (grant 006-0982913-1219 to G. M. V. and her team); ICGEB (grant CRP/CRO08-02); EU FP6 (grant #043682 'EuroPharm'); Polish Ministry of Science and Higher Education (grants N301 2396 33 and 188/N-DFG/2008/0 to J.M.B. and his team); EU FP6 (grant EURASNET, LSHG-CT-2005-518238); N.H. is a PhD student in receipt of a research scholarship from the National University of Singapore (NUS). Funding for open access charge: Singapore, BMRC; A*STAR (grant R154000362305). NR 57 TC 12 Z9 14 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD MAR PY 2011 VL 39 IS 5 BP 1903 EP 1918 DI 10.1093/nar/gkq1033 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 740NE UT WOS:000288800700030 PM 21062819 ER PT J AU Li, Y Calisal, SM AF Li, Ye Calisal, Sander M. TI Modeling of twin-turbine systems with vertical axis tidal current turbine: Part II-torque fluctuation SO OCEAN ENGINEERING LA English DT Article DE Tidal power; Tidal current turbine; Twin-turbine system; Torque fluctuation; Discrete vortex method; Hydrodynamic interaction AB We recently showed the advantage of using a numerical system to extract energy from tidal currents by developing a new twin-turbine model (Li and Calisal, 2010a). Encouraged by this result, we decided to use this model to study another important characteristic of the turbine system, torque fluctuation. This effort is summarized in this paper. The torque fluctuation is expected to reduce the fatigue life of tidal current turbines, though potentially it also may deteriorate the power quality of tidal current turbines. In this paper, after reviewing the twin-turbine model, we use it to predict the torque fluctuation of the system with the same configurations as we used to study the power output in Li and Calisal (2010a). Specifically, we investigate the torque fluctuation of twin-turbine systems with various turbine parameters (e.g., relative distance between two turbines and incoming flow angle) and operational condition (e.g., tip speed ratio). The results suggest that the torque of an optimally configured twin-turbine system fluctuates much less than that of the corresponding stand-alone turbine, under the same operating conditions. We then extensively compare the hydrodynamic interaction's impact on the torque fluctuation and the power output of the system. We conclude that the hydrodynamic interactions pose more constructive impacts on the torque fluctuation than on the power output. The findings indicate that the optimally configured counter-rotating system should be a side-by-side system, and that the optimally configured co-rotating system should have the downstream turbine partially in the wake of the upstream turbine depending on the detailed configuration of the turbines. Furthermore, one must balance the optimal torque fluctuation against the optimal power output. (C) 2011 Published by Elsevier Ltd. C1 [Li, Ye] Natl Renewable Energy Lab, Natl Wind Technol Ctr, Golden, CO 80401 USA. [Calisal, Sander M.] Univ British Columbia, Dept Mech Engn, Naval Architecture & Offshore Engn Lab, Vancouver, BC V6T 1Z4, Canada. [Calisal, Sander M.] Piri Reis Univ, TR-34940 Istanbul, Turkey. RP Li, Y (reprint author), Natl Renewable Energy Lab, Natl Wind Technol Ctr, 1617 Cole Blvd,MS 3811, Golden, CO 80401 USA. EM ye.li@nrel.gov FU U.S. Department of Energy; National Science and Engineering Research Council FX The first author would like to acknowledge the U.S. Department of Energy's Wind and Hydropower Technologies Program for providing the support necessary to conduct the major analysis of this study. The authors would also like to thank the National Science and Engineering Research Council providing financial support to conduct the initial investigation of this study. We are also grateful for the valuable suggestions from the colleagues in the National Wind Technology Center. NR 20 TC 11 Z9 15 U1 3 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD MAR PY 2011 VL 38 IS 4 BP 550 EP 558 DI 10.1016/j.oceaneng.2010.11.025 PG 9 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA 741BL UT WOS:000288838000004 ER PT J AU Sefat, AS Singh, DJ Garlea, VO Zuev, YL McGuire, MA Sales, BC AF Sefat, Athena S. Singh, David J. Garlea, V. Ovidiu Zuev, Yuri L. McGuire, Michael A. Sales, Brian C. TI Variation of physical properties in the nominal Sr4V2O6Fe2As2 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE Fe-based superconductors; Oxides; Neutrons ID SUPERCONDUCTIVITY; LIFEAS AB We show using a combination of powder X-ray and neutron diffraction, first-principles calculations, temperature- and field-dependent magnetization, heat capacity and resistivity data that the superconducting behavior of 'Sr4V2O6Fe2As2' is dependent on synthesis conditions, particularly, heating profiles result in unintentional chemical doping. This compound can be tuned from a state in which the vanadium electrons are itinerant with a high electronic density of states, to a state where the vanadium-oxide layers are insulating and presumably magnetic. Published by Elsevier B.V. C1 [Sefat, Athena S.; Singh, David J.; Garlea, V. Ovidiu; McGuire, Michael A.; Sales, Brian C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zuev, Yuri L.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Sefat, AS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sefata@ornl.gov RI McGuire, Michael/B-5453-2009; Singh, David/I-2416-2012; Garlea, Vasile/A-4994-2016; Sefat, Athena/R-5457-2016 OI McGuire, Michael/0000-0003-1762-9406; Garlea, Vasile/0000-0002-5322-7271; Sefat, Athena/0000-0002-5596-3504 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; Scientific User Facilities Division, Office of Basic Sciences, US DOE FX Research at ORNL is sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. We are grateful to Lindsay VanBebber at Department of Materials Science and Engineering, University of Tennessee, for her assistance in materials preparations. We acknowledge discussions with D.K. Christen, and V. Keppens and D. Mandrus for technical support. The work at High Flux Reactor (ORNL) was sponsored by the Scientific User Facilities Division, Office of Basic Sciences, US DOE. NR 36 TC 9 Z9 9 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD MAR PY 2011 VL 471 IS 5-6 BP 143 EP 149 DI 10.1016/j.physc.2011.01.004 PG 7 WC Physics, Applied SC Physics GA 741CY UT WOS:000288841900004 ER PT J AU Gallis, MA Torczynski, JR AF Gallis, M. A. Torczynski, J. R. TI Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls SO PHYSICS OF FLUIDS LA English DT Article ID BOLTZMANN-EQUATION; PRANDTL NUMBER; BGK MODEL; FLOWS; EXTENSIONS AB The ellipsoidal-statistical Bhatnagar-Gross-Krook (ES-BGK) kinetic model is investigated for steady gas-phase transport of heat, tangential momentum, and mass between parallel walls (i.e., Fourier, Couette, and Fickian flows). This investigation extends the original study of Cercignani and Tironi, who first applied the ES-BGK model to heat transport (i.e., Fourier flow) shortly after this model was proposed by Holway. The ES-BGK model is implemented in a molecular-gas-dynamics code so that results from this model can be compared directly to results from the full Boltzmann collision term, as computed by the same code with the direct simulation Monte Carlo (DSMC) algorithm of Bird. A gas of monatomic molecules is considered. These molecules collide in a pairwise fashion according to either the Maxwell or the hard-sphere interaction and reflect from the walls according to the Cercignani-Lampis-Lord model with unity accommodation coefficients. Simulations are performed at pressures from near-free-molecular to near-continuum. Unlike the BGK model, the ES-BGK model produces heat-flux and shear-stress values that both agree closely with the DSMC values at all pressures. However, for both interactions, the ES-BGK model produces molecular-velocity-distribution functions that are qualitatively similar to those determined for the Maxwell interaction from Chapman-Enskog theory for small wall temperature differences and moment-hierarchy theory for large wall temperature differences. Moreover, the ES-BGK model does not produce accurate values of the mass self-diffusion coefficient for either interaction. Nevertheless, given its reasonable accuracy for heat and tangential-momentum transport, its sound theoretical foundation (it obeys the H-theorem), and its available extension to polyatomic molecules, the ES-BGK model may be a useful method for simulating certain classes of single-species noncontinuum gas flows, as Cercignani suggested. (C) 2011 American Institute of Physics. [doi:10.1063/1.3558869] C1 [Gallis, M. A.; Torczynski, J. R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Gallis, MA (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM magalli@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 32 TC 20 Z9 20 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2011 VL 23 IS 3 AR 030601 DI 10.1063/1.3558869 PG 11 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 745GD UT WOS:000289153000002 ER PT J AU Grinstein, FF Gowardhan, AA Wachtor, AJ AF Grinstein, F. F. Gowardhan, A. A. Wachtor, A. J. TI Simulations of Richtmyer-Meshkov instabilities in planar shock-tube experiments SO PHYSICS OF FLUIDS LA English DT Article ID TURBULENT-BOUNDARY-LAYERS; LARGE-EDDY SIMULATION; TAYLOR-GREEN VORTEX; FLOWS; DYNAMICS AB In the large eddy simulation (LES) approach, large-scale energy-containing structures are resolved, smaller structures are filtered out, and unresolved subgrid effects are modeled. Extensive recent work has demonstrated that predictive under-resolved simulations of the velocity fields in turbulent flows are possible without resorting to explicit subgrid models when using a class of physics-capturing high-resolution finite-volume numerical algorithms. This strategy is denoted as implicit LES (ILES). Tests in fundamental applications ranging from canonical to complex flows indicate that ILES is competitive with conventional LES in the LES realm proper-flows driven by large-scale features. The performance of ILES in the substantially more difficult problem of under-resolved material mixing driven by under-resolved velocity fields and initial conditions is a focus of the present work. Progress in addressing relevant resolution issues in studies of mixing driven by Richtmyer-Meshkov instabilities in planar shock-tube laboratory experiments is reported. Our particular focus is devoted to the initial material interface characterization and modeling difficulties, and effects of initial condition specifics (resolved spectral content) on transitional and late-time turbulent mixing-which were not previously addressed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3555635] C1 [Grinstein, F. F.; Gowardhan, A. A.; Wachtor, A. J.] Los Alamos Natl Lab, Methods & Algorithms XCP 4, X Computat Phys Div, Los Alamos, NM 87545 USA. RP Grinstein, FF (reprint author), Los Alamos Natl Lab, Methods & Algorithms XCP 4, X Computat Phys Div, MS F644, Los Alamos, NM 87545 USA. OI Wachtor, Adam/0000-0003-0609-9171 FU Los Alamos National Security, LLC [DE-AC52-06NA25396]; LANL Laboratory [20090058DR]; LDRD [20100441ER] FX The authors thank Ray Ristorcelli and Malcolm Andrews for helpful and stimulating discussions. Los Alamos National Laboratory (LANL) is operated by the Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. This work was made possible by funding from the LANL Laboratory Directed Research and Development Program on "Turbulence by Design" through directed research Project No. 20090058DR and from the LDRD Program on "LES Modeling for Predictive Simulations of Material Mixing" through exploratory research Project No. 20100441ER. NR 31 TC 31 Z9 31 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD MAR PY 2011 VL 23 IS 3 AR 034106 DI 10.1063/1.3555635 PG 16 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 745GD UT WOS:000289153000024 ER PT J AU Balin, DV Ganzha, VA Kozlov, SM Maev, EM Petrov, GE Soroka, MA Schapkin, GN Semenchuk, GG Trofimov, VA Vasiliev, AA Vorobyov, AA Voropaev, NI Petitjean, C Gartner, B Lauss, B Marton, J Zmeskal, J Case, T Crowe, KM Kammel, P Hartmann, FJ Faifman, MP AF Balin, D. V. Ganzha, V. A. Kozlov, S. M. Maev, E. M. Petrov, G. E. Soroka, M. A. Schapkin, G. N. Semenchuk, G. G. Trofimov, V. A. Vasiliev, A. A. Vorobyov, A. A. Voropaev, N. I. Petitjean, C. Gartner, B. Lauss, B. Marton, J. Zmeskal, J. Case, T. Crowe, K. M. Kammel, P. Hartmann, F. J. Faifman, M. P. TI High precision study of muon catalyzed fusion in D-2 and HD gas SO PHYSICS OF PARTICLES AND NUCLEI LA English DT Article ID D-T FUSION; DD-MU; HYDROGEN ISOTOPES; CROSS-SECTIONS; DT-MU; NUCLEAR REACTIONS; DEUTERIUM ATOMS; HYDROGEN/DEUTERIUM-MIXTURES; MOLECULE FORMATION; GASEOUS-HYDROGEN AB Muon catalyzed dd fusion in D-2 and HD gases in the temperature range from 28 to 350 K was investigated in a series of experiments based on a time-projection ionization chamber operating with pure hydrogen. All main observables in this reaction chain were measured with high absolute precision including the resonant and non-resonant dd mu formation rates, the rate for hyperfine transitions in d mu atoms, the branching ratio of the two charge symmetric fusion channels He-3 + n and t + p and the muon sticking probability. The report presents the final analysis of the data together with a comprehensive comparison with calculations based on recent mu CF theories. The energy of the loosely bound dd mu state with quantum numbers J = 1, nu = 1, which is central to the mechanism of resonant molecule formation, is extracted with precision E >(11)(fit) = -1.9651(7) eV. in impressive agreement with the latest theoretical results E >(11)(theory) = -1.9646 eV. C1 [Balin, D. V.; Ganzha, V. A.; Kozlov, S. M.; Maev, E. M.; Petrov, G. E.; Soroka, M. A.; Schapkin, G. N.; Semenchuk, G. G.; Trofimov, V. A.; Vasiliev, A. A.; Vorobyov, A. A.; Voropaev, N. I.] PNPI, Gatchina 188350, Russia. [Petitjean, C.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Gartner, B.; Lauss, B.; Marton, J.; Zmeskal, J.] Austrian Acad Sci, Inst Medium Energy Phys, A-1090 Vienna, Austria. [Case, T.; Crowe, K. M.; Kammel, P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Case, T.; Crowe, K. M.; Kammel, P.] LBNL, Berkeley, CA 94720 USA. [Hartmann, F. J.] Tech Univ Munich, D-85747 Garching, Germany. [Faifman, M. P.] Russian Res Ctr Kurchatov Bistitute, Moscow 123182, Russia. RP Balin, DV (reprint author), PNPI, Gatchina 188350, Russia. RI Marton, Johann/H-2668-2012 OI Marton, Johann/0000-0001-5139-7720 FU Russian Federation [HI1I-3057.2006.2]; Russian Foundation of Fundamental Research [00-15-96813, 08-02-00055]; Russian Ministry of Sciences and Technology; Paul Scherrer Institute; Austrian Academy of Sciences; US Department of Energy FX This work was supported by the grant of the President of the Russian Federation no. HI1I-3057.2006.2, in part by the Russian Foundation of Fundamental Research (grants no. 00-15-96813 and no. 08-02-00055), by the Russian Ministry of Sciences and Technology, by the Paul Scherrer Institute, by the Austrian Academy of Sciences and by the US Department of Energy. It is a pleasure to thank Profs L. Ponomarev and A. Adamczak for many helpful discussions. NR 103 TC 15 Z9 16 U1 1 U2 14 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7796 EI 1531-8559 J9 PHYS PART NUCLEI+ JI Phys. Part. Nuclei PD MAR PY 2011 VL 42 IS 2 BP 185 EP 214 DI 10.1134/S106377961102002X PG 30 WC Physics, Particles & Fields SC Physics GA 741MA UT WOS:000288866600001 ER PT J AU Chevalier, ML Hilley, G Tapponnier, P Van der Woerd, J Jing, LZ Finkel, RC Ryerson, FJ Li, HB Liu, XH AF Chevalier, Marie-Luce Hilley, George Tapponnier, Paul Van Der Woerd, Jerome Jing Liu-Zeng Finkel, Robert C. Ryerson, Frederick J. Li, Haibing Liu, Xiaohan TI Constraints on the late Quaternary glaciations in Tibet from cosmogenic exposure ages of moraine surfaces SO QUATERNARY SCIENCE REVIEWS LA English DT Article ID HOLOCENE GLACIER FLUCTUATIONS; IMPLY SECULAR VARIATIONS; SLIP-RATE MEASUREMENTS; PRODUCTION-RATES; KARAKORAM FAULT; PLEISTOCENE GLACIATIONS; LANDSCAPE EVOLUTION; NORTHERN PAKISTAN; SCALING FACTORS; SOUTHERN TIBET AB This contribution provides new constraints on the timing of Tibetan glacial recessions recorded by the abandonment of moraines. We present cosmogenic radionuclide Be-10 inventories at 17 sites in southern and western Tibet (32 crests, 249 samples) and infer the range of permissible emplacement ages based on these analyses. Individual large embedded rock and boulder samples were collected from the crests of moraine surfaces and analyzed for Be-10 abundance. We consider two scenarios to interpret the age of glacial recession leading to the moraine surface formation from these sample exposure ages: 1) Erosion of the moraine surface is insignificant and so the emplacement age of the moraines is reflected by the mean sample age; and 2) Erosion progressively exposes large boulders with little prior exposure, and so the oldest sample age records the minimum moraine emplacement age. We found that depending on the scenario chosen, the moraine emplacement age can vary by > 50% for similar to 100 ka-old samples. We consider two scaling models for estimating the production rates of 1 Be in Tibet, which has an important, although lesser, effect on inferred moraine ages. While the data presented herein effectively increase the database of sample exposure ages from Tibet by similar to 20%, we find that uncertainties related to the interpretation of the Be-10 abundance within individual samples in terms of moraine emplacement ages are sufficient to accommodate either a view in which glacial advances are associated with temperature minima or precipitation maxima that are recorded by independent paleoclimate proxies. A reanalysis of published data from moraines throughout Tibet shows that the variation we observe is not unique to our dataset but rather is a robust feature of the Tibetan moraine age database. Thus, when viewed in a similar way with other samples collected from this area, uncertainties within moraine exposure ages obscure attribution of Tibetan glacial advances to temperature minima or precipitation maxima. Our work suggests that more reliable chronologies of Tibetan glaciations will come from improvements in production rate models for this portion of the world, as well as a better understanding of the processes that form and modify these geomorphic surfaces. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Chevalier, Marie-Luce; Li, Haibing] CAGS, Key Lab Continental Dynam, Inst Geol, Beijing 100037, Peoples R China. [Chevalier, Marie-Luce; Hilley, George] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Tapponnier, Paul] Earth Observ Singapore, Singapore 639798, Singapore. [Van Der Woerd, Jerome] Univ Strasbourg, CNRS, UMR 7516, Inst Phys Globe Strasbourg, F-67084 Strasbourg, France. [Jing Liu-Zeng; Liu, Xiaohan] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Atmospher Earth & Energy Div, Livermore, CA 94550 USA. RP Chevalier, ML (reprint author), CAGS, Key Lab Continental Dynam, Inst Geol, 26 Baiwanzhuang Rd, Beijing 100037, Peoples R China. EM mlchevalier@hotmail.com; hilley@stanford.edu; tappon@ntu.edu.sg; jeromev@eost.u-strasbg.fr; liu-zeng@itpcas.ac.cn; rfinkel@berkeley.edu; Ryerson1@llnl.gov; lihaibing06@yahoo.com.cn; liuxh@itpcas.ac.cn RI Tapponnier, .Paul/B-7033-2011; Liu-Zeng, Jing/F-8582-2011; Chevalier, Marie-Luce/C-5154-2013; OI Tapponnier, .Paul/0000-0002-7135-1962; Chevalier, Marie-Luce/0000-0001-9110-2456 FU European Marie Curie Outgoing International Fellowship; Stanford University; U.S Department of Energy (University of California, Lawrence Livermore National Laboratory); Institut National des Sciences et de l'Univers (INSU); Centre National de la Recherche Scientifique (Paris, France); China Earthquake Administration; Ministry of Lands and Resources (Beijing, China) FX This work was performed under the auspices of the European Marie Curie Outgoing International Fellowship, Stanford University, the U.S Department of Energy (University of California, Lawrence Livermore National Laboratory), the Institut National des Sciences et de l'Univers (INSU), Centre National de la Recherche Scientifique (Paris, France), as well as by the China Earthquake Administration and the Ministry of Lands and Resources (Beijing, China). We thank Wen Li and Zhang Pei Quan from the Institute of the Tibetan Plateau, Chinese Academy of Sciences (Beijing, China), for their help in the field. We thank two anonymous reviewers as well as Jakob Heyman for his thorough and constructive comments. The 10Be measurements were performed at the ASTER AMS French national facility (CEREGE, Aixen-Provence), which is supported by the INSU-CNRS, the French Ministry of Research and Higher Education, IRD and CEA, and at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory, USA. NR 86 TC 33 Z9 36 U1 4 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD MAR PY 2011 VL 30 IS 5-6 BP 528 EP 554 DI 10.1016/j.quascirev.2010.11.005 PG 27 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 741CF UT WOS:000288840000004 ER PT J AU Rood, DH Burbank, DW Finkel, RC AF Rood, Dylan H. Burbank, Douglas W. Finkel, Robert C. TI Chronology of glaciations in the Sierra Nevada, California, from Be-10 surface exposure dating SO QUATERNARY SCIENCE REVIEWS LA English DT Article DE Surface exposure dating; Be-10; Alpine glaciers; Last Glacial Maximum; Sierra Nevada ID LATE PLEISTOCENE GLACIATIONS; PRODUCTION-RATE CALIBRATION; SITU COSMOGENIC NUCLIDES; WESTERN US GLACIERS; PRODUCTION-RATES; NORTH-AMERICA; OWENS LAKE; MOUNTAIN-GLACIATION; EASTERN CALIFORNIA; HEINRICH EVENTS AB We use Be-10 surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 +/- 1.9 ka (2 sigma) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Rood, Dylan H.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Rood, Dylan H.; Burbank, Douglas W.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Finkel, Robert C.] CEREGE, Aix En Provence, France. [Finkel, Robert C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Rood, DH (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. EM rood5@llnl.gov FU LLNL; GSA; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Andrew Hein and an anonymous reviewer for useful comments on the manuscript. Informal reviews by Bodo Bookhagen and Phil Gans greatly improved an early version of the manuscript. We also thank our field assistants Scott Herman, Colin Amos, Steve DeOreo, Willy Amidon, Adam Avakian, and Daisy Rood. Special thanks to Malcolm Clark, Angela Jayko, Doug Clark, Bob Curry, and Burt Slemmons for all their help and insights concerning the Quaternary of the Sierra Nevada. DR is grateful for the mentorship of Tom Brown and Tom Guilderson at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory (LLNL) during 10Be measurements. Funding was provided by an LLNL Lawrence Scholar Program (LSP) Fellowship and a GSA Graduate Student Research Grant (to DR). This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 100 TC 25 Z9 29 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-3791 J9 QUATERNARY SCI REV JI Quat. Sci. Rev. PD MAR PY 2011 VL 30 IS 5-6 BP 646 EP 661 DI 10.1016/j.quascirev.2010.12.001 PG 16 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 741CF UT WOS:000288840000010 ER PT J AU Holzleitner, L Swinhoe, MT AF Holzleitner, Ludwig Swinhoe, Martyn T. TI Dead-time correction for any multiplicity using list mode neutron multiplicity counters: A new approach - Low and medium count-rates SO RADIATION MEASUREMENTS LA English DT Article DE Neutron multiplicity counting; Dead-time correction; List mode counters; Pulse train analysis AB In the field of neutron multiplicity counting, modern list mode counters provide increased possibilities for neutron data analysis. Here a new method to correct dead-time using a multichannel list mode neutron counter is described. As it will become clear in this article, the data analysis can be done "on the fly" without further data storage. This will allow an instrument to be built having this method implemented, which will give directly dead-time corrected results. In practice, a classical theory of dead-time correction is applied to the final Totals, Reals (or Doubles) and possibly Triples, whereas for higher multiplicities no dead-time correction has been implemented so far. In contrast to that, this approach directly corrects the multiplicity distributions of the Reals plus Accidentals (R + A) and Accidentals (A) obtained by multiplicity counting. Hence this dead-time correction holds for any kind of multiplicity (Totals, Doubles, Triples, Quadruples, Quintuples, etc.) because the calculation of these values can then be derived directly from the corrected multiplicity distribution of R+A and A. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Holzleitner, Ludwig] European Commiss, JRC, IPSC, Nucl Secur Unit, I-21027 Ispra, VA, Italy. [Swinhoe, Martyn T.] Los Alamos Natl Lab, Safeguards Sci & Technol Grp, Los Alamos, NM 87545 USA. RP Holzleitner, L (reprint author), European Commiss, JRC, IPSC, Nucl Secur Unit, Via E Fermi 2749, I-21027 Ispra, VA, Italy. EM ludwig.holzleitner@ec.europa.eu; swinhoe@lanl.gov OI Swinhoe, Martyn/0000-0002-7620-4654 NR 5 TC 4 Z9 5 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD MAR PY 2011 VL 46 IS 3 BP 340 EP 356 DI 10.1016/j.radmeas.2011.01.001 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 745SE UT WOS:000289185400009 ER PT J AU Vazquez-Mayagoitia, A Horton, SR Sumpter, BG Sponer, J Sponer, JE Fuentes-Cabrera, M AF Vazquez-Mayagoitia, Alvaro Horton, Scott R. Sumpter, Bobby G. Sponer, Jiri Sponer, Judit E. Fuentes-Cabrera, Miguel TI On the Stabilization of Ribose by Silicate Minerals SO ASTROBIOLOGY LA English DT Article DE Prebiotic chemistry; Simulation; Silicate-organics interactions; Origin of life; RNA world ID POTENTIAL-ENERGY SURFACES; VICINAL CIS-DIOLS; BORATE COMPLEXES; AQUEOUS-SOLUTION; DENSITY; MODEL; STABILITY; MOLECULES; PENTAOXO; EXCHANGE AB The RNA-world theory hypothesizes that early Earth life was based on the RNA molecule. However, the notion that ribose, the sugar in RNA, is unstable still casts a serious doubt over this theory. Recently, it has been found that the silicate-mediated formose reaction facilitates the stabilization of ribose. Using accurate quantum chemical calculations, we determined the relative stability of the silicate complexes of arabinose, lyxose, ribose, and xylose with the intent to determine which would form predominantly from a formose-like reaction. Five stereoisomers were investigated for each complex. The stereoisomers of 2:1 ribose-silicate are the more stable ones, to the extent that the least stable of these is even more stable than the most stable stereoisomer of the other 2: 1 sugar-silicate complexes. Thus, thermodynamically, a formose-like reaction in the presence of silicate minerals should preferentially form the silicate complex of ribose over the silicate complex of arabinose, lyxose, and xylose. C1 [Horton, Scott R.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, Oak Ridge, TN 37831 USA. [Horton, Scott R.; Sumpter, Bobby G.; Fuentes-Cabrera, Miguel] Oak Ridge Natl Lab, Div Math, Oak Ridge, TN 37831 USA. [Vazquez-Mayagoitia, Alvaro] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Sponer, Jiri; Sponer, Judit E.] Acad Sci Czech Republic, Inst Biophys, CS-61265 Brno, Czech Republic. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. EM judit@ncbr.chemi.muni.cz; fuentescabma@ornl.gov RI Sponer, Jiri/D-9467-2012; Sponer, Judit/D-9918-2012; Sumpter, Bobby/C-9459-2013; Vazquez-Mayagoitia, Alvaro/A-9755-2010; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Sumpter, Bobby/0000-0001-6341-0355; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU Division of Scientific User Facilities, U.S. Department of Energy (USDOE); USDOE [DE-AC05-06OR23100]; Oak Ridge Associated Universities [DE-AC05-06OR23100]; DOE, Offices of Basic Energy Science and Advanced Scientific Computing Research; UT/ORNL National Institute for Computational Sciences; Ministry of Education of the Czech Republic [AVOZ50040507, AVOZ50040702, MSM0021622413, LC06030, MSM6198959216, LC512]; Grant Agency of the Academy of Sciences of the Czech Republic [IAA400040802]; Grant Agency of the Czech Republic [P208/10/2302,203/09/1476, 203/09/H046] FX This work was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, U.S. Department of Energy (USDOE) (M.F.C., B.G.S.). S.R.H. was supported by an appointment under the Higher Education Research Experience (HERE) program, administered by the Oak Ridge Institute for Science and Education under contract number DE-AC05-06OR23100 between the USDOE and Oak Ridge Associated Universities. A.V.M. acknowledges support from the DOE, Offices of Basic Energy Science and Advanced Scientific Computing Research as part of the SciDAC program. Authors are also thankful to the computational resources of the UT/ORNL National Institute for Computational Sciences (A.V.M., M.F.C.). J.E.S. and J.S. are thankful for the financial support by the Ministry of Education of the Czech Republic (grant numbers AVOZ50040507, AVOZ50040702, MSM0021622413, and LC06030, MSM6198959216, LC512), by the Grant Agency of the Academy of Sciences of the Czech Republic (grant number IAA400040802) and Grant Agency of the Czech Republic (grant numbers P208/10/2302,203/09/1476 and 203/09/H046). NR 31 TC 10 Z9 10 U1 5 U2 30 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 J9 ASTROBIOLOGY JI Astrobiology PD MAR PY 2011 VL 11 IS 2 BP 115 EP 121 DI 10.1089/ast.2010.0508 PG 7 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA 739DJ UT WOS:000288693400003 PM 21391822 ER PT J AU Gleich, DF Wang, Y Meng, XR Ronaghi, F Gerritsen, M Saberi, A AF Gleich, David F. Wang, Ying Meng, Xiangrui Ronaghi, Farnaz Gerritsen, Margot Saberi, Amin TI Some computational tools for digital archive and metadata maintenance SO BIT NUMERICAL MATHEMATICS LA English DT Article DE Graph layout; Metadata remediation; Dynamic programming; Network alignment ID ALGORITHM; SIMILARITY; MATRICES AB Computational tools are a mainstay of current search and recommendation technology. But modern digital archives are astonishingly diverse collections of older digitized material and newer "born digital" content. Finding interesting material in these archives is still challenging. The material often lacks appropriate annotation-or metadata-so that people can find the most interesting material. We describe four computational tools we developed to aid in the processing and maintenance of large digital archives. The first is an improvement to a graph layout algorithm for graphs with hundreds of thousands of nodes. The second is a new algorithm for matching databases with links among the objects, also known as a network alignment problem. The third is an optimization heuristic to disambiguate a set of geographic references in a book. And the fourth is a technique to automatically generate a title from a description. C1 [Wang, Ying; Meng, Xiangrui; Gerritsen, Margot] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA. [Gleich, David F.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Gerritsen, M (reprint author), Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA. EM dfgleic@sandia.gov; yw1984@stanford.edu; mengxr@stanford.edu; farnaaz@stanford.edu; gerritsen@stanford.edu; saberi@stanford.edu NR 46 TC 0 Z9 0 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0006-3835 EI 1572-9125 J9 BIT JI Bit PD MAR PY 2011 VL 51 IS 1 BP 127 EP 154 DI 10.1007/s10543-011-0324-6 PG 28 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 739HY UT WOS:000288707100007 ER PT J AU Wang, H Malhotra, SV Francis, AJ AF Wang, Hao Malhotra, Sanjay V. Francis, Arokiasamy J. TI Toxicity of various anions associated with methoxyethyl methyl imidazolium-based ionic liquids on Clostridium sp. SO CHEMOSPHERE LA English DT Article DE Ionic liquids; Anions; Toxicity; Bacteria; Clostridium sp. ID LIQUID/LIQUID EXTRACTION; AQUATIC ORGANISMS; METAL-IONS; SOLVENTS AB We investigated the effects on the growth of the anaerobic bacterium. Clostridium sp., of the ionic liquid, 1-methoxyethyl-3-methyl imidazolium [MOEMIM](+), derived from imidazolium cation and paired with one of a variety of counter-ions, viz., tetrafluoroborate [BE(4)](-), hexafluorophosphate [PF(6)](-). trifluoroacetate [CF(3)COO](-), bis(trifluoromethane)sulfonamide [Tf(2)N](-), methane sulfonate [OMS], and 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIM][BF(4)]. These anions, in association with [MOEMIM](+). lowered the growth rate of the bacterium, showing the following trend: [Tf(2)N](-) >= [PF(6)](-) > [BF(4)](-) > [CF(3)COO](-) > [OMS](-). Anions incorporating fluorine were more toxic than those without it, and their toxicity rose with an increase in the number of fluorine atoms. Also, [MOEMIM](+) [BE(4)](-) was less toxic than [BMIM](+) [BF(4)](-), probably due to the presence of a methoxyethyl functional group integrated in the cation side chain. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Francis, Arokiasamy J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11953 USA. [Wang, Hao; Malhotra, Sanjay V.] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07104 USA. RP Francis, AJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11953 USA. EM francis1@bnl.gov FU Brookhaven National Laboratory, Laboratory Directed Research and Development (LDRD), US Department of Energy [DE-AC02-98CH10886] FX We thank A.D. Woodhead for the editorial help and comments. This work was supported by Brookhaven National Laboratory, Laboratory Directed Research and Development (LDRD), US Department of Energy under contract No. DE-AC02-98CH10886. NR 31 TC 28 Z9 29 U1 6 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2011 VL 82 IS 11 BP 1597 EP 1603 DI 10.1016/j.chemosphere.2010.11.049 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 737SG UT WOS:000288587900012 PM 21159360 ER PT J AU Zhang, C Malhotra, SV Francis, AJ AF Zhang, C. Malhotra, S. V. Francis, A. J. TI Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate SO CHEMOSPHERE LA English DT Article DE Ionic liquids; Toxicity; Biodegradation; Co-metabolism; Bacteria ID MICROBIAL-METABOLISM; ESCHERICHIA-COLI; BIODEGRADATION; IDENTIFICATION; CYTOTOXICITY; CATIONS; DESIGN; GROWTH AB We examined the effects of the ionic liquids (us), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], N-ethylpyridinium tetrafluoroborate [EtPy][BF4], and N-ethylpyridinium trifluoroacetate [EtPy][CF3COO] on Pseudomonas fluorescens, a ubiquitous soil bacterium. In the presence of 0.5- and 1% of [BMIM][PF6] or [EtPy][CF3COO] the growth of bacteria was inhibited, whereas exposing them to 1% [EtPy][BF4] increased the lag period wherein bacteria adapt to growth conditions before continuing to grow. However, at higher concentrations (5% and 10%), no growth was observed. The inhibitory effects were evident by a decrease in the optical density of the culture, a decline in the consumption of the carbon source, citric acid, and a change in the size of the bacterium. At concentrations below 1%, [EtPy][[BF4] was metabolized by P. fluorescens in the presence of citric acid. Oxidation of the side alkyl-chain of [EtPy][BF4] caused the accumulation of N-hydroxylethylpyridinium and pyridinium as major degradation products. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Zhang, C.; Malhotra, S. V.] New Jersey Inst Technol, Dept Chem & Environm Sci, Newark, NJ 07104 USA. RP Francis, AJ (reprint author), Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. EM ajfrancis@bnl.gov FU Brookhaven National Laboratory; US Department of Energy [DE-AC02-98CH10886] FX We thank A.D. Woodhead for the editorial help and comments. This research was supported by Brookhaven National Laboratory, Laboratory Directed Research and Development (LDRD) program, US Department of Energy under Contract No. DE-AC02-98CH10886. NR 39 TC 27 Z9 31 U1 5 U2 40 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2011 VL 82 IS 11 BP 1690 EP 1695 DI 10.1016/j.chemosphere.2010.10.085 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 737SG UT WOS:000288587900024 PM 21112067 ER PT J AU Howard, J Diallo, A Creese, M Allen, SL Ellis, RM Meyer, W Fenstermacher, ME Porter, GD Brooks, NH Van Zeeland, ME Boivin, RL AF Howard, J. Diallo, A. Creese, M. Allen, S. L. Ellis, R. M. Meyer, W. Fenstermacher, M. E. Porter, G. D. Brooks, N. H. Van Zeeland, M. E. Boivin, R. L. TI Coherence Imaging of Flows in the DIII-D Divertor SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article DE Spectroscopy; imaging; divertor AB Various spatial heterodyne polarization interferometers for spectrally-resolved optical imaging of edge and core parameters in high temperature magnetized plasmas are described. Applications for such "coherence imaging" (CI) systems include imaging motional Stark effect and Zeeman effect polarimetry for determination of the magnetic field pitch angle, and passive and active (charge exchange recombination spectroscopy - CXRS) Doppler imaging of plasma temperature and flow. In this paper we describe spatial heterodyne coherence imaging systems and present first results of Doppler flow imaging in the DIII-D divertor. Instruments have been installed for imaging flows in the divertor and scrape-off-layer in the DIII-D tokamak and also for Doppler imaging on the H-1 heliac [1]. In the former case, single snapshot interferometric images of the plasma in CII 514nm, and CIII 465nm emission have been demodulated to obtain flow and ion temperature projections in both the scrape-off-layer and divertor. Flow field amplitudes in the divertor are found to be broad agreement with UEDGE modeling [2], and point the way towards experiments that address important divertor transport issues in future. (c) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Howard, J.; Diallo, A.; Creese, M.] Australian Natl Univ, Plasma Res Lab, Canberra, ACT 0200, Australia. [Diallo, A.] Gen Atom Co, Lawrence Livermore Natl Lab, San Diego, CA USA. RP Howard, J (reprint author), Australian Natl Univ, Plasma Res Lab, GPO Box 4, Canberra, ACT 0200, Australia. EM john.howard@anu.edu.au FU International Science Linkages established under the Australian Government's innovation statement, "Backing Australia's Ability"; US Department of Energy [DE-AC52-07NA27344, DE-FC02-04ER54698] FX This work is supported by International Science Linkages established under the Australian Government's innovation statement, "Backing Australia's Ability". This work was also supported in part by the US Department of Energy under DE-AC52-07NA27344 and DE-FC02-04ER54698. Dr A Diallo would like to thank PPPL for travel support to participate in the experiments at General Atomics. NR 6 TC 1 Z9 1 U1 1 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0863-1042 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD MAR PY 2011 VL 51 IS 2-3 SI SI BP 194 EP 200 DI 10.1002/ctpp.201000062 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 738AD UT WOS:000288610800015 ER PT J AU Galtier, E Rosmej, FB Renner, O Juha, L Chalupsky, J Gauthier, JC White, S Riley, D Vinko, S Witcher, T Wark, J Nagler, B Lee, RW Nelson, AJ Toleikis, S AF Galtier, E. Rosmej, F. B. Renner, O. Juha, L. Chalupsky, J. Gauthier, J. -C. White, S. Riley, D. Vinko, S. Witcher, T. Wark, J. Nagler, B. Lee, R. W. Nelson, A. J. Toleikis, S. TI Observation of K-Shell Soft X Ray Emission of Nitrogen Irradiated by XUV-Free Electron Laser FLASH at Intensities Greater than 10(16) W/cm(2) SO CONTRIBUTIONS TO PLASMA PHYSICS LA English DT Article DE Soft X-ray diagnostic; Free Electron Laser; THM crystal AB In the past few years, the development of light sources of the 4(th) generation, namely XUV/X-ray Free Electron Lasers provides to the scientific community outstanding tools to investigate matter under extreme conditions never obtained in laboratories so far. As theory is at its infancy, the analysis of matter via the self-emission of the target is of central importance. The characterization of such dense matter is possible if photons can escape the medium. As the absorption of K-shell X-ray transitions is minimal, it plays a key role in this study. We report here the first successful observation of K-shell emission of Nitrogen at 430 eV using an XUV-Free Electron Laser to irradiate solid Boron Nitride targets under exceptional conditions: photon energy of 92 eV, pulse duration of similar to 20 fs, micro focusing leading to intensities larger than 10(16) W/cm(2). Using a Bragg crystal of THM coupled to a CCD, we resolved K-shell line emission from different charge states. We demonstrate that the spectroscopic data allow characterization of electron heating processes when X-ray radiation is interacting with solid matter. As energy transport is non-trivial because the light source is monochromatic, these results have an important impact on the theory. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Galtier, E.; Rosmej, F. B.] Univ Paris 06, Univ Sorbonne, UMR 7605, LULI, F-75252 Paris 05, France. [Galtier, E.; Rosmej, F. B.] Ecole Polytech, Lab Utilisat Lasers Intenses, PAPD, F-91228 Palaiseau, France. [Renner, O.; Juha, L.; Chalupsky, J.] Inst Phys ASCR, Prague, Czech Republic. [Gauthier, J. -C.] Ctr Lasers Intenses & Applicat CELIA, Bordeaux, France. [White, S.; Riley, D.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. [Vinko, S.; Witcher, T.; Wark, J.] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 2JD, England. [Nagler, B.] SLAC Natl Accelerator Lab, Menlo Pk, CA USA. [Lee, R. W.; Nelson, A. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Toleikis, S.] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany. RP Rosmej, FB (reprint author), Univ Paris 06, Univ Sorbonne, UMR 7605, LULI, Case 128,4 Pl Jussieu, F-75252 Paris 05, France. EM frank.rosmej@upmc.fr RI Vinko, Sam/I-4845-2013; Chalupsky, Jaromir/H-2079-2014; Renner, Oldrich/C-1591-2010 OI Vinko, Sam/0000-0003-1016-0975; Renner, Oldrich/0000-0003-4942-2637 FU Helmholtz Association [EMMI HA-216]; Sorbonne University Pierre and Marie Curie FX The group from the Universite Pierre et Marie Curie/LULI acknowledges the support of the Allianz Program of the Helmholtz Association, Contract No. EMMI HA-216 "Extremes of Density and Temperature: Cosmic Matter in the Laboratory". Also the support from the Sorbonne University Pierre and Marie Curie (project "EMERGENCE-2010") is greatly appreciated. NR 6 TC 0 Z9 0 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0863-1042 J9 CONTRIB PLASM PHYS JI Contrib. Plasma Phys. PD MAR PY 2011 VL 51 IS 2-3 SI SI BP 284 EP 287 DI 10.1002/ctpp.201000045 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 738AD UT WOS:000288610800027 ER PT J AU Stadler, M Siddiqui, A Marnay, C Aki, H Lai, J AF Stadler, Michael Siddiqui, Afzal Marnay, Chris Aki, Hirohisa Lai, Judy TI Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings SO EUROPEAN TRANSACTIONS ON ELECTRICAL POWER LA English DT Article DE CO(2) emissions; distributed generation; energy management; storage; zero-carbon; zero-net-energy buildings ID HEAT AB The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e., ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost-or CO(2)-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic (PV) modules and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO(2) emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northern California with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response saves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, which allows us to estimate the needed technologies and costs for achieving a ZC building or microgrid. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Stadler, Michael; Marnay, Chris; Aki, Hirohisa; Lai, Judy] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Siddiqui, Afzal] UCL, Dept Stat Sci, London WC1E 6BT, England. [Aki, Hirohisa] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki, Japan. [Siddiqui, Afzal] Stockholm Univ KTH, Dept Comp & Syst Sci, Stockholm, Sweden. RP Stadler, M (reprint author), Ernest Orlando Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM MStadler@lbl.gov OI Aki, Hirohisa/0000-0001-9012-459X FU Office of Electricity Delivery and Energy Reliability, Distributed Energy U.S. Department of Energy [DE-AC02-05CH11231] FX The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Distributed Energy Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 19 TC 10 Z9 11 U1 2 U2 16 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1430-144X J9 EUR T ELECTR POWER JI Eur. Trans. Electr. Power PD MAR PY 2011 VL 21 IS 2 SI SI BP 1291 EP 1309 DI 10.1002/etep.418 PG 19 WC Engineering, Electrical & Electronic SC Engineering GA 741HX UT WOS:000288855900010 ER PT J AU Quittek, J Christensen, K Nordman, B AF Quittek, Juergen Christensen, Ken Nordman, Bruce TI Energy-Efficient Networks SO IEEE NETWORK LA English DT Editorial Material C1 [Quittek, Juergen] NEC Europe, Network Res Div, Heidelberg, Germany. [Christensen, Ken] Univ S Florida, Dept Comp Sci & Engn, Undergrad Program, Tampa, FL 33620 USA. [Christensen, Ken] IBM Corp, Res Triangle Pk, NC USA. [Nordman, Bruce] Lawrence Berkeley Natl Lab, Energy Anal Dept, Berkeley, CA USA. RP Quittek, J (reprint author), Free Univ Berlin, D-1000 Berlin, Germany. EM quittek@neclab.eu; christen@cse.usf.edu; bnordman@lbl.gov NR 0 TC 3 Z9 3 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0890-8044 J9 IEEE NETWORK JI IEEE Netw. PD MAR-APR PY 2011 VL 25 IS 2 SI SI BP 4 EP 5 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 736AS UT WOS:000288462500002 ER PT J AU Chang, CYS Wei, WCJ Hsueh, CH AF Chang, C. Y. S. Wei, W. C. J. Hsueh, C. H. TI Viscosity of Ba-B-Si-Al-O glass measured by indentation creep test at operating temperature of IT-SOFC SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Borosilicate; Creep; Viscosity ID IMPRESSION CREEP; CERAMICS; BEHAVIOR AB Viscosity of a specific Ba-B-Si-Al-O glass used for intermediate-temperature solid oxide fuel cell was measured using indentation creep tests. Responses of shear strain to corresponding shear stress at the operating temperature of solid oxide fuel cell were analyzed, and the results revealed that the glass system possesses Newtonian flow behavior at 600-630 degrees C. In addition, the stress exponent and the activation energy for viscous flow at different temperatures and stresses were also determined. Finally, the absolute-rate theory was adopted to describe the viscous flow for the glass. The results were compared with other glass systems. (C) 2011 Elsevier B.V. All rights reserved. C1 [Chang, C. Y. S.; Wei, W. C. J.; Hsueh, C. H.] Natl Taiwan Univ, Dept Mat Sci & Eng, Taipei, Taiwan. [Hsueh, C. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hsueh, C. H.] Oak Ridge Natl Lab, Mat Sci Eng Div, Oak Ridge, TN 37831 USA. RP Wei, WCJ (reprint author), Natl Taiwan Univ, Dept Mat Sci & Eng, Taipei, Taiwan. EM wjwei@ntu.edu.tw RI Hsueh, Chun-Hway/G-1345-2011 FU National Science Council in Taiwan [NSC97-2221-E-002-027-MY2, NSC96-2221-E-002-160-MY2] FX The authors would like to thank the funding given by the National Science Council in Taiwan by the contract numbers NSC97-2221-E-002-027-MY2 and NSC96-2221-E-002-160-MY2. NR 16 TC 6 Z9 7 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD MAR 1 PY 2011 VL 357 IS 5 BP 1414 EP 1419 DI 10.1016/j.jnoncrysol.2010.12.034 PG 6 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 739OE UT WOS:000288726700011 ER PT J AU Kim, YS Hofman, GL AF Kim, Yeon Soo Hofman, Gerard L. TI Interdiffusion in U3Si-Al, U3Si2-Al, and USi-Al dispersion fuels during irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DIFFUSION; ALUMINUM; BEHAVIOR AB Uranium-silicide compound fuel dispersion in an Al matrix is used in research and test reactors worldwide. Interaction layer (IL) growth between fuel particles and the matrix is one of performance issues. The interaction layer growth data for U3Si, U3Si2 and USi dispersions in Al were obtained from both out-of-pile and in-pile tests. The IL is dominantly U(AlSi)(3) from out-of-pile tests, but its (Al + Si)/U ratio from in-pile tests is higher than the out-of-pile data, because of amorphous behavior of the ILs. IL growth correlations were developed for U3Si-Al and U3Si2-Al. The IL growth rates were dependent on the U/Si ratio of the fuel compounds. During irradiation, however, the IL growth rates did not decrease with the decreasing U/Si ratio by fission. It is reasoned that transition metal fission products in the IL compensate the loss of U atoms by providing chemical potential for Al diffusion and volume expansion by solid swelling and gas bubble swelling. The addition of Mo in U3Si2 reduces the IL growth rate, which is similar to that of UMo alloy dispersion in a silicon-added Al matrix. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kim, Yeon Soo; Hofman, Gerard L.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kim, YS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yskim@anl.gov FU UChicago Argonne, LLC [DE-AC-02-06CH11357]; Department of Energy [DE-AC-02-06CH11357] FX The submitted manuscript has been created by the UChicago Argonne, LCC as Operator of Argonne National Laboratory under contract No. DE-AC-02-06CH11357 between the UChicago Argonne, LLC and the Department of Energy. The US Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The authors are grateful to Dr. Ugajin of JAEA for his data. NR 34 TC 11 Z9 11 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2011 VL 410 IS 1-3 BP 1 EP 9 DI 10.1016/j.jnucmat.2010.12.031 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 739MQ UT WOS:000288722400001 ER PT J AU Jackson, JH Porter, DL Lloyd, WR Kisohara, N AF Jackson, J. H. Porter, D. L. Lloyd, W. R. Kisohara, N. TI Fatigue crack analysis of EBR-II Ni-bonded duplex tubing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Small, notched three-point bend specimens machined from duplex tubes, which were extracted from an EBR-Il superheater, were fatigued through the nickel interlayer to determine propensity for crack arrest within this interlayer. Several of these specimens were fatigued in the near threshold, and steady state regimes of Paris Law behavior. Additionally, two specimens were fatigued to the edge of the nickel interlayer and then monotonically loaded. Micro-hardness profiles of the nickel interlayer were also measured. Fatigue behavior was found to be similar to previous studies in that arrest was only noted in the near threshold Paris regime (attributed to the presence of voids) and in the steady state regime exhibited an acceleration of crack growth rate through the nickel interlayer followed by a slight retardation. Monotonic loading resulted in crack branching or delamination along the interlayer. Although archival material was not available for this study, the hardness of the nickel interlayer was determined to have been lowered slightly during service by comparison to the expected hardness of a similar nickel braze prepared as specified for fabrication of these tubes. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jackson, J. H.; Porter, D. L.; Lloyd, W. R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Kisohara, N.] Japan Atom Energy Agcy, Higashi Ibaraki, Ibaraki 3111393, Japan. RP Jackson, JH (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM john.jackson@inl.gov FU DOE [DE-AC07-05ID14517] FX The submitted manuscript has been authored by a contractor of the US Government under DOE Contract DE-AC07-05ID14517. Accordingly, the US Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. NR 6 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2011 VL 410 IS 1-3 BP 76 EP 83 DI 10.1016/j.jnucmat.2011.01.014 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 739MQ UT WOS:000288722400010 ER PT J AU Jeffries, JR Wall, MA Moore, KT Schwartz, AJ AF Jeffries, J. R. Wall, M. A. Moore, K. T. Schwartz, A. J. TI He bubble coarsening by migration and coalescence in annealed Pu-Ga alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HELIUM BUBBLES; ION-IRRADIATION; AGED PLUTONIUM; METALS; SOLIDS AB The a-decay of plutonium in Pu-Ga alloys continually generates inert He atoms within the lattice of the Pu-Ga matrix. In naturally aged Pu specimens, those He atoms form into bubbles, He-filled vacancy clusters, with a characteristic size distribution centered near 1.4 nm. Upon annealing, the He bubbles are subject to temperature induced changes in the thermodynamic parameters governing their size, which results in a coarsening of the bubble distribution yielding a lower bubble density but larger average bubble sizes. Herein, we investigate, by means of transmission electron microscopy, the coarsening of He bubbles with several annealing treatments. Micrographs subsequent to the annealing treatments as well as in situ observations implicate migration and coalescence as the mechanism for He bubble coarsening with annealing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jeffries, J. R.; Wall, M. A.; Moore, K. T.; Schwartz, A. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jeffries, JR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jeffries4@llnl.gov FU Science Campaign at Lawrence Livermore National Laboratory; US Department of Energy [DE-AC52-07NA27344] FX This work was supported by the Science Campaign at Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 27 TC 7 Z9 7 U1 8 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD MAR PY 2011 VL 410 IS 1-3 BP 84 EP 88 DI 10.1016/j.jnucmat.2011.01.015 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 739MQ UT WOS:000288722400011 ER PT J AU Choi, WS Jeong, DW Jang, SY Marton, Z Seo, SSA Lee, HN Lee, YS AF Choi, Woo Seok Jeong, Da Woon Jang, Seung Yup Marton, Z. Seo, Sung Seok A. Lee, Ho Nyung Lee, Yun Sang TI LaMnO3 Thin Films Grown by Using Pulsed Laser Deposition and Their Simple Recovery to a Stoichiometric Phase by Annealing SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 19th Symposium on Dielectric and Advanced Matter Physics/11th Workshop on High Dielectric and Ferroelectric Device and Materials CY FEB 07-09, 2010 CL SOUTH KOREA DE LaMnO3; SrTiO3; Pulsed laser deposition; Stoichiometry; Interface; Optical spectroscopy; Magnetic property ID TRANSITION-METAL OXIDES; NEUTRON-DIFFRACTION; MAGNETIC-PROPERTIES; SRTIO3 AB We systematically investigated various physical properties of epitaxial LaMnO3 thin films fabricated on SrTiO3 substrate by using pulsed laser deposition. In particular, we observed drastic changes in their properties when the as-grown films were annealed in a reduced-oxygen atmosphere. Whereas the as-grown LaMno(3) film showed ferromagnetic and semiconducting properties with a small optical band gap, the LaMnO3 films annealed at temperature higher than 700 degrees C showed antiferromagnetic and insulating properties with an enlarged band gap. The optical features also changed drastically, in that the optical transition peak shifted to a higher energy with additional fine structures. Such changes were made in a direction such that the LaMno(3) films were more stoichiometric, indicating that the stoichiometric phase could be recovered by simple annealing of the pulsed-laser-deposited films. Finally, possibilities of the polar catastrophe scenario at the interface between LaMnO3 and SrTiO3 are briefly discussed. C1 [Choi, Woo Seok; Marton, Z.; Seo, Sung Seok A.; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Choi, Woo Seok; Jeong, Da Woon; Jang, Seung Yup] Seoul Natl Univ, Dept Phys & Astron, Res Ctr Funct Interface, Seoul 151747, South Korea. [Lee, Yun Sang] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. RP Choi, WS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM light0516@gmail.com; ylee@ssu.ac.kr RI Seo, Sung Seok/B-6964-2008; Lee, Ho Nyung/K-2820-2012; Choi, Woo Seok/G-8783-2014 OI Seo, Sung Seok/0000-0002-7055-5314; Lee, Ho Nyung/0000-0002-2180-3975; NR 29 TC 10 Z9 10 U1 0 U2 26 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAR PY 2011 VL 58 IS 3 SI SI BP 569 EP 574 DI 10.3938/jkps.58.569 PN 1 PG 6 WC Physics, Multidisciplinary SC Physics GA 735LA UT WOS:000288414600004 ER PT J AU Yang, SM Jang, SY Kim, TH Kim, HH Lee, HN Yoon, JG AF Yang, Sang Mo Jang, Seung Yup Kim, Tae Heon Kim, Hun-Ho Lee, Ho Nyung Yoon, Jong-Gul TI Scaling Behavior of Amplitude-dependent Ferroelectric Hysteresis Loops in an Epitaxial PbZr0.2Ti0.8O3 Thin Film SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article; Proceedings Paper CT 19th Symposium on Dielectric and Advanced Matter Physics/11th Workshop on High Dielectric and Ferroelectric Device and Materials CY FEB 07-09, 2010 CL SOUTH KOREA DE Ferroelectric; Hysteresis; Scaling; PZT; Epitaxial film; Coercive field; Dimension ID MAGNETIC HYSTERESIS; AVRAMI MODEL AB We investigated the scaling behavior of ferroelectric (FE) hysteresis loops as a. function of the applied field amplitude (E-0) in a high-quality epitaxial PbZr0.2Ti0.8O3 (PZT) thin film. We observed that the areas of the polarization-electric field hysteresis loops (A) followed the scaling law A proportional to E-0(alpha), with the exponent alpha = 0.45 +/- 0.01. This result is in excellent agreement with the theoretical prediction of alpha by the two-dimensional Ising model. In addition, we found that the coercive field (E-C) showed E-C proportional to E-0(gamma) with the exponent gamma = 0.28 +/- 0.01. We attribute this relationship to the difference in the sweep rate of the field amplitude E-0. From the obtained gamma value, the growth dimension of FE domains is found to be about 1.68 in our epitaxial PZT thin film. C1 [Yang, Sang Mo; Jang, Seung Yup; Kim, Tae Heon; Kim, Hun-Ho] Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. [Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yoon, Jong-Gul] Univ Suwon, Dept Phys, Hwaseong 445743, South Korea. RP Yang, SM (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. EM jgyoon@suwon.ac.kr RI Lee, Ho Nyung/K-2820-2012; Kim, Tae Heon/C-5935-2015; Yang, Sang Mo/Q-2455-2015 OI Lee, Ho Nyung/0000-0002-2180-3975; Kim, Tae Heon/0000-0003-4835-0707; Yang, Sang Mo/0000-0003-1809-2938 NR 24 TC 1 Z9 1 U1 0 U2 5 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD MAR PY 2011 VL 58 IS 3 SI SI BP 599 EP 603 DI 10.3938/jkps.58.599 PN 1 PG 5 WC Physics, Multidisciplinary SC Physics GA 735LA UT WOS:000288414600010 ER PT J AU Achermann, M Jeong, S Balet, L Montano, GA Hollingsworth, JA AF Achermann, Marc Jeong, Sohee Balet, Laurent Montano, Gabriel A. Hollingsworth, Jennifer A. TI Efficient Quantum Dot-Quantum Dot and Quantum Dot-Dye Energy Transfer in Biotemplated Assemblies SO ACS NANO LA English DT Article DE nanocrystal quantum dots; Forster resonance energy transfer; microtubule; biotemplated assembly ID MOTOR PROTEINS; DNA; NANOPARTICLES; NANOCRYSTALS; TEMPLATES; TRANSPORT; DONORS; ARRAYS AB CdSe semiconductor nonocrystal quantum dots are assembled into nanowire-like arrays employing microtubule fibers is nanoscale molecular "scaffolds" Spectrally and time-resolved energy-transfer analysis is used to assess the assembly of the nanoparticles into the hybrid, Inorganic biomolecular structure. Specifically, we demonstrate that a comprehensive study of energy transfer between quantum dot pairs on the biotemplate and alternatively, between quantum dots and molecular dyes embedded In the microtubule scaffold comprises a powerful spectroscopic tool for evaluating the assembly,process, In addition to revealing the extent to which assembly has occurred, the approach allows determination of particle-to-particle (and particle-to-dye) distances within the biomediated array Significantly the characterization is realized in situ, without need for further sample workup or risk of disturbing the solution phase constructs. Furthermore, we find that the assemblies prepared in-this way exhibit efficient quantum dot quantum dot and quantum dot dye energy transfer that affords faster energy-transfer rates compared to densely packed quantum dot arrays on planar, substrates and to small-molecule-mediated quantum dot dye couples, respectively. C1 [Achermann, Marc; Jeong, Sohee; Balet, Laurent; Montano, Gabriel A.; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Div Chem, C PCS, Los Alamos, NM 87545 USA. RP Hollingsworth, JA (reprint author), Los Alamos Natl Lab, Div Chem, C PCS, POB 1663, Los Alamos, NM 87545 USA. EM jenn@lanl.gov RI Achermann, Marc/A-1849-2011; OI Achermann, Marc/0000-0002-3939-9309; Jeong, Sohee/0000-0002-9863-1374 FU Los Alamos National Laboratory Directed Research and Development Funds; NIH-NIGMS [1R01GM084702-01]; Nano RD program [2009-0083219] FX We thank G. Bachand, Sandia National Laboratories, for helpful discussions pertaining to MT assembly and maintaining MT stability. The work was supported by Los Alamos National Laboratory Directed Research and Development Funds, especially those dedicated to start-up activities of the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. J.H. acknowledges partial support through NIH-NIGMS grant 1R01GM084702-01. S.J acknowledges partial support from the Nano R&D program, grant 2009-0083219. NR 36 TC 15 Z9 15 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 1761 EP 1768 DI 10.1021/nn102365v PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600026 PM 21314178 ER PT J AU Argyris, D Ashby, PD Striolo, A AF Argyris, Dimitrios Ashby, Paul D. Striolo, Alberto TI Structure and Orientation of Interfacial Water Determine Atomic Force Microscopy Results: Insights from Molecular Dynamics Simulations SO ACS NANO LA English DT Article DE force spectroscopy; alumina; carbon nanotubes; water structure ID ALPHA-AL2O3 0001 SURFACE; ALUMINA SURFACES; NEUTRON-SCATTERING; SOLVATION FORCES; HYDRATION WATER; AB-INITIO; RESOLUTION; MODELS; SPECTROSCOPY; ADSORPTION AB Massive all-atom molecular dynamics simulations were employed to study hydration forces near alpha-Al(2)O(3) (0001) surfaces as sampled during a hypothetical AFM force spectroscopy experiment conducted using, a (28,0)single-walled carbon nanotube as the tip at ambient conditions. The results provide the-force acting on the carbon nanotube tip, as well as detailed properties of interfacial water, as a function of the nanotube-surface distance. As the tip approaches the solid substrate, interfacial water undergoes conformational and structural changes. These changes are responsible for the features observed in the force profiles, including the range at which forces can be measured (up to two hydration shells), the intensity of the forces experienced by the AFM tip, and their oscillatory,character. Our detailed analysis shows that heterogeneous surface chemical composition results in appreciably different force profiles. This observation may explain the variability of AFM data sampling hydration forces even on atomically smooth substrates. In addition, our results suggest that sufficiently accurate AFM force spectroscopy could be used to study how hydration forces depend on surface heterogeneous properties and on the orientation and local density of interfacial water, which could aid our understanding of interfacial phenomena and lead to significant scientific breakthroughs. C1 [Argyris, Dimitrios; Striolo, Alberto] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. [Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Div Mat Sci, Berkeley, CA 94720 USA. RP Striolo, A (reprint author), Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA. EM astriolo@ou.edu RI Striolo, Alberto/G-2926-2011 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC0001902]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support was provided, in part, by the Office of Basic Energy Sciences, U.S. Department of Energy, by Contract No. DE-SC0001902 to the University of Oklahoma. Generous allocations of computing time were provided by the OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma and by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 68 TC 30 Z9 30 U1 3 U2 60 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 2215 EP 2223 DI 10.1021/nn103454m PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600080 PM 21375261 ER PT J AU Zhang, JA Schrock, D Livchak, A Liu, B AF Zhang, Jian Schrock, Derek Livchak, Andrey Liu, Bing TI Energy Savings For Quick Service Restaurants SO ASHRAE JOURNAL LA English DT Article C1 [Zhang, Jian; Liu, Bing] Pacific NW Natl Lab, Richland, WA 99352 USA. [Schrock, Derek] Halton Co, Scottsville, KY USA. [Livchak, Andrey] Halton Grp Amer, Bowling Green, KY USA. RP Zhang, JA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. FU U.S. Department of Energy FX The project was funded by the U.S. Department of Energy. The authors would also like to acknowledge the technical contributions from Don Fisher and David Zabrowski at the Food Service Technology Center, Michael Lane at Lighting Design Lab, and Rahul Athalye and Brian Thornton at PNNL. NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAR PY 2011 VL 53 IS 3 BP 36 EP 41 PG 6 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 738CA UT WOS:000288615700006 ER PT J AU Dieckmann, J Cooperman, A Brodrick, J AF Dieckmann, John Cooperman, Alissa Brodrick, James TI Solid-State Cooling, Part I SO ASHRAE JOURNAL LA English DT Article ID SUPERLATTICE THERMOELECTRIC-MATERIALS; DEVICES C1 [Dieckmann, John; Cooperman, Alissa] TLAX, Mech Syst Grp, Cambridge, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Dieckmann, J (reprint author), TLAX, Mech Syst Grp, Cambridge, MA USA. NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD MAR PY 2011 VL 53 IS 3 BP 82 EP 84 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 738CA UT WOS:000288615700014 ER PT J AU Gifford, AN Kuschel, S Shea, C Fowler, JS AF Gifford, Andrew N. Kuschel, Sonja Shea, Colleen Fowler, Joanna S. TI Polymer-Supported Organotin Reagent for Prosthetic Group Labeling of Biological Macromolecules with Radioiodine SO BIOCONJUGATE CHEMISTRY LA English DT Article ID ORGANIC-SYNTHESIS; RADIOHALOGENATION; PROTEINS; RADIOPHARMACEUTICALS; THERAPY AB In this study, we investigated the use of polymer-bound precursor for generating a radiolabeled prosthetic group to be used for conjugate labeling of biological macromolecules. For the approach, a trialkyltin chloride in which the tin was bound to a hydrophilic PEG-based resin support via one of the alkyl groups was synthesized. This resin was then used to prepare a resin-bound trialkyltin benzoic acid, which in some cases was further derivatized on-resin by converting it to a succinimidyl ester. Exposure of the resin-bound compounds to electrophilic radioiodine ((125)I) in either an aqueous or methanol solvent liberated either free radiolabeled [(125)I]iodobenzoic acid or its succinimidyl ester without co-release of the resin-bound precursors. Radiochemical yield was between 35% and 75%, depending on the solvent system and precursor. As example applications for the released compounds, the amine-reactive N-succinimidyl-[(125)I]iodobenzoate prosthetic group was used for conjugate radiolabeling of a peptide, tomato plant systemin, and two proteins, albumin and IgG antibody. These results demonstrate that resin-bound organotin precursors in which the compound to be labeled is tethered to the support via the tin group to be substituted can be used to produce radioiodine-labeled aromatic prosthetic groups in good specific activity without the need for HPLC purification. This solid-phase approach is potentially adaptable to kit-formulation for performing conjugate radiolabeling of biological macromolecules. C1 [Gifford, Andrew N.; Kuschel, Sonja; Shea, Colleen; Fowler, Joanna S.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Gifford, AN (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM gifforda@bnl.gov FU DOE office of biological and environmental research; U.S. Department of Energy [DE-AC02-98CH1-886] FX Funded by the DOE office of biological and environmental research and performed under Brookhaven Science Associates contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. The authors would like to thank Dr. S. Kim for valuable advice and for collecting NMR data on the compounds. NR 23 TC 10 Z9 10 U1 0 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD MAR PY 2011 VL 22 IS 3 BP 406 EP 412 DI 10.1021/bc1004203 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 735GM UT WOS:000288401400012 PM 21309585 ER PT J AU Wang, ED Lee, SH Lee, SW AF Wang, Eddie Lee, Sang-Hyuk Lee, Seung-Wuk TI Elastin-Like Polypeptide Based Hydroxyapatite Bionanocomposites SO BIOMACROMOLECULES LA English DT Article ID CALCIUM-PHOSPHATE CEMENT; STRENGTH APATITIC CEMENT; MECHANICAL-PROPERTIES; PROTEIN POLYMER; PHAGE DISPLAY; CELL-ADHESION; BONE-CEMENT; COMPOSITES; OSTEOPONTIN; HYDROGELS AB In nature, organic matrix macromolecules play a critical role in enhancing the mechanical properties of biomineralized composites such as bone and teeth. Designing artificial matrix analogues is promising but challenging because relatively little is known about how natural matrix components function. Therefore, in lieu of using natural components, we created biomimetic matrices using genetically engineered elastin-like polypeptides (ELPs) and then used them to construct mechanically robust ELP-hydroxyapatite (HAP) composites. ELPs were engineered with well-defined backbone charge distributions by periodic incorporation of negative, positive, or neutral side chains or with HAP-binding octaglutamic acid motifs at one or both protein termini. ELPs exhibited sequence-specific capacities to interact with ions, bind HAP, and disperse HAP nanoparticles. HAP-binding ELPs were incorporated into calcium phosphate cements, resulting in materials with improved mechanical strength, injectability, and antiwashout properties. The results demonstrate that rational design of genetically engineered polymers is a powerful system for determining sequence-property relationships and for improving the properties of organic-inorganic composites. Our approach may be used to further develop novel, multifunctional bone cements and expanded to the design of other advanced composites. C1 [Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Bioengn, Phys Biosci Div, Berkeley, CA 94720 USA. Berkeley Nanosci & Nanoengn Inst, Berkeley, CA 94720 USA. RP Lee, SW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Bioengn, Phys Biosci Div, Berkeley, CA 94720 USA. EM leesw@berkeley.edu OI Wang, Eddie/0000-0002-9814-0102 FU NIH [DE 018360-02]; National Science Foundation [DMR-0747713] FX This work was supported by an NIH R-21 award (DE 018360-02) and a National Science Foundation Early Career Development Award (DMR-0747713). NR 79 TC 16 Z9 16 U1 8 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1525-7797 J9 BIOMACROMOLECULES JI Biomacromolecules PD MAR PY 2011 VL 12 IS 3 BP 672 EP 680 DI 10.1021/bm101322m PG 9 WC Biochemistry & Molecular Biology; Chemistry, Organic; Polymer Science SC Biochemistry & Molecular Biology; Chemistry; Polymer Science GA 732KG UT WOS:000288183100019 PM 21218767 ER PT J AU Kalu, EE Chen, KS Gedris, T AF Kalu, Egwu Eric Chen, Ken S. Gedris, Tom TI Continuous-flow biodiesel production using slit-channel reactors SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biodiesel; Reactor; Continuous-flow; Conversion efficiency; Micro-reactors ID OIL TRANSESTERIFICATION; VEGETABLE-OIL; MASS-TRANSFER; SOYBEAN OIL; CATALYST; INTENSIFICATION; MICROREACTORS; ALCOHOLYSIS; CONVERSION; BATCH AB Slit-channel reactors are reactors whose active surface areas are orders of magnitude higher than those of micro-reactors but have low fabrication costs relative to micro-reactors. We successfully produced biodiesel with different degrees of conversion using homogeneous catalyst in the slit-channel reactor. The reactor performance shows that percent conversion of soybean oil to biodiesel increases with channel depth, as expected, due to more efficient mixing. Shallow slit-channels require short average residence times for complete product conversion. Present results show that the slit-channel reactor provides an improved performance over traditional batch reactors using homogeneous sodium alkoxide catalyst. It is aimed to couple the reactors with solid catalysts in converting soybean oil to biodiesel and implementation method is suggested. The cost advantages resulting from the ease of fabrication of slit-channel reactors over micro-reactors and how these factors relate to the oil conversion efficiency to biodiesel are briefly noted and discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kalu, Egwu Eric] FAMU FSU COE, Chem & Biomed Eng Dept, Tallahassee, FL 32310 USA. [Chen, Ken S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gedris, Tom] Florida State Univ, Chem & Biochem Dept, Tallahassee, FL 32306 USA. RP Kalu, EE (reprint author), FAMU FSU COE, Chem & Biomed Eng Dept, Tallahassee, FL 32310 USA. EM ekalu@eng.fsu.edu FU Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories FX This work was funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. We would like to thank the following people at Sandia: Ben Wu for helpful technical discussions on vegetable oil-to-biodiesel conversion, Henry Romero for assistance on the slit-channel reactor fabrication, Michael Kent for providing the laboratory space and auxiliary facilities for carrying out the soybean oil-to-biodiesel experiments, and Ted Borek and Sarah McIntyre for performing analytical analyses to determine percent conversion of soybean oil to biodiesel. NR 29 TC 11 Z9 12 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAR PY 2011 VL 102 IS 6 BP 4456 EP 4461 DI 10.1016/j.biortech.2010.12.097 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 734SB UT WOS:000288356300025 PM 21256742 ER PT J AU Lucas, M Wagner, GL Nishiyama, Y Hanson, L Samayam, IP Schall, CA Langan, P Rector, KD AF Lucas, Marcel Wagner, Greg L. Nishiyama, Yoshiharu Hanson, Leif Samayam, Indira P. Schall, Constance A. Langan, Paul Rector, Kirk D. TI Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Lignocellulosic biomass; Cellulose; Wood; Ionic liquid ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; CRYSTAL-STRUCTURE; ENZYMATIC-HYDROLYSIS; CELLULOSE-II; PRETREATMENT; WOOD; SACCHARIFICATION; RECALCITRANCE AB Time-resolved autofluorescence, Raman microspectroscopy, and scanning microprobe X-ray diffraction were combined in order to characterize lignocellulosic biomass from poplar trees and how it changes during treatment with the ionic liquid 1-n-ethyl-3-methylimidazolium acetate (EMIMAC) at room temperature. The EMIMAC penetrates the cell wall from the lumen, swelling the cell wall by about a factor of two towards the empty lumen. However, the middle lamella remains unchanged, preventing the cell wall from swelling outwards. During this swelling, most of the cellulose microfibrils are solubilized but chain migration is restricted and a small percentage of microfibrils persist. When the EMIMAC is expelled, the cellulose recrystallizes as microfibrils of cellulose I. There is little change in the relative chemical composition of the cell wall after treatment. The action of EMIMAC on the poplar cell wall at room temperature would therefore appear to be a reversible swelling and a reversible decrystallization of the cell wall. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lucas, Marcel; Wagner, Greg L.; Rector, Kirk D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Nishiyama, Yoshiharu] Univ Grenoble 1, CNRS, Ctr Rech Macromol Vegetales, F-38041 Grenoble 9, France. [Hanson, Leif; Samayam, Indira P.; Schall, Constance A.] Univ Toledo, Dept Chem Engn, Toledo, OH 43606 USA. [Langan, Paul] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Rector, KD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663,MS J567, Los Alamos, NM 87545 USA. EM kdr@lanl.gov RI Rector, Kirk/C-3584-2011; Nishiyama, Yoshiharu/A-3492-2012; ID, BioCAT/D-2459-2012; Lucas, Marcel/J-9462-2012; Langan, Paul/N-5237-2015; OI Nishiyama, Yoshiharu/0000-0003-4069-2307; Langan, Paul/0000-0002-0247-3122; Wagner, Gregory/0000-0002-7852-7529 FU Office of Biological and Environmental Research of the Department of Energy; Los Alamos National Laboratory [20080001DR]; Ohio Third Frontier Advanced Energy Program [09-053]; SuGanit Systems FX The authors thank BIOCAT at the Advanced Photon Source for the use of facilities. Raul Barrea and Joseph Orgel are acknowledged for help with data collection. PL was supported in part by the Office of Biological and Environmental Research of the Department of Energy. PL, ML, KDR and GW were supported in part by a Laboratory Directed Research and Development grant from Los Alamos National Laboratory (20080001DR). CS and IS were partially supported by the Ohio Third Frontier Advanced Energy Program 2009 grant #09-053 with SuGanit Systems. NR 35 TC 28 Z9 32 U1 2 U2 43 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD MAR PY 2011 VL 102 IS 6 BP 4518 EP 4523 DI 10.1016/j.biortech.2010.12.087 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 734SB UT WOS:000288356300034 PM 21247757 ER PT J AU Li, Y Lence, BJ Calisal, SM AF Li, Ye Lence, Barbara J. Calisal, Sander M. TI An integrated model for estimating energy cost of a tidal current turbine farm SO ENERGY CONVERSION AND MANAGEMENT LA English DT Article DE Tidal current energy; Energy cost; Tidal current turbine farm; Operation and maintenance cost; Cost effective analysis; Scenario-based analysis ID MARINE CURRENTS; POWER AB A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Li, Ye; Calisal, Sander M.] Univ British Columbia, Dept Mech Engn, Naval Architecture & Offshore Engn Lab, Vancouver, BC V6T 1Z4, Canada. [Lence, Barbara J.] Univ British Columbia, Dept Civil Engn, Vancouver, BC V6T 1Z4, Canada. [Calisal, Sander M.] Piri Reis Univ Turkey, TR-34940 Tuzla Istanbul, Turkey. RP Li, Y (reprint author), Natl Renewable Energy Lab, US Natl Wind Technol Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM ye.li@nrel.gov RI Batten, William/D-2390-2010 FU UBC; National Science and Engineering Research Council; Society of Naval Architects and Marine Engineers; Institution of Electronic and Electrical Engineers; American Society of Mechanical Engineers; International Society of Ocean and Polar Engineers FX The authors would like to thanks the following agencies for providing fellowships to Ye Li: UBC, National Science and Engineering Research Council, Society of Naval Architects and Marine Engineers, Institution of Electronic and Electrical Engineers, American Society of Mechanical Engineers and International Society of Ocean and Polar Engineers. We would also like to acknowledge the fruitful discussion with colleagues in the National Wind Technology Center such as Walt Musial and Maureen Hand. NR 46 TC 29 Z9 30 U1 4 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0196-8904 J9 ENERG CONVERS MANAGE JI Energy Conv. Manag. PD MAR PY 2011 VL 52 IS 3 BP 1677 EP 1687 DI 10.1016/j.enconman.2010.10.031 PG 11 WC Thermodynamics; Energy & Fuels; Mechanics SC Thermodynamics; Energy & Fuels; Mechanics GA 717TT UT WOS:000287071000014 ER PT J AU Ross, TM Moubaraki, B Turner, DR Halder, GJ Chastanet, G Neville, SM Cashion, JD Letard, JF Batten, SR Murray, KS AF Ross, Tamsyn M. Moubaraki, Boujemaa Turner, David. R. Halder, Gregory J. Chastanet, Guillaume Neville, Suzanne M. Cashion, John D. Letard, Jean-Francois Batten, Stuart R. Murray, Keith S. TI Spin Crossover and Solvate Effects in 1D Fe-II Chain Compounds Containing Bis(dipyridylamine)-Linked Triazine Ligands SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Iron; Spin crossover; 1D coordination polymers; Magnetic properties; LIESST; Mossbauer effect; Solvates ID MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; FRAMEWORK MATERIAL; SINGLE-CRYSTALS; IRON(II); TRANSITION; COMPLEXES; STATE; BEHAVIOR; SYSTEM AB A series of 1D polymeric Fe-II spin crossover (SCO) compounds of type trans-[Fe-II(NCX)(2)(L)]center dot Solvent has been synthesised {L = DPPyT = 1-[4,6-bis(dipyridin-2-ylamino)-1,3,5-triazin-2-yl]pyridin-4(1H)-one for 1-4; NCX = NCS- for 1 and 2, NCSe- for 3 and 4; Solvent = 2.5CH(2)Cl(2) for 1, 2CHCl(3)center dot 0.5CH(3)OH for 2 and 4, CH2Cl2 for 3; L = DPT (6-phenoxy-N-2,N-2,N-4,N-4-tetra-2-pyridinyl-1,3,5-triazine-2,4-diamine) for 5; NCX = NCS- for 5; Solvent = 2CH(3)OH center dot H2O for 5; L = DQT {4-[4,6-bis(dipyridin-2-ylamino)-1,3,5-triazin-2-yloxy]phenol} for 6-8; NCX- = NCS- for 6; Solvent = 2CH(2)Cl(2) for 6; NCX- = NCSe- for 7; Solvent = CH2Cl2 center dot CH2ClCH2Cl for 7; NCX- = NCSe- for 8; Solvent = 1.5CH(2)Cl(2)center dot 0.5CH(3)OH for 8}. Two mononuclear complexes, trans-[Fe-II(NCS)(2)(DPT)(2)]center dot 2CH(3)OH (9) and trans-[Fe-II(NCSe)(2)(DPT)(2)]center dot 2CH(3)OH (10), contained the L ligand in a terminal bidentate coordination mode. As well as variations made in the NCX- ligands, variations were also made in substituent groups on the s-triazine "core" of L to investigate their intermolecular/supramolecular role in crystal packing and, thus, their influence on SCO properties. All the complexes crystallised as solvates, and the influence of the latter on the magnetism and spin transitions was explored. A wide range of physical methods was employed, as a function of temperature, viz. crystallography, PXRD (synchrotron), susceptibilities, LIESST and Mossbauer effect, in order to probe magnetostructural correlations in these 1D families. New examples of half-crossovers, with ordered -LS-HS-LS-HS- intrachain states existing below T-1/2, have been observed and comparisons made to related one- or two-step systems. All the observed transitions are gradual and non-hysteretic, and brief comments are made in relation to recent theoretical models for cooperativity, developed elsewhere. C1 [Ross, Tamsyn M.; Moubaraki, Boujemaa; Turner, David. R.; Batten, Stuart R.; Murray, Keith S.] Monash Univ, Sch Chem, Clayton, Vic 3800, Australia. [Halder, Gregory J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Chastanet, Guillaume; Neville, Suzanne M.; Letard, Jean-Francois] Univ Bordeaux, CNRS, ICMCB, F-33608 Pessac, France. [Cashion, John D.] Monash Univ, Sch Phys, Clayton, Vic 3800, Australia. RP Murray, KS (reprint author), Monash Univ, Sch Chem, Bldg 23, Clayton, Vic 3800, Australia. EM keith.murray@monash.edu RI Turner, David/A-1929-2008; BM, MRCAT/G-7576-2011; Batten, Stuart/A-1061-2008; neville, suzanne/B-4531-2013; Halder, Gregory/C-5357-2013; ID, MRCAT/G-7586-2011; Murray, Keith/B-9518-2014; neville, suzanne/B-2254-2016 OI Turner, David/0000-0003-1603-7994; Batten, Stuart/0000-0002-4603-8683; neville, suzanne/0000-0003-4237-4046; FU Australian Research Council (ARC) FX This work was supported by an Australian Research Council (ARC) Discovery Grant to K. S. M. Part of this research was undertaken at the MX1 beamline of the Australian Synchrotron, Victoria, Australia. The authors would like to thank Dr. Rachel Williams from the MX1 beamline at the Australian Synchrotron for her excellent help. Dr. Kia Wallwork and Dr. Qinfen Gu of the Powder Diffraction Beamline at the Australian Synchrotron are thanked for their excellent help with powder diffraction studies. The authors would also like to thank the Aquitaine Region for supporting the development of the international platform for photomagnetism. Valuable discussions with Professor Cameron Kepert are gratefully acknowledged. NR 59 TC 24 Z9 24 U1 2 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAR PY 2011 IS 9 BP 1395 EP 1417 DI 10.1002/ejic.201000876 PG 23 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 735FB UT WOS:000288397700008 ER PT J AU Scarpa, D Biasetto, L Corradetti, S Manzolaro, M Andrighetto, A Carturan, S Prete, G Zanonato, P Stracener, DW AF Scarpa, D. Biasetto, L. Corradetti, S. Manzolaro, M. Andrighetto, A. Carturan, S. Prete, G. Zanonato, P. Stracener, D. W. TI Neutron-rich isotope production using the uranium carbide multi-foil SPES target prototype SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID ION-BEAM FACILITY; HRIBF AB In the framework of the R&D program for the SPES (Selective Production of Exotic Species) project of the Istituto Nazionale di Fisica Nucleare (INFN), production yields of neutron-rich isotopes have been measured at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory, USA). This experiment makes use of the multi-foil SPES target prototype composed of 7 uranium carbide discs, with excess of graphite (ratio C/U = 4). 77 isotopes of medium mass (between 72 and 141 amu), produced via proton-induced fission of uranium using a 40MeV proton beam, have been collected and analyzed for the target heated at 2000 degrees C target temperature. C1 [Scarpa, D.; Biasetto, L.; Corradetti, S.; Manzolaro, M.; Andrighetto, A.; Carturan, S.; Prete, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, PD, Italy. [Biasetto, L.; Corradetti, S.; Manzolaro, M.] Univ Padua, Dipartimento Ingn Meccan, I-35131 Padua, Italy. [Zanonato, P.] Univ Padua, Dipartimento Sci Chim, I-35131 Padua, Italy. [Stracener, D. W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Scarpa, D (reprint author), Ist Nazl Fis Nucl, Lab Nazl Legnaro, Viale Univ 2, I-35020 Legnaro, PD, Italy. EM daniele.scarpa@lnl.infn.it RI prete, gianfranco/A-9244-2012; Corradetti, Stefano/B-6605-2017; OI Corradetti, Stefano/0000-0002-0831-5520; carturan, sara/0000-0002-6702-2867 NR 14 TC 11 Z9 11 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD MAR PY 2011 VL 47 IS 3 AR 32 DI 10.1140/epja/i2011-11032-5 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 737EP UT WOS:000288552100003 ER PT J AU Souin, J Eronen, T Ascher, P Audirac, L Aysto, J Blank, B Elomaa, VV Giovinazzo, J Hakala, J Jokinen, A Kolhinen, VS Karvonen, P Moore, ID Rahaman, S Rissanen, J Saastamoinen, A Thomas, JC AF Souin, J. Eronen, T. Ascher, P. Audirac, L. Aysto, J. Blank, B. Elomaa, V. -V. Giovinazzo, J. Hakala, J. Jokinen, A. Kolhinen, V. S. Karvonen, P. Moore, I. D. Rahaman, S. Rissanen, J. Saastamoinen, A. Thomas, J. C. TI Precision half-life and Q-value measurement of the super-allowed beta emitter S-30 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID MASS-SPECTROMETRY; PENNING TRAPS; ENERGY-LEVELS; RAMSEY METHOD; IGISOL; SI-26; DECAY; NUCLEI; AR-34 AB The beta-decay half-life and the ground-state-to-ground-state QEC-value of S-30 were measured with a relative precision of 14 and 2 parts in 10(4), respectively. The half-life measurement yields a value of 1175.9(17) ms which is in agreement with previous measurements but has a precision that is better by a factor of three. The new super-allowed Q(EC)-value 5464.32(20) keV is 20 times more precise and slightly larger than the previously adopted value. The experiment was performed at the IGISOL facility at the Accelerator Laboratory of the University of Jyvaskyla. C1 [Souin, J.; Ascher, P.; Audirac, L.; Blank, B.; Giovinazzo, J.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan,UMR 5797, F-33175 Gradignan, France. [Souin, J.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Eronen, T.; Aysto, J.; Elomaa, V. -V.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Karvonen, P.; Moore, I. D.; Rissanen, J.; Saastamoinen, A.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Rahaman, S.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Thomas, J. C.] CNRS, IN2P3, CEA, DSM,GANIL, F-14076 Caen 5, France. RP Souin, J (reprint author), Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan,UMR 5797, Chemin Solarium,BP 120, F-33175 Gradignan, France. EM blank@cenbg.in2p3.fr RI Moore, Iain/D-7255-2014; Jokinen, Ari/C-2477-2017 OI Moore, Iain/0000-0003-0934-8727; Jokinen, Ari/0000-0002-0451-125X FU Conseil Regional d'Aquitaine; Academy of Finland under the Finnish Center [213503] FX The authors would like to acknowledge the continuous effort of the whole Jyvaskyla accelerator laboratory staff for ensuring a smooth running of the experiment. This work was supported in part by the Conseil Regional d'Aquitaine. We also acknowledge support from the Academy of Finland under the Finnish Center of Excellence Programme 2006-2011 (Project No. 213503, Nuclear and Accelerator Based Physics Programme at JYFL). NR 34 TC 11 Z9 11 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD MAR PY 2011 VL 47 IS 3 DI 10.1140/epja/i2011-11040-5 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 737EP UT WOS:000288552100011 ER PT J AU Bi, ZX Weal, E Luo, HM Chen, AP MacManus-Driscoll, JL Jia, QX Wang, HY AF Bi, Zhenxing Weal, Emily Luo, Hongmei Chen, Aiping MacManus-Driscoll, Judith L. Jia, Quanxi Wang, Haiyan TI Microstructural and magnetic properties of (La0.7Sr0.3MnO3)(0.7):(Mn3O4)(0.3) nanocomposite thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID PHASE-DIAGRAM; MAGNETORESISTANCE; MAGNETOTRANSPORT; COMPOSITES; MANGANITES; OXIDE AB Epitaxial (La0.7Sr0.3MnO3)(0.7):(Mn3O4)(0.3) (LSMO:Mn3O4) nanocomposite thin films were grown on SrTiO3 (001) substrate by a pulsed laser deposition technique. The nanocomposite structures vary from triangular domains, to vertically aligned columns, and finally to smaller spherical domains as the deposition frequency varies from 1, 5, to 10 Hz, respectively. The strain in LSMO is systematically tuned, but that of the Mn3O4 phase is relatively stable as the deposition frequency increases. The tunable strain is found directly related to the different domain and grain boundary (GB) structures. Physical properties including saturation magnetization, Curie temperature (T-C), magnetoresistance and metal-insulator transition temperature (T-MI), all show systematic trends as the deposition frequency varies. This study reveals that the domain/GBs tunability achieved in nanocomposite thin films can affect the lattice strain and further tune their ferromagnetic properties. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552594] C1 [Bi, Zhenxing; Chen, Aiping; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Weal, Emily; MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Luo, Hongmei] New Mexico State Univ, Dept Chem Engn, Las Cruces, NM 88003 USA. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Wang, HY (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014; Chen, Aiping/F-3212-2011 OI Wang, Haiyan/0000-0002-7397-1209; Chen, Aiping/0000-0003-2639-2797 FU National Science Foundation [NSF0709831, NSF1007969]; U.S. Department of Energy, Office of Basic Energy Sciences at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by the National Science Foundation (Grants No. NSF0709831 and No. NSF1007969). Z.B. also thanks the travel support from the CONTACT program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 31 TC 26 Z9 26 U1 1 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2011 VL 109 IS 5 AR 054302 DI 10.1063/1.3552594 PG 6 WC Physics, Applied SC Physics GA 735BH UT WOS:000288387900092 ER PT J AU Colvin, J Shestakov, A Stolken, J Vignes, R AF Colvin, Jeffrey Shestakov, Aleksei Stoelken, James Vignes, Ryan TI The role of radiation transport in the thermal response of semitransparent materials to localized laser heating SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FUSED-SILICA; OPTICAL FIBERS; TEMPERATURE; GLASS; APPROXIMATIONS; EQUATIONS; RODS AB Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the P(n) method with similar to 500 photon energy bands, and by multi-group radiation diffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2-12 W of 4.6 or 10.6 mm laser light for 5-10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. We show that, unlike the case for bulk heating, in localized infrared laser heating radiation transport plays only a very small role in the thermal response of silica. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3549829] C1 [Colvin, Jeffrey; Shestakov, Aleksei; Stoelken, James; Vignes, Ryan] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Colvin, J (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM colvin5@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD [08-ERD-057] FX The authors acknowledge useful and enlightening discussions on all aspects of this work with Jeff Bude, Manyalibo Matthews, and Michael Feit of the Lawrence Livermore National Laboratory. Matthews and Feit provided a critical reading of early drafts of this paper which the authors believe have substantially improved the final product. Help in adapting the Lasnex code to handle this particular problem was provided by John Castor and Judy Harte of Lawrence Livermore National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344, with support received from LDRD Project #08-ERD-057. NR 25 TC 3 Z9 3 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2011 VL 109 IS 5 AR 053506 DI 10.1063/1.3549829 PG 10 WC Physics, Applied SC Physics GA 735BH UT WOS:000288387900029 ER PT J AU Davidson, MR Stoupin, S DeVito, D Collingwood, JF Segre, C Holloway, PH AF Davidson, Mark R. Stoupin, Stanislav DeVito, David Collingwood, Joanna F. Segre, Carlo Holloway, Paul H. TI Local compositional environment of Er in ZnS:ErF3 thin film electroluminescent phosphors SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ABSORPTION FINE-STRUCTURE; ZINC-SULFIDE AB ZnS:Er thin film electroluminescent phosphors have been shown to exhibit a marked maximum in the near infrared emission (NIR) after a 425 degrees C post-deposition anneal with a very narrow temperature window of +/- 25 degrees C for optimal NIR emission. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been obtained from both the Zn and Er edges in order to examine the local structure of the host and dopant in this NIR phosphor material. Interestingly, the addition of only similar to 0.5 mol. % of Er as ErF3 into the host is found to reduce the Zn-S bond length of one of the two nearest Zn-S shells by 0.6 angstrom relative to high-quality, atomic layer epitaxy (ALE) grown, pure ZnS. The coordination number of this shorter Zn-S bond increases after the optimal 425 degrees C anneal. Longer range fits indicate a highly disordered structure, overall, consistent with earlier TEM results. Erbium-L-3 EXAFS data from the second and third shells show increasing crystallinity with increasing annealing temperature in the vicinity of the Er dopant. Data from the first shell cannot be fit with S atoms, but are fit equally well with either O or F. Comparison with earlier analyses indicates that the Er is most likely surrounded by F in the first shell. Based on these data and previous studies, we develop a model in which the Er dopant is present as an Er:F-x complex with associated S vacancies, which may include one sulfur atom remaining in the Er nearest shell. Upon annealing, there is a reduction in the F present and a rearrangement of the crystal structure in the vicinity of the Er atom. Optimum annealing conditions occur when optimal crystalline environment is achieved prior to the loss of too much F from the Er:Fx complex. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549726] C1 [Davidson, Mark R.; Holloway, Paul H.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Davidson, Mark R.; Holloway, Paul H.] Univ Florida, Dept Microfabritech, Gainesville, FL 32611 USA. [Stoupin, Stanislav] Argonne Natl Lab, Argonne, IL 60439 USA. [DeVito, David] Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. [Collingwood, Joanna F.] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England. [Segre, Carlo] IIT, Dept Phys, Chicago, IL 60616 USA. RP Davidson, MR (reprint author), Univ Florida, Dept Mat Sci & Engn, Box 116500, Gainesville, FL 32611 USA. EM mark@microfab.ufl.edu RI Davidson, Mark/C-1135-2009; Segre, Carlo/B-1548-2009; ID, MRCAT/G-7586-2011; OI Segre, Carlo/0000-0001-7664-1574; Collingwood, Joanna/0000-0002-8423-4183 FU ARO [DAAD19-00-1-0002]; ARL [W911NF-04-2000023]; Department of Energy; MRCAT member institutions FX This work was partially supported by ARO Grant DAAD19-00-1-0002 and ARL Grant W911NF-04-2000023. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 14 TC 2 Z9 2 U1 2 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD MAR 1 PY 2011 VL 109 IS 5 AR 054505 DI 10.1063/1.3549726 PG 5 WC Physics, Applied SC Physics GA 735BH UT WOS:000288387900111 ER PT J AU Pinder, JE Hinton, TG Taylor, BE Whicker, FW AF Pinder, J. E., III Hinton, T. G. Taylor, B. E. Whicker, F. W. TI Cesium accumulation by aquatic organisms at different trophic levels following an experimental release into a small reservoir SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Cesium; Water column; Plankton; Periphyton; Invertebrates; Fish ID FRESH-WATER FISH; BLUEGILL LEPOMIS-MACROCHIRUS; CHAOBORUS-PUNCTIPENNIS SAY; SHORT-DURATION RELEASES; CANADIAN SHIELD LAKE; HELISOMA-TRIVOLVIS; STABLE CESIUM; FOOD-CHAIN; RADIONUCLIDES; CS-137 AB The rates of accumulation and subsequent loss of stable cesium ((133)Cs) by organisms at different trophic levels within plankton-based and periphyton-based food chains were measured following the addition of (133)Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (L kg(-1) d(-1) dry mass) and a loss rate parameter k (d(-1)) were estimated for each organism using time-series measurements of (133)Cs concentrations in water and biota, and these parameters were used to estimate maximum concentrations, times to maximum concentrations, and concentration ratios (C(r)). The maximum (133)Cs concentrations for plankton, periphyton, the insect larva Chaoborus punctipennis, which feeds on plankton, and the snail Helisoma trivolvis, which feeds on periphyton, occurred within the first 14 days following the addition, whereas the maximum concentrations for the fish species Lepomis macrochirus and Micropterus salmoides occurred after 170 days. The C(r) based on dry mass for plankton and C. punctipennis were 1220 L kg(-1) and 5570 L kg(-1), respectively, and were less than the C(r) of 8630 L kg(-1) for periphyton and 47,700 L kg(-1) for H. trivolvis. Although the C(r) differed between plankton-based and periphyton-based food chains, they displayed similar levels of biomagnification. Biomagnification was also indicated for fish where the C(r) for the mostly nonpiscivorous L. macrochinis of 22,600 L kg(-1) was three times less than that for mostly piscivorous M. salmoides of 71,500 L kg(-1). Although the C(r) for M. salmoides was greater than those for periphyton and H. trivolvis, the maximum (133)Cs concentrations for periphyton and H. trivolvis were greater than that for M. salmoides. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Pinder, J. E., III; Hinton, T. G.; Taylor, B. E.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Whicker, F. W.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. RP Pinder, JE (reprint author), Colorado State Univ, Dept Environm & Radiol Hlth Sci, 305 W Magnolia,PMB 231, Ft Collins, CO 80521 USA. EM jepinder@uga.edu; thomas.hinton@irsn.fr; TaylorB@dnr.sc.gov; ward.whicker@colostate.edu FU Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, U. S. Department of Energy [DE-FC09-96SR18546]; University of Georgia Research Foundation; U. S. Department of Energy; Oregon State University FX This research would not have been possible without the field, laboratory and editorial assistance of D. Coughlin, A. DeBiase, J. Gariboldi, K. Guy, J. Joyner, R. Lide, J. Marsh, and Y. Vi. ICP-MS analyses were ably performed by B. Jackson and M. Jones. The research was partially supported by 1) the Environmental Remediation Sciences Division of the Office of Biological and Environmental Research, U. S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and 2) a U. S. Department of Energy Reactor Sharing Program with Oregon State University. NR 86 TC 8 Z9 9 U1 5 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD MAR PY 2011 VL 102 IS 3 BP 283 EP 293 DI 10.1016/j.jenvrad.2010.12.003 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 736XK UT WOS:000288528100007 PM 21232832 ER PT J AU Young, SL Gopalakrishnan, G Keshwani, DR AF Young, Stephen L. Gopalakrishnan, Gayathri Keshwani, Deepak R. TI Invasive plant species as potential bioenergy producers and carbon contributors SO JOURNAL OF SOIL AND WATER CONSERVATION LA English DT Article ID LOOSESTRIFE LYTHRUM-SALICARIA; GEOGRAPHIC INFORMATION-SYSTEMS; PHRAGMITES-AUSTRALIS; ENZYMATIC-HYDROLYSIS; COASTAL WETLAND; NORTH-AMERICA; ARUNDO-DONAX; GIANT REED; SOIL; BIOFUELS C1 [Young, Stephen L.] Univ Nebraska Lincoln, Dept Agron & Hort, N Platte, NE USA. [Gopalakrishnan, Gayathri] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Keshwani, Deepak R.] Univ Nebraska, Dept Biol Syst Engn, Lincoln, NE USA. RP Young, SL (reprint author), Univ Nebraska Lincoln, Dept Agron & Hort, N Platte, NE USA. NR 88 TC 6 Z9 7 U1 2 U2 16 PU SOIL WATER CONSERVATION SOC PI ANKENY PA 945 SW ANKENY RD, ANKENY, IA 50023-9723 USA SN 0022-4561 J9 J SOIL WATER CONSERV JI J. Soil Water Conserv. PD MAR-APR PY 2011 VL 66 IS 2 BP 45A EP 50A DI 10.2489/jswc.66.2.45A PG 6 WC Ecology; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 737SM UT WOS:000288588500004 ER PT J AU Field, JP Breshears, DD Whicker, JJ Zou, CB AF Field, Jason P. Breshears, David D. Whicker, Jeffrey J. Zou, Chris B. TI On the ratio of wind- to water-driven sediment transport: Conserving soil under global-change-type extreme events SO JOURNAL OF SOIL AND WATER CONSERVATION LA English DT Article ID EROSION; ECOSYSTEMS; GRASSLAND; MODEL C1 [Field, Jason P.; Breshears, David D.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. [Breshears, David D.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA. [Whicker, Jeffrey J.] Los Alamos Natl Lab, Environm Programs Div, Los Alamos, NM USA. [Zou, Chris B.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA. RP Field, JP (reprint author), Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA. RI Zou, Chris/A-5039-2010 OI Zou, Chris/0000-0003-0080-2866 FU Arizona Agricultural Experiment Station; USDA Cooperative State Research, Education, and Extension Service [CSREES 2005-38420-15809]; National Science Foundation [NSF-DEB 0816162]; Department of Energy [DE-AC52-06NA25396] FX We thank Chris McDonald and Guy McPherson for setting up the experimental design and Travis Huxman, Darin Lass', and Lisa Graumlich for comments. This study was supported by the Arizona Agricultural Experiment Station (DDB), the USDA Cooperative State Research, Education, and Extension Service OPE, DDB; CSREES 2005-38420-15809), the National Science Foundation (DDB, PP; NSF-DEB 0816162), and the Department of Energy (JJW; DE-AC52-06NA25396). NR 25 TC 6 Z9 6 U1 0 U2 4 PU SOIL WATER CONSERVATION SOC PI ANKENY PA 945 SW ANKENY RD, ANKENY, IA 50023-9723 USA SN 0022-4561 J9 J SOIL WATER CONSERV JI J. Soil Water Conserv. PD MAR-APR PY 2011 VL 66 IS 2 BP 51A EP 56A DI 10.2489/jswc.66.2.51A PG 6 WC Ecology; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 737SM UT WOS:000288588500005 ER PT J AU Kondev, FG Lalkovski, S AF Kondev, F. G. Lalkovski, S. TI Nuclear Data Sheets for A=207 SO NUCLEAR DATA SHEETS LA English DT Article ID HIGH-SPIN STATES; INTERNAL PAIR CONVERSION; GIANT-DIPOLE RESONANCE; ALPHA-DECAY PROPERTIES; GAMMA-RAY TRANSITIONS; STABLE LEAD ISOTOPES; NEUTRON-HOLE STATES; ANGULAR-CORRELATION MEASUREMENTS; 2-PHONON OCTUPOLE EXCITATIONS; INELASTIC ELECTRON SCATTERING AB Evaluated nuclear structure and decay data for all nuclei within the A=207 mass chain are presented. The experimental data are evaluated and best values for level and gamma ray energies, quantum numbers, lifetimes, gamma ray intensities, and other nuclear properties are recommended. Inconsistencies and discrepancies that exist in the literature are noted. This work supersedes the earlier evaluation by M.J. Martin (1993Ma73), published in Nuclear Data Sheets 70, 315 (1993). C1 [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lalkovski, S.] Univ Sofia, Fac Phys, Sofia 1164, Bulgaria. RP Kondev, FG (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Office of Nuclear Physics, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX This work is supported by the Office of Nuclear Physics, Office of Science, U.S. Department of Energy under contract DE-AC02-06CH11357. NR 454 TC 23 Z9 23 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD MAR PY 2011 VL 112 IS 3 BP 707 EP 853 DI 10.1016/j.nds.2011.02.002 PG 147 WC Physics, Nuclear SC Physics GA 734DP UT WOS:000288313700002 ER PT J AU Crease, RP AF Crease, Robert P. TI Metrology in the balance SO PHYSICS WORLD LA English DT Article C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. [Crease, Robert P.] Brookhaven Natl Lab, US, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11794 USA. EM rcrease@notes.cc.sunysb.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD MAR PY 2011 VL 24 IS 3 BP 39 EP 45 PG 7 WC Physics, Multidisciplinary SC Physics GA 735MV UT WOS:000288420000023 ER PT J AU Lu, L Anderson-Cook, CM AF Lu, Lu Anderson-Cook, Christine M. TI Using Age and Usage for Prediction of Reliability of an Arbitrary System from a Finite Population SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE population summary; individual summary; usage rate; Bayesian analysis; Probit model ID 2-DIMENSIONAL WARRANTY; LIFE AB For single-use non-repairable systems, reliability is commonly estimated as a function of age and usage. For the effective management of individual systems or populations of systems, it is frequently important and necessary to predict the reliability in the future for age and usage values not yet observed. When predicting future system reliability, the age of the future system is easily predicted whereas future usage values will typically be unknown. In this paper we present the methodology for how to estimate both individual and population reliability summaries based on the currently known age and usage values. Projected usage values for future points in time can be obtained based on observed usage patterns or user-specified patterns of usage rates. Individual system summaries can be used to answer the questions 'For a given system of age A and usage U, what is its reliability with associated uncertainty?' or 'For a given system with known current age A and usage U, but unknown usage in the future, what is its reliability with associated uncertainty?' The population summary of interest predicts the probability that a system randomly selected from the population of systems works. This summary takes into consideration the estimation of future usage, the estimated probability of individual systems working at their given ages and usage values, and the life cycle demographics of the population of interest. In this paper we discuss these questions for a given application. Published in 2010 by John Wiley & Sons, Ltd. C1 [Lu, Lu; Anderson-Cook, Christine M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Anderson-Cook, CM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM candcook@lanl.gov NR 18 TC 6 Z9 6 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0748-8017 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD MAR PY 2011 VL 27 IS 2 BP 179 EP 190 DI 10.1002/qre.1109 PG 12 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 731TY UT WOS:000288133500005 ER PT J AU Romm, H Wilkins, RC Coleman, CN Lillis-Hearne, PK Pellmar, TC Livingston, GK Awa, AA Jenkins, MS Yoshida, MA Oestreicher, U Prasanna, PGS AF Romm, Horst Wilkins, Ruth C. Coleman, C. Norman Lillis-Hearne, Patricia K. Pellmar, Terry C. Livingston, Gordon K. Awa, Akio A. Jenkins, Mark S. Yoshida, Mitsuaki A. Oestreicher, Ursula Prasanna, Pataje G. S. TI Biological Dosimetry by the Triage Dicentric Chromosome Assay: Potential Implications for Treatment of Acute Radiation Syndrome in Radiological Mass Casualties SO RADIATION RESEARCH LA English DT Article ID CRITICALITY ACCIDENT; BIODOSIMETRY; NETWORK; LABORATORIES; CYTOGENETICS; ABERRATIONS; LYMPHOCYTES; EVENTS AB Biological dosimetry is an essential tool for estimating radiation dose. The dicentric chromosome assay (DCA) is currently the tool of choice. Because the assay is labor-intensive and time-consuming, strategies are needed to increase throughput for use in radiation mass casualty incidents. One such strategy is to truncate metaphase spread analysis for triage dose estimates by scoring 50 or fewer metaphases, compared to a routine analysis of 500 to 1000 metaphases, and to increase throughput using a large group of scorers in a biodosimetry network. Previously, the National Institutes for Allergies and Infectious Diseases (NIAID) and the Armed Forces Radiobiology Research Institute (AFRRI) sponsored a double-blinded interlaboratory comparison among five established international cytogenetic biodosimetry laboratories to determine the variability in calibration curves and in dose measurements in unknown, irradiated samples. In the present study, we further analyzed the published data from this previous study to investigate how the number of metaphase spreads influences dose prediction accuracy and how this information could be of value in the triage and management of people at risk for the acute radiation syndrome (ARS). Although, as expected, accuracy decreased with lower numbers of metaphase spreads analyzed, predicted doses by the laboratories were in good agreement and were judged to be adequate to guide diagnosis and treatment of ARS. These results demonstrate that for rapid triage, a network of cytogenetic biodosimetry laboratories can accurately assess doses even with a lower number of scored metaphases. (C) 2011 by Radiation Research Society C1 [Prasanna, Pataje G. S.] NCI, Div Canc Treatment & Diag, Radiat Res Program, Bethesda, MD 20892 USA. [Romm, Horst; Oestreicher, Ursula] Bundesamt Strahlenschutz, D-38226 Salzgitter, Germany. [Wilkins, Ruth C.] Hlth Canada, Consumer & Clin Radiat Protect Bur, Ottawa, ON K1A 1C1, Canada. [Coleman, C. Norman; Prasanna, Pataje G. S.] Off Assistant Secretary Preparedness & Response, Dept Hlth & Human Serv, Washington, DC USA. [Lillis-Hearne, Patricia K.; Pellmar, Terry C.] Armed Forces Radiobiol Res Inst, Bethesda, MD USA. [Livingston, Gordon K.; Awa, Akio A.; Jenkins, Mark S.] Oak Ridge Associated Univ, REACITS, Oak Ridge, TN USA. [Yoshida, Mitsuaki A.] Natl Inst Radiol Sci, Ctr Radiat Res, Inage Ku, Chiba 260, Japan. RP Prasanna, PGS (reprint author), NCI, Div Canc Treatment & Diag, Radiat Res Program, 6130 Execut Blvd,MSC 7440, Bethesda, MD 20892 USA. EM Pat.Prasanna@nih.gov OI Romm, Horst/0000-0003-4921-685X FU NIAID, NIH; AFRRI, Uniformed Services University of the Health Sciences; Chemical, Biological, Radiological and Nuclear Research and Technology Initiative [0027RD]; Department of Energy (DOE) National Nuclear Security Administration; Nuclear Regulatory Commission; DOE Office of Environment, Safety and Health FX Financial support was provided by an interagency agreement between the NIAID, NIH and the AFRRI, Uniformed Services University of the Health Sciences. National Cancer Institute's Radiation Research Program supported manuscript preparation. Work at Health Canada was partially supported by the Chemical, Biological, Radiological and Nuclear Research and Technology Initiative, Project No. 0027RD. Work at the REAC/TS was partially supported by the Department of Energy (DOE) National Nuclear Security Administration, the Nuclear Regulatory Commission and DOE Office of Environment, Safety and Health. Special thanks to Dr. V. Nagy (AFRRI) for dosimetry support and Dr. M. Moroni, U. Subramanian, K. Krasnopolsky, P. R. Martin (AFRRI), C. Ferrarotto (Health Canada), S. Wenzel and D. Westfahl (BfS) and M. Akiyama (NIRS) for technical assistance. NR 29 TC 36 Z9 37 U1 0 U2 6 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD MAR PY 2011 VL 175 IS 3 BP 397 EP 404 DI 10.1667/RR2321.1 PG 8 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 734SM UT WOS:000288358100016 PM 21388284 ER PT J AU Kneafsey, TJ Seol, Y Gupta, A Tomutsa, L AF Kneafsey, Timothy J. Seol, Yongkoo Gupta, Arvind Tomutsa, Liviu TI Permeability of Laboratory-Formed Methane-Hydrate-Bearing Sand: Measurements and Observations Using X-Ray Computed Tomography SO SPE JOURNAL LA English DT Article ID POROUS-MEDIA; DISSOCIATION CHARACTERISTICS; HYDRAULIC CONDUCTANCE; THERMAL-CONDUCTIVITY; GAS-HYDRATE; FLOW; DECOMPOSITION; CAPILLARY; MODELS; SAMPLE AB Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements. C1 [Kneafsey, Timothy J.; Tomutsa, Liviu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Seol, Yongkoo] Natl Energy Technol Lab, Morgantown, WV USA. [Gupta, Arvind] Colorado Sch Mines, Golden, CO 80401 USA. RP Kneafsey, TJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RI Kneafsey, Timothy/H-7412-2014 OI Kneafsey, Timothy/0000-0002-3926-8587 FU Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory of the US Department of Energy [DE-AC02-05CH11231]; Korea Institute of Geoscience and Mineral Resources FX The authors wish to acknowledge Lehua Pan and Dan Hawkes for their helpful comments in reviewing this manuscript. This work was supported by the Assistant Secretary for Fossil Energy, Office of Oil and Natural Gas, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory of the US Department of Energy under Contract No. DE-AC02-05CH11231 and by the Korean Gas Hydrate Development Program of the Korea Institute of Geoscience and Mineral Resources. NR 32 TC 18 Z9 19 U1 2 U2 33 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD MAR PY 2011 VL 16 IS 1 BP 78 EP 94 PG 17 WC Engineering, Petroleum SC Engineering GA 736WY UT WOS:000288526900007 ER PT J AU Oldenburg, CM Rinaldi, AP AF Oldenburg, Curtis M. Rinaldi, Antonio Pio TI Buoyancy Effects on Upward Brine Displacement Caused by CO2 Injection SO TRANSPORT IN POROUS MEDIA LA English DT Article DE Geologic carbon sequestration; Upward brine flow; Double-diffusive convection; Plume separation; TOUGH2 ID GROUNDWATER QUALITY; GEOLOGIC STORAGE; NUMERICAL-MODEL; HEAT-TRANSFER; LEAKAGE; FLOW; BASIN; MIGRATION; AQUIFERS; GENESIS AB Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO2 injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer. C1 [Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Rinaldi, Antonio Pio] Ist Nazl Geofis & Vulcanol, I-40128 Bologna, Italy. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov; rinaldi@bo.ingv.it RI Oldenburg, Curtis/L-6219-2013; Rinaldi, Antonio Pio/N-3284-2013 OI Oldenburg, Curtis/0000-0002-0132-6016; Rinaldi, Antonio Pio/0000-0001-7052-8618 FU University of Bologna; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Christine Doughty (LBNL) for helpful internal review comments. Support for this study came from a visiting scholars grant from the University of Bologna to Antonio Rinaldi, and from Lawrence Berkeley National Laboratory, operated by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 38 Z9 38 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0169-3913 J9 TRANSPORT POROUS MED JI Transp. Porous Media PD MAR PY 2011 VL 87 IS 2 BP 525 EP 540 DI 10.1007/s11242-010-9699-0 PG 16 WC Engineering, Chemical SC Engineering GA 735DP UT WOS:000288393900011 ER PT J AU Chapman, ST Garcia-Sanchez, PA Llena, D Marshall, J AF Chapman, S. T. Garcia-Sanchez, P. A. Llena, D. Marshall, J. TI Elements in a Numerical Semigroup with Factorizations of the Same Length SO CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES LA English DT Article DE numerical monoid; numerical semigroup; non-unique factorization ID MONOIDS AB Questions concerning the lengths of factorizations into irreducible elements in numerical monoids have gained much attention in the recent literature. In this note, we show that a numerical monoid has an element with two different irreducible factorizations of the same length if and only if its embedding dimension is greater than two. We find formulas in embedding dimension three for the smallest element with two different irreducible factorizations of the same length and the largest element whose different irreducible factorizations all have distinct lengths. We show that these formulas do not naturally extend to higher embedding dimensions. C1 [Chapman, S. T.] Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77340 USA. [Garcia-Sanchez, P. A.] Univ Granada, Dept Algebra, Granada, Spain. [Llena, D.] Univ Almeria, Dept Geometria Topol & Quim Organ, Almeria, Spain. [Marshall, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chapman, ST (reprint author), Sam Houston State Univ, Dept Math & Stat, Huntsville, TX 77340 USA. EM scott.chapman@shsu.edu; pedro@ugr.es; dllena@ual.es; jormars@sandia.gov RI Garcia-Sanchez, Pedro Abelardo/K-7629-2014; OI Garcia-Sanchez, Pedro Abelardo/0000-0003-2330-9871; Llena Carrasco, David/0000-0003-1723-0016 FU [MTM2007-62346] FX The second and third authors are supported by the project MTM2007-62346 NR 8 TC 6 Z9 6 U1 0 U2 3 PU CANADIAN MATHEMATICAL SOC PI OTTAWA PA 577 KING EDWARD RD, STE 109, PO BOX 450, STATION A, OTTAWA, ONTARIO K1N 6N5, CANADA SN 0008-4395 J9 CAN MATH BULL JI Can. Math. Bul.-Bul. Can. Math. PD MAR PY 2011 VL 54 IS 1 BP 39 EP 43 DI 10.4153/CMB-2010-068-3 PG 5 WC Mathematics SC Mathematics GA 730RP UT WOS:000288052200005 ER PT J AU Wang, F Yang, F Gao, MA Lu, ZY Xiang, T Lee, DH AF Wang, Fa Yang, Fan Gao, Miao Lu, Zhong-Yi Xiang, Tao Lee, Dung-Hai TI The electron pairing of KxFe2-ySe2 SO EPL LA English DT Article ID RENORMALIZATION-GROUP; SUPERCONDUCTIVITY AB We studied the pairing instabilities in KxFe2-ySe2 using a two-stage functional renormalization group (FRG) method. Our results suggest the leading and subleading pairing symmetries are nodeless d(x2-y2) and nodal extended s, respectively. In addition, despite having no Fermi surfaces we find the buried hole bands make important contributions to the final effective interaction. From the bandstructure, spin susceptibility and the FRG results we conclude that the low-energy effective interaction in KxFe2-ySe2 is well described by a J(1)-J(2) model with dominant nearest-neighbor antiferromagnetic interaction J(1) (at least as far as the superconducting pairing is concerned). In the end we briefly mention several obvious experiments to test whether the pairing symmetry is indeed d(x2-y2). Copyright (c) EPLA, 2011 C1 [Wang, Fa] MIT, Dept Phys, Cambridge, MA 02139 USA. [Yang, Fan] Beijing Inst Technol, Dept Phys, Beijing 100081, Peoples R China. [Gao, Miao; Lu, Zhong-Yi] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Xiang, Tao] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China. [Xiang, Tao] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Lee, Dung-Hai] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Dung-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM wangfa@mit.edu RI 石, 源/D-5929-2012; 上官, 敏慧/E-8964-2012; ruc, phy/E-4170-2012; Wang, Fa/D-3817-2015 OI Wang, Fa/0000-0002-6220-5349 FU DOE [DE-AC02-05CH11231]; NSFC [10704008]; National Natural Science Foundation of China; MOST, China FX D-HL is supported by DOE Grant No. DE-AC02-05CH11231. FY is supported by the NSFC Grant No. 10704008. Z-YL and TX are supported by National Natural Science Foundation of China and by National Program for Basic Research of MOST, China. NR 36 TC 94 Z9 94 U1 1 U2 20 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2011 VL 93 IS 5 AR 57003 DI 10.1209/0295-5075/93/57003 PG 6 WC Physics, Multidisciplinary SC Physics GA 734GP UT WOS:000288322900015 ER PT J AU Wilson, DP Tkachenko, AV Meiners, JC AF Wilson, D. P. Tkachenko, A. V. Meiners, J. -C. TI A generalized theory of DNA looping and cyclization (vol 89, 58005, 2010) SO EPL LA English DT Correction C1 [Wilson, D. P.; Meiners, J. -C.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Tkachenko, A. V.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Meiners, J. -C.] Univ Michigan, LSA Biophys, Ann Arbor, MI 48109 USA. RP Wilson, DP (reprint author), Univ Michigan, Dept Phys, 450 Church St, Ann Arbor, MI 48109 USA. EM davewilson13@gmail.com NR 2 TC 1 Z9 1 U1 0 U2 2 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD MAR PY 2011 VL 93 IS 5 AR 59901 DI 10.1209/0295-5075/93/59901 PG 1 WC Physics, Multidisciplinary SC Physics GA 734GP UT WOS:000288322900029 ER PT J AU Gao, Z Wagner, RM Sluder, CS Daw, CS Green, JB AF Gao, Z. Wagner, R. M. Sluder, C. S. Daw, C. S. Green, J. B., Jr. TI Using a phenomenological computer model to investigate advanced combustion trajectories in a CIDI engine SO FUEL LA English DT Article DE Diesel; Emissions; High-efficiency clean combustion; Combustion trajectory; Phenomenological model ID DIESEL-ENGINE; MULTIZONE MODEL; POLLUTANTS FORMATION; EMISSIONS AB This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NO(x) and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management. Published by Elsevier Ltd. C1 [Gao, Z.; Wagner, R. M.; Sluder, C. S.; Daw, C. S.; Green, J. B., Jr.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. RP Gao, Z (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM gaoz@ornl.gov RI Green, Johney/B-3391-2017; OI Green, Johney/0000-0003-2383-7260; Sluder, Charles Scott/0000-0002-2597-1968; Gao, Zhiming/0000-0002-7139-7995 FU ORAU/ORISE; United States Department of Energy; United States Government [DE-AC05-00OR22725] FX This work was performed at Oak Ridge National Laboratory, which is managed by UT-Battelle LLC. The work was also sponsored by ORAU/ORISE. The authors are grateful to Dr. Tom Briggs and Dr. Charles Finney, at ORNL, who contributed very helpful suggestions and insights to this effort. Thanks are also owed to the reviewers for their time and helpful comments. Notice: This submission was sponsored by a contractor of the United States Government under Contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes. NR 37 TC 11 Z9 12 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2011 VL 90 IS 5 BP 1907 EP 1918 DI 10.1016/j.fuel.2010.12.030 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 733DY UT WOS:000288243100025 ER PT J AU Baltrus, JP Granite, EJ Rupp, EC Stanko, DC Howard, B Pennline, HW AF Baltrus, John P. Granite, Evan J. Rupp, Erik C. Stanko, Dennis C. Howard, Bret Pennline, Henry W. TI Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents SO FUEL LA English DT Article DE Mercury; Arsenic; Selenium; Palladium; Fuel gas ID MERCURY CAPTURE; SURFACE CHARACTERIZATION; CATALYSTS; METAL; CELLS; XPS AB The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur, and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide, but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur, resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium. Published by Elsevier Ltd. C1 [Baltrus, John P.; Granite, Evan J.; Rupp, Erik C.; Stanko, Dennis C.; Howard, Bret; Pennline, Henry W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Baltrus, JP (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM john.baltrus@netl.doe.gov NR 18 TC 19 Z9 19 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2011 VL 90 IS 5 BP 1992 EP 1998 DI 10.1016/j.fuel.2011.01.001 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 733DY UT WOS:000288243100034 ER PT J AU Minsley, BJ Ajo-Franklin, J Mukhopadhyay, A Morgan, FD AF Minsley, Burke J. Ajo-Franklin, Jonathan Mukhopadhyay, Amitabha Morgan, Frank Dale TI Hydrogeophysical Methods for Analyzing Aquifer Storage and Recovery Systems SO GROUND WATER LA English DT Article ID DAMMAM FORMATION; KUWAIT; RESISTIVITY; GROUNDWATER; HYDROGEOLOGY; RESOURCES; TRANSIENT; TRANSPORT; GEOLOGY; TIME AB Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site-specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity similar to 500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time-domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution. C1 [Minsley, Burke J.; Morgan, Frank Dale] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Ajo-Franklin, Jonathan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mukhopadhyay, Amitabha] Kuwait Inst Sci Res, Safat 13109, Kuwait. RP Minsley, BJ (reprint author), US Geol Survey, Denver Fed Ctr, MS964, Denver, CO 80225 USA. EM bminsley@usgs.gov RI Ajo-Franklin, Jonathan/G-7169-2015; OI Ajo-Franklin, Jonathan/0000-0002-6666-4702; Minsley, Burke/0000-0003-1689-1306 FU Kuwait-MIT Center for Natural Resources and the Environment; Kuwait Foundation for the Advancement of Science FX This work was funded by the Kuwait-MIT Center for Natural Resources and the Environment, with support from the Kuwait Foundation for the Advancement of Science. We are grateful for valuable suggestions provided by reviewers Fred Day-Lewis, Paul Bedrosian, William Hutchings, Dave Hart, and Joe Hughes. NR 39 TC 12 Z9 12 U1 0 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAR-APR PY 2011 VL 49 IS 2 BP 250 EP 269 DI 10.1111/j.1745-6584.2010.00676.x PG 20 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 724NS UT WOS:000287584100019 PM 20180865 ER PT J AU Parish, HF Schubert, G Covey, C Walterscheid, RL Grossman, A Lebonnois, S AF Parish, Helen F. Schubert, Gerald Covey, Curtis Walterscheid, Richard L. Grossman, Allen Lebonnois, Sebastien TI Decadal variations in a Venus general circulation model SO ICARUS LA English DT Article DE Venus; Venus, Atmosphere; Atmospheres, Dynamics ID PLANETARY-SCALE WAVES; INTERNAL GRAVITY-WAVES; MIDDLE ATMOSPHERE; MERIDIONAL CIRCULATION; 3-DIMENSIONAL MODEL; DYNAMICAL PROCESSES; MOMENTUM TRANSPORT; THERMAL TIDES; WIND SHEAR; SUPERROTATION AB The Community Atmosphere Model (CAM), a 3-dimensional Earth-based climate model, has been modified to simulate the dynamics of the Venus atmosphere. The most current finite volume version of CAM is used with Earth-related processes removed, parameters appropriate for Venus introduced, and some basic physics approximations adopted. A simplified Newtonian cooling approximation has been used for the radiation scheme. We use a high resolution (1 degrees by 1 degrees in latitude and longitude) to take account of small-scale dynamical processes that might be important on Venus. A Rayleigh friction approach is used at the lower boundary to represent surface drag, and a similar approach is implemented in the uppermost few model levels providing a 'sponge layer' to prevent wave reflection from the upper boundary. The simulations generate superrotation with wind velocities comparable to those measured in the Venus atmosphere by probes and around 50-60% of those measured by cloud tracking. At cloud heights and above the atmosphere is always superrotating with mid-latitude zonal jets that wax and wane on an approximate 10 year cycle. However, below the clouds, the zonal winds vary periodically on a decadal timescale between superrotation and subrotation. Both subrotating and superrotating mid-latitude jets are found in the approximate 40-60 km altitude range. The growth and decay of the sub-cloud level jets also occur on the decadal timescale. Though subrotating zonal winds are found below the clouds, the total angular momentum of the atmosphere is always in the sense of superrotation. The global relative angular momentum of the atmosphere oscillates with an amplitude of about 5% on the approximate 10 year timescale. Symmetric instability in the near surface equatorial atmosphere might be the source of the decadal oscillation in the atmospheric state. Analyses of angular momentum transport show that all the jets are built up by poleward transport by a meridional circulation while angular momentum is redistributed to lower latitudes primarily by transient eddies. Possible changes in the structure of Venus' cloud level mid-latitude jets measured by Mariner 10, Pioneer Venus, and Venus Express suggest that a cyclic variation similar to that found in the model might occur in the real Venus atmosphere, although no subrotating winds below the cloud level have been observed to date. Venus' atmosphere must be observed over multi-year timescales and below the clouds if we are to understand its dynamics. (C) 2010 Elsevier Inc. All rights reserved. C1 [Parish, Helen F.; Schubert, Gerald] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, Los Angeles, CA 90095 USA. [Covey, Curtis; Grossman, Allen] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Walterscheid, Richard L.] Aerosp Corp, Los Angeles, CA 90009 USA. [Lebonnois, Sebastien] CNRS, Meteorol Dynam Lab, F-75252 Paris 05, France. RP Parish, HF (reprint author), Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Dept Earth & Space Sci, 595 Charles E Young Dr E, Los Angeles, CA 90095 USA. EM hparish@ess.ucla.edu OI LEBONNOIS, SEBASTIEN/0000-0002-2390-8164 FU NASA [NASA NNX07AF27G, NNX08AM13G]; Office of Science, US Department of Energy, by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX HFP, GS, CC, and AG acknowledge support from NASA's Planetary Atmospheres Program through Grant NASA NNX07AF27G. This work was performed in part under the auspices of the Office of Science, US Department of Energy, by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. RLW acknowledges support from NASA Grant NNX08AM13G. NR 79 TC 18 Z9 18 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD MAR PY 2011 VL 212 IS 1 BP 42 EP 65 DI 10.1016/j.icarus.2010.11.015 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 732KL UT WOS:000288183700004 ER PT J AU Ghafghazi, S Sowlati, T Sokhansanj, S Bi, XT Melin, S AF Ghafghazi, Saeed Sowlati, Taraneh Sokhansanj, Shahab Bi, Xiaotao Melin, Staffan TI Life cycle assessment of base-load heat sources for district heating system options SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE District heating systems; Environmental impacts; Global warming; Life cycle assessment; Renewable energy; Wood pellets ID IMPACT ASSESSMENT; BIOMASS; ENERGY; ELECTRICITY; COMBUSTION; CANADA; FUELS; GAS AB There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base-load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base-load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base-load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation. C1 [Ghafghazi, Saeed; Sowlati, Taraneh] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, Shahab; Bi, Xiaotao] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2931-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca OI Ghafghazi, Saeed/0000-0001-8226-6176 FU BC Ministry of Forest and Range (BC MoFR); Natural Sciences and Engineering Research Council of Canada (NSERC) FX The authors are grateful to BC Ministry of Forest and Range (BC MoFR) and Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial support to carry out this research. NR 39 TC 16 Z9 16 U1 1 U2 29 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD MAR PY 2011 VL 16 IS 3 BP 212 EP 223 DI 10.1007/s11367-011-0259-9 PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 730FK UT WOS:000288018800003 ER PT J AU Das, S AF Das, Sujit TI Life cycle assessment of carbon fiber-reinforced polymer composites SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE Automotive lightweighting; Carbon fiber polymer composites; Carbon fibers; Life cycle analysis AB The use of carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles; however energy intensity and cost remain major barriers to the wide-scale adoption of this material for automotive applications. This study determines the relative life cycle benefits of two precursor types (conventional textile-type acrylic fibers and renewable-based lignin), part manufacturing technologies (conventional SMC and P4), and a fiber recycling technology. A representative automotive part, i.e., a 30.8-kg steel floor pan having a 17% weight reduction potential with stringent crash performance requirements, has been considered for the life cycle energy and emissions analysis. Four scenarios-combinations of the precursor types and manufacturing technologies-are compared to the stamped steel baseline part. The analysis finds the lignin-based part made through P4 technology to offer the greatest life cycle energy and CO(2) emissions benefits. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production; however, life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exist from using numerous sources in the literature. The sensitivity analysis concludes that with a 20% reduction in energy use in the conversion of lignin to carbon fiber and no energy use incurred in lignin production since lignin is a by-product of ethanol and paper production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%. C1 Oak Ridge Natl Lab, Energy & Transportat Sci Div, Knoxeville, TN 37934 USA. RP Das, S (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, 2360 Cherahala Blvd, Knoxeville, TN 37934 USA. EM dass@ornl.gov FU US Department of Energy [DE-AC05-00OR22725] FX This work was conducted by the author at Oak Ridge National Laboratory, managed and operated by UT-Batelle, LLC, for the US Department of Energy under contract No. DE-AC05-00OR22725. NR 17 TC 42 Z9 42 U1 5 U2 69 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD MAR PY 2011 VL 16 IS 3 BP 268 EP 282 DI 10.1007/s11367-011-0264-z PG 15 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 730FK UT WOS:000288018800007 ER PT J AU Lebensohn, RA Rollett, AD Suquet, P AF Lebensohn, Ricardo A. Rollett, Anthony D. Suquet, Pierre TI Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals SO JOM LA English DT Article ID NONLINEAR COMPOSITES; NUMERICAL-METHOD; TEXTURE; STRESSES; CONTRAST; SCHEME AB Emerging characterization methods in experimental mechanics pose a challenge to modelers to devise efficient formulations that permit interpretation and exploitation of the massive amount of data generated by these novel methods. In this overview we report on a numerical formulation based on fast Fourier transforms, developed over the last 15 years, which can use the voxelized microstructural images of heterogeneous materials as input to predict their micromechanical and effective response. The focus of this presentation is on applications of the method to plastically-deforming polycrystalline materials. C1 [Lebensohn, Ricardo A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87544 USA. [Rollett, Anthony D.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Suquet, Pierre] CNRS, Lab Mecan & Acoust, Marseille, France. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87544 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; Rollett, Anthony/A-4096-2012 OI Lebensohn, Ricardo/0000-0002-3152-9105; Rollett, Anthony/0000-0003-4445-2191 FU Los Alamos National Laboratory; ASC; High Performance Computing Modernization Office; Office of Basic Energy Sciences [DE-FG02-09ER46645]; National Science Foundation [DMR-0520425]; French Agence Nationale de la Recherche [BLAN08-3 373405] FX R.A.L. acknowledges support from Los Alamos National Laboratory's Joint DoD/DOE Munitions Technology Program and ASC Physics & Engineering Models, Materials Project. A.D.R. acknowledges support from the User Productivity Technology Transfer and Training Program (PETTT) of the High Performance Computing Modernization Office, by the Office of Basic Energy Sciences under Award Number DE-FG02-09ER46645, and by the MRSEC program of the National Science Foundation under Award Number DMR-0520425. P.S. acknowledges support from the French Agence Nationale de la Recherche under contract BLAN08-3 373405 (ELVIS project). NR 26 TC 32 Z9 33 U1 0 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD MAR PY 2011 VL 63 IS 3 BP 13 EP 18 DI 10.1007/s11837-011-0037-y PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 733IZ UT WOS:000288257700001 ER PT J AU Kurita, S Miyoshi, Y Tsuchiya, F Nishimura, Y Hori, T Miyashita, Y Takada, T Morioka, A Angelopoulos, V McFadden, JP Auster, HU Albert, JM Jordanova, V Misawa, H AF Kurita, S. Miyoshi, Y. Tsuchiya, F. Nishimura, Y. Hori, T. Miyashita, Y. Takada, T. Morioka, A. Angelopoulos, V. McFadden, J. P. Auster, H. U. Albert, J. M. Jordanova, V. Misawa, H. TI Transport and loss of the inner plasma sheet electrons: THEMIS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PITCH-ANGLE DIFFUSION; RADIATION BELT ELECTRONS; CYCLOTRON WAVES; GEOSYNCHRONOUS ORBIT; RING CURRENT; MAGNETOSPHERE; PRECIPITATION; DISTRIBUTIONS; ACCESS; AURORA AB Using the electron data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements from 2007 to 2009, we derived global phase space density (PSD) distributions of plasma sheet electrons (2-100 eV/nT) to examine the transport process of the electrons to the inner magnetosphere and possible loss mechanisms of plasma sheet electrons during the convective transport. The inner boundaries of the electron plasma sheet were determined by the observed global distributions and compared with the Alfven boundaries that were calculated by the sum of the simple corotation and convection electric field models. This comparison confirms the previous results that the large-scale convection electric field controls the electron transport to the inner magnetosphere. The gradual decrease in PSD is observed from the dawn to the dayside sector, indicating the existence of some loss mechanisms in the morning sector. The loss time scales estimated from the PSD distributions were compared with the theoretical ones based on the quasi-linear diffusion theory using an empirical wave model of whistler mode chorus. We also estimated the required wave amplitudes that can explain the estimated loss time scales. It is shown that whistler mode chorus has a sufficient power to scatter the plasma sheet electrons, and the required wave amplitudes are roughly consistent with the CRRES statistical survey of the chorus wave amplitude. We suggest that the loss of plasma sheet electrons in the morning sector is mainly induced by pitch angle scattering by whistler mode chorus. C1 [Kurita, S.; Tsuchiya, F.; Morioka, A.; Misawa, H.] Tohoku Univ, Planetary Plasma & Atmospher Res Ctr, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Albert, J. M.] USAF, Res Lab, Space Vehicles Directorate, Hanscom AFB, MA 01731 USA. [Angelopoulos, V.] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90095 USA. [Auster, H. U.] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geophys & Extraterr Phys, D-38106 Braunschweig, Germany. [Miyoshi, Y.; Nishimura, Y.; Hori, T.; Miyashita, Y.] Nagoya Univ, Solar Terr Environm Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan. [Jordanova, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McFadden, J. P.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Takada, T.] Kochi Natl Coll Technol, Dept Elect Engn & Informat Sci, Nanko Ku, Kochi 7838508, Japan. [Nishimura, Y.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. RP Kurita, S (reprint author), Tohoku Univ, Planetary Plasma & Atmospher Res Ctr, Aoba Ku, Sendai, Miyagi 9808578, Japan. EM kurita@pparc.gp.tohoku.ac.jp RI Miyoshi, Yoshizumi/B-5834-2015; OI Miyoshi, Yoshizumi/0000-0001-7998-1240; Hori, Tomoaki/0000-0001-8451-6941; Albert, Jay/0000-0001-9494-7630; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NAS5-02099]; German Ministry for Economy and Technology; German Center for Aviation and Space [50 OC 0302]; Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) FX The authors would like to acknowledge NASA contract NAS5-02099 and the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. The Kp index is provided by WDC for Geomagnetism, Kyoto. This research was supported by a special fund for education and research provided by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Support Program for Improving Graduate School Education from MEXT. NR 48 TC 8 Z9 8 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD MAR 1 PY 2011 VL 116 AR A03201 DI 10.1029/2010JA015975 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 731CM UT WOS:000288083900002 ER PT J AU Harsha, N Ranya, R Shukla, S Biju, S Reddy, MLP Warrier, KGK AF Harsha, N. Ranya, R. Shukla, S. Biju, S. Reddy, M. L. P. Warrier, K. G. K. TI Effect of Silver and Palladium on Dye-Removal Characteristics of Anatase-Titania Nanotubes SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Hydrothermal; Dye-Adsorption; Photocatalysis; Ultraviolet-Reduction ID ENHANCED PHOTOCATALYTIC ACTIVITY; DIOXIDE; PARTICLES; OXIDATION; MICROSTRUCTURES; TEMPERATURE; MORPHOLOGY; CATALYSTS; MECHANISM; ORGANICS AB Anatase-titania nanotubes have been synthesized via hydrothermal and surface-modified by depositing silver and palladium via ultraviolet-reduction method. The pure and surface-modified anatase-titania nanotubes have been characterized using the transmission electron microscope, selected-area electron diffraction, X-ray diffraction, diffuse reflectance, photoluminescence, and fourier transform infrared spectroscope to reveal their average size, structure, and surface-chemistry. The nanotubes have been utilized for the dye-removal application involving the surface-adsorption mechanism under the dark-condition and photocatalytic degradation mechanism under the ultraviolet-radiation exposure. The variation in the dye-concentration during the dye-adsorption and photocatalysis processes has been determined using the ultraviolet-visible absorption spectrophotometer with methylene blue as a model catalytic dye-agent. It has been shown that silver-deposited anatase-titania nanotubes are more effective in enhancing the kinetics of the dye-removal via surface-adsorption and photocatalytic degradation mechanisms relative to the palladium-deposited anatase-titania nanotubes, which has been attributed to the differences in the surface-chemistry of anatase-titania nanotubes induced by the respective metal-deposition. C1 [Harsha, N.; Ranya, R.; Shukla, S.; Warrier, K. G. K.] Natl Inst Interdisciplinary Sci & Technol NIIST, Council Sci & Ind Res CSIR, Ceram Technol Dept, Mat & Minerals Div MMD, Thiruvananthapuram 695019, Kerala, India. [Biju, S.; Reddy, M. L. P.] NIIST CSIR, CSTD, Thiruvananthapuram 695019, Kerala, India. RP Shukla, S (reprint author), Argonne Natl Lab, Div Energy Syst, Ceram Sect, Argonne, IL 60561 USA. RI TVM, NIIST/E-5132-2012; OI TVM, NIIST/0000-0002-5814-466X; Shukla, Satyajit/0000-0002-7947-8095 FU CSIR, India [NWP0010, P81113] FX Authors thank CSIR, India for funding the ceramic, nanotechnology, and photocatalysis research at NIIST-CSIR (Projects #s NWP0010 and P81113). Authors also thank Mr. Narendra (Icon Analytical, India), Mr. P. Guruswamy, and Mr. S. Sankar (both NIIST-CSIR, India) for conducting the TEM, XRD, and DR/FTIR analyses respectively. NR 27 TC 4 Z9 5 U1 0 U2 11 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD MAR PY 2011 VL 11 IS 3 BP 2440 EP 2449 DI 10.1166/jnn.2011.3545 PG 10 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 731JN UT WOS:000288102300089 PM 21449405 ER PT J AU Shukla, N Nigra, MM Bartel, MA Nigra, AM Gellman, AJ AF Shukla, N. Nigra, M. M. Bartel, M. A. Nigra, A. M. Gellman, A. J. TI Fe(2)O(3) Shell Growth on Pt Nanoparticles SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article DE Pt Nanoparticles; Fe(2)O(3) Nanoparticle Shells; Nanoparticle Growth Mechanism; Core-Shell Nanoparticles ID FEPT NANOPARTICLES; FECO NANOPARTICLES; NANOCRYSTALS; TRANSFORMATION; SHAPE AB Fe(2)O(3) shells have been synthesized around Pt cores to create Pt@Fe(2)O(3) core shell nanoparticles. The synthesis conditions allow control of the shell shape and allow the preparation of both hexagonal shells and spherical shells. 2D cross-sectional TEM images show that the cores are not positioned at the centers of the shells. By rotating the nanoparticles and monitoring the apparent motions of the cores in the 2D cross-sectional images, it is possible to determine quantitatively the radial position of the Pt core with respect to the center of the Fe(2)O(3) shell. The distribution of core positions within the core shell structures is bimodal. These observations suggest that the Fe(2)O(3) shells grow on the Pt cores by a nucleation process, rather than layer-by-layer growth. C1 [Shukla, N.; Gellman, A. J.] US DOE, Natl Energy & Technol Lab, Pittsburgh, PA 15236 USA. [Shukla, N.] Carnegie Mellon Univ, Inst Complex Engn Syst, Pittsburgh, PA 15213 USA. [Nigra, M. M.; Bartel, M. A.; Nigra, A. M.; Gellman, A. J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Gellman, AJ (reprint author), US DOE, Natl Energy & Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in Fischer-Tropsch catalysts for the Hydrogen from Coal Program, under the RDS contract DE-AC26-04NT41817. NR 19 TC 2 Z9 2 U1 2 U2 15 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD MAR PY 2011 VL 11 IS 3 BP 2480 EP 2485 DI 10.1166/jnn.2011.3570 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 731JN UT WOS:000288102300094 PM 21449410 ER PT J AU McGilvery, CM McComb, DW De Gendt, S Payzant, EA MacKenzie, M Craven, AJ AF McGilvery, Catriona M. McComb, David W. De Gendt, Stefan Payzant, E. Andrew MacKenzie, Maureen Craven, Alan J. TI Characterization of Hafnia Powder Prepared from an Oxychloride Sol-Gel SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID ALTERNATIVE GATE DIELECTRICS; TETRAGONAL ZIRCONIA POWDERS; PHASE-TRANSFORMATION; THERMAL-DECOMPOSITION; MIXED OXIDES; X-RAY; CRYSTALLIZATION; HFO2; ZRO2; TEMPERATURE AB Hafnium-containing compounds are of great importance to the semiconductor industry as a high-kappa gate dielectric to replace silicon oxynitrides. Here, the crystallization processes and chemistry of bulk hafnia powders are investigated, which will aid in interpretation of reactions and crystallization events occurring in thin films used as gate dielectrics. Amorphous hafnia powder was prepared via a sol-gel route using the precursor HfOCl(2)center dot H(2)O. The powders were subjected to various heat treatments and analyzed using X-ray diffraction and thermal analysis techniques. A large change in the crystallization pathway was found to occur when the sample was heated in an inert environment compared with air. Instead of the expected monoclinic phase, tetragonal hafnia also formed under these conditions and was observed up to temperatures of similar to 760 degrees C. The tetragonal particles eventually transform into monoclinic hafnia on further heating. Possible mechanisms for the crystallization of tetragonal hafnia are discussed. It is proposed that, in an inert environment, tetragonal hafnia is stabilized due to the presence of oxygen vacancies, formed by the reduction of HfIV to HfIII. As the temperature increases the crystal grows until there are too few oxygen vacancies left in the structure to continue stabilizing the tetragonal phase, and hence transformation to monoclinic hafnia occurs. C1 [McGilvery, Catriona M.; McComb, David W.] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. [De Gendt, Stefan] IMEC, B-3001 Louvain, Belgium. [De Gendt, Stefan] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium. [Payzant, E. Andrew] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [MacKenzie, Maureen; Craven, Alan J.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. RP McGilvery, CM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England. EM catriona.mcgilvery@imperial.ac.uk RI Payzant, Edward/B-5449-2009; McComb, David/A-7808-2010; OI Payzant, Edward/0000-0002-3447-2060; McGilvery, Catriona/0000-0002-4849-0251 FU Engineering and Physical Sciences Research Council (EPSRC) [GR/S41036]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was financially supported by the Engineering and Physical Sciences Research Council (EPSRC) grant number GR/S41036. A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 54 TC 4 Z9 4 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD MAR PY 2011 VL 94 IS 3 BP 886 EP 894 DI 10.1111/j.1551-2916.2010.04153.x PG 9 WC Materials Science, Ceramics SC Materials Science GA 733KL UT WOS:000288261500045 ER PT J AU Yu, SW Tobin, JG AF Yu, S. -W. Tobin, J. G. TI Confirmation of sample quality: X-ray and ultraviolet photoelectron spectroscopies of uranium dioxide SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID SINGLE-CRYSTAL; 5F STATES; SURFACES; OXIDES; PHOTOEMISSION; ENERGY; OXIDATION; THORIUM; LIGHT; METAL AB X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy have been utilized to demonstrate the sample quality of a UO2 specimen. This specimen is to be used in further studies with bremsstrahlung isochromat spectroscopy and Fano spectroscopy. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3549118] C1 [Yu, S. -W.; Tobin, J. G.] Lawrence Livermore Natl Lab, LLNS LLC, Livermore, CA 94550 USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, LLNS LLC, Livermore, CA 94550 USA. EM tobin1@llnl.gov RI Tobin, James/O-6953-2015 FU National Nuclear Security Administration, U.S. Department of Energy [DE-AC52-07NA27344]; DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the National Nuclear Security Administration, U.S. Department of Energy under Contract No. DE-AC52-07NA27344. This work was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering. The authors also wish to thank B. W. Chung and G. D. Waddill for their help on this project and Wigbert Siekhaus for the uranium sample. NR 40 TC 5 Z9 5 U1 3 U2 15 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD MAR-APR PY 2011 VL 29 IS 2 AR 021008 DI 10.1116/1.3549118 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 730IW UT WOS:000288028000009 ER PT J AU Wang, N Boubekri, M AF Wang, N. Boubekri, M. TI Design recommendations based on cognitive, mood and preference assessments in a sunlit workspace SO LIGHTING RESEARCH & TECHNOLOGY LA English DT Article ID OPEN-PLAN OFFICE; SEASONAL AFFECTIVE-DISORDER; EMPLOYEE REACTIONS; WORK; PERFORMANCE; SATISFACTION; BEHAVIOR; PRIVACY; WINDOW; COMMUNICATION AB This paper reports a study that aimed to establish a method of improving daylighting design using a behavioural approach. It underscores why daylighting design guidelines need to change in order to reflect the idea that human activities are important design criteria alongside the physical parameters. Design recommendations for sunlit offices have been developed based on experiments that investigated room occupants' emotional, attitudinal and cognitive responses to various sunlight conditions. The design guidelines developed in this study, for the first time, present a comprehensive evaluation of a sunlit office from an architectural point of view, one that is focused on the characteristics of a workspace - involving sunlight, window view, privacy and control - and room occupants' behavioural responses to these environmental factors. C1 [Wang, N.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Boubekri, M.] Univ Illinois, Sch Architecture, Champaign, IL 61820 USA. RP Wang, N (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM na.wang@pnl.gov NR 60 TC 10 Z9 10 U1 1 U2 19 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1477-1535 J9 LIGHTING RES TECHNOL JI Lighting Res. Technol. PD MAR PY 2011 VL 43 IS 1 BP 55 EP 72 DI 10.1177/1477153510370807 PG 18 WC Construction & Building Technology; Optics SC Construction & Building Technology; Optics GA 730JG UT WOS:000288029000006 ER PT J AU Ashcraft, E Ji, HN Mays, J Dadmun, M AF Ashcraft, Earl Ji, Haining Mays, Jimmy Dadmun, Mark TI Grafting Polymer Loops onto Functionalized Nanotubes: Monitoring Grafting and Loop Formation SO MACROMOLECULAR CHEMISTRY AND PHYSICS LA English DT Article DE anneal; FT-IR spectroscopy; graft; loop; multiwall nanotubes; reaction rate; tail; telechelic ID WALLED CARBON NANOTUBES; MONTE-CARLO SIMULATIONS; TELECHELIC POLYMERS; MULTIBLOCK COPOLYMERS; POLY(VINYL CHLORIDE); CHEMICAL OXIDATION; FTIR SPECTROSCOPY; SOLID SUBSTRATE; MELT INTERFACES; SURFACE AB Polystyrene functionalized at both ends (telechelic polymer) with epoxide groups (epoxy-PS-epoxy) was reacted with carboxylated multiwall carbon nanotubes (COOH-MWNT) in solution in order to graft polymer chains at both ends onto the MWNT surface, forming loops. FT-IR spectroscopy was employed to monitor the formation of aromatic esters and to quantify the amount of telechelic grafted to the nanotube surface as a function of reaction time. When the samples were further annealed in the melt, an increase in the aromatic ester peak was observed, indicating that the unreacted chain ends further grafted to MWNT surfaces to form loops. By reacting the grafted nanotube samples further with monocarboxy terminated poly(4-methylstyrene) (COOH-P4MS), the amount of epoxy-PS-epoxy that had only reacted at one end was determined. Reaction rate analysis indicates that that the grafting of epoxy-PS-epoxy to the nanotube surface is reaction controlled, as the FT-IR spectroscopy signal grows as a function of approximately t(0.3). These studies exemplify how FT-IR spectroscopy can be used as a novel technique to quantify the amount of grafted polymer, grafting rate, and percent of difunctional polymers that form loops, and provide a method to create loop covered nanoparticles. C1 [Ashcraft, Earl; Ji, Haining; Mays, Jimmy; Dadmun, Mark] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Ji, Haining] Univ Athens, Dept Chem, Athens 15771, Greece. [Mays, Jimmy; Dadmun, Mark] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dadmun, M (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM dad@utk.edu FU National Science Foundation Collaborative Research in Chemistry [CHE-0304807] FX We thank the National Science Foundation Collaborative Research in Chemistry (grant no. CHE-0304807) for financial support, which funded this research. NR 59 TC 1 Z9 1 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1022-1352 J9 MACROMOL CHEM PHYS JI Macromol. Chem. Phys. PD MAR 1 PY 2011 VL 212 IS 5 BP 465 EP 477 DI 10.1002/macp.201000557 PG 13 WC Polymer Science SC Polymer Science GA 730MC UT WOS:000288036400004 ER PT J AU Redding-Johanson, AM Batth, TS Chan, R Krupa, R Szmidt, HL Adams, PD Keasling, JD Lee, TS Mukhopadhyay, A Petzold, CJ AF Redding-Johanson, Alyssa M. Batth, Tanveer S. Chan, Rossana Krupa, Rachel Szmidt, Heather L. Adams, Paul D. Keasling, Jay D. Lee, Taek Soon Mukhopadhyay, Aindrila Petzold, Christopher J. TI Targeted proteomics for metabolic pathway optimization: Application to terpene production SO METABOLIC ENGINEERING LA English DT Article DE Targeted proteomics; Selected-Reaction Monitoring (SRM); Mevalonate pathway; Amorphadiene production; Metabolic pathway optimization; E. coli ID ESCHERICHIA-COLI; PROTEIN EXPRESSION; GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; MEVALONATE PATHWAY; MASS-SPECTROMETRY; PLASMID; QUANTIFICATION; REPLICATION; STRATEGIES AB Successful metabolic engineering relies on methodologies that aid assembly and optimization of novel pathways in microbes. Many different factors may contribute to pathway performance, and problems due to mRNA abundance, protein abundance, or enzymatic activity may not be evident by monitoring product titers. To this end, synthetic biologists and metabolic engineers utilize a variety of analytical methods to identify the parts of the pathway that limit production. In this study, targeted proteomics, via selected-reaction monitoring (SRM) mass spectrometry, was used to measure protein levels in Escherichia coli strains engineered to produce these squiterpene, amorpha-4,11-diene. From this analysis, two mevalonate pathway proteins, mevalonate kinase (MK) and phosphomevalonate kinase (PMK) from Saccharomyces cerevisiae, were identified as potential bottlenecks. Codon-optimization of the genes encoding MK and PMK and expression from a stronger promoterled to significantly improved MK and PMK protein levels and over three-fold improved final amorpha-4,11-diene titer(> 500 mg/L). (C) 2011 Elsevier Inc. All rights reserved. C1 [Redding-Johanson, Alyssa M.; Batth, Tanveer S.; Chan, Rossana; Krupa, Rachel; Szmidt, Heather L.; Adams, Paul D.; Keasling, Jay D.; Lee, Taek Soon; Mukhopadhyay, Aindrila; Petzold, Christopher J.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Petzold, CJ (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst, 5885 Hollis St,4thFloor, Emeryville, CA 94608 USA. EM cjpetzold@lbl.gov RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint Bio Energy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Purified mevalonate kinase and phosphomevalonate kinase were kindly provided by Amyris Biotechnologies. The authors thank Mario Ouellet for help with RT-PCR experiments, Dr. Mary Dunlop for donating the Delta acrAB strain, and Dr. Leonard Katz for manuscript review. NR 55 TC 82 Z9 91 U1 4 U2 51 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 J9 METAB ENG JI Metab. Eng. PD MAR PY 2011 VL 13 IS 2 BP 194 EP 203 DI 10.1016/j.ymben.2010.12.005 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 729PP UT WOS:000287963200008 PM 21215324 ER PT J AU Xu, GY Torres, CM Tang, JS Bai, JW Song, EB Huang, Y Duan, XF Zhang, YG Wang, KL AF Xu, Guangyu Torres, Carlos M., Jr. Tang, Jianshi Bai, Jingwei Song, Emil B. Huang, Yu Duan, Xiangfeng Zhang, Yuegang Wang, Kang L. TI Edge Effect on Resistance Scaling Rules in Graphene Nanostructures SO NANO LETTERS LA English DT Article DE Graphene; graphene nanoribbon; resistance scaling; edge effect; dimensional crossover ID WALLED CARBON NANOTUBES; BALLISTIC TRANSPORT; NANORIBBONS; ELECTRONICS; TRANSISTORS; SCATTERING; CROSSOVER AB We report an experimental investigation of the edge effect on the room-temperature transport in graphene nanoribbon and graphene sheet (both single-layer and bilayer). By measuring the resistance scaling behaviors at both low- and high-carrier densities, we show that the transport of single-layer nanoribbons lies in a strong localization regime, which can be attributed to an edge effect. We find that this edge effect can be weakened by enlarging the width, decreasing the carrier densities, or adding an extra layer. From graphene nanoribbon to graphene sheet, the data show a dimensional crossover of the transport regimes possibly due to the drastic change of the edge effect. C1 [Xu, Guangyu; Torres, Carlos M., Jr.; Tang, Jianshi; Song, Emil B.; Wang, Kang L.] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. [Bai, Jingwei; Huang, Yu] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Duan, Xiangfeng] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Zhang, Yuegang] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Xu, GY (reprint author), Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA. EM guangyu@ee.ucla.edu; yzhang5@lbl.gov RI Bai, Jingwei/G-4245-2012; Zhang, Y/E-6600-2011; Tang, Jianshi/I-5543-2014 OI Zhang, Y/0000-0003-0344-8399; Tang, Jianshi/0000-0001-8369-0067 FU MARCO Focus Center on Functional Engineered Nano Architectonics; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank F. Miao, X. Zhang, R. Cheng and L. Liao for helpful discussions. We especially thank M. Y. Han from P. Kim's group for theoretical discussions. We greatly appreciate technical support from M. Wang, C. Zeng, S. Aloni, and T. Kuykendall. This work was in part supported by MARCO Focus Center on Functional Engineered Nano Architectonics and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 30 Z9 30 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2011 VL 11 IS 3 BP 1082 EP 1086 DI 10.1021/nl103966t PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730UY UT WOS:000288061500029 PM 21322591 ER PT J AU Polking, MJ Urban, JJ Milliron, DJ Zheng, HM Chan, E Caldwell, MA Raoux, S Kisielowski, CF Ager, JW Ramesh, R Alivisatos, AP AF Polking, Mark J. Urban, Jeffrey. J. Milliron, Delia J. Zheng, Haimei Chan, Emory Caldwell, Marissa A. Raoux, Simone Kisielowski, Christian F. Ager, Joel W., III Ramesh, Ramamoorthy Alivisatos, A. Paul TI Size-Dependent Polar Ordering in Colloidal GeTe Nanocrystals SO NANO LETTERS LA English DT Article DE Ferroelectric; nanocrystals; polar; colloidal; GeTe; phase transition ID FERROELECTRIC PHASE-TRANSITION; ELECTRICAL-PROPERTIES; CRYSTAL-STRUCTURE; RAMAN-SCATTERING; BATIO3; DIFFRACTION; PARTICLES; MODE AB The question of the nature and stability of polar ordering in nanoscale ferroelectrics is examined with colloidal nanocrystals of germanium telluride (GeTe). We provide atomic-scale evidence for room-temperature polar ordering in individual nanocrystals using aberration-corrected transmission electron microscopy and demonstrate a reversible, size-dependent polar-nonpolar phase transition of displacive character in nanocrystal ensembles. A substantial linear component of the distortion is observed, which is in contrast with theoretical reports predicting a toroidal state. C1 [Polking, Mark J.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Urban, Jeffrey. J.; Milliron, Delia J.; Chan, Emory] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zheng, Haimei; Kisielowski, Christian F.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Zheng, Haimei; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Caldwell, Marissa A.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Raoux, Simone] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Ager, Joel W., III; Ramesh, Ramamoorthy; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Div Sci Mat, Berkeley, CA 94720 USA. RP Ramesh, R (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM rramesh@berkeley.edu; alivis@berkeley.edu RI Milliron, Delia/D-6002-2012; Alivisatos , Paul /N-8863-2015; Raoux, Simone/G-3920-2016; OI Alivisatos , Paul /0000-0001-6895-9048; Ager, Joel/0000-0001-9334-9751 FU U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231, AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX The authors gratefully acknowledge Jonathan S. Owen and Dmitri V. Talapin for fruitful discussions and Bin Jiang for technical assistance. A portion of this work (synchrotron X-ray diffraction studies) was carried out by S.R. at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences, under Contract No. DE-AC02-98CH10886. TEM studies were performed by M.J.P., H.Z., and C.F.K. at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of this work (analysis of synchrotron X-ray data, preparation of portions of the manuscript) was completed by J.J.U., D.J.M., E.C., and MAC. at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. All other work (synthesis, Raman studies, preparation of most of the manuscript) completed by M.J.P. with assistance from J.W.A, R.R, and A.P.A. was supported by the Physical Chemistry of Nanocrystals Project of the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. P. was supported by a National Science Foundation Graduate Research Fellowship and by a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) fellowship. NR 29 TC 43 Z9 43 U1 4 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2011 VL 11 IS 3 BP 1147 EP 1152 DI 10.1021/nl104075v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730UY UT WOS:000288061500041 PM 21338071 ER PT J AU Lulevich, V Kim, S Grigoropoulos, CP Noy, A AF Lulevich, Valentin Kim, Sangil Grigoropoulos, Costas P. Noy, Aleksandr TI Frictionless Sliding of Single-Stranded DNA in a Carbon Nanotube Pore Observed by Single Molecule Force Spectroscopy SO NANO LETTERS LA English DT Article DE Single molecule force spectroscopy; DNA; carbon nanotubes; CNT membrane; nanofluidics; molecular friction ID MICROSCOPY; TRANSPORT; INSERTION; HYBRIDS AB Smooth inner pores of carbon nanotubes (CNT) provide a fascinating model for studying biological transport. We used an atomic force microscope to pull a single-stranded DNA oligomer from a carbon nanotube pore. DNA extraction from CNT pores occurs at a nearly constant force, which is drastically different from the elastic profile commonly observed during polymer stretching with atomic force microscopy. We show that a combination of the frictionless nanotube pore walls and an unfavorable DNA solvation energy produces this constant force profiles. C1 [Noy, Aleksandr] UC Merced, Sch Nat Sci, Merced, CA 95343 USA. [Lulevich, Valentin; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kim, Sangil] Porifera Inc, Hayward, CA USA. [Lulevich, Valentin; Kim, Sangil; Noy, Aleksandr] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. RP Noy, A (reprint author), UC Merced, Sch Nat Sci, Merced, CA 95343 USA. EM anoy@ucmerced.edu FU National Science Foundation, U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [NIRT CBET-0709090]; DARPA MANTRA program; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC0205CH11231] FX We would like to thank Dr. Olgica Bakajin and Dr. Slava Freger for helpful discussions during this investigation, Mr. Jung Bing In and Dr. Brian Kessler for CNT synthesis and TEM imaging, Dr. Paul Ashby for help with AFM access, and Dr. Virginia Altoe for assistance in scanning electron microscopy. We thank the anonymous reviewer for useful and insightful comments. Research was supported by National Science Foundation NIRT CBET-0709090 (A.N., C.G., and V.L.), U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (AN.), and DARPA MANTRA program (S.K). Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 31 Z9 32 U1 2 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2011 VL 11 IS 3 BP 1171 EP 1176 DI 10.1021/nl104116s PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730UY UT WOS:000288061500045 PM 21275410 ER PT J AU Weber-Bargioni, A Schwartzberg, A Cornaglia, M Ismach, A Urban, JJ Pang, YJ Gordon, R Bokor, J Salmeron, MB Ogletree, DF Ashby, P Cabrini, S Schuck, PJ AF Weber-Bargioni, Alexander Schwartzberg, Adam Cornaglia, Matteo Ismach, Ariel Urban, Jeffrey J. Pang, YuanJie Gordon, Reuven Bokor, Jeffrey Salmeron, Miquel B. Ogletree, D. Frank Ashby, Paul Cabrini, Stefano Schuck, P. James TI Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes. SO NANO LETTERS LA English DT Article DE Tip-enhanced Raman spectroscopy (TERS); near-field chemical imaging; hyperspectral imaging; nano-optics; plasmonics; optical antenna ID SINGLE-MOLECULE FLUORESCENCE; ENHANCED RAMAN-SPECTROSCOPY; CARBON NANOTUBES; WAVE-GUIDES; HOT-SPOTS; TIP; TRANSMISSION; MICROSCOPY; SCATTERING; NANOPARTICLES AB We have demonstrated hyperspectral tip-enhanced Raman imaging on dielectric substrates using linearly polarized light and nanofabricated coaxial antenna tips. A full Raman spectrum was acquired at each pixel of a 256 by 256 pixel contact-mode atomic force microscope image of carbon nanotubes grown on a fused silica microscope coverslip, allowing D and G mode intensity and D-mode peak shifts to be measured with similar to 20 nm spatial resolution. Tip enhancement was sufficient to acquire useful Raman spectra in 50-100 ms. Coaxial scan probes combine the efficiency and enhanced, ultralocalized optical fields of plasmonically coupled antennae with the superior topographical imaging properties of sharp metal tips. The yield of the coaxial tip fabrication process is close to 100%, and the tips are sufficiently durable to support hours of contact-mode force microscope imaging. Our coaxial probes avoid the limitations associated with the "gap-mode" imaging geometry used in most tip-enhanced Raman studies to date, where a sharp metal tip is held similar to 1 nm above a metallic substrate with the sample located in the gap. C1 [Weber-Bargioni, Alexander; Schwartzberg, Adam; Cornaglia, Matteo; Ismach, Ariel; Urban, Jeffrey J.; Bokor, Jeffrey; Salmeron, Miquel B.; Ogletree, D. Frank; Ashby, Paul; Cabrini, Stefano; Schuck, P. James] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Pang, YuanJie; Gordon, Reuven] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8P 5C2, Canada. [Bokor, Jeffrey] Univ Calif Berkeley, EECS Dept, Berkeley, CA 94720 USA. RP Weber-Bargioni, A (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM afweber-bargioni@lbl.gov; scabrini@lbl.gov; pjschuck@lbl.gov RI Gordon, Reuven/B-1090-2008; ismach, ariel/A-9913-2015; Ogletree, D Frank/D-9833-2016; Bokor, Jeffrey/A-2683-2011 OI ismach, ariel/0000-0002-4328-9591; Ogletree, D Frank/0000-0002-8159-0182; FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-ACO2-05CH11231] FX The authors specifically thank Ed Wong for fast and high quality technical support, as well as our colleagues at the Molecular Foundry for stimulating discussion, advice, and assistance. This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-ACO2-05CH11231. NR 56 TC 65 Z9 65 U1 6 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD MAR PY 2011 VL 11 IS 3 BP 1201 EP 1207 DI 10.1021/nl104163m PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730UY UT WOS:000288061500050 PM 21261258 ER PT J AU Xu, XY Seal, K Xu, XS Ivanov, I Hsueh, CH Abu Hatab, N Yin, LF Zhang, XQ Cheng, ZH Gu, BH Zhang, ZY Shen, JA AF Xu, Xiaoying Seal, Katyayani Xu, Xiaoshan Ivanov, Ilia Hsueh, Chun-Hway Abu Hatab, Nahla Yin, Lifeng Zhang, Xiangqun Cheng, Zhaohua Gu, Baohua Zhang, Zhenyu Shen, Jian TI High Tunability of the Surface-Enhanced Raman Scattering Response with a Metal-Multiferroic Composite SO NANO LETTERS LA English DT Article DE Tunable SERS; FDTD simulation; multiferroic; LuFe2O4 ID SPECTROSCOPY; SERS; NANOPARTICLES; MOLECULES; SUBSTRATE; LUFE2O4; FILM AB We demonstrate active control of the plasmonic response from Au nanostructures by the use of a novel multiferroic substrate-LuFe2O4 (LFO)-to tune the surface-enhanced Raman scattering (SERS) response in real time. From both experiments and numerical simulations based on the finite-difference time-domain method, a threshold field is observed, above which the optical response of the metal nanostructure can be strongly altered through changes in the dielectric properties of LFO. This offers the potential of optimizing the SERS detection sensitivity in real time as well as the unique functionality of detecting multiple species of Raman active molecules with the same template. C1 [Yin, Lifeng; Shen, Jian] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Xu, Xiaoying; Xu, Xiaoshan] Oak Ridge Natl Lab, Div Mat Sci, Oak Ridge, TN 37831 USA. [Xu, Xiaoying; Xu, Xiaoshan] Oak Ridge Natl Lab, Div Technol, Oak Ridge, TN 37831 USA. [Ivanov, Ilia] Oak Ridge Natl Lab, Ctr Nanophase Mat, Oak Ridge, TN 37831 USA. [Abu Hatab, Nahla; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Seal, Katyayani; Hsueh, Chun-Hway; Gu, Baohua; Zhang, Zhenyu; Shen, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Hsueh, Chun-Hway] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 106, Taiwan. [Zhang, Xiangqun; Cheng, Zhaohua] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD HFNL, Hefei 230026, Anhui, Peoples R China. RP Shen, JA (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. EM Shenj5494@fudan.edu.cn RI Xu, Xiaoshan/B-1255-2009; Hsueh, Chun-Hway/G-1345-2011; Gu, Baohua/B-9511-2012; ivanov, ilia/D-3402-2015 OI Xu, Xiaoshan/0000-0002-4363-392X; Gu, Baohua/0000-0002-7299-2956; ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory for the U.S. Department of Energy [05315, 00483]; Scientific User Facilities Division, U.S. Department of Energy; National Science Council, Taiwan; National Basic Research Program of China (973 Program) [2011CB921801] FX Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy (05315 and 00483). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. C.H.H. acknowledges the partial support from National Science Council, Taiwan. L.F.Y and J.S. acknowledge the support from National Basic Research Program of China (973 Program) under the grant No. 2011CB921801. NR 33 TC 21 Z9 21 U1 3 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD MAR PY 2011 VL 11 IS 3 BP 1265 EP 1269 DI 10.1021/nl104291g PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 730UY UT WOS:000288061500061 PM 21322613 ER PT J AU Day, P Cutkosky, M Greco, R McLaughlin, A AF Day, Paul Cutkosky, Mark Greco, Richard McLaughlin, Anastasia TI Effects of He++ Ion Irradiation on Adhesion of Polymer Microstructure-Based Dry Adhesives SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID MECHANISMS AB Irradiation of polymer-based gecko-like synthetic adhesives (GSAs) using an accelerated beam of He++ ions has been performed. This irradiation simulates large a radiation doses that the GSAs may experience if deployed on a robotic platform in some radiological environments. After irradiation, the adhesive samples were tested for adhesion on a three-axis adhesion testing stage and were examined via scanning electron microscope. The GSA samples showed significant changes in surface morphology at high radiation doses. Additionally, radiation doses larger than 750 kGy resulted in a significant deterioration of the adhesive performance. Eventually, the adhesive samples lost all ability to generate frictional adhesion. Such results allow us to make quantitative statements about the applicability of GSAs for robotic applications in nuclear environments. C1 [Day, Paul; Cutkosky, Mark] Stanford Univ, Stanford, CA 94305 USA. [Greco, Richard; McLaughlin, Anastasia] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Day, P (reprint author), Stanford Univ, Stanford, CA 94305 USA. EM pday@stanford.edu NR 13 TC 3 Z9 3 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD MAR PY 2011 VL 167 IS 3 BP 242 EP 247 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 731JY UT WOS:000288103600006 ER PT J AU Mun, BS Chen, K Leem, Y Dejoie, C Tamura, N Kunz, M Liu, Z Grass, ME Park, C Yoon, J Lee, YY Ju, H AF Mun, Bongjin Simon Chen, Kai Leem, Youngchul Dejoie, Catherine Tamura, Nobumichi Kunz, Martin Liu, Zhi Grass, Michael E. Park, Changwoo Yoon, Joonseok Lee, Y. Yvette Ju, Honglyoul TI Observation of insulating-insulating monoclinic structural transition in macro-sized VO2 single crystals SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article DE vanadium dioxide; metal-insulator transition; X-ray microdiffraction; structural phase transition ID VANADIUM DIOXIDE; MOTT-HUBBARD; BAND THEORY; TEMPERATURE; PEIERLS; STRESS; VIEW AB VO2 single crystals with unprecedented quality, exhibiting a first-order metal-insulator transition (MIT) at 67.8 degrees C and an insulator-insulator transition (IIT) at similar to 49 degrees C, are grown using a self-flux evaporation method. Using synchrotron-based X-ray microdiffraction analysis, it is shown that the IIT is related to a structural phase transition (SPT) from the monoclinic M2 phase to the M1 phase upon heating while the MIT occurs together with a SPT of M1 to the rutile R phase. All previous reports have shown that VO2 exists in the M1 phase at room temperature in contrast to the M2 phase observed in this work. We suggest that internal strain inside single crystal VO2 may generate the previously unobserved IIT and the unusual room temperature structure. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Leem, Youngchul; Yoon, Joonseok; Lee, Y. Yvette; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Mun, Bongjin Simon; Grass, Michael E.] Hanyang Univ, Dept Appl Phys, ERICA, Kyonggi Do 426791, South Korea. [Chen, Kai; Dejoie, Catherine; Tamura, Nobumichi; Kunz, Martin; Liu, Zhi; Grass, Michael E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Park, Changwoo] Hanbat Natl Univ, Div Appl Chem & Biotechnol, Taejon 305719, South Korea. [Park, Changwoo] Adv Nano Prod, Chungwon 363942, Chungbuk, South Korea. RP Ju, H (reprint author), Yonsei Univ, Dept Phys, Seoul 120749, South Korea. EM tesl@yonsei.ac.kr RI Kunz, Martin/K-4491-2012; Mun, Bongjin /G-1701-2013; Chen, Kai/O-5662-2014; Liu, Zhi/B-3642-2009; OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445; Liu, Zhi/0000-0002-8973-6561; Yoon, Joonseok/0000-0001-5937-1787 FU Korean government (MEST) [2009-0068720]; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [0416243] FX This work was supported by Advanced Nano Products Co., Ltd. B.S.M. would like to thank the support by the Korea Research Foundation (KRF) grant funded by the Korean government (MEST) (No. 2009-0068720). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. The microdiffraction program at the ALS on BL 12.3.2 was made possible by NSF Grant No. 0416243. NR 15 TC 14 Z9 14 U1 2 U2 46 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1862-6254 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD MAR PY 2011 VL 5 IS 3 BP 107 EP 109 DI 10.1002/pssr.201105011 PG 3 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 732IS UT WOS:000288178800007 ER PT J AU Cahn, RN Trilling, GH AF Cahn, Robert N. Trilling, George H. TI Gerson Goldhaber obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Cahn, Robert N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Trilling, George H.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Cahn, RN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD MAR PY 2011 VL 64 IS 3 BP 70 EP 71 DI 10.1063/1.3563827 PG 2 WC Physics, Multidisciplinary SC Physics GA 731MJ UT WOS:000288110800021 ER PT J AU Kim, HC Fthenakis, VM AF Kim, H. C. Fthenakis, V. M. TI Comparative life-cycle energy payback analysis of multi-junction a-SiGe and nanocrystalline/a-Si modules SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE nano; life-cycle analysis; primary energy; energy payback time; amorphous silicon ID SILICON SOLAR-CELLS; MICROCRYSTALLINE SILICON; LOW-COST; PERFORMANCE; DEPOSITION; NANOTECHNOLOGY; EFFICIENCY; OPTIMIZATION; CONSUMPTION; IMPACT AB Despite the publicity of nanotechnologies in high tech industries including the photovoltaic sector, their life-cycle energy use and related environmental impacts are understood only to a limited degree as their production is mostly immature. We investigated the life-cycle energy implications of amorphous silicon (a-Si) PV designs using a nanocrystalline silicon (nc-Si) bottom layer in the context of a comparative, prospective life-cycle analysis framework. Three R&D options using nc-Si bottom layer were evaluated and compared to the current triple-junction a-Si design, i.e., a-Si/a-SiGe/a-SiGe. The life-cycle energy demand to deposit nc-Si was estimated from parametric analyses of film thickness, deposition rate, precursor gas usage, and power for generating gas plasma. We found that extended deposition time and increased gas usages associated to the relatively high thickness of nc-Si lead to a larger primary energy demand for the nc-Si bottom layer designs, than the current triple-junction a-Si. Assuming an 8% conversion efficiency, the energy payback time of those R& D designs will be 0.7-0.9 years, close to that of currently commercial triple-junction a-Si design, 0.8 years. Future scenario analyses show that if nc-Si film is deposited at a higher rate (i.e., 2-3 nm/s), and at the same time the conversion efficiency reaches 10%, the energy-payback time could drop by 30%. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Fthenakis, V. M.] Brookhaven Natl Lab, Photovolta Environm Res Ctr, Upton, NY 11973 USA. [Kim, H. C.; Fthenakis, V. M.] Columbia Univ, Ctr Life Cycle Anal, New York, NY 10027 USA. RP Fthenakis, VM (reprint author), Brookhaven Natl Lab, Photovolta Environm Res Ctr, Upton, NY 11973 USA. EM vmf@bnl.gov OI Kim, Hyung Chul/0000-0002-0992-4547 FU EPA STAR program [RD-8333340]; USDOE [DE-AC02-76CH000016] FX We are grateful to Dr Subhendu Guha, United Solar, for data provided and his review of the paper, and to Dr Sergio Pacca at University of Sao Paulo for providing details of his previous work. This research is supported from the EPA STAR program under grant # RD-8333340 to CU (HCK), and from the USDOE Contract DE-AC02-76CH000016 to BNL (VMF). NR 65 TC 8 Z9 8 U1 1 U2 14 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1062-7995 J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD MAR PY 2011 VL 19 IS 2 BP 228 EP 239 DI 10.1002/pip.990 PG 12 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 731UQ UT WOS:000288135300015 ER PT J AU Johnson, OK Kaschner, GC Mason, TA Fullwood, DT Hansen, G AF Johnson, Oliver K. Kaschner, George C. Mason, Thomas A. Fullwood, David T. Hansen, George TI Optimization of nickel nanocomposite for large strain sensing applications SO SENSORS AND ACTUATORS A-PHYSICAL LA English DT Article DE Nanocomposite; Strain; Sensor; Piezoresistive; Nanostrand ID SENSOR; COMPOSITES; EPOXY AB A novel large strain sensor has been developed using a silicone/nickel nanostrand/nickel coated carbon fiber nanocomposite system. The effect of conductive filler volume fraction on the piezoresistive response of the nanocomposite sensor has been studied in order to determine the optimal composition for use in large strain/motion sensing applications. Electromechanical testing of various compositions revealed that optimum performance was achieved using 11 vol% nickel nanostrands with 2 vol% nickel coated carbon fiber in the silicone matrix. Initial results indicate that this nanocomposite is capable of sensing strains of over 40% elongation. (C) 2011 Elsevier B.V. All rights reserved. C1 [Johnson, Oliver K.; Fullwood, David T.] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA. [Kaschner, George C.; Mason, Thomas A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hansen, George] Conduct Composites LLC, Heber City, UT 84032 USA. RP Johnson, OK (reprint author), Brigham Young Univ, Dept Mech Engn, 435 Crabtree Bldg, Provo, UT 84602 USA. EM oliver.k.johnson@gmail.com RI Kaschner, George/H-4445-2013; OI Johnson, Oliver/0000-0001-7827-1271 FU Joint DoD/DOE Munitions Technology Development Program FX The authors are grateful to the Joint DoD/DOE Munitions Technology Development Program for support of this work. NR 22 TC 4 Z9 4 U1 0 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-4247 J9 SENSOR ACTUAT A-PHYS JI Sens. Actuator A-Phys. PD MAR PY 2011 VL 166 IS 1 BP 40 EP 47 DI 10.1016/j.sna.2010.12.022 PG 8 WC Engineering, Electrical & Electronic; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 734AA UT WOS:000288304400006 ER PT J AU Chim, N Habel, JE Johnston, JM Krieger, I Miallau, L Sankaranarayanan, R Morse, RP Bruning, J Swanson, S Kim, H Kim, CY Li, HY Bulloch, EM Payne, RJ Manos-Turvey, A Hung, LW Baker, EN Lott, JS James, MNG Terwilliger, TC Eisenberg, DS Sacchettini, JC Goulding, CW AF Chim, Nicholas Habel, Jeff E. Johnston, Jodie M. Krieger, Inna Miallau, Linda Sankaranarayanan, Ramasamy Morse, Robert P. Bruning, John Swanson, Stephanie Kim, Haelee Kim, Chang-Yub Li, Hongye Bulloch, Esther M. Payne, Richard J. Manos-Turvey, Alexandra Hung, Li-Wei Baker, Edward N. Lott, J. Shaun James, Michael N. G. Terwilliger, Thomas C. Eisenberg, David S. Sacchettini, James C. Goulding, Celia W. TI The TB Structural Genomics Consortium: A decade of progress SO TUBERCULOSIS LA English DT Review DE Mycobacterium tuberculosis; Protein structure; X-ray crystallography; Structural genomics; Drug discovery ID HEME-DEGRADING ENZYMES; MYCOBACTERIUM-TUBERCULOSIS UREASE; PROTEIN-PROTEIN INTERACTIONS; PARA-AMINOBENZOATE SYNTHESIS; SMALL-MOLECULE INHIBITORS; DISULFIDE BOND FORMATION; TOXIN-ANTITOXIN SYSTEMS; ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; AMINODEOXYCHORISMATE LYASE AB The TB Structural Genomics Consortium is a worldwide organization of collaborators whose mission is the comprehensive structural determination and analyses of Mycobacterium tuberculosis proteins to ultimately aid in tuberculosis diagnosis and treatment. Congruent to the overall vision, Consortium members have additionally established an integrated facilities core to streamline M. tuberculosis structural biology and developed bioinformatics resources for data mining. This review aims to share the latest Consortium developments with the TB community, including recent structures of proteins that play significant roles within M. tuberculosis. Atomic resolution details may unravel mechanistic insights and reveal unique and novel protein features, as well as important protein-protein and protein-ligand interactions, which ultimately lead to a better understanding of M. tuberculosis biology and may be exploited for rational, structure-based therapeutics design. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Chim, Nicholas; Morse, Robert P.; Goulding, Celia W.] Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. [Habel, Jeff E.; Hung, Li-Wei] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Johnston, Jodie M.; Bulloch, Esther M.; Baker, Edward N.; Lott, J. Shaun] Univ Auckland, Sch Biol Sci, Auckland 1142, New Zealand. [Johnston, Jodie M.; Bulloch, Esther M.; Baker, Edward N.; Lott, J. Shaun] Univ Auckland, Maurice Wilkins Ctr Mol Biodiscovery, Auckland 1142, New Zealand. [Krieger, Inna; Bruning, John; Swanson, Stephanie; Kim, Haelee; Sacchettini, James C.] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA. [Miallau, Linda; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Lab Struct Biol, Howard Hughes Med Inst, Inst Mol Biol, Los Angeles, CA 90095 USA. [Sankaranarayanan, Ramasamy; James, Michael N. G.] Univ Alberta, Grp Prot Struct & Funct, Dept Biochem, Sch Mol & Syst Med,Fac Med & Dent, Edmonton, AB T6G 2H7, Canada. [Kim, Chang-Yub; Hung, Li-Wei; Terwilliger, Thomas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Li, Hongye] Texas A&M Univ, Inst Biosci & Technol, Houston, TX 77030 USA. [Payne, Richard J.; Manos-Turvey, Alexandra] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia. RP Goulding, CW (reprint author), Univ Calif Irvine, Dept Mol Biol & Biochem, Irvine, CA 92697 USA. EM celia.goulding@uci.edu RI Miallau, linda/G-9804-2011; Terwilliger, Thomas/K-4109-2012; OI Terwilliger, Thomas/0000-0001-6384-0320; Kim, Chang-Yub/0000-0001-9353-5909; Hung, Li-Wei/0000-0001-6690-8458; Lott, Shaun/0000-0003-3660-452X FU NIH/NIAID [PO1AIO68135]; Robert A. Welch Foundation [A-0015]; NIH FX The TBSGC is supported by NIH/NIAID grant number PO1AIO68135 (J.C.S.) The TAMU research has been supported by Robert A. Welch Foundation grant A-0015 (J.C.S) and the UCI research has been supported by NIH. The UCLA work has been supported by NIH. NR 152 TC 22 Z9 23 U1 1 U2 9 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 1472-9792 J9 TUBERCULOSIS JI Tuberculosis PD MAR PY 2011 VL 91 IS 2 BP 155 EP 172 DI 10.1016/j.tube.2010.11.009 PG 18 WC Immunology; Microbiology; Respiratory System SC Immunology; Microbiology; Respiratory System GA 732EA UT WOS:000288166300007 PM 21247804 ER PT J AU Brzezinski, K Walejko, P Baj, A Witkowski, S Dauter, Z AF Brzezinski, Krzysztof Walejko, Piotr Baj, Aneta Witkowski, Stanislaw Dauter, Zbigniew TI 2,2,5,7,8-Pentamethylchroman-6-yl 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranoside from synchrotron data SO ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE LA English DT Article ID VITAMIN-E; ALPHA-TOCOPHEROL; ANTIOXIDANT AB The crystal structure of the title compound, C28H38O11, solved and refined against synchrotron diffraction data, contains two formula units in the asymmetric unit. In both molecules, the dihydropyran ring along with its methyl substituents is disordered and adopts two alternative half-chair conformations. The occupancy of the major conformers of the two molecules refined to 0.858 (5) and 0.523 (5). C1 [Brzezinski, Krzysztof; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab,Biosci Div, Argonne, IL 60439 USA. [Walejko, Piotr; Baj, Aneta; Witkowski, Stanislaw] Univ Bialystok, Inst Chem, PL-15443 Bialystok, Poland. RP Brzezinski, K (reprint author), NCI, Synchrotron Radiat Res Sect, MCL, Argonne Natl Lab,Biosci Div, Bldg 202, Argonne, IL 60439 USA. EM kbrzezinski@anl.gov FU NIH, National Cancer Institute, Center for Cancer Research; US Department of Energy [W-31-109-Eng-38] FX This work was in part supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. X-ray data were collected at the NECAT 24ID-C beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy under contract No. W-31-109-Eng-38. NR 9 TC 1 Z9 1 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1600-5368 J9 ACTA CRYSTALLOGR E JI Acta Crystallogr. Sect. E.-Struct Rep. Online PD MAR PY 2011 VL 67 BP O718 EP U2631 DI 10.1107/S160053681100626X PN 3 PG 21 WC Crystallography SC Crystallography GA 727RX UT WOS:000287820000233 PM 21522460 ER PT J AU Howard, HP Cheng, J Vianco, PT Li, JCM AF Howard, H. P. Cheng, J. Vianco, P. T. Li, J. C. M. TI Interface flow mechanism for tin whisker growth SO ACTA MATERIALIA LA English DT Article DE Crystal; Growth; Whiskers; Coatings; Interfaces ID ELECTRON-MICROSCOPY; METAL WHISKERS; FILMS AB Tin coatings, widely used in electronics, are susceptible to the spontaneous eruption of fine metal filaments or "whiskers". Tin whiskers are a serious reliability issue in microelectronics, as they can cause short circuits and device failure. While it is generally accepted that whiskers grow to relieve compressive stresses, the specific mechanism for whisker formation is yet unknown. Data are presented to support an interface-transport mechanism for whisker nucleation and growth. This mechanism, involving the formation of a viscous layer at the interface between substrate and coating, could explain the extremely rapid growth of whiskers that has been observed experimentally. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Howard, H. P.; Li, J. C. M.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Cheng, J.; Li, J. C. M.] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA. [Vianco, P. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, JCM (reprint author), Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. EM li@me.rochester.edu FU Sandia National Laboratories FX Financial support for this work from Sandia National Laboratories through Dr. Paul Vianco is greatly appreciated. NR 33 TC 12 Z9 13 U1 3 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2011 VL 59 IS 5 BP 1957 EP 1963 DI 10.1016/j.actamat.2010.11.061 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 727CP UT WOS:000287775400010 ER PT J AU Phani, PS Johanns, KE Duscher, G Gali, A George, EP Pharr, GM AF Phani, P. Sudharshan Johanns, K. E. Duscher, G. Gali, A. George, E. P. Pharr, G. M. TI Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers SO ACTA MATERIALIA LA English DT Article DE Scanning transmission electron microscopy; Dislocation density; Crystal plasticity; Strength; NiAl-Mo composite ID UNIAXIAL COMPRESSION; SINGLE-CRYSTAL; MOLYBDENUM; PLASTICITY; PILLARS; MICROPILLARS; STRENGTH; SCALE; MICROSTRUCTURE; DEFORMATION AB Compression testing of micro-pillars has recently been of great interest to the small-scale mechanics community. Previous compression tests on single crystal Mo alloy micro-pillars produced by directional solidification of eutectic alloys showed that as-grown pillars yield at strengths close to the theoretical strength while pre-strained pillars yield at considerably lower stresses. In addition, the flow behavior changes from stochastic to deterministic with increasing pre-strain. In order to gain a microstructural insight into this behavior, an aberration corrected scanning transmission electron microscope was used to study the defect structures in as-grown and pre-strained single crystal Mo alloy fibers. The as-grown fibers were found to be defect free over large lengths while the highly pre-strained (16%) fibers had high defect densities that were uniform throughout. Interestingly, the fibers with intermediate pre-strain (4%) exhibited an inhomogeneous defect distribution. The observed defect structures and their distributions are correlated with the previously reported stress strain behavior. Some of the mechanistic interpretations of Bei et al. are examined in the light of new microstructural observations. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Phani, P. Sudharshan; Johanns, K. E.; Duscher, G.; Gali, A.; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Duscher, G.; Gali, A.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu RI Duscher, Gerd/G-1730-2014; George, Easo/L-5434-2014; OI Duscher, Gerd/0000-0002-2039-548X; Gali, Adam/0000-0002-3339-5470 FU US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division (materials synthesis) and the Center for Defect Physics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (materials characterization). NR 26 TC 26 Z9 26 U1 0 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2011 VL 59 IS 5 BP 2172 EP 2179 DI 10.1016/j.actamat.2010.12.018 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 727CP UT WOS:000287775400031 ER PT J AU Alvarez, MAV Santisteban, JR Domizzi, G Almer, J AF Vicente Alvarez, M. A. Santisteban, J. R. Domizzi, G. Almer, J. TI Phase and texture analysis of a hydride blister in a Zr-2.5%Nb tube by synchrotron X-ray diffraction SO ACTA MATERIALIA LA English DT Article DE Zr-2.5%Nb tube; Hydride blister; Texture; Residual stress ID ZIRCONIUM HYDRIDES; PRECIPITATION; ZIRCALOY-2; FRACTURE AB This paper presents a detailed phase and texture study within and around a hydride blister grown on the surface of a Zr-2.5%Nb pressure tube. The analysis is based on synchrotron X-ray diffraction experiments using an 80 keV photon beam and a high-speed area detector placed in transmission geometry. It was found that the blister is composed of two main phases, alpha-Zr and delta-ZrH, with a composition which changes locally across the blister. No location within the blister presents pure delta zirconium hydride, with a maximum of 80% for the volume fraction of delta hydride at the center of the blister. The texture observed for both phases in the original pressure tube remains essentially unaltered across the hydride blister. A detailed analysis of this texture using well-known parent precipitate relationships shows that some selective precipitation occurs at alpha-Zr grains with their c-axis under a tensile stress, and on grains with grain boundaries favorably aligned for hydride nucleation. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Vicente Alvarez, M. A.; Santisteban, J. R.] Ctr Atom Bariloche, Lab Fis Neutrones & Reactores, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Domizzi, G.] Ctr Atom Consituyentes, CNEA, RA-1429 Buenos Aires, DF, Argentina. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Alvarez, MAV (reprint author), Ctr Atom Bariloche, Lab Fis Neutrones & Reactores, Bustillo Km 9-5, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM m.a.vicente@cab.cnea.gov.ar FU CONICET, Argentina [Res 1161/07]; NSERC; National Science Foundation for the Canadian and American partners; US Department of Energy [DE-AC02-06CH11357] FX The authors wish to thank A. Motta, K. Colas, M.R. Daymond and M. Kerr for experimental help and fruitful discussions. This research was funded by a Pan-American Collaboration Program funded by CONICET, Argentina under Res 1161/07, with corresponding funding from NSERC and National Science Foundation for the Canadian and American partners. Use of the Advanced Photon Source was supported by the US Department of Energy, under Contract No. DE-AC02-06CH11357. NR 36 TC 17 Z9 17 U1 1 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD MAR PY 2011 VL 59 IS 5 BP 2210 EP 2220 DI 10.1016/j.actamat.2010.12.024 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 727CP UT WOS:000287775400035 ER PT J AU Chatterjee, S Del Negro, AS Edwards, MK Bryan, SA Kaval, N Pantelic, N Morris, LK Heineman, WR Seliskar, CJ AF Chatterjee, Sayandev Del Negro, Andrew S. Edwards, Matthew K. Bryan, Samuel A. Kaval, Necati Pantelic, Nebojsa Morris, Laura K. Heineman, William R. Seliskar, Carl J. TI Luminescence-Based Spectroelectrochemical Sensor for [Tc(dmpe)(3)](2+/+) (dmpe=1,2-bis(dimethylphosphino)ethane) within a Charge-Selective Polymer Film SO ANALYTICAL CHEMISTRY LA English DT Article ID DMPE = 1,2-BIS(DIMETHYLPHOSPHINO)ETHANE; SINGLE DEVICE; PERFLUOROSULFONATED IONOMER; MODIFIED ELECTRODES; VOLTAMMETRY; ELECTROCHEMISTRY; 2,2'-BIPYRIDINE; PERTECHNETATE; FERROCYANIDE; COMPLEXES AB A spectroelectrochemical sensor consisting of an indium tin oxide (ITO) optically transparent electrode (OTE) coated with a thin film of partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SSEBS) was developed for [Tc(dmpe)(3)](+) (dmpe = 1,2-bis(dimethylphosphino)ethane). [Tc(dmpe)(3)](+) was preconcentrated by ion-exchange into the SSEBS film after a 20 min exposure to aqueous [Tc(dmpe)(3)](+) solution, resulting in a 14-fold increase in cathodic peak current compared to a bare OTE. Colorless [Tc(dmpe)(3)](+) was reversibly oxidized to colored [Tc(dmpe)(3)](2+) by cyclic voltammetry. Detection of [Tc(dmpe)(3)](2+) was accomplished through emission spectroscopy by electrochemically oxidizing the complex from nonemissive [Tc(dmpe)(3)](+) to emissive [Tc(dmpe)(3)](+). The working principle of the sensor consisted of electrochemically cycling between nonemissive [Tc(dmpe)(3)](+) and emissive [Tc(dmpe)(3)](2+) and monitoring the modulated emission (lambda(exc) = 532 nm; lambda(em) = 660 nm). The sensor gave a linear response over the concentration range of 0.16-340.0 mu M of [Tc(dmpe)(3)](2+/+) in aqueous phase with a detection limit of 24 nM. C1 [Chatterjee, Sayandev; Del Negro, Andrew S.; Edwards, Matthew K.; Bryan, Samuel A.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Kaval, Necati; Pantelic, Nebojsa; Morris, Laura K.; Heineman, William R.; Seliskar, Carl J.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. RP Bryan, SA (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM sam.bryan@pnl.gov; william.heineman@uc.edu; carl.j.seliskar@uc.edu RI Bryan, Samuel/D-5457-2015; OI Bryan, Samuel/0000-0001-5664-3249; Chatterjee, Sayandev/0000-0003-2218-5635 FU Office of Science, BER [DE-FG02-07ER64353]; U.S. Department of Energy (DOE) [DE-FG0799ER62331]; DOE [DE-AC05-76RL01830] FX Support from the Office of Science, BER (Grant No. DE-FG02-07ER64353), and the Office of Environmental Management Sciences Program (Grant No. DE-FG0799ER62331) of the U.S. Department of Energy (DOE) is gratefully acknowledged. Part of this research was performed at EMSL, a national scientific user facility at PNNL managed by the Department of Energy's Office of Biological and Environmental Research. The Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 33 TC 11 Z9 11 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD MAR 1 PY 2011 VL 83 IS 5 BP 1766 EP 1772 DI 10.1021/ac1030368 PG 7 WC Chemistry, Analytical SC Chemistry GA 725ZQ UT WOS:000287685800040 PM 21294535 ER PT J AU Dover, N Barash, JR Hill, KK Detter, JC Arnon, SS AF Dover, N. Barash, J. R. Hill, K. K. Detter, J. C. Arnon, S. S. TI Novel Structural Elements within the Nonproteolytic Clostridium botulinum Type F Toxin Gene Cluster SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID POLYMERASE-SIGMA FACTORS; PROTEIN GENES; NEUROTOXIN; STRAINS; ARRANGEMENT; EXPRESSION; DIVERSITY; SUBTYPE; BOTR/A AB We sequenced for the first time the complete neurotoxin gene cluster of a nonproteolytic Clostridium botulinum type F. The neurotoxin gene cluster contained a novel gene arrangement that, compared to other C. botulinum neurotoxin gene clusters, lacked the regulatory botR gene and contained an intergenic is element between its orfX2 and orfX3 genes. C1 [Dover, N.; Barash, J. R.; Arnon, S. S.] Calif Dept Publ Hlth, Infant Botulism Treatment & Prevent Program, Richmond, CA 94804 USA. [Hill, K. K.; Detter, J. C.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Arnon, SS (reprint author), Calif Dept Publ Hlth, Infant Botulism Treatment & Prevent Program, 850 Marina Bay Pkwy,Room E361, Richmond, CA 94804 USA. EM stephen.arnon@cdph.ca.gov NR 17 TC 9 Z9 9 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2011 VL 77 IS 5 BP 1904 EP 1906 DI 10.1128/AEM.02422-10 PG 3 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 726DX UT WOS:000287700100049 PM 21183631 ER PT J AU Zhao, PH Zavarin, M Leif, RN Powell, BA Singleton, MJ Lindvall, RE Kersting, AB AF Zhao, Pihong Zavarin, Mavrik Leif, Roald N. Powell, Brian A. Singleton, Michael J. Lindvall, Rachel E. Kersting, Annie B. TI Mobilization of actinides by dissolved organic compounds at the Nevada Test Site SO APPLIED GEOCHEMISTRY LA English DT Article ID DIFFERENT OXIDATION-STATES; HUMIC-ACID; DISTRIBUTION COEFFICIENTS; FULVIC-ACID; SORPTION; COMPLEXATION; HEMATITE; URANIUM; PLUTONIUM; MIGRATION AB The effect of dissolved organic matter (DOM) on Am(III), Pu(IV), Np(V), and U(VI) sorption was investigated with natural water (pH similar to 8) and zeolitized tuff samples collected from the Rainier Mesa tunnel system, Nevada Test Site, where the USA detonated underground nuclear tests prior to 1992. Perched vadose zone water at Rainier Mesa has high levels of DOM as a result of microbial degradation of mining debris (diesel, wood, etc.). The Am and Pu sorption K(d)s were up to two orders of magnitude lower in water with high DOM (15-19 mg C/L) compared to the same water with DOM removed (<0.4 mg C/L) or in naturally low DOM (0.2 mg C/L) groundwater. In contrast, K(d)s of Np and U were less affected by DOM at these solution conditions. Uranium sorption decreased as a result of high dissolved inorganic C (DIG) resulting from microbial degradation of DOM. Thermodynamic model predictions, based on actinide-humic acid stability constants available in the literature, are in general agreement with measured K(d) data, correctly predicting the effects of DIG and DOM on actinide retardation. This agreement is encouraging to future modeling efforts and suggests that effects of DOM and DIG can be incorporated into reactive transport modeling predictions. The Am and Pu transport rates in Rainier Mesa tunnel waters will be substantially faster as a result of the elevated DOM levels. Low diffusion rates of actinide-DOM macromolecular complexes may focus Pu and Am transport into fractures and minimize retardation via matrix diffusion. The resulting transport behavior will affect actinide distribution patterns and associated risk estimates. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhao, Pihong; Zavarin, Mavrik; Kersting, Annie B.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94550 USA. [Zhao, Pihong; Zavarin, Mavrik; Leif, Roald N.; Singleton, Michael J.; Lindvall, Rachel E.; Kersting, Annie B.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Powell, Brian A.] Clemson Univ, Anderson, SC 29625 USA. RP Kersting, AB (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, POB 808, Livermore, CA 94550 USA. EM kersting1@llnl.gov RI Powell, Brian /C-7640-2011 OI Powell, Brian /0000-0003-0423-0180 FU National Nuclear Security Administration, Nevada Site Office; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Jerry Magner (USGS) and Margaret Townsend (NSTec) for assistance with the USGS core library, Mercury Nevada. This work was funded by the Underground Test Area Project, National Nuclear Security Administration, Nevada Site Office. Work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 51 TC 31 Z9 31 U1 4 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD MAR PY 2011 VL 26 IS 3 BP 308 EP 318 DI 10.1016/j.apgeochem.2010.12.004 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 729KQ UT WOS:000287948900006 ER PT J AU Field, RV Grigoriu, M AF Field, R. V., Jr. Grigoriu, M. TI A Poisson random field model for intermittent phenomena with application to laminar-turbulent transition and material microstructure SO APPLIED MATHEMATICAL MODELLING LA English DT Article DE Boundary layer transition; Intermittency; Material mechanics; Poisson random fields; Random vibration ID BOUNDARY-LAYER-TRANSITION; 2-PHASE MICROSTRUCTURES; NOISE AB The alternation of a physical system between two phases or states is referred to as intermittency. Examples of intermittent phenomena abound in applications and include the transition from laminar to turbulent flow over a flight vehicle and the presence of imperfections within material microstructure. It is shown that intermittent phenomena of this type can be modeled by two-state random fields with piecewise constant samples; we refer to the states of the random field as "off" and "on" or, equivalently, 0 and 1. These random fields can be calibrated to the available information, which consists of: (1) the marginal probability that the state of the system is "on"; and (2) the average number of fluctuations between states that occur within a bounded region. The proposed model is defined by a sequence of pulses of prescribed shape and unit magnitude, located at random (Poisson) points within a bounded domain. Properties of the model are discussed, and simple algorithms to generate samples of the random field are provided. Various applications are considered, including voids within material microstructure and the random vibration of a flight vehicle subjected to a transition from laminar to turbulent flow over its surface. (C) 2010 Elsevier Inc. All rights reserved. C1 [Field, R. V., Jr.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Grigoriu, M.] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. RP Field, RV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rvfield@sandia.gov; mdg12@cornell.edu OI Field, Richard/0000-0002-2765-7032 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 3 Z9 3 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0307-904X J9 APPL MATH MODEL JI Appl. Math. Model. PD MAR PY 2011 VL 35 IS 3 BP 1142 EP 1156 DI 10.1016/j.apm.2010.07.059 PG 15 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 701VL UT WOS:000285852100013 ER PT J AU Nilsson, AM Jonsson, A Jonsson, JC Roos, A AF Nilsson, Annica M. Jonsson, Andreas Jonsson, Jacob C. Roos, Arne TI Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser SO APPLIED OPTICS LA English DT Article ID REFLECTANCE AB For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved. (C) 2011 Optical Society of America C1 [Nilsson, Annica M.; Jonsson, Andreas; Roos, Arne] Uppsala Univ, Dept Engn Sci, SE-75121 Uppsala, Sweden. [Jonsson, Jacob C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Nilsson, AM (reprint author), Uppsala Univ, Dept Engn Sci, Box 534, SE-75121 Uppsala, Sweden. EM Annica.Nilsson@Angstrom.uu.se FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX The samples studied in this paper were distributed within the International Commission on Glass, Technical Committee 10. The authors thank Oliver Kappertz at Interpane for providing the diffusing material. The contributions from Jacob C. Jonsson were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. NR 12 TC 6 Z9 6 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD MAR 1 PY 2011 VL 50 IS 7 BP 999 EP 1006 DI 10.1364/AO.50.000999 PG 8 WC Optics SC Optics GA 728CN UT WOS:000287851800019 PM 21364723 ER PT J AU Huang, Z French, D Pao, HY Jovanovic, I AF Huang, Z. French, D. Pao, H. -Y. Jovanovic, I. TI Assessment of image resolution improvement by phase-sensitive optical parametric amplification SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID TO-NOISE RATIO AB Classical information theory can be used to quantify the resolution performance of optical imaging systems. When an optical parametric amplifier (OPA) operated as a phase-sensitive amplifier (PSA) in the transverse spatial domain is used for point source imaging, the angular resolution improvement can approach the de Broglie resolution (i.e. Heisenberg limit). In this paper, classical information theory is employed to quantify the signal-to-noise ratio (SNR) improvement for both an ideal and a realistic multimode PSA applied to the problem of sub-Rayleigh imaging. When only considering the noise originating from the detector, the SNR improvement is found to scale quadratically as a function of the PSA gain, in the limit of noise power comparable to signal power. Differences in performance of an ideal PSA and a realistic PSA are discussed. C1 [Huang, Z.; French, D.; Jovanovic, I.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Pao, H. -Y.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Jovanovic, I (reprint author), Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. EM ijovanovic@purdue.edu FU Defense Advanced Research Projects Agency (DARPA) [HR0011-08-1-0066] FX This work has been supported in part by the Defense Advanced Research Projects Agency (DARPA), Contract HR0011-08-1-0066. NR 14 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD MAR PY 2011 VL 102 IS 3 BP 607 EP 613 DI 10.1007/s00340-010-4101-z PG 7 WC Optics; Physics, Applied SC Optics; Physics GA 726SP UT WOS:000287746700024 ER PT J AU Abbasi, R Abdou, Y Abu-Zayyad, T Adams, J Aguilar, JA Ahlers, M Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Bay, R Alba, JLB Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Braun, J Buitink, S Carson, M Chirkin, D Christy, B Clem, J Clevermann, F Cohen, S Colnard, C Cowen, DF D'Agostino, MV Danninger, M Davis, JC De Clercq, C Demirors, L Depaepe, O Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dierckxsens, M Dreyer, J Dumm, JP Duvoort, MR Ehrlich, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feusels, T Filimonov, K Finley, C Foerster, MM Fox, BD Franckowiak, A Franke, R Gaisser, TK Gallagher, J Geisler, M Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Grant, D Griesel, T Gross, A Grullon, S Gurtner, M Ha, C Hallgren, A Halzen, F Han, K Hanson, K Helbing, K Herquet, P Hickford, S Hill, GC Hoffman, KD Homeier, A Hoshina, K Hubert, D Huelsnitz, W Hulss, JP Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobsen, J Japaridze, GS Johansson, H Joseph, JM Kampert, KH Kappes, A Karg, T Karle, A Kelley, JL Kemming, N Kenny, P Kiryluk, J Kislat, F Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Koskinen, DJ Kowalski, M Kowarik, T Krasberg, M Krings, T Kroll, G Kuehn, K Kuwabara, T Labare, M Lafebre, S Laihem, K Landsman, H Larson, MJ Lauer, R Lehmann, R Lunemann, J Madsen, J Majumdar, P Marotta, A Maruyama, R Mase, K Matis, HS Matusik, M Meagher, K Merck, M Meszaros, P Meures, T Middell, E Milke, N Miller, J Montaruli, T Morse, R Movit, SM Nahnhauer, R Nam, JW Naumann, U Niessen, P Nygren, DR Odrowski, S Olivas, A Olivo, M O'Murchadha, A Ono, M Panknin, S Paul, L de los Heros, CP Petrovic, J Piegsa, A Pieloth, D Porrata, R Posselt, J Price, PB Prikockis, M Przybylski, GT Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Rizzo, A Rodrigues, JP Roth, P Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Sander, HG Santander, M Sarkar, S Schatto, K Schlenstedt, S Schmidt, T Schukraft, A Schultes, A Schulz, O Schunck, M Seckel, D Semburg, B Seo, SH Sestayo, Y Seunarine, S Silvestri, A Singh, K Slipak, A Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stephens, G Stezelberger, T Stokstad, RG Stoyanov, S Strahler, EA Straszheim, T Sullivan, GW Swillens, Q Taavola, H Taboada, I Tamburro, A Tarasova, O Tepe, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Tosi, D Turcan, D van Eijndhoven, N Vandenbroucke, J Van Overloop, A van Santen, J Voge, M Voigt, B Walck, C Waldenmaier, T Wallraff, M Walter, M Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Wikstrom, G Williams, DR Wischnewski, R Wissing, H Wolf, M Woschnagg, K Xu, C Xu, XW Yodh, G Yoshida, S Zarzhitsky, P AF Abbasi, R. Abdou, Y. Abu-Zayyad, T. Adams, J. Aguilar, J. A. Ahlers, M. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Bay, R. Alba, J. L. Bazo Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K. -H. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Braun, J. Buitink, S. Carson, M. Chirkin, D. Christy, B. Clem, J. Clevermann, F. Cohen, S. Colnard, C. Cowen, D. F. D'Agostino, M. V. Danninger, M. Davis, J. C. De Clercq, C. Demiroers, L. Depaepe, O. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dierckxsens, M. Dreyer, J. Dumm, J. P. Duvoort, M. R. Ehrlich, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feusels, T. Filimonov, K. Finley, C. Foerster, M. M. Fox, B. D. Franckowiak, A. Franke, R. Gaisser, T. K. Gallagher, J. Geisler, M. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Grant, D. Griesel, T. Gross, A. Grullon, S. Gurtner, M. Ha, C. Hallgren, A. Halzen, F. Han, K. Hanson, K. Helbing, K. Herquet, P. Hickford, S. Hill, G. C. Hoffman, K. D. Homeier, A. Hoshina, K. Hubert, D. Huelsnitz, W. Huelss, J. -P. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobsen, J. Japaridze, G. S. Johansson, H. Joseph, J. M. Kampert, K. H. Kappes, A. Karg, T. Karle, A. Kelley, J. L. Kemming, N. Kenny, P. Kiryluk, J. Kislat, F. Klein, S. R. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Koskinen, D. J. Kowalski, M. Kowarik, T. Krasberg, M. Krings, T. Kroll, G. Kuehn, K. Kuwabara, T. Labare, M. Lafebre, S. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lehmann, R. Luenemann, J. Madsen, J. Majumdar, P. Marotta, A. Maruyama, R. Mase, K. Matis, H. S. Matusik, M. Meagher, K. Merck, M. Meszaros, P. Meures, T. Middell, E. Milke, N. Miller, J. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Nam, J. W. Naumann, U. Niessen, P. Nygren, D. R. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Ono, M. Panknin, S. Paul, L. de los Heros, C. Perez Petrovic, J. Piegsa, A. Pieloth, D. Porrata, R. Posselt, J. Price, P. B. Prikockis, M. Przybylski, G. T. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Rizzo, A. Rodrigues, J. P. Roth, P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Schlenstedt, S. Schmidt, T. Schukraft, A. Schultes, A. Schulz, O. Schunck, M. Seckel, D. Semburg, B. Seo, S. H. Sestayo, Y. Seunarine, S. Silvestri, A. Singh, K. Slipak, A. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stephens, G. Stezelberger, T. Stokstad, R. G. Stoyanov, S. Strahler, E. A. Straszheim, T. Sullivan, G. W. Swillens, Q. Taavola, H. Taboada, I. Tamburro, A. Tarasova, O. Tepe, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Tosi, D. Turcan, D. van Eijndhoven, N. Vandenbroucke, J. Van Overloop, A. van Santen, J. Voge, M. Voigt, B. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Wikstroem, G. Williams, D. R. Wischnewski, R. Wissing, H. Wolf, M. Woschnagg, K. Xu, C. Xu, X. W. Yodh, G. Yoshida, S. Zarzhitsky, P. CA IceCube Collaboration TI Constraints on high-energy neutrino emission from SN 2008D SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: individual: SN 2008D; neutrinos; astroparticle physics ID GAMMA-RAY BURST; ICECUBE DETECTOR; TRANSIENT 080109; MUON NEUTRINOS; SUPERNOVA; TELESCOPE; MODEL; JET AB SN 2008D, a core collapse supernova at a distance of 27 Mpc, was serendipitously discovered by the Swift satellite through an associated X-ray flash. Core collapse supernovae have been observed in association with long gamma-ray bursts and X-ray flashes and a physical connection is widely assumed. This connection could imply that some core collapse supernovae possess mildly relativistic jets in which high-energy neutrinos are produced through proton-proton collisions. The predicted neutrino spectra would be detectable by Cherenkov neutrino detectors like IceCube. A search for a neutrino signal in temporal and spatial correlation with the observed X-ray flash of SN 2008D was conducted using data taken in 2007-2008 with 22 strings of the IceCube detector. Events were selected based on a boosted decision tree classifier trained with simulated signal and experimental background data. The classifier was optimized to the position and a "soft jet" neutrino spectrum assumed for SN 2008D. Using three search windows placed around the X-ray peak, emission time scales from 100-10 000 s were probed. No events passing the cuts were observed in agreement with the signal expectation of 0.13 events. Upper limits on the muon neutrino flux from core collapse supernovae were derived for different emission time scales and the principal model parameters were constrained. While no meaningful limits can be given in the case of an isotropic neutrino emission, the parameter space for a jetted emission can be constrained. Future analyses with the full 86 string IceCube detector could detect up to similar to 100 events for a core-collapse supernova at 10 Mpc according to the soft jet model. C1 [Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hanson, K.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Kappes, A.; Karle, A.; Kelley, J. L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Montaruli, T.; Morse, R.; O'Murchadha, A.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Subat & Radiat Phys, B-9000 Ghent, Belgium. [Abu-Zayyad, T.; Madsen, J.; Spiczak, G. M.; Tamburro, A.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Adams, J.; Gross, A.; Han, K.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Ahlers, M.; Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Auffenberg, J.; Becker, K. -H.; Gurtner, M.; Helbing, K.; Kampert, K. H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Clem, J.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Barwick, S. W.; Silvestri, A.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bay, R.; D'Agostino, M. V.; Filimonov, K.; Gerhardt, L.; Kiryluk, J.; Klein, S. R.; Porrata, R.; Price, P. B.; Vandenbroucke, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alba, J. L. Bazo; Benabderrahmane, M. L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R.; Majumdar, P.; Middell, E.; Nahnhauer, R.; Schlenstedt, S.; Spiering, C.; Tarasova, O.; Tosi, D.; Voigt, B.; Walter, M.; Wischnewski, R.] DESY, D-15735 Zeuthen, Germany. [Beattie, K.; Buitink, S.; Gerhardt, L.; Goldschmidt, A.; Joseph, J. M.; Kiryluk, J.; Klein, S. R.; Matis, H. S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Kuehn, K.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Bechet, S.; Bertrand, D.; Dierckxsens, M.; Hanson, K.; Marotta, A.; Petrovic, J.; Swillens, Q.] Univ Libre Brussels, Fac Sci, B-1050 Brussels, Belgium. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Berley, D.; Blaufuss, E.; Christy, B.; Ehrlich, R.; Ellsworth, R. W.; Goodman, J. A.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Roth, P.; Schmidt, T.; Straszheim, T.; Sullivan, G. W.; Turcan, D.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Besson, D. Z.; Kenny, P.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Geisler, M.; Gluesenkamp, T.; Huelss, J. -P.; Krings, T.; Laihem, K.; Meures, T.; Nam, J. W.; Paul, L.; Schukraft, A.; Schunck, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wikstroem, G.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Bose, D.; De Clercq, C.; Depaepe, O.; Hubert, D.; Labare, M.; Rizzo, A.; Singh, K.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Botner, O.; Engdegard, O.; Hallgren, A.; Miller, J.; Olivo, M.; de los Heros, C. Perez; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Clevermann, F.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Cohen, S.; Demiroers, L.; Ribordy, M.] Ecole Polytech Fed Lausanne, High Energy Phys Lab, CH-1015 Lausanne, Switzerland. [Colnard, C.; Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.; Voge, M.; Wolf, M.] Max Planck Inst Kernphys, D-69177 Heidelberg, Germany. [Cowen, D. F.; DeYoung, T.; Foerster, M. M.; Fox, B. D.; Ha, C.; Koskinen, D. J.; Lafebre, S.; Larson, M. J.; Meszaros, P.; Prikockis, M.; Rutledge, D.; Slipak, A.; Stephens, G.; Toale, P. A.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Cowen, D. F.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Duvoort, M. R.] Univ Utrecht, SRON, Dept Phys & Astron, NL-3584 CC Utrecht, Netherlands. [Fadiran, O.; Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Grant, D.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Griesel, T.; Koepke, L.; Kowarik, T.; Kroll, G.; Luenemann, J.; Piegsa, A.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Herquet, P.; Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Ishihara, A.; Mase, K.; Ono, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Kemming, N.; Kolanoski, H.; Lehmann, R.; Waldenmaier, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Montaruli, T.] Univ Bari, I-70126 Bari, Italy. [Montaruli, T.] Sezione Ist Nazl Fis Nucl, Dipartimento Fis, I-70126 Bari, Italy. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Taboada, I.; Tepe, A.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Williams, D. R.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Kappes, A.] Univ Erlangen Nurnberg, Inst Phys, D-91058 Erlangen, Germany. RP Abbasi, R (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM mail@nickkemming.com RI Taavola, Henric/B-4497-2011; Wiebusch, Christopher/G-6490-2012; Beatty, James/D-9310-2011; Kowalski, Marek/G-5546-2012; Tamburro, Alessio/A-5703-2013; Hallgren, Allan/A-8963-2013; Botner, Olga/A-9110-2013; Tjus, Julia/G-8145-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Sarkar, Subir/G-5978-2011 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Perez de los Heros, Carlos/0000-0002-2084-5866; Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Hubert, Daan/0000-0002-4365-865X; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Wiebusch, Christopher/0000-0002-6418-3008; Beatty, James/0000-0003-0481-4952; Actis, Oxana/0000-0001-8851-3983; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Sarkar, Subir/0000-0002-3542-858X FU US National Science Foundation-Office of Polar Program; US National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; US Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); Swedish Research Council; Swedish Polar Research Secretariat; Knut and AliceWallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research (FNRSFWO); Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); the Netherlands Organisation for Scientific Research (NWO) FX We acknowledge the support from the following agencies: US National Science Foundation-Office of Polar Program, US National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, US Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Swedish Research Council, Swedish Polar Research Secretariat, and Knut and AliceWallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Germany; Fund for Scientific Research (FNRSFWO), Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); the Netherlands Organisation for Scientific Research (NWO); M. Ribordy acknowledges the support of the SNF (Switzerland); A. Kappes and A. Gro acknowledge support by the EU Marie Curie OIF Program; J. P. Rodrigues acknowledge support by the Capes Foundation, Ministry of Education of Brazil. NR 32 TC 4 Z9 4 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD MAR PY 2011 VL 527 AR A28 DI 10.1051/0004-6361/201015770 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 723CP UT WOS:000287484100043 ER PT J AU Kahn, C Urie, A AF Kahn, Colin Urie, Alistair TI Managing Multi-Connectivity for IP Services SO BELL LABS TECHNICAL JOURNAL LA English DT Article AB This paper introduces the concept and architecture for access network multi-connectivity (ANMC), an asset that can help to align service provider, application provider, and subscriber imperatives. ANMC can expose available access network and user device-specific information to applications, and thus allow wireless service providers to better manage their network, ensuring that the access option chosen for an application is matched to the needs of the application, given the constraints of the available access connections. Applications benefit from ANMC because with access network knowledge, they may improve the user experience by explicitly adapting their services according to access network constraints or intelligently stage the delivery of services to periods with favorable access connectivity. Since service delivery in the access network can be tailored individually to applications, new business relationships between access network providers and application providers are made possible with inter-system mobility and associated policy control exposed as an application enablement service. The mechanism ANMC uses to support this is intelligent presence, which builds upon techniques defined in 3rd Generation Partnership Project (3GPP) and IEEE 802.21 to support inter-system mobility. Intelligent presence extends the concept of presence from simple reachability, often via a transparent Session Initiation Protocol (SIP) protocol, to richer presence statement dependent on meeting application, service provider policy, network congestion, subscriber subscription, user activity and device state criteria for bearer access. (C) 2011 Alcatel-Lucent. C1 [Kahn, Colin] Alcatel Lucents Corp LTE Solut Org, Murray Hill, NJ USA. [Kahn, Colin] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA. [Urie, Alistair] Alcatel Lucents Corp, Adv Solut Architecture, LTE Solut Team, Velizy Villacoublay, France. [Urie, Alistair] Alcatel, Network Strategy Program, Paris, France. [Urie, Alistair] Alcatel, Standardizat Management Program, Paris, France. [Urie, Alistair] Alcatel, Mobile Syst Prod Strategy Program, Paris, France. [Urie, Alistair] Alcatel, Int Res Program, Paris, France. [Urie, Alistair] Alcatel, European RACE Programme GSM & UMTS Syst, Paris, France. NR 12 TC 2 Z9 2 U1 0 U2 1 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1089-7089 J9 BELL LABS TECH J JI Bell Labs Tech. J. PD MAR PY 2011 VL 15 IS 4 BP 45 EP 62 DI 10.1002/bltj.20471 PG 18 WC Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 727SN UT WOS:000287821900004 ER PT J AU Kantar, C Demiray, H Dogan, NM Dodge, CJ AF Kantar, Cetin Demiray, Hilal Dogan, Nazime Mercan Dodge, Cleveland J. TI Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution SO CHEMOSPHERE LA English DT Article DE Chromium; Discrete ligand model; Complexation; EPS; Speciation; Transport ID EXTRACELLULAR POLYMERIC SUBSTANCES; PSEUDOMONAS-FLUORESCENS; ACTIVATED SLUDGES; BACILLUS-SUBTILIS; BINDING-SITES; URONIC-ACIDS; PH; ADSORPTION; CADMIUM; LEAD AB Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kantar, Cetin; Demiray, Hilal] Mersin Univ, Fac Engn, Dept Environm Engn, Mersin, Turkey. [Dogan, Nazime Mercan] Pamukkale Univ, Fac Arts & Sci, Dept Biol, Denizli, Turkey. [Dodge, Cleveland J.] Brookhaven Natl Lab, Dept Environm Sci, Uptown, NY 11973 USA. RP Kantar, C (reprint author), Mersin Univ, Fac Engn, Dept Environm Engn, Mersin, Turkey. EM ckantar@mersin.edu.tr FU Scientific and Technical Research Council of Turkey (TUBITAK) [105Y272]; Mersin University [BAP-FBE CM (HD) 2008-2] FX The financial support for the present study was provided by the Scientific and Technical Research Council of Turkey (TUBITAK) (Project # 105Y272) and Mersin University (BAP-FBE CM (HD) 2008-2. The authors also thank the reviewers of the manuscript for their considerable time and thoughtfulness put into their reviews. NR 32 TC 17 Z9 18 U1 11 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD MAR PY 2011 VL 82 IS 10 BP 1489 EP 1495 DI 10.1016/j.chemosphere.2011.01.009 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 730ST UT WOS:000288055300020 PM 21272912 ER PT J AU Hoefler, T Rabenseifner, R Ritzdorf, H de Supinski, BR Thakur, R Traff, JL AF Hoefler, Torsten Rabenseifner, Rolf Ritzdorf, Hubert de Supinski, Bronis R. Thakur, Rajeev Traeff, Jesper Larsson TI The scalable process topology interface of MPI 2.2 SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE message passing interface; MPI; MPI 2.2; MPI forum; process topologies; process mapping; communication patterns; reordering ID SYSTEM MODELING FRAMEWORK; NETWORKS; ARCHITECTURE; TOOL AB The Message-passing Interface (MPI) standard provides basic means for adaptations of the mapping of MPI process ranks to processing elements to better match the communication characteristics of applications to the capabilities of the underlying systems. The MPI process topology mechanism enables the MPI implementation to rerank processes by creating a new communicator that reflects user-supplied information about the application communication pattern. With the newly released MPI 2.2 version of the MPI standard, the process topology mechanism has been enhanced with new interfaces for scalable and informative user-specification of communication patterns. Applications with relatively static communication patterns are encouraged to take advantage of the mechanism whenever convenient by specifying their communication pattern to the MPI library. Reference implementations of the new mechanism can be expected to be readily available (and come at essentially no cost), but non-trivial implementations pose challenging problems for the MPI implementer. This paper is first and foremost addressed to application programmers wanting to use the new process topology interfaces. It explains the use and the motivation for the enhanced interfaces and the advantages gained even with a straightforward implementation. For the MPI implementer, the paper summarizes the main issues in the efficient implementation of the interface and explains the optimization problems that need to be (approximately) solved by a good MPI library. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Traeff, Jesper Larsson] Univ Vienna, Dept Comp Sci, A-1090 Vienna, Austria. [Hoefler, Torsten] Univ Illinois, Urbana, IL 61801 USA. [Rabenseifner, Rolf] Univ Stuttgart, HLRS, D-70550 Stuttgart, Germany. [Ritzdorf, Hubert] NEC Deutschland GmbH, HPCE, D-40549 Dusseldorf, Germany. [de Supinski, Bronis R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Traff, JL (reprint author), Univ Vienna, Dept Comp Sci, Nordbergstr 15-3C, A-1090 Vienna, Austria. EM traff@par.univie.ac.at RI Octopus, TDDFT Code/E-2400-2011 FU Lilly Endowment; DOE FASTOS II [LAB 07-23]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported in part by the Lilly Endowment, DOE FASTOS II (LAB 07-23), and the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under contract DE-AC02-06CH11357. NR 38 TC 5 Z9 6 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD MAR PY 2011 VL 23 IS 4 BP 293 EP 310 DI 10.1002/cpe.1643 PG 18 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 729HR UT WOS:000287939800001 ER PT J AU Liu, J Conry, TE Song, XY Doeff, MM Richardson, TJ AF Liu, Jun Conry, Thomas E. Song, Xiangyun Doeff, Marca M. Richardson, Thomas J. TI Nanoporous spherical LiFePO4 for high performance cathodes SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LITHIUM-ION BATTERIES; ULTRASONIC SPRAY-PYROLYSIS; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; POSITIVE-ELECTRODE; CARBON COATINGS; COMPOSITES; CHALLENGES; POWDERS; IMPACT AB Micron sized, three dimensional (3D) nanoporous spherical LiFePO4/C synthesized by spray pyrolysis shows excellent cyclability and superior rate capability. The 3D conductive carbon coating and interconnected pore networks facilitate the kinetics of both electron transport and lithium ion diffusion within the particles. C1 [Liu, Jun; Song, Xiangyun; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Conry, Thomas E.; Doeff, Marca M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MMDoeff@lbl.gov; TJRichardson@lbl.gov RI Doeff, Marca/G-6722-2013 OI Doeff, Marca/0000-0002-2148-8047 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 33 TC 91 Z9 93 U1 6 U2 80 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2011 VL 4 IS 3 BP 885 EP 888 DI 10.1039/c0ee00662a PG 4 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 729CE UT WOS:000287924700032 ER PT J AU Alexandrov, GA Ames, D Bellocchi, G Bruen, M Crout, N Erechtchoukova, M Hildebrandt, A Hoffman, F Jackisch, C Khaiter, P Mannina, G Matsunaga, T Purucker, ST Rivington, M Samaniego, L AF Alexandrov, G. A. Ames, D. Bellocchi, G. Bruen, M. Crout, N. Erechtchoukova, M. Hildebrandt, A. Hoffman, F. Jackisch, C. Khaiter, P. Mannina, G. Matsunaga, T. Purucker, S. T. Rivington, M. Samaniego, L. TI Technical assessment and evaluation of environmental models and software: Letter to the Editor SO ENVIRONMENTAL MODELLING & SOFTWARE LA English DT Article DE Model evaluation; Model credibility; Software verification; Environmental assessment ID 10 ITERATIVE STEPS; DECISION-SUPPORT; ECOLOGICAL MODELS; WATER-BALANCE; UNCERTAINTY; VALIDATION; QUANTIFICATION; SIMULATION; CRITERIA; SCIENCE AB This letter details the collective views of a number of independent researchers on the technical assessment and evaluation of environmental models and software. The purpose is to stimulate debate and initiate action that leads to an improved quality of model development and evaluation, so increasing the capacity for models to have positive outcomes from their use. As such, we emphasize the relationship between the model evaluation process and credibility with stakeholders (including funding agencies) with a view to ensure continued support for modelling efforts. Many journals, including EM&S, publish the results of environmental modelling studies and must judge the work and the submitted papers based solely on the material that the authors have chosen to present and on how they present it. There is considerable variation in how this is done with the consequent risk of considerable variation in the quality and usefulness of the resulting publication. Part of the problem is that the review process is reactive, responding to the submitted manuscript. In this letter, we attempt to be proactive and give guidelines for researchers, authors and reviewers as to what constitutes best practice in presenting environmental modelling results. This is a unique contribution to the organisation and practice of model-based research and the communication of its results that will benefit the entire environmental modelling community. For a start, our view is that the community of environmental modellers should have a common vision of minimum standards that an environmental model must meet. A common vision of what a good model should be is expressed in various guidelines on Good Modelling Practice. The guidelines prompt modellers to codify their practice and to be more rigorous in their model testing. Our statement within this letter deals with another aspect of the issue it prompts professional journals to codify the peer-review process. Introducing a more formalized approach to peer-review may discourage reviewers from accepting invitations to review given the additional time and labour requirements. The burden of proving model credibility is thus shifted to the authors. Here we discuss how to reduce this burden by selecting realistic evaluation criteria and conclude by advocating the use of standardized evaluation tools as this is a key issue that needs to be tackled. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Alexandrov, G. A.; Matsunaga, T.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Ames, D.] Idaho State Univ, Dept Geosci, Pocatello, ID 83209 USA. [Bellocchi, G.] French Natl Inst Agr Res, Grassland Ecosyst Res Unit, Clermont Ferrand, France. [Bruen, M.] Univ Coll Dublin, UCD Ctr Water Resources Res, Dublin, Ireland. [Crout, N.] Univ Nottingham, Sch Biosci, Nottingham NG7 2RD, England. [Erechtchoukova, M.; Khaiter, P.] York Univ, Toronto, ON M3J 2R7, Canada. [Hildebrandt, A.; Samaniego, L.] UFZ Helmholtz Ctr Environm Res, Leipzig, Germany. [Hoffman, F.] Oak Ridge Natl Lab, Computat Earth Sci Grp, Oak Ridge, TN 37831 USA. [Jackisch, C.] Tech Univ Munich, Munich, Germany. [Mannina, G.] Univ Palermo, Dept Hydraul Engn & Environm Applicat, I-90133 Palermo, Italy. [Purucker, S. T.] US EPA, Athens, GA USA. [Rivington, M.] Macaulay Land Use Res Inst, Aberdeen AB15 8QH, Scotland. RP Alexandrov, GA (reprint author), Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. EM g.alexandrov@nies.go.jp RI Mannina, Giorgio/A-7172-2010; Alexandrov, Georgii/F-9410-2011; Hildebrandt, Anke/J-7062-2012; Samaniego, Luis/G-8651-2011; Crout, Neil /A-1369-2011; Hoffman, Forrest/B-8667-2012; OI Mannina, Giorgio/0000-0002-5405-7147; Alexandrov, Georgii/0000-0002-2522-5690; Hildebrandt, Anke/0000-0001-8643-1634; Samaniego, Luis/0000-0002-8449-4428; Hoffman, Forrest/0000-0001-5802-4134; Ames, Daniel P./0000-0003-2606-2579; Bruen, Michael/0000-0002-5614-9432 NR 71 TC 40 Z9 40 U1 3 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1364-8152 J9 ENVIRON MODELL SOFTW JI Environ. Modell. Softw. PD MAR PY 2011 VL 26 IS 3 BP 328 EP 336 DI 10.1016/j.envsoft.2010.08.004 PG 9 WC Computer Science, Interdisciplinary Applications; Engineering, Environmental; Environmental Sciences SC Computer Science; Engineering; Environmental Sciences & Ecology GA 707KH UT WOS:000286284700010 ER PT J AU He, GZ Pan, G Zhang, MY Waychunas, GA AF He, Guangzhi Pan, Gang Zhang, Meiyi Waychunas, Glenn A. TI Coordination Structure of Adsorbed Zn(II) at Water-TiO2 Interfaces SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ZN SORPTION MECHANISMS; SURFACE-COMPLEXATION; AQUEOUS ZN(II); PRECIPITATE GEOMETRY; EXAFS SPECTROSCOPY; ADSORPTION; TIO2; ZINC; FERRIHYDRITE AB The local structure of aqueous metal ions on solid surfaces is central to understanding many chemical and biological processes in soil and aquatic environments. Here, the local coordination structure of hydrated Zn(II) at water-TiO2 interfaces was identified by extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) spectroscopy combined with density functional theory (DFT) calculations. A nonintegral coordination number of average similar to 4.5 O atoms around a central Zn atom was obtained by EXAFS analysis. DFT calculations indicated that this coordination structure was consistent with the mixture of 4-coordinated bidentate binuclear (BB) and 5-coordinated bidentate mononuclear (BM) metastable equilibrium adsorption (MEA) states. The BB complex has 4-coordinated Zn, while the monodentate mononuclear (MM) complex has 6-coordinated Zn, and a 5-coordinated adsorbed Zn was found in the BM adsorption mode. DFT calculated energies showed that the lower-coordinated BB and BM modes were thermodynamically more favorable than the higher coordinated MM MEA state. The experimentally observed XANES fingerprinting provided additional direct spectral evidence of 4- and 5-coordinated Zn-O modes. The overall spectral and computational evidence indicated that Zn(II) can occur in 4-, 5-, and 6-oxygen coordinated sites in different MEA states due to steric hindrance affects, and the coexistence of different MEA states formed the multiple coordination environments. C1 [He, Guangzhi; Pan, Gang; Zhang, Meiyi] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Environm Aquat Chem, Beijing 100085, Peoples R China. [Waychunas, Glenn A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Pan, G (reprint author), Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Environm Aquat Chem, Beijing 100085, Peoples R China. EM gpan@rcees.ac.cn RI Zhang, Meiyi/B-7775-2013; hui, wanghui/C-5671-2008 FU NNSF of China [20777090, 21007083, 20921063]; Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy [DE-AC0205CH11231] FX The study was supported by NNSF of China (20777090, 21007083, 20921063). We thank the Beijing Synchrotron Radiation Facility (BSRF, China) for providing the beam time and Shuang Gao, Tiandou Hu, Ziyu Wu, and Yaning Xie for valuable assistance in XAFS experiment. G.A.W. is supported by the Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy under Contract DE-AC0205CH11231. NR 39 TC 13 Z9 13 U1 1 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2011 VL 45 IS 5 BP 1873 EP 1879 DI 10.1021/es1035283 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 725HZ UT WOS:000287637100021 PM 21280667 ER PT J AU Dahn, R Vespa, M Tyliszczak, T Wieland, E Shuh, DK AF Daehn, Rainer Vespa, Marika Tyliszczak, Tolek Wieland, Erich Shuh, David K. TI Soft X-ray Spectromicroscopy of Cobalt Uptake by Cement SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; ABSORPTION FINE-STRUCTURE; MICROBIAL BIOFILMS; CLUSTER-ANALYSIS; NI UPTAKE; SPECTROSCOPY; SPECIATION; SYSTEMS; PASTE; IDENTIFICATION AB Scanning transmission X-ray microscopy was used to investigate the speciation and spatial distribution of Co in a Co(II)-doped cement matrix. The aim of this study was to improve the understanding of the heavy metals immobilization process in cement on the molecular level. The Co-doped cement samples hydrated for 30 days with a Co loading of 5000 mg/kg were prepared under normal atmosphere to simulate conditions used for cement-stabilized waste packages. Co 2p(3/2), absorption edge signals were used to determine the spatial distributions of the metal species in the Co(H)-doped cement. The speciation of Co was determined by collecting near-edge X-ray absorption fine structure spectra. On the basis of the shape of the absorption spectra, it was found that Co(II) is partly oxidized to Co(III). The correlation, respectively the anticorrelation with elements such as Al, Si, and Mn, show that Co(II) is predominantly present as Co-hydroxide-like phase as well as Co-phyllosilicate, whereas Co(III) tends to be incorporated only into a CoOOH-like phase. Thus, this study suggests that thermodynamic calculations of Co(II)-immobilization by cementitious systems should take into consideration not only the solubility of Co(II)-hydroxides but also Co(lII) phases. C1 [Daehn, Rainer; Vespa, Marika; Wieland, Erich] Paul Scherrer Inst, Lab Waste Management, CH-5232 Villigen, Switzerland. [Daehn, Rainer; Shuh, David K.] Lawrence Berkeley Natl Lab, Actinide Chem Grp, Div Chem Sci, Berkeley, CA 94720 USA. [Tyliszczak, Tolek] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. RP Dahn, R (reprint author), Paul Scherrer Inst, Lab Waste Management, CH-5232 Villigen, Switzerland. EM rainer.daehn@psi.ch RI Daehn, Rainer/I-2406-2016 OI Daehn, Rainer/0000-0001-7629-8470 FU Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The work at the ALS and ALS BL 11.0.2 is supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences, of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 38 TC 3 Z9 3 U1 3 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2011 VL 45 IS 5 BP 2021 EP 2027 DI 10.1021/es103630t PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 725HZ UT WOS:000287637100041 PM 21265566 ER PT J AU Buchmueller, O Cavanaugh, R Colling, D De Roeck, A Dolan, MJ Ellis, JR Flacher, H Heinemeyer, S Olive, KA Rogerson, S Ronga, FJ Weiglein, G AF Buchmueller, O. Cavanaugh, R. Colling, D. De Roeck, A. Dolan, M. J. Ellis, J. R. Flaecher, H. Heinemeyer, S. Olive, K. A. Rogerson, S. Ronga, F. J. Weiglein, G. TI Frequentist analysis of the parameter space of minimal supergravity SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SUPERSYMMETRIC STANDARD MODEL; NEUTRALINO DARK-MATTER; LIGHTEST HIGGS-BOSON; ONE-LOOP CORRECTIONS; LARGE TAN-BETA; GRAND UNIFICATION; RELIC DENSITY; RADIATIVE-CORRECTIONS; SYMMETRY-BREAKING; COUPLING-CONSTANTS AB We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A(0) = B(0) + m(0), and the gravitino mass is fixed by m(3/2) = m(0). We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M(h), B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m(3/2) and m(0) similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m(3/2) and m(0) than in the VCMSSM, and one with large m(0) but small m(3/2). We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere. C1 [Buchmueller, O.; Colling, D.; Rogerson, S.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, London SW7 2AZ, England. [Cavanaugh, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Cavanaugh, R.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [De Roeck, A.; Ellis, J. R.] CERN, CH-1211 Geneva 23, Switzerland. [De Roeck, A.] Univ Instelling Antwerp, B-2610 Antwerp, Belgium. [Dolan, M. J.] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Ellis, J. R.] Kings Coll London, Dept Phys, Theoret Phys & Cosmol Grp, London WC2R 2LS, England. [Flaecher, H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Heinemeyer, S.] Inst Fis Cantabria CSIC UC, Santander 39005, Spain. [Olive, K. A.] Univ Minnesota, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 USA. [Ronga, F. J.] Swiss Fed Inst Technol, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Weiglein, G.] DESY, D-22607 Hamburg, Germany. RP Buchmueller, O (reprint author), Univ London Imperial Coll Sci Technol & Med, Blackett Lab, High Energy Phys Grp, Prince Consort Rd, London SW7 2AZ, England. EM olive@physics.umn.edu RI Ellis, John/J-2222-2012; OI Ellis, John/0000-0002-7399-0813; Olive, Keith/0000-0001-7201-5998; DOLAN, MATTHEW/0000-0003-3420-8718 FU European Community [MRTN-CT-2006-035505]; DOE at the University of Minnesota [DE-FG02-94ER-40823]; Spanish MICINN [MultiDark CSD2009-00064] FX We thank Gino Isidori for valuable discussions. Work supported in part by the European Community's Marie-Curie Research Training Network under contract MRTN-CT-2006-035505 'Tools and Precision Calculations for Physics Discoveries at Colliders'. The work of KAO was supported in part by DOE grant DE-FG02-94ER-40823 at the University of Minnesota. The work of S.H. was supported by the Spanish MICINN's Consolider-Ingenio 2010 Programme under grant MultiDark CSD2009-00064. NR 120 TC 33 Z9 33 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2011 VL 71 IS 3 AR 1583 DI 10.1140/epjc/s10052-011-1583-8 PG 14 WC Physics, Particles & Fields SC Physics GA 728CC UT WOS:000287850600003 ER PT J AU Zelinski, MB Murphy, MK Lawson, MS Jurisicova, A Pau, KYF Toscano, NP Jacob, DS Fanton, JK Casper, RF Dertinger, SD Tilly, JL AF Zelinski, Mary B. Murphy, Mark K. Lawson, Maralee S. Jurisicova, Andrea Pau, K. Y. Francis Toscano, Natalia P. Jacob, Darla S. Fanton, John K. Casper, Robert F. Dertinger, Stephen D. Tilly, Jonathan L. TI In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates SO FERTILITY AND STERILITY LA English DT Article DE Fertility preservation; cancer; ovary; oocyte; monkey; human; sphingosine-1-phosphate; FTY720 ID CANCER-PATIENTS; MACACA-MULATTA; RHESUS-MONKEYS; TISSUE CRYOPRESERVATION; FOLLICLE NUMBER; CHEMOTHERAPY; DAMAGE; APOPTOSIS; SPHINGOSINE-1-PHOSPHATE; RADIOSENSITIVITY AB Objective: To determine whether sphingosine-1-phosphate (S1P), or the S1P mimetic FTY720 shields ovaries of adult female rhesus monkeys from damage caused by 15 Gy of targeted radiotherapy, allowing for the retention of long-term fertility, and to evaluate whether S1P protects human ovarian tissue (xenografted into mice) from radiation-induced damage. Design: Research animal study. Setting: Research laboratory and teaching hospital. Patient(s): Adult female rhesus macaques (8-14 years of age; n = 21) and two women (24 and 27 years of age) undergoing gynecologic surgery for benign reasons, after informed consent and approval. Intervention(s): None. Main Outcome Measure(s): Ovarian histologic analysis, ovarian reserve measurements, and fertility in mating trials. Result(s): Rapid ovarian failure was induced in female macaques by ovarian application of 15 Gy of radiation. Females given S1P or FTY720 by direct intraovarian cannulation for 1 week before ovarian irradiation rapidly resumed menstrual cycles because of maintenance of follicles, with greater beneficial effects achieved using FTY720. Monkeys given the S1P mimetic before ovarian irradiation also became pregnant in mating trials. Offspring conceived and delivered by radioprotected females developed normally and showed no evidence of genomic instability, as measured by micronucleus frequency in reticulocytes. Adult human ovarian cortical tissue xenografted into mice also exhibited a reduction in radiation-induced primordial oocyte depletion when preexposed to S1P. Conclusion(s): S1P and its analogs hold clinical promise as therapeutic agents to preserve ovarian function and fertility in female cancer patients exposed to cytotoxic treatments. (Fertil Steril (R) 2011;95:1440-5. (C)2011 by American Society for Reproductive Medicine.) C1 [Tilly, Jonathan L.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Vincent Dept Obstet & Gynecol,Vincent Ctr Reprod, Boston, MA 02114 USA. [Zelinski, Mary B.; Lawson, Maralee S.; Pau, K. Y. Francis; Toscano, Natalia P.] Oregon Hlth & Sci Univ, Oregon Natl Primate Res Ctr, Div Reprod Sci, Beaverton, OR USA. [Murphy, Mark K.] Battelle Pacific NW Div, Richland, WA USA. [Jurisicova, Andrea; Casper, Robert F.] Univ Toronto, Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Dept Obstet & Gynecol, Toronto, ON M5G 1X5, Canada. [Jurisicova, Andrea; Casper, Robert F.] Univ Toronto, Mt Sinai Hosp, Samuel Lunenfeld Res Inst, Dept Physiol, Toronto, ON M5G 1X5, Canada. [Jacob, Darla S.; Fanton, John K.] Oregon Hlth & Sci Univ, Oregon Natl Primate Res Ctr, Div Anim Sci, Beaverton, OR USA. [Dertinger, Stephen D.] Litron Labs, Rochester, NY USA. RP Tilly, JL (reprint author), Harvard Univ, Massachusetts Gen Hosp, Sch Med, Vincent Dept Obstet & Gynecol,Vincent Ctr Reprod, THR-901B,55 Fruit St, Boston, MA 02114 USA. EM jtilly@partners.org RI Jurisicova, Andrea/E-4580-2013; Casper, Robert/E-3775-2013 OI Casper, Robert/0000-0002-6249-462X FU United States National Institutes of Health [R01-HD45787, U54-HD18185, NCRR-RR00163]; Canada Research Chair Program; Canadian Institutes of Health Research [MOP 14058, MOP 84328]; Vincent Memorial Research Funds FX Supported by the United States National Institutes of Health (R01-HD45787, U54-HD18185, NCRR-RR00163), Canada Research Chair Program, Canadian Institutes of Health Research (operating grants MOP 14058 and MOP 84328), and Vincent Memorial Research Funds. NR 42 TC 30 Z9 32 U1 0 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0015-0282 J9 FERTIL STERIL JI Fertil. Steril. PD MAR PY 2011 VL 95 IS 4 BP 1440 EP U289 DI 10.1016/j.fertnstert.2011.01.012 PG 13 WC Obstetrics & Gynecology; Reproductive Biology SC Obstetrics & Gynecology; Reproductive Biology GA 730DA UT WOS:000288010900041 PM 21316047 ER PT J AU Mostafa, S Lee, I Islam, SK Eliza, SA Shekhawat, G Dravid, VP Tulip, FS AF Mostafa, Salwa Lee, Ida Islam, Syed K. Eliza, Sazia A. Shekhawat, Gajendra Dravid, Vinayak P. Tulip, Fahmida S. TI Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant SO IEEE ELECTRON DEVICE LETTERS LA English DT Article DE Anthrax simulant; biosensor; MOSFET-embedded cantilever ID BACILLUS-CEREUS SPORES; SOLID-SURFACES; ADHESION AB In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 mu L of stimulant test solution (a suspension population of 1.3 x 10(7) colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 mu A/mu L. C1 [Mostafa, Salwa; Lee, Ida; Islam, Syed K.; Eliza, Sazia A.; Tulip, Fahmida S.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Lee, Ida] Oak Ridge Natl Lab, Nanoscale Sci & Devices Grp, Oak Ridge, TN 37831 USA. [Shekhawat, Gajendra; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Mostafa, S (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM sislam@utk.edu RI Dravid, Vinayak/B-6688-2009 FU National Science Foundation [0330410] FX This work was supported in part by the National Science Foundation under Award ID 0330410. The review of this letter was arranged by Editor J. K. O. Sin. NR 10 TC 3 Z9 3 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0741-3106 J9 IEEE ELECTR DEVICE L JI IEEE Electron Device Lett. PD MAR PY 2011 VL 32 IS 3 BP 408 EP 410 DI 10.1109/LED.2010.2098015 PG 3 WC Engineering, Electrical & Electronic SC Engineering GA 725PR UT WOS:000287658400062 ER PT J AU Lanzisera, S Zats, D Pister, KSJ AF Lanzisera, Steven Zats, David Pister, Kristofer S. J. TI Radio Frequency Time-of-Flight Distance Measurement for Low-Cost Wireless Sensor Localization SO IEEE SENSORS JOURNAL LA English DT Article DE Real-time location systems; sensor networks; two-way ranging (TWR) ID ZIGBEE DEVICES AB Location-aware wireless sensor networks will enable a new class of applications, and accurate range estimation is critical for this task. Low-cost location determination capability is studied almost entirely using radio frequency received signal strength (RSS) measurements, resulting in poor accuracy. More accurate systems use wide bandwidths and/or complex time-synchronized infrastructure. Low-cost, accurate ranging has proven difficult because small timing errors result in large range errors. This paper addresses estimation of the distance between wireless nodes using a two-way ranging technique that approaches the Cramer-Rao Bound on ranging accuracy in white noise and achieves 1-3 m accuracy in real-world ranging and localization experiments. This work provides an alternative to inaccurate RSS and complex, wide-bandwidth methods. Measured results using a prototype wireless system confirm performance in the real world. C1 [Lanzisera, Steven] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zats, David; Pister, Kristofer S. J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Lanzisera, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM smlanzisera@lbl.gov; dzats@eecs.berkeley.edu; pister@eecs.berkeley.edu NR 18 TC 22 Z9 22 U1 2 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD MAR PY 2011 VL 11 IS 3 BP 837 EP 845 DI 10.1109/JSEN.2010.2072496 PG 9 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 716CH UT WOS:000286942000006 ER PT J AU Costantine, J al-Saffar, S Christodoulou, CG Abdallah, CT AF Costantine, Joseph al-Saffar, Sinan Christodoulou, Christos G. Abdallah, Chaouki T. TI Reducing Redundancies in Reconfigurable Antenna Structures Using Graph Models SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Graph theory; reconfigurable antennas; redundancy; switches AB We present an approach for reducing redundancies in the design of reconfigurable antenna structures using graph models. The basics of graph models, their rules, and how they can be applied in the design of switch-based reconfigurable antennas are introduced. Based on these rules, a methodology is developed and formulated to reduce the number of switches and parts in the antenna structure, without sacrificing the desired antenna functions. This approach not only optimizes the overall structure of the antenna but it also reduces cost and overall losses. Several examples are presented and discussed to demonstrate the validity of this new approach through simulations and measurements that present good agreement. C1 [Costantine, Joseph] Calif State Univ Fullerton, Dept Elect Engn, Fullerton, CA 92834 USA. [al-Saffar, Sinan] Pacific NW Natl Lab, Knowledge Syst Grp, Seattle, WA 98115 USA. [Christodoulou, Christos G.; Abdallah, Chaouki T.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. RP Costantine, J (reprint author), Calif State Univ Fullerton, Dept Elect Engn, Fullerton, CA 92834 USA. EM jcostantine@fullerton.edu NR 12 TC 7 Z9 7 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD MAR PY 2011 VL 59 IS 3 BP 793 EP 801 DI 10.1109/TAP.2010.2103005 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 728EW UT WOS:000287858100011 ER PT J AU Newman, DE Carreras, BA Lynch, VE Dobson, I AF Newman, David E. Carreras, Benjamin A. Lynch, Vickie E. Dobson, Ian TI Exploring Complex Systems Aspects of Blackout Risk and Mitigation SO IEEE TRANSACTIONS ON RELIABILITY LA English DT Article DE Blackout risk; cascading failure; complex system; electric power transmission system; infrastructure; power law; self-organized criticality ID SELF-ORGANIZED CRITICALITY; MODEL; SECURITY; DYNAMICS AB Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics. C1 [Newman, David E.] Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. [Carreras, Benjamin A.] BACV Solut Inc, Oak Ridge, TN 37830 USA. [Lynch, Vickie E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Dobson, Ian] Univ Wisconsin, ECE Dept, Madison, WI 53706 USA. RP Newman, DE (reprint author), Univ Alaska, Dept Phys, Fairbanks, AK 99775 USA. EM ffden@uaf.edu; bacv@comcast.net; lynchve@ornl.gov; dobson@engr.wisc.edu RI Dobson, Ian/C-3989-2008; Lynch, Vickie/J-4647-2012 OI Dobson, Ian/0000-0001-7018-5475; Lynch, Vickie/0000-0002-5836-7636 FU National Science Foundation [ECCS-0606003, ECCS-0605848, SES-0623985, SES-0624361]; Power Systems Engineering Research Center (PSERC) [DE-SC0002283]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported in part by the National Science Foundation under Grant ECCS-0606003, Grant ECCS-0605848, Grant SES-0623985, and Grant SES-0624361. Ian Dobson gratefully acknowledges that this paper is an account of work sponsored in part by the Power Systems Engineering Research Center (PSERC) and in part from Department of Energy grant DE-SC0002283. Ian Dobson thanks John Rundle and the Center for Computational Science and Engineering at the University of California-Davis for their generous hospitality during a sabbatical leave. Part of this research has been carried out at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. Associate Editors: K. B. Misra and A. K. Verma. NR 35 TC 39 Z9 42 U1 0 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9529 J9 IEEE T RELIAB JI IEEE Trans. Reliab. PD MAR PY 2011 VL 60 IS 1 BP 134 EP 143 DI 10.1109/TR.2011.2104711 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 728GA UT WOS:000287861400017 ER PT J AU Han, JI Choi, HK Lee, SW Orwin, PM Kim, J Laroe, SL Kim, TG O'Neil, J Leadbetter, JR Lee, SY Hur, CG Spain, JC Ovchinnikova, G Goodwin, L Han, C AF Han, Jong-In Choi, Hong-Kyu Lee, Seung-Won Orwin, Paul M. Kim, Jina LaRoe, Sarah L. Kim, Tae-gyu O'Neil, Jennifer Leadbetter, Jared R. Lee, Sang Yup Hur, Cheol-Goo Spain, Jim C. Ovchinnikova, Galina Goodwin, Lynne Han, Cliff TI Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIAL ENDOPHYTES; STRAIN; DEGRADATION; BIODEGRADATION; COMMUNITIES; SYSTEMS; ACID; SOIL; CONSORTIUM; STRATEGIES AB Variovorax paradoxus is a microorganism of special interest due to its diverse metabolic capabilities, including the biodegradation of both biogenic compounds and anthropogenic contaminants. V. paradoxus also engages in mutually beneficial interactions with both bacteria and plants. The complete genome sequence of V. paradoxus S110 is composed of 6,754,997 bp with 6,279 predicted protein-coding sequences within two circular chromosomes. Genomic analysis has revealed multiple metabolic features for autotrophic and heterotrophic lifestyles. These metabolic diversities enable independent survival, as well as a symbiotic lifestyle. Consequently, S110 appears to have evolved into a superbly adaptable microorganism that is able to survive in ever-changing environmental conditions. Based on our findings, we suggest V. paradoxus S110 as a potential candidate for agrobiotechnological applications, such as biofertilizer and biopesticide. Because it has many associations with other biota, it is also suited to serve as an additional model system for studies of microbe-plant and microbe-microbe interactions. C1 [Han, Jong-In; Kim, Jina; Kim, Tae-gyu] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea. [Choi, Hong-Kyu] Dong A Univ, Dept Genet Engn, Pusan, South Korea. [Lee, Seung-Won; Hur, Cheol-Goo] KRIBB, Bioinformat Res Ctr, Taejon, South Korea. [Orwin, Paul M.] Calif State Univ San Bernardino, Dept Biol, San Bernardino, CA 92407 USA. [LaRoe, Sarah L.; O'Neil, Jennifer] Rensselaer Polytech Inst, Dept Civil & Environm Engn, Troy, NY USA. [Leadbetter, Jared R.] CALTECH, Div Biol, Pasadena, CA 91125 USA. [Leadbetter, Jared R.] CALTECH, Div Environm Sci & Engn, Pasadena, CA 91125 USA. [Lee, Sang Yup] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea. [Spain, Jim C.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Ovchinnikova, Galina] DOE Joint Genome Inst, Walnut Creek, CA USA. [Goodwin, Lynne; Han, Cliff] Los Alamos Natl Lab, Los Alamos, NM USA. [Lee, Seung-Won] Natl Acad Agr Sci, Genom Div, Dept Agr Bioresources, Suwon, South Korea. RP Han, JI (reprint author), Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea. EM jihan@kaist.ac.kr RI Han, Jong-In/C-1693-2011; Lee, Sang Yup/C-1526-2011 OI Lee, Sang Yup/0000-0003-0599-3091 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; KAIST; Defense Threat Reduction Agency; U.S. Army Research Office [W911NF-07-0077] FX Sequencing conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. J.-I.H. was supported, in part, by a startup fund provided by KAIST. J.C.S. was supported by the Defense Threat Reduction Agency and the U.S. Army Research Office grant W911NF-07-0077. NR 48 TC 43 Z9 279 U1 4 U2 26 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2011 VL 193 IS 5 BP 1183 EP 1190 DI 10.1128/JB.00925-10 PG 8 WC Microbiology SC Microbiology GA 718QD UT WOS:000287139200019 PM 21183664 ER PT J AU Ryan, EM Tartakovsky, AM Amon, C AF Ryan, Emily M. Tartakovsky, Alexandre M. Amon, Cristina TI Pore-scale modeling of competitive adsorption in porous media SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Smoothed particle hydrodynamics; Reactive transport; Competitive adsorption; Porous medium; Computational modeling ID SMOOTHED PARTICLE HYDRODYNAMICS; ACTIVATED CARBON; REACTIVE TRANSPORT; TEMPORAL BEHAVIOR; SURFACE-TENSION; SOLUTE CLOUD; DESORPTION; KINETICS; FLOWS; COAL AB In this paper we present a smoothed particle hydrodynamics (SPH) pore-scale multicomponent reactive transport model with competitive adsorption. SPH is a Lagrangian, particle based modeling method which uses the particles as interpolation points to discretize and solve now and transport equations. The theory and details of the SPH pore-scale model are presented along with a novel method for handling surface reactions, the continuum surface reaction (CSR) model. The numerical accuracy of the CSR model is validated with analytical and finite difference solutions, and the effects of spatial and temporal resolution on the accuracy of the model are also discussed. The pore-scale model is used to study competitive adsorption for different Damkohler and Peclet numbers in a binary system where a plume of species B is introduced into a system which initially contains species A. The pore-scale model results are compared with a Darcy-scale model to investigate the accuracy of a Darcy-scale reactive transport model for a wide range of Damkohler and Peclet numbers. The comparison shows that the Darcy model over estimates the mass fraction of aqueous and adsorbed species B and underestimates the mass fractions of species A. The Darcy-scale model also predicts faster transport of species A and B through the system than the pore-scale model. The overestimation of the advective velocity and the extent of reactions by the Darcy-scale model are due to incomplete pore-scale mixing. As the degree of the solute mixing decreases with increasing Peclet and Damkohler numbers, so does the accuracy of the Darcy-scale model. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ryan, Emily M.; Amon, Cristina] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. [Ryan, Emily M.; Tartakovsky, Alexandre M.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Amon, Cristina] Univ Toronto, Fac Appl Sci & Engn, Toronto, ON M5S 1A4, Canada. RP Ryan, EM (reprint author), BSRC, Pacific NW Natl Lab, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM emily.ryan@pnl.gov; alexandre.tartakovsky@pnl.gov; dean@ecf.utoronto.ca RI Ryan, Emily/I-8183-2015 OI Ryan, Emily/0000-0001-6111-3269 FU National Science Foundation; U.S. Department of Energy Solid-State Energy Conversion Alliance (SECA) at the Pacific Northwest National Laboratory (PNNL); Office of Science of the U.S. Department of Energy; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The first author was supported by a National Science Foundation Graduate Research Fellowship and the U.S. Department of Energy Solid-State Energy Conversion Alliance (SECA) Core Technology Program at the Pacific Northwest National Laboratory (PNNL).; The second author was supported by the Office of Science of the U.S. Department of Energy under the Scientific Discovery through Advanced Computing (SciDAC) program.; The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 58 TC 14 Z9 14 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD MAR 1 PY 2011 VL 120-21 SI SI BP 56 EP 78 DI 10.1016/j.jconhyd.2010.06.008 PG 23 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 728QO UT WOS:000287889100005 PM 20691495 ER PT J AU Hill, WR Roberts, BJ Francoeur, SN Fanta, SE AF Hill, Walter R. Roberts, Brian J. Francoeur, Steven N. Fanta, Shari E. TI Resource synergy in stream periphyton communities SO JOURNAL OF ECOLOGY LA English DT Article DE Algae; aquatic plant ecology; bacteria; community structure; light; phosphorus; primary production; resource synergy; streams ID LIGHT LIMITATION; NUTRIENT HYPOTHESIS; AQUATIC ECOSYSTEMS; IMAGE-ANALYSIS; PHYTOPLANKTON; ALGAE; PHOSPHORUS; BACTERIA; RESPONSES; GROWTH AB 1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridian circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more efficient photon capture and higher photosynthetic rates. 5. Synthesis. Our results underscore the potential for resource colimitation, even in habitats where a single resource is as strongly limiting as is light in shaded streams. The capacity of autotrophic communities to respond to more than one limiting resource suggests that prevailing single-resource models of ecosystem productivity are overly simplistic. C1 [Hill, Walter R.; Fanta, Shari E.] Univ Illinois, Illinois Nat Hist Survey, Champaign, IL 61821 USA. [Roberts, Brian J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Francoeur, Steven N.] Eastern Michigan Univ, Dept Biol, Ctr Aquat Ecol, Ypsilanti, MI 48197 USA. RP Hill, WR (reprint author), Univ Illinois, Illinois Nat Hist Survey, 1816 S Oak St, Champaign, IL 61821 USA. EM wrhill@illinois.edu FU US Department of Energy [DE-AC05-00OR22725]; Illinois Council for Food and Agricultural Research and Environmental Protection Agency; ORNL FX We thank Gary Jacobs, Jim Loar, Scott Gregory and Steve Cline of Oak Ridge National Laboratory (ORNL) for facilitating our use of the Environmental Sciences Division's experimental stream facility. Kate Schowe and Anne Bartlett assisted in the laboratory, and Brian Ohsowski and Audrey Johnson performed the bacterial enumerations. ORNL is managed by UT-Battelle under contract DE-AC05-00OR22725 with the US Department of Energy. Funding for this research was provided by the Illinois Council for Food and Agricultural Research and Environmental Protection Agency. Brian Roberts was supported by a postdoctoral fellowship through the ORNL Postdoctoral Research Associates Program administered by Oak Ridge Associated Universities. NR 42 TC 16 Z9 17 U1 7 U2 77 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-0477 J9 J ECOL JI J. Ecol. PD MAR PY 2011 VL 99 IS 2 BP 454 EP 463 DI 10.1111/j.1365-2745.2010.01785.x PG 10 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA 727GF UT WOS:000287785300011 ER PT J AU Rollin, B Dubief, Y Doering, CR AF Rollin, B. Dubief, Y. Doering, C. R. TI Variations on Kolmogorov flow: turbulent energy dissipation and mean flow profiles SO JOURNAL OF FLUID MECHANICS LA English DT Article DE Navier-Stokes equations; turbulence modelling; variational methods ID SHEAR-FLOW; BOUNDS AB The relation between the form of a body force driving a turbulent shear flow and the dissipation factor beta = epsilon l/U(3) is investigated by means of rigorous upper bound analysis and direct numerical simulation. We consider unidirectional steady forcing functions in a three-dimensional periodic domain and observe that a rigorous infinite Reynolds number bound on beta displays the same qualitative behaviour as the computationally measured dissipation factor at finite Reynolds number as the force profile is varied. We also compare the measured mean flow profiles with the Stokes flow profile for the same forcing. The mean and Stokes flow profiles are strikingly similar at the Reynolds numbers obtained in the numerical simulations, lending quantitative credence to the notion of a turbulent eddy viscosity. C1 [Rollin, B.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Dubief, Y.] Univ Vermont, Sch Engn, Burlington, VT 05405 USA. [Doering, C. R.] Univ Michigan, Dept Phys, Dept Math, Ann Arbor, MI 48109 USA. [Doering, C. R.] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA. RP Rollin, B (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM bertrand@lanl.gov RI Dubief, Yves/B-5714-2011; Rollin, Bertrand/B-3199-2011 OI Dubief, Yves/0000-0001-8181-7597; FU NSF [PHY-0555324, PHY-0855335]; NASA [NNX 06AC88G] FX This work was supported in part by NSF Awards PHY-0555324 and PHY-0855335. Computational resources provided by the Vermont Advanced Computing Center, supported by NASA (grant NNX 06AC88G), are gratefully acknowledged. We are also grateful to Professors D. Carati and B. Knaepen and all the Turbo team for providing the simulation code. NR 22 TC 9 Z9 9 U1 0 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD MAR PY 2011 VL 670 BP 204 EP 213 DI 10.1017/S0022112010006294 PG 10 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 729GK UT WOS:000287936500010 ER PT J AU Bosko, ML Miller, JB Lombardo, EA Gellman, AJ Cornaglia, LM AF Bosko, Maria L. Miller, James B. Lombardo, Eduardo A. Gellman, Andrew J. Cornaglia, Laura M. TI Surface characterization of Pd-Ag composite membranes after annealing at various temperatures SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Pd-Ag membrane; Alumina layer; Surface segregation ID POROUS STAINLESS-STEEL; POLYCRYSTALLINE PD70CU30 ALLOY; PALLADIUM MEMBRANES; INTERMETALLIC DIFFUSION; METAL-SUPPORT; HYDROGEN-FLUX; SEGREGATION; ELECTROLESS; STABILITY; BARRIER AB Pd-Ag films (similar to 24% Ag, 20-26 mu m thick) were deposited by sequential electroless plating onto porous tubular stainless steel substrates. Intermediate alpha- and gamma-Al2O3 oxide layers were employed to modify the support pore size and to prevent intermetallic diffusion of the stainless steel components into the Pd-Ag layer. The aluminum oxides were applied to the substrate porous system by a vacuum assisted-coating method. Composite membranes annealed at temperatures between 500 and 600 degrees C were characterized for film structure (XRD), morphology (SEM), bulk and surface component distribution (EDS. XPS), and hydrogen permeance. Pd-Ag alloy formation progressed as annealing temperature was increased to 600 degrees C. Composition measurements within the Pd-Ag layer revealed preferential segregation of the Ag component to the top surface; this result is consistent with Ag's lower surface free energy. No diffusion of stainless steel components into the Pd-Ag layer was observed, demonstrating the effectiveness of the oxide interdiffusion barrier. Hydrogen permeation tests of membranes annealed at 500 degrees C displayed high permeability and H-2/N-2 selectivity at operating temperatures between 400 and 450 degrees C. Permeabilities were higher but selectivities were lower for membranes annealed at 550 degrees C. This performance deterioration may be related to defects within the Pd-Ag layer caused by growth of dendritic Ag deposits. (C) 2010 Elsevier B.V. All rights reserved. C1 [Bosko, Maria L.; Lombardo, Eduardo A.; Cornaglia, Laura M.] UNL CONICET, FIQ, Inst Invest Catalisis & Petroquim, RA-3000 Santa Fe, Argentina. [Miller, James B.; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Miller, James B.; Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Cornaglia, LM (reprint author), UNL CONICET, FIQ, Inst Invest Catalisis & Petroquim, Santiago del Estero 2829, RA-3000 Santa Fe, Argentina. EM lmcornag@fiq.unl.edu.ar RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU UNL; ANPCyT; NSF-CONICET FX The authors wish to acknowledge the financial support received from UNL, ANPCyT, and the NSF-CONICET Program. Thanks are also given to the Japan International Cooperation Agency (JICA) for the donation of the XRD instrument, to ANPCyT for the purchase of UHV Multi Analysis System (PME 8 - 2003). They are also grateful to Prof. Elsa Grimaldi for the English language editing and to Fabio Fontanarrosa from CCT CONICET-Santa Fe for the SEM-EDS analyses. NR 40 TC 33 Z9 34 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD MAR 1 PY 2011 VL 369 IS 1-2 BP 267 EP 276 DI 10.1016/j.memsci.2010.12.006 PG 10 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 727VY UT WOS:000287832200032 ER PT J AU Du, XX Chowdhury, SM Manes, NP Wu, S Mayer, MU Adkins, JN Anderson, GA Smith, RD AF Du, Xiuxia Chowdhury, Saiful M. Manes, Nathan P. Wu, Si Mayer, M. Uljana Adkins, Joshua N. Anderson, Gordon A. Smith, Richard D. TI Xlink-Identifier: An Automated Data Analysis Platform for Confident Identifications of Chemically Cross-Linked Peptides Using Tandem Mass Spectrometry SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Chemical cross-linking; mass spectrometry; peptide identification; protein-protein interaction; protein structure ID PROTEIN-PROTEIN INTERACTIONS; LINKING REAGENTS; LARGE-SCALE; PHOTOAFFINITY REAGENTS; STRUCTURAL-ANALYSIS; DISULFIDE BONDS; COMPLEXES; SPECTRA; DISSOCIATION; NOMENCLATURE AB Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labeling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis Platform that has been developed to support label-free analyses. It can identify interpeptide, intrapeptide, and deadend cross-links as well as underivatized peptides. The software streamlines data preprocessing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry. C1 [Du, Xiuxia] Univ N Carolina, Dept Bioinformat & Genom, Charlotte, NC 28023 USA. [Wu, Si; Mayer, M. Uljana; Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Manes, Nathan P.] NIAID, Bethesda, MD 20892 USA. [Chowdhury, Saiful M.] NIEHS, NIH, Res Triangle Pk, NC 27709 USA. RP Du, XX (reprint author), 500 Laureate Way,Suite 2350, Kannapolis, NC 28081 USA. EM xiuxia.du@uncc.edu RI Manes, Nathan/E-2817-2012; Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013 OI Manes, Nathan/0000-0001-6701-3314; Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700 FU University of North Carolina at Charlotte; Pacific Northwest National Laboratory (PNNL); NIH National Center for Research Resources [RR18522]; National Center for Research Resources [RR 018522]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO01830] FX This work was supported, in part, by a startup fund from the University of North Carolina at Charlotte, the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL), and the NIH National Center for Research Resources (RR18522). This work utilized data generated on instrumentation and capabilities developed under support from the National Center for Research Resources (Grant RR 018522 to RDS) and the DOE's Office of Biological and Environmental Research. Part of this work was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE) national scientific user facility located at PNNL (Richland, WA). Battelle Memorial Institute operates PNNL for the DOE under Contract DE-AC05-76RLO01830. NR 67 TC 19 Z9 19 U1 2 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2011 VL 10 IS 3 BP 923 EP 931 DI 10.1021/pr100848a PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 729JD UT WOS:000287944000001 PM 21175198 ER PT J AU Huang, X Tolmachev, AV Shen, YL Liu, MA Huang, L Zhang, ZX Anderson, GA Smith, RD Chan, WC Hinrichs, SH Fu, K Ding, SJ AF Huang, Xin Tolmachev, Aleksey V. Shen, Yulei Liu, Miao Huang, Lin Zhang, Zhixin Anderson, Gordon A. Smith, Richard D. Chan, Wing C. Hinrichs, Steven H. Fu, Kai Ding, Shi-Jian TI UNiquant, a Program for Quantitative Proteomics Analysis Using Stable Isotope Labeling SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE Quantitative proteomics; Stable isotope labeling; LC-MS/MS; Software Development ID SPECTROMETRY-BASED PROTEOMICS; MASS MEASUREMENT ACCURACY; PEPTIDE IDENTIFICATION; PHOSPHOPROTEOME ANALYSIS; PROTEIN ABUNDANCE; HIGH-RESOLUTION; SOFTWARE TOOL; CHROMATOGRAPHY; RANGE; SILAC AB Stable isotope labeling (SIL) methods coupled with nano-scale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs. C1 [Huang, Xin; Shen, Yulei; Liu, Miao; Huang, Lin; Zhang, Zhixin; Chan, Wing C.; Hinrichs, Steven H.; Fu, Kai; Ding, Shi-Jian] Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA. [Tolmachev, Aleksey V.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolmachev, Aleksey V.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Ding, Shi-Jian] Univ Nebraska Med Ctr, Mass Spectrometry & Prote Core Facil, Omaha, NE 68198 USA. RP Fu, K (reprint author), Univ Nebraska Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA. EM kfu@unmc.edu; dings@unmc.edu RI Smith, Richard/J-3664-2012; Huang, Xin/P-8103-2014 OI Smith, Richard/0000-0002-2381-2349; Huang, Xin/0000-0001-6778-8849 FU Nebraska Research Initiative; NIH [U01 CA114778-03]; NEHHS [LB606]; China Scholarship Council FX We thank Dr. Lawrence Schopfer for the editing of this manuscript. Mass spectrometry data were obtained in the Mass Spectrometry & Proteomics Core Facility at the University of Nebraska Medical Center which is supported by the Nebraska Research Initiative. This work was financially supported by NIH U01 CA114778-03 (W.C.C.) and NEHHS LB606 (S.J.D.); X.H. was supported by a scholarship from China Scholarship Council. NR 34 TC 15 Z9 16 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD MAR PY 2011 VL 10 IS 3 BP 1228 EP 1237 DI 10.1021/pr1010058 PG 10 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 729JD UT WOS:000287944000027 PM 21158445 ER PT J AU Payne, RF Schulte, SM Douglas, M Friese, JI Farmer, OT Finn, EC AF Payne, R. F. Schulte, S. M. Douglas, M. Friese, J. I. Farmer, O. T., III Finn, E. C. TI Investigation of gravity lanthanide separation chemistry SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Lanthanides; Fission products; Radiochemical separations; Extraction chromatography ID CHROMATOGRAPHY; URANIUM AB Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 h followed by 60 min counting for quantification of 9 radioisotopes of 7 lanthanide elements. C1 [Payne, R. F.; Schulte, S. M.; Douglas, M.; Friese, J. I.; Farmer, O. T., III; Finn, E. C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Finn, EC (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN P7-02, Richland, WA 99352 USA. EM erin.finn@pnl.gov OI Douglas, Matthew/0000-0001-9708-1780 FU United States Department of Energy [DE-AC05-76RL01830] FX This work was performed for the United States Department of Energy under Contract DE-AC05-76RL01830. NR 8 TC 5 Z9 5 U1 0 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2011 VL 287 IS 3 BP 863 EP 867 DI 10.1007/s10967-010-0838-4 PG 5 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 726WI UT WOS:000287756900029 ER PT J AU Yanagisawa, K Cutler, DE AF Yanagisawa, Kazuaki Cutler, Deborah E. TI Champion data comparison in nuclear research institutes in Europe, the U. S., and Japan SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Bibliometric study; Ex-post evaluation; Champion data comparison; Prestigious nuclear institute; INIS; ECD; WOS; SCOPUS AB Bibliometric analysis was carried out for champion data comparisons among prestigious nuclear research institutes (PNRI) existed in Japan, the U. S., France, and Germany. The analysis was relied on database INIS (IAEA), ECD (DOE), WOS (Thomson), and SCOPUS (Elsevier). INIS is advanced, key ex-post evaluating tool for determining general research paper-based champion. Over the 30-year time span of research paper publication, the world champion among 11 PNRI is JAERI confirmed by INIS but ORNL confirmed by ECD, WOS, and SCOPUS, the latter two collected journal submitted research paper. Five years ago JAERI is the 3rd ranked institutes following ORNL and ANL. INIS database results revealed that CEA/Grenoble is the French domestic champion regarding research paper publication. Five years ago it was CEA/Saclay. Results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors because different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS, and SCOPUS when looking at trends especially between 5-year periods. C1 [Yanagisawa, Kazuaki] Japan Atom Energy Agcy, Gunma 3701292, Japan. [Cutler, Deborah E.] US DOE, Off Sci & Tech Informat, Oak Ridge, TN 37830 USA. RP Yanagisawa, K (reprint author), Japan Atom Energy Agcy, 1233 Watanuki, Gunma 3701292, Japan. EM yanagisawa.kazuaki@jaea.go.jp NR 4 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD MAR PY 2011 VL 287 IS 3 BP 879 EP 886 DI 10.1007/s10967-010-0840-x PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 726WI UT WOS:000287756900031 ER PT J AU Corral, EL Wang, H Garay, J Munir, Z Barrera, EV AF Corral, Erica L. Wang, Hsin Garay, Javier Munir, Zuhair Barrera, Enrique V. TI Effect of single-walled carbon nanotubes on thermal and electrical properties of silicon nitride processed using spark plasma sintering SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY LA English DT Article DE Single-wall carbon nanotubes; High-temperature materials; Thermal properties; Electrical properties; Composites ID COMPOSITES; NANOCOMPOSITES; CONDUCTIVITY; NANOCERAMICS; CERAMICS; SCIENCE; SI3N4; ROPES AB Si3N4 nanocomposites reinforced with 1-, 2-, and 6-vol% single-walled carbon nanotubes (SWNTs) were processed using spark plasma sintering (SPS) in order to control the thermal and electrical properties of the ceramic. Only 2-vol% SWNTs additions were used to decrease the room temperature thermal conductivity by 62% over the monolith and 6-vol% SWNTs was used to transform the insulating ceramic into a metallic electrical conductor (92 S m(-1)). We found that densification of the nanocomposites was inhibited with increasing SWNT concentration however, the phase transformation from alpha- to beta-Si3N4 was not. After SPS, we found evidence of SWNT survival in addition to sintering induced defects detected by monitoring SWNT peak intensity ratios using Raman spectroscopy. Our results show that SWNTs can be used to effectively increase electrical conductivity and lower thermal conductivity of Si3N4 due to electrical transport enhancement and thermal scattering of phonons by SWNTs using SPS. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Corral, Erica L.] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA. [Wang, Hsin] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Garay, Javier] Univ Calif Riverside, Riverside, CA 92521 USA. [Munir, Zuhair] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Barrera, Enrique V.] Rice Univ, Dept Mech Engn & Mat Sci MS 321, Houston, TX 77251 USA. RP Corral, EL (reprint author), Univ Arizona, Dept Mat Sci & Engn, 1235 James E Rogers Way, Tucson, AZ 85721 USA. EM elcorral@email.arizona.edu RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU Robert Welch Foundation of Texas [C1494]; NSF-AGEP at Rice University [HRD-9817555]; Carbon Nanotechnologies Inc.; NASA-URETI [NC-01-0203]; NASA Ames Research Center [NNA04CK63A]; Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies; U. S. Department of Energy [DE-AC05-00OR22725] FX This work has been financially supported by The Robert Welch Foundation of Texas grant number C1494, the NSF-AGEP at Rice University grant number HRD-9817555, Carbon Nanotechnologies Inc., NASA-URETI grant number NC-01-0203 and NASA Ames Research Center grant number NNA04CK63A. Research at The High Temperature Materials Laboratory (HTML) was sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the HTML User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract number DE-AC05-00OR22725. NR 40 TC 28 Z9 28 U1 3 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-2219 EI 1873-619X J9 J EUR CERAM SOC JI J. Eur. Ceram. Soc. PD MAR PY 2011 VL 31 IS 3 BP 391 EP 400 DI 10.1016/j.jeurceramsoc.2010.10.020 PG 10 WC Materials Science, Ceramics SC Materials Science GA 704VQ UT WOS:000286084100019 ER PT J AU Lee, J Ye, Z Ho, KM Kim, J AF Lee, Jiwon Ye, Zhuo Ho, Kai-Ming Kim, Jaeyoun TI Two-dimensional optofluidic liquid-core waveguiding based on optimized integration of single- and multiple-layer antiresonance reflection optical waveguides SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID LASER AB We present a novel two-dimensional (2D) liquid-core waveguiding scheme that combines two different types of antiresonance reflection optical waveguides (ARROWs) to achieve ease of fabrication and richer optofluidic functionalities. We established the conditions for the optimal integration of the two ARROW schemes theoretically and validated them with 2D numerical mode analysis. The proposed scheme also provides a convenient means to install supporting solid-core waveguides without additional burden in fabrication. (C) 2011 Optical Society of America C1 [Lee, Jiwon; Kim, Jaeyoun] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Ye, Zhuo; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames Natl Lab, Ames, IA 50011 USA. RP Kim, J (reprint author), Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. EM plasmon@iastate.edu RI Ye, Zhuo/H-4027-2011; Kim, Jaeyoun/B-5291-2012 FU National Science Foundation (NSF) [ECCS-0954845]; United States Department of Energy (DOE) by Iowa State University [W-7405-Eng-82] FX J. Lee and J. Kim were supported by the National Science Foundation (NSF) CAREER award (ECCS-0954845). Z. Ye and K.-M. Ho were supported by the Director for Energy Research, Office of Basic Energy Sciences. The Ames Laboratory is operated for the United States Department of Energy (DOE) by Iowa State University under contract no. W-7405-Eng-82. NR 19 TC 0 Z9 0 U1 0 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD MAR PY 2011 VL 28 IS 3 BP 489 EP 494 DI 10.1364/JOSAB.28.000489 PG 6 WC Optics SC Optics GA 730EH UT WOS:000288015300021 ER PT J AU Matsuda, M Hoshi, T Katori, HA Kosaka, M Takagi, H AF Matsuda, Masaaki Hoshi, Takemichi Katori, Hiroko Aruga Kosaka, Masashi Takagi, Hidenori TI Magnetic-Field-Induced Transitions in Spinel GeCo2O4 SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE spinel; magnetic structure; neutron diffraction; magnetic field; frustration ID PYROCHLORE ANTIFERROMAGNET; PHASE-TRANSITION; GENI2O4; LIQUID; LATTICE; STATE AB The spinel GeCo2O4 has the pyrochlore lattice of Co2+ ions, in which the kagome and triangular planes stack alternately along the [111] direction. It shows antiferromagnetic ordering below T-N similar to 21K with a characteristic wave vector of Q(M) = (1/2, 1/2, 1/2). The spin arrangement is ferromagnetic in the kagome and triangular planes and antiferromagnetic between the kagome planes as well as between the triangular planes. GeCo2O4 exhibits a magnetic phase transition at H similar to 4 T. Powder neutron diffraction measurements were performed on GeCo2O4 in ambient and magnetic field. Our results are consistent with the magnetic structure model in which the kagome and triangular planes behave independently in magnetic field, that is, the spin arrangement between the triangular planes becomes ferromagnetic above similar to 4T while retaining the antiferromagnetic arrangement between the kagome planes. C1 [Matsuda, Masaaki] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Hoshi, Takemichi; Kosaka, Masashi] Saitama Univ, Grad Sch Sci & Engn, Saitama 3388570, Japan. [Hoshi, Takemichi; Katori, Hiroko Aruga; Takagi, Hidenori] RIKEN, Wako, Saitama 3510198, Japan. RP Matsuda, M (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Takagi, Hidenori/B-2935-2010; Katori, Hiroko/C-8794-2013; Matsuda, Masaaki/A-6902-2016 OI Matsuda, Masaaki/0000-0003-2209-9526 FU Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) [19052008, 451] FX This work was supported by Grants-in-Aid for Scientific Research on Priority Areas "Novel States of Matter Induced by Frustration'' (19052008) and "High Field Spin Science in 100T'' (No. 451) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This work was partly performed under the NIMS-RIKEN-JAEA Cooperative Research Program on Quantum Beam Science and Technology. NR 19 TC 4 Z9 5 U1 1 U2 31 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD MAR PY 2011 VL 80 IS 3 AR 034708 DI 10.1143/JPSJ.80.034708 PG 5 WC Physics, Multidisciplinary SC Physics GA 732CM UT WOS:000288160900037 ER PT J AU Bieler, TR Barabash, R Banovic, SW AF Bieler, Thomas R. Barabash, Rozaliya Banovic, Stephen W. TI Foreword: Structural Transitions and Local Deformation Processes at and Near Grain Boundaries SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Bieler, Thomas R.] Michigan State Univ, E Lansing, MI 48824 USA. [Barabash, Rozaliya] Univ Tennessee, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Banovic, Stephen W.] NIST, Gaithersburg Safety Hlth & Environm Div, Off Safety Hlth & Environm, Gaithersburg, MD 20899 USA. RP Bieler, TR (reprint author), Michigan State Univ, E Lansing, MI 48824 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2011 VL 42A IS 3 BP 553 EP 553 DI 10.1007/s11661-010-0571-1 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714UO UT WOS:000286834700004 ER PT J AU Zhang, LZ Dingreville, R Bartel, T Lusk, MT AF Zhang, Liangzhe Dingreville, Remi Bartel, Timothy Lusk, Mark T. TI Hybrid Monte Carlo Simulation of Stress-Induced Texture Evolution with Inelastic Effects SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Cost Affordable Titanium III held at the 2010 TMS Annual Meeting CY FEB 14-18, 2010 CL Seattle, WA SP Minerals, Met & Mat Soc (TMS) ID CRYSTAL PLASTICITY; MICROSTRUCTURAL EVOLUTION; ROLLING TEXTURES; FCC METALS; DEFORMATION; MODEL; SURFACE; STRAIN; POLYCRYSTALS; ALGORITHM AB A hybrid Monte Carlo (HMC) approach is employed to quantify the influence of inelastic deformation on the microstructural evolution of polycrystalline materials. This approach couples a time explicit material point method (MPM) for deformation with a calibrated Monte Carlo model for grain boundary motion. A rate-independent crystal plasticity model is implemented to account for localized plastic deformations in polycrystals. The dislocation energy difference between grains provides an additional driving force for texture evolution. This plastic driving force is then brought into a MC paradigm via parametric links between MC and sharp-interface (SI) kinetic models. The MC algorithm is implemented in a parallelized setting using a checkerboard updating scheme. As expected, plastic loading favors texture evolution for grains that have a bigger Schmid factor with respect to the loading direction, and these are the grains most easily removed by grain boundary motion. A macroscopic equation is developed to predict such texture evolution. C1 [Zhang, Liangzhe] New York Univ Poly, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA. [Dingreville, Remi] New York Univ Poly, Dept Mech & Aerosp Engn, New York, NY USA. [Bartel, Timothy] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lusk, Mark T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. RP Zhang, LZ (reprint author), Idaho Natl Lab, Idaho Falls, ID 83402 USA. EM liangzhezhang@gmail.com OI Dingreville, Remi/0000-0003-1613-695X NR 43 TC 4 Z9 4 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2011 VL 42A IS 3 BP 575 EP 581 DI 10.1007/s11661-010-0445-6 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714UO UT WOS:000286834700008 ER PT J AU Kanjarla, AK Delannay, L Van Houtte, P AF Kanjarla, Anand Krishna Delannay, Laurent Van Houtte, Paul TI Finite Element Study of Intragrain Plastic Heterogeneity near a Triple Junction SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium on Cost Affordable Titanium III held at the 2010 TMS Annual Meeting CY FEB 14-18, 2010 CL Seattle, WA SP Minerals, Met & Mat Soc ID GRAIN-INTERACTION; DEFORMATION TEXTURE; CRYSTAL PLASTICITY; ANGLE BOUNDARIES; SINGLE-CRYSTALS; ROLLED ALUMINUM; TAYLOR MODEL; IF STEEL; SUBDIVISION; POLYCRYSTALS AB In plastically deforming polycrystals, grains interact with their surroundings resulting in heterogeneous deformation fields both at inter- and intragrain level. When the crystal plasticity finite element method (CPFEM) is employed to predict such heterogeneity, splitting of grains is occasionally observed. In the present study, detailed local strain analysis is performed in such subdivided grain and its neighbors. The role of local interactions at the grain boundaries and of the initial orientation of the grain is investigated. It is shown that a hard grain surrounded by relatively softer grains is prone to subdivide when subjected to opposing shears. C1 [Kanjarla, Anand Krishna] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87544 USA. [Kanjarla, Anand Krishna; Van Houtte, Paul] Katholieke Univ Leuven, Dept Met & Mat Engn, BE-3001 Louvain, Belgium. [Delannay, Laurent] Catholic Univ Louvain, Dept Mech Engn Cesame MEMA, BE-1348 Louvain, Belgium. RP Kanjarla, AK (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87544 USA. EM anand@lanl.gov NR 31 TC 7 Z9 7 U1 0 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2011 VL 42A IS 3 BP 660 EP 668 DI 10.1007/s11661-010-0455-4 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714UO UT WOS:000286834700018 ER PT J AU Perricone, MJ DuPont, JN Anderson, TD Robino, CV Michael, JR AF Perricone, M. J. DuPont, J. N. Anderson, T. D. Robino, C. V. Michael, J. R. TI An Investigation of the Massive Transformation from Ferrite to Austenite in Laser-Welded Mo-Bearing Stainless Steels SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID IRRATIONAL INTERPHASE BOUNDARIES; CR-NI ALLOYS; MICROSTRUCTURAL DEVELOPMENT; PHASE-TRANSFORMATIONS; CORROSION-RESISTANCE; GAMMA-TRANSITION; CU-GA; SOLIDIFICATION; MECHANISMS; INTERFACES AB A series of 31 Mo-bearing stainless steel compositions with Mo contents ranging from 0 to 10 wt pct and exhibiting primary delta-ferrite solidification were analyzed over a range of laser welding conditions to evaluate the effect of composition and cooling rate on the solid-state transformation to gamma-austenite. Alloys exhibiting this microstructural development sequence are of particular interest to the welding community because of their reduced susceptibility to solidification cracking and the potential reduction of microsegregation (which can affect corrosion resistance), all while harnessing the high toughness of gamma-austenite. Alloys were created using the arc button melting process, and laser welds were prepared on each alloy at constant power and travel speeds ranging from 4.2 to 42 mm/s. The cooling rates of these processes were estimated to range from 10 K (A degrees C)/s for arc buttons to 10(5) K (A degrees C)/s for the fastest laser welds. No shift in solidification mode from primary delta-ferrite to primary gamma-austenite was observed in the range of compositions or welding conditions studied. Metastable microstructural features were observed in many laser weld fusion zones, as well as a massive transformation from delta-ferrite to gamma-austenite. Evidence of epitaxial massive growth without nucleation was also found when intercellular gamma-austenite was already present from a solidification reaction. The resulting single-phase gamma-austenite in both cases exhibited a homogenous distribution of Mo, Cr, Ni, and Fe at nominal levels. C1 [Perricone, M. J.] RJ Lee Grp Inc, Monroeville, PA 15146 USA. [Perricone, M. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [DuPont, J. N.; Anderson, T. D.] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA. [Anderson, T. D.] Exxon Mobil Corp, Irving, TX 75039 USA. [Robino, C. V.] Sandia Natl Labs, Joining & Coatings Div, Livermore, CA 94550 USA. [Michael, J. R.] Sandia Natl Labs, Mat Characterizat Dept, Livermore, CA 94550 USA. RP Perricone, MJ (reprint author), RJ Lee Grp Inc, Monroeville, PA 15146 USA. EM mperricone@rjlg.com FU Office of Naval Research [N00014-03-1-0348]; American Welding Society; Navy Joining Center FX The authors acknowledge the financial support of the Office of Naval Research under Contract No. N00014-03-1-0348 and the American Welding Society under a Graduate Research Fellowship sponsored by the Navy Joining Center. They also thank A. Kilgo, B. McKenzie, and P. Kotula, Sandia National Laboratories, for their assistance in collecting phase ID and composition distribution information. The careful review of this manuscript by D.F. Susan is also appreciated. A.O. Benscoter and M.J. Rex, Lehigh University, also deserve recognition for their work on this project. The authors also gratefully acknowledge the contributions of Doug Puerta for ICP chemical analysis at IMR Test Laboratories and Donald Scott for master alloy preparation at Santoku America, Inc. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 59 TC 4 Z9 4 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD MAR PY 2011 VL 42A IS 3 BP 700 EP 716 DI 10.1007/s11661-010-0433-x PG 17 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 714UO UT WOS:000286834700023 ER PT J AU Hall, PB Anosov, K White, RL Brandt, WN Gregg, MD Gibson, RR Becker, RH Schneider, DP AF Hall, P. B. Anosov, K. White, R. L. Brandt, W. N. Gregg, M. D. Gibson, R. R. Becker, R. H. Schneider, D. P. TI Implications of dramatic broad absorption line variability in the quasar FBQS J1408+3054 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: active; quasars: absorption lines; quasars: general; quasars: individual: FBQS J1408+3054 ID DIGITAL SKY SURVEY; ACTIVE GALACTIC NUCLEI; SPECTROGRAPH ECHELLE OBSERVATIONS; SPECTRAL ENERGY-DISTRIBUTIONS; SEYFERT-GALAXY NGC-4151; RADIATION-DRIVEN WINDS; STELLAR OBJECTS; EMISSION-LINE; DISK WINDS; DATA RELEASE AB We have observed a dramatic change in the spectrum of the formerly heavily absorbed 'overlapping-trough' iron low-ionization broad absorption line (FeLoBAL) quasar FBQS J1408+3054. Over a time-span of between 0.6 to 5 rest-frame years, the Mg ii trough outflowing at 12 000 km s(-1) decreased in equivalent width by a factor of 2 and the Fe ii troughs at the same velocity disappeared. The most likely explanation for the variability is that a structure in the BAL outflow moved out of our line of sight to the ultraviolet continuum emitting region of the quasar's accretion disc. Given the size of that region, this structure must have a transverse velocity of between 2600 km s(-1) and 22 000 km s(-1). In the context of a simple outflow model, we show that this BAL structure is located between approximately 5800 and 46 000 Schwarzschild radii from the black hole. That distance corresponds to 1.7 to 14 pc, 11 to 88 times farther from the black hole than the H beta broad-line region. The high velocities and the parsec-scale distance for at least this one FeLoBAL outflow mean that not all FeLoBAL outflows can be associated with galaxy-scale outflows in ultraluminous infrared galaxies transitioning to unobscured quasars. The change of FBQS J1408+3054 from an FeLoBAL to a LoBAL quasar also means that if (some) FeLoBAL quasars have multiwavelength properties which distinguish them from HiBAL quasars, then some LoBAL quasars will share those properties. Finally, we extend previous work on how multiple-epoch spectroscopy of BAL and non-BAL quasars can be used to constrain the average lifetime of BAL episodes (currently > 60 rest-frame years at 90 per cent confidence). C1 [Hall, P. B.; Anosov, K.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Brandt, W. N.; Schneider, D. P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Gregg, M. D.; Becker, R. H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gregg, M. D.; Becker, R. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Gibson, R. R.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. RP Hall, PB (reprint author), York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. EM phall@yorku.ca RI White, Richard/A-8143-2012; Brandt, William/N-2844-2015 OI Brandt, William/0000-0002-0167-2453 FU NSERC; NASA [NNX10AC99G, AR9-0015X]; NSF [AST-060734, AST07-09394]; US Department of Energy [DE-AC52-07NA27344]; Alfred P. Sloan Foundation; National Science Foundation; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We thank the referee for a thoughtful review. PBH and KA were supported by NSERC, WNB by NASA ADP grant NNX10AC99G, DPS by NSF grant AST-060734 and RRG by NASA Chandra grant AR9-0015X and NSF grant AST07-09394. Some of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen and Georg-August-Universitat Gottingen. The HET is named in honour of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario LRS is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. Funding for the SDSS and SDSS-II (http://www.sdss.org) has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. NR 84 TC 46 Z9 46 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD MAR PY 2011 VL 411 IS 4 BP 2653 EP 2666 DI 10.1111/j.1365-2966.2010.17870.x PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 728FF UT WOS:000287859200034 ER PT J AU Zentgraf, T Liu, YM Mikkelsen, MH Valentine, J Zhang, X AF Zentgraf, Thomas Liu, Yongmin Mikkelsen, Maiken H. Valentine, Jason Zhang, Xiang TI Plasmonic Luneburg and Eaton lenses SO NATURE NANOTECHNOLOGY LA English DT Article ID SURFACE-PLASMONS; OPTICAL-ELEMENTS; POLARITONS; FIELDS; LIGHT; CLOAK AB Plasmonics takes advantage of the properties of surface plasmon polaritons, which are localized or propagating quasi-particles in which photons are coupled to the quasi-free electrons in metals. In particular, plasmonic devices can confine light in regions with dimensions that are smaller than the wavelength of the photons in free space, and this makes it possible to match the different length scales associated with photonics and electronics in a single nanoscale device(1). Broad applications of plasmonics that have been demonstrated to date include biological sensing(2), sub-diffraction-limit imaging, focusing and lithography(3-5) and nano-optical circuitry(6-10). Plasmonics-based optical elements such as waveguides, lenses, beamsplitters and reflectors have been implemented by structuring metal surfaces(7,8,11,12) or placing dielectric structures on metals(6,13-15) to manipulate the two-dimensional surface plasmon waves. However, the abrupt discontinuities in the material properties or geometries of these elements lead to increased scattering of surface plasmon polaritons, which significantly reduces the efficiency of these components. Transformation optics provides an alternative approach to controlling the propagation of light by spatially varying the optical properties of a material(16,17). Here, motivated by this approach, we use grey-scale lithography to adiabatically tailor the topology of a dielectric layer adjacent to a metal surface to demonstrate a plasmonic Luneburg lens that can focus surface plasmon polaritons. We also make a plasmonic Eaton lens that can bend surface plasmon polaritons. Because the optical properties are changed gradually rather than abruptly in these lenses, losses due to scattering can be significantly reduced in comparison with previously reported plasmonic elements. C1 [Zentgraf, Thomas; Liu, Yongmin; Mikkelsen, Maiken H.; Valentine, Jason; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Valentine, Jason] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zentgraf, T (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Yongmin/F-5322-2010; Mikkelsen, Maiken/D-8211-2011; Zhang, Xiang/F-6905-2011; Valentine, Jason/A-6121-2012; Zentgraf, Thomas/G-8848-2013 OI Mikkelsen, Maiken/0000-0002-0487-7585; Zentgraf, Thomas/0000-0002-8662-1101 FU US Army Research Office [W911NF-09-1-0539]; US National Science Foundation (NSF Nanoscale Science and Engineering Center) [CMMI-0751621] FX The authors acknowledge funding support from the US Army Research Office (MURI programme W911NF-09-1-0539) and the US National Science Foundation (NSF Nanoscale Science and Engineering Center CMMI-0751621). NR 34 TC 133 Z9 138 U1 6 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD MAR PY 2011 VL 6 IS 3 BP 151 EP 155 DI 10.1038/NNANO.2010.282 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 730BM UT WOS:000288003900007 PM 21258334 ER PT J AU Julian, SR Norman, MR AF Julian, Stephen R. Norman, Michael R. TI SUPERCONDUCTIVITY Genetics and g-factors SO NATURE PHYSICS LA English DT News Item ID T-C SUPERCONDUCTOR; QUANTUM OSCILLATIONS C1 [Julian, Stephen R.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Norman, Michael R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Julian, SR (reprint author), Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. EM sjulian@physics.utoronto.ca; norman@anl.gov RI Norman, Michael/C-3644-2013 NR 11 TC 2 Z9 2 U1 0 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2011 VL 7 IS 3 BP 191 EP 192 DI 10.1038/nphys1930 PG 3 WC Physics, Multidisciplinary SC Physics GA 728AC UT WOS:000287844300011 ER PT J AU Xu, YM Huang, YB Cui, XY Razzoli, E Radovic, M Shi, M Chen, GF Zheng, P Wang, NL Zhang, CL Dai, PC Hu, JP Wang, Z Ding, H AF Xu, Y-M. Huang, Y-B. Cui, X-Y. Razzoli, E. Radovic, M. Shi, M. Chen, G-F. Zheng, P. Wang, N-L. Zhang, C-L. Dai, P-C. Hu, J-P. Wang, Z. Ding, H. TI Observation of a ubiquitous three-dimensional superconducting gap function in optimally doped Ba0.6K0.4Fe2As2 SO NATURE PHYSICS LA English DT Article AB The iron-pnictide superconductors have a layered structure formed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional(1) (3D) electronic structure of these high-temperature superconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the k(z) capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on Ba0.6K0.4Fe2As2 samples. We found a marked kz dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer Delta(1) and interlayer Delta(2) pairing. The anisotropy ratio Delta(1)/Delta(2), determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling J(c)/J(ab) in the parent compound(2). The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrains the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations. C1 [Xu, Y-M.; Wang, Z.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Huang, Y-B.; Zheng, P.; Wang, N-L.; Dai, P-C.; Hu, J-P.; Ding, H.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Huang, Y-B.; Zheng, P.; Wang, N-L.; Dai, P-C.; Hu, J-P.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Huang, Y-B.; Cui, X-Y.; Razzoli, E.; Radovic, M.; Shi, M.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Razzoli, E.; Radovic, M.] Ecole Polytech Fed Lausanne, Lab Synchrotron & Neutron Spect, CH-1015 Lausanne, Switzerland. [Chen, G-F.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Zhang, C-L.; Dai, P-C.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, P-C.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Hu, J-P.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. RP Xu, YM (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. EM dingh@aphy.iphy.ac.cn RI Dai, Pengcheng /C-9171-2012; 石, 源/D-5929-2012; ruc, phy/E-4170-2012; Hu, Jiangping/A-9154-2010; Xu, Yiming/B-3966-2011; OI Dai, Pengcheng /0000-0002-6088-3170; Hu, Jiangping/0000-0003-4480-1734; Ding, Hong/0000-0003-4422-9248 FU Chinese Academy of Sciences; NSF; Ministry of Science and Technology of China; DOE of US; Sino-Swiss Science and Technology Cooperation FX We thank X. Dai, B. A. Bernevig and Z. Fang for valuable discussions. This work was supported by grants from the Chinese Academy of Sciences, NSF, the Ministry of Science and Technology of China, NSF, DOE of US, and the Sino-Swiss Science and Technology Cooperation. NR 28 TC 64 Z9 64 U1 1 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2011 VL 7 IS 3 BP 198 EP 202 DI 10.1038/NPHYS1879 PG 5 WC Physics, Multidisciplinary SC Physics GA 728AC UT WOS:000287844300015 ER PT J AU Jia, SA Jiramongkolchai, P Suchomel, MR Toby, BH Checkelsky, JG Ong, NP Cava, RJ AF Jia, Shuang Jiramongkolchai, Pawina Suchomel, M. R. Toby, B. H. Checkelsky, J. G. Ong, N. P. Cava, R. J. TI Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1-xPx)(2) SO NATURE PHYSICS LA English DT Article ID THCR2SI2 STRUCTURE; PHASE-TRANSITIONS; PHOSPHIDES CACO2P2; STATE; PRESSURE; ELECTRON AB In contrast to classical phase transitions driven by temperature, a quantum critical point (QCP) defines a transition at zero temperature that is driven by non-thermal parameters(1-3). In the known quantum critical d-electron systems, tuning the electronic bandwidth by means of changing the applied pressure or unit-cell dimensions, or tuning the d-state population, is used to drive the criticality(4-6). Here we describe how a novel chemical parameter, the breaking of bonds in Ge-Ge dimers that occurs within the intermetallic framework in SrCo2(Ge1-xPx)(2), results in the appearance of a ferromagnetic (FM) QCP. Although both SrCo2P2 and SrCo2Ge2 are paramagnetic, weak itinerant ferromagnetism unexpectedly develops during the course of the dimer breaking, and a QCP is observed at the onset of the FM phase. The use of chemical bond breaking as a tuning parameter to induce QCP opens an avenue for designing and studying novel magnetic materials. C1 [Jia, Shuang; Jiramongkolchai, Pawina; Cava, R. J.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Suchomel, M. R.; Toby, B. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Checkelsky, J. G.; Ong, N. P.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. RP Jia, SA (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM rcava@princeton.edu RI Toby, Brian/F-3176-2013; Suchomel, Matthew/C-5491-2015; OI Toby, Brian/0000-0001-8793-8285; SUCHOMEL, Matthew/0000-0002-9500-5079 FU US Department of Energy, Division of Basic Energy Sciences [DE-FG02-98ER45706]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank J. Xiong and D. X. Qu for experimental assistance, as well as N. Ni for helpful discussion. The work at Princeton was supported by the US Department of Energy, Division of Basic Energy Sciences, Grant No. DE-FG02-98ER45706. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 29 TC 38 Z9 38 U1 5 U2 72 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD MAR PY 2011 VL 7 IS 3 BP 207 EP 210 DI 10.1038/NPHYS1868 PG 4 WC Physics, Multidisciplinary SC Physics GA 728AC UT WOS:000287844300017 ER PT J AU Gerhardt, SP Fredrickson, E Gates, D Kaye, S Menard, J Bell, MG Bell, RE Le Blanc, BP Kugel, H Sabbagh, SA Yuh, H AF Gerhardt, S. P. Fredrickson, E. Gates, D. Kaye, S. Menard, J. Bell, M. G. Bell, R. E. Le Blanc, B. P. Kugel, H. Sabbagh, S. A. Yuh, H. TI Calculation of the non-inductive current profile in high-performance NSTX plasmas SO NUCLEAR FUSION LA English DT Article ID SPHERICAL-TORUS-EXPERIMENT; DIII-D TOKAMAK; LOW-ASPECT-RATIO; NEOCLASSICAL TEARING MODES; BEAM-INDUCED CURRENTS; BOOTSTRAP-CURRENT; CURRENT DRIVE; STEADY-STATE; HIGH-BETA; TOROIDAL PLASMAS AB The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-beta or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfven eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of similar to 0.5-1 m(2) s(-1) is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density. C1 [Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. [Yuh, H.] Nova Photon, Princeton, NJ 08540 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Sabbagh, Steven/C-7142-2011; OI Menard, Jonathan/0000-0003-1292-3286 FU United States Department of Energy [D-AC02-09CH11466] FX The authors wish to acknowledge Dennis Mueller, Roger Raman and Tim Stevenson for their skilled operation of NSTX during these experiments, and thank Bill Heidbrink for his useful comments. This research was funded by United States Department of Energy Contract D-AC02-09CH11466. NR 112 TC 16 Z9 16 U1 1 U2 10 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD MAR PY 2011 VL 51 IS 3 AR 033004 DI 10.1088/0029-5515/51/3/033004 PG 20 WC Physics, Fluids & Plasmas SC Physics GA 729AE UT WOS:000287916600005 ER PT J AU Piet, SJ Dixon, BW Jacobson, JJ Matthern, GE Shropshire, DE AF Piet, Steven J. Dixon, Brent W. Jacobson, Jacob J. Matthern, Gretchen E. Shropshire, David E. TI DYNAMIC SIMULATIONS OF ADVANCED FUEL CYCLES SO NUCLEAR TECHNOLOGY LA English DT Article DE system analysis; advanced nuclear fuel cycles; dynamic simulation AB Nothing in life is static, so why compare fuel cycle options using only static, equilibrium analyses? Competitive industry looks at how new technology options might displace existing technologies and change how existing systems work. So too, our years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they might work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights within the context of the 2005 objectives and goals of what was then the U.S. Advanced Fuel Cycle Initiative (AFCI). The intent here is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. (The specific options change over time; the objective in this paper is to look for more generic insights.) We organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe "lessons learned" from dynamic simulations but attempt to answer the "so what" question by using this context; i.e., how do the lessons learned matter relative to goals and objectives not just to technological observations? The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof C1 [Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Piet, SJ (reprint author), Idaho Natl Lab, Mail Stop 3870,2525 N Fremont, Idaho Falls, ID 83415 USA. EM Steven.Piet@inl.gov FU DOE Idaho Operations Office [DE-AC07-051D14517] FX This paper was prepared for the DOE Office of Nuclear Energy, Science, and Technology under DOE Idaho Operations Office contract DE-AC07-051D14517. NR 16 TC 2 Z9 2 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2011 VL 173 IS 3 BP 227 EP 238 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 726MQ UT WOS:000287726800001 ER PT J AU Tzanos, CP Popov, M Mendonca, F AF Tzanos, Constantine P. Popov, Maxim Mendonca, Fred TI LARGE EDDY SIMULATION OF TURBULENCE IN A ROD CLUSTER SO NUCLEAR TECHNOLOGY LA English DT Article DE large eddy simulation of turbulence; rod cluster; computational fluid dynamics ID FLOW AB To assess the accuracy of large eddy simulation (LES) predictions for a flow in a rod bundle, analyses were performed with different parameters of a constant-coefficient Smagorinsky LES model for a flow in a square-pitch rod bundle, and model predictions are compared with experimental data. The parameters considered are the grid structure, the value of the Smagorinsky constant, the damping of the eddy viscosity, and the size of the channel geometry. Because LES simulations are computationally very demanding, for adequately accurate predictions the grid structure needs to be well optimized in terms of cell size, aspect ratio, and cell orthogonality. The use of hanging nodes can significantly reduce the number of cells without a significant penalty on the accuracy of predictions. For this flow, the change in the value of the Smagorinsky constant from 0.14 to zero did not have a drastic effect on predictions. Although, overall, Lilly damping gave slightly better predictions than van Driest damping, both damping functions gave similar predictions. The LES predictions for the mean axial velocity, for the fluctuating velocity component in the main flow direction, and for the Reynolds stresses are in very good agreement with the experimental measurements. There is also good agreement between predictions and measurements for the wall shear stress, but there is a significant discrepancy between predictions and measurements for the fluctuating velocity components in the lateral directions (u and v). C1 [Tzanos, Constantine P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Popov, Maxim] Sarov Engn Ctr, Satis 607328, Nizhny Novgorod, Russia. [Mendonca, Fred] CD Adapco, London W6 7NL, England. RP Tzanos, CP (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tzanos@anl.gov NR 10 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2011 VL 173 IS 3 BP 239 EP 250 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 726MQ UT WOS:000287726800002 ER PT J AU Moisseytsev, A Hoffman, E Grandy, C AF Moisseytsev, A. Hoffman, E. Grandy, C. TI SELECTION OF CORE OUTLET TEMPERATURE AND IMPACTS ON FAST REACTOR ECONOMICS SO NUCLEAR TECHNOLOGY LA English DT Article DE core outlet temperature; sodium-cooled reactors; safety AB The selection of the operating temperatures for a sodium-cooled fast reactor (SFR) always involves a trade-off between the plant performance and cost. In this work, the general trends with an increase of the core outlet temperature were calculated for the Advanced Burner Reactor (ABR). First, the benefits of higher temperatures in terms of the higher plant efficiency were calculated for several power conversion systems. To characterize the disadvantages of higher temperatures, the safety margins were investigated for the design conditions, normal operational transients, and beyond-design-basis accidents. The limiting criteria were identified for both oxide and metal fuel core designs. In addition, the effect of the higher temperatures on the structural thicknesses was estimated. A preliminary cost analysis incorporating both benefits and cost penalties of higher temperatures showed the economical benefit potential of higher temperatures, provided that the safety requirements are satisfied by the design and/or material selection. C1 [Moisseytsev, A.; Hoffman, E.; Grandy, C.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Moisseytsev, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amoissey@anl.gov NR 11 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2011 VL 173 IS 3 BP 251 EP 269 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 726MQ UT WOS:000287726800003 ER PT J AU Davis, A Dudziak, DJ Yim, MS McNelis, D Wooten, HO AF Davis, Adam Dudziak, Donald J. Yim, Man-Sung McNelis, David Wooten, H. Omar TI PHOTON BUILDUP FACTORS IN LAMINATED DUAL-LAYER SHIELDS SO NUCLEAR TECHNOLOGY LA English DT Article DE radiation shielding; multilayered shields; buildup factors ID APPROXIMATION; PROGRESSION; ALUMINUM; WATER; IRON; LEAD AB In radiation protection, photon buildup factors provide a convenient method for calculating dose and exposure response after various shielding configurations, as well as information about the behavior of radiation in these configurations. Though many situations call for multilayer shields, few databases and derived analytical formulas for photon buildup in multilayer shields exist. This research develops buildup factors and analytical fits to these data for slab-geometric, dual-layer shields composed of various materials. The photon buildup factors were calculated for monoenergetic photon sources incident on two-layer shields of various combinations of lead, polyethylene, aluminum, and stainless steel for thicknesses varying between 2 and 20 mean free paths using the Parallel Time Independent Sn (PARTISN) discrete ordinates code. The Gauss-Lobatto S(100) quadrature was used with a 244-energy-group structure and coupled photon and electron cross sections. Data from PARTISN calculations were then benchmarked for representative cases using MCNP5, and fits to a new analytical formula were developed using Mathematica 6.0. C1 [Davis, Adam; Dudziak, Donald J.; Wooten, H. Omar] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Davis, Adam] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27514 USA. [Davis, Adam; Dudziak, Donald J.; Yim, Man-Sung; McNelis, David] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [McNelis, David] Univ N Carolina, Inst Environm, Chapel Hill, NC 27514 USA. RP Davis, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM adamdavisne@gmail.com RI Yim, Man-Sung/G-2720-2011 FU Integrated Nuclear Planning Team at LANL FX This work was performed under the auspices of the Integrated Nuclear Planning Team at LANL. The authors would like to thank the anonymous reviewers and the editor whose comments significantly improved the paper. NR 26 TC 1 Z9 1 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2011 VL 173 IS 3 BP 270 EP 288 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 726MQ UT WOS:000287726800004 ER PT J AU Meikrantz, DH Garn, TG Law, JD Macaluso, LL AF Meikrantz, David H. Garn, Troy G. Law, Jack D. Macaluso, Lawrence L. TI A CENTRIFUGAL CONTACTOR DESIGN TO FACILITATE REMOTE REPLACEMENT SO NUCLEAR TECHNOLOGY LA English DT Article DE remote replacement; centrifugal contactor; nuclear fuel reprocessing; solvent extraction equipment AB Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction-based separations, including higher separation efficiency, high-level-waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, annular centrifugal contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5-cm, model V-02; and 12.5-cm, model V-05, single-stage ACCs in a nonradioactive environment. The next logical step, the design and initial evaluation of remote-capable, pilot-scale ACCs for use in a "hot" or radioactive environment has been completed. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. Novel designs were developed for the remote interconnection of contactor units, cleanin-place(CIP) and drain connections, and a new solids removal collection chamber. A three-stage, 12.5-cm-diam rotor module has been constructed and is being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 CIP units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain, and CIP. Hydraulic testing and functional checks were successfully conducted, and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three-stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take similar to 30 min, perhaps fast enough to support a contactor change without loss of process steady-state equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 l/min. C1 [Meikrantz, David H.; Garn, Troy G.; Law, Jack D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Macaluso, Lawrence L.] Adv Machine Design, Carson City, NV 89703 USA. RP Law, JD (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jack.law@inl.gov OI Law, Jack/0000-0001-7085-7542 FU DOE, Office of Nuclear Energy, Science and Technology [DE-AC07-051D14517] FX This work was performed under the auspices and financial support of the DOE, Office of Nuclear Energy, Science and Technology through contract DE-AC07-051D14517. NR 13 TC 1 Z9 1 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD MAR PY 2011 VL 173 IS 3 BP 289 EP 299 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 726MQ UT WOS:000287726800005 ER PT J AU Luan, PG Wang, YT Zhang, SA Zhang, XA AF Luan, Pi-Gang Wang, Yao-Ting Zhang, Shuang Zhang, Xiang TI Electromagnetic energy density in a single-resonance chiral metamaterial SO OPTICS LETTERS LA English DT Article AB We derive the electromagnetic energy density in a chiral metamaterial consisting of uncoupled single-resonance helical resonators. Both the lossless and absorptive cases are studied, and the energy density is shown to be positively definite. The key relation making the derivation successful is the proportionality between the magnetization and the rate of change of the electric polarization of the medium. The same time-domain formulation of energy density also applies to the bianisotropic medium proposed by Zhang et al. [Phys. Rev. Lett. 102, 023901 (2009)]. This work may provide insights for studying time-dependent phenomena in metamaterials. (C) 2011 Optical Society of America C1 [Luan, Pi-Gang; Wang, Yao-Ting] Natl Cent Univ, Dept Opt & Photon, Wave Engn Lab, Jhongli 320, Taiwan. [Zhang, Shuang; Zhang, Xiang] Univ Calif Berkeley, Natl Sci Fdn Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Luan, PG (reprint author), Natl Cent Univ, Dept Opt & Photon, Wave Engn Lab, Jhongli 320, Taiwan. EM pgluan@dop.ncu.edu.tw RI Zhang, Xiang/F-6905-2011 FU National Science Council of Taiwan (NSCT) [NSC 98-2221-M-008-014-MY3]; U.S. National Science Foundation (NSF) Nano-scale Science and Engineering Center [CMMI-0751621] FX The authors gratefully acknowledge financial support from the National Science Council of Taiwan (NSCT) through grant NSC 98-2221-M-008-014-MY3 and the U.S. National Science Foundation (NSF) Nano-scale Science and Engineering Center under award CMMI-0751621. NR 14 TC 6 Z9 6 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2011 VL 36 IS 5 BP 675 EP 677 DI 10.1364/OL.36.000675 PG 3 WC Optics SC Optics GA 728ZH UT WOS:000287912500027 PM 21368945 ER PT J AU Qin, Q Reno, JL Hu, Q AF Qin, Qi Reno, John L. Hu, Qing TI MEMS-based tunable terahertz wire-laser over 330GHz SO OPTICS LETTERS LA English DT Article ID QUANTUM-CASCADE LASERS AB We demonstrate continuous tuning of a terahertz quantum cascade wire laser over a broad range of similar to 330 GHz (similar to 8.6% of the 3.85 THz center frequency) with single-mode operation. Tuning is achieved with a narrow laser ridge (similar to lambda(0)/8) and a moveable MEMS (microelectromechanical systems) side object (plunger) to manipulate the transverse optical mode. The frictionless MEMS plunger enables continuous and reversible tuning. We demonstrate similar to 30 GHz redshift tuning using a silicon plunger and similar to 300 GHz blueshift tuning using a metal plunger. The blueshift tuning range is limited by the bandwidth of the gain medium rather than the tuning mechanism. (C) 2011 Optical Society of America C1 [Qin, Qi; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Qin, Qi; Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, John L.] Sandia Natl Labs, CINT, Albuquerque, NM 87185 USA. RP Qin, Q (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. EM qiqin@mit.edu RI Qin, Qi/G-9373-2013 FU National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); United States Department of Energy's (DOE) National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank Martin L. Culpepper, Jeffrey H. Lang, and Hanqing Li at MIT for discussions about the MEMS design. This work is supported by the National Aeronautics and Space Administration (NASA) and the National Science Foundation (NSF). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's (DOE) National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 33 Z9 33 U1 0 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD MAR 1 PY 2011 VL 36 IS 5 BP 692 EP 694 DI 10.1364/OL.36.000692 PG 3 WC Optics SC Optics GA 728ZH UT WOS:000287912500033 PM 21368951 ER PT J AU Jurgenson, ED Navratil, P Furnstahl, RJ AF Jurgenson, E. D. Navratil, P. Furnstahl, R. J. TI Evolving nuclear many-body forces with the similarity renormalization group SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL; HAMILTONIANS AB In recent years, the Similarity Renormalization Group has provided a powerful and versatile means to soften interactions for ab initio nuclear calculations. The substantial contribution of both induced and initial three-body forces to the nuclear interaction has required the consistent evolution of free-space Hamiltonians in the three-particle space. We present the most recent progress on this work, extending the calculational capability to the p-shell nuclei and showing that the hierarchy of induced many-body forces is consistent with previous estimates. Calculations over a range of the flow parameter for Li-6, including fully evolved NN + 3N interactions, show moderate contributions due to induced four-body forces and display the same improved convergence properties as in lighter nuclei. A systematic analysis provides further evidence that the hierarchy of many-body forces is preserved. C1 [Jurgenson, E. D.; Navratil, P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Navratil, P.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Furnstahl, R. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Jurgenson, ED (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. EM jurgenson2@llnl.gov; navratil@triumf.ca; furnstahl.1@osu.edu OI Furnstahl, Richard/0000-0002-3483-333X FU National Science Foundation [PHY-0653312]; UNEDF SciDAC Collaboration under DOE [DE-FC02-07ER41457]; U.S. Department of Energy by Lawrence Livermore Laboratory [DE-AC52-07NA27344] FX We thank E. Anderson, E. Ormand, R. Perry, and S. Quaglioni for useful comments. This work was supported in part by the National Science Foundation under Grant No. PHY-0653312 and the UNEDF SciDAC Collaboration under DOE Grant DE-FC02-07ER41457. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Laboratory under Contract DE-AC52-07NA27344. NR 40 TC 79 Z9 79 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD MAR 1 PY 2011 VL 83 IS 3 AR 034301 DI 10.1103/PhysRevC.83.034301 PG 16 WC Physics, Nuclear SC Physics GA 727ZN UT WOS:000287842100001 ER PT J AU Sorensen, P Dahl, CE AF Sorensen, Peter Dahl, Carl Eric TI Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter SO PHYSICAL REVIEW D LA English DT Article ID SCINTILLATION EFFICIENCY; PARTICLES; ARGON AB We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter. C1 [Sorensen, Peter] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dahl, Carl Eric] Univ Chicago, Enrico Fermi Inst, KICP, Chicago, IL 60637 USA. [Dahl, Carl Eric] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Sorensen, P (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM pfs@llnl.gov FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Kavli Foundation FX This work was partially motivated by an invited talk at the Princeton Center for Theoretical Science workshop "Dark Matter: Direct Detection and Theoretical Developments,"' Nov. 15-16, 2010. P. S. acknowledges useful discussions with many of the workshop participants. C. E. D. was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder, Fred Kavli. NR 43 TC 35 Z9 36 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD MAR 1 PY 2011 VL 83 IS 6 AR 063501 DI 10.1103/PhysRevD.83.063501 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 727ZU UT WOS:000287843000002 ER PT J AU Srivastava, AC Ramos-Parra, PA Bedair, M Robledo-Hernandez, AL Tang, YH Sumner, LW de la Garza, RID Blancaflor, EB AF Srivastava, Avinash C. Ramos-Parra, Perla A. Bedair, Mohamed Robledo-Hernandez, Ana L. Tang, Yuhong Sumner, Lloyd W. Diaz de la Garza, Rocio I. Blancaflor, Elison B. TI The Folylpolyglutamate Synthetase Plastidial Isoform Is Required for Postembryonic Root Development in Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID ONE-CARBON METABOLISM; GAMMA-GLUTAMATE SYNTHETASE; TETRAHYDROFOLATE BIOSYNTHESIS; S-ADENOSYLMETHIONINE; FUNCTIONAL-ANALYSIS; HIGHER-PLANTS; GENOME-WIDE; FOLATE; CELLS; MITOCHONDRIAL AB A recessive Arabidopsis (Arabidopsis thaliana) mutant with short primary roots and root hairs was identified from a forward genetic screen. The disrupted gene in the mutant encoded the plastidial isoform of folylpolyglutamate synthetase (FPGS), previously designated as AtDFB, an enzyme that catalyzes the addition of glutamate residues to the folate molecule to form folylpolyglutamates. The short primary root of atdfb was associated with a disorganized quiescent center, dissipated auxin gradient in the root cap, bundled actin cytoskeleton, and reduced cell division and expansion. The accumulation of monoglutamylated forms of some folate classes in atdfb was consistent with impaired FPGS function. The observed cellular defects in roots of atdfb underscore the essential role of folylpolyglutamates in the highly compartmentalized one-carbon transfer reactions (C1 metabolism) that lead to the biosynthesis of compounds required for metabolically active cells found in the growing root apex. Indeed, metabolic profiling uncovered a depletion of several amino acids and nucleotides in atdfb indicative of broad alterations in metabolism. Methionine and purines, which are synthesized de novo in plastids via C1 enzymatic reactions, were particularly depleted. The root growth and quiescent center defects of atdfb were rescued by exogenous application of 5-formyl-tetrahydrofolate, a stable folate that was readily converted to metabolically active folates. Collectively, our results indicate that AtDFB is the predominant FPGS isoform that generates polyglutamylated folate cofactors to support C1 metabolism required for meristem maintenance and cell expansion during postembryonic root development in Arabidopsis. C1 [Srivastava, Avinash C.; Bedair, Mohamed; Tang, Yuhong; Sumner, Lloyd W.; Blancaflor, Elison B.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Ramos-Parra, Perla A.; Robledo-Hernandez, Ana L.; Diaz de la Garza, Rocio I.] Dept Agrobiotecnol Agronegocios, Div Biotecnol & Ingn Alimentos, Monterrey 64849, Nuevo Leon, Mexico. [Srivastava, Avinash C.; Tang, Yuhong; Blancaflor, Elison B.] US DOE, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Blancaflor, EB (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM eblancaflor@noble.org RI Sumner, Lloyd/A-3270-2013; Diaz de la Garza, Rocio /B-7449-2011; OI Diaz de la Garza, Rocio /0000-0002-0006-5694; Sumner, Lloyd/0000-0002-4086-663X FU Samuel Roberts Noble Foundation; Oklahoma Center for the Advancement of Science and Technology [PSB10-004]; BioEnergy Science Center; Mexican National Council for Research and Technology [80459]; Office of Biological and Environmental Research in the Office of Science, U.S. Department of Energy FX This work was supported by the Samuel Roberts Noble Foundation, the Oklahoma Center for the Advancement of Science and Technology (grant no. PSB10-004 to E. B. B.), the BioEnergy Science Center (to Y.T. and E. B. B.), and the Mexican National Council for Research and Technology (grant no. 80459 to R.I.D.d.l.G.). The BioEnergy Science Center is a U. S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Office of Science, U.S. Department of Energy. NR 62 TC 20 Z9 25 U1 5 U2 17 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD MAR PY 2011 VL 155 IS 3 BP 1237 EP 1251 DI 10.1104/pp.110.168278 PG 15 WC Plant Sciences SC Plant Sciences GA 727ZY UT WOS:000287843800016 PM 21233333 ER PT J AU Delgado-Aparicio, L Stutman, D Sabbagh, SA Bell, RE Berkery, JW Tritz, K Gerhardt, SP LeBlanc, B Finkenthal, M Levesque, JP Lee, KC Menard, J Paul, S Roquemore, L AF Delgado-Aparicio, L. Stutman, D. Sabbagh, S. A. Bell, R. E. Berkery, J. W. Tritz, K. Gerhardt, S. P. LeBlanc, B. Finkenthal, M. Levesque, J. P. Lee, K. C. Menard, J. Paul, S. Roquemore, L. TI Soft x-ray measurements of resistive wall mode behavior in NSTX SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID HIGH-BETA PLASMAS; DIII-D; STABILIZATION; PHYSICS AB A multi-energy soft x-ray (ME-SXR) array is used for the characterization of resistive wall modes (RWMs) in the National Spherical Torus Experiment (NSTX). Modulations in the time history of the ME-SXR emissivity profiles indicate the existence of edge density and core temperature fluctuations in good agreement with the slow evolution of the n = 1 magnetic perturbation measured by the poloidal and radial RWM coils. The characteristic 20-25 Hz frequency in the SXR diagnostics is approximately that of the n = 1 stable RWM, which is also near the measured peak of the resonant field amplification (RFA) and inversely proportional to the wall time. Together with the magnetics, the ME-SXR measurements suggest that in NSTX the RWM is not restricted exclusively to the reactor wall and edge, and that acting with the stabilizing coils on its global structure may result in density and temperature fluctuations that can be taken into account when designing the feedback process. C1 [Delgado-Aparicio, L.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B.; Menard, J.; Paul, S.; Roquemore, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Stutman, D.; Tritz, K.; Finkenthal, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Sabbagh, S. A.; Berkery, J. W.; Levesque, J. P.] Columbia Univ, New York, NY 10027 USA. [Lee, K. C.] Univ Calif Davis, Davis, CA 95616 USA. [Delgado-Aparicio, L.] MIT, Plasma Sci Fus Ctr, Cambridge, MA 02139 USA. RP Delgado-Aparicio, L (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ldelgado@pppl.gov RI Berkery, John/B-7930-2011; Sabbagh, Steven/C-7142-2011; Stutman, Dan/P-4048-2015; OI Menard, Jonathan/0000-0003-1292-3286 FU United States DoE [DE-FG02-99ER5452, DE-FG02-99ER54523]; PPPL DoE [DE-AC02-76CH03073, DE-AC02-09CH11466] FX This work was supported by the United States DoE grant No DE-FG02-99ER5452 and DE-FG02-99ER54523 at The Johns Hopkins University, and PPPL DoE contract No DE-AC02-76CH03073 and DE-AC02-09CH11466. NR 27 TC 4 Z9 4 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2011 VL 53 IS 3 AR 035005 DI 10.1088/0741-3335/53/3/035005 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 725NH UT WOS:000287651600008 ER PT J AU Smith, DR Guttenfelder, W LeBlanc, BP Mikkelsen, DR AF Smith, D. R. Guttenfelder, W. LeBlanc, B. P. Mikkelsen, D. R. TI Identification of microtearing modes below the ion gyroscale in the National Spherical Torus Experiment SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID TEARING INSTABILITIES; KINETIC-THEORY; GRADIENT; NSTX; TRANSPORT; TOKAMAKS; PHYSICS; MICROSTABILITY; CONFINEMENT; EXPLORATION AB Gyrokinetic calculations indicate microtearing modes below the ion gyroscale are linearly unstable in a National Spherical Torus Experiment (NSTX) plasma. The modes are robustly unstable with respect to simulation parameters, radial location and discharge time. The modes exist at higher wavenumbers and exhibit narrower electric potential mode structures than conventional microtearing modes, but both modes extend to similar normalized radial wavenumbers. Mode growth rates increase with higher electron temperature gradients and higher collisionality. Finally, microtearing modes below the ion gyroscale are the most unstable modes near the magnetic axis, but electron temperature gradient modes are the most unstable modes in the outer plasma region. C1 [Smith, D. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Guttenfelder, W.; LeBlanc, B. P.; Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Smith, DR (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM drsmith@engr.wisc.edu FU US Department of Energy [DE-FG02-89ER53296, DE-AC02-09CH11466, DE-SC0001288] FX This work was supported by the US Department of Energy under Contract Nos DE-FG02-89ER53296, DE-AC02-09CH11466 and DE-SC0001288. NR 32 TC 11 Z9 11 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2011 VL 53 IS 3 AR 035013 DI 10.1088/0741-3335/53/3/035013 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 725NH UT WOS:000287651600016 ER PT J AU Volpe, L Jafer, R Vauzour, B Nicolai, P Santos, JJ Dorchies, F Fourment, C Hulin, S Regan, C Perez, F Baton, S Lancaster, K Galimberti, M Heathcote, R Tolley, M Spindloe, C Nazarov, W Koester, P Labate, L Gizzi, LA Benedetti, C Sgattoni, A Richetta, M Pasley, J Beg, FN Chawla, S Higginson, DP MacKinnon, A MacPhee, AG Batani, D AF Volpe, L. Jafer, R. Vauzour, B. Nicolai, Ph Santos, J. J. Dorchies, F. Fourment, C. Hulin, S. Regan, C. Perez, F. Baton, S. Lancaster, K. Galimberti, M. Heathcote, R. Tolley, M. Spindloe, Ch Nazarov, W. Koester, P. Labate, L. Gizzi, L. A. Benedetti, C. Sgattoni, A. Richetta, M. Pasley, J. Beg, F. N. Chawla, S. Higginson, D. P. MacKinnon, A. MacPhee, A. G. Batani, D. TI Proton radiography of cylindrical laser-driven implosions SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article AB We report on the results of a recent experiment at the Rutherford Appleton Laboratory investigating fast electron propagation in cylindrically compressed targets; a subject of interest for fast ignition. This experiment was performed within the framework of the road map of HiPER (the European High Power laser Energy Research facility Project). Protons accelerated by a ps-laser pulse are used to radiograph a 220 mu m diameter, imploded with similar to 200 J of laser light (1 ns lambda = 0.53 mu m) in four symmetrically incident beams. Results are also compared with those from hard x-ray radiography. Detailed comparison with 2D radiation hydrodyamics simulations is performed with the aid of a Monte Carlo code adapted to describe plasma effects. Finally, a simple analytical model is developed to estimate the performance of proton radiography for given implosion conditions. C1 [Volpe, L.; Jafer, R.; Batani, D.] Univ Milano Bicocca, Milan, Italy. [Vauzour, B.; Nicolai, Ph; Santos, J. J.; Dorchies, F.; Fourment, C.; Hulin, S.; Regan, C.] Univ Bordeaux, CELIA, CNRS, CEA, F-33405 Talence, France. [Perez, F.; Baton, S.] Ecole Polytech CNRS UPMC, LULI, F-91128 Palaiseau, France. [Nazarov, W.] Univ St Andrews, St Andrews KY16 9AJ, Fife, Scotland. [Koester, P.; Labate, L.; Gizzi, L. A.] INO CNR, Pisa, Italy. [Benedetti, C.; Sgattoni, A.] Univ Bologna, I-40126 Bologna, Italy. [Richetta, M.] Univ Roma Tor Vergata, Rome, Italy. [Pasley, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Beg, F. N.; Chawla, S.; Higginson, D. P.] Univ Calif San Diego, UCSD, La Jolla, CA 92093 USA. [MacKinnon, A.; MacPhee, A. G.] LLNL, Livermore, CA 94550 USA. RP Volpe, L (reprint author), Univ Milano Bicocca, Milan, Italy. RI Gizzi, Leonida/F-4782-2011; RICHETTA, MARIA/I-8513-2012; Vauzour, Benjamin/N-8385-2013; Jafer, Rashida/K-2078-2014; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; Brennan, Patricia/N-3922-2015; OI MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788; Gizzi, Leonida A./0000-0001-6572-6492 FU HiPER; EC; MSMT; STFC FX The authors acknowledge the support of the HiPER project and Preparatory Phase Funding Agencies (EC, MSMT and STFC) in undertaking this work. NR 21 TC 8 Z9 8 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD MAR PY 2011 VL 53 IS 3 AR 032003 DI 10.1088/0741-3335/53/3/032003 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 725NH UT WOS:000287651600003 ER PT J AU Higbie, JM Rochester, SM Patton, B Holzohner, R Calia, DB Budker, D AF Higbie, James M. Rochester, Simon M. Patton, Brian Holzoehner, Ronald Calia, Domenico Bonaccini Budker, Dmitry TI Magnetometry with mesospheric sodium SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE atomic physics; geomagnetism; optical pumping ID FIELDS AB Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. C1 [Higbie, James M.] Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. [Rochester, Simon M.; Patton, Brian; Budker, Dmitry] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Holzoehner, Ronald; Calia, Domenico Bonaccini] European So Observ, Laser Syst Dept, D-85748 Munich, Germany. [Budker, Dmitry] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Higbie, JM (reprint author), Bucknell Univ, Dept Phys & Astron, Lewisburg, PA 17837 USA. EM jhigbie@gmail.com RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU National Geospatial-Intelligence Agency FX The authors acknowledge stimulating discussions with Peter Milonni, William Happer, Michael Purucker, and Stuart Bale. This work is supported by the National Geospatial-Intelligence Agency University Research Initiatives program. NR 13 TC 9 Z9 9 U1 2 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 1 PY 2011 VL 108 IS 9 BP 3522 EP 3525 DI 10.1073/pnas.1013641108 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 728AD UT WOS:000287844400019 PM 21321235 ER PT J AU Dray, E Dunlop, MH Kauppi, L San Filippo, J Wiese, C Tsai, MS Begovic, S Schild, D Jasin, M Keeney, S Sung, P AF Dray, Eloise Dunlop, Myun Hwa Kauppi, Liisa San Filippo, Joseph Wiese, Claudia Tsai, Miaw-Sheue Begovic, Sead Schild, David Jasin, Maria Keeney, Scott Sung, Patrick TI Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1) SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE DNA repair; genomic stability; meiotic proteins ID HOMOLOGOUS RECOMBINATION; ESCHERICHIA-COLI; SYNAPTONEMAL COMPLEXES; BINDING PROTEIN; RECA; DNA; MEIOSIS; MOUSE; ORGANIZATION; REPAIR AB Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination. C1 [Dray, Eloise; Dunlop, Myun Hwa; San Filippo, Joseph; Begovic, Sead; Sung, Patrick] Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. [Kauppi, Liisa; Jasin, Maria; Keeney, Scott] Mem Sloan Kettering Canc Ctr, Program Mol Biol, New York, NY 10065 USA. [Wiese, Claudia; Tsai, Miaw-Sheue; Schild, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Keeney, Scott] Mem Sloan Kettering Canc Ctr, Howard Hughes Med Inst, New York, NY 10065 USA. RP Dray, E (reprint author), Yale Univ, Sch Med, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA. EM eloise.dray@yale.edu; patrick.sung@yale.edu RI Dray, Eloise/E-3938-2012; Kauppi, Liisa/H-5845-2012; OI Dray, Eloise/0000-0001-6793-9838; Keeney, Scott/0000-0002-1283-6417 FU National Institutes of Health [R01ES015252, R01HD040916, R01ES07061, P01CA092584, R01-CA120315]; Cure Foundation [PDF0706844] FX SpDmc1 was a kind gift from Peter Chi (Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT). We thank Jim Dowdle for helping to prepare immunofluorescence slides. This work was supported by National Institutes of Health Grants R01ES015252, R01HD040916, R01ES07061, P01CA092584, and R01-CA120315 and Susan G. Komen for the Cure Foundation postdoctoral fellowship PDF0706844. NR 28 TC 17 Z9 19 U1 0 U2 5 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD MAR 1 PY 2011 VL 108 IS 9 BP 3560 EP 3565 DI 10.1073/pnas.1016454108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 728AD UT WOS:000287844400026 PM 21307306 ER PT J AU Garabalino, MA Hughes, AM Molinari, AJ Heber, EM Pozzi, ECC Cardoso, JE Colombo, LL Nievas, S Nigg, DW Aromando, RF Itoiz, ME Trivillin, VA Schwint, AE AF Garabalino, Marcela A. Monti Hughes, Andrea Molinari, Ana J. Heber, Elisa M. Pozzi, Emiliano C. C. Cardoso, Jorge E. Colombo, Lucas L. Nievas, Susana Nigg, David W. Aromando, Romina F. Itoiz, Maria E. Trivillin, Veronica A. Schwint, Amanda E. TI Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article ID HAMSTER-CHEEK POUCH; EXPERIMENTAL ORAL-CANCER; SQUAMOUS-CELL CARCINOMA; PRECANCEROUS TISSUE; BOROCAPTATE SODIUM; NECK-CANCER; BORONOPHENYLALANINE; RADIOBIOLOGY; TUMORS; HEAD AB We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of B-10 carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na (2) (10) B10H10), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. C1 [Garabalino, Marcela A.; Monti Hughes, Andrea; Molinari, Ana J.; Heber, Elisa M.; Pozzi, Emiliano C. C.; Itoiz, Maria E.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Atom Energy Commiss, Dept Radiobiol, San Martin, Buenos Aires, Argentina. [Pozzi, Emiliano C. C.] Natl Atom Energy Commiss, Dept Res & Prod Reactors, Ezeiza, Buenos Aires, Argentina. [Cardoso, Jorge E.; Colombo, Lucas L.] Oncol Inst Angel H Roffo, Buenos Aires, DF, Argentina. [Nievas, Susana] Natl Atom Energy Commiss, Dept Chem, San Martin, Buenos Aires, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Aromando, Romina F.; Itoiz, Maria E.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, RA-1122 Buenos Aires, DF, Argentina. RP Schwint, AE (reprint author), Natl Atom Energy Commiss, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA, San Martin, Buenos Aires, Argentina. EM schwint@cnea.gov.ar OI Schwint, Amanda Elena/0000-0001-6727-3669 FU US Department of Energy through the Idaho National Laboratory; National Agency for the Promotion of Science and Technology of Argentina FX This study was supported in part by in-kind contributions from the US Department of Energy through the Idaho National Laboratory and a grant from the National Agency for the Promotion of Science and Technology of Argentina. The authors wish to acknowledge the expert advice and generous support of Dr. Claudio Devida and his team with ICP boron measurements. NR 30 TC 13 Z9 13 U1 2 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD MAR PY 2011 VL 50 IS 1 BP 199 EP 207 DI 10.1007/s00411-010-0345-6 PG 9 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 723NC UT WOS:000287512400018 PM 21132507 ER PT J AU Noffsinger, J Cohen, ML AF Noffsinger, Jesse Cohen, Marvin L. TI Superconductivity in monolayer Pb on Si(111) from first principles SO SOLID STATE COMMUNICATIONS LA English DT Article DE Superconductivity; Electron-phonon coupling ID STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; WANNIER FUNCTIONS; PRESSURE; ENERGY; FILMS AB Observation of superconductivity in a single layer of Pb on the (111) surface of bulk silicon has renewed interest in a longstanding question; can superconductivity persist to the ultimate atomic limit? Using first-principles techniques, we investigate the total electron-phonon coupling in monolayer Pb supported by a Si( 111) substrate. Our ultra-fine sampling of the electronic structure, lattice dynamics and electron-phonon matrix elements in the nearly two-dimensional Brillouin zone yields a total electron-phonon coupling parameter which explains the experimentally observed superconducting transition temperature of 1.83 K [T. Zhang, et al., Nat. Phys. 6 (2010) 104]. The observed suppression of the superconducting transition temperature from the bulk value of 7.2 K is found to arise from the interplay of reduced electron-phonon matrix elements and a modification of the lattice dynamics resulting from the Pb-Si bonding. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Noffsinger, Jesse] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Noffsinger, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM jnoffsinger@berkeley.edu FU NSF [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy [DE- AC02-05CH11231] FX This work was supported by NSF Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, US Department of Energy under Contract No. DE- AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility. NR 33 TC 9 Z9 9 U1 7 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD MAR PY 2011 VL 151 IS 6 BP 421 EP 424 DI 10.1016/j.ssc.2011.01.006 PG 4 WC Physics, Condensed Matter SC Physics GA 730NQ UT WOS:000288041000001 ER PT J AU Russell, SM Shen, MM Liu, DJ Thiel, PA AF Russell, Selena M. Shen, Mingmin Liu, Da-Jiang Thiel, Patricia A. TI Adsorption of sulfur on Ag(100) SO SURFACE SCIENCE LA English DT Article DE Sulphides; Surface relaxation and reconstruction; Density functional calculations ID SCANNING-TUNNELING-MICROSCOPY; INITIO MOLECULAR-DYNAMICS; FACES 111 100; METAL-SURFACES; PHASE-DIAGRAM; OXYGEN; RECONSTRUCTION; CHEMISORPTION; SILVER; DIFFUSION AB We have used scanning tunneling microscopy and density Functional theory to investigate the structures formed by sulfur on Ag(100). As indicated by previous low-energy electron diffraction studies, the main phases have unit cells of p(2 x 2) and (root 17 x root 17)R14 degrees. We show that the latter is a reconstruction. The favored structural model is one in which 5 Ag atoms are missing from the (100) surface plane per unit cell. The ejected Ag atoms combine with sulfur to form islands of the reconstructed phase on the terraces. The (root 17 x root 17)R14 degrees phase coexists with the p(2 x 2), at sulfur coverages slightly above 0.25 monolayers. In addition, chain-like structures are observed in SIM, both at room temperature (where they are dynamic) and below (where they are not). These results are compared with relevant literature for copper surfaces. (C) 2010 Elsevier B.V. All rights reserved. C1 [Russell, Selena M.; Shen, Mingmin; Thiel, Patricia A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Thiel, Patricia A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Liu, Da-Jiang; Thiel, Patricia A.] Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. RP Thiel, PA (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM pthiel@iastate.edu RI Shen, Mingmin/A-9293-2012 FU NSF [CHE-0809472]; Division of Chemical Sciences, BES, US Department of Energy (USDOE) FX The experimental component of this work was supported by NSF Grant CHE-0809472. The theoretical component was supported by the Division of Chemical Sciences, BES, US Department of Energy (USDOE). We thank Danny Shechtman for an enlightening discussion about dislocations, and we thank Jim Evans for a careful reading. NR 47 TC 7 Z9 7 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD MAR PY 2011 VL 605 IS 5-6 BP 520 EP 527 DI 10.1016/j.susc.2010.12.010 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 727WL UT WOS:000287833500010 ER PT J AU Henderson, MA Rosso, KM AF Henderson, Michael A. Rosso, Kevin M. TI Oxidation of H2S by coadsorbed oxygen on the alpha-Cr2O3(0001) surface SO SURFACE SCIENCE LA English DT Article DE Thermal desorption spectroscopy; Chemisorption; Catalysis; Sticking; Chromium oxide; Hydrogen sulfide ID IRON-OXIDE CATALYSTS; INITIO TOTAL-ENERGY; BAND-GAP SIZE; SELECTIVE OXIDATION; ELEMENTAL SULFUR; HYDROGEN-SULFIDE; CHEMICAL-REACTIVITY; MIXED-OXIDE; ADSORPTION; CHEMISORPTION AB The interactions of H2S and oxygen have been explored on the alpha-Cr2O3(0001) surface using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and sticking coefficient measurements. H2S adsorbs with near unity sticking on the clean alpha-Cr2O3(0001) surface at 125 K up to a coverage of similar to 1.6 ML (where 1 ML is defined as the surface areal density of Cr3+ sites). Reversible adsorption/desorption of H2S was evidenced in TPD by three desorption states evolving between 150 and 315 K. Although no S-containing decomposition products were observed in TPD, AES detected S on the surface after TPD indicating that some degree of irreversible decomposition occurred. The level of H2S decomposition on the clean surface was estimated to be between 02 and 0.5 ML using water TPD as an indicator of S site blocking. In contrast, preadsorbed O-2 at three temperatures (125, 400 and 800 K) exerted drastic changes in the surface chemistry of H2S. At 400 and 800 K, O-2 adsorption on clean alpha-Cr2O3 (0001) was dissociative, populating the surface with chromyl groups (Cr = O) in the former case (corresponding to roughly 1 0 per Cr3+ surface site) and resulting in a nearly complete O-termination sheet (similar to 3 O per Cr3+) in the latter case. Little or no H2S chemistry was observed on the O-terminated surface based on TPD and AES. However, the availability of some Cr-coordination sites on the chromyl-terminated surface facilitated H2S adsorption and oxidation during TPD to SO2 (445-470 K) and H2O (320 K). Isotopic-labeling studies suggest that the oxygen atom in the water product originated from the dosed oxygen whereas that in the SO2 product came from the lattice. Similar results were obtained from H2S dosed on the surface pretreated with O-2 at 125 K. where O-2 adsorption was predominately molecular, except that S-2 was also detected in TPD at 525 K and the amount of SO2 produced at 445 K decreased. These results suggest that atomically adsorbed oxygen effectively oxidized H2S to SOx surface species, but that molecularly adsorbed O-2 was the key to the partial oxidation of H2S to elemental sulfur. (C) 2010 Published by Elsevier B.V. C1 [Henderson, Michael A.; Rosso, Kevin M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM ma.henderson@pnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Divisions of Chemical Sciences, Geosciences, and Biosciences, and of Materials Sciences and Engineering; U.S. Department of Energy by the Battelle Memorial Institute [DEAC06-76RLO1830]; Office of Biological and Environmental Research FX The authors thank Scott Chambers for growing and providing the alpha-Cr2O3(0001) film used in this study. Work reported here was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Divisions of Chemical Sciences, Geosciences, and Biosciences, and of Materials Sciences and Engineering. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the U.S. Department of Energy by the Battelle Memorial Institute under contract DEAC06-76RLO1830. The experimental studies reported here were performed in the William R. Wiley Environmental Molecular Science Laboratory (EMSL), a Department of Energy user facility funded by the Office of Biological and Environmental Research. NR 55 TC 8 Z9 8 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD MAR PY 2011 VL 605 IS 5-6 BP 555 EP 563 DI 10.1016/j.susc.2010.12.016 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 727WL UT WOS:000287833500015 ER PT J AU Chen, DA Rodriguez, JA Zaera, F AF Chen, Donna A. Rodriguez, Jose A. Zaera, Francisco TI Preface: 5th San Luis Pan-American Conference on Surfaces, Interfaces and Catalysis SO TOPICS IN CATALYSIS LA English DT Editorial Material C1 [Zaera, Francisco] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Chen, Donna A.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, New York, NY USA. RP Zaera, F (reprint author), Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. EM zaera@ucr.edu RI Zaera, Francisco/J-8720-2013; OI Chen, Donna A./0000-0003-4962-5530 NR 0 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2011 VL 54 IS 1-4 BP 1 EP 3 DI 10.1007/s11244-011-9659-0 PG 3 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 723GZ UT WOS:000287496100001 ER PT J AU Tenney, SA He, W Ratliff, JS Mullins, DR Chen, DA AF Tenney, Samuel A. He, Wei Ratliff, Jay S. Mullins, David R. Chen, Donna A. TI Characterization of Pt-Au and Ni-Au Clusters on TiO2(110) SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 5th San Luis Conference on Surfaces, Interfaces and Catalysis CY APR 09-19, 2010 CL Pan Amer Adv Stud Inst, Sao Pedro, BRAZIL HO Pan Amer Adv Stud Inst DE X-ray photoelectron spectroscopy; Bimetallic; Clusters; Platinum; Nickel; Gold; Titanium dioxide ID METAL-SUPPORT INTERACTIONS; SINGLE-CRYSTAL SURFACES; LEVEL BINDING-ENERGY; DIMETHYL METHYLPHOSPHONATE DECOMPOSITION; RAY PHOTOELECTRON-SPECTROSCOPY; BIMETALLIC SURFACES; ELECTRONIC-STRUCTURE; CO ADSORPTION; GOLD CLUSTERS; CERIUM OXIDE AB The surface composition and properties of Pt-Au and Ni-Au clusters on TiO2(110) have been studied by scanning tunneling microscopy (STM), low energy ion scattering (LEIS) and soft X-ray photoelectron spectroscopy (sXPS). STM studies show that bimetallic clusters are formed during sequential deposition of the two metals, regardless of the order of deposition. At the 2 ML of Au/2 ML of Pt or Ni coverages studied here, the second metal contributes to the growth of existing clusters rather than forming new pure metal clusters. LEIS experiments demonstrate that the surfaces of the bimetallic clusters are almost 100% Au when 2 ML of Au is deposited on top of 2 ML of Pt or Ni. However, a much larger fraction of Pt or Ni (50 and 20%, respectively) remains at the surface when 2 ML of Pt or Ni is deposited on 2 ML of Au, most likely due to limited diffusion of atoms within the clusters at room temperature. According to sXPS investigations, the binding energies of the metals in the bimetallic clusters are shifted from those observed for pure metal clusters; the Pt(4f(7/2)) and Ni(3p(3/2)) peaks are shifted to lower binding energies while the position of the Au(4f(7/2)) peak is dominated by surface core level shifts. Pure Pt clusters as well as 0.4 ML of Au on 2 ML of Pt clusters reduce the titania support upon encapsulation after annealing to 800 K, whereas 2 ML of Au on 2 ML of Pt clusters do not reduce titania, presumably because there is no Pt at the surface of the clusters. Pure Ni clusters are also known to become encapsulated upon heating, but the reduction of titania is much less extensive compared to that of pure Pt clusters. C1 [Tenney, Samuel A.; He, Wei; Ratliff, Jay S.; Chen, Donna A.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Mullins, David R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, DA (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM chen@chem.sc.edu RI bartelsdoe, ludwig/F-8008-2011; OI Chen, Donna A./0000-0003-4962-5530 NR 89 TC 21 Z9 21 U1 4 U2 55 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2011 VL 54 IS 1-4 BP 42 EP 55 DI 10.1007/s11244-011-9646-5 PG 14 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 723GZ UT WOS:000287496100007 ER PT J AU Calaza, FC Chen, TL Mullins, DR Overbury, SH AF Calaza, Florencia C. Chen, Tsung-Liang Mullins, David R. Overbury, Steven H. TI Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 5th San Luis Conference on Surfaces, Interfaces and Catalysis CY APR 09-19, 2010 CL Pan Amer Adv Stud Inst, Sao Pedro, BRAZIL HO Pan Amer Adv Stud Inst DE CeO2; Cerium oxide; RAIRS; Soft X-ray photoemission; Adsorption; Ether ID OXIDE THIN-FILMS; DIMETHYL ETHER; DIETHYL-ETHER; SURFACE-CHEMISTRY; CERIUM OXIDE; THERMAL-CONVERSION; PERFLUORO ETHERS; AL2O3 SURFACE; ADSORPTION STRUCTURES; SELECTIVE OXIDATION AB The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO2(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tilt away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO2) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of beta-hydrogen. C1 [Calaza, Florencia C.; Chen, Tsung-Liang; Mullins, David R.; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM overburysh@ornl.gov RI Calaza, Florencia/G-4460-2010; Overbury, Steven/C-5108-2016 OI Overbury, Steven/0000-0002-5137-3961 NR 58 TC 5 Z9 5 U1 2 U2 22 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2011 VL 54 IS 1-4 BP 56 EP 69 DI 10.1007/s11244-011-9648-3 PG 14 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 723GZ UT WOS:000287496100008 ER PT J AU Shen, MM Jenks, CJ Evans, JW Thiel, PA AF Shen, Mingmin Jenks, Cynthia J. Evans, J. W. Thiel, P. A. TI How Sulfur Controls Nucleation of Ag Islands on Ag(111) SO TOPICS IN CATALYSIS LA English DT Article; Proceedings Paper CT 5th San Luis Conference on Surfaces, Interfaces and Catalysis CY APR 09-19, 2010 CL Pan Amer Adv Stud Inst, SAo Pedro, BRAZIL HO Pan Amer Adv Stud Inst DE Hydrodesulfurization; Sulfur; Silver; Ag(111); Scanning tunneling microscopy; STM ID THIN-FILM GROWTH; BY-LAYER GROWTH; OXYGEN; NANOCLUSTERS; HOMOEPITAXY; AU(111); SURFACE AB Pre-adsorbed sulfur controls nucleation of Ag islands on Ag(111), at coverages above a very small critical value. Sulfur can exert opposite effects: it accelerates mass transfer of Ag to steps and hence inhibits nucleation under some conditions, but it impedes mass transfer and hence enhances nucleation under others. The effect depends upon sulfur coverage and temperature. The inhibition or acceleration of mass transfer correlates with the existence or absence of a semi-static, ordered arrangement of Ag(3)S(3) clusters. C1 [Jenks, Cynthia J.; Evans, J. W.; Thiel, P. A.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Shen, Mingmin; Thiel, P. A.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, J. W.] Iowa State Univ, Dept Math, Ames, IA 50011 USA. [Thiel, P. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Jenks, CJ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM cjenks@ameslab.gov RI Shen, Mingmin/A-9293-2012 NR 23 TC 0 Z9 0 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD MAR PY 2011 VL 54 IS 1-4 BP 83 EP 89 DI 10.1007/s11244-011-9627-8 PG 7 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 723GZ UT WOS:000287496100011 ER PT J AU Uchida, M Sun, Y McDermott, G Knoechel, C Le Gros, MA Parkinson, D Drubin, DG Larabell, CA AF Uchida, Maho Sun, Yidi McDermott, Gerry Knoechel, Christian Le Gros, Mark A. Parkinson, Dilworth Drubin, David G. Larabell, Carolyn A. TI Quantitative analysis of yeast internal architecture using soft X-ray tomography SO YEAST LA English DT Article DE imaging; cell cycle; organelles; karyoplasmic ID SACCHAROMYCES-CEREVISIAE; SCHIZOSACCHAROMYCES-POMBE; BIOLOGICAL SPECIMENS; COMPUTED-TOMOGRAPHY; SIZE CONTROL; CELL-CYCLE; RESOLUTION; GROWTH; DIVISION; INHERITANCE AB We used soft X-ray tomography (SXT) - a high-resolution, quantitative imaging technique - to measure cell size and organelle volumes in yeasts. Cell size is a key factor in initiating cell division in yeasts, whereas the number and volume of the organelles have a profound impact on the function and viability of a cell. Consequently, determining these cell parameters is fundamentally important in understanding yeast biology. SXT is well suited to this type of analysis. Specimens are imaged in a near-native state, and relatively large numbers of cells can be readily analysed. In this study, we characterized haploid and diploid strains of Saccharomyces cerevisiae at each of the key stages in the cell cycle and determined the relationships that exist cellular and organelle volumes. We then compared these results with SXT data obtained from Schizosaccharomyces pombe, the three main phenotypes displayed by the opportunistic yeast pathogen Candida albicans and from a coff1-22 mutant strain of S. cerevisiae. This comparison revealed that volumetric ratios were invariant, irrespective of yeast strain, ploidy or morphology, leading to the conclusion these volumetric ratios are common in all yeasts. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Uchida, Maho; McDermott, Gerry; Knoechel, Christian; Parkinson, Dilworth; Larabell, Carolyn A.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Sun, Yidi; Drubin, David G.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA USA. RP Larabell, CA (reprint author), Univ Calif San Francisco, Dept Anat, Box 2722,1550 4th St, San Francisco, CA 94143 USA. EM Carolyn.Larabell@ucsf.edu RI Uchida, Maho/E-1637-2011; Parkinson, Dilworth/A-2974-2015 OI Parkinson, Dilworth/0000-0002-1817-0716 FU Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231]; NIH National Center for Research Resources [RR019664]; NIH [R01 50399] FX We gratefully acknowledge Zenny Serrano for cell culture and expert technical assistance. This work was funded by the Department of Energy Office of Biological and Environmental Research Grant DE-AC02-05CH11231, the NIH National Center for Research Resources Grant RR019664 and NIH R01 50399 to DGD. NR 40 TC 49 Z9 49 U1 2 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0749-503X J9 YEAST JI Yeast PD MAR PY 2011 VL 28 IS 3 BP 227 EP 236 DI 10.1002/yea.1834 PG 10 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA 730MA UT WOS:000288036200005 PM 21360734 ER PT J AU Galiana, N Martin, PP Garzon, L Rodriguez-Canas, E Munuera, C Esteban-Betegon, F Varela, M Ocal, C Alonso, M Ruiz, A AF Galiana, N. Martin, P. P. Garzon, L. Rodriguez-Canas, E. Munuera, C. Esteban-Betegon, F. Varela, M. Ocal, C. Alonso, M. Ruiz, A. TI Formation of pyramid-like nanostructures in MBE-grown Si films on Si(001) SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID MOLECULAR-BEAM EPITAXY; SCANNING-TUNNELING-MICROSCOPY; SURFACE-MORPHOLOGY; VICINAL SI(001); DEPOSITION; ISLANDS; INSTABILITIES; EVOLUTION; GE(001) AB The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometer-scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra-high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks, and square pit (inverted pyramid) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nanoscale entities (islands or pits) display certain self assembly and ordering, concerning size, shape, and spacing. Film growth sequence follows the 'islands-coalescence-2D growth' pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature. C1 [Galiana, N.; Martin, P. P.; Rodriguez-Canas, E.; Munuera, C.; Esteban-Betegon, F.; Alonso, M.; Ruiz, A.] CSIC, Inst Ciencia Mat Madrid, Madrid 28049, Spain. [Garzon, L.; Munuera, C.; Ocal, C.] CSIC, Inst Ciencia Mat Barcelona, E-08193 Barcelona, Spain. [Varela, M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. RP Ruiz, A (reprint author), CSIC, Inst Ciencia Mat Madrid, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain. EM anaruiz@icmm.csic.es RI Ruiz, Ana/B-2194-2010; Varela, Maria/H-2648-2012; Ocal, Carmen/G-8590-2013; Varela, Maria/E-2472-2014; Esteban-Betegon, Fatima/L-2490-2014; Munuera, Carmen/J-9928-2014; Alonso, Maria/F-3163-2016; OI Ocal, Carmen/0000-0001-8790-8844; Varela, Maria/0000-0002-6582-7004; Garzon, Luis/0000-0001-6700-9788 FU Spanish MEC/MCYT [MAT2007-66719-C03-02, MAT2008-06765-C02-02, MAT2004-05348-C04]; Division of Materials Sciences and Engineering of the US Department of Energy; [IN95-0170 (MEC-CSIC)]; [PB97-1195/98 (MEC)]; [MAT2001-1596]; [CAM-7N/0042/19] FX This work has been financially supported by the Spanish MEC/MCYT through grants MAT2007-66719-C03-02, MAT2008-06765-C02-02, and MAT2004-05348-C04. Research at ORNL (MV) was sponsored by the Division of Materials Sciences and Engineering of the US Department of Energy. The MBE setup has been realized with budget from projects IN95-0170 (MEC-CSIC), PB97-1195/98 (MEC), MAT2001-1596, and CAM-7N/0042/19, and thanks to the generous donation by the Paul-Drude-Institut (Berlin) of part of the equipment; we are deeply indebted to Prof. K. H. Ploog for this initiative. NR 38 TC 0 Z9 0 U1 1 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD MAR PY 2011 VL 102 IS 3 BP 731 EP 738 DI 10.1007/s00339-010-5974-8 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 720ZG UT WOS:000287320600033 ER PT J AU Lee, YS Beers, TC Prieto, CA Lai, DK Rockosi, CM Morrison, HL Johnson, JA An, D Sivarani, T Yanny, B AF Lee, Young Sun Beers, Timothy C. Prieto, Carlos Allende Lai, David K. Rockosi, Constance M. Morrison, Heather L. Johnson, Jennifer A. An, Deokkeun Sivarani, Thirupathi Yanny, Brian TI THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: imaging spectroscopy ID DIGITAL SKY SURVEY; DWARF SPHEROIDAL GALAXIES; OLD OPEN CLUSTERS; GALACTIC CHEMICAL EVOLUTION; VELOCITY EXPERIMENT RAVE; HOBBY-EBERLY TELESCOPE; INFRARED CAII TRIPLET; MILKY-WAY SATELLITE; METAL-POOR STARS; 1ST DATA RELEASE AB We present a method for the determination of [alpha/Fe] ratios from low- resolution (R = 2000) SDSS/ SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15,000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [alpha/Fe] from SDSS/SEGUE spectra (with S/N > 20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range Teff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, + 0.3], over the range [alpha/Fe] = [-0.1, + 0.6]. For stars with [Fe/H] < -1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N > 25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [alpha/Fe] can be obtained from our approach is [Fe/H] similar to -2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] similar to -3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [alpha/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [alpha/Fe] from previous studies. The results of the comparison with NGC 6791 imply that themetallicity range for the method may extend to similar to + 0.5. C1 [Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Prieto, Carlos Allende] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Prieto, Carlos Allende] Univ La Laguna, Dept Astrofis, E-38206 Tenerife, Spain. [Prieto, Carlos Allende] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Lai, David K.; Rockosi, Constance M.] Univ Calif Santa Cruz, Lick Observ, Dept Astron & Astrophys, UCO, Santa Cruz, CA 95064 USA. [Morrison, Heather L.] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [An, Deokkeun] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Lee, YS (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM lee@pa.msu.edu; beers@pa.msu.edu; cap@mssl.ucl.ac.uk; david@ucolick.org; crockosi@ucolikc.org; heather@vegemite.case.edu; jaj@astronomy.ohio-state.edu; deokkeun@ewha.ac.kr; sivarani@iiap.res.in; yanny@fnal.gov FU Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA); U.S. National Science Foundation; National Science Foundation through the NSF [AST-0802292]; NSF; [PHY 02-16783]; [PHY 08-22648]; [AST-0607518] FX Y.S.L. and T.C.B. acknowledge partial funding of this work from grants PHY 02-16783 and PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. H. L. M. acknowledges support from AST-0607518. D. K. L. acknowledges the support of the National Science Foundation through the NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0802292. J.A.J. acknowledges support from NSF NR 88 TC 89 Z9 89 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAR PY 2011 VL 141 IS 3 AR 90 DI 10.1088/0004-6256/141/3/90 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 719TC UT WOS:000287231000021 ER PT J AU Smolinski, JP Lee, YS Beers, TC An, D Bickerton, SJ Johnson, JA Loomis, CP Rockosi, CM Sivarani, T Yanny, B AF Smolinski, Jason P. Lee, Young Sun Beers, Timothy C. An, Deokkeun Bickerton, Steven J. Johnson, Jennifer A. Loomis, Craig P. Rockosi, Constance M. Sivarani, Thirupathi Yanny, Brian TI THE SEGUE STELLAR PARAMETER PIPELINE. IV. VALIDATION WITH AN EXTENDED SAMPLE OF GALACTIC GLOBULAR AND OPEN CLUSTERS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: spectroscopic ID DIGITAL SKY SURVEY; INFRARED CAII TRIPLET; MAIN-SEQUENCE TURNOFF; WIYN OPEN CLUSTER; GIANT BRANCH TIP; DATA RELEASE; CHEMICAL-COMPOSITION; MILKY-WAY; ATMOSPHERIC PARAMETERS; EMPIRICAL CALIBRATION AB Spectroscopic and photometric data for likely member stars of five Galactic globular clusters (M3, M53, M71, M92, and NGC 5053) and three open clusters (M35, NGC 2158, and NGC 6791) are processed by the current version of the SEGUE Stellar Parameter Pipeline (SSPP), in order to determine estimates of metallicities and radial velocities (RVs) for the clusters. These results are then compared to values from the literature. We find that the mean metallicity (<[Fe/H]>) and mean radial velocity (< RV >) estimates for each cluster are almost all within 2 sigma of the adopted literature values; most are within 1 sigma. We also demonstrate that the new version of the SSPP achieves small, but noteworthy, improvements in <[Fe/H]> estimates at the extrema of the cluster metallicity range, as compared to a previous version of the pipeline software. These results provide additional confidence in the application of the SSPP for studies of the abundances and kinematics of stellar populations in the Galaxy. C1 [Smolinski, Jason P.; Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Smolinski, Jason P.; Lee, Young Sun; Beers, Timothy C.] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [An, Deokkeun] Ewha Womans Univ, Dept Chem, Seoul 120750, South Korea. [Bickerton, Steven J.; Loomis, Craig P.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Johnson, Jennifer A.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, Lick Observ, UCO, Santa Cruz, CA 95064 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Smolinski, JP (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM smolin19@msu.edu; lee@pa.msu.edu; beers@pa.msu.edu; deokkeun@ewha.ac.kr; bick@astro.princeton.edu; jaj@astronomy.ohio-state.edu; cloomis@astro.princeton.edu; crockosi@ucolick.org; sivarani@iiap.res.in; yanny@fnal.gov NR 62 TC 96 Z9 97 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD MAR PY 2011 VL 141 IS 3 AR 89 DI 10.1088/0004-6256/141/3/89 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 719TC UT WOS:000287231000020 ER PT J AU Das, S Marriage, TA Ade, PAR Aguirre, P Amiri, M Appel, JW Barrientos, LF Battistelli, ES Bond, JR Brown, B Burger, B Chervenak, J Devlin, MJ Dicker, SR Doriese, WB Dunkley, J Dunner, R Essinger-Hileman, T Fisher, RP Fowler, JW Hajian, A Halpern, M Hasselfield, M Hernandez-Monteagudo, C Hilton, GC Hilton, M Hincks, AD Hlozek, R Huffenberger, KM Hughes, DH Hughes, JP Infante, L Irwin, KD Juin, JB Kaul, M Klein, J Kosowsky, A Lau, JM Limon, M Lin, YT Lupton, RH Marsden, D Martocci, K Mauskopf, P Menanteau, F Moodley, K Moseley, H Netterfield, CB Niemack, MD Nolta, MR Page, LA Parker, L Partridge, B Reid, B Sehgal, N Sherwin, BD Sievers, J Spergel, DN Staggs, ST Swetz, DS Switzer, ER Thornton, R Trac, H Tucker, C Warne, R Wollack, E Zhao, Y AF Das, Sudeep Marriage, Tobias A. Ade, Peter A. R. Aguirre, Paula Amiri, Mandana Appel, John W. Barrientos, L. Felipe Battistelli, Elia S. Bond, John R. Brown, Ben Burger, Bryce Chervenak, Jay Devlin, Mark J. Dicker, Simon R. Doriese, W. Bertrand Dunkley, Joanna Duenner, Rolando Essinger-Hileman, Thomas Fisher, Ryan P. Fowler, Joseph W. Hajian, Amir Halpern, Mark Hasselfield, Matthew Hernandez-Monteagudo, Carlos Hilton, Gene C. Hilton, Matt Hincks, Adam D. Hlozek, Renee Huffenberger, Kevin M. Hughes, David H. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Juin, Jean Baptiste Kaul, Madhuri Klein, Jeff Kosowsky, Arthur Lau, Judy M. Limon, Michele Lin, Yen-Ting Lupton, Robert H. Marsden, Danica Martocci, Krista Mauskopf, Phil Menanteau, Felipe Moodley, Kavilan Moseley, Harvey Netterfield, Calvin B. Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Parker, Lucas Partridge, Bruce Reid, Beth Sehgal, Neelima Sherwin, Blake D. Sievers, Jon Spergel, David N. Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Thornton, Robert Trac, Hy Tucker, Carole Warne, Ryan Wollack, Ed Zhao, Yue TI THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations ID PROBE WMAP OBSERVATIONS; POLE TELESCOPE; BEAM PROFILES; SOURCE COUNTS; ANISOTROPY; SKY; TEMPERATURE; RADIATION; SIMULATIONS; CONSTRAINTS AB We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results clearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the Lambda CDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8 sigma level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals. C1 [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Das, Sudeep; Appel, John W.; Dunkley, Joanna; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D.; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Martocci, Krista; Niemack, Michael D.; Page, Lyman A.; Parker, Lucas; Reid, Beth; Sherwin, Blake D.; Staggs, Suzanne T.; Switzer, Eric R.; Zhao, Yue] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Das, Sudeep; Marriage, Tobias A.; Dunkley, Joanna; Hajian, Amir; Lin, Yen-Ting; Lupton, Robert H.; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ade, Peter A. R.; Mauskopf, Phil; Tucker, Carole] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Aguirre, Paula; Barrientos, L. Felipe; Duenner, Rolando; Infante, Leopoldo; Juin, Jean Baptiste; Lin, Yen-Ting] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Amiri, Mandana; Battistelli, Elia S.; Burger, Bryce; Halpern, Mark; Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Battistelli, Elia S.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Bond, John R.; Hajian, Amir; Nolta, Michael R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Brown, Ben] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Chervenak, Jay; Moseley, Harvey; Wollack, Ed] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Devlin, Mark J.; Dicker, Simon R.; Kaul, Madhuri; Klein, Jeff; Limon, Michele; Marsden, Danica; Swetz, Daniel S.; Thornton, Robert] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Doriese, W. Bertrand; Fowler, Joseph W.; Hilton, Gene C.; Irwin, Kent D.; Niemack, Michael D.; Swetz, Daniel S.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Dunkley, Joanna; Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Hernandez-Monteagudo, Carlos] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Hilton, Matt; Moodley, Kavilan; Warne, Ryan] Univ KwaZulu Natal, Sch Math Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hilton, Matt; Moodley, Kavilan] Ctr High Performance Comp, Cape Town, South Africa. [Huffenberger, Kevin M.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Hughes, David H.] INAOE, Puebla, Mexico. [Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Lau, Judy M.; Sehgal, Neelima] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Lau, Judy M.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Limon, Michele] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Lin, Yen-Ting] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. [Kosowsky, Arthur; Martocci, Krista; Switzer, Eric R.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Netterfield, Calvin B.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Reid, Beth] Univ Barcelona, ICC, E-08028 Barcelona, Spain. [Thornton, Robert] W Chester Univ Penn, Dept Phys, W Chester, PA 19383 USA. [Trac, Hy] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Trac, Hy] Harvard Univ, Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Das, S (reprint author), Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RI Klein, Jeffrey/E-3295-2013; Spergel, David/A-4410-2011; Trac, Hy/N-8838-2014; Wollack, Edward/D-4467-2012; OI Trac, Hy/0000-0001-6778-3861; Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Limon, Michele/0000-0002-5900-2698; Tucker, Carole/0000-0002-1851-3918; Huffenberger, Kevin/0000-0001-7109-0099 FU US National Science Foundation [AST-0408698, PHY-0355328, AST-0707731, PIRE-0507768]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation under Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; Berkeley Center for Cosmological Physics Fellowship; NASA [NNX08AH30G]; RCUK Fellowship; Rhodes Trust; Natural Science and Engineering Research Council of Canada (NSERC); NSF [AST-0546035, AST-0606975, PHY-0114422]; FONDAP Centro de Astrofisica; CONICYT; MECESUP; Fundacion Andes; South African National Research Foundation (NRF); Meraka Institute; South African Square Kilometer Array (SKA) Project; World Premier International Research Center Initiative, MEXT, Japan; US Department of Energy [DE-AC3-76SF00515]; NASA Office of Space Science FX ACT is on the Chajnantor Science preserve, which was made possible by the Chilean Comision Nacional de Investigacion Cientifica y Tecnologica. We are grateful for the assistance we received at various times from the ALMA, APEX, ASTE, CBI/QUIET, and NANTEN2 groups. The PWV data come from the public APEX weather Web site. Field operations were based at the Don Esteban facility run by Astro-Norte. Reed Plimpton and David Jacobson worked at the telescope during the 2008 season. We thank Norm Jarosik for support throughout the project. This work was supported by the US National Science Foundation through awards AST-0408698 for the ACT project, and PHY-0355328, AST-0707731, and PIRE-0507768. Funding was also provided by Princeton University and the University of Pennsylvania. The PIRE program made possible exchanges between Chile, South Africa, Spain, and the US that enabled this research program. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund-Research Excellence, and the University of Toronto. We thank the referee for useful comments. S. D. acknowledges support from the Berkeley Center for Cosmological Physics Fellowship. S. D. thanks Christian Reichardt and Oliver Zahn for useful discussions. We thank Bruce Bassett for suggestions on testing lensing in the power spectrum. S. D., A. H., and T. M. were supported through NASA grant NNX08AH30G. J. D. acknowledges support from an RCUK Fellowship. R. H. received funding from the Rhodes Trust. A. D. H. received additional support from a Natural Science and Engineering Research Council of Canada (NSERC) PGS-D scholarship. A. K. and B. P. were partially supported through NSF AST-0546035 and AST-0606975, respectively, for work on ACT. L. I. acknowledges partial support from FONDAP Centro de Astrofisica. R. D. was supported by CONICYT, MECESUP, and Fundacion Andes. E. S. acknowledges support by NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics. K. M., M. Hilton, and R. W. received financial support from the South African National Research Foundation (NRF), the Meraka Institute via funding for the South African Centre for High Performance Computing (CHPC), and the South African Square Kilometer Array (SKA) Project. Y.-T.L. acknowledges support from the World Premier International Research Center Initiative, MEXT, Japan. N.S. is supported by the US Department of Energy contract to SLAC no. DE-AC3-76SF00515. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. The data will be made public through LAMBDA (http://lambda.gsfc.nasa.gov/) and the ACT Web site (http://www.physics.princeton.edu/act/). NR 57 TC 117 Z9 117 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2011 VL 729 IS 1 AR 62 DI 10.1088/0004-637X/729/1/62 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 720BN UT WOS:000287255300062 ER PT J AU Krumholz, MR Gnedin, NY AF Krumholz, Mark R. Gnedin, Nickolay Y. TI A COMPARISON OF METHODS FOR DETERMINING THE MOLECULAR CONTENT OF MODEL GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; galaxies: evolution; galaxies: ISM; ISM: molecules; methods: numerical; stars: formation ID STAR-FORMATION LAW; FORMATION EFFICIENCY; NEARBY GALAXIES; H I; GAS; TRANSITION; HYDROGEN; SIMULATIONS; EVOLUTION; PRESSURE AB Recent observations indicate that star formation occurs only in the molecular phase of a galaxy's interstellar medium. A realistic treatment of star formation in simulations and analytic models of galaxies therefore requires that one determine where the transition from the atomic to molecular gas occurs. In this paper, we compare two methods for making this determination in cosmological simulations where the internal structures of molecular clouds are unresolved: a complex time-dependent chemistry network coupled to a radiative transfer calculation of the dissociating ultraviolet (UV) radiation field and a simple time-independent analytic approximation. We show that these two methods produce excellent agreement at all metallicities greater than or similar to 10(-2) of the Milky Way value across a very wide range of UV fields. At lower metallicities the agreement is worse, likely because time-dependent effects become important; however, there are no observational calibrations of molecular gas content at such low metallicities, so it is unclear if either method is accurate. The comparison suggests that, in many but not all applications, the analytic approximation provides a viable and nearly cost-free alternative to full time-dependent chemistry and radiative transfer. C1 [Krumholz, Mark R.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Krumholz, MR (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM krumholz@ucolick.org; gnedin@fnal.gov OI Krumholz, Mark/0000-0003-3893-854X FU Alfred P. Sloan Fellowship; NSF [AST-0807739, AST-0908063, CAREER-0955300]; NASA [NNX09AK31G, NNX-09AJ54G]; Spitzer FX Support for this work was provided by an Alfred P. Sloan Fellowship (M. R. K.); NSF grants AST-0807739 (M. R. K.), AST-0908063 (N.Y.G.), and CAREER-0955300 (M. R. K.); NASA through Astrophysics Theory and Fundamental Physics grants NNX09AK31G (M. R. K.) and NNX-09AJ54G (N.Y.G.); and a Spitzer Space Telescope Theoretical Research Program grant (M. R. K.). We also thank the Aspen Center for Physics, where much of the work for this paper was performed. NR 31 TC 67 Z9 67 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2011 VL 729 IS 1 AR 36 DI 10.1088/0004-637X/729/1/36 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 720BN UT WOS:000287255300036 ER PT J AU Zhang, YD Zhang, C Lan, H Hou, PY Yang, ZG AF Zhang, Y. -D. Zhang, C. Lan, H. Hou, P. Y. Yang, Z. -G. TI Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium SO CORROSION SCIENCE LA English DT Article DE Alloy; Oxidation; Selective oxidation ID HIGH-TEMPERATURE OXIDATION; SELECTIVE OXIDATION; REACTIVE ELEMENTS; PROTECTIVE SCALES; CHROMIA SCALES; NBCR2 ALLOYS; GRAIN-SIZE; DEGREES-C; BEHAVIOR; MICROSTRUCTURE AB The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 degrees C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Y. -D.; Zhang, C.; Lan, H.; Yang, Z. -G.] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Dept Mat Sci & Engn, Beijing 100084, Peoples R China. [Hou, P. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, ZG (reprint author), Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Dept Mat Sci & Engn, Beijing 100084, Peoples R China. EM zgyang@tsinghua.edu.cn FU Mitsubishi Heavy Industries (MHI) of Japan FX The authors gratefully acknowledged the support of Mitsubishi Heavy Industries (MHI) of Japan. NR 26 TC 8 Z9 8 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD MAR PY 2011 VL 53 IS 3 BP 1035 EP 1043 DI 10.1016/j.corsci.2010.11.038 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 721FG UT WOS:000287338400022 ER PT J AU Devarakonda, R Palanisamy, G Green, JM Wilson, BE AF Devarakonda, Ranjeet Palanisamy, Giri Green, James M. Wilson, Bruce E. TI Data sharing and retrieval using OAI-PMH SO EARTH SCIENCE INFORMATICS LA English DT Article DE Mercury search system; Scientific data search; OAI-PMH; jOAI; Data sharing; Metadata; Ecological informatics; Climate change; Environmental informatics; Spatiotemporal data AB There is a growing consensus for the need to store and archive digital data, particularly for publicly funded research. Long-term preservation of that data generally requires some form of institutional archive, such as those directed to particular scientific communities of practice. Given that data is often of use to multiple communities of practice, which may have differing norms for data and metadata structure and semantics, effective standards for data and metadata exchange are important factors for users to be able to find and retrieve data. Toolsets that provide a coherent presentation of information across multiple standards are important for data search and access. One such toolset, Mercury, is a open-source metadata harvesting, data discovery, and access system, built for researchers to search for, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is used across multiple projects to provide a coherent search interface for spatiotemporal data described in any of several metadata formats. Mercury has recently been extended to enable harvesting and distribution of metadata using the Open Archive Initiative Protocol for Metadata Handling (OAI-PMH). In this paper we describe Mercury's capabilities with multiple metadata formats, in general, and, more specifically, the results of our OAI-PMH implementations and the lessons learned. C1 [Devarakonda, Ranjeet; Palanisamy, Giri; Wilson, Bruce E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Green, James M.] Informat Int Associates, Oak Ridge, TN 37831 USA. RP Devarakonda, R (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6407, Oak Ridge, TN 37831 USA. EM devarakondar@ornl.gov RI Devarakonda, Ranjeet/E-5976-2016; OI Devarakonda, Ranjeet/0000-0003-2661-1937; Wilson, Bruce/0000-0002-1421-1728 FU National Aerospace and Space Administration (NASA); United States Geologic Survey (USGS); Department of Energy (DOE); UT-Battelle, LLC [DE-AC05-00OR22725] FX Mercury development has been funded by multiple different projects from the National Aerospace and Space Administration (NASA), the United States Geologic Survey (USGS), and the Department of Energy (DOE). Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Mercury was presented in American Geophysical Union (AGU) conference 2008 (Devarakonda et al. 2008) NR 9 TC 9 Z9 10 U1 2 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD MAR PY 2011 VL 4 IS 1 BP 1 EP 5 DI 10.1007/s12145-010-0073-0 PG 5 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 723PJ UT WOS:000287519000001 ER PT J AU Wang, WQ Rutqvist, J Gorke, UJ Birkholzer, JT Kolditz, O AF Wang, Wenqing Rutqvist, Jonny Goerke, Uwe-Jens Birkholzer, Jens T. Kolditz, Olaf TI Non-isothermal flow in low permeable porous media: a comparison of Richards' and two-phase flow approaches SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Non-isothermal two-phase flow; Richards' approximation; Porous media; CTF1 experiment; DECOVALEX task D ID NUCLEAR-WASTE REPOSITORIES; HEAT-TRANSFER; GEOTHERMAL RESERVOIR; UNSATURATED SOILS; MULTIPHASE FLOW; ROCK FRACTURES; FLUID-FLOW; SIMULATION; BENTONITE; TRANSPORT AB The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards' and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards' model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published, data from a laboratory experiment are studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability, only the two-phase flow approach provides reasonable results. C1 [Wang, Wenqing; Goerke, Uwe-Jens; Kolditz, Olaf] UFZ Helmholtz Ctr Environm Res, Helmholtz Ctr Environm Res, D-04318 Leipzig, Germany. [Rutqvist, Jonny; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Gorke, UJ (reprint author), UFZ Helmholtz Ctr Environm Res, Helmholtz Ctr Environm Res, Permoserstr 15, D-04318 Leipzig, Germany. EM wenqing.wang@ufz.de; jrutqvist@lbl.gov; uwe-jens.goerke@ufz.de; JTBirkholzer@lbl.gov; olaf.kolditz@ufz.de RI Wang, Wenqing/B-9702-2008; Birkholzer, Jens/C-6783-2011; Rutqvist, Jonny/F-4957-2015 OI Wang, Wenqing/0000-0001-8909-6245; Birkholzer, Jens/0000-0002-7989-1912; Rutqvist, Jonny/0000-0002-7949-9785 FU Federal Institute for Geosciences; Swedish Radiation Safety Authority (SSM) through the US Department of Energy [DE-AC02-05CH11231] FX The development of the numerical models was conducted in the framework of the international DECOVALEX project. The funding from the Federal Institute for Geosciences is highly acknowledged (Dr. Shao). This work is part of the PoF research initiative of the Helmholtz Association within the Environmental Engineering and Geothermal Technology programs. Funding from the Swedish Radiation Safety Authority (SSM) through the US Department of Energy Contract No. DE-AC02-05CH11231 is greatly appreciated. NR 34 TC 34 Z9 35 U1 0 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD MAR PY 2011 VL 62 IS 6 BP 1197 EP 1207 DI 10.1007/s12665-010-0608-1 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 726GP UT WOS:000287708400008 ER PT J AU He, ZL Van Nostrand, JD Deng, Y Zhou, JZ AF He, Zhili Van Nostrand, Joy D. Deng, Ye Zhou, Jizhong TI Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities SO FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA LA English DT Article DE functional gene arrays (FGAs); GeoChip; microbial communities; functional diversity/composition/structure; environmental factor; ecosystem functioning ID CANONICAL CORRESPONDENCE-ANALYSIS; NICKEL RESISTANCE DETERMINANT; 50-MER OLIGONUCLEOTIDE ARRAYS; ALCALIGENES-EUTROPHUS CH34; POLYMERASE-CHAIN-REACTION; GEOCHIP-BASED ANALYSIS; PROBE DESIGN CRITERIA; DNA MICROARRAYS; DIAGNOSTIC MICROARRAY; PROKARYOTIC DIVERSITY AB Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, biodegradation of environmental contaminants, energy processing, and stress responses. GeoChips are considered as the most comprehensive FGAs. Experimentally established probe design criteria and a computational pipeline integrating sequence retrieval, probe design and verification, array construction, data analysis, and automatic update are used to develop the GeoChip technology. GeoChip has been systematically evaluated and demonstrated to be a powerful tool for rapid, specific, sensitive, and quantitative analysis of microbial communities in a high-throughput manner. Several generations of GeoChip have been developed and applied to investigate the functional diversity, composition, structure, function, and dynamics of a variety of microbial communities from different habitats, such as water, soil, marine, bioreactor, human microbiome, and extreme ecosystems. GeoChip is able to address fundamental questions related to global change, bioenergy, bioremediation, agricultural operation, land use, human health, environmental restoration, and ecological theories and to link the microbial community structure to environmental factors and ecosystem functioning. C1 [He, Zhili; Van Nostrand, Joy D.; Deng, Ye; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Zhou, Jizhong] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI Deng, Ye/A-2571-2013; He, Zhili/C-2879-2012; Van Nostrand, Joy/F-1740-2016; OI Van Nostrand, Joy/0000-0001-9548-6450; ?, ?/0000-0002-7584-0632 FU U.S. Department of Energy, Office of Science, Office of Biologic and Environmental Research [DE-SC0004601, DE-AC02-05CH11231]; Genomics: GTL Foundational Science; Genomics: Environmental Remediation Science Program (ERSP); Genomics: Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST); Oklahoma Bioenergy Center (OBC); State of Oklahoma [AR062-034.] FX This work has been partially supported through contracts DE-SC0004601 and DE-AC02-05CH11231 (as part of ENIGMA, a Scientific Focus Area) by the U.S. Department of Energy, Office of Science, Office of Biologic and Environmental Research, Genomics: GTL Foundational Science and Environmental Remediation Science Program (ERSP) Programs, and Oklahoma Applied Research Support (OARS), Oklahoma Center for the Advancement of Science and Technology (OCAST), the Oklahoma Bioenergy Center (OBC), and the State of Oklahoma through the Project AR062-034. NR 113 TC 23 Z9 25 U1 8 U2 68 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 1673-7415 J9 FRONT ENVIRON SCI EN JI Front. Environ. Sci. Eng. China PD MAR PY 2011 VL 5 IS 1 BP 1 EP 20 DI 10.1007/s11783-011-0301-y PG 20 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 726VE UT WOS:000287753800001 ER PT J AU Banerjee, A Person, M Hofstra, A Sweetkind, D Cohen, D Sabin, A Unruh, J Zyvoloski, G Gable, CW Crossey, L Karlstrom, K AF Banerjee, Amlan Person, Mark Hofstra, Albert Sweetkind, Donald Cohen, Denis Sabin, Andrew Unruh, Jeff Zyvoloski, George Gable, Carl W. Crossey, Laura Karlstrom, Karl TI Deep permeable fault-controlled helium transport and limited mantle flux in two extensional geothermal systems in the Great Basin, United States SO GEOLOGY LA English DT Article ID NEVADA; CALIFORNIA; TECTONICS; ISOTOPES; BEOWAWE; DEPOSIT; ORIGIN; FLUIDS; AREA; FLOW AB This study assesses the relative importance of deeply circulating meteoric water and direct mantle fluid inputs on near-surface He-3/He-4 anomalies reported at the Coso and Beowawe geothermal fields of the western United States. The depth of meteoric fluid circulation is a critical factor that controls the temperature, extent of fluid-rock isotope exchange, and mixing with deeply sourced fluids containing mantle volatiles. The influence of mantle fluid flux on the reported helium anomalies appears to be negligible in both systems. This study illustrates the importance of deeply penetrating permeable fault zones (10(-12) to 10(-15) m(2)) in focusing groundwater and mantle volatiles with high He-3/He-4 ratios to shallow crustal levels. These continental geothermal systems are driven by free convection. C1 [Banerjee, Amlan; Person, Mark] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Hofstra, Albert; Sweetkind, Donald] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Cohen, Denis] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA. [Sabin, Andrew] USN, Geothermal Program Off, China Lake, CA 93555 USA. [Unruh, Jeff] William Lettis & Associates, Walnut Creek, CA 94596 USA. [Zyvoloski, George; Gable, Carl W.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Crossey, Laura; Karlstrom, Karl] Univ New Mexico, Dept Earth & Planetary Sci, Albuquerque, NM 87131 USA. RP Banerjee, A (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. EM mperson@nmt.edu RI Gable, Carl/B-4689-2011; Crossey, Laura/C-2033-2008; Cohen, Denis/P-2015-2016; Banerjee, Amlan/P-9658-2016; OI Crossey, Laura/0000-0001-6237-8023; Cohen, Denis/0000-0002-8262-9798; Banerjee, Amlan/0000-0002-2065-1391; Sweetkind, Donald/0000-0003-0892-4796; Gable, Carl/0000-0001-7063-0815 NR 21 TC 7 Z9 7 U1 0 U2 20 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD MAR PY 2011 VL 39 IS 3 BP 195 EP 198 DI 10.1130/G31557.1 PG 4 WC Geology SC Geology GA 721SI UT WOS:000287374900003 ER PT J AU Cody, GD Gupta, NS Briggs, DEG Kilcoyne, ALD Summons, RE Kenig, F Plotnick, RE Scott, AC AF Cody, George D. Gupta, Neal S. Briggs, Derek E. G. Kilcoyne, A. L. D. Summons, Roger E. Kenig, Fabien Plotnick, Roy E. Scott, Andrew C. TI Molecular signature of chitin-protein complex in Paleozoic arthropods SO GEOLOGY LA English DT Article ID INNER-SHELL EXCITATION; X-RAY SPECTROSCOPY; ALIPHATIC POLYMER; ORGANIC-MOLECULES; PLANT CUTICLES; PRESERVATION; BIODEGRADATION; ENVIRONMENTS; TAPHONOMY; SPECTRA AB The conventional geochemical view holds that the chitin and structural protein are not preserved in ancient fossils because they are readily degradable through microbial chitinolysis and proteolysis. Here we show a molecular signature of a relict chitin-protein complex preserved in a Pennsylvanian (310 Ma) scorpion cuticle and a Silurian (417 Ma) eurypterid cuticle via analysis with carbon, nitrogen, and oxygen X-ray absorption near edge structure (XANES) spectro-microscopy. High-resolution X-ray microscopy reveals the complex laminar variation in major biomolecule concentration across modern cuticle; XANES spectra highlight the presence of the characteristic functional groups of the chitin-protein complex. Modification of this complex is evident via changes in organic functional groups. Both fossil cuticles contain considerable aliphatic carbon relative to modern cuticle. However, the concentration of vestigial chitin-protein complex is high, 59% and 53% in the fossil scorpion and eurypterid, respectively. Preservation of a high-nitrogen-content chitin-protein residue in organic arthropod cuticle likely depends on condensation of cuticle-derived fatty acids onto a structurally modified chitin-protein molecular scaffold, thus preserving the remnant chitin-protein complex and cuticle from degradation by microorganisms. C1 [Cody, George D.; Gupta, Neal S.] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Briggs, Derek E. G.] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA. [Briggs, Derek E. G.] Yale Univ, Yale Peabody Museum Nat Hist, New Haven, CT 06520 USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gupta, Neal S.; Summons, Roger E.] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Kenig, Fabien; Plotnick, Roy E.] Univ Illinois, Chicago, IL 60607 USA. [Scott, Andrew C.] Royal Holloway Univ London, Dept Geol, Egham TW20 0EX, Surrey, England. RP Cody, GD (reprint author), Carnegie Inst Washington, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. EM g.cody@gl.ciw.edu RI Scott, Andrew/C-6661-2008; Kenig, Fabien/A-4961-2008; Plotnick, Roy/B-4534-2008; Kilcoyne, David/I-1465-2013; OI Scott, Andrew/0000-0002-1998-3508; Plotnick, Roy/0000-0001-6177-3355; Kenig, Fabien/0000-0003-4868-5232 FU National Aeronautics and Space Administration (NASA); American Chemical Society; NASA NAI (NASA Astrobiology Institute); Department of Geology and Geophysics, Yale University FX We gratefully acknowledge support from National Aeronautics and Space Administration (NASA) Astrobiology grants to the Carnegie Institution of Washington and Massachusetts Institute of Technology. Briggs, Gupta, and Summons are grateful to the donors of the American Chemical Society Petroleum Research Fund. Gupta gratefully acknowledges postdoctoral support through the NASA NAI (NASA Astrobiology Institute) Postdoctoral Fellowship Program. Scott acknowledges sabbatical support from the Department of Geology and Geophysics, Yale University. The analyses reported here were performed at the Advanced Light Source at Lawrence Berkeley Laboratory, a Department of Energy supported facility. This manuscript has benefited from the comments of two anonymous reviewers. NR 30 TC 26 Z9 27 U1 3 U2 22 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD MAR PY 2011 VL 39 IS 3 BP 255 EP 258 DI 10.1130/G31648.1 PG 4 WC Geology SC Geology GA 721SI UT WOS:000287374900018 ER PT J AU Husler, J Ferriss, EDA Helean, KB Bryan, CR Brady, PV AF Husler, John Ferriss, Elizabeth D. A. Helean, Katheryn B. Bryan, Charles R. Brady, Patrick V. TI Optimised Ferrozine Micro-Method for the Determination of Ferrous and Ferric Iron in Rocks and Minerals SO GEOSTANDARDS AND GEOANALYTICAL RESEARCH LA English DT Article DE ferrozine; iron speciation; ferrous; ferric; rock analysis; mineral analysis; ferrozine; speciation de fer; ferreux; ferrique; analyse de roches; analyse de mineraux ID QUANTITATIVE ASSAY; STRUCTURAL IRON; REDUCTION; OXIDATION; NONTRONITE; SMECTITES; SILICATE; REAGENT; FE(II) AB The ferrozine wet chemical method was optimised for the determination of the total iron content and speciation in small geological samples. The ferrozine micro-method involves dissolution by a mixture of HF and H(2)SO(4) followed by spectrophotometric analysis using the complexing agent ferrozine. The method was tested for twenty-one replicates of eight rock RMs using test portions of 5-14 mg and containing 0.37-5.45 mg total Fe and more than 0.29 mg Fe(II). The optimised ferrozine method was accurate to within 0.23% m/m FeO and 0.34% m/m total Fe, which compares favourably to other wet chemical methods.La methode d'analyse chimique par voie humide utilisant la ferrozine a ete optimisee pour la determination de la teneur en fer total et de sa speciation dans les petits echantillons geologiques. La micro-methode utilisant la ferrozine implique une dissolution dans un melange d'HF et de H(2)SO(4) suivie d'une analyse spectrophotometrique utilisant l'agent complexant ferrozine. La methode a ete testee pour vingt et un ' replicates ' de huit roches de reference en utilisant des portions tests de 5-14 mg, contenant de 0.37 a 5.45 mg de Fe(total) et plus de 0.29 mg de Fe(II). La methode utilisant la ferrozine a ete optimisee avec une precision de 0.23% de FeO m/m et de 0.34% m/m de Fe(total), ce qui est tout a fait comparable a d'autres methodes d'analyses chimiques par voie humide. C1 [Ferriss, Elizabeth D. A.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Helean, Katheryn B.; Bryan, Charles R.; Brady, Patrick V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ferriss, EDA (reprint author), Univ Michigan, Dept Geol Sci, 2534 CC Little Bldg,1100 N Univ Ave, Ann Arbor, MI 48109 USA. EM beliza@umich.edu FU Office of Civilian Radioactive Waste Management; National Science Foundation; Office of Science and Technology and International (OST&I) of the Office of Civilian Radioactive Waste Management [DE-FE28-04RW12254]; US DOE's NNSA [DE-AC04-94AL85000] FX E.D.A. Ferriss is grateful for fellowships from the Office of Civilian Radioactive Waste Management and the National Science Foundation. This work was supported by the Office of Science and Technology and International (OST&I) of the Office of Civilian Radioactive Waste Management (DE-FE28-04RW12254). The views, opinions, findings and conclusions or recommendations of the authors expressed herein do not necessarily state or reflect those of DOE/OC-RWM/OSTI. Sandia is a multi-programme laboratory operated by Sandia Corporation, a Lockheed Martin Company, for US DOE's NNSA under contract DE-AC04-94AL85000. NR 27 TC 5 Z9 5 U1 6 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1639-4488 J9 GEOSTAND GEOANAL RES JI Geostand. Geoanal. Res. PD MAR PY 2011 VL 35 IS 1 BP 39 EP 44 DI 10.1111/j.1751-908X.2010.00041.x PG 6 WC Geosciences, Multidisciplinary SC Geology GA 725RP UT WOS:000287664000004 ER PT J AU Degregorio, BA Manning, JV Bieser, N Kingsbury, BA AF Degregorio, Brett A. Manning, Jennifer V. Bieser, Nicholas Kingsbury, Bruce A. TI THE SPATIAL ECOLOGY OF THE EASTERN MASSASAUGA (SISTRURUS C-CATENATUS) IN NORTHERN MICHIGAN SO HERPETOLOGICA LA English DT Article DE Home range; Movement patterns; Rattlesnake; Sexual dimorphism; Sistrurus catenatus; Viperidae ID RATTLESNAKES CROTALUS-HORRIDUS; NET PRIMARY PRODUCTION; HABITAT SELECTION; HOME RANGES; NEW-YORK; MOVEMENTS; POPULATION; REPRODUCTION; DIVERSITY; VIRIDIS AB We investigated the spatial ecology of the eastern massasauga (Sistrurus c. catenatus) at a study site unique in that it was near the northern extent of the species' geographic range and had a sandy substrate and extensive mixed coniferous forest. Forty-six individuals were radiotracked for at least one complete season between 2002 and 2004 or 2006 and 2007. Males had larger home ranges and core areas, range lengths, and movement rates than nongravid females, which in turn had larger movement parameters than those of gravid females. Movement rates and distances were not constant throughout the activity season, with males making greater movements as the activity season progressed and gravid females making the longest movements immediately following parturition. Total area used during the activity season was intermediate relative to that used by massasaugas at other sites, with minimum convex polygons around outermost observations during the active season averaging 16.7 ha. Movement indices at our site were much larger than reported indices from study sites in the central or southern portions of the massasauga's geographic range and mole similar to those from Ontario and New York. The trend for increased movements at northern latitudes may have implications for managers attempting to provide sufficient habitat for viable populations and minimize interactions between snakes and roads or other anthropogenic disturbances. C1 [Degregorio, Brett A.; Bieser, Nicholas; Kingsbury, Bruce A.] Indiana Univ Purdue Univ, Dept Biol, Ft Wayne, IN 46825 USA. [Manning, Jennifer V.] Earth Source Inc, Ft Wayne, IN 46825 USA. RP Degregorio, BA (reprint author), Savannah River Ecol Lab, Drawer E, Aiken, SC 29801 USA. EM Baretta66@hotmail.com FU Michigan Army National Guard; Purdue University FX We thank K. Houston, L. Davidson, and J. Hunt for forestry and logistical assistance. W. Cooper, W. Demott, and J. Roe deserve thanks for manuscript input. A. Sidoti, C. Smith, A. Johnson, S. Fitzgerald, and K. Gardner assisted in the field. Funding was provided by Michigan Army National Guard and Purdue University. NR 37 TC 6 Z9 6 U1 2 U2 27 PU HERPETOLOGISTS LEAGUE PI EMPORIA PA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA SN 0018-0831 J9 HERPETOLOGICA JI Herpetologica PD MAR PY 2011 VL 67 IS 1 BP 71 EP 79 DI 10.1655/09-049R1.1 PG 9 WC Zoology SC Zoology GA 725JD UT WOS:000287640100007 ER PT J AU Nilsen, J Scott, HA AF Nilsen, Joseph Scott, Howard A. TI Using the X-ray free-electron laser to drive a photo-pumped helium-like neon X-ray laser, at 23 nm SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray laser; X-FEL; LCLS; Photo-pumping; Helium-like neon ID ALPHA RADIATION; PLASMAS; GAIN AB Nearly four decades ago resonantly photo-pumped laser schemes based on hydrogen-like and helium-like ions were proposed for producing X-ray lasers. These schemes have yet to be demonstrated because of the difficulty of finding a strong pump line with an adequate resonance to pump the laser transition. With the construction of the X-ray free-electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) researchers now have a very bright tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow one to study the physics and feasibility of photo-pumped laser schemes. In this paper we model the sodium-pumped neon X-ray laser scheme that was proposed and studied many years ago by replacing the Na He-alpha pump line at 1127 eV with the X-FEL. Using the X-FEL to photo-ionize Ne down to He-like Ne and then photo-pump the He-gamma line we predict gains greater than 400 cm(-1) on the 4f - 3d transition at 23.1 nm in He-like Ne. The 4d - 3p line at 23.16 nm and the 4p - 3s line at 22.27 nm are also predicted to lase strongly. (C) 2010 Elsevier B.V. All rights reserved. C1 [Nilsen, Joseph; Scott, Howard A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Nilsen, J (reprint author), Lawrence Livermore Natl Lab, POB 808,L-38, Livermore, CA 94551 USA. EM nilsen1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 17 TC 3 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2011 VL 7 IS 1 BP 6 EP 10 DI 10.1016/j.hedp.2010.12.001 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 727AV UT WOS:000287770600002 ER PT J AU Rus, B Mocek, T Kozlova, M Polan, J Homer, P Fajardo, M Foord, ME Chung, H Moon, SJ Lee, RW AF Rus, B. Mocek, T. Kozlova, M. Polan, J. Homer, P. Fajardo, M. Foord, M. E. Chung, H. Moon, S. J. Lee, R. W. TI High energy density matter generation using a focused soft-X-ray laser for volumetric heating of thin foils SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Laboratory X-ray lasers; Volumetric heating; Aluminum transmission; Polyimide transmission; Warm dense matter ID GIANT PLANETS; PHOTOABSORPTION; TRANSMISSION; ALUMINUM; PLASMAS AB We report on time-resolved transmission measurements of a 21.2 nm X-ray laser through thin Al and polyimide foils in the intensity range 10(10)-10(12) Wcm(-2). Absolute time-integrated and relative time-dependent transmission measurements indicate significant differences with cold opacity data, due to the heating, leading to partially ionized states with temperatures of 0.5-20 eV. The transmission data are compared with simulations that qualitatively reproduce the time-dependent transmission measurements and demonstrate the importance of including detailed atomic absorption processes in the warm dense matter regime. (C) 2010 Elsevier B.V. All rights reserved. C1 [Foord, M. E.; Moon, S. J.; Lee, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rus, B.; Mocek, T.; Kozlova, M.; Polan, J.; Homer, P.] PALS Ctr, Inst Phys VVI, Prague 8, Czech Republic. [Fajardo, M.] Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Chung, H.] IAEA Atom & Mol Data Unit, A-1400 Vienna, Austria. RP Foord, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM foord1@llnl.gov RI Mocek, Tomas/G-5344-2014; Homer, Pavel/G-8910-2014; Fajardo, Marta/A-4608-2012 OI Fajardo, Marta/0000-0003-2133-2365 FU Czech Science Foundation (GACR); LaserLab; Czech Ministry of Education scheme of Centers of Fundamental Research; Portuguese Science and Technology Foundation (FCT); EU; DOE [W-7405Eng48] FX We acknowledge the work of the PALS laser team, J. Sobota for coating the MoSi multilayers, and L. Juha for providing the PMMA substrates. We are grateful to G.J. Tallents and D. Whittaker of University of York for useful discussions. This work benefitted from funding by the Czech Science Foundation (GACR), LaserLab Europe Access to Research Infrastructures, Czech Ministry of Education scheme of Centers of Fundamental Research, Portuguese Science and Technology Foundation (FCT), and EU New Emerging Science and Technology project TUIXS, and under DOE Contract W-7405Eng48. NR 24 TC 2 Z9 2 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2011 VL 7 IS 1 BP 11 EP 16 DI 10.1016/j.hedp.2010.05.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 727AV UT WOS:000287770600003 ER PT J AU Hansen, SB Bauche, J Bauche-Arnoult, C AF Hansen, Stephanie B. Bauche, Jacques Bauche-Arnoult, Claire TI Superconfiguration widths and their effects on atomic models SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Collisional-radiative; Non-LTE; Spectroscopic ID NON-LTE PLASMAS; OPTICALLY THIN PLASMAS; EQUATION-OF-STATE; TRANSITION ARRAYS; CONFIGURATION-INTERACTION; RATE COEFFICIENTS; IONIZED ATOMS; ENERGY-LEVELS; IONS; SPECTRA AB Superconfigurations are an important component of many of the collisional-radiative atomic models that are used to predict the properties of atoms and ions in non-local thermodynamic equilibrium (non-LIE) plasmas. In this paper, we investigate the statistical properties of superconfigurations and derive expressions for their approximate average energies and energy variances based on one-electron orbital energies. We also explore the effects of using finite-width superconfigurations in screened hydrogenic and hybrid-structure atomic kinetics models. (C) 2010 Published by Elsevier B.V. C1 [Hansen, Stephanie B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bauche, Jacques; Bauche-Arnoult, Claire] CNRS, Aime Cotton Lab, F-91405 Orsay, France. RP Hansen, SB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sbhanse@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX We thank Brian Wilson and Olivier Peyrusse for providing, respectively. the LIMBO and AVERROES data used in this study. We are grateful to David Hoarty for providing the experimental niobium transmission spectrum, to Howard Scott, Hyun-Kung Chung, and Mark May for helpful conversations on screened hydrogenic models and dielectronic recombination, and to the anonymous reviewers of this paper who helped clarify the presentation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 53 TC 14 Z9 14 U1 1 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2011 VL 7 IS 1 BP 27 EP 37 DI 10.1016/j.hedp.2010.07.002 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 727AV UT WOS:000287770600005 ER PT J AU Iglesias, CA AF Iglesias, Carlos A. TI Comment on "Free-free opacity in warm aluminum" SO HIGH ENERGY DENSITY PHYSICS LA English DT Editorial Material DE Inverse bremsstrahlung; Opacity; Pseudo-potential AB It is noted that inverse bremsstrahlung calculations for solid density aluminum by Vinko et al. [HEDP 5 (2009), 124-131] contain an inconsistent implementation of the empirical pseudo-potential method. Furthermore, it is shown that this inconsistency may adversely impact the reported improved agreement of their model including particle-hole interactions with the cold aluminum experimental data. (C) 2010 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Iglesias, CA (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM iglesias1@llnl.gov NR 5 TC 2 Z9 2 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD MAR PY 2011 VL 7 IS 1 BP 38 EP 39 DI 10.1016/j.hedp.2010.08.003 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 727AV UT WOS:000287770600006 ER PT J AU Yang, ZS Tauke-Pedretti, A Vawter, GA Chow, WW AF Yang, Zhenshan Tauke-Pedretti, Anna Vawter, G. Allen Chow, Weng W. TI Mechanism for Modulation Response Improvement in Mutually Injection-Locked Semiconductor Lasers SO IEEE JOURNAL OF QUANTUM ELECTRONICS LA English DT Article DE High-speed lasers; injection-locking; semiconductor lasers ID CAVITY LASER; ENHANCEMENT; LINEWIDTH; LOCKING; VCSELS AB The modulation response (MR) improvement in mutually injection-locked semiconductor lasers is analyzed. We show that the system becomes increasingly sensitive to the modulation when its operation point approaches the lock band boundary, suggesting that the MR enhancement results from a modulation-induced transition between locked and unlocked operations of the laser system. C1 [Yang, Zhenshan; Tauke-Pedretti, Anna; Vawter, G. Allen; Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Yang, ZS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM znyang@sandia.gov; ataukep@sandia.gov; gavawte@sandia.gov; wwchow@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000]; Directed Research and Development Program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration FX Manuscript received April 26, 2010; revised August 13, 2010; accepted September 21, 2010. Date of current version February 24, 2011. This work was supported by the U.S. Department of Energy under Contract DE-AC04-94AL85000 and the Directed Research and Development Program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 18 TC 4 Z9 4 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9197 J9 IEEE J QUANTUM ELECT JI IEEE J. Quantum Electron. PD MAR PY 2011 VL 47 IS 3 BP 300 EP 305 DI 10.1109/JQE.2010.2083638 PG 6 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 725QQ UT WOS:000287661200004 ER PT J AU Giancardo, L Meriaudeau, F Karnowski, TP Tobin, KW Grisan, E Favaro, P Ruggeri, A Chaum, E AF Giancardo, Luca Meriaudeau, Fabrice Karnowski, Thomas P. Tobin, Kenneth W., Jr. Grisan, Enrico Favaro, Paolo Ruggeri, Alfredo Chaum, Edward TI Textureless Macula Swelling Detection With Multiple Retinal Fundus Images SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Biomedical image processing; diabetes; image motion analysis; image reconstruction; image registration; medical diagnostic imaging; stereo image processing ID DIABETIC-RETINOPATHY AB Retinal fundus images acquired with nonmydriatic digital fundus cameras are versatile tools for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or point-of-care (PoC) applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyze the swelling of the macula. This innovation enables the detection and quantitative measurement of swollen areas by remote ophthalmologists. This capability is not available with a single image and prone to error with stereo fundus cameras. We also present automatic algorithms to measure features from the reconstructed image, which are useful in PoC automated diagnosis of early macular edema, e.g., before the appearance of exudation. The technique presented is divided into three parts: first, a preprocessing technique simultaneously enhances the dark microstructures of the macula and equalizes the image; second, all available views are registered using nonmorphological sparse features; finally, a dense pyramidal optical flow is calculated for all the images and statistically combined to build a naive height map of the macula. Results are presented on three sets of synthetic images and two sets of real-world images. These preliminary tests show the ability to infer a minimum swelling of 300 mu m and to correlate the reconstruction with the swollen location. C1 [Giancardo, Luca; Meriaudeau, Fabrice] Univ Burgundy, Le2i, F-71200 Le Creusot, France. [Giancardo, Luca; Karnowski, Thomas P.; Tobin, Kenneth W., Jr.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Grisan, Enrico; Ruggeri, Alfredo] Univ Padua, BioImLab, I-35122 Padua, Italy. [Favaro, Paolo] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland. [Chaum, Edward] Univ Tennessee, Hlth Sci Ctr, Memphis, TN 38163 USA. RP Giancardo, L (reprint author), Univ Burgundy, Le2i, F-71200 Le Creusot, France. EM giancardol@ornl.gov; fabrice.meriaudeau@u-bourgogne.fr; karnowskitp@ornl.gov; tobinkwjr@ornl.gov; enrigri@dei.unipd.it; p.favaro@hw.ac.uk; alfredo.ruggeri@unipd.it; echaum@uthsc.edu RI Ruggeri, Alfredo/C-4208-2012; Grisan, Enrico/K-9381-2016; OI Grisan, Enrico/0000-0002-7365-5652; Giancardo, Luca/0000-0002-4862-2277 FU Oak Ridge National Laboratory, National Eye Institute [EY017065]; Research to Prevent Blindness (RPB), New York, NY; Fight for Sight, New York, NY; Plough Foundation, Memphis, TN; Regional Burgundy Council, France FX This was supported in part by the Oak Ridge National Laboratory, National Eye Institute under Grant EY017065, by an unrestricted University of Tennessee Health Science Center (UTHSC) Departmental grant from Research to Prevent Blindness (RPB), New York, NY, Fight for Sight, New York, NY, by The Plough Foundation, Memphis, TN, and by the Regional Burgundy Council, France. NR 19 TC 13 Z9 14 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 EI 1558-2531 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD MAR PY 2011 VL 58 IS 3 BP 795 EP 799 DI 10.1109/TBME.2010.2095852 PN 2 PG 5 WC Engineering, Biomedical SC Engineering GA 725RG UT WOS:000287663100016 PM 21118759 ER PT J AU Shishiyanu, S Singh, R Shishiyanu, T Asher, S Reedy, R AF Shishiyanu, Sergiu Singh, Rajendra Shishiyanu, Teodor Asher, Sally Reedy, Robert TI The Mechanism of Enhanced Diffusion of Phosphorus in Silicon During Rapid Photothermal Processing of Solar Cells SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Diffusion coefficient; enhanced diffusion; quantum energy; rapid photothermal processing (RPP) AB In this paper, we have presented the experimental results of phosphorus diffusion in silicon for the cases of rapid thermal processing (RTP) and rapid photothermal processing (RPP). In the case of the RPP, other than thermal energy, the vacuum ultraviolet photons are used as an additional source of energy. We have investigated the secondary-ion-mass-spectroscopy impurity profiles at different concentrations of P in Si. Based on our own experimental results and the data published in the open literature, we have provided an explanation of the enhanced diffusion both for the RTP and RPP cases. The thermal factor leads to the excitation (vibration) of atoms and quantum energy to the electron system excitation. As compared with the pure thermal process, the quantum-energy contribution provides a reduced activation energy and a higher diffusion coefficient. C1 [Shishiyanu, Sergiu; Shishiyanu, Teodor] Tech Univ Moldova, Dept Microelect & Semicond Devices, Kishinev 2004, MD, Moldova. [Singh, Rajendra] Clemson Univ, Holcombe Dept Elect & Comp Engn, Clemson, SC 29631 USA. [Singh, Rajendra] Clemson Univ, Ctr Silicon Nanoelect, Clemson, SC 29631 USA. [Asher, Sally; Reedy, Robert] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Shishiyanu, S (reprint author), Tech Univ Moldova, Dept Microelect & Semicond Devices, Kishinev 2004, MD, Moldova. EM sergeteo@mail.utm.md; srajend@clemson.edu; teosisianu@mail.utm.md; Sally.Asher@nrel.gov; Bob.Reedy@nrel.gov NR 29 TC 4 Z9 4 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD MAR PY 2011 VL 58 IS 3 BP 776 EP 781 DI 10.1109/TED.2010.2096511 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA 725SF UT WOS:000287665700028 ER PT J AU Todri, A Marek-Sadowska, M AF Todri, Aida Marek-Sadowska, Malgorzata TI Reliability Analysis and Optimization of Power-Gated ICs SO IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS LA English DT Article DE Electromigration (EM); power gating; power grid optimization; power noise; vias ID GROUND NETS; DESIGN AB Power gating is an efficient technique for reducing the leakage power of electronic devices by disconnecting the power supply from blocks idle for long periods of time. Disconnecting gated blocks causes changes in the current densities of the grid branches and vias. For some gating configurations, dc current densities may increase in some grid locations to the extent that they violate electromigration (EM) constraints. In this paper, we analyze the EM and infrared (IR) voltage drop effects in gated global power grids. Based on our analyses, we develop a global grid sizing algorithm to satisfy the reliability constraints on grid branches and vias for all feasible gating configurations. Our experimental results indicate that a grid initially sized for all blocks connected to it may be modified to fulfill EM and IR constraints for multiple gating schedules with only a small area increase. C1 [Todri, Aida] Fermilab Natl Accelerator Lab, Comp Div, Batavia, IL 60510 USA. [Marek-Sadowska, Malgorzata] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. RP Todri, A (reprint author), Fermilab Natl Accelerator Lab, Comp Div, POB 500, Batavia, IL 60510 USA. EM atodri@fnal.gov; mms@ece.ucsb.edu RI Todri-Sanial, Aida/M-5156-2013 OI Todri-Sanial, Aida/0000-0001-8573-2910 FU SRC [1421]; Intel Corporation FX This work was supported by SRC Grant 1421, a gift from Apache Design Automation, and an Intel Corporation equipment grant. NR 20 TC 2 Z9 3 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-8210 J9 IEEE T VLSI SYST JI IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PD MAR PY 2011 VL 19 IS 3 BP 457 EP 468 DI 10.1109/TVLSI.2009.2036267 PG 12 WC Computer Science, Hardware & Architecture; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 725UI UT WOS:000287671200009 ER PT J AU Gosink, LJ Garth, C Anderson, JC Bethel, EW Joy, KI AF Gosink, Luke J. Garth, Christoph Anderson, John C. Bethel, E. Wes Joy, Kenneth I. TI An Application of Multivariate Statistical Analysis for Query-Driven Visualization SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Query-driven visualization; multivariate analysis; kernel density estimation ID DENSITY-FUNCTION; ISOSURFACE STATISTICS; HISTOGRAMS AB Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex data sets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates nonparametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query. In this framework, query distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical significance. We demonstrate the analysis benefits these two strategies provide and show how they maybe used to facilitate the refinement of constraints over variables expressed in a user's query. We apply our method to data sets from two different scientific domains to demonstrate its broad applicability. C1 [Gosink, Luke J.] Pacific NW Natl Lab, Battelle Mem Inst, Richland, WA 99352 USA. [Garth, Christoph; Joy, Kenneth I.] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Garth, Christoph; Joy, Kenneth I.] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA. [Anderson, John C.] Makai Ocean Engn Inc, Kailua, HI 96734 USA. [Bethel, E. Wes] Univ Calif Berkeley, Lawrence Berkeley Lab, Visualizat Grp, Berkeley, CA 94720 USA. RP Gosink, LJ (reprint author), Pacific NW Natl Lab, Battelle Mem Inst, Mail Stop K7-20,POB 999, Richland, WA 99352 USA. EM luke.gosink@pnl.gov; cgarth@ucdavis.edu; john.anderson@makai.com; ewbethel@lbl.gov; kijoy@ucdavis.edu OI Garth, Christoph/0000-0003-1669-8549 FU Lawrence Berkeley National Laboratory; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by Lawrence Berkeley National Laboratory and by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET). The authors thank our colleagues in the Institute for Data Analysis and Visualization (IDAV) at UC Davis for their support during the course of this work. Additionally, the authors thank Bill Kuo, Wei Wang, Cindy Bruyere, Tim Scheitlin, and Don Middleton of the US National Center for Atmospheric Research (NCAR), and the US National Science Foundation (NSF) for providing the Weather Research and Forecasting (WRF) Model simulation data of Hurricane Isabel. Data for the Methane simulation was provided by John Bell and Marc Day, Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory. The authors also thank their reviewers for helping to improve this paper. Last, a warm acknowledgement goes to George Roussas who inspired this work in earlier conversations. NR 46 TC 6 Z9 6 U1 1 U2 15 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD MAR PY 2011 VL 17 IS 3 BP 264 EP 275 DI 10.1109/TVCG.2010.80 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 705EL UT WOS:000286111600001 PM 20498506 ER PT J AU Joshua, CJ Dahl, R Benke, PI Keasling, JD AF Joshua, Chijioke J. Dahl, Robert Benke, Peter I. Keasling, Jay D. TI Absence of Diauxie during Simultaneous Utilization of Glucose and Xylose by Sulfolobus acidocaldarius SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CORYNEBACTERIUM-GLUTAMICUM; CATABOLITE REPRESSION; BINDING-PROTEIN; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; 3-HYDROXYISOBUTYRATE DEHYDROGENASE; HYPERTHERMOPHILIC ARCHAEA; PENTOSE OXIDATION; ESCHERICHIA-COLI; ALIGNMENT EDITOR; SOLFATARICUS P2 AB Sulfolobus acidocaldarius utilizes glucose and xylose as sole carbon sources, but its ability to metabolize these sugars simultaneously is not known. We report the absence of diauxie during growth of S. acidocaldarius on glucose and xylose as co-carbon sources. The presence of glucose did not repress xylose utilization. The organism utilized a mixture of 1 g/liter of each sugar simultaneously with a specific growth rate of 0.079 h(-1) and showed no preference for the order in which it utilized each sugar. The organism grew faster on 2 g/liter xylose (0.074 h(-1)) as the sole carbon source than on an equal amount of glucose (0.022 h(-1)). When grown on a mixture of the two carbon sources, the growth rate of the organism increased from 0.052 h(-1) to 0.085 h(-1) as the ratio of xylose to glucose increased from 0.25 to 4. S. acidocaldarius appeared to utilize a mixture of glucose and xylose at a rate roughly proportional to their concentrations in the medium, resulting in complete utilization of both sugars at about the same time. Gene expression in cells grown on xylose alone was very similar to that in cells grown on a mixture of xylose and glucose and substantially different from that in cells grown on glucose alone. The mechanism by which the organism utilized a mixture of sugars has yet to be elucidated. C1 [Joshua, Chijioke J.; Dahl, Robert; Benke, Peter I.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Joshua, Chijioke J.; Keasling, Jay D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Grad Grp Microbiol, Berkeley, CA 94720 USA. [Dahl, Robert; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Joshua, Chijioke J.; Dahl, Robert; Benke, Peter I.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, 5885 Hollis St,4th Floor, Emeryville, CA 94608 USA. EM Keasling@berkeley.edu RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU DOE Joint BioEnergy Institute; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S. Department of Energy FX We thank Edward Baidoo and J. L. Fortman for helpful discussions. This work was part of the DOE Joint BioEnergy Institute (http: //www.jbei.org), supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 50 TC 17 Z9 17 U1 1 U2 7 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2011 VL 193 IS 6 BP 1293 EP 1301 DI 10.1128/JB.01219-10 PG 9 WC Microbiology SC Microbiology GA 726CL UT WOS:000287696100001 PM 21239580 ER PT J AU Blumer-Schuette, SE Ozdemir, I Mistry, D Lucas, S Lapidus, A Cheng, JF Goodwin, LA Pitluck, S Land, ML Hauser, LJ Woyke, T Mikhailova, N Pati, A Kyrpides, NC Ivanova, N Detter, JC Walston-Davenport, K Han, SS Adams, MWW Kelly, RM AF Blumer-Schuette, Sara E. Ozdemir, Inci Mistry, Dhaval Lucas, Susan Lapidus, Alla Cheng, Jan-Fang Goodwin, Lynne A. Pitluck, Samuel Land, Miriam L. Hauser, Loren J. Woyke, Tanja Mikhailova, Natalia Pati, Amrita Kyrpides, Nikos C. Ivanova, Natalia Detter, John C. Walston-Davenport, Karen Han, Shunsheng Adams, Michael W. W. Kelly, Robert M. TI Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SP-NOV; ANAEROCELLUM-THERMOPHILUM; CELLULOLYTIC BACTERIUM; SACCHAROLYTICUS; SPRINGS AB The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity. C1 [Blumer-Schuette, Sara E.; Ozdemir, Inci; Mistry, Dhaval; Kelly, Robert M.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Lucas, Susan; Cheng, Jan-Fang; Pitluck, Samuel; Woyke, Tanja; Mikhailova, Natalia; Pati, Amrita; Kyrpides, Nikos C.; Ivanova, Natalia] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lapidus, Alla] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Goodwin, Lynne A.; Detter, John C.; Walston-Davenport, Karen; Han, Shunsheng] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div B6, Los Alamos, NM 87545 USA. [Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Kelly, RM (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, EB-1,911 Partners Way, Raleigh, NC 27695 USA. EM rmkelly@eos.ncsu.edu RI Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Land, Miriam/A-6200-2011; Kyrpides, Nikos/A-6305-2014; OI Lapidus, Alla/0000-0003-0427-8731; Land, Miriam/0000-0001-7102-0031; Kyrpides, Nikos/0000-0002-6131-0462; Blumer-Schuette, Sara/0000-0001-9522-4266 FU BioEnergy Science Center (BESC) [DE-PS02-06ER64304]; Oak Ridge National Laboratory; U.S. Department of Energy (DOE) Bioenergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by a grant (DE-PS02-06ER64304) from the BioEnergy Science Center (BESC), Oak Ridge National Laboratory, a U.S. Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 21 TC 30 Z9 34 U1 5 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2011 VL 193 IS 6 BP 1483 EP 1484 DI 10.1128/JB.01515-10 PG 2 WC Microbiology SC Microbiology GA 726CL UT WOS:000287696100023 PM 21216991 ER PT J AU Casjens, SR Fraser-Liggett, CM Mongodin, EF Qiu, WG Dunn, JJ Luft, BJ Schutzer, SE AF Casjens, Sherwood R. Fraser-Liggett, Claire M. Mongodin, Emmanuel F. Qiu, Wei-Gang Dunn, John J. Luft, Benjamin J. Schutzer, Steven E. TI Whole Genome Sequence of an Unusual Borrelia burgdorferi Sensu Lato Isolate SO JOURNAL OF BACTERIOLOGY LA English DT Article ID LYME-DISEASE SPIROCHETE; NORTH-AMERICA; EUROPE AB Human Lyme disease is caused by a number of related Borrelia burgdorferi sensu lato species. We report here the complete genome sequence of Borrelia sp. isolate SV1 from Finland. This isolate is to date the closest known relative of B. burgdorferi sensu stricto, but it is sufficiently genetically distinct from that species that it and its close relatives warrant its candidacy for new-species status. We suggest that this isolate should be named "Borrelia finlandensis." C1 [Schutzer, Steven E.] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Newark, NJ 07103 USA. [Casjens, Sherwood R.] Univ Utah, Sch Med, Dept Pathol, Div Microbiol & Immunol, Salt Lake City, UT 84112 USA. [Luft, Benjamin J.] SUNY Stony Brook, Hlth Sci Ctr, Dept Med, Stony Brook, NY 11794 USA. [Dunn, John J.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11793 USA. [Qiu, Wei-Gang] CUNY Hunter Coll, Dept Biol Sci, New York, NY 10065 USA. [Fraser-Liggett, Claire M.; Mongodin, Emmanuel F.] Univ Maryland, Inst Genome Sci, Sch Med, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. RP Casjens, SR (reprint author), Univ Utah, Sch Med, Dept Pathol, Div Microbiol & Immunol, Room 2200 EEJMRB,15 N Med Dr E, Salt Lake City, UT 84112 USA. EM sherwood.casjens@path.utah.edu; schutzer@umdnj.edu OI Luft, Benjamin/0000-0001-9008-7004; Fraser, Claire/0000-0003-1462-2428 FU National Institutes of Health [AI49003, AI37256, N01-AI30071, GM083722, RR03037] FX This research was supported by grants from the National Institutes of Health (AI49003, AI37256, N01-AI30071, GM083722, and RR03037). NR 15 TC 48 Z9 49 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD MAR PY 2011 VL 193 IS 6 BP 1489 EP 1490 DI 10.1128/JB.01521-10 PG 2 WC Microbiology SC Microbiology GA 726CL UT WOS:000287696100026 PM 21217002 ER PT J AU Su, JJ Graf, MJ Balatsky, AV AF Su, Jung-Jung Graf, Matthias J. Balatsky, Alexander V. TI Shear Modulus in Viscoelastic Solid He-4 SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Shear modulus; Solid He-4; Viscoelastics; Glass; Supersolid ID DEFICIT; HELIUM AB The complex shear modulus of solid He-4 exhibits an anomaly in the same temperature region where torsion oscillators show a change in period. We propose that the observed stiffening of the shear modulus with decreasing temperature can be well described by the response of glassy components inside of solid He-4. Since glass is an anelastic material, we utilize the viscoelastic approach to describe its dynamics. The viscoelastic component possesses an increasing relaxation as temperature decreases. The response functions thus derived are identical to those obtained for a glassy, time-delayed restoring back-action. By generalizing the viscoelastic equations for stress and strain to a multiphase system of constituents, composed of patches with different damping and relaxation properties, we predict that the maximum change of the magnitude of the shear modulus and the maximum height of the dissipation peak are independent of an applied external frequency. The same response expressions allow us to calculate the temperature dependence of the shear modulus' amplitude and dissipation. Finally, we demonstrate that a Vogel-Fulcher-Tammann (VFT) relaxation time is in agreement with available experimental data. C1 [Su, Jung-Jung; Graf, Matthias J.; Balatsky, Alexander V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Su, Jung-Jung; Balatsky, Alexander V.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Su, JJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM jungksu@lanl.gov FU U.S. DOE at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We acknowledge fruitful discussions with J. Beamish, Z. Nussinov, J.C. Davis, and A. Dorsey. We are especially grateful to Beamish and Syshchenko for sharing their data. This work was supported by the U.S. DOE at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396. NR 31 TC 6 Z9 6 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAR PY 2011 VL 162 IS 5-6 BP 433 EP 440 DI 10.1007/s10909-010-0322-0 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 714UF UT WOS:000286833800008 ER PT J AU Diallo, SO Azuah, RT Glyde, HR AF Diallo, S. O. Azuah, R. T. Glyde, H. R. TI The Quest for Bose-Einstein Condensation in Solid He-4 SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE BEC of excitations; Supersolids; Glasses and defects ID MOMENTUM DISTRIBUTION; SUPERSOLID HELIUM; SHEAR MODULUS; STATE AB Ever since the seminal torsional oscillator (TO) measurements of Kim and Chan which suggested the existence of a phase transition in solid He-4, from normal to a 'supersolid' state below a critical temperature T (c) = 200 mK, there has been an unprecedented amount of excitement and research activity aimed at better understanding this phase. Despite much work, this remarkable phase has yet to be independently confirmed by conventional scattering techniques, such as neutron scattering. We have carried out a series of neutron scattering measurements, which we here review, aimed at observing Bose-Einstein condensation (BEC) in solid He-4 at temperatures below T (c) . In bulk liquid He-4, the appearance of BEC below T (lambda) signals the onset of superfluidity. The observation of a condensate fraction in the solid would provide an unambiguous confirmation for 'supersolidity'. Although, our measurements have not yet revealed a non-zero condensate fraction or algebraic off diagonal long-range order n (0) in solid He-4 down to 65 mK, i.e. n (0)=(0 +/- 0.3)%, our search for BEC and its corollaries continues with improved instrumentation. C1 [Diallo, S. O.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Azuah, R. T.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Azuah, R. T.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Glyde, H. R.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RP Diallo, SO (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. EM omardiallos@ornl.gov RI Diallo, Souleymane/B-3111-2016 OI Diallo, Souleymane/0000-0002-3369-8391 FU US DOE [DE-FG02-03ER46038] FX We thank O. Kirichek and J.W. Taylor for a very fruitful collaboration on the topic. Excellent technical support from the ISIS staff is gratefully acknowledged. This work was supported in part by the US DOE under grant DE-FG02-03ER46038. NR 30 TC 1 Z9 1 U1 1 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAR PY 2011 VL 162 IS 5-6 BP 449 EP 454 DI 10.1007/s10909-010-0258-4 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 714UF UT WOS:000286833800010 ER PT J AU Graf, MJ Su, JJ Dahal, HP Grigorenko, I Nussinov, Z AF Graf, Matthias J. Su, Jung-Jung Dahal, Hari P. Grigorenko, I. Nussinov, Zohar TI The Glassy Response of Double Torsion Oscillators in Solid He-4 SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Solid helium; Supersolid; Glass; Torsion oscillator ID SUPERCOOLED LIQUIDS; HELIUM; EXCITATIONS; TRANSITION; SYSTEMS; MODE AB Single and double torsion oscillators have been used to measure the anomalous change in resonant frequency and accompanying dissipation in solid He-4. We present a glass description of the mechanical anomalies found in torsion oscillator measurements. Our results show that it is not necessary to invoke a supersolid interpretation to explain these mechanical anomalies. Previously, we demonstrated that the back-action of a glassy subsystem present in solid He-4 can account for frequency change and dissipation peak in single torsion oscillator experiments. Here, we show that the same glassy back-action can explain the experimental results of the composite torsion oscillator developed by the Rutgers group, which measures the response of solid He-4 at the in-phase mode f (1)=496 Hz and out-of-phase mode f (2)=1173 Hz. C1 [Graf, Matthias J.; Su, Jung-Jung; Dahal, Hari P.; Grigorenko, I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Su, Jung-Jung; Dahal, Hari P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Grigorenko, I.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Nussinov, Zohar] Washington Univ, Dept Phys, St Louis, MO 63160 USA. RP Graf, MJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM graf@lanl.gov FU LDRD through the US Dept. of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Center for Materials Innovation (CMI) of Washington University, St. Louis FX We are grateful to H. Kojima and Y. Aoki for explaining their experiments and sharing their data. We like to thank A.V. Balatsky, J.C. Davis, J.M. Goodkind, and S.E. Korshunov for many stimulating discussions. This work was supported by LDRD through the US Dept. of Energy at Los Alamos National Laboratory under contract No. DE-AC52-06NA25396 and by the Center for Materials Innovation (CMI) of Washington University, St. Louis. NR 45 TC 7 Z9 7 U1 1 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD MAR PY 2011 VL 162 IS 5-6 BP 500 EP 508 DI 10.1007/s10909-010-0320-2 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 714UF UT WOS:000286833800016 ER PT J AU Clarke, KD Van Tyne, CJ Vigil, CJ Hackenberg, RE AF Clarke, K. D. Van Tyne, C. J. Vigil, C. J. Hackenberg, R. E. TI Induction Hardening 5150 Steel: Effects of Initial Microstructure and Heating Rate SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE austenitization; dilatometry; heating rate; induction heat treatment; steel; 5150 ID AUSTENITE; ALLOY; MARTENSITE; CEMENTITE; PEARLITE; CARBON AB Induction heating has permitted great progress in the surface hardening of a wide variety of steels, but results in a wide range of local thermal cycles. The metallurgical changes during rapid heating and cooling have not been sufficiently studied with respect to heating rate and prior microstructure. In the present investigation, induction dilatometry was performed on 5150 steel with ferrite-pearlite and tempered martensite initial microstructures to assess effects of experimentally controlled prior microstructure and heating rate on austenitization kinetics. Heating rates were varied from 0.3 to 300 A degrees C/s to simulate industrial processes, and post-hardening metallography and hardness testing were performed. Results show that the transformation kinetics for prior ferrite-pearlite microstructures are significantly slower than for prior tempered martensite microstructures, although hardness is equivalent for a given thermal cycle. Metallographic evidence suggests significant remnant segregation of chromium in regions of pearlitic cementite (enriched); evidence of segregation was not observed metallographically for prior tempered martensite. Diffusion-based transformation simulations support observed ferrite-pearlite alloy segregation, suggest residual alloy segregation is possible for prior tempered martensite, and can be used to tailor austenitization thermal cycles to process requirements. Detailed time and temperature-dependent local microstructure development results from this study are directly applicable to practical induction hardening simulations. C1 [Clarke, K. D.; Van Tyne, C. J.] Colorado Sch Mines, Golden, CO 80401 USA. [Vigil, C. J.; Hackenberg, R. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Clarke, KD (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. EM kclarke@lanl.gov RI Van Tyne, Chester/H-7159-2013; Clarke, Kester/R-9976-2016 OI Hackenberg, Robert/0000-0002-0380-5723; Van Tyne, Chester/0000-0002-7790-7685; FU Advanced Steel Processing and Products Research Center, an industry/university cooperative center at the Colorado School of Mines; Los Alamos National Security, LLC; US Department of Energy [DE-AC52-06NA25396] FX The authors acknowledge support from the Advanced Steel Processing and Products Research Center, an industry/university cooperative center at the Colorado School of Mines, and Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the US Department of Energy. Sincere thanks to E. Buddy Damm and the Timken Company for supplying experimental materials, Ingo Kurth from Avanel Industries, Inc. for helpful dilatometry discussions, and Mary Van Tyne for invaluable editing support. NR 20 TC 10 Z9 10 U1 0 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD MAR PY 2011 VL 20 IS 2 BP 161 EP 168 DI 10.1007/s11665-010-9825-8 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 719ZL UT WOS:000287249900001 ER PT J AU Bouhattate, J Li, DS Branco, GAC Bacaltchuk, CMB Garmestani, H AF Bouhattate, J. Li, D. S. Branco, Gilberto A. Castello Bacaltchuk, Cristiane M. B. Garmestani, H. TI Texture Prediction of Cold- and Hot-Rolled Titanium Using Processing Path Model SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE materials design; processing path model; spherical harmonics; texture; titanium ID PLASTIC-DEFORMATION; MICROSTRUCTURE EVOLUTION; DESIGN; POLYCRYSTALS; PURITY AB Titanium alloys have very attractive properties, which are highly dependent on the material microstructure. Accurately predicting the microstructure of such materials during processing for materials design is, therefore, very important. In this study, texture evolution of titanium alloys cold rolled at room temperature and hot rolled at 260 A degrees C is simulated using a processing path model. Texture coefficients, a set of weights in spherical harmonics expansion of texture, are utilized as descriptors of materials to represent the texture state of polycrystalline materials during processing. This model is based on the conservation principle in the orientation space. Deriving from experimental texture input at different deformation stages, the texture evolution matrix was calculated. This matrix is used to predict texture evolution for the specified deformation mode. The simulated texture evolution results agree well with experimental results. C1 [Bouhattate, J.] Univ La Rochelle, LEMMA, F-17042 La Rochelle, France. [Li, D. S.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Branco, Gilberto A. Castello; Bacaltchuk, Cristiane M. B.] CEFET RJ, Program Mech Engn & Mat Technol, BR-20271110 Rio De Janeiro, Brazil. [Garmestani, H.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. RP Bouhattate, J (reprint author), Univ La Rochelle, LEMMA, Av Michel Crepeau, F-17042 La Rochelle, France. EM jamaa.bouhattate@univ-lr.fr; dongsheng.li@pnl.gov; hamid.garmestani@mse.gatech.edu FU AFOSR [F49620-03-1-0011]; Pacific Northwest National Lab [1806C44] FX This study has been funded under the AFOSR grant # F49620-03-1-0011. The authors acknowledge the grant form Pacific Northwest National Lab# 1806C44. NR 27 TC 0 Z9 0 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD MAR PY 2011 VL 20 IS 2 BP 177 EP 184 DI 10.1007/s11665-010-9672-7 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 719ZL UT WOS:000287249900003 ER PT J AU Sugar, JD Medlin, DL AF Sugar, J. D. Medlin, D. L. TI Solid-state precipitation of stable and metastable layered compounds in thermoelectric AgSbTe2 SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID ONE-DIMENSIONAL STRUCTURES; RAY SPECTRAL IMAGES; CONTINUOUS SERIES; SYSTEM; PHASE; TE; SB2TE3; SB; INTERFACES; ALLOYS AB The precipitation of Sb2Te3 in Sb-rich AgSbTe2 is studied by X-ray diffraction and electron microscopy. The results indicate that Sb2Te3 does not form directly, but rather through the precipitation of an intermediate metastable phase. Diffraction, energy-dispersive spectroscopy, and high-resolution transmission electron microscopy indicate that this intermediate phase has a nominal composition (Ag, Sb)(3)Te-4 and a structure with a seven-layer stacking sequence rather than a five-layer one as in Sb2Te3. Two mechanisms based on experimental observations are proposed for the conversion of (Sb, Ag)(3)Te-4 to Sb2Te3: evaporation-condensation and individual step motion. The microstructural evolution and mechanisms of the transformation are discussed in detail. C1 [Sugar, J. D.; Medlin, D. L.] Sandia Natl Labs, Dept Mat Phys, Livermore, CA 94550 USA. RP Sugar, JD (reprint author), Sandia Natl Labs, Dept Mat Phys, 7011 East Ave, Livermore, CA 94550 USA. EM jdsugar@sandia.gov FU United States Department of Energy [DE-AC04-94-AL85000]; DOE-OBES-DMS; Sandia LDRD office FX The authors gratefully thank Paul Kotula for help with AXSIA and the MSA/MCR analysis, Miles Clift for EMPA, and the useful suggestions of Norm Bartelt, Jessica Lensch-Falk, and Peter Sharma. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. Support was provided in part by DOE-OBES-DMS and the Sandia LDRD office. NR 40 TC 13 Z9 13 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD MAR PY 2011 VL 46 IS 6 BP 1668 EP 1679 DI 10.1007/s10853-010-4984-4 PG 12 WC Materials Science, Multidisciplinary SC Materials Science GA 711ZY UT WOS:000286632600016 ER PT J AU Kassianov, E Veron, D AF Kassianov, Evgueni Veron, Dana TI Stochastic radiative transfer in Markovian mixtures: Past, present, and future SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Advances in Mathematics, Computational Methods and Reactor Physics CY MAY 03-07, 2009 CL Saratoga Springs, NY SP Amer Nucl Soc DE Markovian statistics; Stochastic radiative transfer; Broken clouds; Homogeneous and inhomogeneous models; Analytical averaging ID METROPOLIS-HASTINGS ALGORITHM; MULTILAYER BROKEN CLOUDS; AVERAGED SOLAR FLUXES; OPTICAL MEDIA; INHOMOGENEOUS CLOUDS; STATISTICAL-ANALYSIS; PARTICLE-TRANSPORT; ISING-MODEL; EQUATIONS; FIELDS AB The Markovian approach, originally suggested in the early 1900s, has widespread practical use in many of our present-day studies and allows one to build bridges between diverse research areas such as statistical physics, astronomy, and computational science. This overview takes a broad sweep of several important examples with the emphasis on the stochastic radiative transfer in a cloudy atmosphere. In particular, the overview (i) highlights important contributions made by Pomraning and Titov to the neutron and radiation transport theory in a stochastic medium with homogeneous statistics and (ii) illustrates that ideas and tools introduced by these two distinguished scientists are gaining increasing impact and recognition in the atmospheric science. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kassianov, Evgueni] Pacific NW Natl Lab, Richland, WA 99352 USA. [Veron, Dana] Univ Delaware, Newark, DE 19716 USA. RP Kassianov, E (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Evgueni.Kassianov@pnl.gov; dveron@udel.edu NR 88 TC 6 Z9 6 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2011 VL 112 IS 4 SI SI BP 566 EP 576 DI 10.1016/j.jqsrt.2010.06.011 PG 11 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 725VO UT WOS:000287675000003 ER PT J AU Brantley, PS AF Brantley, Patrick S. TI A benchmark comparison of Monte Carlo particle transport algorithms for binary stochastic mixtures SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Advances in Mathematics, Computational Methods and Reactor Physics CY MAY 03-07, 2009 CL Saratoga Springs, NY SP Amer Nucl Soc DE Monte Carlo particle transport; Binary stochastic mixture; Stochastic media ID MODEL AB We numerically investigate the accuracy of two Monte Carlo algorithms originally proposed by Zimmerman [1] and Zimmerman and Adams [2] for particle transport through binary stochastic mixtures. We assess the accuracy of these algorithms using a standard suite of planar geometry incident angular flux benchmark problems and a new suite of interior source benchmark problems. In addition to comparisons of the ensemble-averaged leakage values, we compare the ensemble-averaged material scalar flux distributions. Both Monte Carlo transport algorithms robustly produce physically realistic scalar flux distributions for the benchmark transport problems examined. The base Monte Carlo algorithm reproduces the standard Levermore-Pomraning model [3,4] results. The improved Monte Carlo algorithm generally produces significantly more accurate leakage values and also significantly more accurate material scalar flux distributions. We also present deterministic atomic mix solutions of the benchmark problems for comparison with the benchmark and the Monte Carlo solutions. Both Monte Carlo algorithms are generally significantly more accurate than the atomic mix approximation for the benchmark suites examined. (C) 2010 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Brantley, PS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM brantley1@llnl.gov NR 23 TC 7 Z9 7 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2011 VL 112 IS 4 SI SI BP 599 EP 618 DI 10.1016/j.jqsrt.2010.06.007 PG 20 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 725VO UT WOS:000287675000005 ER PT J AU Davis, AB Mineev-Weinstein, MB AF Davis, Anthony B. Mineev-Weinstein, Mark B. TI Radiation propagation in random media: From positive to negative correlations in high-frequency fluctuations SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Advances in Mathematics, Computational Methods and Reactor Physics CY MAY 03-07, 2009 CL Saratoga Springs, NY SP Amer Nucl Soc DE Multi-dimensional radiation transport; Stochastic media; Non-exponential transmission laws; Clustering/anti-clustering material particles; Negative spatial correlations ID BOUNDARY-LAYER CLOUDS; INDEPENDENT COLUMN APPROXIMATION; CHORD LENGTH DISTRIBUTIONS; THICK MULTIFRACTAL CLOUDS; DROP-SIZE VARIABILITY; AVERAGED SOLAR FLUXES; INHOMOGENEOUS CLOUDS; PARTICLE-TRANSPORT; OPTICAL MEDIA; BREAST-TISSUE AB We survey research on radiation propagation or ballistic particle motion through media with randomly variable material density, and we investigate the topic with an emphasis on very high spatial frequencies. Our new results are based on a specific variability model consisting of a zero-mean Gaussian scaling noise riding on a constant value that is large enough with respect to the amplitude of the noise to yield overwhelmingly non-negative density. We first generalize known results about sub-exponential transmission from regular functions, which are almost everywhere continuous, to merely "measurable" ones, which are almost everywhere discontinuous (akin to statistically stationary noises), with positively correlated fluctuations. We then use the generalized measure-theoretic formulation to address negatively correlated stochastic media without leaving the framework of conventional (continuum-limit) transport theory. We thus resolve a controversy about recent claims that only discrete-point process approaches can accommodate negative correlations, i.e., anti-clustering of the material particles. We obtain in this case the predicted super-exponential behavior, but it is rather weak. Physically, and much like the alternative discrete-point process approach, the new model applies most naturally to scales commensurate with the inter-particle distance in the material, i.e., when the notion of particle density breaks down due to Poissonian-or maybe not-so-Poissonian-number-count fluctuations occur in the sample volume. At the same time, the noisy structure must prevail up to scales commensurate with the mean-free-path to be of practical significance. Possible applications are discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Davis, Anthony B.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Mineev-Weinstein, Mark B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Davis, AB (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM Anthony.B.Davis@jpl.nasa.gov NR 70 TC 13 Z9 13 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2011 VL 112 IS 4 SI SI BP 632 EP 645 DI 10.1016/j.jqsrt.2010.10.001 PG 14 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 725VO UT WOS:000287675000007 ER PT J AU Fichtl, ED Prinja, AK AF Fichtl, Erin D. Prinja, Anil K. TI The stochastic collocation method for radiation transport in random media SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article; Proceedings Paper CT International Conference on Advances in Mathematics, Computational Methods and Reactor Physics CY MAY 03-07, 2009 CL Saratoga Springs, NY SP Amer Nucl Soc DE Stochastic collocation; Karhunen-Loeve expansions; Radiation transport; Random media ID DIFFERENTIAL-EQUATIONS; POLYNOMIAL CHAOS AB Stochastic spectral expansions are used to represent random input parameters and the random unknown solution to describe radiation transport in random media. The total macroscopic cross section is taken to be a spatially continuous log-normal random process with known covariance function and expressed as a memoryless transformation of a Gaussian random process. The Karhunen-Loeve expansion is applied to represent the spatially continuous random cross section in terms of a finite number of discrete Gaussian random variables. The angular flux is then expanded in terms of Hermite polynomials and, using a quadrature-based stochastic collocation method, the expansion coefficients are shown to satisfy uncoupled deterministic transport equations. Sparse grid Gauss quadrature rules are investigated to establish the efficacy of the polynomial chaos-collocation scheme. Numerical results for the mean and standard deviation of the scalar flux as well as probability density functions of the scalar flux and transmission function are obtained for a deterministic incident source, contrasting between absorbing and diffusive media. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Fichtl, Erin D.] Los Alamos Natl Lab, Computat Phys Grp, Los Alamos, NM 87545 USA. [Fichtl, Erin D.; Prinja, Anil K.] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. RP Fichtl, ED (reprint author), Los Alamos Natl Lab, Computat Phys Grp, MS D409, Los Alamos, NM 87545 USA. EM efichtl@lanl.gov NR 22 TC 12 Z9 12 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2011 VL 112 IS 4 SI SI BP 646 EP 659 DI 10.1016/j.jqsrt.2010.06.009 PG 14 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 725VO UT WOS:000287675000008 ER PT J AU Farley, DR Stotler, DP Lundberg, DP Cohen, SA AF Farley, D. R. Stotler, D. P. Lundberg, D. P. Cohen, S. A. TI Modeling of hydrogen ground state rotational and vibrational temperatures in kinetic plasmas SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Hydrogen; Electron-impact excitation; Rotational temperature; Fulcher ID ELECTRON-IMPACT EXCITATION; FRANCK-CONDON FACTORS; BEAM FLUORESCENCE; ENERGY-TRANSFER; CROSS-SECTIONS; QUANTUM-THEORY; H-2; MOLECULES; RECOMBINATION; H-2-MOLECULES AB A dipole-quadrupole electron-impact excitation model, consistent with molecular symmetry rules, is presented to fit ro-vibronic spectra of the hydrogen Fulcher-alpha Q-branch line emissions for passively measuring the rotational temperature of hydrogen neutral molecules in kinetic plasmas with the coronal equilibrium approximation. A quasi-rotational temperature and quadrupole contribution factor are adjustable parameters in the model. Quadrupole excitation is possible due to a violation of the 1st Born approximation for low to medium energy electrons (up to several hundred eV). The Born-Oppenheimer and Franck-Condon approximations are implicitly shown to hold. A quadrupole contribution of 10% is shown to fit experimental data at several temperatures from different experiments with electron energies from several to 100 eV. A convenient chart is produced to graphically determine the vibrational temperature of the hydrogen molecules from diagonal band intensities, if the ground state distribution is Boltzmann. Hydrogen vibrational modes are long-lived, surviving up to thousands of wall collisions, consistent with multiple other molecular dynamics computational results. The importance of inter-molecular collisions during a plasma pulse is also discussed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Farley, D. R.; Stotler, D. P.; Lundberg, D. P.; Cohen, S. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Farley, DR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM farley2@lln.gov RI Stotler, Daren/J-9494-2015 OI Stotler, Daren/0000-0001-5521-8718 FU U.S. Department of Energy [DE-AC02-76-CHO-3073] FX The authors wish to thank Bruce Belringer for technical assistance and Michael Oake for running the DEGAS 2 code. This work was supported, in part, by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073. NR 84 TC 4 Z9 4 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD MAR PY 2011 VL 112 IS 5 BP 800 EP 819 DI 10.1016/j.jqsrt.2010.10.015 PG 20 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 727GS UT WOS:000287786700006 ER PT J AU Toellner, TS Alp, EE Graber, T Henning, RW Shastri, SD Shenoy, G Sturhahn, W AF Toellner, T. S. Alp, E. E. Graber, T. Henning, R. W. Shastri, S. D. Shenoy, G. Sturhahn, W. TI Synchrotron Mossbauer spectroscopy using high-speed shutters SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE Mossbauer spectroscopy; nuclear resonant scattering; X-ray shutter ID NUCLEAR RESONANT SCATTERING; X-RAYS; RADIATION; DIFFRACTION; POLARIZER; ANALYZER AB A new method of performing Mossbauer spectroscopy with synchrotron radiation is demonstrated that involves using a high-speed periodic shutter near the focal spot of a microfocused X-ray beam. This fast microshuttering technique operates without a high-resolution monochromator and has the potential to produce much higher signal rates. It also offers orders of magnitude more suppression of unwanted electronic charge scattering. Measurement results are shown that prove the principle of the method and improvements are discussed to deliver a very pure beam of Mossbauer photons (E/delta E similar or equal to 1012) with previously unavailable spectral brightness. Such a source will allow both Mossbauer spectroscopy in the energy domain with the many advantageous characteristics of synchrotron radiation and new opportunities for measurements using X-rays with ultra-high energy resolution. C1 [Toellner, T. S.; Alp, E. E.; Shastri, S. D.; Shenoy, G.; Sturhahn, W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Graber, T.; Henning, R. W.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Toellner, TS (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM toellner@anl.gov FU US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; National Institutes of Health, National Center for Research Resources [RR007707]; NIH/NIDDK FX TST thanks A. I. Chumakov for helpful comments. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. Use of the BioCARS Sector 14 was supported by the National Institutes of Health, National Center for Research Resources, under grant number RR007707. The time-resolved set-up at Sector 14 was funded in part through a collaboration with Philip Anfinrud (NIH/NIDDK). NR 27 TC 9 Z9 9 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2011 VL 18 BP 183 EP 188 DI 10.1107/S090904951003863X PN 2 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 723TU UT WOS:000287530900011 PM 21335904 ER PT J AU Ingall, ED Brandes, JA Diaz, JM de Jonge, MD Paterson, D McNulty, I Elliott, WC Northrup, P AF Ingall, Ellery D. Brandes, Jay A. Diaz, Julia M. de Jonge, Martin D. Paterson, David McNulty, Ian Elliott, W. Crawford Northrup, Paul TI Phosphorus K-edge XANES spectroscopy of mineral standards SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XANES; phosphorus; phosphate minerals ID RAY-FLUORESCENCE SPECTROMICROSCOPY; MARINE ORGANIC PHOSPHORUS; AMENDED POULTRY LITTER; SEDIMENTS OVERLAIN; SPECIATION; PHOSPHATE; NITROGEN; SYSTEMS; CARBON; SOILS AB Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. C1 [Ingall, Ellery D.; Diaz, Julia M.] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. [Brandes, Jay A.] Skidaway Inst Oceanog, Savannah, GA 31411 USA. [de Jonge, Martin D.; Paterson, David] Australian Synchrotron, Clayton, Vic 3168, Australia. [McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Elliott, W. Crawford] Georgia State Univ, Dept Geosci, Atlanta, GA 30302 USA. [Northrup, Paul] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. RP Ingall, ED (reprint author), Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. EM ingall@eas.gatech.edu RI Ingall, Ellery/A-5447-2008; de Jonge, Martin/C-3400-2011 OI Ingall, Ellery/0000-0003-1954-0317; FU National Science Foundation [0849494]; US-Israel Binational Science Foundation [2008216]; US Department of Energy FX This work was funded by the National Science Foundation under grant 0849494 and by the US-Israel Binational Science Foundation under grant 2008216. The National Synchrotron Light Source at Brookhaven National Laboratory is supported by the US Department of Energy; X15B is operated by a multi-institutional scientific collaboration based at Stony Brook University. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 50 TC 46 Z9 46 U1 9 U2 58 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2011 VL 18 BP 189 EP 197 DI 10.1107/S0909049510045322 PN 2 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 723TU UT WOS:000287530900012 PM 21335905 ER PT J AU Sturhahn, W Toellner, TS AF Sturhahn, W. Toellner, T. S. TI Feasibility of in-line instruments for high-resolution inelastic X-ray scattering SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray optics; inelastic X-ray scattering ID NUCLEAR RESONANT SCATTERING; MEV ENERGY RESOLUTION; SYNCHROTRON-RADIATION; MONOCHROMATOR; SPECTROSCOPY; MIRROR AB Inelastic X-ray scattering instruments in operation at third-generation synchrotron radiation facilities are based on backreflections from perfect silicon crystals. This concept reaches back to the very beginnings of high-energy-resolution X-ray spectroscopy and has several advantages but also some inherent drawbacks. In this paper an alternate path is investigated using a different concept, the `M4 instrument'. It consists of a combination of two in-line high-resolution monochromators, focusing mirrors and collimating mirrors. Design choices and performance estimates in comparison with existing conventional inelastic X-ray scattering instruments are presented. C1 [Sturhahn, W.; Toellner, T. S.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Sturhahn, W (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wolfgang.sturhahn@jpl.nasa.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Drs E. E. Alp and A. Alatas for discussions aiding the preparation of the paper. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 3 Z9 3 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2011 VL 18 BP 229 EP 237 DI 10.1107/S0909049510053513 PN 2 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 723TU UT WOS:000287530900017 PM 21335910 ER PT J AU Fenter, P Lee, SS Skelton, AA Cummings, PT AF Fenter, P. Lee, S. S. Skelton, A. A. Cummings, P. T. TI Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivity data SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray reflectivity; diffraction; molecular-dynamics simulations; pixelization; quartz-water interface ID FORCE-FIELD; INTERFACES; DYNAMICS; MODELS AB A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors < 1%) are determined theoretically by comparing calculated structure factors for an intrinsic continuous density profile with those obtained from density profiles that have been binned into regular spatial increments. The accuracy of the X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz-water interface can be embedded into an exact description of the `bulk' phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid-liquid interface. C1 [Fenter, P.; Lee, S. S.] Argonne Natl Lab, Argonne, IL 60439 USA. [Skelton, A. A.; Cummings, P. T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN USA. [Cummings, P. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Fenter, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fenter@anl.gov RI Lee, Sang Soo/B-9046-2012; Skelton, Adam/G-4517-2014; Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 FU Office of Basic Energy Sciences, US Department of Energy; Oxide-Water Interface, Oak Ridge National Laboratory [ERKCC41]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy. PF and SSL were supported under Contract DE-AC02-06CH11357 to UChicago Argonne, LLC, as operator of Argonne National Laboratory ('Mineral-Fluid Interactions'). AAS was supported through the project 'Nanoscale Complexity at the Oxide-Water Interface' (ERKCC41) at Oak Ridge National Laboratory. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, US Department of Energy. The X-ray reflectivity data were collected at beamline 12-ID-D, Advanced Photon Source. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357 to UChicago Argonne, LLC, as operator of Argonne National Laboratory. NR 21 TC 6 Z9 6 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2011 VL 18 BP 257 EP 265 DI 10.1107/S0909049510040422 PN 2 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 723TU UT WOS:000287530900021 PM 21335914 ER PT J AU Lee, WK Fezzaa, K Uemura, T AF Lee, Wah-Keat Fezzaa, Kamel Uemura, Tomomasa TI Three-dimensional X-ray micro-velocimetry SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray imaging; 3D velocimetry; stereo imaging; 3D particle tracking; 3D flow velocimetry ID PARTICLE TRACKING VELOCIMETRY; IMAGE VELOCIMETRY; LIGHT-SCATTERING; VELOCITY; SIZE; FLOWS; PHASE; PIV AB A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with < 5 mu m spatial resolution and speeds of 0.7 mm s-1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. C1 [Lee, Wah-Keat; Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Uemura, Tomomasa] Kansai Univ, Osaka 5648680, Japan. RP Lee, WK (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM wklee@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 19 TC 6 Z9 6 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD MAR PY 2011 VL 18 BP 302 EP 304 DI 10.1107/S0909049510040434 PN 2 PG 3 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 723TU UT WOS:000287530900028 PM 21335921 ER PT J AU Zhou, XW Jones, RE AF Zhou, X. W. Jones, R. E. TI Effects of cutoff functions of Tersoff potentials on molecular dynamics simulations of thermal transport SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article AB Past molecular dynamics studies of thermal transport have predominantly used Stillinger-Weber potentials. As materials continuously shrink, their properties increasingly depend on defect and surface effects. Unfortunately, Stillinger-Weber potentials are best used for diamond-cubic-like bulk crystals. They cannot represent the energies of many metastable phases, nor can they accurately predict the energetics of defective and surface regions. To study nanostructured materials, where these regions can dominate thermal transport, the accuracy of Tersoff potentials in representing these structures is more desirable. Based upon an analysis of thermal transport in a GaN system, we demonstrate that the cutoff function of the existing Tersoff potentials may lead to problems in determining the thermal conductivity. To remedy this issue, improved cutoff schemes are proposed and evaluated. C1 [Zhou, X. W.; Jones, R. E.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. RP Zhou, XW (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM xzhou@sandia.gov FU United States Department of Energy National Nuclear Security Administration [DEAC04-94AL85000] FX Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy National Nuclear Security Administration under contract DEAC04-94AL85000. This work was performed under a Laboratory Directed Research and Development (LDRD) project. We are also grateful for helpful discussions with A P Thompson and G J Wagner. NR 6 TC 9 Z9 9 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 EI 1361-651X J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD MAR PY 2011 VL 19 IS 2 AR 025004 DI 10.1088/0965-0393/19/2/025004 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 727LM UT WOS:000287801400004 ER PT J AU Oldenburg, EW Colotelo, AH Brown, RS Eppard, MB AF Oldenburg, Eric W. Colotelo, Alison H. Brown, Richard S. Eppard, M. Brad TI Holding of juvenile salmonids for surgical implantation of electronic tags: a review and recommendations SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Review DE Holding; Telemetry; Stress; Surgical implantation; Metabolic scope ID TROUT ONCORHYNCHUS-MYKISS; GASTRIC EVACUATION RATES; DIEL FEEDING CHRONOLOGY; TRUTTA L. SMOLTS; CHINOOK SALMON; ATLANTIC SALMON; RAINBOW-TROUT; SWIMMING PERFORMANCE; ACOUSTIC TRANSMITTERS; RADIO TRANSMITTERS AB Many telemetry-based studies require that fish be sampled from the wild and then held both prior to and after the implantation of an electronic tag. However, the effects of such holding (or the lack thereof) have yet to be studied intensively. Pre-surgical holding often occurs to facilitate logistical needs of research projects and as an attempt to minimize negative physiological effects due to capture and handling stress. Further, post-surgical holding time and conditions greatly influence the physiological state of fish prior to being returned to the wild. This paper reviews pertinent studies pertaining to the effects of surgical holding on the behavior, physiology, and survival of fishes, with particular emphasis on juvenile salmonids. The effects of individual aspects of surgical holding such as handling, water quality, light conditions, holding density, metabolic scope, and duration of holding are reviewed. Recommendations regarding certain aspects of surgical holding are offered with a goal of reducing bias related to the surgical process. C1 [Oldenburg, Eric W.; Colotelo, Alison H.; Brown, Richard S.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Eppard, M. Brad] US Army Corps Engineers, Portland, OR 97208 USA. RP Oldenburg, EW (reprint author), Pacific NW Natl Lab, Ecol Grp, MSIN K6-85,POB 999, Richland, WA 99352 USA. EM eric.oldenburg@pnl.gov FU US Army Corps of Engineers, Portland District; Battelle for the US Department of Energy [DE-AC05-76RL01830] FX Funding for this review was provided by US Army Corps of Engineers, Portland District. We thank Andrew Gingerich, Eric Hockersmith, Andrea Currie and three anonymous reviewers for their comments on previous drafts. We appreciate the technical assistance of Jill Janak and Andrea Lebarge. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. NR 59 TC 5 Z9 5 U1 2 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 EI 1573-5184 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2011 VL 21 IS 1 SI SI BP 35 EP 42 DI 10.1007/s11160-010-9186-2 PG 8 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 726WG UT WOS:000287756700004 ER PT J AU Harnish, RA Colotelo, AH Brown, RS AF Harnish, Ryan A. Colotelo, Alison H. Brown, Richard S. TI A review of polymer-based water conditioners for reduction of handling-related injury SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Article DE Fish; Mucus; Scales; Polymer ID JUVENILE CHINOOK SALMON; SALVELINUS-ALPINUS L; MUCOUS CELLS; SWIMMING PERFORMANCE; HIDROSTAL PUMP; FISH; MORTALITY; EPIDERMIS; MUCUS; FEASIBILITY AB Fish are coated with an external layer of protective mucus. This layer serves as the primary barrier against infection or injury, reduces friction, and plays a role in ionic and osmotic regulation. However, the mucus layer is easily disturbed when fish are netted, handled, transported, stressed, or subjected to adverse water conditions. Water additives containing polyvinylpyrrolidone (PVP) or proprietary polymers have been used to prevent the deleterious effects of mucus layer disturbances in the commercial tropical fish industry, aquaculture, and for other fisheries management purposes. This paper reviews research on the effectiveness of water conditioners, and examines the contents and uses of a wide variety of commercially available water conditioners. Water conditioners containing polymers may reduce external damage to fish held in containers during scientific experimentation, including surgical implantation of electronic tags. However, there is a need to empirically test the effectiveness of water conditioners at preventing damage to and promoting healing of the mucus layer. A research agenda is provided to advance the science related to the use of water conditions to improve the condition of fish during handling and tagging. C1 [Harnish, Ryan A.; Colotelo, Alison H.; Brown, Richard S.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. RP Harnish, RA (reprint author), Pacific NW Natl Lab, Ecol Grp, POB 999,MSIN K6-85, Richland, WA 99352 USA. EM ryan.harnish@pnl.gov; Alison.Colotelo@pnl.gov; Rich.Brown@pnl.gov FU US Army Corps of Engineers, Portland District; Battelle for the US Department of Energy [DE-AC05-76RL01830] FX This research was funded by the US Army Corps of Engineers, Portland District. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. With appreciation, we acknowledge the technical contributions of James Boyd, Andrea Currie, Jill Janak and Andrea LeBarge from the Pacific Northwest National Laboratory. We also appreciate comments from Steven Cooke of Carleton University and Glenn Wagner of EDI Environmental Dynamics. NR 46 TC 6 Z9 6 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 EI 1573-5184 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2011 VL 21 IS 1 SI SI BP 43 EP 49 DI 10.1007/s11160-010-9187-1 PG 7 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 726WG UT WOS:000287756700005 ER PT J AU Carter, KM Woodley, CM Brown, RS AF Carter, Kathleen M. Woodley, Christa M. Brown, Richard S. TI A review of tricaine methanesulfonate for anesthesia of fish SO REVIEWS IN FISH BIOLOGY AND FISHERIES LA English DT Article DE Anesthesia; TMS; MS222; FDA; Salmonids ID ACID-BASE-BALANCE; SALMON ONCORHYNCHUS-TSHAWYTSCHA; RAINBOW-TROUT; SALVELINUS-FONTINALIS; HANDLING STRESS; TELEOST FISH; BROOK TROUT; CLOVE OIL; MS-222; CORTISOL AB Tricaine methanesulfonate (TMS) is an anesthetic that is approved for provisional use in some jurisdictions such as the United States, Canada, and the United Kingdom (UK). Many hatcheries and research studies use TMS to immobilize fish for marking or transport and to suppress sensory systems during invasive procedures. Improper TMS use can decrease fish viability, distort physiological data, or result in mortalities. Because animals may be anesthetized by junior staff or students who may have little experience in fish anesthesia, training in the proper use of TMS may decrease variability in recovery, experimental results and increase fish survival. This document acts as a primer on the use of TMS for anesthetizing juvenile salmonids, with an emphasis on its use in surgical applications. Within, we briefly describe many aspects of TMS including the legal uses for TMS, and what is currently known about the proper storage and preparation of the anesthetic. We outline methods and precautions for administration and changes in fish behavior during progressively deeper anesthesia and discuss the physiological effects of TMS and its potential for compromising fish health. Despite the challenges of working with TMS, it is currently one of the few legal options available in the USA and in other countries until other anesthetics are approved and is an important tool for the intracoelomic implantation of electronic tags in fish. C1 [Carter, Kathleen M.; Woodley, Christa M.; Brown, Richard S.] Pacific NW Natl Lab, Ecol Grp, Richland, WA 99352 USA. [Woodley, Christa M.] Pacific NW Natl Lab, Marine Biotechnol Grp, Marine Sci Lab, Sequim, WA 98382 USA. RP Carter, KM (reprint author), Pacific NW Natl Lab, Ecol Grp, 902 Battelle Blvd,POB 999,MSIN K6-85, Richland, WA 99352 USA. EM kathleen.carter@pnl.gov FU U. S. Army Corps of Engineers, Portland District FX This research was funded by the U. S. Army Corps of Engineers, Portland District. With appreciation, we acknowledge the technical contributions of our anonymous reviewers, Andrea Currie, Andrea LeBarge, Carmina Arimescu, and James Boyd of Pacific Northwest National Laboratory, Brad Eppard of the U. S. Army Corps of Engineers, Portland District, Steven Cooke of Carleton University and Glenn Wagner of Environmental Dynamics Inc. NR 65 TC 39 Z9 43 U1 4 U2 65 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0960-3166 J9 REV FISH BIOL FISHER JI Rev. Fish. Biol. Fish. PD MAR PY 2011 VL 21 IS 1 SI SI BP 51 EP 59 DI 10.1007/s11160-010-9188-0 PG 9 WC Fisheries; Marine & Freshwater Biology SC Fisheries; Marine & Freshwater Biology GA 726WG UT WOS:000287756700006 ER PT J AU Oh, TM Kwon, TH Cho, GC AF Oh, Tae-Min Kwon, Tae-Hyuk Cho, Gye-Chun TI Effect of Partial Water Saturation on Attenuation Characteristics of Low Porosity Rocks SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Wave attenuation; Partial water saturation; Compressional wave; Longitudinal wave; Low porosity rock ID ELASTIC WAVES; FREQUENCY RANGE; SEISMIC-WAVES; PROPAGATION; DRY C1 [Oh, Tae-Min; Cho, Gye-Chun] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea. [Kwon, Tae-Hyuk] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Cho, GC (reprint author), Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea. EM ohtaemin@kaist.ac.kr; thkwon@lbl.gov; gyechun@kaist.edu RI Cho, Gye-Chun/C-1600-2011; Kwon, Tae-Hyuk/F-2183-2013 FU Smart Infra-Structures Technology Center (SISTeC) under KOSEF; Ministry of Construction & Transportation of Korean Government [07UrbanRenaissanceB03] FX This work was supported by the Smart Infra-Structures Technology Center (SISTeC) under KOSEF and the grant (07UrbanRenaissanceB03) from High-Tech Urban Development Program funded by the Ministry of Construction & Transportation of Korean Government. NR 16 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD MAR PY 2011 VL 44 IS 2 BP 245 EP 251 DI 10.1007/s00603-010-0121-6 PG 7 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 719YG UT WOS:000287246800009 ER PT J AU Weinberger, CR Cai, W AF Weinberger, Christopher R. Cai, Wei TI The stability of Lomer-Cottrell jogs in nanopillars SO SCRIPTA MATERIALIA LA English DT Article DE Dislocations; Micropillar; Jog; Plastic Deformation ID TRANSMISSION ELECTRON-MICROSCOPY; SIMULATIONS; PLASTICITY AB Single arm spiral sources, or truncated Frank Read sources, have been used frequently to interpret the size dependent plasticity in micropillars. The basis for these sources is strong pinning points which have been proposed to exist based on immobile Lomer-Cottrell jogs. Here, we show, using molecular dynamics of face-centered cubic nanopillars, that Lomer-Cottrell jogs are not as immobile as initially thought and that they do not provide strong pinning points for single arm sources. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Weinberger, Christopher R.; Cai, Wei] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov; caiwei@stanford.edu RI Weinberger, Christopher/E-2602-2011; OI Weinberger, Christopher/0000-0001-9550-6992; Cai, Wei/0000-0001-5919-8734 FU U.S. Department of Energy [DE-AC04-94AL85000]; National Science Foundation [CMS-0547681]; Army High Performance Computing Research Center at Stanford FX This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. The work was partly supported by National Science Foundation Career Grant CMS-0547681 and the Army High Performance Computing Research Center at Stanford. NR 15 TC 22 Z9 22 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD MAR PY 2011 VL 64 IS 6 BP 529 EP 532 DI 10.1016/j.scriptamat.2010.11.037 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 715FO UT WOS:000286866200014 ER PT J AU Deaton, JD Ahmad, SA Shukla, U Irwin, RE DaSilva, LA MacKenzie, AB AF Deaton, Juan D. Ahmad, Syed A. Shukla, Umesh Irwin, Ryan E. DaSilva, Luiz A. MacKenzie, Allen B. TI Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks SO WIRELESS PERSONAL COMMUNICATIONS LA English DT Article DE Cognitive networks; Dynamic channel and power assignment; Mobile adhoc networks; Network density ID AD-HOC NETWORKS; PERFORMANCE; SYSTEMS AB In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and an evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five representative DPCA algorithms proposed in the literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate the effectiveness of the algorithms in achieving feasible link allocations in the network, and their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment algorithm does not require cross-link gain information, has the overall lowest run time, and achieves the highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link. C1 [Deaton, Juan D.; Ahmad, Syed A.; Shukla, Umesh; Irwin, Ryan E.; DaSilva, Luiz A.; MacKenzie, Allen B.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Deaton, Juan D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [DaSilva, Luiz A.] Trinity Coll Dublin, CTVR, Dublin, Ireland. RP Deaton, JD (reprint author), Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. EM deatjd@vt.edu; saahmad@vt.edu; ushukla@vt.edu; reirwin@vt.edu; ldasilva@vt.edu; mackenab@vt.edu FU Idaho National Laboratory (INL); Virginia Tech Bradley Fellowship; U.S. Department of Energy [DE-AC07-05ID14517] FX This work is partially supported by the Idaho National Laboratory (INL) Ph.D. Candidate Program and Virginia Tech Bradley Fellowship. Work supported by the INL is done under Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Department of Energy or the U. S. Government. NR 8 TC 3 Z9 3 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-6212 J9 WIRELESS PERS COMMUN JI Wirel. Pers. Commun. PD MAR PY 2011 VL 57 IS 1 BP 5 EP 18 DI 10.1007/s11277-010-0003-y PG 14 WC Telecommunications SC Telecommunications GA 723MG UT WOS:000287510100002 ER PT J AU Levchenko, AA Kolesnikov, AI Trofymluk, O Navrotsky, A AF Levchenko, Andrey A. Kolesnikov, Alexander I. Trofymluk, Olga Navrotsky, Alexandra TI Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering SO CARBON LA English DT Article ID TEMPERATURE SPECIFIC-HEAT; PHASE-STABILITY; ENERGY; FULLERENES; ENTHALPIES; NANOSTRUCTURES; DECOMPOSITION; NANOPARTICLES; NANODIAMOND; DIRECTIONS AB Bundles of (10,10) single-wall carbon nanotubes (SWCNTs) have been studied by high-temperature oxidation calorimetry and inelastic neutron scattering to obtain standard formation enthalpies and entropies at 298 K. SWCNTs are found to be only moderately less stable than graphite, and are significantly more stable than their fullerene counterparts. They are 7 kJ mol(-1) metastable in terms of enthalpy relative to graphite, and just 5 kJ mol(-1) less stable than diamond. Despite striking differences in vibrational dynamics of carbon atoms in SWCNTs and graphite, their thermodynamic properties at room and higher temperatures are dominated by the same set of high energy vibrations, reflected in very similar vibrational entropies. However, the energetics of SWCNTs are governed by the diameter-dependent enthalpic contributions, but not the specifics of phonon density of states. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kolesnikov, Alexander I.; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Kolesnikov, Alexander I.; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Levchenko, Andrey A.] Setaram Inc, Newark, CA 94560 USA. [Trofymluk, Olga] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu RI Kolesnikov, Alexander/I-9015-2012 OI Kolesnikov, Alexander/0000-0003-1940-4649 FU U.S. Department of Energy (DOE) [DE-FG03-01ER15237, DE-AC02-06CH11357, DE-AC05-00OR22725] FX Alexandra Navrotsky and Andrey A. Levchenko acknowledge partial support from U.S. Department of Energy (DOE, grant DE-FG03-01ER15237). Work at Argonne National Laboratory was supported by DOE under contract DE-AC02-06CH11357 and work at ORNL was managed UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. Authors thank Alexander P. Moravsky for providing the SWCNT sample prepared and purified by a proprietary method at MER Corporation, Tucson, Arizona. The authors are also grateful to Dr. Antonio G. Souza Filho from Departamento de Fisica, Universidade Federal do Ceara, Brazil, for doing Raman scattering to access the sample purity and to calculate the CNT diameter. NR 47 TC 6 Z9 6 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD MAR PY 2011 VL 49 IS 3 BP 949 EP 954 DI 10.1016/j.carbon.2010.11.004 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 712RI UT WOS:000286683500024 ER PT J AU Lee, WW Jenkins, TG Ethier, S AF Lee, W. W. Jenkins, T. G. Ethier, S. TI A generalized weight-based particle-in-cell simulation scheme SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Gyrokinetic particle simulation; Nonlinear drift waves; Multiscale methods ID GYROKINETIC SIMULATION; DRIFT INSTABILITIES; ALFVEN WAVES; PLASMAS; TRANSPORT AB A generalized weight-based particle simulation scheme suitable for simulating magnetized plasmas, where the zeroth-order inhomogeneity is important, is presented. The scheme is an extension of the perturbative simulation schemes developed earlier for particle-in-cell (PIC) simulations. The new scheme is designed to simulate both the perturbed distribution (delta f) and the full distribution (full-F) within the same code. The development is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions. The potential advantage for such an arrangement is to minimize the particle noise by using delta f in the linear stage of the simulation, while retaining the flexibility of a full-F capability in the fully nonlinear stage of the development when signals associated with plasma turbulence are at a much higher level than those from the intrinsic particle noise. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lee, W. W.; Jenkins, T. G.; Ethier, S.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Lee, WW (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM wwlee@pppl.gov FU US DoE [DE-AC02-09CH11466] FX The work was supported by US DoE Contract Number DE-AC02-09CH11466 for Princeton Plasma Physics Laboratory, Princeton University. NR 21 TC 3 Z9 4 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD MAR PY 2011 VL 182 IS 3 BP 564 EP 569 DI 10.1016/j.cpc.2010.10.013 PG 6 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 722KX UT WOS:000287432200003 ER PT J AU Som, S Ramirez, AI Longman, DE Aggarwal, SK AF Som, Sibendu Ramirez, Anita I. Longman, Douglas E. Aggarwal, Suresh K. TI Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions SO FUEL LA English DT Article DE Diesel engine; Nozzle geometry; Flame lift-off; NO(x) and soot emissions; Primary breakup ID IGNITION; PRESSURE; INJECTOR; SOOT; FLOW AB Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling the injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NO(x) produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Som, Sibendu] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Ramirez, Anita I.; Aggarwal, Suresh K.] Univ Illinois, Chicago, IL 60607 USA. RP Som, S (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ssom@anl.gov FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This work is supported by the US Department of Energy Office of Vehicle Technology under the management of Gurpreet Singh under Contract No. DE-AC02-06CH11357. NR 35 TC 71 Z9 80 U1 2 U2 51 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD MAR PY 2011 VL 90 IS 3 BP 1267 EP 1276 DI 10.1016/j.fuel.2010.10.048 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 722ZX UT WOS:000287476000044 ER PT J AU Musolino, SV AF Musolino, Stephen V. TI THE ENDURING LEGACY OF VICTOR P. BOND SO HEALTH PHYSICS LA English DT Editorial Material C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Musolino, SV (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2011 VL 100 IS 3 BP 243 EP 243 DI 10.1097/HP.0b013e31820b493f PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 715ID UT WOS:000286875800001 ER PT J AU Feinendegen, LE Brooks, AL Morgan, WF AF Feinendegen, Ludwig E. Brooks, Antone L. Morgan, William F. TI THE ENDURING LEGACY OF VICTOR P. BOND INTRODUCTION SO HEALTH PHYSICS LA English DT Editorial Material C1 [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Brooks, Antone L.; Morgan, William F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Feinendegen, LE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Feinendegen@gmx.net NR 3 TC 1 Z9 1 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2011 VL 100 IS 3 BP 244 EP 246 DI 10.1097/HP.0b013e318208ce51 PG 3 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 715ID UT WOS:000286875800002 PM 21285723 ER PT J AU Feinendegen, LE Brooks, AL Morgan, WF AF Feinendegen, Ludwig E. Brooks, Antone L. Morgan, William F. TI BIOLOGICAL CONSEQUENCES AND HEALTH RISKS OF LOW-LEVEL EXPOSURE TO IONIZING RADIATION: COMMENTARY ON THE WORKSHOP SO HEALTH PHYSICS LA English DT Article DE biological indicators; dose, low; hormesis; radiation effects ID LOW-DOSE RADIATION; DELAYED GENOMIC INSTABILITY; BONE-MARROW-CELLS; ADAPTIVE RESPONSE; NEOPLASTIC TRANSFORMATION; HUMAN-LYMPHOCYTES; DNA-DAMAGE; GAMMA-RAYS; X-RAYS; INTERCELLULAR INDUCTION AB This paper provides an integration and discussion of the information presented at the workshop held from 2-5 May 2010 in Richland, WA, adjacent to the Pacific Northwest National Laboratory (PNNL). Consequently, this is commentary and not necessarily a consensus document. This workshop was in honor of Dr. Victor P. Bond in celebration of his numerous contributions to the radiation sciences. Health Phys. 100(3):247-259; 2011 C1 [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Brooks, Antone L.; Morgan, William F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Feinendegen, LE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM Feinendegen@gmx.net NR 93 TC 20 Z9 22 U1 0 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD MAR PY 2011 VL 100 IS 3 BP 247 EP 259 DI 10.1097/HP.0b013e31820a83ae PG 13 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 715ID UT WOS:000286875800003 PM 21285724 ER PT J AU Zhou, YN Wang, XJ Lee, HS Nam, KW Yang, XQ Haas, O AF Zhou, Y. N. Wang, X. J. Lee, H. S. Nam, K. W. Yang, X. Q. Haas, O. TI Electrochemical investigation of Li-Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6 SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE Electrolytes; Electrochemical stability Conductivity; Oligo(ethylene glycol) dimethyl ether; Li-Al alloy formation ID X-RAY-ABSORPTION; POLY(ETHYLENE GLYCOL); LITHIUM; ELECTROLYTES; ALUMINUM; DIFFUSION; BATTERIES; CELLS AB 1 M LiPF6 dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 500 g mol(-1) was investigated as a new electrolyte (OEGDME500, 1 M LiPF6) for metal deposition and battery applications. At 25 A degrees C a conductivity of 0.48 x 10(-3) S cm(-1) was obtained and at 85 A degrees C, 3.78 x 10(-3) S cm(-1). The apparent activation barrier for ionic transport was evaluated to be 30.7 kJ mol(-1). OEGDME500, 1 M LiPF6 allows operating temperature above 100 A degrees C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 280 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction. C1 [Haas, O.] Energy & Mat Res Consulting, CH-6648 Minusio, Switzerland. [Zhou, Y. N.; Wang, X. J.; Lee, H. S.; Nam, K. W.; Yang, X. Q.; Haas, O.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Zhou, Y. N.] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. RP Haas, O (reprint author), Energy & Mat Res Consulting, CH-6648 Minusio, Switzerland. EM otto.haas@bluewin.ch RI Nam, Kyung-Wan Nam/G-9271-2011; Nam, Kyung-Wan/B-9029-2013; Zhou, Yong-Ning/I-9579-2014; Nam, Kyung-Wan/E-9063-2015 OI Nam, Kyung-Wan/0000-0001-6278-6369; Nam, Kyung-Wan/0000-0001-6278-6369 FU Office of Vehicle Technologies; U.S. Department of Energy [DEAC02-98CH10886]; China Scholarship Council FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program of "Hybrid and Electric Systems," of the U.S. Department of Energy under Contract Number DEAC02-98CH10886. We would also like to thank the China Scholarship Council for the financial support of Y. N. Zhou. NR 20 TC 5 Z9 5 U1 4 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD MAR PY 2011 VL 41 IS 3 BP 271 EP 275 DI 10.1007/s10800-010-0233-4 PG 5 WC Electrochemistry SC Electrochemistry GA 718UB UT WOS:000287150700002 ER PT J AU Goldberg, RN Lang, BE Selig, MJ Decker, SR AF Goldberg, Robert N. Lang, Brian E. Selig, Michael J. Decker, Stephen R. TI A calorimetric and equilibrium investigation of the reaction {methyl ferulate(aq) + H(2)O(1) = methanol(aq) plus ferulic acid(aq)} SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE Biomass; Calorimetry; Enthalpy; Entropy; Ferulic acid; Feruloyl esterase; Methyl ferulate; Methanol; Standard Gibbs free energy ID THERMODYNAMICS; ACID AB Microcalorimetry and high-performance liquid chromatography (HPLC) have been used to conduct a thermodynamic investigation of the reaction: {methyl ferulate(aq) + H(2)O(1) = methanol(aq) + ferulic acid(aq)}, as catalyzed by feruloyl esterase. Values of the apparent equilibrium constant K' = (29.6 +/- 0.7) (T = 298.15 K, citrate buffer at pH 4.98, ionic strength I = 0.39 mol . kg(-1)) and of the calorimetrically determined enthalpy of reaction Delta(r)H(cal) = (4.0 +/- 0.9) kJ . mol(-1) (T = 298.15 K and citrate buffer at pH 4.81, I = 0.36 mol . kg-1) were measured. A chemical equilibrium model, together with pKs and standard enthalpies of reaction Delta(r)H degrees for the H(+)(aq) binding reactions of the reactants and products, was then used to calculate the values K = (1.89 +/- 0.06) . 10(-4), Delta(r)H degrees = (7.3 +/- 1.7) kJ . mol(-1), Delta(r)G degrees =(21.25 +/- 0.07) kJ . mol(-1), and Delta(r)S degrees = -(46.8 +/- 5.7) J . K(-1) . mol(-1) for the chemical reference reaction {methyl ferulate(aq) + H(2)O(1) = methanol(aq) + ferulic acid(-)(aq) + H(+)(aq)}. These values of K and Delta(r)H degrees are similar in magnitude to the corresponding values reported for the reaction {propyl gallate(aq) + H(2)O(1) = 3,4,5-trihydroxybenzoic acid(-)(aq) + 1-propanol(aq) + H(+)(aq)}. The results obtained in this study can be used in a chemical equilibrium model to calculate how K' and other standard transformed properties such as the standard transformed enthalpy Delta(r)H'degrees, standard transformed Gibbs free energy Delta(r)G'degrees, and the change in binding of H(+)(aq), Delta(r)N(H(+)), vary with the independent variables T, pH, and I. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Goldberg, Robert N.; Lang, Brian E.] Natl Inst Stand & Technol, Div Biochem Sci, Gaithersburg, MD 20876 USA. [Goldberg, Robert N.] Univ Maryland Baltimore Cty, Dept Chem & Biochem, Baltimore, MD 21250 USA. [Selig, Michael J.; Decker, Stephen R.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Goldberg, RN (reprint author), Natl Inst Stand & Technol, Div Biochem Sci, Gaithersburg, MD 20876 USA. EM robert.goldberg@nist.gov; brian.lang@nist.gov; michael.selig@nrel.gov; steve.decker@nrel.gov RI Sanders, Susan/G-1957-2011 NR 19 TC 3 Z9 3 U1 1 U2 6 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD MAR PY 2011 VL 43 IS 3 BP 235 EP 239 DI 10.1016/j.jct.2010.09.002 PG 5 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 717VU UT WOS:000287076300002 ER PT J AU Han, J Chang, H Yang, Q Fontenay, G Groesser, T Barcellos-Hoff, MH Parvin, B AF Han, J. Chang, H. Yang, Q. Fontenay, G. Groesser, T. Barcellos-Hoff, M. Helen Parvin, B. TI Multiscale iterative voting for differential analysis of stress response for 2D and 3D cell culture models SO JOURNAL OF MICROSCOPY LA English DT Article DE E-cadherin; expectation maximization; ionizing radiation; iterative voting; segmentation; gamma H2AX; 3D cell culture models ID IMAGE-ANALYSIS; SEGMENTATION; LOCALIZATION; PHENOTYPE; PROTEINS; NUCLEI; CANCER; BREAKS; ASSAYS; SET AB Three-dimensional (2D) cell culture models have emerged as the basis for improved cell systems biology. However, there is a gap in robust computational techniques for segmentation of these model systems that are imaged through confocal or deconvolution microscopy. The main issues are the volume of data, overlapping subcellular compartments and variation in scale or size of subcompartments of interest, which lead to ambiguities for quantitative analysis on a cell-by-cell basis. We address these ambiguities through a series of geometric operations that constrain the problem through iterative voting and decomposition strategies. The main contributions of this paper are to (i) extend the previously developed 2D radial voting to an efficient 3D implementation, (ii) demonstrate application of iterative radial voting at multiple subcellular and molecular scales, and (iii) investigate application of the proposed technology to two endpoints between 2D and 3D cell culture models. These endpoints correspond to kinetics of DNA damage repair as measured by phosphorylation of gamma H2AX, and the loss of the membrane-bound E-cadherin protein as a result of ionizing radiation. Preliminary results indicate little difference in the kinetics of the DNA damage protein between 2D and 3D cell culture models; however, differences between membrane-bound E-cadherin are more pronounced. C1 [Han, J.; Chang, H.; Yang, Q.; Fontenay, G.; Groesser, T.; Barcellos-Hoff, M. Helen; Parvin, B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Parvin, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,Mail Stop 977R250, Berkeley, CA 94720 USA. EM b_parvin@lbl.gov OI Groesser, Torsten/0000-0003-3143-1906 FU office of Biological Effects Research, U.S. Department of Energy [DE-FG03-01ER63240]; National Aeronautics and Space Administration [T6275W] FX The Research was supported in part by the DOE Low Dose Radiation Research Program, office of Biological Effects Research, U.S. Department of Energy, Grant No. DE-FG03-01ER63240 and National Aeronautics and Space Administration Grant No. T6275W. NR 33 TC 4 Z9 4 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 EI 1365-2818 J9 J MICROSC-OXFORD JI J. Microsc.. PD MAR PY 2011 VL 241 IS 3 BP 315 EP 326 DI 10.1111/j.1365-2818.2010.03442.x PG 12 WC Microscopy SC Microscopy GA 721OX UT WOS:000287365500010 PM 21118235 ER PT J AU Ramakrishnan, L Chase, JS Gannon, D Nurmi, D Wolski, R AF Ramakrishnan, Lavanya Chase, Jeffrey S. Gannon, Dennis Nurmi, Daniel Wolski, Rich TI Deadline-sensitive workflow orchestration without explicit resource control SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Grid computing; Cloud computing; Workflow scheduling; Orchestration; Deadline-sensitive workflows AB Deadline-sensitive workflows require careful coordination of user constraints with resource availability. Current distributed resource access models provide varying degrees of resource control: from limited or none in grid batch systems to explicit in cloud systems. Additionally applications experience variability due to competing user loads, performance variations, failures, etc. These variations impact the quality of service (QoS) that goes unaccounted for in planning strategies. In this paper we propose Workflow ORchestrator for Distributed Systems (WORDS) architecture based on a least common denominator resource model that abstracts the differences and captures the QoS properties provided by grid and cloud systems. We investigate algorithms for effective orchestration (i.e., resource procurement and task mapping) for deadline-sensitive workflows atop the resource abstraction provided in WORDS. Our evaluation compares orchestration methodologies over TeraGrid and Amazon EC2 systems. Experimental results show that WORDS enables effective orchestration possible at reasonable costs on batch queue grid and cloud systems with or without explicit resource control. (C) 2010 Elsevier Inc. All rights reserved. C1 [Ramakrishnan, Lavanya] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Chase, Jeffrey S.] Duke Univ, Durham, NC USA. [Gannon, Dennis] Microsoft Res, EXtreme Comp Grp, Redmond, WA USA. [Nurmi, Daniel; Wolski, Rich] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. RP Ramakrishnan, L (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM LRamakrishnan@lbl.gov RI zong, fico/H-4677-2011 FU National Science Foundation (NSF) [CCR-0331645, ATM-0331480]; NSF TeraGrid resources; Office of Science, of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded through a National Science Foundation (NSF) cooperative Agreement issued to Rice University (No. CCR-0331645) with a sub-agreement to the University of North Carolina at Chapel Hill and through NSF Cooperative Agreements ATM-0331480. This research was supported in part by the NSF TeraGrid resources. This work was supported by the Director, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 7 Z9 7 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD MAR PY 2011 VL 71 IS 3 BP 343 EP 353 DI 10.1016/j.jpdc.2010.11.010 PG 11 WC Computer Science, Theory & Methods SC Computer Science GA 712YH UT WOS:000286701700002 ER PT J AU Carroll, TE Grosu, D AF Carroll, Thomas E. Grosu, Daniel TI Distributed algorithmic mechanism design for scheduling on unrelated machines SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Algorithmic mechanism design; Scheduling on unrelated machines; Truthful mechanism; Distributed computation ID PARAMETER AGENTS; SYSTEMS AB In classical mechanism design the outcome of the mechanism is computed by a trusted central party. In this paper, we consider the design of distributed mechanisms in which the outcome is computed by the agents themselves. We propose Distributed MinWork (DMW), a mechanism for solving the problem of scheduling on unrelated machines. We show that DMW is a faithful implementation of the MinWork mechanism, which was proposed by Nisan and Ronen in their seminal work (Nisan and Rouen (2001) [30]). We show that in addition to being faithful, DMW protects the anonymity of the losing agents and the privacy of their bids. Furthermore, we show that DMW is efficient as it has polynomial communication and computation costs. (C) 2010 Elsevier Inc. All rights reserved. C1 [Grosu, Daniel] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA. [Carroll, Thomas E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grosu, D (reprint author), Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA. EM Thomas.Carroll@pnl.gov; dgrosu@cs.wayne.edu FU NSF [DGE-0654014] FX This research was supported in part by NSF grant DGE-0654014. This paper is a revised and significantly extended version of Carroll and Grosu (2005) [8.9] presented at PODC 2005 and I-SPAN 2005. NR 38 TC 0 Z9 0 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD MAR PY 2011 VL 71 IS 3 BP 397 EP 406 DI 10.1016/j.jpdc.2010.11.004 PG 10 WC Computer Science, Theory & Methods SC Computer Science GA 712YH UT WOS:000286701700006 ER PT J AU Duan, HY Friedland, A McLaughlin, GC Surman, R AF Duan, Huaiyu Friedland, Alexander McLaughlin, Gail C. Surman, Rebecca TI The influence of collective neutrino oscillations on a supernova r process SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID CORE-COLLAPSE SUPERNOVAE; PROCESS NUCLEOSYNTHESIS; DRIVEN WINDS; STAR WINDS; EARLY GALAXY; METAL-POOR; MATTER; CAPTURE; TRANSFORMATION; SIMULATIONS AB Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced Mikheyev-Smirnov-Wolfenstein effect and hence may have an impact on nucleosynthesis. In this paper we explore the effects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used 'single-angle' approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions-in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary. C1 [Duan, Huaiyu] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Friedland, Alexander] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [McLaughlin, Gail C.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Surman, Rebecca] Union Coll, Dept Phys & Astron, Schenectady, NY 12308 USA. RP Duan, HY (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM surmanr@union.edu FU DOE [DE-FG02-02ER41216, DE-FG05-05ER41398]; LANL LDRD FX This work was supported in part by DOE contract DE-FG02-02ER41216 (GCM) and DE-FG05-05ER41398 (RS), by the DOE topical collaboration 'Neutrinos and Nucleosynthesis in Hot and Dense Matter' (HD, AF and GCM) and by LANL LDRD program (HD and AF). NR 80 TC 54 Z9 54 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD MAR PY 2011 VL 38 IS 3 AR 035201 DI 10.1088/0954-3899/38/3/035201 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 716KZ UT WOS:000286968800018 ER PT J AU Li, JL Daniel, C Wood, D AF Li, Jianlin Daniel, Claus Wood, David TI Materials processing for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Review DE Lithium-ion battery; Materials processing; Cathode; Anode; Separator ID ELECTROSTATIC SPRAY DEPOSITION; CHEMICAL-VAPOR-DEPOSITION; LICOO2 THIN-FILMS; POLYMER ELECTROLYTE MEMBRANE; GRAPHITE NEGATIVE ELECTRODE; IRREVERSIBLE CAPACITY LOSS; VINYL ETHYLENE CARBONATE; ATOMIC-FORCE MICROSCOPY; PULSED-LASER DEPOSITION; LI-ION AB Extensive efforts have been undertaken to develop and optimize new materials for lithium-ion batteries to address power and energy demands of mobile electronics and electric vehicles. However, the introduction of large-format lithium-ion batteries is hampered by high cost, safety concerns, and deficiencies in energy density and calendar life. Advanced materials-processing techniques can contribute solutions to such issues. From that perspective, this work summarizes the materials-processing techniques used to fabricate the cathodes, anodes, and separators used in lithium-ion batteries. (C) 2010 Elsevier B.V. All rights reserved. C1 [Li, Jianlin; Daniel, Claus; Wood, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Daniel, Claus] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Li, JL (reprint author), 1 Bethel Valley Rd,POB 2008,MS 6083, Oak Ridge, TN 37831 USA. EM lij4@ornl.gov RI Li, Jianlin/D-3476-2011; Daniel, Claus/A-2060-2008; OI Li, Jianlin/0000-0002-8710-9847; Daniel, Claus/0000-0002-0571-6054; Wood, David/0000-0002-2471-4214 FU U.S. Department of Energy [DE-AC05-00OR22725]; Industrial Technologies and Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy FX This research at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Industrial Technologies and Vehicle Technologies Program for the Office of Energy Efficiency and Renewable Energy. NR 189 TC 149 Z9 162 U1 37 U2 372 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2011 VL 196 IS 5 BP 2452 EP 2460 DI 10.1016/j.jpowsour.2010.11.001 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 712ZP UT WOS:000286705100003 ER PT J AU Ding, D Gong, MY Xu, CC Baxter, N Li, YH Zondlo, J Gerdes, K Liu, XB AF Ding, Dong Gong, Mingyang Xu, Chunchuan Baxter, Nicholas Li, Yihong Zondlo, John Gerdes, Kirk Liu, Xingbo TI Electrochemical characteristics of samaria-doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes SO JOURNAL OF POWER SOURCES LA English DT Article DE Doped ceria; Sr-doped LaMnO3 cathode; Infiltration; Yttria-stabilized zirconia; Solid oxide fuel cells ID OXIDE FUEL-CELLS; ION-IMPREGNATION METHOD; INTERMEDIATE-TEMPERATURE; COMPOSITE ELECTRODES; (LA,SR)MNO3 CATHODES; OXYGEN REDUCTION; HIGH-PERFORMANCE; IMPEDANCE SPECTROSCOPY; DIRECT-OXIDATION; SOFC AB Samaria-doped ceria (SDC) infiltrated into strontium-doped LaMnO3 (LSM) cathodes with varied cathode thickness on yttria-stabilized zirconia (YSZ) were investigated via symmetrical cell, half cell, and full cell configurations. The results of the symmetrical cells showed that the interfacial polarization resistance (R-p) decreased with increasing electrode thickness up to similar to 30 mu m, and further increases in the thickness of the cathode did not cause significant variation of electrode performance. At 800 degrees C, the minimum R-p was around 0.05 Omega cm(2). The impedance spectra indicated that three main electrochemical processes existed, possibly corresponding to the oxygen ion incorporation, surface diffusion of oxygen species and oxygen adsorption and dissociation. The DC polarization on the half cells and characterization of the full cells also demonstrated a similar correlation between the electrode performance and the electrode thickness. The peak power densities of the single cells with the 10, 30, and 50-mu m thick electrodes were 0.63, 1.16 and 1.11 W cm(-2), respectively. The exchange current densities under moderate polarization are calculated and possible rate-determining steps are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ding, Dong; Gong, Mingyang; Baxter, Nicholas; Li, Yihong; Liu, Xingbo] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Ding, Dong; Gerdes, Kirk; Liu, Xingbo] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Xu, Chunchuan; Zondlo, John] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. RP Liu, XB (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, POB 6106, Morgantown, WV 26506 USA. EM Xingbo.liu@mail.wvu.edu RI Ding, Dong/E-5154-2010; Gong, Mingyang/E-5939-2012; Ding, Dong/S-1973-2016; Ding, Dong/B-9145-2017 OI Ding, Dong/0000-0002-6921-4504; Ding, Dong/0000-0002-6921-4504; Ding, Dong/0000-0002-6921-4504 NR 46 TC 10 Z9 10 U1 2 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2011 VL 196 IS 5 BP 2551 EP 2557 DI 10.1016/j.jpowsour.2010.11.007 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 712ZP UT WOS:000286705100015 ER PT J AU Dambournet, D Belharouak, I Ma, JW Amine, K AF Dambournet, Damien Belharouak, Ilias Ma, Jiwei Amine, Khalil TI Template-assisted synthesis of high packing density SrLi2Ti6O14 for use as anode in 2.7-V lithium-ion battery SO JOURNAL OF POWER SOURCES LA English DT Article DE Template; Anode; Li-ion batteries; SrLi2Ti6O14 ID BA AB SrLi2Ti6O14 has been prepared by using mesoporous TiO2 brookite as a template and reactant. The prepared particles retained the rounded shape of the precursor, leading to high dispersivity and high packing density. The material has been further electrochemically characterized in both half and full cells. It shows good cycling stability and rate capability. A 2.7-V cell has been built by combining a SrLi2Ti6O14 anode with a 4-V spinel cathode of LiMn2O4. This cell has a higher voltage compared to the 2.5-V LiMn2O4/Li4Ti5O12 system. (C) 2010 Published by Elsevier B.V. C1 [Dambournet, Damien; Belharouak, Ilias; Ma, Jiwei; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Dambournet, D (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dambournet@anl.gov; belharouak@anl.gov RI Amine, Khalil/K-9344-2013; OI Belharouak, Ilias/0000-0002-3985-0278 FU U.S. Department of Energy [DE-ACO2-06CH11357]; FreedomCAR and Vehicle Technologies Office FX This research was funded by the U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-ACO2-06CH11357. NR 9 TC 32 Z9 33 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD MAR 1 PY 2011 VL 196 IS 5 BP 2871 EP 2874 DI 10.1016/j.jpowsour.2010.11.011 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 712ZP UT WOS:000286705100061 ER PT J AU Shirley, K Marland, E Cantrell, J Marland, G AF Shirley, Kevin Marland, Eric Cantrell, Jenna Marland, Gregg TI Managing the cost of emissions for durable, carbon-containing products SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Carbon sequestration; CO(2) emissions; Carbon accounting; Life insurance; Carbon economics; Wood products AB We recognize that carbon-containing products do not decay and release CO(2) to the atmosphere instantaneously, but release that carbon over extended periods of time. For an initial production of a stock of carbon-containing product, we can treat the release as a probability distribution covering the time over which that release occurs. The probability distribution that models the carbon release predicts the amount of carbon that is released as a function of time. The use of a probability distribution in accounting for the release of carbon to the atmosphere realizes a fundamental shift from the idea that all carbon-containing products contribute to a single pool that decays in proportion to the size of the stock. Viewing the release of carbon as a continuous probabilistic process introduces some theoretical opportunities not available in the former paradigm by taking advantage of other fields where the use of probability distributions has been prevalent for many decades. In particular, theories developed in the life insurance industry can guide the development of pricing and payment structures for dealing with the costs associated with the oxidation and release of carbon. These costs can arise from a number of proposed policies (cap and trade, carbon tax, social cost of carbon, etc), but in the end they all result in there being a cost to releasing carbon to the atmosphere. If there is a cost to the emitter for CO(2) emissions, payment for that cost will depend on both when the emissions actually occur and how payment is made. Here we outline some of the pricing and payment structures that are possible which result from analogous theories in the life insurance industry. This development not only provides useful constructs for valuing sequestered carbon, but highlights additional motivations for employing a probability distribution approach to unify accounting methodologies for stocks of carbon containing products. C1 [Shirley, Kevin; Marland, Eric; Cantrell, Jenna] Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA. [Marland, Gregg] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Marland, E (reprint author), Appalachian State Univ, Dept Math Sci, Boone, NC 28608 USA. EM marlandes@appstate.edu NR 15 TC 4 Z9 4 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD MAR PY 2011 VL 16 IS 3 BP 325 EP 346 DI 10.1007/s11027-010-9268-4 PG 22 WC Environmental Sciences SC Environmental Sciences & Ecology GA 718SU UT WOS:000287147300004 ER PT J AU Park, BC Choi, AS Jeong, JW Lee, ES AF Park, Byoung-Chul Choi, An-Seop Jeong, Jae-Weon Lee, Eleanor S. TI Performance of integrated systems of automated roller shade systems and daylight responsive dimming systems SO BUILDING AND ENVIRONMENT LA English DT Article DE Integrated systems; Automated roller shade systems; Daylight responsive dimming systems; Daylighting; Photoelectric controls ID LIGHTING SYSTEMS; SMALL OFFICE AB Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position sky condition and fenestration condition Therefore this paper describes the Integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm and the relative performance of the Integrated systems and single systems The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy In this study the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm In the results the average maintenance percentage and the average discrepancies of the target illuminance as well as the average time under 90% of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system (C) 2010 Elsevier Ltd All rights reserved C1 [Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon] Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea. [Lee, Eleanor S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Bldg Technol Dept, Berkeley, CA 94720 USA. RP Choi, AS (reprint author), Sejong Univ, Dept Architectural Engn, Seoul 143747, South Korea. FU Samsung Corporation [ACO2-05CH11231]; 2nd Brain Korea 21 project; California Energy Commission FX This work was also supported by Samsung Corporation by the Assistant Secretary for Energy Efficiency and Renewable Energy Office of Building Technology State and Community Programs Office of Building Research and Standards of the US Department of Energy under Contract No DE-ACO2-05CH11231 and by the California Energy Commission through its Public Interest Energy Research (PIER) Program And the main author was funded by 2nd Brain Korea 21 project NR 19 TC 4 Z9 4 U1 1 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD MAR PY 2011 VL 46 IS 3 BP 747 EP 757 DI 10.1016/j.buildenv.2010.10.007 PG 11 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 700BF UT WOS:000285706400019 ER PT J AU de Araujo, FC d'Azevedo, EF Gray, LJ AF de Araujo, F. C. d'Azevedo, E. F. Gray, L. J. TI Constructing efficient substructure-based preconditioners for BEM systems of equations SO ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS LA English DT Article DE 3D boundary-element models; Subregion-by-subregion algorithm; Krylov solvers; Substructure-based block-diagonal preconditioners ID NONSYMMETRIC LINEAR-SYSTEMS; BOUNDARY-ELEMENT METHOD; GENERIC DOMAIN-DECOMPOSITION; ITERATIVE SOLUTION; 3D BEM; COMPOSITES; ALGORITHM; INTEGRALS; STRATEGY; SOLVERS AB In this work, a generic substructuring algorithm is employed to construct global block-diagonal preconditioners for BEM systems of equations. In this strategy, the allowable fill-in positions are those on-diagonal block matrices corresponding to each BE subregion. As these subsystems are independently assembled, the preconditioner for a particular BE model, after the LU decomposition of all subsystem matrices, is easily formed. So as to highlight the efficiency of the preconditioning proposed, the Bi-CG solver, which presents a quite erratic convergence behavior, is considered. In the particular applications of this paper, 3D representative volume elements (RVEs) of carbon-nanotube (CNT) composites are analyzed. The models contain up to several tens of thousands of degrees of freedom. The efficiency and relevance of the preconditioning technique is also discussed in the context of developing general (parallel) BE codes. (C) 2010 Elsevier Ltd. All rights reserved. C1 [de Araujo, F. C.] Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. [d'Azevedo, E. F.; Gray, L. J.] ORNL, Div Math & Comp Sci, Oak Ridge, TN USA. RP de Araujo, FC (reprint author), Univ Fed Ouro Preto, Dept Civil Engn, BR-35400000 Ouro Preto, MG, Brazil. EM fcelio@em.ufop.br; dazevedoef@ornl.gov; graylj1@ornl.gov RI de Araujo, Francisco/L-9770-2014 FU Brazilian Research Council, CNPq; Research Foundation of the State of Minas Gerais, FAPEMIG; Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Research Foundation for the State of Minas Gerais (FAPEMIG), Brazil FX Sponsors: Brazilian Research Council, CNPq; Research Foundation of the State of Minas Gerais, FAPEMIG; Office of Advanced Scientific Computing Research, U.S. Department of Energy.; This research was sponsored by the Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, the Brazilian Research Council (CNPq), and by the Research Foundation for the State of Minas Gerais (FAPEMIG), Brazil. NR 37 TC 3 Z9 3 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0955-7997 J9 ENG ANAL BOUND ELEM JI Eng. Anal. Bound. Elem. PD MAR PY 2011 VL 35 IS 3 BP 517 EP 526 DI 10.1016/j.enganabound.2010.09.001 PG 10 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Engineering; Mathematics GA 714BY UT WOS:000286783700029 ER PT J AU Ruan, XJ Yin, S Manzanares, A Alghamdi, M Qin, XA AF Ruan, Xiaojun Yin, Shu Manzanares, Adam Alghamdi, Mohammed Qin, Xiao TI A Message-Scheduling Scheme for Energy Conservation in Multimedia Wireless Systems SO IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS LA English DT Article DE Energy conservation; multimedia wireless systems; power-aware scheduling; real-time messages ID SCHEDULABILITY; NETWORKS; CLUSTERS; VIDEO AB Reducing power consumption of wireless networks has become a major goal in designing modern multimedia wireless systems. In an effort to reduce power consumption, this paper addresses the issue of scheduling real-time messages in multimedia wireless networks subject to both timing and power constraints. A power-consumption model is introduced to calculate power-consumption rates in accordance with message-transmission rates. Next, a new message-scheduling scheme called Power-aware Real-time Message (PARM) is developed to generate message-ransmission schedules that minimize power consumption of multimedia wireless-network interfaces and the probability of missing deadlines for real-time messages. With a power-aware scheduling policy in place, the proposed PARM scheme is very energy-efficient. Experimental results based on a wide variety of synthetic workloads and eight real-world applications show that PARM significantly reduces energy dissipation while maintaining low missed rates. PARM reduces power consumption of data transmissions by up to 99.4% (with an average of 86.7%) for synthetic network traffic and saves energy by up to 60.0% (with an average of 34.1%) in the eight real-world applications. C1 [Ruan, Xiaojun; Yin, Shu; Qin, Xiao] Auburn Univ, Dept Comp Sci & Software Engn, Auburn, AL 36849 USA. [Manzanares, Adam] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Alghamdi, Mohammed] Al Baha Univ, Dept Comp Sci, Al Baha 65431, Saudi Arabia. RP Ruan, XJ (reprint author), Auburn Univ, Dept Comp Sci & Software Engn, Auburn, AL 36849 USA. EM xzr0001@auburn.edu; szy0004@auburn.edu; acm0008@auburn.edu; alghamdi@nmt.edu; xqin@auburn.edu FU National Science Foundation [CCF-0845257, CNS-0757778, CCF-0742187, CNS-0917137, CNS-0831502, CNS-0855251, OCI-0753305, DUE-0837341, DUE-0830831]; Auburn University FX This work was supported in part by the National Science Foundation under Grants CCF-0845257 (CAREER), CNS-0757778 (CSR), CCF-0742187 (CPA), CNS-0917137 (CSR), CNS-0831502 (CyberTrust), CNS-0855251 (CRI), OCI-0753305 (CI-TEAM), DUE-0837341 (CCLI), and DUE-0830831 (SFS) and in part by Auburn University under a startup Grant and a gift (2005-04-070) from the Intel Corporation. This paper was recommended by Associate Editor B. Veeravalli. NR 39 TC 3 Z9 4 U1 0 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4427 EI 1558-2426 J9 IEEE T SYST MAN CY A JI IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. PD MAR PY 2011 VL 41 IS 2 BP 272 EP 283 DI 10.1109/TSMCA.2010.2069095 PG 12 WC Computer Science, Cybernetics; Computer Science, Theory & Methods SC Computer Science GA 708SY UT WOS:000286385800007 ER PT J AU Phuoc, TX Chen, RH AF Phuoc, Tran X. Chen, Ruey-Hung TI Synthesis of cation-exchanged laponite suspensions by laser ablation of microsized-metal particles in liquid SO OPTICS AND LASERS IN ENGINEERING LA English DT Article DE Laser ablation; Cation-exchange laponite; Thixotropy; Rheology ID NANOPARTICLES; WATER AB Laser ablation in the liquid technique has been used to synthesize cation-exchanged laponite suspensions. In summary, laser ablation of the microsize-metal powder (Co, Al, and Cu) dispersed in an aqueous solution containing deionized water laponite crystals was carried out using laser beam generated by a single-mode, Q-switched Nd-Yag laser operating at 532 nm with a pulse duration of 5.5 ns and 10 Hz repetition rate. Laser fluence was 0.265 J/cm(2) for all tests. For all samples, the mass fraction of laponite was 1%. General observations of the prepared samples indicated that an aqueous suspension of 1 wt% laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Al) were ablated in it for about 1 h, even with a small amount of the metal (0.025% and 0.050%) were generated, the suspension became highly viscous and behaved as a shear-thinning and thixotropic material. That is, the suspension gelled strongly when it was allowed to rest. The gels, however, could easily be reverted to a low viscosity liquid with simple shaking. Information from TEM and XRD analysis indicated that such a sol-gel transformation might be due to the charge exchange between the cationic species produced during the laser ablation and the sodium ions in the interlayers of the clay sheets. Published by Elsevier Ltd. C1 [Phuoc, Tran X.] Dept Energy, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Chen, Ruey-Hung] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA. RP Phuoc, TX (reprint author), Dept Energy, Natl Energy Technol Lab, POB 10940,MS 84-340, Pittsburgh, PA 15236 USA. EM tran@netl.doe.gov; chenrh@mail.ucf.edu FU DOE-NETL FX This work was supported by DOE-NETL under the EPact program. The TEM images supplied by Professor J-K. Lee of The Department of Mechanical Engineering and Material Science, University of Pittsburgh are acknowledged. NR 25 TC 2 Z9 2 U1 1 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0143-8166 J9 OPT LASER ENG JI Opt. Lasers Eng. PD MAR PY 2011 VL 49 IS 3 BP 396 EP 402 DI 10.1016/j.optlaseng.2010.11.010 PG 7 WC Optics SC Optics GA 713FM UT WOS:000286720400015 ER PT J AU Kelly, D Atwood, C AF Kelly, Dana Atwood, Corwin TI Finding a minimally informative Dirichlet prior distribution using least squares SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Alpha-factor; Common-cause failures; Constrained noninformative prior; Jeffreys prior ID RISK-ASSESSMENT AB In a Bayesian framework, the Dirichlet distribution is the conjugate distribution to the multinomial likelihood function, and so the analyst is required to develop a Dirichlet prior that incorporates available information. However, as it is a multiparameter distribution, choosing the Dirichlet parameters is less straightforward than choosing a prior distribution for a single parameter, such as p in the binomial distribution. In particular, one may wish to incorporate limited information into the prior, resulting in a minimally informative prior distribution that is responsive to updates with sparse data. In the case of binomial p or Poisson lambda, the principle of maximum entropy can be employed to obtain a so-called constrained noninformative prior. However, even in the case of p, such a distribution cannot be written down in the form of a standard distribution (e.g., beta, gamma), and so a beta distribution is used as an approximation in the case of p. In the case of the multinomial model with parametric constraints, the approach of maximum entropy does not appear tractable. This paper presents an alternative approach, based on constrained minimization of a least-squares objective function, which leads to a minimally informative Dirichlet prior distribution. The alpha-factor model for common-cause failure, which is widely used in the United States, is the motivation for this approach, and is used to illustrate the method. In this approach to modeling common-cause failure, the alpha-factors, which are the parameters in the underlying multinomial model for common-cause failure, must be estimated from data that are often quite sparse, because common-cause failures tend to be rare, especially failures of more than two or three components, and so a prior distribution that is responsive to updates with sparse data is needed. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Kelly, Dana] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Atwood, Corwin] Statwood Consulting, Silver Spring, MD 20910 USA. RP Kelly, D (reprint author), Idaho Natl Lab, POB 1625,MS 3850, Idaho Falls, ID 83415 USA. EM Dana.Kelly@inl.gov FU U.S. Department of Energy [DE-AC07-051D14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract no. DE-AC07-051D14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 9 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD MAR PY 2011 VL 96 IS 3 BP 398 EP 402 DI 10.1016/j.ress.2010.11.008 PG 5 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 713FL UT WOS:000286720300007 ER PT J AU Ge, M Wu, G Burk, D Ozelis, J Harms, E Sergatskov, D Hicks, D Cooley, LD AF Ge, M. Wu, G. Burk, D. Ozelis, J. Harms, E. Sergatskov, D. Hicks, D. Cooley, L. D. TI Routine characterization of 3D profiles of SRF cavity defects using replica techniques SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article AB Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio-frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this paper we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometre-scale information, and we describe various curious features, such as small peaks at the bottoms of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing does not adversely affect the cavity RF performance. C1 [Ge, M.; Wu, G.; Burk, D.; Ozelis, J.; Harms, E.; Sergatskov, D.; Hicks, D.; Cooley, L. D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ge, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM mingqi@fnal.gov RI Ge, Mingqi/A-6218-2013; Cooley, Lance/E-7377-2015 OI Ge, Mingqi/0000-0002-7754-2313; Cooley, Lance/0000-0003-3488-2980 FU US Department of Energy [DE-AC02-07CH11359] FX This work was supported by the US Department of Energy under contract number DE-AC02-07CH11359. We would like to thank C Baker, D Bice, S Gerbick, and M Kelley for assistance with cavity processing. We also thank M Carter, D Massengill, and W Muranyi for cavity testing assistance. We gratefully acknowledge scientific discussions with C Antoine, Z Conway, C Cooper, and H Padamsee. NR 20 TC 11 Z9 11 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2011 VL 24 IS 3 AR 035002 DI 10.1088/0953-2048/24/3/035002 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 709FF UT WOS:000286422600003 ER PT J AU Nguyen, DN Coulter, JY Willis, JO Ashworth, SP Kraemer, HP Schmidt, W Carter, B Otto, A AF Nguyen, D. N. Coulter, J. Y. Willis, J. O. Ashworth, S. P. Kraemer, H. P. Schmidt, W. Carter, B. Otto, A. TI AC loss and critical current characterization of a noninductive coil of two-in-hand RABiTS YBCO tape for fault current limiter applications SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID COATED CONDUCTORS AB The combination of noninductive winding and the two-in-hand tape configuration has been found to be very effective in reducing the AC loss of coils of RABiTS (TM) YBCO coated conductor for fault current limiting (FCL) applications. In this study, a noninductive coil composed of 11 turns of two-in-hand RABiTS T YBCO tape was designed and constructed for characterizing and investigating the AC loss, critical current and inductance. The AC losses in this coil were also calculated by finite element modeling (FEM) using the COMSOL Multiphysics package. With the magnetic field dependent permeability and ferromagnetic loss of the substrate material taken into account, the simulation results are in good agreement with the experimental data. The simulations therefore were employed to study the effect on the AC loss behavior of the coil of the width of YBCO tape and of the spatial separation between the coil turns to suggest a more effective coil design. C1 [Nguyen, D. N.; Coulter, J. Y.; Willis, J. O.; Ashworth, S. P.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87544 USA. [Kraemer, H. P.; Schmidt, W.] Siemens AG Corp Technol, D-91058 Erlangen, Germany. [Carter, B.; Otto, A.] Amer Superconductor Corp, Devens, MA 01434 USA. RP Nguyen, DN (reprint author), Los Alamos Natl Lab, Superconduct Technol Ctr, POB 1663, Los Alamos, NM 87544 USA. RI Nguyen, Doan/F-3148-2010 FU US DOE Office of Electricity Delivery and Energy Reliability FX This work is supported by the US DOE Office of Electricity Delivery and Energy Reliability. NR 15 TC 10 Z9 10 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2011 VL 24 IS 3 AR 035017 DI 10.1088/0953-2048/24/3/035017 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 709FF UT WOS:000286422600018 ER PT J AU Wang, X Trociewitz, UP Schwartz, J AF Wang, X. Trociewitz, U. P. Schwartz, J. TI Critical current degradation of short YBa2Cu3O7-delta coated conductor due to an unprotected quench SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID TENSILE; TAPES; PROTECTION; PERFORMANCE; STABILITY AB The critical current of a short YBa2Cu3O7-delta (YBCO) coated conductor sample degrades in an unprotected quench performed in a nearly adiabatic environment at 30 K. The conductor has Cu stabilizers on both surfaces. The quench is initiated by a heater attached to the sample surface. The amplitude of the transport current is fixed as 91% of the sample's initial critical current. The duration of the current is increased to simulate an unprotected quench and to reach increasing and controlled voltage and temperature levels. A peak temperature of 490 +/- 50 K and a heating rate of 1800 K s(-1) are measured when the critical current degrades by similar to 5%. The applied thermal strain on the YBCO layer from 30 to 490 K is estimated to be 0.31% and is applied at a strain rate of similar to 1% s(-1). The rate of temperature change and the time to reach a certain peak temperature, determined by the current density in the Cu stabilizer, are estimated assuming adiabatic conditions based on the short sample case. For a Cu stabilizer current density ranging from 1000 to 2000 A mm(-2), achieved in commercial conductors currently available, the quench detection and protection requires a response time <200 ms to limit the peak temperature below 200 K. A Cu stabilizer current density higher than 3000 A mm(-2) may challenge the existing detection and protection techniques for the same 200 K limit. Integrating the substrate as part of the stabilizer may help reduce the stabilizer current density to gain more time for quench detection and protection while maintaining the engineering current density. C1 [Wang, X.] FAMU FSU Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA. [Wang, X.; Trociewitz, U. P.] Florida State Univ, Natl High Magnet Field Lab, Ctr Appl Superconduct, Tallahassee, FL 32310 USA. [Wang, X.] Florida State Univ, Ctr Adv Power Syst, Tallahassee, FL 32310 USA. [Schwartz, J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Wang, X (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM Justin_Schwartz@ncsu.edu RI Schwartz, Justin/D-4124-2009; Wang, Xiaorong/D-5311-2009; OI Schwartz, Justin/0000-0002-7590-240X; Wang, Xiaorong/0000-0001-7065-8615 FU Air Force Office of Scientific Research FX The authors thank C L H Thieme of American Superconductor Corporation for providing the samples. The authors also thank H Song (ASC/NHMFL, now with GE Global Research) for his help in the experiments and valuable discussion. This work was supported by the Air Force Office of Scientific Research. NR 34 TC 14 Z9 14 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD MAR PY 2011 VL 24 IS 3 AR 035006 DI 10.1088/0953-2048/24/3/035006 PG 11 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 709FF UT WOS:000286422600007 ER PT J AU Chen, IR Speer, AP Eltoweissy, M AF Chen, Ing-Ray Speer, Anh Phan Eltoweissy, Mohamed TI Adaptive Fault-Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks SO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING LA English DT Article DE Wireless sensor networks; reliability; timeliness; query processing; redundancy; energy conservation; QoS; mean time to failure ID ENERGY-EFFICIENT; PROTOCOL AB Data sensing and retrieval in wireless sensor systems have a widespread application in areas such as security and surveillance monitoring, and command and control in battlefields. In query-based wireless sensor systems, a user would issue a query and expect a response to be returned within the deadline. While the use of fault tolerance mechanisms through redundancy improves query reliability in the presence of unreliable wireless communication and sensor faults, it could cause the energy of the system to be quickly depleted. Therefore, there is an inherent trade-off between query reliability versus energy consumption in query-based wireless sensor systems. In this paper, we develop adaptive fault-tolerant quality of service (QoS) control algorithms based on hop-by-hop data delivery utilizing "source" and "path" redundancy, with the goal to satisfy application QoS requirements while prolonging the lifetime of the sensor system. We develop a mathematical model for the lifetime of the sensor system as a function of system parameters including the "source" and "path" redundancy levels utilized. We discover that there exists optimal "source" and "path" redundancy under which the lifetime of the system is maximized while satisfying application QoS requirements. Numerical data are presented and validated through extensive simulation, with physical interpretations given, to demonstrate the feasibility of our algorithm design. C1 [Chen, Ing-Ray; Speer, Anh Phan] Virginia Tech, Dept Comp Sci, Falls Church, VA 22043 USA. [Eltoweissy, Mohamed] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Chen, IR (reprint author), Virginia Tech, Dept Comp Sci, 7054 Haycock Rd, Falls Church, VA 22043 USA. EM irchen@vt.edu; nphan@vt.edu; Mohamed.Eltoweissy@pnl.gov NR 18 TC 22 Z9 25 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1545-5971 J9 IEEE T DEPEND SECURE JI IEEE Trans. Dependable Secur. Comput. PD MAR-APR PY 2011 VL 8 IS 2 BP 161 EP 176 DI 10.1109/TDSC.2009.54 PG 16 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 706GX UT WOS:000286207300001 ER PT J AU Bernhardt, A Wilson, MW Settecase, F Evans, L Malba, V Martin, AJ Saeed, M Roberts, TPL Arenson, RL Hetts, SW AF Bernhardt, Anthony Wilson, Mark W. Settecase, Fabio Evans, Leland Malba, Vincent Martin, Alastair J. Saeed, Maythem Roberts, Timothy P. L. Arenson, Ronald L. Hetts, Steven W. TI Steerable Catheter Microcoils for Interventional MRI: Reducing Resistive Heating SO ACADEMIC RADIOLOGY LA English DT Article DE Catheter; MRI; safety; heating ID REMOTE-CONTROL; DEFLECTION; WIRES AB Rationale and Objectives: The aims of this study were to assess resistive heating of microwires used for remote catheter steering in interventional magnetic resonance imaging and to investigate the use of alumina to facilitate heat transfer to saline flowing in the catheter lumen. Materials and Methods: A microcoil was fabricated using a laser lathe onto polyimide-tipped or alumina-tipped endovascular catheters. In vitro testing was performed on a 1.5-T magnetic resonance system using a vessel phantom, body radiofrequency coil, and steady-state pulse sequence. Resistive heating was measured with water flowing over a polyimide-tip catheter or saline flowing through the lumen of an alumina-tip catheter. Preliminary in vivo testing in porcine common carotid arteries was conducted with normal blood flow or after arterial ligation when current was applied to an alumina-tip catheter for up to 5 minutes. Results: After application of up to 1 W of direct current power, clinically significant temperature increases were noted with the polyimide-tip catheter: 23 degrees C/W at zero flow, 13 degrees C/W at 0.28 cm(3)/s, and 7.9 degrees C/W at 1 cm(3)/s. Using the alumina-tip catheter, the effluent temperature rise using the lowest flow rate (0.12 cm(3)/s) was 2.3 degrees C/W. In vivo testing demonstrated no thermal injury to vessel walls at normal and zero arterial flow. Conclusions: Resistive heating in current carrying wire pairs can be dissipated by saline coolant flowing within the lumen of a catheter tip composed of material that facilitates heat transfer. C1 [Wilson, Mark W.; Settecase, Fabio; Martin, Alastair J.; Saeed, Maythem; Arenson, Ronald L.; Hetts, Steven W.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Bernhardt, Anthony; Evans, Leland; Malba, Vincent] Lawrence Livermore Natl Lab, Livermore, CA USA. [Roberts, Timothy P. L.] Univ Penn, Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA. [Roberts, Timothy P. L.] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada. RP Hetts, SW (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 505 Parnassus Ave,L-352, San Francisco, CA 94143 USA. EM steven.hetts@radiology.ucsf.edu OI Hetts, Steven/0000-0001-5885-7259 FU National Heart, Lung, and Blood Institute (Bethesda, MD) [5 R01 HL076486-01, 5 R01 HL076486-02, 5 R01 HL076486-03]; U.S. Department of Energy [DE-AC52-07NA27344]; Ontario Challenge Fund; Canadian Foundation for Innovation FX From Lawrence Livermore National Laboratory, Livermore, CA (A.B., L.E., V.M.); the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, L-352, San Francisco, CA 94143-0628 (M.W.W., F.S., A.J.M., M.S., R.L.A., S.W.H.); Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA (T.P.L.R.); and the Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (T.P.L.R.). Received July 10, 2010; accepted September 17, 2010. This work was supported by grant 5 R01 HL076486-01 to 03 from the National Heart, Lung, and Blood Institute (Bethesda, MD), U.S. Department of Energy contract DE-AC52-07NA27344, and the Ontario Challenge Fund and the Canadian Foundation for Innovation. Address correspondence to: S.W.H. e-mail: steven.hetts@radiology.ucstedu NR 19 TC 14 Z9 14 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD MAR PY 2011 VL 18 IS 3 BP 270 EP 276 DI 10.1016/j.acra.2010.09.010 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 725BR UT WOS:000287620700002 PM 21075017 ER PT J AU Settecase, F Hetts, SW Martin, AJ Roberts, TPL Bernhardt, AF Evans, L Malba, V Saeed, M Arenson, RL Kucharzyk, W Wilson, MW AF Settecase, Fabio Hetts, Steven W. Martin, Alastair J. Roberts, Timothy P. L. Bernhardt, Anthony F. Evans, Lee Malba, Vincent Saeed, Maythem Arenson, Ronald L. Kucharzyk, Walter Wilson, Mark W. TI RF Heating of MRI-Assisted Catheter Steering Coils for Interventional MRI SO ACADEMIC RADIOLOGY LA English DT Article DE Catheter; interventional; MRI; heating ID REMOTE-CONTROL; SAFETY; WIRES; DEFLECTION; GUIDEWIRE; DEVICES AB Rationale and Objectives: The aim of this study was too assess magnetic resonance imaging (MRI) radiofrequency (RF)-related heating of conductive wire coils used in magnetically steerable endovascular catheters. Materials and Methods: A three-axis microcoil was fabricated onto a 1.8Fr catheter tip. In vitro testing was performed on a 1.5-T MRI system using an agarose gel-filled vessel phantom, a transmit-receive body RF coil, a steady-state free precession pulse sequence, and a fluoroptic thermometry system. Temperature was measured without simulated blood flow at varying distances from the magnet isocenter and at varying flip angles. Additional experiments were performed with laser-lithographed single-axis microcoil-tipped micro-catheters in air and in a saline bath with varied grounding of the microcoil wires. Preliminary in vivo evaluation of RF heating was performed in pigs at 1.5 T with coil-tipped catheters in various positions in the common carotid arteries with steady-state free precession pulse sequence on and off and under physiologic-flow and zero-flow conditions. Results: In tissue-mimicking agarose gel, RF heating resulted in a maximal temperature increase of 0.35 degrees C after 15 minutes of imaging, 15 cm from the magnet isocenter. For a single-axis microcoil, maximal temperature increases were 0.73 degrees C to 1.91 degrees C in air and 0.45 degrees C to 0.55 degrees C in saline. In vivo, delayed contrast-enhanced MRI revealed no evidence of vascular injury, and histopathologic sections from the common carotid arteries confirmed the lack of vascular damage. Conclusions: Microcatheter tip microcoils for endovascular catheter steering in MRI experience minimal RE heating under the conditions tested. These data provide the basis for further in vivo testing of this promising technology for endovascular interventional MRI. C1 [Settecase, Fabio; Hetts, Steven W.; Martin, Alastair J.; Saeed, Maythem; Arenson, Ronald L.; Wilson, Mark W.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Bernhardt, Anthony F.; Evans, Lee; Malba, Vincent] Lawrence Livermore Natl Lab, Livermore, CA USA. [Roberts, Timothy P. L.] Univ Penn, Childrens Hosp Philadelphia, Philadelphia, PA 19104 USA. [Settecase, Fabio; Kucharzyk, Walter] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada. RP Hetts, SW (reprint author), Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 505 Parnassus Ave,L-352, San Francisco, CA 94143 USA. EM steven.hetts@radiology.ucsf.edu OI Hetts, Steven/0000-0001-5885-7259 FU National Heart, Lung, and Blood Institute (Bethesda, MD) [5 R01 HL076486-01, 5 R01 HL076486-02, 5 R01 HL076486-03] FX From the Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, L-352, San Francisco, CA 94143-0628 (F.S., S.W.H., A.J.M., M.S., R.L.A., M.W.W.); Lawrence Livermore National Laboratory, Livermore, CA (A.F.B., L.E., V.M.); Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA (T.P.L.R.); and the Department of Medical Imaging, University of Toronto, Toronto, ON, Canada (F.S., W.K.). Received July 19, 2010; accepted September 17, 2010. This work was supported by grants 5 R01 HL076486-01 to 03 from the National Heart, Lung, and Blood Institute (Bethesda, MD). Address correspondence to: S.W.H. e-mail: steven.hetts@radiology.ucsf. edu NR 23 TC 17 Z9 17 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 J9 ACAD RADIOL JI Acad. Radiol. PD MAR PY 2011 VL 18 IS 3 BP 277 EP 285 DI 10.1016/j.acra.2010.09.012 PG 9 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 725BR UT WOS:000287620700003 PM 21075019 ER PT J AU Tillack, AF Noone, KM MacLeod, BA Nordlund, D Nagle, KP Bradley, JA Hau, SK Yip, HL Jen, AKY Seidler, GT Ginger, DS AF Tillack, Andreas F. Noone, Kevin M. MacLeod, Bradley A. Nordlund, Dennis Nagle, Kenneth P. Bradley, Joseph A. Hau, Steven K. Yip, Hin-Lap Jen, Alex K. -Y. Seidler, Gerald T. Ginger, David S. TI Surface Characterization of Polythiophene:Fullerene Blends on Different Electrodes Using Near Edge X-ray Absorption Fine Structure SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE NEXAFS; P3HT; PCBM; top surface composition; wetting layer; vertical composition; polymer solar cell; PCBM density; vertical phase segregation ID POLYMER SOLAR-CELLS; VERTICAL-PHASE-SEPARATION; THIN-FILMS; PHOTOVOLTAIC DEVICES; MORPHOLOGY; LAYER; STRATIFICATION; SPECTROSCOPY; ORGANIZATION; SEGREGATION AB We study the top surface composition of blends of the conjugated polymer regioregular poly-3-hexylthiophene (P3HT) with the fullerene (6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM), an important model system for organic photovoltaics (OPVs), using near-edge X-ray absorption fine structure spectroscopy (NEXAFS). We compare the ratio of P3HT to PCBM near the air/film interface that results from preparing blend films on two sets of substrates: (1) poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) coated indium tin oxide (ITO) as is commonly used in conventional OPV structures and (2) ZnO substrates that are either unmodified or modified with a C(60)-like self-assembled monolayer, similar to those that have been recently reported in inverted OPV structures. We find that the top surface (the film/air interface) is enriched in P3HT compared to the bulk, regardless of substrate or annealing conditions, indicating that changes in device performance due to substrate modification treatments should be attributed to the buried substrate/film interface and the bulk of the film rather than the exposed film/air interface. C1 [Tillack, Andreas F.; Noone, Kevin M.; MacLeod, Bradley A.; Ginger, David S.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Nordlund, Dennis] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Nagle, Kenneth P.; Bradley, Joseph A.; Seidler, Gerald T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yip, Hin-Lap; Jen, Alex K. -Y.] Univ Washington, Inst Adv Mat & Technol, Seattle, WA 98195 USA. [Hau, Steven K.; Yip, Hin-Lap; Jen, Alex K. -Y.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Ginger, DS (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM ginger@chem.washington.edu RI Ginger, David/C-4866-2011; Yip, Hin Lap/A-3637-2012; Jen, Alex/E-5957-2012; Nordlund, Dennis/A-8902-2008; MacLeod, Bradley/F-5589-2013; Seidler, Gerald/I-6974-2012; Zhou, David/N-5367-2015 OI Ginger, David/0000-0002-9759-5447; Nordlund, Dennis/0000-0001-9524-6908; MacLeod, Bradley/0000-0001-5319-3051; FU Department of Energy Solar America Initiative; Research Corporation Cottrell Scholars Program; Alfred P. Sloan Foundation; Camille Dreyfus Teacher-Scholar Program; IGERT [NSF DGE-050457]; U.S. Department of Energy, Basic Energy Sciences FX This paper is based on work supported by the Department of Energy Solar America Initiative. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. D.S.G. thanks the Research Corporation Cottrell Scholars Program, Alfred P. Sloan Foundation Fellowship Program, and Camille Dreyfus Teacher-Scholar Program for additional support. K.M.N. acknowledges partial support from an IGERT Fellowship Award und NSF DGE-050457 at the Center for Nanotechnology at the UW. B.A.M. performed this research as a NSF Graduate Research Fellow. G.T.S. acknowledges support from the U.S. Department of Energy, Basic Energy Sciences. We thank Dr. Dean M. DeLongchamp (NIST) and Dr. Bryant Fujimoto (UW) for valuable input regarding data analysis. NR 47 TC 28 Z9 28 U1 3 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD MAR PY 2011 VL 3 IS 3 BP 726 EP 732 DI 10.1021/am101055r PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 739AV UT WOS:000288685200018 PM 21366246 ER PT J AU Zhang, S Shao, YY Liao, HG Engelhard, MH Yin, GP Lin, YH AF Zhang, Sheng Shao, Yuyan Liao, Honggang Engelhard, Mark H. Yin, Geping Lin, Yuehe TI Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets SO ACS NANO LA English DT Article DE graphene; graphite oxide; PDDA; formic acid; Pt nanoparticles; electrocatalysts; in situ growth ID FUNCTIONALIZED GRAPHENE; REACTION-MECHANISMS; METHANOL OXIDATION; OXYGEN REDUCTION; FUEL-CELLS; SHEETS; NANOCOMPOSITES; FILMS; DEOXYGENATION; EPOXIDES AB Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray, diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single layer structure and high dispersion In various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the In situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites; which exhibited excellent catalytic activity toward formic acid oxidation., This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications. C1 [Zhang, Sheng; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. [Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H.; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yin, GP (reprint author), Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. EM yingphit@hit.edu.cn; yuehe.lin@pnl.gov RI Zhang, Sheng/H-2452-2011; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Engelhard, Mark/F-1317-2010; Liao, hong-gang/M-2476-2015 OI Engelhard, Mark/0000-0002-5543-0812; Zhang, Sheng/0000-0001-7532-1923; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; FU DOE [DE-AC05-76RL01830]; China Scholarship Council; National Science Foundation of China [50872027] FX The work was done at Pacific Northwest National Laboratory (PNNL) and was supported by a LDRD program. The characterization was performed using a national scientific-user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. We thank L Wang for AFM and FTIR characterizations. S.Z. acknowledges a fellowship from the China Scholarship Council and PNNL to perform this work at PNNL. G.Y. acknowledges the support from National Science Foundation of China (No. 50872027). NR 51 TC 204 Z9 212 U1 22 U2 208 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 1785 EP 1791 DI 10.1021/nn102467s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600029 PM 21361350 ER PT J AU Gelain, F Silva, D Caprini, A Taraballi, F Natalello, A Villa, O Nam, KT Zuckermann, RN Doglia, SM Vescovi, A AF Gelain, Fabrizio Silva, Diego Caprini, Andrea Taraballi, Francesca Natalello, Antonino Villa, Omar Nam, Ki Tae Zuckermann, Ronald N. Doglia, Silvia Maria Vescovi, Angelo TI BMHP1-Derived Self-Assembling Peptides: Hierarchically Assembled Structures with Self-Healing Propensity and Potential for Tissue Engineering Applications SO ACS NANO LA English DT Article DE self-assembling peptide; self-healing scaffold; biotinylation; neural stem cell ID INFRARED-SPECTROSCOPY; BETA-SHEET; DESIGNED PEPTIDE; DRUG-DELIVERY; HYDROGELS; PROTEINS; SCAFFOLDS; NANOTUBES; MEMBRANE; BIOTIN AB Self-assembling peptides (SAPs) are rapidly gaining interest as bioinspired scaffolds, for cell culture and regenerative,medicine,applications., Bone Marrow Homing Peptide 1 (BMHP1) functional motif (PFSSTKT) was previously demonstrated to stimulate neural stem cell (NSC) viability and differentiation when linked to SAPs; We here describe a novel ensemble of SAPs, developed from the BMHP1 (BMHP1-SAPs), that spontaneously assemble into tabular fibers, twisted ribbons, tubes and hierarchical self-assembled,sheets: organized structures in the nano- and microscale. Thirty-two sequences were designed and evaluated, Including biotinylated and unbiotinylated sequences, as well as a hybrid peptide-peptoid sequence. Via X-ray diffraction (XRD), CD, and FTIR experiments we, demonstrated that all of the BMHP1-SAPs share similarly organized secondary structures; that Is, beta-sheets and beta-turns, despite their heterogeneous nanostructure morphology, scaffold stiffness, and effect over NSC differentiation and survival. Notably, we demonstrated the self healing propensity of most of the tested BMHP1-SAPs, enlarging the set of potential applications of these novel SAPs. In In vitro cell culture experiments, we showed that some of these 10-mer peptides foster adhesion, differentiation, and proliferation of human NSCs. RGD-functionalized and hybrid peptide-peptoid self-assembling sequences also opened the door to BMHP1-SAP functionalization with further bioactive motifs, essential to tailor. new scaffolds for specific applications. In vivo experiments we verified a negligible reaction of the host nervous tissue to the injected and assembled BMHP1-SAP. This work will pave the way to the development of novel SAP sequences that may be useful for material science and regenerative medicine applications. C1 [Gelain, Fabrizio; Silva, Diego; Caprini, Andrea; Taraballi, Francesca; Villa, Omar; Vescovi, Angelo] AO Osped Niguarda Ca Granda, Ctr Nanomed & Tissue Engn, I-20162 Milan, Italy. [Gelain, Fabrizio; Silva, Diego; Caprini, Andrea; Taraballi, Francesca; Natalello, Antonino; Villa, Omar; Doglia, Silvia Maria; Vescovi, Angelo] Univ Milano Bicocca, Biotechnol & Biosci Dept, I-20126 Milan, Italy. [Gelain, Fabrizio; Vescovi, Angelo] Opera San Pio Pietrelcina, IRCCS Casa Sollievo Sofferenza, I-71013 San Giovanni Rotondo, Italy. [Natalello, Antonino; Doglia, Silvia Maria] Consorzio Nazl Interuniv Sci Fis Mat CNISM UdR Mi, I-20126 Milan, Italy. [Nam, Ki Tae; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Nam, Ki Tae] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. RP Gelain, F (reprint author), AO Osped Niguarda Ca Granda, Ctr Nanomed & Tissue Engn, Piazza Osped Maggiore 3, I-20162 Milan, Italy. EM fabrizio.gelain@unimib.it RI Natalello, Antonino/B-9659-2012; Gelain, Fabrizio/K-5069-2012; Zuckermann, Ronald/A-7606-2014; OI Natalello, Antonino/0000-0002-1489-272X; Gelain, Fabrizio/0000-0002-2624-5853; Zuckermann, Ronald/0000-0002-3055-8860; Vescovi, Angelo Luigi/0000-0002-1742-4112; Taraballi, Francesca/0000-0002-4959-1169 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; University of Milano-Bicocca; CARIPLO foundation; Regione Lombardia FX We gratefully thank CARIPLO foundation and Regione Lombardia for providing financial resources to the project. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.N. acknowledges the postdoctoral fellowship of the University of Milano-Bicocca. We also thank G. Saracino for her graphic assistance and thoughtful discussions about the proposed molecular models. NR 57 TC 44 Z9 45 U1 10 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 1845 EP 1859 DI 10.1021/nn102663a PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600036 PM 21314189 ER PT J AU Hentschel, M Dregely, D Vogelgesang, R Giessen, H Liu, N AF Hentschel, Mario Dregely, Daniel Vogelgesang, Ralf Giessen, Harald Liu, Na TI Plasmonic Oligomers: The Role of Individual Particles in Collective Behavior SO ACS NANO LA English DT Article DE plasmons; coupling; Fano-resonances; dark mode; oligomer ID OPTICAL FREQUENCIES; FANO RESONANCES; METAMATERIALS; NANOSTRUCTURES; NANOPARTICLES; HYBRIDIZATION; CLUSTERS; DIMERS; MODES; LIMIT AB We present a comprehensive experimental study of the optical properties of plasmonic oligomers. We show that both the constitution and configuration of plasmonic oligomers have a large influence on their resonant behavior, which draws a compelling analogy to molecular theory in chemistry. To elucidate the constitution influence, we vary the size of individual nanoparticles and identify the role of the target nanoparticle from the spectral change. To illustrate the configuration influence, we vary the positions and numbers of nanoparticles in a plasmonic oligomer. Additionally, we demonstrate experimentally a large spectral redshift at the transition from displaced nanoparticles to touching ones. The oligomeric design strategy opens up a rich pathway for the implementation of optimized optical properties into complex plasmonic nanostructures for specific applications. C1 [Hentschel, Mario; Dregely, Daniel; Giessen, Harald] Univ Stuttgart, Inst Phys 4, D-70569 Stuttgart, Germany. [Hentschel, Mario; Dregely, Daniel; Giessen, Harald] Univ Stuttgart, Res Ctr SCoPE, D-70569 Stuttgart, Germany. [Hentschel, Mario; Vogelgesang, Ralf] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Liu, Na] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Liu, Na] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Hentschel, M (reprint author), Univ Stuttgart, Inst Phys 4, D-70569 Stuttgart, Germany. EM m.hentschel@physik.uni-stuttgart.de RI Liu, Na/C-8190-2014; Vogelgesang, Ralf/B-4460-2009; Hentschel, Mario/N-2093-2015 OI Vogelgesang, Ralf/0000-0002-1026-3205; FU Deutsche Forschungsgemeinschaft [SPP1391, FOR557]; BMBF [13N9048, 13N10146]; Baden-Wurttemberg Stiftung; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX M. Hentschel, D. Dregely, R. Vogelgesang, and H. Giessen were financially supported by Deutsche Forschungsgemeinschaft (SPP1391 and FOR557), by BMBF (13N9048 and 13N10146), and by Baden-Wurttemberg Stiftung. N. Liu was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract DE-AC02-05CH11231. NR 38 TC 156 Z9 157 U1 5 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 2042 EP 2050 DI 10.1021/nn103172t PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600059 PM 21344858 ER PT J AU Kim, K Lee, Z Regan, W Kisielowski, C Crommie, MF Zettl, A AF Kim, Kwanpyo Lee, Zonghoon Regan, William Kisielowski, C. Crommie, M. F. Zettl, A. TI Grain Boundary Mapping in Polycrystalline Graphene SO ACS NANO LA English DT Article DE graphene; polycrystalline; grain; grain boundary; transmission electron microscopy (TEM) ID SCANNING-TUNNELING-MICROSCOPY; CHEMICAL-VAPOR-DEPOSITION; LAYER GRAPHENE; EPITAXIAL GRAPHENE; LARGE-AREA; GRAPHITE; FILMS; STRENGTH; DEFECTS AB We report direct mapping of the grains and grain boundaries (GBs) of large-area monolayer polycrystalline graphene sheets, at large (several micrometer) and single-atom length scales. Global grain and GB mapping is performed using electron diffraction in scanning transmission electron microscopy (STEM) or using dark-field imaging in conventional TEM. Additionally, we employ aberration-corrected TEM to extract direct images of the local atomic arrangements of graphene GBs, which reveal the alternating pentagon-heptagon structure along high-angle GBs. Our findings provide a readily adaptable tool for graphene GB studies. C1 [Kim, Kwanpyo; Regan, William; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Regan, William; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Regan, William; Crommie, M. F.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Zonghoon; Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Lee, Zonghoon] Ulsan Natl Inst Sci & Technol, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Lee, Zonghoon/G-1474-2011; Kim, Kwanpyo/D-9121-2011; Zettl, Alex/O-4925-2016; OI Lee, Zonghoon/0000-0003-3246-4072; Kim, Kwanpyo/0000-0001-8497-2330; Zettl, Alex/0000-0001-6330-136X; Regan, William/0000-0003-0143-9827 FU Office of Energy Research, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH-11231]; National Science Foundation within the Center of Integrated Nanomechanical Systems [EEC-0832819]; National Science Foundation [0906539]; U.S. Department of Energy [DE-AC02-05CH11231]; Samsung Scholarship FX We thank O. V. Yazyev and S. G. Louie for helpful discussions, and J. Yuk for technical assistance. This research was supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH-11231 which provided for preliminary TEM and Raman characterization; by the National Science Foundation within the Center of Integrated Nanomechanical Systems, under Grant EEC-0832819, which provided for CVD graphene synthesis; and by the National Science Foundation under Grant No. 0906539 which provided for design of the experiment, suspended sample preparation, and analysis of the results. Portions of the present study were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. K.K. acknowledges further support from a Samsung Scholarship, and W.R. acknowledges support through a National Science Foundation Graduate Research Fellowship. NR 31 TC 341 Z9 344 U1 20 U2 263 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 2142 EP 2146 DI 10.1021/nn1033423 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600071 PM 21280616 ER PT J AU Nie, S Walter, AL Bartelt, NC Starodub, E Bostwick, A Rotenberg, E McCarty, KF AF Nie, Shu Walter, Andrew L. Bartelt, Norman C. Starodub, Elena Bostwick, Aaron Rotenberg, Eli McCarty, Kevin F. TI Growth from Below: Graphene Bilayers on Ir(111) SO ACS NANO LA English DT Article DE bilayer graphene; Ir(111); Ru(0001); low-energy electron microscopy; low-energy electron diffraction; angle-resolved photoemission spectroscopy; work function ID CARBON SEGREGATION; CRYSTAL-SURFACES; METAL-SURFACES; LARGE-AREA; PLATINUM; FILMS; LEED; TRANSITION; RUTHENIUM; RU(0001) AB We elucidate how graphene bilayers form on Ir(111). Low-energy electron diffraction (LEED) reveals that the two graphene layers are not always rotationally aligned., Monitoring this misalignment during growth shows that second layer islands nucleate between the existing layer and the substrate. This mechanism occurs both when C segregates from the Ir and when elemental C is deposited from above, Low-energy electron microscopy (LEEM) and angle resolved photoemission spectroscopy (ARPES) show that second layer nucleation occurs preferentially under the first-layer rotational variants that are more weakly bound to the substrate. New layer nucleation tends to occur inhomogeneously at substrate defects. Thus new layer nucleation should be rapid on substrates that weakly graphene, making growth unstable toward mound formation initiated at substrate defects. In contrast stronger binding permits layer-by-layer growth, as for Ru(0001). ARPES shows that bilayer graphene has two slightly p-doped pi-bands. The work function of bilayer graphene Is dominated by the orientation of the bottom layer. C1 [Nie, Shu; Bartelt, Norman C.; Starodub, Elena; McCarty, Kevin F.] Sandia Natl Labs, Livermore, CA 94550 USA. [Walter, Andrew L.; Bostwick, Aaron; Rotenberg, Eli] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Walter, Andrew L.] Max Planck Gesell, Fritz Haber Inst, Dept Mol Phys, D-14195 Berlin, Germany. RP McCarty, KF (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM mccarty@sandia.gov RI McCarty, Kevin/F-9368-2012; Bartelt, Norman/G-2927-2012; Bostwick, Aaron/E-8549-2010; Walter, Andrew/B-9235-2011; Rotenberg, Eli/B-3700-2009 OI McCarty, Kevin/0000-0002-8601-079X; Rotenberg, Eli/0000-0002-3979-8844 FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Work at Sandia was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE under Contract No, DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 44 TC 58 Z9 59 U1 7 U2 118 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD MAR PY 2011 VL 5 IS 3 BP 2298 EP 2306 DI 10.1021/nn103582g PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 737LP UT WOS:000288570600090 PM 21322532 ER PT J AU Kirian, RA White, TA Holton, JM Chapman, HN Fromme, P Barty, A Lomb, L Aquila, A Maia, FRNC Martin, AV Fromme, R Wang, XY Hunter, MS Schmidt, KE Spence, JCH AF Kirian, Richard A. White, Thomas A. Holton, James M. Chapman, Henry N. Fromme, Petra Barty, Anton Lomb, Lukas Aquila, Andrew Maia, Filipe R. N. C. Martin, Andrew V. Fromme, Raimund Wang, Xiaoyu Hunter, Mark S. Schmidt, Kevin E. Spence, John C. H. TI Structure-factor analysis of femtosecond micro-diffraction patterns from protein nanocrystals SO ACTA CRYSTALLOGRAPHICA SECTION A LA English DT Article ID FREE-ELECTRON LASER; ANGSTROM RESOLUTION; PHOTOSYSTEM-I; CRYSTALS; REFINEMENT AB A complete set of structure factors has been extracted from hundreds of thousands of femtosecond single-shot X-ray microdiffraction patterns taken from randomly oriented nanocrystals. The method of Monte Carlo integration over crystallite size and orientation was applied to experimental data from Photosystem I nanocrystals. This arrives at structure factors from many partial reflections without prior knowledge of the particle-size distribution. The data were collected at the Linac Coherent Light Source (the first hard-X-ray laser user facility), to which was fitted a hydrated protein nanocrystal injector jet, according to the method of serial crystallography. The data are single 'still' diffraction snapshots, each from a different nanocrystal with sizes ranging between 100 nm and 2 mu m, so the angular width of Bragg peaks was dominated by crystal-size effects. These results were compared with single-crystal data recorded from large crystals of Photosystem I at the Advanced Light Source and the quality of the data was found to be similar. The implications for improving the efficiency of data collection by allowing the use of very small crystals, for radiation-damage reduction and for time-resolved diffraction studies at room temperature are discussed. C1 [Kirian, Richard A.; Wang, Xiaoyu; Schmidt, Kevin E.; Spence, John C. H.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [White, Thomas A.; Chapman, Henry N.; Barty, Anton; Aquila, Andrew; Martin, Andrew V.] DESY, Ctr Free Electron Laser Sci, D-22607 Hamburg, Germany. [Holton, James M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Holton, James M.] Univ Calif San Francisco, Dept Biochem, San Francisco, CA USA. [Chapman, Henry N.] Univ Hamburg, D-22761 Hamburg, Germany. [Fromme, Petra; Fromme, Raimund; Hunter, Mark S.] Arizona State Univ, Dept Biochem, Tempe, AZ 85287 USA. [Lomb, Lukas] Max Planck Inst Med Res, D-69120 Heidelberg, Germany. [Maia, Filipe R. N. C.] Uppsala Univ, Lab Mol Biophys, Dept Cell & Mol Biol, SE-75124 Uppsala, Sweden. RP Spence, JCH (reprint author), Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. EM spence@asu.edu RI Chapman, Henry/G-2153-2010; Kirian, Richard/M-3750-2013; Rocha Neves Couto Maia, Filipe/C-3146-2014; Fromme, Raimund/C-8885-2012; Bozek, John/E-9260-2010; Barty, Anton/K-5137-2014; OI Chapman, Henry/0000-0002-4655-1743; Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Fromme, Raimund/0000-0003-4835-1080; Bozek, John/0000-0001-7486-7238; Barty, Anton/0000-0003-4751-2727; MARTIN, ANDREW/0000-0003-3704-1829; Kirian, Richard/0000-0001-7197-3086 FU National Science Foundation (NSF) CBST center at UC Davis; DOE [DE-SC0002141]; NSF [0417142]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Joachim Herz Stiftung; Max Planck Society; Swedish Research Councils; Swedish Foundation for International Cooperation in Research and Higher Education; Stiftelsen Olle Engkvist Byggmastare; Helmholtz Association [VH-VI-302]; DFG at the Munich Centre for Advanced Photonics; National Institutes of Health [GM074929, GM082250]; [DE-AC02-05CH11231] FX We are particularly grateful for a careful reading of the manuscript and corrections by Professors I. Schlichting, J. Ulrich and J. Hajdu. We acknowledge support from the National Science Foundation (NSF) CBST center at UC Davis, DOE award No. DE-SC0002141, NSF award No. 0417142, the US Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344, the Joachim Herz Stiftung, the Max Planck Society, the Swedish Research Councils, the Swedish Foundation for International Cooperation in Research and Higher Education, Stiftelsen Olle Engkvist Byggmastare, the Helmholtz Association (VH-VI-302) and the DFG Cluster of Excellence at the Munich Centre for Advanced Photonics. The Advanced Light Source is supported under contract No. DE-AC02-05CH11231 and ALS 8.3.1 by the National Institutes of Health (GM074929 and GM082250). Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 34 TC 81 Z9 81 U1 0 U2 44 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0108-7673 J9 ACTA CRYSTALLOGR A JI Acta Crystallogr. Sect. A PD MAR PY 2011 VL 67 BP 131 EP 140 DI 10.1107/S0108767310050981 PN 2 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 722QV UT WOS:000287450300001 PM 21325716 ER PT J AU Stepanov, S Makarov, O Hilgart, M Pothineni, SB Urakhchin, A Devarapalli, S Yoder, D Becker, M Ogata, C Sanishvili, R Venugopalan, N Smith, JL Fischetti, RF AF Stepanov, Sergey Makarov, Oleg Hilgart, Mark Pothineni, Sudhir Babu Urakhchin, Alex Devarapalli, Satish Yoder, Derek Becker, Michael Ogata, Craig Sanishvili, Ruslan Venugopalan, Nagarajan Smith, Janet L. Fischetti, Robert F. TI JBluIce-EPICS control system for macromolecular crystallography SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE macromolecular crystallography; beamline automation; data acquisition; high-throughput crystallography ID DATA-COLLECTION; INTEGRATED SOFTWARE; DATA-ACQUISITION; BEAMLINES; BEAM; REFLECTION; CRYSTALS; SPRING-8; ROBOTS; SSRL AB The trio of macromolecular crystallography beamlines constructed by the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA-CAT) in Sector 23 of the Advanced Photon Source (APS) have been in growing demand owing to their outstanding beam quality and capacity to measure data from crystals of only a few micrometres in size. To take full advantage of the state-of-the-art mechanical and optical design of these beamlines, a significant effort has been devoted to designing fast, convenient, intuitive and robust beamline controls that could easily accommodate new beamline developments. The GM/CA-CAT beamline controls are based on the power of EPICS for distributed hardware control, the rich Java graphical user interface of Eclipse RCP and the task-oriented philosophy as well as the look and feel of the successful SSRL BluIce graphical user interface for crystallography. These beamline controls feature a minimum number of software layers, the wide use of plug-ins that can be written in any language and unified motion controls that allow on-the-fly scanning and optimization of any beamline component. This paper describes the ways in which BluIce was combined with EPICS and converted into the Java-based JBluIce, discusses the solutions aimed at streamlining and speeding up operations and gives an overview of the tools that are provided by this new open-source control system for facilitating crystallographic experiments, especially in the field of microcrystallography. C1 [Stepanov, Sergey; Makarov, Oleg; Hilgart, Mark; Pothineni, Sudhir Babu; Urakhchin, Alex; Devarapalli, Satish; Yoder, Derek; Becker, Michael; Ogata, Craig; Sanishvili, Ruslan; Venugopalan, Nagarajan; Smith, Janet L.; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, GM CA CAT APS, Argonne, IL 60439 USA. [Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA. RP Stepanov, S (reprint author), Argonne Natl Lab, Biosci Div, GM CA CAT APS, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sstepanov@anl.gov FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Sciences [Y1-GM-1104]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH1135] FX We thank Peter Kuhn (Scripps), Scott McPhillips (SSRL), Thomas Earnest and Carl Cork (ALS), Mark Rivers (University of Chicago) and Tim Mooney (APS) for helpful discussions and all GM/CA CAT users for providing valuable feedback and ideas. GM/CA CAT is supported in whole or in part by Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104). Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science under contract No. DE-AC02-06CH1135. NR 40 TC 21 Z9 21 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD MAR PY 2011 VL 67 BP 176 EP 188 DI 10.1107/S0907444910053916 PN 3 PG 13 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 728HE UT WOS:000287864400004 PM 21358048 ER PT J AU Mazzucato, E AF Mazzucato, E. TI A midsize tokamak as a fast track to burning plasmas SO AIP ADVANCES LA English DT Article ID HIGH-FIELD SIDE; PELLET INJECTION; DIII-D; TRANSPORT; CONFINEMENT; PERFORMANCE AB This paper describes the conceptual design of a midsize tokamak as a fast track to the investigation of burning plasmas. It is shown that it could reach large values of energy gain (>= 10) with only a modest improvement in confinement over the scaling that was used for designing the International Thermonuclear Experimental Reactor (ITER). This can be achieved by operating in a low plasma recycling regime that experiments indicate can lead to improved plasma confinement. The possibility of reaching the necessary conditions of low recycling using a different magnetic divertor from those currently employed in present experiments is discussed. Copyright 2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [doi:10.1063/1.3554331] C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Mazzucato, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mazzucato@pppl.gov FU US Department of Energy [DE-AC02-CH0911466] FX The author greatly acknowledges R. Budny, H. Kugel, L. Zakharov and S. Zweben for helpful discussions. This work was supported by US Department of Energy Contract No. DE-AC02-CH0911466. NR 29 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD MAR PY 2011 VL 1 IS 1 AR 012101 DI 10.1063/1.3554331 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 916XP UT WOS:000302136800002 ER PT J AU Li, HP Brinkmeyer, R Jones, WL Zhang, SJ Xu, C Schwehr, KA Santschi, PH Kaplan, DI Yeager, CM AF Li, Hsiu-Ping Brinkmeyer, Robin Jones, Whitney L. Zhang, Saijin Xu, Chen Schwehr, Kathy A. Santschi, Peter H. Kaplan, Daniel I. Yeager, Chris M. TI Iodide Accumulation by Aerobic Bacteria Isolated from Subsurface Sediments of a I-129-Contaminated Aquifer at the Savannah River Site, South Carolina SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DISSOLVED ORGANIC IODINE; HALOGENATED METABOLITES; MASS-SPECTROMETRY; HUMIC SUBSTANCES; MARINE; WATERS; VOLATILIZATION; SOIL; CHROMATOGRAPHY; CHLORINATION AB I-129 is of major concern because of its mobility in the environment, excessive inventory, toxicity (it accumulates in the thyroid), and long half-life (similar to 16 million years). The aim of this study was to determine if bacteria from a I-129-contaminated oxic aquifer at the F area of the U.S. Department of Energy's Savannah River Site, SC, could accumulate iodide at environmentally relevant concentrations (0.1 mu M I-). Iodide accumulation capability was found in 3 out of 136 aerobic bacterial strains isolated from the F area that were closely related to Streptomyces/Kitasatospora spp., Bacillus mycoides, and Ralstonia/Cupriavidus spp. Two previously described iodide-accumulating marine strains, a Flexibacter aggregans strain and an Arenibacter troitsensis strain, accumulated 2 to 50% total iodide (0.1 mu M), whereas the F-area strains accumulated just 0.2 to 2.0%. Iodide accumulation by FA-30 was stimulated by the addition of H2O2, was not inhibited by chloride ions (27 mM), did not exhibit substrate saturation kinetics with regard to I- concentration (up to 10 mu M I-), and increased at pH values of <6. Overall, the data indicate that I- accumulation likely results from electrophilic substitution of cellular organic molecules. This study demonstrates that readily culturable, aerobic bacteria of the F-area aquifer do not accumulate significant amounts of iodide; however, this mechanism may contribute to the long-term fate and transport of I-129 and to the biogeochemical cycling of iodine over geologic time. C1 [Jones, Whitney L.; Kaplan, Daniel I.; Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Li, Hsiu-Ping; Brinkmeyer, Robin; Zhang, Saijin; Xu, Chen; Schwehr, Kathy A.; Santschi, Peter H.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA. RP Yeager, CM (reprint author), Savannah River Natl Lab, 999-W, Aiken, SC 29808 USA. EM chris.yeager@srnl.doe.gov RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013 FU U.S. Department of Energy within the Office of Science [DE-FG02-08ER64567, 002]; Welch Grant [BD0046] FX This work was funded by the U.S. Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-FG02-08ER64567, modification no. 002) and partially supported by Welch Grant BD0046. NR 46 TC 16 Z9 16 U1 0 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD MAR PY 2011 VL 77 IS 6 BP 2153 EP 2160 DI 10.1128/AEM.02164-10 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 732QK UT WOS:000288203500026 PM 21278282 ER PT J AU Miller, EA Caggiano, JA Runkle, RC White, TA Beyill, AM AF Miller, Erin A. Caggiano, Joseph A. Runkle, Robert C. White, Timothy A. Beyill, Aaron M. TI Scatter in cargo radiography SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Radiography; Cargo inspection; Radiographic image simulation; Scatter; Monte Carlo simulation; Special nuclear material detection ID X-RAY SCATTER; CONTAINERS; RADIATION; MAGNITUDE; SYSTEMS; CT AB As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beam in the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typical medical imaging scenarios, even for low-density cargo, with scatter-to-primary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Miller, Erin A.; Caggiano, Joseph A.; Runkle, Robert C.; Beyill, Aaron M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [White, Timothy A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Miller, EA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM erin.miller@pnl.gov OI Bevill, Aaron/0000-0002-6545-7816 FU Department of Homeland Security's Domestic Nuclear Detection Office; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX This research was sponsored by the Department of Homeland Security's Domestic Nuclear Detection Office. The authors are grateful to Eric Tollar, Kenneth Adams, Jaroslaw Tuszynski, and Jerome Gormley for helpful discussion. This report is PNNL-SA-60900. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 18 TC 4 Z9 4 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD MAR PY 2011 VL 69 IS 3 BP 594 EP 603 DI 10.1016/j.apradiso.2010.12.006 PG 10 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 722HW UT WOS:000287424300006 PM 21216610 ER PT J AU Killian, MM Villa-Aleman, E Sun, ZL Crittenden, S Leverette, CL AF Killian, Michelle M. Villa-Aleman, Eliel Sun, Zhelin Crittenden, Scott Leverette, Chad L. TI Dependence of Surface-Enhanced Infrared Absorption (SEIRA) Enhancement and Spectral Quality on the Choice of Underlying Substrate: A Closer Look at Silver (Ag) Films Prepared by Physical Vapor Deposition (PVD) SO APPLIED SPECTROSCOPY LA English DT Article DE Surface-enhanced infrared absorption spectroscopy; SEIRA; Physical vapor deposition; PVD; Silver films; Ag films; Nanoparticle morphology ID ISLAND FILMS; NITROBENZOIC ACID; METAL-SURFACE; ATR SPECTRA; SPECTROSCOPY; MOLECULES; CO; TRANSMISSION; MONOLAYERS; SHAPES AB Silver (Ag) films of varying thickness were simultaneously deposited using physical vapor deposition (PVD) onto six infrared (IR) substrates (BaF(2), CaF(2), Ge, AMTIR, KRS-5, and ZnSe) in order to correlate the morphology of the deposited film with optimal SEIRA response and spectral band symmetry and quality. Significant differences were observed in the surface morphology of the deposited silver films, the degree of enhancement provided, and the spectral appearance of para-nitrobenzoic acid (PNBA) cast films for each silver-coated substrate. These differences were attributed to each substrate's chemical properties, which dictate the morphology of the Ag film and ultimately determine the spectral appearance of the adsorbed analyte and the magnitude of SEIRA enhancement. Routine SEIRA enhancement factors (EFs) for all substrates were between 5 and 150. For single-step Ag depositions, the following ranking identifies the greatest SEIRA enhancement factor and the maximum absorption of the 1345 cm(-1) spectral marker of PNBA at the optimal silver thickness for each substrate: BaF(2) (EF = 85 +/- 19, 0.059 A, 10 nm Ag) > CaF2 (EF =75 +/- 30, 0.052 A, 10 nm Ag) > Ge (EF = 45 +/- 8, 0.019 A, 5 nm Ag) > AMTIR (EF = 38 +/- 8, 0.024 A, 15 nm Ag) > KRS-5 (EF = 24 +/- 1, 0.015 A, 12 am Ag) > ZnSe (EF = 9 +/- 5, 0.008 A, 8 nm Ag). A two-step deposition provides 59% larger EFs than single-step depositions of Ag on CaF(2). A maximum EF of 147 was calculated for a cast film of PNBA (surface coverage = 341 ng/cm(2)) on a 10 nm two-step Ag film on CaF(2) (0.102 A, 1345 cm(-1) symmetric NO(2) stretching band). The morphology of the two-step Ag film has smaller particles and greater particle density than the single-step Ag film. C1 [Killian, Michelle M.; Leverette, Chad L.] Univ S Carolina Aiken, Dept Chem & Phys, Aiken, SC 29801 USA. [Killian, Michelle M.; Leverette, Chad L.] Univ S Carolina Aiken, USC NanoCtr, Aiken, SC 29801 USA. [Villa-Aleman, Eliel] Savannah River Natl Lab, Aiken, SC 29808 USA. [Sun, Zhelin; Crittenden, Scott] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Sun, Zhelin; Crittenden, Scott] Univ S Carolina, USC NanoCtr, Columbia, SC 29208 USA. RP Leverette, CL (reprint author), Univ S Carolina Aiken, Dept Chem & Phys, Aiken, SC 29801 USA. EM chadl@usca.edu RI Killian, Michelle/F-4967-2013 FU U.S. Dept. of Energy through the South Carolina Universities Research and Education Foundation [SC0242, SC0257]; American Chemical Society [PRF 45862-GB5]; U.S. Dept. of Energy [DE-AC09-96SR18500] FX M.M.K. and C.L.L. are supported by the U.S. Dept. of Energy through the South Carolina Universities Research and Education Foundation (RFP# SC0242 and SC0257) and the American Chemical Society Petroleum Research Fund (PRF 45862-GB5). Acknowledgement is made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research. EVA is supported under contract No. DE-AC09-96SR18500 for the U.S. Dept. of Energy. NR 31 TC 7 Z9 7 U1 1 U2 25 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD MAR PY 2011 VL 65 IS 3 BP 272 EP 283 DI 10.1366/10-06176 PG 12 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 729JO UT WOS:000287945700006 PM 21352647 ER PT J AU Alia-Klein, N Parvaz, MA Woicik, PA Konova, AB Maloney, T Shumay, E Wang, RL Telang, F Biegon, A Wang, GJ Fowler, JS Tomasi, D Volkow, ND Goldstein, RZ AF Alia-Klein, Nelly Parvaz, Muhammad A. Woicik, Patricia A. Konova, Anna B. Maloney, Thomas Shumay, Elena Wang, Ruiliang Telang, Frank Biegon, Anat Wang, Gene-Jack Fowler, Joanna S. Tomasi, Dardo Volkow, Nora D. Goldstein, Rita Z. TI Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction SO ARCHIVES OF GENERAL PSYCHIATRY LA English DT Article ID VOXEL-BASED MORPHOMETRY; MONOAMINE-OXIDASE-A; SUBSTANCE-DEPENDENT INDIVIDUALS; MAOA PROMOTER POLYMORPHISM; ORBITAL PREFRONTAL CORTEX; DECISION-MAKING; USE DISORDERS; DRUG-ABUSE; HIPPOCAMPAL VOLUME; DOPAMINE DEPLETION AB Context: Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. Objective: To examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Design: Cross-sectional comparison. Setting: Clinical Research Center at Brookhaven National Laboratory. Patients: Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high-and low-repeat alleles). Main Outcome Measures: The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. Results: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls. (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low-MAOA genotype and by lifetime cocaine use. (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Conclusions: Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction. C1 [Alia-Klein, Nelly; Parvaz, Muhammad A.; Woicik, Patricia A.; Konova, Anna B.; Maloney, Thomas; Shumay, Elena; Wang, Ruiliang; Biegon, Anat; Wang, Gene-Jack; Fowler, Joanna S.; Goldstein, Rita Z.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Parvaz, Muhammad A.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY USA. [Konova, Anna B.] SUNY Stony Brook, Dept Psychol, Stony Brook, NY USA. [Wang, Gene-Jack; Fowler, Joanna S.] Mt Sinai Sch Med, New York, NY USA. [Telang, Frank; Tomasi, Dardo] Natl Inst Alcohol & Alcoholism, Bethesda, MD USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. RP Alia-Klein, N (reprint author), Brookhaven Natl Lab, Dept Med, Med 490, Upton, NY 11973 USA. EM nellyklein@bnl.gov RI Tomasi, Dardo/J-2127-2015; OI Parvaz, Muhammad/0000-0002-2671-2327 FU US Department of Energy [DE-AC-298CH10886]; National Institute on Drug Abuse [R01DA023579, R21DA02062]; National Institute on Alcohol Abuse and Alcoholism [2R01AA09481]; National Association for Research on Schizophrenia and Depression FX This research was conducted at Brookhaven National Laboratory under contract DE-AC-298CH10886 with the US Department of Energy with infrastructure support from its Office of Biological and Environmental Research, and by the National Institute on Drug Abuse (R01DA023579, R21DA02062), the National Institute on Alcohol Abuse and Alcoholism (2R01AA09481), and the National Association for Research on Schizophrenia and Depression. NR 107 TC 47 Z9 47 U1 3 U2 10 PU AMER MEDICAL ASSOC PI CHICAGO PA 515 N STATE ST, CHICAGO, IL 60654-0946 USA SN 0003-990X J9 ARCH GEN PSYCHIAT JI Arch. Gen. Psychiatry PD MAR PY 2011 VL 68 IS 3 BP 283 EP 294 DI 10.1001/archgenpsychiatry.2011.10 PG 12 WC Psychiatry SC Psychiatry GA 731DQ UT WOS:000288086900008 PM 21383264 ER PT J AU Foley, RJ Kasen, D AF Foley, Ryan J. Kasen, Daniel TI MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES SO ASTROPHYSICAL JOURNAL LA English DT Article DE distance scale; dust, extinction; supernovae: general ID LIGHT CURVES; DARK ENERGY; SPECTRA; LUMINOSITY; DIVERSITY; CONSTRAINTS; MODEL; INDICATORS; EXPLOSION; ASYMMETRY AB We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II lambda 6355 feature near maximum brightness, nu(Si) (II). The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by nu(Si) (II) (defined as "Normal" and "High Velocity"). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V) > 0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by similar to 0.06 mag to the red from the Normal subsample in the (B-max - V-max)-M-V plane, (2) the B-max - V-max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by similar to 0.07 mag to the red in B-max - V-max, and (3) the bluest High-Velocity SNe Ia are similar to 0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with AV less than or similar to 0.7 mag. The scatter can be further reduced to 0.109 mag by exclusively using SNe Ia from the Normal subsample. Additionally, this result can at least partially explain the anomalously low values of R-V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST. C1 [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Foley, RJ (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM rfoley@cfa.harvard.edu FU DOE [DE-FC02-06ER41438]; INCITE award FX This research has been supported by the DOE SciDAC Program (DE-FC02-06ER41438). Computing time was provided by ORNL through an INCITE award and by NERSC. NR 56 TC 74 Z9 74 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD MAR 1 PY 2011 VL 729 IS 1 AR 55 DI 10.1088/0004-637X/729/1/55 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 720BN UT WOS:000287255300055 ER PT J AU Seo, HJ Sato, M Dodelson, S Jain, B Takada, M AF Seo, Hee-Jong Sato, Masanori Dodelson, Scott Jain, Bhuvnesh Takada, Masahiro TI RE-CAPTURING COSMIC INFORMATION SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmology: theory; gravitational lensing: weak; large-scale structure of universe ID MATTER POWER SPECTRUM; LARGE-SCALE STRUCTURE; COSMOLOGICAL PARAMETERS; WEAK; SIMULATIONS AB Gravitational lensing of distant galaxies can be exploited to infer the convergence field as a function of angular position on the sky. The statistics of this field, much like that of the cosmic microwave background (CMB), can be studied to extract information about fundamental parameters in cosmology, most notably the dark energy in the universe. Unlike the CMB, the distribution of matter in the universe which determines the convergence field is highly non-Gaussian, reflecting the nonlinear processes that accompanied structure formation. Much of the cosmic information contained in the initial field is therefore unavailable to the standard power spectrum measurements. Here we propose a method for re-capturing cosmic information by using the power spectrum of a simple function of the observed (nonlinear) convergence field. We adapt the approach of Neyrinck et al. to lensing by using a modified logarithmic transform of the convergence field. The Fourier transform of the log-transformed field has modes that are nearly uncorrelated, which allows for additional cosmological information to be extracted from small-scale modes. C1 [Seo, Hee-Jong; Dodelson, Scott] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sato, Masanori] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Dodelson, Scott] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Dodelson, Scott] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Jain, Bhuvnesh] Univ Penn, Dept Astron & Astrophys, Ctr Particle Cosmol, Philadelphia, PA 19104 USA. [Takada, Masahiro] Univ Tokyo, IPMU, Chiba 2778582, Japan. RP Seo, HJ (reprint author), Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. EM hee-jongseo@lbl.gov RI Takada, Masahiro/A-4364-2011 FU World Premier International Research Center Initiative (WPI Initiative); MEXT, Japan [467]; JSPS; DOE at Fermilab [DE-FG02-95ER40896]; NSF [AST-0908072, AST-0607667] FX This work is supported in part by World Premier International Research Center Initiative (WPI Initiative), by Grant-in-Aid for Scientific Research on Priority Areas No. 467 "Probing the Dark Energy through an Extremely Wide and Deep Survey with Subaru Telescope," MEXT, Japan, by the JSPS Research Fellows, by the DOE at Fermilab through grant DE-FG02-95ER40896, and by NSF grants AST-0908072 and AST-0607667. NR 28 TC 34 Z9 34 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD MAR 1 PY 2011 VL 729 IS 1 AR L11 DI 10.1088/2041-8205/729/1/L11 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 719HI UT WOS:000287194100011 ER PT J AU Xing, J Zhang, Y Wang, SX Liu, XH Cheng, SH Zhang, QA Chen, YS Streets, DG Jang, C Hao, JM Wang, WX AF Xing, Jia Zhang, Yang Wang, Shuxiao Liu, Xiaohuan Cheng, Shuhui Zhang, Qiang Chen, Yaosheng Streets, David G. Jang, Carey Hao, Jiming Wang, Wenxing TI Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Beijing Olympics; Emission control; CMAQ; Process analysis; Sensitivity simulation ID PARTICULATE MATTER; OZONE; CHINA; SENSITIVITY; POLLUTION; PM2.5 AB Understanding of the relative impacts of emission reductions and meteorological variations on air quality during the 2008 Beijing Olympics has an important policy implication. In this work, detailed process analyses and sensitivity simulations under different emission and meteorology scenarios were conducted using CMAQ and the Process Analysis tool to quantify the air quality benefits from emission reductions and meteorological variations in August 2008. The results indicate that emission-driven changes dominate surface concentration reductions of SO2, NO2. VOCs, daily maxima O-3 and PM2.5 by -11% to -83%. The effect of meteorology-driven changes on species concentrations can be either ways (by -46% to 105%) at different locations. The dominant processes contributing to O-3, PM2.5, SO42-, NO3-, and secondary organic aerosol (SOA) are identified. Gas-phase chemistry is a major process for O-3 production, and PM processes are dominant sources for PM2.5 in the planetary boundary layer (PBL). The reduced emissions weaken the source contributions of gas-phase chemistry to O-3 and those of PM processes to PM2.5, with weaker vertical mixing processes and horizontal transport in the PBL Compared with 2007, 2008 has a higher humidity, lower temperature and more precipitation that benefit O-3 reduction within the PBL, and a weaker vertical mixing that disbenefits reductions of all pollutants concentrations. Stronger process contributions of cloud processes (e.g., below- and in-cloud scavenging, and wet deposition) in 2008 help reduce concentrations of PM2.5, NO3-, and SOA, but they (e.g., aqueous-phase chemistry) enhance surface SO42- concentrations. Smaller process contributions of aerosol processes help reduce the concentrations of SOA and SO42- but enhance NO3- and PM2.5 in lower layers (1-6) due to the evaporation of NO3-. The ratios of P-H2O2/P-HNO3 increase under the controlled simulation, indicating that the emission control actions enforced during the 2008 Olympics weakened the sensitivity of O-3 chemistry to VOC emissions in urban areas. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Xing, Jia; Wang, Shuxiao; Hao, Jiming] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Xing, Jia; Wang, Shuxiao; Hao, Jiming] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Xing, Jia; Zhang, Yang; Chen, Yaosheng] N Carolina State Univ, Raleigh, NC 27695 USA. [Liu, Xiaohuan; Cheng, Shuhui; Wang, Wenxing] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Zhang, Qiang; Streets, David G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Jang, Carey] US EPA, Res Triangle Pk, NC 27711 USA. RP Hao, JM (reprint author), Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. EM hjm-den@tsinghua.edu.cn RI hui, wanghui/C-5671-2008; xing, jia/O-1784-2014; wang, shuxiao/H-5990-2011; Zhang, Qiang/D-9034-2012 OI wang, shuxiao/0000-0001-9727-1963; Streets, David/0000-0002-0223-1350; FU U.S. EPA; U. S. NSF [Atm-0348819]; Natural Science Foundation of China [20921140095] FX This work was financially supported by the U.S. EPA, the U. S. NSF Career Award No. Atm-0348819, and Natural Science Foundation of China (20921140095). The authors also thank to Xinyu Wen, Kai Wang, and Ping Liu at North Carolina State University and Satoru Chatani from Toyota Central R&D Labs. NR 32 TC 29 Z9 46 U1 5 U2 82 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD MAR PY 2011 VL 45 IS 10 BP 1786 EP 1798 DI 10.1016/j.atmosenv.2011.01.025 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 743PK UT WOS:000289030700002 ER PT J AU Baca, HK Carnes, EC Ashley, CE Lopez, DM Douthit, C Karlin, S Brinker, CJ AF Baca, Helen K. Carnes, Eric C. Ashley, Carlee E. Lopez, DeAnna M. Douthit, Cynthia Karlin, Shelly Brinker, C. Jeffrey TI Cell-directed-assembly: Directing the formation of nano/bio interfaces and architectures with living cells SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Review DE Self-assembly; Yeast; E. coli; Silica; Encapsulation; Biosensors ID SILICA-GEL; NANOSTRUCTURES; MEMBRANE; BACTERIA; BIOCOMPOSITES; ENCAPSULATION; PERSPECTIVES; VIABILITY; PROTEINS; THERAPY AB Background: The desire to immobilize, encapsulate, or entrap viable cells for use in a variety of applications has been explored for decades. Traditionally, the approach is to immobilize cells to utilize a specific functionality of the cell in the system. Scope of review: This review describes our recent discovery that living cells can organize extended nanostructures and nano-objects to create a highly biocompatible nano//bio interface [1]. Major conclusions: We find that short chain phospholipids direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA) [2], and that the introduction of cells alter the self-assembly pathway. Cells organize an ordered lipid-membrane that forms a coherent interface with the silica mesophase that is unique in that it withstands drying yet it maintains accessibility to molecules introduced into the 3D silica host. Cell viability is preserved in the absence of buffer, making these constructs useful as standalone cell-based sensors. In response to hyperosmotic stress, the cells release water, creating a pH gradient which is maintained within the nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting-processes allowing patterning of cellular arrays-and even spatially-defined genetic modification. General significance: Recent advances in the understanding of nanotechnology and cell biology encourage the pursuit of more complex endeavors where the dynamic interactions of the cell and host material act symbiotically to obtain new, useful functions. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. (C) 2010 Elsevier B.V. All rights reserved. C1 [Baca, Helen K.; Carnes, Eric C.; Ashley, Carlee E.; Lopez, DeAnna M.; Douthit, Cynthia; Karlin, Shelly; Brinker, C. Jeffrey] Univ New Mexico, Albuquerque, NM 87131 USA. [Ashley, Carlee E.; Lopez, DeAnna M.; Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brinker, CJ (reprint author), Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM cjbrink@sandia.gov FU Air Force Office of Scientific Research [FA 9550-07-1-0054]; NIH/Roadmap for Medical Research [PHS 2 PN2 EY016570B]; Defense Threat Reduction Agency [B0844671]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; NSF Research Experiences for Undergraduates [DMR-0649132]; Sandia National Laboratory; NSF [DGE-0549500, DGE-0504276]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported by the Air Force Office of Scientific Research (FA 9550-07-1-0054); the NIH/Roadmap for Medical Research (PHS 2 PN2 EY016570B); the Defense Threat Reduction Agency (B0844671), the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; the NSF Research Experiences for Undergraduates (DMR-0649132); and Sandia National Laboratories' LDRD program. ECC was supported by an NSF IGERT Fellowship (DGE-0549500). CEA was also supported by an NSF IGERT Fellowship (DGE-0504276). Fluorescence images were obtained at the UNM Cancer Center fluorescence Microscopy Facility. SEM images were obtained at the UNM Center for Micro-Engineered Materials. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 50 TC 14 Z9 15 U1 9 U2 82 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4165 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD MAR PY 2011 VL 1810 IS 3 SI SI BP 259 EP 267 DI 10.1016/j.bbagen.2010.09.005 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 722YJ UT WOS:000287470900004 PM 20933574 ER PT J AU Sathitsuksanoh, N Zhu, ZG Wi, S Zhang, YHP AF Sathitsuksanoh, Noppadon Zhu, Zhiguang Wi, Sungsool Zhang, Y. -H. Percival TI Cellulose Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE biomass; biofuels; cellulose accessibility; cellulose solvent-based pretreatment; crystallinity index; drying of cellulose; switchgrass ID MAJOR STRUCTURAL FEATURES; ENZYMATIC-HYDROLYSIS; C-13 NMR; SUPRAMOLECULAR STRUCTURE; TRICHODERMA-VIRIDE; CORN STOVER; CP/MAS NMR; LIGNOCELLULOSE; CRYSTALLINITY; FRACTIONATION AB The switchgrass (SG) samples pretreated by cellulose solvent- and organic solvent-based lignocellulose fractionation were characterized by enzymatic hydrolysis, substrate accessibility assay, scanning electron microscopy, X-ray diffraction (XRD), cross polarization/magic angle spinning (CP/MAS) (13)C nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR). Glucan digestibility of the pretreated SG was 89% at hour 36 at one filter paper unit of cellulase per gram of glucan. Crystallinity index (CrI) of pure cellulosic materials and SG before and after cellulose solvent-based pretreatment were determined by XRD and NMR. CrI values varied greatly depending on measurement techniques, calculation approaches, and sample drying conditions, suggesting that the effects of CrI data obtained from dried samples on enzymatic hydrolysis of hydrated cellulosic materials should be interpreted with caution. Fast hydrolysis rates and high glucan digestibilities for pretreated SG were mainly attributed to a 16.3-fold increase in cellulose accessibility to cellulase from 0.49 to 8.0 m(2)/g biomass, because the highly ordered hydrogen-bonding networks in cellulose fibers of biomass were broken through cellulose dissolution in a cellulose solvent, as evidenced by CP/MAS (13)C-NMR and FTIR. Biotechnol. Bioeng. 2011; 108: 521-529. (C) 2010 Wiley Periodicals, Inc. C1 [Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Wi, Sungsool] Virginia Polytech Inst & State Univ, Dept Chem, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014; Zhu, Zhiguang/I-3936-2016 OI sathitsuksanoh, noppadon/0000-0003-1521-9155; FU DOE BioEnergy Science Center (BESC); USDA Biodesign and Bioprocessing Research Center (BBRC); ICTAS; DuPont Young Professor Award; Office of Biological and Environmental Research in the DOE Office of Science FX Contract grant sponsor: DOE BioEnergy Science Center (BESC); Contract grant sponsor: USDA Biodesign and Bioprocessing Research Center (BBRC); Contract grant sponsor: ICTAS Scholar Program; This work was supported partially by the DOE BioEnergy Science Center (BESC), USDA Bioprocessing and Biodesign Center, and DuPont Young Professor Award. NS was partially supported by the ICTAS Scholar Program. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors were grateful to Drs. Justin Barone and William Reynolds of Virginia Polytechnic and State University for their assistance in FTIR and XRD analysis. We would like to express our gratitude to Dr. Scott Renneckar for providing the isolated lignin utilized in this study, as well as Dr. Hugo Azurmendi for access and assistance to the NMR facility. We also would like to thank Dr. Sunkyu Park of North Carolina State University for his helpful discussions on CrI determination. NR 48 TC 55 Z9 57 U1 3 U2 48 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2011 VL 108 IS 3 BP 521 EP 529 DI 10.1002/bit.22964 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 708YZ UT WOS:000286401500005 PM 20967803 ER PT J AU Bals, B Dale, BE AF Bals, Bryan Dale, Bruce E. TI Economic Comparison of Multiple Techniques for Recovering Leaf Protein in Biomass Processing SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE economic model; leaf protein concentrate; biorefinery; mechanical pressing; aqueous extraction ID ULTRAFILTRATION; CONCENTRATE; AMMONIA; ALFALFA; COPRODUCTION; EXTRACTION; CONVERSION; FUELS; CORN AB Leaf protein concentrates (LPC) can be used as a valuable co-product to cellulosic biofuel production and can also mitigate the food versus fuel controversy. Two major approaches have been considered for LPC production: a well-characterized mechanical pressing method and a less studied method involving aqueous extraction with recovery using ultrafiltration. Experimental results with switchgrass extracts show low protein recovery after filtration, particularly if protein is recovered after cellulose hydrolysis. Economic modeling suggests that aqueous extraction costs less than mechanical pressing, but due to lower protein yields and lower quality, overall profit is higher for mechanical pressing versus aqueous extraction ($26/Mg feedstock vs. $14/Mg). If modest improvements can be made in extraction yields, filtration recovery, and protein quality, then the profitability of the aqueous extraction approach can be increased to $37/Mg feedstock. This study suggests that aqueous extraction is a viable alternative for LPC co-production in a biorefinery if key improvements can be made in the process. Biotechnol. Bioeng. 2011; 108: 530-537. (C) 2010 Wiley Periodicals, Inc. C1 [Bals, Bryan; Dale, Bruce E.] Michigan State Univ, Biomass Convers Res Lab, Lansing, MI 48910 USA. [Dale, Bruce E.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA. RP Dale, BE (reprint author), Michigan State Univ, Biomass Convers Res Lab, 3815 Technol Blvd, Lansing, MI 48910 USA. EM bdale@egr.msu.edu FU Michigan Agricultural Experiment Station; Michigan State University Research Foundation; US Department of Energy [DEFC02-07ER64494]; DOE Great Lakes Bioenergy Research Center [DEFC02-07ER64494] FX Contract grant sponsor: Michigan Agricultural Experiment Station; Contract grant sponsor: Michigan State University Research Foundation; Contract grant sponsor: US Department of Energy; Contract grant number: DEFC02-07ER64494; Funding for this project was provided by the Michigan Agricultural Experiment Station and the Michigan State University Research Foundation. Further funding was also provided by the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. Amino acid analysis was performed at the Macromolecular Structure Facility. The authors would like to thank Dr. Mark Laser for details of the biorefinery model with integrated protein extraction, which provided the basis for the aqueous extraction model. NR 23 TC 18 Z9 18 U1 5 U2 23 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD MAR PY 2011 VL 108 IS 3 BP 530 EP 537 DI 10.1002/bit.22973 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 708YZ UT WOS:000286401500006 PM 20967802 ER PT J AU Fast, JD Gustafson, WI Chapman, EG Easter, RC Rishel, JP Zaveri, RA Grell, GA Barth, MC AF Fast, Jerome D. Gustafson, William I., Jr. Chapman, Elaine G. Easter, Richard C. Rishel, Jeremy P. Zaveri, Rahul A. Grell, Georg A. Barth, Mary C. TI THE AEROSOL MODELING TESTBED A Community Tool to Objectively Evaluate Aerosol Process Modules SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID SUBGRID-SCALE VARIATIONS; MEXICO-CITY PLATEAU; SULFATE-AEROSOL; RELATIVE-HUMIDITY; TIME EVOLUTION; CLOUD; CLIMATE; CHEMISTRY; CAMPAIGN; AEROCOM C1 [Fast, Jerome D.; Gustafson, William I., Jr.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Grell, Georg A.] Univ Colorado, Global Syst Div, NOAA, Earth Syst Res Lab, Boulder, CO 80309 USA. [Grell, Georg A.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Barth, Mary C.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Fast, JD (reprint author), NW Natl Lab, POB 999,K9-30, Richland, WA 99352 USA. EM jerome.fast@pnl.gov RI Gustafson, William/A-7732-2008; Chapman, Elaine/K-8756-2012; grell, georg/B-6234-2015; OI Gustafson, William/0000-0001-9927-1393; grell, georg/0000-0001-5214-8742; Zaveri, Rahul/0000-0001-9874-8807 FU National Science Foundation; Pacific Northwest National Laboratory (PNNL) through the Aerosol Climate Initiative FX The National Center for Atmospheric Research is sponsored by the National Science Foundation.; Development of the Aerosol Modeling Testbed was supported by Pacific Northwest National Laboratory's (PNNL) Laboratory Directed Research and Development program through the Aerosol Climate Initiative. The authors thank Stuart McKeen (NOAA) for providing a dry deposition treatment and the numerous MILAGRO investigators for providing data, emissions, and boundary conditions used in this study, including Jose Jimenez and Allison Aiken (University of Colorado), Larry Kleinman (Brookhaven National Laboratory), and Richard Ferrare (NASA). PNNL is operated for the U.S. Department of Energy by Battelle Memorial Institute. NR 67 TC 15 Z9 15 U1 0 U2 16 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD MAR PY 2011 VL 92 IS 3 BP 343 EP 360 DI 10.1175/2010BAMS2868.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 758YD UT WOS:000290202700005 ER PT J AU Bahrami, SB Veiseh, M Dunn, AA Boudreau, NJ AF Bahrami, S. Bahram Veiseh, Mandana Dunn, Ashley A. Boudreau, Nancy J. TI Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells SO CELL ADHESION & MIGRATION LA English DT Article DE embryonic stem cell differentiation; endothelial cells; Hox gene expression ID HOMEOBOX GENES; SUSTAINED EXPRESSION; COMMON PROGENITOR; BLOOD-VESSELS; WOUND REPAIR; ANGIOGENESIS; SPECIFICATION; MICE; EZH2; D3 AB In pluripotent embryonic stem cells (ESCs), expression of the Hox master regulatory transcription factors that play essential roles in organogenesis, angiogenesis and maintenance of differentiated tissues is globally suppressed. We investigated whether differentiation of endothelial cells (ECs) from mouse ESCs was accompanied by activation of distinct Hox gene expression profiles. Differentiation was observed within three days, as indicated by the appearance of cells expressing specific endothelial marker genes (Flk-1(+)/VE-Cadherin(+)). Expression of HoxA3 and HoxD3, which drive adult endothelial cell invasion and angiogenesis, peaked at day 3 and declined thereafter, whereas expression of HoxA5 and HoxD10, which maintain a mature quiescent EC phenotype, was low at day 3, but increased over time. The temporal and reciprocal changes in HoxD3 and HoxA5 expression were accompanied by corresponding changes in expression of established downstream target genes including integrin beta 3 and Thrombospondin-2. Our results indicate that differentiation and maturation of ECs derived from cultured ESCs mimic changes in Hox gene expression that accompany maturation of immature angiogenic endothelium into differentiated quiescent endothelium in vivo. C1 [Bahrami, S. Bahram; Dunn, Ashley A.; Boudreau, Nancy J.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA. [Veiseh, Mandana] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. RP Boudreau, NJ (reprint author), Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA. EM NBoudreau@sfghsurg.ucsf.edu FU NIH/NCI TMEN [U54CA126552]; US Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH1123]; Distinguished Fellow Award; Low Dose Radiation Program [03-76SF00098]; NCI of the NIH [F32 CA132491A] FX This work is supported by grants from NIH/NCI TMEN grant (U54CA126552) to Nancy Boudreau and Mina J Bissell and US Department of Energy, Office of Biological and Environmental Research (DE-AC02-05CH1123), a Distinguished Fellow Award and Low Dose Radiation Program (03-76SF00098) to Mina J. Bissell. Mandana Veiseh was supported by a postdoctoral fellowship from the NCI of the NIH (F32 CA132491A). We thank Pamela Derish in the Department of Surgery at UCSF for editorial review of the manuscript. NR 55 TC 11 Z9 11 U1 0 U2 7 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6918 J9 CELL ADHES MIGR JI Celll Adhes. Migr. PD MAR-APR PY 2011 VL 5 IS 2 BP 133 EP 141 DI 10.4161/cam.5.2.14373 PG 9 WC Cell Biology SC Cell Biology GA 898CI UT WOS:000300712600006 PM 21200152 ER PT J AU Craig, GA Costa, JS Roubeau, O Teat, SJ Aromi, G AF Craig, Gavin A. Sanchez Costa, Jose Roubeau, Olivier Teat, Simon J. Aromi, Guillem TI Coupled Crystallographic Order-Disorder and Spin State in a Bistable Molecule: Multiple Transition Dynamics SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE bistability; hysteresis; iron; magnetic properties; order-disorder transitions; spin crossover ID X-RAY-DIFFRACTION; CROSSOVER COMPOUND; PHASE-TRANSITIONS; COMPLEX; LIGANDS; L=2,6-DI(PYRAZOL-1-YL)PYRIDINE; BISTABILITY; RELAXATION; MAGNETS AB A novel bispyrazolylpyridine ligand incorporating lateral phenol groups, H(4)L, has led to an Fe(II) spin-crossover (SCO) complex, [Fe(H(4)L)(2)]-[ClO(4)](2)center dot H(2)O center dot 2(CH(3))(2)CO (1), with an intricate network of intermolecular interactions. It exhibits a 40 K wide hysteresis of magnetization as a result of the spin transition (with T(0.5) of 133 and 173 K) and features an unsymmetrical and very rich structure. The latter is a consequence of the coupling between the SCO and the crystallographic transformations. The high-spin state may also be thermally trapped, exhibiting a very large T(TIESST) (approximate to 104 K). The structure of 1 has been determined at various temperatures after submitting the crystal to different processes to recreate the key points of the hysteresis cycle and thermal trapping; 200 K, cooled to 150 K and trapped at 100 K (high spin, HS), slowly cooled to 100 K and warmed to 150 K (low spin, LS). In the HS state, the system always exhibits disorder for some components (one ClO(4)(-) and two acetone molecules) whereas the LS phases show a relative approximate to 9% reduction in the Fe-N bond lengths and anisotropic contraction of the unit cell. Most importantly, in the LS state all the species are always found to be ordered. Therefore, the bistability of crystallographic order-disorder coupled to SCO is demonstrated here experimentally for the first time. The variation in the cell parameters in 1 also exhibits hysteresis. The structural and magnetic thermal variations in this compound are paralleled by changes in the heat capacity as measured by differential scanning calorimetry. Attempts to simulate the asymmetric SCO behaviour of 1 by using an Ising-like model underscore the paramount role of dynamics in the coupling between the SCO and the crystallographic transitions. C1 [Craig, Gavin A.; Sanchez Costa, Jose; Aromi, Guillem] Univ Barcelona, Dept Quim Inorgan, E-08028 Barcelona, Spain. [Roubeau, Olivier] Univ Zaragoza, E-50009 Zaragoza, Spain. [Roubeau, Olivier] CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Costa, JS (reprint author), Univ Barcelona, Dept Quim Inorgan, Diagonal 647, E-08028 Barcelona, Spain. EM j.sanchezcosta@qi.ub.es; roubeau@unizar.es; guillem.aromi@qi.ub.es RI Aromi, Guillem/I-2483-2015; Roubeau, Olivier/A-6839-2010; Sanchez Costa, Jose/N-9085-2014; OI Aromi, Guillem/0000-0002-0997-9484; Roubeau, Olivier/0000-0003-2095-5843; Sanchez Costa, Jose/0000-0001-5426-7956; Craig, Gavin/0000-0003-3542-4850 FU Spanish MCI [CTQ2009-06959]; "Juan de la Cierva"; U.S. Department of Energy [DE-AC02-05CH11231] FX G.A. thanks the Generalitat de Catalunya for a ICREA Academia 2008 prize. The authors thank the Spanish MCI through CTQ2009-06959 (J.S.C., G.A.C. and G.A.), support for access to BM16 at ESRF (EXP16-01-739), and for a "Juan de la Cierva" (J.S.C.) research fellowship. The Advanced Light Source (S.J.T.) is supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 36 TC 41 Z9 41 U1 1 U2 39 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD MAR PY 2011 VL 17 IS 11 BP 3120 EP 3127 DI 10.1002/chem.201003197 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 731IF UT WOS:000288098800013 PM 21328502 ER PT J AU Warren, JM Potzelsberger, E Wullschleger, SD Thornton, PE Hasenauer, H Norby, RJ AF Warren, Jeffrey M. Poetzelsberger, Elisabeth Wullschleger, Stan D. Thornton, Peter E. Hasenauer, Hubert Norby, Richard J. TI Ecohydrologic impact of reduced stomatal conductance in forests exposed to elevated CO2 SO ECOHYDROLOGY LA English DT Article DE climate change; FACE; global change; sap flow; streamflow; transpiration ID CARBON-DIOXIDE ENRICHMENT; FINE-ROOT RESPONSES; ASPEN-BIRCH FORESTS; AGE-RELATED DECLINE; FREE-AIR ENRICHMENT; DECIDUOUS FOREST; ATMOSPHERIC CO2; PINE FOREST; SAP-FLOW; WATER-USE AB Plants influence ecosystem water balance through their physiological, phenological, and biophysical responses to environmental conditions, and their sensitivity to climate change could alter the ecohydrology of future forests. Here we use a combination of measurements, synthesis of existing literature, and modelling to address the consequences of climate change on ecohydrologic processes in forests, especially response to elevated CO2 (eCO(2)). Data assessed from five free-air CO2 enrichment (FACE) sites reveal that eCO(2)-reduced stomatal conductance led to declines in canopy transpiration and stand water use in three closed-canopy forest sites. The other two sites were in the early stages of stand development, where a strong eCO(2)-stimulation of canopy leaf area led to enhanced stand water use. In the sweetgum FACE experiment in Oak Ridge, Tennessee (USA), eCO(2) reduced seasonal transpiration by 10-16%. Intra-annual peak measured fluxes in transpiration ranged from 4.0-5.5 mm day(-1), depending on year. The Biome-BGC model simulated similar rates of transpiration at this site, including the relative reductions in response to eCO(2). As a result, simulations predict similar to 75 mm average annual increase in potential water yield in response to eCO(2). The direct effect of eCO(2) on forest water balance through reductions in transpiration could be considerable, especially following canopy closure and development of maximal leaf area index. Complementary, indirect effects of eCO(2) include potential increases in root or leaf litter and soil organic matter, shifts in root distribution, and altered patterns of water extraction. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Warren, Jeffrey M.; Poetzelsberger, Elisabeth; Hasenauer, Hubert] Univ Nat Resources & Life Sci BOKU, Dept Forest & Soil Sci, Vienna, Austria. RP Warren, JM (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM warrenjm@ornl.gov RI Wullschleger, Stan/B-8297-2012; Thornton, Peter/B-9145-2012; Warren, Jeffrey/B-9375-2012; Norby, Richard/C-1773-2012 OI Wullschleger, Stan/0000-0002-9869-0446; Thornton, Peter/0000-0002-4759-5158; Warren, Jeffrey/0000-0002-0680-4697; Norby, Richard/0000-0002-0238-9828 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; US Department of Energy, Office of Science, Biological and Environmental Research; DOE [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes".; Editorial assistance was provided by Tara A. Hall. Data compilation and literature surveys were provided by Elizabeth C. Storey. This research was funded by the US Department of Energy, Office of Science, Biological and Environmental Research. ORNL is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. NR 89 TC 49 Z9 49 U1 3 U2 56 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1936-0584 J9 ECOHYDROLOGY JI Ecohydrology PD MAR PY 2011 VL 4 IS 2 SI SI BP 196 EP 210 DI 10.1002/eco.173 PG 15 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA 746RH UT WOS:000289263900006 ER PT J AU Park, S Shao, YY Wan, HY Rieke, PC Viswanathan, VV Towne, SA Saraf, LV Liu, J Lin, YH Wang, Y AF Park, Sehkyu Shao, Yuyan Wan, Haiying Rieke, Peter C. Viswanathan, Vilayanur V. Towne, Silas A. Saraf, Laxmikant V. Liu, Jun Lin, Yuehe Wang, Yong TI Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Proton exchange membrane fuel cells; Catalyst layer; Graphene sheets; Carbon black; Spacer ID FUNCTIONALIZED GRAPHENE; OXYGEN REDUCTION; NANOCOMPOSITES; OXIDATION; GRAPHITE; PLATINUM AB A series of cathodes using Pt supported onto graphene sheets with different contents of carbon black in the catalyst layer were prepared and characterized. Carbon black was added as a spacer between two-dimensional graphene sheets in the catalyst layer to study its effect on the performance of proton exchange membrane fuel cell. Electrochemical properties and surface morphology of the cathodes with and without carbon black were characterized using cyclic voltammetry, ac-impedance spectroscopy, electrochemical polarization technique, and scanning electron microscopy. The results indicated that carbon black effectively modifies the array of graphene supports, resulting in more Pt nanoparticles available for electrochemical reaction and better mass transport in the catalyst layer. Published by Elsevier B.V. C1 [Park, Sehkyu; Shao, Yuyan; Wan, Haiying; Rieke, Peter C.; Viswanathan, Vilayanur V.; Towne, Silas A.; Saraf, Laxmikant V.; Liu, Jun; Lin, Yuehe; Wang, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Wang, Y (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yong.wang@pnl.gov RI Park, Sehkyu/E-5153-2010; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Wang, Yong/C-2344-2013 OI Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; FU U.S. Department of Energy's (DOE's) Office of Energy; DOE [DE-AC05-76 L01830] FX This work is supported by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Program. The characterization was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76 L01830. NR 15 TC 68 Z9 69 U1 5 U2 39 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD MAR PY 2011 VL 13 IS 3 BP 258 EP 261 DI 10.1016/j.elecom.2010.12.028 PG 4 WC Electrochemistry SC Electrochemistry GA 739OS UT WOS:000288728100010 ER PT J AU Biener, J Stadermann, M Suss, M Worsley, MA Biener, MM Rose, KA Baumann, TF AF Biener, Juergen Stadermann, Michael Suss, Matthew Worsley, Marcus A. Biener, Monika M. Rose, Klint A. Baumann, Theodore F. TI Advanced carbon aerogels for energy applications SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ATOMIC LAYER DEPOSITION; HYDROGEN STORAGE PROPERTIES; FUEL-CELL-ELECTRODES; POROUS CARBON; CAPACITIVE DEIONIZATION; AMMONIA BORANE; ELECTROCHEMICAL CAPACITORS; ELECTRICAL-CONDUCTIVITY; PLATINUM NANOPARTICLES; SUPPORTED CATALYSTS AB Carbon aerogels are a unique class of high-surface-area materials derived by sol-gel chemistry. Their high mass-specific surface area and electrical conductivity, environmental compatibility and chemical inertness make them very promising materials for many energy related applications, specifically in view of recent developments in controlling their morphology. In this perspective we will review the synthesis of monolithic resorcinol-formaldehyde based carbon aerogels with hierarchical porosities for energy applications, including carbon nanotube and graphene composite carbon aerogels, as well as their functionalization by surface engineering. Applications that we will discuss include hydrogen and electrical energy storage, desalination and catalysis. C1 [Biener, Juergen; Stadermann, Michael; Suss, Matthew; Worsley, Marcus A.; Biener, Monika M.; Rose, Klint A.; Baumann, Theodore F.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM biener2@LLNL.gov RI Stadermann, Michael /A-5936-2012; Worsley, Marcus/G-2382-2014 OI Stadermann, Michael /0000-0001-8920-3581; Worsley, Marcus/0000-0002-8012-7727 FU DOE Office of Energy Efficiency and Renewable Energy [DE-AC52-07NA27344]; State of California FX Work at LLNL was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344 and funded in part by the DOE Office of Energy Efficiency and Renewable Energy. The desalination work was funded in part by the State of California's Proposition 50, funds are administered by the Department of Water Resources. NR 128 TC 242 Z9 247 U1 52 U2 376 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2011 VL 4 IS 3 BP 656 EP 667 DI 10.1039/c0ee00627k PG 12 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 729CE UT WOS:000287924700004 ER PT J AU Huang, WD Zhang, YHP AF Huang, Wei-Dong Zhang, Y. -H. Percival TI Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID CELL-PROTEIN-PRODUCTION; SUSTAINABLE ENERGY FUTURE; LIFE-CYCLE ASSESSMENT; MICROBIAL FUEL-CELLS; CLOSTRIDIUM-THERMOCELLUM; CELLULOSE UTILIZATION; ETHANOL FERMENTATION; BIODIESEL PRODUCTION; HYDROGEN-PRODUCTION; CANDIDA-TROPICALIS AB We compare the production of four biofuels - ethanol, butanol, fatty acid ethyl ester (palmitate ethyl ester, PEE), and hydrogen from renewable carbohydrate (glucose) based on the energy-retaining efficiency that is greatly influenced by thermodyanimcs, bioenergetics, and product separation. Ethanol and butanol are produced in anaerobic fermentations; PEE is produced in semi-aerobic fermentation; hydrogen is produced by cell-free synthetic enzymatic pathway biotransformation (SyPaB), where enzymes are produced from carbohydrate by microbial fermentations. A decreasing order in theoretical energy efficiency determined by thermodynamics is hydrogen, ethanol, butanol, and PEE. Bioenergetics analysis suggests that a small fraction of carbohydrate (e.g., 5-15%) is allocated to the synthesis of cell mass in anaerobic fermentations (e.g., ethanol and butanol), a significant fraction (e. g., 20-30% or higher) has to be allocated to the synthesis of cell mass for semi-aerobic fermentations (e.g., PEE production), and a very small fraction (e.g., less than 1%) is used to produce the enzyme mixtures. A decreasing order in product separation energy is hydrogen, secreted PEE, ethanol, butanol, and intracellular PEE. Hydrogen production by SyPaB would be most appealing because its energy-retaining efficiency is similar to 49% higher than ethanol, similar to 55% higher than butanol, and similar to 87% higher than PEE, even without considering higher hydrogen-fuel cell efficiency than those of biofuel-internal combustion engines. Our analysis suggests that it may be difficult to produce some advanced biofuels economically through aerobic fermentations due to low energy efficiency, as compared to ethanol, butanol, and hydrogen. C1 [Huang, Wei-Dong; Zhang, Y. -H. Percival] Virginia Tech, Virginia Polytech Inst & State Univ, Biol Syst Engn Dept, Blacksburg, VA 24061 USA. [Huang, Wei-Dong] Univ Sci & Technol China, Coll Earth & Space Sci, Environm Div, Hefei 230026, Peoples R China. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Huang, WD (reprint author), Virginia Tech, Virginia Polytech Inst & State Univ, Biol Syst Engn Dept, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU DOE Bioenergy Science Center (BESC); Air Force Office of Scientific Research; MURI; USDA Biodesign and Bioprocess Center; ICTAS; DuPont FX This work was supported mainly by the DOE Bioenergy Science Center (BESC), partially by the Air Force Office of Scientific Research and MURI, the USDA Biodesign and Bioprocess Center, ICTAS, and DuPont Young Faculty Award. NR 83 TC 48 Z9 49 U1 5 U2 54 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2011 VL 4 IS 3 BP 784 EP 792 DI 10.1039/c0ee00069h PG 9 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 729CE UT WOS:000287924700021 ER PT J AU Chundawat, SPS Donohoe, BS Sousa, LD Elder, T Agarwal, UP Lu, FC Ralph, J Himmel, ME Balan, V Dale, BE AF Chundawat, Shishir P. S. Donohoe, Bryon S. Sousa, Leonardo da Costa Elder, Thomas Agarwal, Umesh P. Lu, Fachuang Ralph, John Himmel, Michael E. Balan, Venkatesh Dale, Bruce E. TI Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID DILUTE-ACID PRETREATMENT; ATOMIC-FORCE MICROSCOPY; FIBER EXPANSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS; LIME PRETREATMENT; MIDDLE LAMELLA; LIGNIN REMOVAL; SECONDARY WALL; BIOMASS AB Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical changes that enhance cellulase accessibility without extracting lignin and hemicelluloses into separate liquid streams. Multi-scale visualization and characterization of Zea mays (i.e., corn stover) cell walls were carried out by laser scanning confocal fluorescence microscopy (LSCM), Raman spectroscopy, atomic force microscopy (AFM), electron microscopy (SEM, TEM), nuclear magnetic resonance (NMR), and electron spectroscopy for chemical analysis (ESCA) to elucidate the mechanism of AFEX pretreatment. AFEX first dissolves, then extracts and, as the ammonia evaporates, redeposits cell wall decomposition products (e. g., amides, arabinoxylan oligomers, lignin-based phenolics) on outer cell wall surfaces. As a result, nanoporous tunnel-like networks, as visualized by 3D-electron tomography, are formed within the cell walls. We propose that this highly porous structure greatly enhances enzyme accessibility to embedded cellulosic microfibrils. The shape, size (10 to 1000 nm), and spatial distribution of the pores depended on their location within the cell wall and the pretreatment conditions used. Exposed pore surface area per unit AFEX pretreated cell wall volume, estimated via TEM-tomogram image analysis, ranged between 0.005 and 0.05 nm(2) per nm(3). AFEX results in ultrastructural and physicochemical modifications within the cell wall that enhance enzymatic hydrolysis yield by 4-5 fold over that of untreated cell walls. C1 [Chundawat, Shishir P. S.; Sousa, Leonardo da Costa; Balan, Venkatesh; Dale, Bruce E.] Michigan State Univ, BCRL, Lansing, MI 48910 USA. [Chundawat, Shishir P. S.; Lu, Fachuang; Ralph, John; Balan, Venkatesh; Dale, Bruce E.] US DOE, GLBRC, Washington, DC 20585 USA. [Donohoe, Bryon S.; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Elder, Thomas] USDA Forest Serv, So Res Stn, Pineville, LA 71360 USA. [Agarwal, Umesh P.] USDA Forest Serv, Forest Prod Lab, Madison, WI 53726 USA. [Lu, Fachuang; Ralph, John] Univ Wisconsin, Dept Biochem, Madison, WI 53726 USA. RP Chundawat, SPS (reprint author), Michigan State Univ, BCRL, 3900 Collins Rd,Suite 1045, Lansing, MI 48910 USA. EM chundawa@msu.edu; bryon.donohoe@nrel.gov; sousaleo@msu.edu; telder@fs.fed.us; uagarwal@fs.fed.us; fachuanglu@wisc.edu; jralph@wisc.edu; mike.himmel@nrel.gov; balan@msu.edu; bdale@egr.msu.edu RI da Costa Sousa, Leonardo/A-1536-2016; OI Chundawat, Shishir/0000-0003-3677-6735 FU Michigan State Research Foundation; DOE Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; DOE Office of Biomass FX This work was funded by the Michigan State Research Foundation and the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through the Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and the US Department of Energy. BSD and MEH were supported by the DOE Office of Biomass Program. We would like to thank Ewa Danielewicz, Melinda Frame, Shirley Owens, and Per Askeland for their help and guidance in using various instruments. We gratefully acknowledge Rebecca Garlock, Nirmal Uppugundla, Dahai Gao and other members of the BCRL who provided useful insights, criticisms and technical support. We also thank Rick Reiner (USDA FS, FPL, Madison) for assistance in obtaining the Raman spectra. NR 69 TC 176 Z9 181 U1 29 U2 187 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD MAR PY 2011 VL 4 IS 3 BP 973 EP 984 DI 10.1039/c0ee00574f PG 12 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 729CE UT WOS:000287924700044 ER PT J AU McKone, TE Nazaroff, WW Berck, P Auffhammer, M Lipman, T Torn, MS Masanet, E Lobscheid, A Santero, N Mishra, U Barrett, A Bomberg, M Fingerman, K Scown, C Strogen, B Horvath, A AF McKone, T. E. Nazaroff, W. W. Berck, P. Auffhammer, M. Lipman, T. Torn, M. S. Masanet, E. Lobscheid, A. Santero, N. Mishra, U. Barrett, A. Bomberg, M. Fingerman, K. Scown, C. Strogen, B. Horvath, A. TI Grand Challenges for Life-Cycle Assessment of Biofuels SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LAND-USE CHANGE; EMISSIONS C1 [McKone, T. E.; Torn, M. S.; Lobscheid, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McKone, T. E.; Nazaroff, W. W.; Berck, P.; Auffhammer, M.; Lipman, T.; Torn, M. S.; Masanet, E.; Santero, N.; Mishra, U.; Barrett, A.; Bomberg, M.; Fingerman, K.; Scown, C.; Strogen, B.; Horvath, A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [McKone, T. E.; Nazaroff, W. W.; Berck, P.; Auffhammer, M.; Lipman, T.; Torn, M. S.; Masanet, E.; Lobscheid, A.; Santero, N.; Mishra, U.; Barrett, A.; Bomberg, M.; Fingerman, K.; Scown, C.; Strogen, B.; Horvath, A.] Energy Biosci Inst, Berkeley, CA USA. RP McKone, TE (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,90R3058, Berkeley, CA 94720 USA. EM temckone@lbl.gov RI Nazaroff, William/C-4106-2008; Strogen, Bret/E-5669-2012; Masanet, Eric /I-5649-2012; Scown, Corinne/D-1253-2013; Mishra, Umakant/H-8128-2013; Torn, Margaret/D-2305-2015 OI Nazaroff, William/0000-0001-5645-3357; Strogen, Bret/0000-0002-9521-1868; FU Energy Biosciences Institute at the University of California, Berkeley; US Department of Energy (DOE) [DE-AC03-76SF00098] FX Preparation of this article was supported by the Energy Biosciences Institute at the University of California, Berkeley. This work was carried out in part at the Lawrence Berkeley National Laboratory, which is operated for the US Department of Energy (DOE) under Contract Grant no. DE-AC03-76SF00098. NR 24 TC 76 Z9 77 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD MAR 1 PY 2011 VL 45 IS 5 BP 1751 EP 1756 DI 10.1021/es103579c PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 725HZ UT WOS:000287637100003 PM 21265567 ER PT J AU Holden, NE Bonardi, ML De Bievre, P Renne, PR Villa, IM AF Holden, N. E. Bonardi, M. L. De Bievre, P. Renne, P. R. Villa, I. M. TI IUPAC-IUGS common definition and convention on the use of the year as a derived unit of time SO EPISODES LA English DT Article AB The units of time (both absolute time and duration) most practical to use when dealing with very long times, e.g. in Nuclear Chemistry and Earth. and Planetary Sciences, are multiples of the year, or annus (a). Its proposed definition in terms of the SI base unit for time, the second (s), for the epoch. 2000.0 is 1 a = 3.155 692 5445 x 10(7) s. Adoption of this definition, and abandonment of the use of distinct units for time differences, will bring the Earth and Planetary Sciences into compliance with quantity calculus for SI and non-SI units of time. C1 [Holden, N. E.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Bonardi, M. L.] Univ Milan, LASA, I-20090 Segrate, Italy. [Bonardi, M. L.] Ist Nazl Fis Nucl, I-20090 Segrate, Italy. [Renne, P. R.] Berkeley Geochronol Ctr, Berkeley, CA 94720 USA. [Renne, P. R.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Villa, I. M.] Univ Milano Bicocca, I-20126 Milan, Italy. [Villa, I. M.] Univ Bern, Inst Geol, CH-3012 Bern, Switzerland. EM igor@geo.unibe.ch NR 5 TC 3 Z9 3 U1 0 U2 3 PU GEOLOGICAL SOC INDIA PI BANGALORE PA NO 63, 12TH CORSS, BASAPPA LAY OUT, GAVIPURAM PO, PO BOX 1922, BANGALORE, 560-019, INDIA SN 0705-3797 J9 EPISODES JI Episodes PD MAR PY 2011 VL 34 IS 1 BP 39 EP 40 PG 2 WC Geosciences, Multidisciplinary SC Geology GA 902FO UT WOS:000301024200006 ER PT J AU DuBois, DL Bullock, RM AF DuBois, Daniel L. Bullock, R. Morris TI Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen - The Role of Pendant Amines as Proton Relays SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Review DE Hydrogen; Electrochemistry; Hydrides; Homogeneous catalysis; Proton transport ID COUPLED ELECTRON-TRANSFER; HYDRIDE DONOR ABILITIES; IRON-ONLY HYDROGENASE; ACTIVE-SITE; FUNCTIONAL MODELS; H-2 PRODUCTION; CARBONYL HYDRIDES; TERMINAL HYDRIDE; METAL-HYDRIDES; COMPLEXES M AB Electrocatalysts for efficient conversion between electricity and chemical bonds will play a vital role in future systems for storage and delivery of energy. Our research on functional models of hydrogenase enzymes uses nickel and cobalt, abundant and inexpensive metals, in contrast to platinum, a precious metal used in fuel cells. A key feature of our research is a focus on the use of pendant amines incorporated into diphosphane ligands. These pendant amines function as proton relays, lowering the barrier to proton transfers to and from the catalytically active metal site. The hydride acceptor ability of metal cations, along with the basicity of pendant amines, are key thermochemical values that determine the thermodynamics of addition of H-2 to a metal complex with a pendant amine incorporated into its ligand. Nickel catalysts for oxidation of H-2 have turnover frequencies up to 50 s(-1) (at 1 atm H-2 and room temperature). Nickel and cobalt catalysts for production of H-2 by reduction of protons were studied; one of them has a turnover frequency over 1000 s(-1). C1 [DuBois, Daniel L.; Bullock, R. Morris] Pacific NW Natl Lab, Ctr Mol Electroanal, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Bullock, RM (reprint author), Pacific NW Natl Lab, Ctr Mol Electroanal, Div Chem & Mat Sci, Richland, WA 99352 USA. EM morris.bullock@pnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The nickel chemistry was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences for support of the cobalt chemistry reported here. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 77 TC 128 Z9 128 U1 7 U2 91 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD MAR PY 2011 IS 7 SI SI BP 1017 EP 1027 DI 10.1002/ejic.201001081 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 731IH UT WOS:000288099000011 ER PT J AU Anselmino, M Avakian, H Boer, D Bradamante, F Burkardt, M Chen, JP Cisbani, E Contalbrigo, M Crabb, D Dutta, D Gamberg, L Gao, H Hasch, D Huang, J Huang, M Kang, Z Keppel, C Laskaris, G Liang, ZT Liu, MX Makins, N Mckeown, RD Metz, A Meziani, ZE Musch, B Peng, JC Prokudin, A Qian, X Qiang, Y Qiu, JW Rossi, P Schweitzer, P Soffer, J Sulkosky, V Wang, Y Xiao, B Ye, Q Ye, QJ Yuan, F Zhan, X Zhang, Y Zheng, W Zhou, J AF Anselmino, M. Avakian, H. Boer, D. Bradamante, F. Burkardt, M. Chen, J. P. Cisbani, E. Contalbrigo, M. Crabb, D. Dutta, D. Gamberg, L. Gao, H. Hasch, D. Huang, J. Huang, M. Kang, Z. Keppel, C. Laskaris, G. Liang, Z. -T. Liu, M. X. Makins, N. Mckeown, R. D. Metz, A. Meziani, Z. -E. Musch, B. Peng, J. -C. Prokudin, A. Qian, X. Qiang, Y. Qiu, J. W. Rossi, P. Schweitzer, P. Soffer, J. Sulkosky, V. Wang, Y. Xiao, B. Ye, Q. Ye, Q. -J. Yuan, F. Zhan, X. Zhang, Y. Zheng, W. Zhou, J. TI Transverse-momentum-dependent parton distribution/fragmentation functions at an electron-ion collider SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SPIN PRODUCTION ASYMMETRIES; DRELL-YAN PROCESSES; SINGLE-SPIN; PION ELECTROPRODUCTION; FRAGMENTATION FUNCTIONS; AZIMUTHAL ASYMMETRIES; HADRON STRUCTURE; HARD-SCATTERING AB We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse-momentum-dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single-spin asymmetries (SSA) from semi-inclusive deep inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D ((D) over bar) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the unexplored sea quark region along with a study of their evolution. C1 [Anselmino, M.] Univ Turin, I-10125 Turin, Italy. [Anselmino, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Avakian, H.; Chen, J. P.; Musch, B.; Prokudin, A.; Qiang, Y.; Zhang, Y.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Boer, D.] Univ Groningen, KVI, NL-9747 AA Groningen, Netherlands. [Bradamante, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bradamante, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Burkardt, M.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Cisbani, E.] INFN, Grp Sanita, Sez Roma 1, I-00161 Rome, Italy. [Contalbrigo, M.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Contalbrigo, M.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Crabb, D.] Univ Virginia, Charlottesville, VA 22901 USA. [Dutta, D.] Mississippi State Univ, Starkville, MS 39762 USA. [Gamberg, L.] Penn State Berks, Reading, PA 19610 USA. [Gao, H.; Huang, M.; Laskaris, G.; Ye, Q.; Ye, Q. -J.; Zheng, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Gao, H.; Huang, M.; Laskaris, G.; Ye, Q.; Ye, Q. -J.; Zheng, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Hasch, D.; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Huang, J.] MIT, Cambridge, MA 02139 USA. [Kang, Z.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Keppel, C.] Hampton Univ, Hampton, VA 23668 USA. [Liang, Z. -T.] Shandong Univ, Sch Phys, Jinan 250100, Shandong, Peoples R China. [Liu, M. X.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Makins, N.; Peng, J. -C.] Univ Illinois, Urbana, IL 61801 USA. [Mckeown, R. D.; Qian, X.] CALTECH, Pasadena, CA 91125 USA. [Metz, A.; Meziani, Z. -E.; Zhou, J.] Temple Univ, Philadalphia, PA 19122 USA. [Qiu, J. W.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Schweitzer, P.] Univ Connecticut, Storrs, CT 06269 USA. [Wang, Y.] Tsinghua Univ, Beijing 10084, Peoples R China. [Xiao, B.; Yuan, F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zhan, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Cisbani, E.] Ist Super Sanita, Phys Lab, I-00161 Rome, Italy. RP Anselmino, M (reprint author), Univ Turin, I-10125 Turin, Italy. EM gao@tunl.duke.edu RI Cisbani, Evaristo/C-9249-2011; Gao, Haiyan/G-2589-2011; Yuan, Feng/N-4175-2013; Kang, Zhongbo/P-3645-2014; Boer, Daniel/B-3493-2015; OI Cisbani, Evaristo/0000-0002-6774-8473; Boer, Daniel/0000-0003-0985-4662; Qian, Xin/0000-0002-7903-7935; Anselmino, Mauro/0000-0003-0900-8001; Liu, Ming/0000-0002-5992-1221 FU U.S. Department of Energy [DE-AC05-84ER40150, M175, DE-FG02-03ER41231]; Triangle Universities Nuclear Laboratory FX This work is supported in part by the U.S. Department of Energy under contracts, DE-AC05-84ER40150, modification No. M175, under which the Southeastern Universities Research Association operates the Thomas Jefferson National Accelerator Facility, and DE-FG02-03ER41231 (HG). We also thank Jefferson Science Associates (JSA), Jefferson Lab, and the Triangle Universities Nuclear Laboratory for the support of this workshop. NR 151 TC 25 Z9 25 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD MAR PY 2011 VL 47 IS 3 DI 10.1140/epja/i2011-11035-2 PG 21 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 737EP UT WOS:000288552100006 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbia, E Acharya, BS Ackers, M Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahmed, H Ahsan, M Aielli, G Akdo-gan, T Akesson, TPA Akimoto, G Akimov, AV Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Aleppo, M Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopou-los, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Al-mond, J Aloisio, A Alon, R Alonso, A Alonso, J Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Ar-chambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arms, KE Armstrong, SR Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auer-bach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azue-los, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBGA Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bates, RL Batkova, L Bat-ley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beau-chemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Belhorma, B Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, G Bellomo, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bischof, R Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blocki, J Blon-del, A Blum, W Blumenschein, U Boaretto, C Bobbink, GJ Bobrovnikov, VB Bocci, A Bock, R Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Boonekamp, M Boorman, G Booth, CN Booth, P Booth, JRA Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Braccini, S Bracinik, J Braem, A Brambilla, E Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Bright-Thomas, PG Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buck-ley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caccia, M Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Camard, A Camarri, P Cambiaghi, M Cameron, D Cam-min, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Caprio, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpen-tieri, C Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Caz-zato, A Ceradini, F Cerna, C Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cervetto, M Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chap-man, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chiko-vani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Chris-tidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cle-land, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coc-caro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Coluccia, R Co-mune, G No, PCM Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Correard, S Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Alme-nar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czy-czula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silva, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dallison, SJ Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundisa, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De La Cruz-Burelo, E De La Taille, C De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedes, G Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papaa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C De-mers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Dennis, C Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Gomez, MMD Di-blen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dion-isi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Do-gan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drever-mann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HDR Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebke, J Eckert, S Eck-weiler, S Edmonds, K Edwards, CA Efthymiopoulos, I Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Ein-sweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erd-mann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evan-gelakou, D Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Fazio, S Febbraro, R Fed-eric, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felz-mann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferguson, D Ferland, J Fernandes, B Fer-nando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Fer-rer, ML Ferrere, D Ferretti, C Parodi, AF Ferro, F Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fis-cher, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleis-chmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF For-bush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Frater-nali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Tor-regrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gard-ner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S Geor-gatos, F George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Gi-acobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gildemeister, O Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gollub, NP Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLGZ Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Gorski, BT Gory-achev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Gouj-dami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hada-vand, HK Hadley, DR Haefner, P Hartel, R Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harper, D Harper, R Harrington, RD Harris, OM Harrison, K Hart, JC Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Hendriks, PJ Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hindson, D Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Hollins, TI Holmes, A Holm-gren, SO Holy, T Holzbauer, JL Homer, RJ Homma, Y Horazdovsky, T Horn, C Horner, S Hor-ton, K Hostachy, JY Hott, T Hou, S Houlden, MA Hoummadaa, A Howarth, J Howell, DF Hris-tova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hur-witz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibrag-imov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioan-nou, P Iodice, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jack-son, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Jen-La Plante, I Jenni, P Jeremie, A Jez, P Jezequel, S Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johans-son, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, M Jones, RWL Jones, TW Jones, TJ Jonsson, O Joo, KK Joram, C Jorge, PM Jorgensen, S Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kit-telmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Konig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Ko-hout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kort-ner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Kreiss, S Krejci, F Kretzschmar, J Krieger, N Krieger, P Krobath, G Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kru-chonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvas-nicka, O Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lambacher, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lands-man, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Lapin, VV Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P La-vorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Leahu, M Lebedev, A Lebel, C Lechowski, M LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Leg-ger, F Leggett, C Lehmacher, M Miotto, GL Lehto, M Lei, X Leite, MAL Leitner, R Lel-louch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepidis, J Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyton, M Li, B Li, H Lib, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Lim, H Limosani, A Limper, M Lin, SC Linde, F Linne-mann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, J Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminaria, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lynn, J Lys, J Lytken, E Ma, H Ma, LL Maassen, M Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Magrath, CA Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Ma-lyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Mangin-Brinet, M Manjavidze, ID Mann, A Mann, WA Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchesotti, M Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Mar-tin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslen-nikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGarvie, S Mc-Glone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McMahon, TR McMahon, TJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Merkl, D Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Migliaccio, A Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Miscetti, S Misiejuk, A Mitra, A Mitrevski, J Mitro-fanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mock-ett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moye, TH Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nasteva, I Nation, NR Nattermann, T Naumann, T Nauyock, F Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neukermans, L Neusiedl, A Neves, RM Nevski, P Newman, PR Nicholson, C Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Nieder-corn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopou-los, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L No-machi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Francisco, ON Norton, PR Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nun-nemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Odino, GA Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Oliver, C Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Ordonez, G Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ot-tersbach, JP Ottewell, B Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Palmer, MJ Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Pa-padelis, A Papadopoulou, TD Paramonov, A Park, SJ Park, W Parker, MA Parodi, F Par-sons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peeters, SJM Pel-eganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Perus, P Peshekhonov, VD Petereit, E Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pick-ford, A Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Pole-sello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proud-foot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Py-lypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rajek, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Re-ichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Ri-naldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rottlander, I Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Sala-mon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salva-tore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CSM Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scal-lon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schu-macher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schweiger, D Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Se-gura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Se-vior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shat-alov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shi-Mojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Sira-gusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Sne-sarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Sof-fer, A Solans, CA Solar, M Solc, J Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Stefanidis, E Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockmanns, T Stockton, MC Stodulski, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strand-berg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, S Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sviri-dov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Ta-sevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, G Taylor, GN Taylor, W Castanheira, MTED Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thomp-son, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollef-son, K Tomoto, M Tompkins, L Toms, K Tonazzo, A Tong, G Tonoyan, A Topfel, C Top-ilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Tre-fzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tug-gle, JM Turala, M Turecek, D Cakire, IT Turlay, E Tuts, PM Tykhonov, A Tylmad, M Tyn-del, M Typaldos, D Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejolaa, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Va-niachine, A Vankov, P Vannucci, F VarelaRodriguez, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Ve-ness, R Veneziano, S Ventura, A Ventura, D Ventura, S Venturi, M Venturi, N Vercesi, V Ver-ducci, M Verkerke, W Vermeulen, JC Vertogardov, L Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Wal-bersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, J Wang, JC Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Wat-son, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wes-sels, M Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR White-son, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wiene-mann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Ya-mazaki, Y Yan, Z Yang, H Yang, S Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zdrazil, M Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zilka, B Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Ackers, M. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahmed, H. Ahsan, M. Aielli, G. Akdo-gan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Aleppo, M. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopou-los, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Al-mond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, J. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Ar-chambault, J. P. Arfaoui, S. Arguin, J. -F. Arik, E. Arik, M. Armbruster, A. J. Arms, K. E. Armstrong, S. R. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auer-bach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azue-los, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimar Aes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bates, R. L. Batkova, L. Bat-ley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beau-chemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Belhorma, B. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, G. Bellomo, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bischof, R. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blocki, J. Blon-del, A. Blum, W. Blumenschein, U. Boaretto, C. Bobbink, G. J. Bobrovnikov, V. B. Bocci, A. Bock, R. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Booth, J. R. A. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Braccini, S. Bracinik, J. Braem, A. Brambilla, E. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Bright-Thomas, P. G. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buck-ley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caccia, M. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cam-min, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Caprio, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpen-tieri, C. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Caz-zato, A. Ceradini, F. Cerna, C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cervetto, M. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chap-man, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chiko-vani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Chris-tidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cle-land, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coc-caro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Coluccia, R. Co-mune, G. Conde Mui No, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Correard, S. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Alme-nar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czy-czula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Rocha Gesualdi Mello, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dallison, S. J. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundisa, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Cruz-Burelo, E. De La Taille, C. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedes, G. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papaa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. De-mers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Dennis, C. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Gomez, M. M. Diaz Di-blen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dion-isi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Do-gan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drever-mann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Du-ran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebke, J. Eckert, S. Eck-weiler, S. Edmonds, K. Edwards, C. A. Efthymiopoulos, I. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Ein-sweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erd-mann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evan-gelakou, D. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Fazio, S. Febbraro, R. Fed-eric, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felz-mann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferguson, D. Ferland, J. Fernandes, B. Fer-nando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Fer-rer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Ferro, F. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fis-cher, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleis-chmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca For-bush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Frater-nali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Tor-regrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gard-ner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. Geor-gatos, F. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Gi-acobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gildemeister, O. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gollub, N. P. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gon-zalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Gorski, B. T. Gory-achev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Gouj-dami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hada-vand, H. K. Hadley, D. R. Haefner, P. Haertel, R. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harper, D. Harper, R. Harrington, R. D. Harris, O. M. Harrison, K. Hart, J. C. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Hendriks, P. J. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hindson, D. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Hollins, T. I. Holmes, A. Holm-gren, S. O. Holy, T. Holzbauer, J. L. Homer, R. J. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Hor-ton, K. Hostachy, J. -Y. Hott, T. Hou, S. Houlden, M. A. Hoummadaa, A. Howarth, J. Howell, D. F. Hris-tova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hur-witz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibrag-imov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioan-nou, P. Iodice, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jack-son, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Jen-La Plante, I. Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johans-son, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, M. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joo, K. K. Joram, C. Jorge, P. M. Jorgensen, S. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kit-telmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Ko-hout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kort-ner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Kreiss, S. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Krobath, G. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kru-chonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvas-nicka, O. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lambacher, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lands-man, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Lapin, V. V. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. La-vorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Leahu, M. Lebedev, A. Lebel, C. Lechowski, M. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Leg-ger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lehto, M. Lei, X. Leite, M. A. L. Leitner, R. Lel-louch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepidis, J. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyton, M. Li, B. Li, H. Lib, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Lim, H. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linne-mann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, J. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminaria, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lynn, J. Lys, J. Lytken, E. Ma, H. Ma, L. L. Maassen, M. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Magrath, C. A. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Ma-lyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Mangin-Brinet, M. Manjavidze, I. D. Mann, A. Mann, W. A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchesotti, M. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Mar-tin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslen-nikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGarvie, S. Mc-Glone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McMahon, T. R. McMahon, T. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Merkl, D. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Migliaccio, A. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Miscetti, S. Misiejuk, A. Mitra, A. Mitrevski, J. Mitro-fanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mock-ett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Llacer, M. Moreno Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moye, T. H. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nasteva, I. Nation, N. R. Nattermann, T. Naumann, T. Nauyock, F. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neukermans, L. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nicholson, C. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Nieder-corn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopou-los, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. No-machi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norniella Francisco, O. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nun-nemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Odino, G. A. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver, C. Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Ordonez, G. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ot-tersbach, J. P. Ottewell, B. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Palmer, M. J. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Pa-padelis, A. Papadopoulou, Th. D. Paramonov, A. Park, S. J. Park, W. Parker, M. A. Parodi, F. Par-sons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peeters, S. J. M. Pel-eganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Perus, P. Peshekhonov, V. D. Petereit, E. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pick-ford, A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Pole-sello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proud-foot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Py-lypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rajek, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Re-ichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Ri-naldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltrana, D. Roos, L. Ros, E. Rosati, S. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rottlaender, I. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Sala-mon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salva-tore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santa-marina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scal-lon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schu-macher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schweiger, D. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Se-gura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Se-vior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shat-alov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shi-mojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Sira-gusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Sne-sarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Sof-fer, A. Solans, C. A. Solar, M. Solc, J. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Stefanidis, E. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockmanns, T. Stockton, M. C. Stodulski, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strand-berg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, S. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sviri-dov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Ta-sevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. Taylor, G. N. Taylor, W. Castanheira, M. Teix-eira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thomp-son, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollef-son, K. Tomoto, M. Tompkins, L. Toms, K. Tonazzo, A. Tong, G. Tonoyan, A. Topfel, C. Top-ilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Tre-fzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tug-gle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyn-del, M. Typaldos, D. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejolaa, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Va-niachine, A. Vankov, P. Vannucci, F. VarelaRodriguez, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Ve-ness, R. Veneziano, S. Ventura, A. Ventura, D. Ventura, S. Venturi, M. Venturi, N. Vercesi, V. Ver-ducci, M. Verkerke, W. Vermeulen, J. C. Vertogardov, L. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Wal-bersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, J. Wang, J. C. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Wat-son, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wes-sels, M. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. White-son, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wiene-mann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Ya-mazaki, Y. Yan, Z. Yang, H. Yang, S. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zdrazil, M. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zilka, B. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the top quark-pair production cross section with ATLAS in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HADRONIC COLLISIONS AB A measurement of the production cross-section for top quark pairs (t (t) over bar) in pp collisions at root s = 7 TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron e or muon mu) with large missing transverse energy and at least four jets, and dilepton (ee, mu mu or e mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb(-1), 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-t (t) over bar Standard Model processes are estimated using data-driven methods and determined to be 12.2 +/- 3.9 events and 2.5 +/- 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM t (t) over bar production. The inclusive top quark pair production cross-section is measured to be sigma(t (t) over bar) = 145 +/- 31 (stat.)(-27)(+42) (syst.) pb. The measurement agrees with perturbative QCD calculations. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Carpen-tieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, H.; Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Lu, J.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Du-ran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakire, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Aurousseau, M.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Neukermans, L.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, LAPP, CNRS IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Lim, H.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Petereit, E.; Price, L. E.; Proud-foot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Va-niachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioan-nou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopou-los, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Geor-gatos, F.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Fiorini, L.; Grinstein, S.; Helsens, C.; Jorgensen, S.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Norniella Francisco, O.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Se-gura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, IFAE, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade 11000, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Alonso, J.; Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Ein-sweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hur-witz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Alonso, J.; Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Ein-sweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hur-witz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zdrazil, M.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; Sidoti, A.; zur Nedden, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bansil, H. S.; Booth, J. R. A.; Bracinik, J.; Bright-Thomas, P. G.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Hollins, T. I.; Homer, R. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; McMahon, T. J.; Moye, T. H.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thomp-son, P. D.; Typaldos, D.; Watkins, P. M.; Wat-son, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdo-gan, T.; Arik, E.; Arik, M.; Do-gan, O. B.; Istin, S.; Rador, T.] Bogazici Univ, Dept Phys, Fac Sci, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Di-blen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Gi-acobbe, B.; Giusti, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Ri-naldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Ackers, M.; Alhroob, M.; Anders, C. F.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cam-min, J.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fis-cher, P.; Fleis-chmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Rottlaender, I.; Runolfsson, O.; Schmieden, K.; Schmitz, M.; Stockmanns, T.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wiene-mann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Phys Inst, D-53115 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Armstrong, S. R.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopou-los, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Constantinescu, S.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gon-zalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Bat-ley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Palmer, M. J.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Ar-chambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Heelan, L.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Blanchot, G.; Bock, R.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Drever-mann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Fedorko, W.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Tor-regrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Gildemeister, O.; Godlewski, J.; Gollub, N. P.; Gonidec, A.; Goossens, L.; Gorini, B.; Gorski, B. T.; Grafstroem, P.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Jonsson, O.; Joram, C.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Leahu, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Magnoni, L.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marchesotti, M.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Schweiger, D.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tackmann, K.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; VarelaRodriguez, F.; Ve-ness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gard-ner, R. W.; Gupta, A.; Jen-La Plante, I.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tug-gle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltrana, D.; Urrejolaa, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Jin, G.; Lib, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Cn Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.] Nanjing Univ, Dept Phys, Nanjing 210093, Cn Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Cn Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Lab Phys Corpusculaire, CNRS IN2P3, FR-63177 Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Caughron, S.; Copic, K.; Dodd, J.; Grau, N.; Gray, H. M.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Par-sons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Bold, T.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Stodulski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Angerami, A.; Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hada-vand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hris-tova, I.; Husemann, U.; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mehlhase, S.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Terwort, M.; Vankov, P.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Muenstermann, D.; Rajek, S.; Reisinger, I.; Wal-bersloh, J.; Weber, J.; Wunstorf, R.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schu-macher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Bhimji, W.; Buck-ley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Angerami, A.; Annovi, A.; Antonelli, M.; Bilokon, H.; Braccini, S.; Cerutti, F.; Curatolo, M.; Esposito, B.; Fer-rer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Miscetti, S.; Salvucci, A.; Sansoni, A.; Testa, M.; Ventura, S.; Vilucchi, E.; Wen, M.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blon-del, A.; Bucci, F.; Clark, A.; Dao, V.; Gomez, M. M. Diaz; Efthymiopoulos, I.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Mangin-Brinet, M.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Caso, C.; Cervetto, M.; Coc-caro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Odino, G. A.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Barberis, D.; Beccherle, R.; Caso, C.; Cervetto, M.; Coc-caro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Ferro, F.; Gagliardi, G.; Gemme, C.; Morettini, P.; Odino, G. A.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Chiko-vani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chiko-vani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Gemmell, A.; Kenyon, M.; Mc-Glone, H.; Moraes, A.; Nicholson, C.; O'Shea, V.; Barrera, C. Oropeza; Pick-ford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; St Denis, R. D.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erd-mann, J.; Evan-gelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Andrieux, M. -L.; Belhorma, B.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] CNRS IN2P3, LPSC, FR-38026 Grenoble, France. [Albrand, S.; Andrieux, M. -L.; Belhorma, B.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.] Univ Grenoble 1, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimar Aes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wes-sels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, Lehrstuhl Informat 5, ZITI, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7398526, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Bischof, R.; Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kru-chonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Ma-lyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Top-ilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Ya-mazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP,CONICET UNLP, RA-1900 La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Brambilla, E.; Cataldi, G.; Caz-zato, A.; Chiodini, G.; Coluccia, R.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Brambilla, E.; Caz-zato, A.; Coluccia, R.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Angerami, A.; Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teix-eira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Kilvington, G.; McGarvie, S.; McMahon, T. R.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Baker, S.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Chris-tidi, I. A.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Stefanidis, E.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; March, L.; Nebot, E.; Oliver, C.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eck-weiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Sira-gusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Al-mond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Nasteva, I.; Nauyock, F.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Benchouk, C.; Bernardet, K.; Bousson, N.; Cerna, C.; Clemens, J. C.; Coadou, Y.; Correard, S.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Le Guirriec, E.; Leveque, J.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santa-marina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felz-mann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Se-vior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chap-man, J. W.; Cirilli, M.; Dai, T.; De La Cruz-Burelo, E.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Co-mune, G.; Di Mattia, A.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linne-mann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollef-son, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Aleppo, M.; Andreazza, A.; Banfi, D.; Bellomo, G.; Besana, M. I.; Caccia, M.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Koletsou, I.; Lazzaro, A.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Vegni, G.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Aleppo, M.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Banfi, D.; Battistoni, G.; Bellomo, G.; Besana, M. I.; Broggi, F.; Caccia, M.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Koletsou, I.; Lari, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Vegni, G.; Volpini, G.] INFN Sez Milano, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci, BI Stepanov Inst Phys, Minsk 220072, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] NC PHEP BSU, Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azue-los, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Mar-tin, J. P.; Mehdiyev, R.; Scal-lon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Sne-sarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Inst Phys, RU-117924 Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shat-alov, P. B.; Tsukerman, I. I.] ITEP, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Romaniouk, A.; Smirnov, S. Yu.] MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Lomonosov Moscow State Univ Skobeltsyn Inst Nucl, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Krobath, G.; Kummer, C.; Lambacher, M.; Leg-ger, F.; Lichtnecker, M.; Mameghani, R.; Merkl, D.; Mueller, T. A.; Nun-nemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dedes, G.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Haertel, R.; Hauff, D.; Hott, T.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shi-mojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundisa, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Caprio, M.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Merola, L.; Migliaccio, A.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Magrath, C. A.; Ordonez, G.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hendriks, P. J.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ot-tersbach, J. P.; Peeters, S. J. M.; Peters, O.; Re-ichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslen-nikov, A. L.; Orlov, I.; Pel-eganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, RU-630090 Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Arms, K. E.; Fer-nando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lechowski, M.; Lounis, A.; Makovec, N.; Matricon, P.; Nakahama, Y.; Nieder-corn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, IN2P3 CNRS, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; No-machi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Py-lypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo 3, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beau-chemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Dennis, C.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Hindson, D.; Holmes, A.; Hor-ton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Jones, M.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; La-vorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Lynn, J.; Mattravers, C.; Mermod, P.; Mitra, A.; Nickerson, R. B.; Ottewell, B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Vertogardov, L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.; Yang, S.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Frater-nali, M.; Gaudio, G.; Livan, M.; Negri, A.; Pole-sello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Frater-nali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jack-son, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cle-land, W.; Kit-telmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Conde Mui No, P.; Do Valle Wemans, A.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvas-nicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Ta-sevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Ko-hout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Gory-achev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Lapin, V. V.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitro-fanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviri-dov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Hart, J. C.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyn-del, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Sci & Technol Facil Council, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dion-isi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminaria, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma I, IT-00185 Rome, Italy. [Artoni, G.; Bagnaia, P.; Biglietti, M.; Bini, C.; Boaretto, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dion-isi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Sala-mon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.; Tonazzo, A.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Bacci, C.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Tonazzo, A.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Gouj-dami, D.; Hoummadaa, A.] RUPHE Univ Hassan II, Fac Sci Ain Chock, Ma Casablanca, Morocco. CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [Cherkaoui El Moursli, R.; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Virchaux, M.] Ctr Etud Saclay, DSM IRFU, CEA, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.; Taylor, G.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [For-bush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mock-ett, P.; Policicchio, A.; Rosati, S.; Rothberg, J.; Ventura, D.; Ver-ducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Harper, R.; Hodgkinson, M. C.; Hodgson, P.; Johans-son, P.; Korolkova, E. V.; Lehto, M.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Nagano 3908621, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibrag-imov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Fed-eric, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.; Zilka, B.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, SK-04353 Kosice, Slovakia. Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holm-gren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Pa-padelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strand-berg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Pa-padelis, A.; Ramstedt, M.; Sjolin, J.; Strand-berg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salva-tore, F.] Univ Sussex, Dept Phys & Astron Pevensey, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Angerami, A.; Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Lands-man, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Angerami, A.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Sof-fer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kort-ner, O.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Joo, K. K.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Azue-los, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, N York, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Hamilton, S.; Mann, W. A.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; White-son, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] INFN Grp Collegato Udine, IT-33100 Udine, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Fis Corpuscular IFIC Ctr Mixto UVEG CSIC, ES-46071 Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis At Mol & Nucl, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ing Elect, Bellaterra 08193, Spain. [Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Llacer, M. Moreno; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, CNM, IMB, Bellaterra 08193, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC V6T 1Z1, Canada. [Astbury, A.; Banerjee, Sw; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lel-louch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Ferguson, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Tre-fzger, T.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Drees, J.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Lepidis, J.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Gesamthsch Wuppertal, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auer-bach, B.; Baker, O. K.; Alme-nar, C. Cuenca; Czy-czula, Z.; De-mers, S.; Garberson, F.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, F-69622 Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Arfaoui, S.] CPPM, Marseille, France. [Carvalho, J.; Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Gao, Y. S.] Calif State Univ Fresno, Fresno, CA 93740 USA. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Guler, H.] Univ Montreal, Montreal, PQ, Canada. [Huseynov, N.] Baku Inst Phys, Baku, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, ASGC, Taipei, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Mattravers, C.; Nash, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Yuan, L.] LPNHE, Paris, France. [Zhong, J.] Nanjing Univ, Nanjing 210008, Jiangsu, Peoples R China. [Yu, J.] CEA, Gif Sur Yvette, France. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg, Germany. RI Monzani, Simone/D-6328-2017; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Battistoni, Giuseppe/B-5264-2012; Idzik, Marek/A-2487-2017; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Zhou, Ning/D-1123-2017; Yang, Haijun/O-1055-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Casado, Pilar/H-1484-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Tassi, Enrico/K-3958-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Mir, Lluisa-Maria/G-7212-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Grancagnolo, Sergio/J-3957-2015; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Chudoba, Jiri/G-7737-2014; Bosman, Martine/J-9917-2014; Nasteva, Irina/M-8764-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Inerge, Inct/J-8679-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Losada, Marta/B-2261-2010; Jakubek, Jan/E-6530-2011; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Nemecek, Stanislav/C-3487-2012; Robson, Aidan/G-1087-2011; Takai, Helio/C-3301-2012; St.Denis, Richard/C-8997-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Doyle, Anthony/C-5889-2009; Fazio, Salvatore /G-5156-2010; Bauer, Florian/G-8816-2011; valente, paolo/A-6640-2010; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Gutierrez, Phillip/C-1161-2011; Marti-Garcia, Salvador/F-3085-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Rotaru, Marina/A-3097-2011 OI Monzani, Simone/0000-0002-0479-2207; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Battistoni, Giuseppe/0000-0003-3484-1724; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Mir, Lluisa-Maria/0000-0002-4276-715X; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Bosman, Martine/0000-0002-7290-643X; Nasteva, Irina/0000-0001-7115-7214; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; Stoicea, Gabriel/0000-0002-7511-4614; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Rotaru, Marina/0000-0003-3303-5683 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT); MPO; CCRC, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; ISF, MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern; Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), MPO and CCRC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 52 TC 39 Z9 39 U1 4 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2011 VL 71 IS 3 AR 1577 DI 10.1140/epjc/s10052-011-1577-6 PG 36 WC Physics, Particles & Fields SC Physics GA 778IW UT WOS:000291698400004 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acharya, BS Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Aktas, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alexaa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amelung, C Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antos, J Antunovic, B Anulli, F Aoun, S Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Argyropoulos, T Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Arutinov, D Asai, M Asai, S Silva, J Asfandiyarov, R Ask, S Asman, B Asner, D Asquith, L Assamagan, K Astvatsatourov, A Atoian, G Auerbach, B Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Ay, C Azuelos, G Azuma, Y Baak, MA Bach, AM Bachacou, H Bachas, K Backes, M Badescua, E Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Baranov, SP Barashkou, A Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncellia, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Bartsch, D Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, GA Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bednyakov, VA Bee, C Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomoa, M Belloni, A Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Besana, MI Besson, N Bethke, S Bianchi, RM Bianco, M Biebel, O Biesiada, J Biglietti, M Bilokon, H Bindi, M Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blocker, C Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bocci, A Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bondioli, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Britton, D Brochu, FM Brock, I Brock, R Brodet, E Brooijmans, G Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bucci, F Buchanan, J Buchholz, P Buckley, AG Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Byatt, T Caballero, J Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Camarri, P Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Montero, SC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chan, K Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chen, H Chen, S Chen, X Cheplakov, A Chepurnov, VF El Moursli, RC Tcherniatine, V Chesneanu, D Cheu, E Cheung, SL Chevalier, L Chevallier, F Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coggeshall, J Cogneras, E Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Cranshaw, J Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dallison, SJ Daly, CH Dam, M Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawson, I Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S De Graat, J De Groot, N De Jong, P De Mora, L Branco, MD De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Deng, W Denisov, SP Derkaoui, JE Derue, F Dervan, P Desch, K Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Doan, TKO Dobos, D Dobson, E Dobson, M Doglioni, C Doherty, T Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donega, M Donini, J Dopke, J Doria, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Drasal, Z Dris, M Dubbert, J Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Duren, M Ebke, J Eckweiler, S Edmonds, K Edwards, CA Egorov, K Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienvre, AI Etzion, E Evans, H Fabbri, L Fabre, C Facius, K Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Fayard, L Febbraro, R Federic, P Fedin, OL Fedorko, W Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernandes, B Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fisher, MJ Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Martin, TF Fopma, J Formica, A Forti, A Fortin, D Fournier, D Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Franklin, M Franz, S Fraternali, M Fratina, S Freestone, J French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gaponenko, A Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Gatti, C Gaudio, G Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gee, CNP Geich-Gimbel, C Gellerstedt, K Gemme, C Genest, MH Gentile, S Georgatos, F George, S Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Gomes, A Fajardo, LSG Goncalo, R Gonella, L Gong, C de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grahn, KJ Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Green, B Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Grishkevich, YV Groh, M Groll, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guicheney, C Guida, A Guillemin, T Guler, H Gunther, J Guo, B Gusakov, Y Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamilton, A Hamilton, S Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, T Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Hemperek, T Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Henss, T Jimenez, YH Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holy, T Holzbauer, JL Homma, Y Horazdovsky, T Horn, C Horner, S Hostachy, JY Hou, S Hoummada, A Howe, T Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ince, T Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Isobe, T Issever, C Istina, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jen-La Plante, I Jenni, P Jez, P Jezequel, S Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, S Jinnouchi, O Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jorge, PM Joseph, J Juranek, V Jussel, P Kabachenko, VV Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagounis, M Karagoz, M Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoriauli, G Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kind, O King, BT King, M Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Konoplich, R Konstantinidis, N Koperny, S Korcyl, K Kordas, K Korn, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostka, P Kostyukhin, VV Kotov, S Kotov, VM Kourkoumelis, C Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kwee, R La Rosa, A La Rotonda, L Labbe, J Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lane, JL Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lefebvre, M Legendre, M LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leitner, R Lellouch, D Lellouch, J Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leroy, C Lessard, JR Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Leyton, M Li, H Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lilley, JN Limosani, A Limper, M Lin, SC Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, B Liu, M Liu, Y Livan, M Lleres, A Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lou, X Lounis, A Loureiro, KF Lovas, L Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Luehring, F Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magradze, E Mahalalel, Y Mahboubi, K Mahmood, A Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makouski, M Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massol, N Mastroberardino, A Masubuchi, T Matricon, P Matsunaga, H Matsushita, T Mattravers, C Maxfield, SJ Mayne, A Mazini, R Mazur, M Mc Kee, SP McCarn, A McCarthy, RL McCubbin, NA McFarlane, KW McGlone, H Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Menke, S Meoni, E Mermod, P Merola, L Meronia, C Merritt, FS Messina, AM Metcalfe, J Mete, AS Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabellia, G Misawa, S Misiejuk, A Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohr, W Mohrdieck-Mock, S Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Moore, RW Herrera, CM Moraes, A Morais, A Morel, J Morello, G Moreno, D Llacer, MM Morettinia, P Morii, M Morley, AK Mornacchi, G Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Nderitu, SK Neal, HA Nebot, E Nechaeva, P Negri, A Negri, G Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neusiedl, A Neves, RM Nevski, P Nickerson, RB Nicolaidou, R Nicolas, L Nicoletti, G Nicquevert, B Niedercorn, F Nielsen, J Nikiforov, A Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Notz, D Novakova, J Nozaki, M Nozicka, M Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oyarzun, A Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadopoulou, TD Park, SJ Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Penson, A Penwell, J Perantonia, M Perez, K Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Persembe, S Perus, P Peshekhonov, VD Petersen, BA Petersen, TC Petit, E Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Pfeifer, B Phan, A Phillips, AW Piacquadio, G Piccaro, E Piccinini, M Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pinto, B Pizio, C Placakyte, R Plamondon, M Pleier, MA Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Pospelov, GE Pospisil, S Potekhin, M Potrap, IN Potter, CJ Potter, CT Potter, KP Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Pribyl, L Price, D Price, LE Prichard, PM Prieur, D Primaveraa, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, W Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radeka, V Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rajagopalan, S Rammensee, M Rammes, M Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renkel, P Rescia, S Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rizatdinova, F Rizvi, E Romero, DAR Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodriguez, D Garcia, YR Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltranaa, DR Roos, L Ros, E Rosati, S Rosenbaum, GA Rosselet, L Rossetti, V Rossi, LP Rotaru, M Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryan, P Rybkin, G Rzaeva, S Saavedra, AF Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sasaki, O Sasao, N Satsounkevitch, I Sauvage, G Savard, P Savine, AY Savinov, V Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schreiner, A Schroeder, C Schroer, N Schroers, M Schultes, J Schultz-Coulon, HC Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shibata, A Shimojima, M Shin, T Shmeleva, A Shochet, MJ Shupe, MA Sicho, P Sidoti, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silver, Y Silverstein, D Silverstein, SB Simak, V Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Sopko, V Sopko, B Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiwoks, R Spousta, M Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strube, J Stugu, B Sturm, P Soh, DA Su, D Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Sykora, I Sykora, T Szymocha, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tani, K Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylorb, W Castanheira, MTD Teixeira-Dias, P TenKate, H Teng, PK Tennenbaum-Katan, YD Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Therhaag, J Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, RJ Thompson, AS Thomson, E Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Tipton, P Viegas, FJTA Tisserant, S Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tuggle, JM Turecek, D Cakire, IT Turlay, E Tuts, PM Twomey, MS Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urquijo, P Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vellidis, C Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Villa, M Villani, EG Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Viret, S Virzi, J Vitale, A Vitells, O Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, M von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vudragovic, D Vuillermet, R Vukotic, I Wagner, P Walbersloh, J Walder, J Walker, R Walkowiak, W Wall, R Wang, C Wang, H Wang, J Wang, SM Warburton, A Ward, CP Warsinsky, M Wastie, R Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MD Weber, M Weber, MS Weber, P Weidberg, AR Weingarten, J Weiser, C Wellenstein, H Wells, PS Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Werthenbach, U Wessels, M Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wildauer, A Wildt, MA Wilkens, HG Williams, E Williams, HH Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, D Wrona, B Wu, SL Wu, X Wulf, E Wynne, BM Xaplanteris, L Xella, S Xie, S Xu, D Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Z Yao, WM Yao, Y Yasu, Y Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, SP Yu, D Yu, J Yuan, L Yurkewicz, A Zaidan, R Zaitsev, AM Zajacova, Z Zambrano, V Zanello, L Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, H Zhang, J Zhang, Q Zhang, X Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zutshi, V AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Aktas, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alexaa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amelung, C. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antos, J. Antunovic, B. Anulli, F. Aoun, S. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Argyropoulos, T. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Arutinov, D. Asai, M. Asai, S. Silva, J. Asfandiyarov, R. Ask, S. Asman, B. Asner, D. Asquith, L. Assamagan, K. Astvatsatourov, A. Atoian, G. Auerbach, B. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Badescua, E. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Baranov, S. P. Barashkou, A. Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncellia, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Bartsch, D. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, G. A. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomoa, M. Belloni, A. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Besana, M. I. Besson, N. Bethke, S. Bianchi, R. M. Bianco, M. Biebel, O. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blocker, C. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bocci, A. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bondioli, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodet, E. Brooijmans, G. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bucci, F. Buchanan, J. Buchholz, P. Buckley, A. G. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Byatt, T. Caballero, J. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Camarri, P. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Montero, S. Carron Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, K. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chen, H. Chen, S. Chen, X. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Tcherniatine, V. Chesneanu, D. Cheu, E. Cheung, S. L. Chevalier, L. Chevallier, F. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coggeshall, J. Cogneras, E. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Cranshaw, J. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dallison, S. J. Daly, C. H. Dam, M. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawson, I. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. De Graat, J. De Groot, N. De Jong, P. De Mora, L. Branco, M. De Oliveira De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Deng, W. Denisov, S. P. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Doan, T. K. O. Dobos, D. Dobson, E. Dobson, M. Doglioni, C. Doherty, T. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donega, M. Donini, J. Dopke, J. Doria, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Dris, M. Dubbert, J. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dueren, M. Ebke, J. Eckweiler, S. Edmonds, K. Edwards, C. A. Egorov, K. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Fabbri, L. Fabre, C. Facius, K. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Fayard, L. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernandes, B. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fisher, M. J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Martin, T. Fonseca Fopma, J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Franklin, M. Franz, S. Fraternali, M. Fratina, S. Freestone, J. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gaponenko, A. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garca Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Gatti, C. Gaudio, G. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gee, C. N. P. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Genest, M. H. Gentile, S. Georgatos, F. George, S. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Gonella, L. Gong, C. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grahn, K. -J. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Green, B. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Grishkevich, Y. V. Groh, M. Groll, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guicheney, C. Guida, A. Guillemin, T. Guler, H. Gunther, J. Guo, B. Gusakov, Y. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, T. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Hemperek, T. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Henss, T. Hernandez Jimenez, Y. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holy, T. Holzbauer, J. L. Homma, Y. Horazdovsky, T. Horn, C. Horner, S. Hostachy, J. -Y. Hou, S. Hoummada, A. Howe, T. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ince, T. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Isobe, T. Issever, C. Istina, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jenni, P. Jez, P. Jezequel, S. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinnouchi, O. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jorge, P. M. Joseph, J. Juranek, V. Jussel, P. Kabachenko, V. V. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagounis, M. Karagoz, M. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoriauli, G. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kind, O. King, B. T. King, M. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Konoplich, R. Konstantinidis, N. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostka, P. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kourkoumelis, C. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kwee, R. La Rosa, A. La Rotonda, L. Labbe, J. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lefebvre, M. Legendre, M. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leitner, R. Lellouch, D. Lellouch, J. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leroy, C. Lessard, J. -R. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Leyton, M. Li, H. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lilley, J. N. Limosani, A. Limper, M. Lin, S. C. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, B. Liu, M. Liu, Y. Livan, M. Lleres, A. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lou, X. Lounis, A. Loureiro, K. F. Lovas, L. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Luehring, F. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Martins, P. J. Magalhaes Magradze, E. Mahalalel, Y. Mahboubi, K. Mahmood, A. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makouski, M. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massol, N. Mastroberardino, A. Masubuchi, T. Matricon, P. Matsunaga, H. Matsushita, T. Mattravers, C. Maxfield, S. J. Mayne, A. Mazini, R. Mazur, M. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCubbin, N. A. McFarlane, K. W. McGlone, H. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Menke, S. Meoni, E. Mermod, P. Merola, L. Meronia, C. Merritt, F. S. Messina, A. M. Metcalfe, J. Mete, A. S. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabellia, G. Misawa, S. Misiejuk, A. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohr, W. Mohrdieck-Moeck, S. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Moore, R. W. Herrera, C. Mora Moraes, A. Morais, A. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettinia, P. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Nderitu, S. K. Neal, H. A. Nebot, E. Nechaeva, P. Negri, A. Negri, G. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicoletti, G. Nicquevert, B. Niedercorn, F. Nielsen, J. Nikiforov, A. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Notz, D. Novakova, J. Nozaki, M. Nozicka, M. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oyarzun, A. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadopoulou, Th. D. Park, S. J. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Penson, A. Penwell, J. Perantonia, M. Perez, K. Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Persembe, S. Perus, P. Peshekhonov, V. D. Petersen, B. A. Petersen, T. C. Petit, E. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Pfeifer, B. Phan, A. Phillips, A. W. Piacquadio, G. Piccaro, E. Piccinini, M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pinto, B. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Pospelov, G. E. Pospisil, S. Potekhin, M. Potrap, I. N. Potter, C. J. Potter, C. T. Potter, K. P. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Pribyl, L. Price, D. Price, L. E. Prichard, P. M. Prieur, D. Primaveraa, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, W. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radeka, V. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rajagopalan, S. Rammensee, M. Rammes, M. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renkel, P. Rescia, S. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rizatdinova, F. Rizvi, E. Roa Romero, D. A. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodriguez, D. Garcia, Y. Rodriguez Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Romero Maltranaa, D. Roos, L. Ros, E. Rosati, S. Rosenbaum, G. A. Rosselet, L. Rossetti, V. Rossi, L. P. Rotaru, M. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryan, P. Rybkin, G. Rzaeva, S. Saavedra, A. F. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sasaki, O. Sasao, N. Satsounkevitch, I. Sauvage, G. Savard, P. Savine, A. Y. Savinov, V. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schreiner, A. Schroeder, C. Schroer, N. Schroers, M. Schultes, J. Schultz-Coulon, H. -C. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Sopko, V. Sopko, B. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiwoks, R. Spousta, M. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strube, J. Stugu, B. Sturm, P. Soh, D. A. Su, D. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Sykora, I. Sykora, T. Szymocha, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tani, K. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylorb, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. TenKate, H. Teng, P. K. Tennenbaum-Katan, Y. D. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Therhaag, J. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomson, E. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tuggle, J. M. Turecek, D. Cakire, I. Turk Turlay, E. Tuts, P. M. Twomey, M. S. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urquijo, P. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vellidis, C. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Villa, M. Villani, E. G. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Viret, S. Virzi, J. Vitale, A. Vitells, O. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, M. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vudragovic, D. Vuillermet, R. Vukotic, I. Wagner, P. Walbersloh, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Wang, C. Wang, H. Wang, J. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Wastie, R. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. D. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Werthenbach, U. Wessels, M. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wildauer, A. Wildt, M. A. Wilkens, H. G. Williams, E. Williams, H. H. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, D. Wrona, B. Wu, S. L. Wu, X. Wulf, E. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xu, D. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Z. Yao, W. -M. Yao, Y. Yasu, Y. Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. P. Yu, D. Yu, J. Yuan, L. Yurkewicz, A. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zambrano, V. Zanello, L. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, H. Zhang, J. Zhang, Q. Zhang, X. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. Zur Zutshi, V. CA ATLAS Collaboration TI Studies of the performance of the ATLAS detector using cosmic-ray muons SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID CALORIMETER AB Muons from cosmic-ray interactions in the atmosphere provide a high-statistics source of particles that can be used to study the performance and calibration of the ATLAS detector. Cosmic-ray muons can penetrate to the cavern and deposit energy in all detector subsystems. Such events have played an important role in the commissioning of the detector since the start of the installation phase in 2005 and were particularly important for understanding the detector performance in the time prior to the arrival of the first LHC beams. Global cosmic-ray runs were undertaken in both 2008 and 2009 and these data have been used through to the early phases of collision data-taking as a tool for calibration, alignment and detector monitoring. These large datasets have also been used for detector performance studies, including investigations that rely on the combined performance of different subsystems. This paper presents the results of performance studies related to combined tracking, lepton identification and the reconstruction of jets and missing transverse energy. Results are compared to expectations based on a cosmic-ray event generator and a full simulation of the detector response. C1 [Aad, G.; Ahles, F.; Aktas, A.; Anders, C. F.; Beckingham, M.; Bernhard, R.; Bianchi, R. M.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Dietrich, J.; Dingfelder, J.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Lumb, D.; Mahboubi, K.; Meirose, B.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Stoerig, K.; Sundermann, J. E.; Thoma, S.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Xie, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg I Br, Germany. [Alam, M. S.; Della Pietra, M.; Ernst, J.; Mahmood, A.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Caron, B.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Fac Sci, Dept Phys, TR-061000 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Fac Arts & Sci, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Fac Arts & Sci, Dept Phys, TR-06500 Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Fac Arts & Sci, Div Phys, TR-06560 Ankara, Turkey. [Cakire, I. Turk] Turkish Atom Energy Commiss, TR-06530 Ankara, Turkey. [Arnaez, O.; Aurousseau, M.; Berger, N.; Di Ciaccio, L.; Doan, T. K. O.; El Kacimi, M.; Elles, S.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Iengo, P.; Jezequel, S.; Kataoka, M.; Koletsou, I.; Labbe, J.; Lafaye, R.; Laplace, S.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; Cranshaw, J.; Torregrosa, E. Fullana; LeCompte, T.; Malon, D.; Nodulman, L.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.; Zhang, Q.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Rutherfoord, J. P.; Savine, A. Y.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Arabidze, G.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Nikolopoulos, K.; Vellidis, C.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Alexopoulos, T.; Argyropoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Gazis, E. N.; Georgatos, F.; Iakovidis, G.; Katsoufis, E.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsarouchas, C.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, AZ-143 Baku, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, IFAE, Inst Fis Altes Energies, ES-08193 Bellaterra, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Vudragovic, D.] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia. [Bozovic-Jelisavcic, I.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade 11000, Serbia. [Burgess, T.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, NO-5007 Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Arguin, J. -F.; Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Sidoti, A.; Nedden, M. Zur] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Gallo, V.; Haug, S.; Topfel, C.; Venturi, N.; Weber, M. D.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, CH-3012 Bern, Switzerland. [Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Martin, T. A.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Akdogan, T.; Arik, M.; Istina, S.; Rador, T.] Bogazici Univ, Fac Sci, Dept Phys, TR-80815 Bebek, Turkey. [Cetin, S. A.] Dogus Univ, Fac Arts & Sci, Dept Phys, TR-34722 Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Fac Engn, Dept Engn Phys, TR-27310 Sehitkamil, Gaziantep, Turkey. Istanbul Tech Univ, Fac Arts & Sci, Dept Phys, TR-34469 Istanbul, Turkey. [Antonelli, S.; Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Massa, I.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] INFN Sez Bologna, IT-40127 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, IT-40127 Bologna, Italy. [Alhroob, M.; Arutinov, D.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Fleischmann, S.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Hemperek, T.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lehmacher, M.; Loddenkoetter, T.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nderitu, S. K.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Prabhu, R.; Psoroulas, S.; Radics, B.; Ruwiedel, C.; Schmieden, K.; Schmitz, M.; Ta, D.; Therhaag, J.; Tsung, J. -W.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ahlen, S. P.; Butler, J. M.; Harrington, R. D.; Love, J.; Nation, N. R.; Shank, J. T.; Yan, Z.; Youssef, S. P.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02454 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, BR-21945970 Rio De Janeiro, Brazil. Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Caballero, J.; Chen, H.; Tcherniatine, V.; Salgado, P. E. De Castro Faria; Deng, W.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Misawa, S.; Nevski, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Polychronakos, V.; Potekhin, M.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Rescia, S.; Sawyer, L.; Smirnov, Y.; Snyder, S.; Sondericker, J.; Steinberg, P.; Takai, H.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexaa, C.; Badescua, E.; Boldea, V.; Caprini, I.; Caprini, M.; Caramarcu, C.; Chesneanu, D.; Constantinescu, S.; Darlea, G. L.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. Univ Politehn Bucuresti, Bucharest 060042, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, FCEyN, Dto Fis, RA-1428 Buenos Aires, DF, Argentina. [Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Ward, C. P.; White, M. J.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Asner, D.; Heelan, L.; Khakzad, M.; Liu, C.; Oakham, F. G.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Andeen, T.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Pedrosa, F. Baltasar Dos Santos; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, W.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Garelli, N.; Garonne, V.; Gianotti, F.; Godlewski, J.; Goossens, L.; Gorini, B.; Grafstroem, P.; Haas, S.; Haider, S.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jenni, P.; Belenguer, M. Jimenez; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Koblitz, B.; Koffas, T.; Kollar, D.; La Rosa, A.; Lamanna, M.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Lundberg, J.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Messina, A. M.; Meyer, T. C.; Michal, S.; Molina-Perez, J.; Mornacchi, G.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Prokofiev, K.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Scannicchio, D. A.; Schlenker, S.; Schott, M.; Sfyrla, A.; Sherman, D.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tackmann, K.; TenKate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Unal, G.; van der Ster, D.; Vandelli, W.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.] CERN, CH-1211 Geneva 23, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Dunford, M.; Feng, E. J.; Gardner, R. W.; Hurwitz, M.; Jen-La Plante, I.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Romero Maltranaa, D.; Urrejola, P.] Pontificia Univ Catolica Chile, Fac Fis, Dept Fis, Santiago 22, Chile. [Brooks, W. K.; Kuleshov, S.; Oyarzun, A.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.] Chinese Acad Sci, Inst High Energy Phys, Cn Beijing 100049, Peoples R China. [Gong, C.; Han, L.; Jiang, Y.; Liu, M.; Liu, Y.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Cn Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing 210093, Cn Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Miao, J.; Sun, X.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan 250100, Cn Shandong, Peoples R China. [Busato, E.; Calvet, D.; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Clermont Univ, Phys Corpusculaire Lab, CNRS IN2P3, FR-63177 Aubiere, France. [Angerami, A.; Brooijmans, G.; Caughron, S.; Cooke, M.; Copic, K.; Grau, N.; Gray, H. M.; Hughes, E. W.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Wulf, E.; Zhou, N.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Dam, M.; Facius, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Lundquist, J.; Mackeprang, R.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen 0, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, IT-87036 Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, IT-87036 Arcavacata Di Rende, Italy. [Dabrowski, W.; Dwuznik, M.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Toczek, B.] AGH Univ Sci & Technol, FPACS, AGH UST, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Szymocha, T.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Howe, T.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kasmi, A.; Kehoe, R.; Liang, Z.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Richardson, TX 75080 USA. [Antunovic, B.; Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Brandt, G.; Brunet, S.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Gosdzik, B.; Gregor, I. M.; Haller, J.; Hiller, K. H.; Husemann, U.; Johnert, S.; Kama, S.; Karnevskiy, M.; Katzy, J.; Koeneke, K.; Kono, T.; Kostka, P.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Mamuzic, J.; Medinnis, M.; Mehlhase, S.; Moenig, K.; Naumann, T.; Notz, D.; Nozicka, M.; Petschull, D.; Placakyte, R.; Qin, Z.; Stelzer, H. J.; Terwort, M.; Wildt, M. A.; Zhu, H.] DESY, D-22603 Hamburg, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Klingenberg, R.; Muenstermann, D.; Reisinger, I.; Walbersloh, J.] TU Dortmund, DE-44221 Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schaarschmidt, J.; Schumacher, J. W.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01069 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Fowler, A. J.; Klinkby, E. B.; Ko, B. R.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Buckley, A. G.; Clark, P. J.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, AT-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Beretta, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Nicoletti, G.; Salvucci, A.; Sansoni, A.; Testa, M.; Vilucchi, E.; Zambrano, V.] INFN Lab Nazl Frascati, IT-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garca; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosselet, L.; Urquijo, P.; Wu, X.] Univ Geneva, Sect Phys, CH-1211 Geneva 4, Switzerland. [Barberis, D.; Beccherle, R.; Coccaro, A.; Cornelissen, T.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettinia, P.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] INFN Sez Genova, IT-16146 Genoa, Italy. [Barberis, D.; Coccaro, A.; Cornelissen, T.; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, IT-16146 Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Magradze, E.; Mchedlidze, G.; Mosidze, M.; Tsiskaridze, V.; Tskhadadze, E. G.] Tbilisi State Univ, HEP Inst, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Grosse-Knetter, J.; Henrichs, A.; Hensel, C.; Keil, M.; Kohn, F.; Krieger, N.; Kroeninger, K.; Mann, A.; Meyer, J.; Morel, J.; Park, S. J.; Quadt, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Albrand, S.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J. -Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Polci, F.; Stark, J.; Trocme, B.; Wang, J.] Univ Grenoble 1, CNRS IN2P3, Lab Phys Subatom & Cosmol, INPG, FR-38026 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Black, K. M.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Kashif, L.; Outschoorn, V. Martinez; Mills, C.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Ruehr, F.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Schoening, A.] Inst Phys, D-69120 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] ZITI Ruprecht Karls Univ Heidelberg, Lehrstuhl Informat 5, DE-68131 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Higashihiroshima, Hiroshima 7398526, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima 7315193, Japan. [Cwetanski, P.; Egorov, K.; Evans, H.; Gagnon, P.; Jain, V.; Lowe, A. J.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Whittington, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Schreiner, A.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Cochran, J.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames High Energy Phys Grp, Ames, IA 50011 USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Malyukov, S.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] Joint Inst Nucl Res Dubna, RU-141980 Dubna, Moscow Region, Russia. [Amako, K.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hayakawa, T.; Homma, Y.; Ishikawa, A.; Kawagoe, K.; King, M.; Kurashige, H.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Nada Ku, Kobe, Hyogo 6578501, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Sakyou Ku, Kyoto 6068502, Japan. [Takashima, R.] Kyoto Univ, Fushimi Ku, Kyoto 6128522, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, FCE, Dept Fis, IFLP CONICET UNLP, RA-1900 La Plata, Argentina. [Borissov, G.; Bouhova-Thacker, E. V.; Catmore, J. R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Guida, A.; Perrino, R.; Primaveraa, M.; Spagnolo, S.; Ventura, A.] INFN Sez Lecce, IT-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, IT-73100 Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Leney, K. J. C.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Vankov, P.; Vossebeld, J. H.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mijovic, L.; Mikuz, M.] Univ Ljubljana, Dept Phys, SI-1000 Ljubljana, Slovenia. [Adragna, P.; Beck, G. A.; Carter, A. A.; Cerrito, L.; Cooper, B. D.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Martin, A. J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Dept Phys, London E1 4NS, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Martin, T. Fonseca; George, S.; Goncalo, R.; Green, B.; Misiejuk, A.; Tamsett, M. C.; Teixeira-Dias, P.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [Asquith, L.; Baker, S.; Bernius, C.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Davison, A. R.; Dean, S.; Jansen, E.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Ozcan, V. E.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Siegert, F.; Simmons, B.; Taylor, C.; Waugh, B. M.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ridel, M.; Roos, L.; Schwemling, Ph.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.] Univ Paris 07, Univ Paris 06, Lab Phys Nucl & Hautes Energies, CNRS IN2P3, FR-75252 Paris 05, France. [Akesson, T. P. A.; Alonso, A.; Boelaert, N.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Ji, W.; Lundberg, B.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, SE-22100 Lund, Sweden. [Barreiro, F.; Cantero, J.; Del Peso, J.; Gabaldon, C.; Glasman, C.; Lagouri, T.; March, L.; Nebot, E.; Terron, J.] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Teor, ES-28049 Madrid, Spain. [Aharrouche, M.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Groll, M.; Handel, C.; Hohlfeld, M.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Masetti, L.; Moreno, D.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, DE-55099 Mainz, Germany. [Almond, J.; Ask, S.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Forti, A.; Freestone, J.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Martyniuk, A. C.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Potter, K. P.; Schwanenberger, C.; Snow, S. W.; Thompson, R. J.; Watts, S.; Wengler, T.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Aoun, S.; Bee, C.; Clemens, J. C.; Coadou, Y.; Djama, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Kuna, M.; Lapoire, C.; Le Guirriec, E.; Leveque, J.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, H.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Corriveau, F.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Potter, C. T.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, High Energy Phys Grp, Montreal, PQ H3A 2T8, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Limosani, A.; Morley, A. K.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.] Univ Melbourne, Sch Phys, Au Parkville, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Levin, D.; Li, X.; Liu, H.; Liu, B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Brock, R.; Di Mattia, A.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.] Michigan State Univ, Dept Phys & Astron, High Energy Phys Grp, E Lansing, MI 48824 USA. [Alimonti, G.; Banfi, D.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaro, A.; Mandelli, L.; Meronia, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Tartarelli, G. F.; Troncon, C.] INFN Sez Milano, IT-20133 Milan, Italy. [Banfi, D.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.] Univ Milan, Dipartimento Fis, IT-20133 Milan, Italy. [Bogouch, A.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk 220072, Byelarus. [Gilewsky, V.; Starovoitov, P.] Natl Sci & Educ Ctr Particle & High Energy Phys, NC PHEP BSU, Minsk 220040, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.] Univ Montreal, Grp Particle Phys, Montreal, PQ H3C 3J7, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mouraviev, S. V.; Nechaeva, P.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, RU-117924 Moscow, Russia. [Artamonov, A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, RU-117218 Moscow, Russia. [Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Mashinistov, R.; Romaniouk, A.; Smirnov, S. Yu.] Moscow Engn & Phys Inst MEPhI, RU-115409 Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys MSU SINP, Moscow 119991, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Serfon, C.; Walker, R.; Zhuang, X.] Univ Munich, Fak Phys, DE-85748 Garching, Germany. [Barillari, T.; Beimforde, M.; Bethke, S.; Cortiana, G.; D'Orazio, A.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Macchiolo, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pataraia, S.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Schieck, J.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sekhniaidze, G.] INFN Sez Napoli, IT-80126 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Merola, L.; Musto, E.; Patricelli, S.] Univ Naples Federico II, Dipartimento Sci Fisiche, IT-80126 Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.] Radboud Univ Nijmegen, NIKHEF, Dept Expt High Energy Phys, NL-6525 AJ Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, NL-1098 XG Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; De Jong, P.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Liebig, W.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kazanin, V. A.; Malyshev, V.; Maslennikov, A. L.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Ru Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; Konoplich, R.; Krasznahorkay, A.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Loureiro, K. F.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 7008530, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Kocnar, A.] Palacky Univ, Olomouc 77207, Czech Republic. [Brau, J. E.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Barrillon, P.; Benoit, M.; Bernat, P.; Blanchard, J. -B.; Bourdarios, C.; Collard, C.; De Regie, J. B. De Vivie; Diglio, S.; Dudziak, F.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Perus, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Ruan, X.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Vukotic, I.; Wicek, F.; Zerwas, D.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.; Uchida, K.] Osaka Univ, Grad Sch Sci, Osaka 5600043, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, NO-0316 Oslo 3, Norway. [Abdesselam, A.; Barr, A. J.; Beauchemin, P. H.; Buchanan, J.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Ferrando, J.; Fiascaris, M.; Fopma, J.; Gallas, E. J.; Gibson, S. M.; Gilbert, L. M.; Gwenlan, C.; Huffman, T. B.; Issever, C.; Karagoz, M.; Kirsch, G. P.; Larner, A.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Wastie, R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Bellomoa, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.; Weidberg, A. R.] INFN Sez Pavia, IT-27100 Pavia, Italy. [Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, IT-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, High Energy Phys Grp, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.] Petersburg Nucl Phys Inst, RU-188300 Gatchina, Russia. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] INFN Sez Pisa, IT-56127 Pisa, Italy. [Cascella, M.; Cavasinni, V.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, IT-56127 Pisa, Italy. [Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Silva, J.; Carvalho, J.; Conde Muino, P.; Fernandes, B.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Martins, P. J. Magalhaes; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, P-1000149 Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Castro, N. F.] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. [Aguilar-Saavedra, J. A.; Castro, N. F.] CAFPE, E-18071 Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Havranek, M.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Reznicek, P.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CZ-18000 Prague 8, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CZ-16635 Prague 6, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Makouski, M.; Minaenko, A. A.; Myagkov, A. G.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr Inst High Energy Phys, Protvino 142281, Moscow Region, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dallison, S. J.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Qian, W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Villani, E. G.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ming, Y.; Ortega, E. O.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga 5258577, Japan. [Anulli, F.; Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabellia, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] INFN Sez Roma 1, IT-00185 Rome, Italy. [Bagnaia, P.; Biglietti, M.; Bini, C.; Borroni, S.; Ciapetti, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Lacava, F.; Luci, C.; Maiani, C.; Tehrani, F. Safai; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, IT-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] INFN Sez Roma Tor Vergata, IT-00133 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, IT-00133 Rome, Italy. [Baroncellia, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Stanescu, C.; Suruliz, K.] INFN Sez Roma Tre, IT-00146 Rome, Italy. [Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, IT-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Goujdami, D.; Hoummada, A.] Univ Hassan 2, Fac Sci Ain Chock, RUPHE, Ma Casablanca, Morocco. Ctr Natl Energie Sci Tech Nucl CNESTEN, Rabat 10001, Morocco. [Derkaoui, J. E.] Univ Mohamed Premier, LPTPM, Fac Sci, Oujda 60000, Morocco. [El Moursli, R. Cherkaoui; Ghazlane, H.] Univ Mohammed 5, Fac Sci, Rabat 10000, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Boonekamp, M.; Chevalier, L.; Chevallier, F.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Marzin, A.; Meyer, J. -P.; Mountricha, E.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.] Ctr Etud Saclay, DSM IRFU, CEA, FR-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Daly, C. H.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Policicchio, A.; Rosati, S.; Rothberg, J.; Twomey, M. S.; Ventura, D.; Verducci, M.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Nicolas, L.; Owen, S.; Paganis, E.; Shaw, K.; Sutton, M. R.; Tovey, D. R.; Tsionou, D.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Fac Sci, Matsumoto, Jp Nagano 3908621, Japan. [Buchholz, P.; Fleck, I.; Grybel, K.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Werthenbach, U.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Ca Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Asai, M.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kim, P. C.; Kocian, M.; Koi, T.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Su, D.; Wilson, M. G.; Wittgen, M.; Wright, D.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Batkova, L.; Federic, P.; Lovas, L.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, SK-04353 Kosice, Slovakia. [Sjolin, J.] Univ Johannesburg, Dept Phys, ZA-2006 Johannesburg, South Africa. [Sjolin, J.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Sellden, B.; Silverstein, S. B.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Hillert, S.; Johansen, M.; Jon-And, K.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Tylmad, M.; Yang, Z.] AlbaNova, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Grahn, K. -J.; Lund-Jensen, B.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Grimm, K.; Hobbs, J.; Jia, J.; Khodinov, A.; McCarthy, R. L.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [De Santo, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Liang, Z.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, TW-11529 Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Rozen, Y.; Tarem, S.; Tennenbaum-Katan, Y. D.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Technion, Il Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Silver, Y.; Soffer, A.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Il Tel Aviv, Israel. [Kordas, K.; Nomidis, I.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Fac Sci, Dept Phys, Div Nucl & Particle Phys, GR-54124 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Isobe, T.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, K.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Bunkyo Ku, Jp Tokyo 1130033, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 1920397, Japan. [Iliadis, D.; Jinnouchi, O.; Kuze, M.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528551, Japan. [Bain, T.; Beare, B.; Brelier, B.; Montero, S. Carron; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Knecht, N. S.; Krieger, P.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savard, P.; Sinervo, P.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Nugent, I. M.; Oram, C. J.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Idarraga, J.; Taylorb, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Mitsui, S.; Nagai, K.; Ukegawa, F.; Yamada, M.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Jp Ibaraki 3058571, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Mendoza Navas, L.; Navarro, G.; Roa Romero, D. A.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Corso-Radu, A.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Lankford, A. J.; Okawa, H.; Porter, R.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Cobal, M.; Del Papa, C.; Pinamonti, M.] INFN Grp Collegato Udine, IT-33100 Udine, Italy. [Acharya, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, IT-34014 Trieste, Italy. [Cobal, M.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.] Univ Udine, Dipartimento Fis, IT-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Ctr Mixto UVEG CSIC, Inst Fis Corpuscular IFIC, ES-46071 Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Bellaterra 08193, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Inst Microelect Barcelona, IMB CNM CSIC, Bellaterra 08193, Spain. [Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.] Univ British Columbia, Dept Phys, Ca Vancouver, BC V6T 1Z1, Canada. [Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8W 3P6, Canada. [Yorita, K.] Waseda Univ, WISE, Shinjuku Ku, Tokyo 1698555, Japan. [Alon, R.; Duchovni, E.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Fang, Y.; Castillo, L. R. Flores; Gutzwiller, O.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Inst Phys, D-97074 Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Dopke, J.; Flick, T.; Glitza, K. W.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Schroers, M.; Schultes, J.; Sturm, P.; Voss, T. T.; Zeitnitz, C.] Bergische Univ, Fachbereich C, D-42097 Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Golling, T.; Hsu, P. J.; Kaplan, B.; Lockwitz, S.; Loginov, A.; Poblaguev, A.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.] Yerevan Phys Inst, AM-375036 Yerevan, Armenia. TRIUMF, ATLAS Canada Tier Data Ctr 1, Vancouver, BC V6T 2A3, Canada. Forschungszentrum Karlsruhe, SCC, GridKA Tier FZK 1, D-76344 Eggenstein Leopoldshafen, Germany. Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Biscarat, C.; Cogneras, E.; Rahal, G.] Ctr Calcul CNRS IN2P3, F-69622 Villeurbanne, France. INFN CNAF, I-40127 Bologna, Italy. NORDUnet AS, Nord Data Grid Facil, DK-2770 Kastrup, Denmark. SARA Reken Netwerkdiensten, NL-1098 XG Amsterdam, Netherlands. Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei 11529, Taiwan. Rutherford Appleton Lab, Sci & Technol Facil Council, UK T1 RAL Tier 1, Didcot OX11 0QX, Oxon, England. Brookhaven Natl Lab, RHIC & ATLAS Comp Facil, Dept Phys, Upton, NY 11973 USA. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Arfaoui, S.] CPPM, Marseille, France. [Silva, J.; Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Carvalho, J.; Fiolhais, M. C. N.; Martins, P. J. Magalhaes; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, P-3000 Coimbra, Portugal. [Conventi, F.] Univ Napoli Parthenope, IT-80133 Naples, Italy. [Dhullipudi, R.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Gallus, P.; Havranek, M.; Marcisovsky, M.; Myska, M.; Ruzicka, P.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. [Gao, Y. S.] Calif State Univ, Fresno, CA USA. [Gray, H. M.; Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Guler, H.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Haller, J.; Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, D-22761 Hamburg, Germany. [Liang, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Liu, D.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Onofre, A.] Univ Minho, Dept Fis, P-4719 Braga, Portugal. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hermann Herder Str 3, D-79104 Freiburg I Br, Germany. RI Kurashige, Hisaya/H-4916-2012; Delmastro, Marco/I-5599-2012; Veneziano, Stefano/J-1610-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Petrucci, Fabrizio/G-8348-2012; Fabbri, Laura/H-3442-2012; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; valente, paolo/A-6640-2010; Rescia, Sergio/D-8604-2011; Doyle, Anthony/C-5889-2009; Jakubek, Jan/E-6530-2011; Marti-Garcia, Salvador/F-3085-2011; Stoicea, Gabriel/B-6717-2011; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; la rotonda, laura/B-4028-2016; Karyukhin, Andrey/J-3904-2014; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; McKee, Shawn/B-6435-2012; Fullana Torregrosa, Esteban/A-7305-2016; Olshevskiy, Alexander/I-1580-2016; Casado, Pilar/H-1484-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Polukhina, Natalia/E-1610-2014; Gonzalez de la Hoz, Santiago/E-2494-2016; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Samset, Bjorn H./B-9248-2012; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Tassi, Enrico/K-3958-2015; Tikhomirov, Vladimir/M-6194-2015; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Akimov, Andrey/N-1769-2015; Chekulaev, Sergey/O-1145-2015; Snesarev, Andrey/H-5090-2013; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Grinstein, Sebastian/N-3988-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Marcisovsky, Michal/H-1533-2014; Mikestikova, Marcela/H-1996-2014; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Inerge, Inct/J-8679-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012 OI Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Rotaru, Marina/0000-0003-3303-5683; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Petrucci, Fabrizio/0000-0002-5278-2206; Fabbri, Laura/0000-0002-4002-8353; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; valente, paolo/0000-0002-5413-0068; Rescia, Sergio/0000-0003-2411-8903; Doyle, Anthony/0000-0001-6322-6195; Stoicea, Gabriel/0000-0002-7511-4614; Belanger-Champagne, Camille/0000-0003-2368-2617; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Romero-Maltrana, Diego/0000-0003-2550-5243; Klinkby, Esben Bryndt/0000-0002-1908-5644; Vos, Marcel/0000-0001-8474-5357; Castro, Nuno/0000-0001-8491-4376; Gauzzi, Paolo/0000-0003-4841-5822; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Coccaro, Andrea/0000-0003-2368-4559; Cristinziani, Markus/0000-0003-3893-9171; Zambrano, Valentina/0000-0001-6213-8126; Haas, Andrew/0000-0002-4832-0455; Dell'Asta, Lidia/0000-0002-9601-4225; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; McKee, Shawn/0000-0002-4551-4502; Chromek-Burckhart, Doris/0000-0003-4243-3288; Begel, Michael/0000-0002-1634-4399; Mincer, Allen/0000-0002-6307-1418; Troncon, Clara/0000-0002-7997-8524; Qian, Jianming/0000-0003-4813-8167; Nisati, Aleandro/0000-0002-5080-2293; Cataldi, Gabriella/0000-0001-8066-7718; Evans, Harold/0000-0003-2183-3127; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Vari, Riccardo/0000-0002-2814-1337; Nielsen, Jason/0000-0002-9175-4419; Adye, Tim/0000-0003-0627-5059; Olshevskiy, Alexander/0000-0002-8902-1793; Casado, Pilar/0000-0002-0394-5646; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Samset, Bjorn H./0000-0001-8013-1833; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Tikhomirov, Vladimir/0000-0002-9634-0581; Camarri, Paolo/0000-0002-5732-5645; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Grinstein, Sebastian/0000-0002-6460-8694; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), Czech Republic; MPO, Czech Republic; CCRC, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM; Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), MPO and CCRC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 27 TC 3 Z9 3 U1 8 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2011 VL 71 IS 3 AR 1593 DI 10.1140/epjc/s10052-011-1593-6 PG 36 WC Physics, Particles & Fields SC Physics GA 778IW UT WOS:000291698400013 ER PT J AU Aamodt, K Quintana, AA Adamova, D Adare, AM Aggarwal, MM Rinella, GA Agocs, AG Salazar, SA Ahammed, Z Ahmad, N Masoodi, AA Ahn, SU Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Alkin, A Avina, EA Alt, T Altini, V Altinpinar, S Altsybeev, I Andrei, C Andronic, A Anguelov, V Anson, C Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arbor, N Arcelli, S Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, IC Asryan, A Augustinus, A Averbeck, R Awes, TC Aysto, J Azmi, MD Bach, M Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Ferroli, RB Baldisseri, A Baldit, A Ban, J Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartke, J Basile, M Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, IG Beck, H Belikov, I Bellini, F Bellwied, R Belmont-Moreno, E Beole, S Berceanu, I Bercuci, A Berdermann, E Berdnikov, Y Betev, L Bhasin, A Bhati, AK Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biolcati, E Blanc, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Boldizsar, L Bombara, M Bombonati, C Book, J Borel, H Bortolin, C Bose, S Bossu, F Botje, M Bottger, S Boyer, B Braun-Munzinger, P Bravina, L Bregant, M Breitner, T Broz, M Brun, R Bruna, E Bruno, GE Budnikov, D Buesching, H Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Villar, EC Camerini, P Roman, VC Romeo, GC Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castellanos, JC Catanescu, V Cavicchioli, C Cerello, P Chang, B Chapeland, S Charvet, JL Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Barroso, VC Chinellato, DD Chochula, P Chojnacki, M Christakoglou, P Christensen, CH Christiansen, P Chujo, T Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Coccetti, F Coffin, JP Coli, S Balbastre, GC del Valle, ZC Constantin, P Contin, G Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Cotallo, ME Crescio, E Crochet, P Cuautle, E Cunqueiro, L Erasmo, GD Dainese, A Dalsgaard, HH Danu, A Das, D Das, I Dash, A Dash, S De, S Moregula, AD de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S De Remigis, R de Rooij, R Delagrange, H Mercado, YD Dellacasa, G Deloff, A Demanov, V Denes, E Deppman, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dietel, T Divia, R Djuvsland, O Dobrin, A Dobrowolski, T Dominguez, I Donigus, B Dordic, O Driga, O Dubey, AK Dubuisson, J Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Engel, H Erdal, HA Espagnon, B Estienne, M Esumi, S Evans, D Evrard, S Eyyubova, G Fabjan, CW Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fearick, R Fedunov, A Fehlker, D Fekete, V Felea, D Feofilov, G Tellez, AF Ferretti, A Ferretti, R Figueredo, MAS Filchagin, S Fini, R Finogeev, D Fionda, FM Fiore, EM Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Fragkiadakis, M Frankenfeld, U Fuchs, U Furano, F Furget, C Girard, MF Gaardhoje, JJ Gadrat, S Gagliardi, M Gago, A Gallio, M Ganoti, P Garabatos, C Gemme, R Gerhard, J Germain, M Geuna, C Gheata, A Gheata, M Ghidini, B Ghosh, P Girard, MR Giraudo, G Giubellino, P Gladysz-Dziadus, E Glassel, P Gomez, R Gonzalez-Trueba, LH Gonzalez-Zamora, P Santos, HG Gorbunov, S Gotovac, S Grabski, V Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Gutierrez, CG Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Harris, JW Hartig, M Hasch, D Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Heinz, M Helstrup, H Herghelegiu, A Hernandez, C Corral, GH Herrmann, N Hetland, KF Hicks, B Hille, PT Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Huang, M Huber, S Humanic, TJ Hwang, DS Ichou, R Ilkaev, R Ilkiv, I Inaba, M Incani, E Innocenti, GM Innocenti, PG Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Jacholkowski, A Jacobs, PM Jancurova, L Jangal, S Janik, R Jayarathna, SP Jena, S Jirden, L Jones, GT Jones, PG Jovanovic, P Jung, H Jung, W Jusko, A Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kamermans, R Kanaki, K Kang, E Kang, JH Kaplin, V Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, MM Khanzadeev, A Kharlov, Y Kileng, B Kim, DJ Kim, DS Kim, DW Kim, HN Kim, JH Kim, JS Kim, M Kim, M Kim, S Kim, SH Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, JL Klein, J Klein-Bosing, C Kliemant, M Klovning, A Kluge, A Knichel, ML Koch, K Kohler, MK Kolevatov, R Kolojvari, A Kondratiev, V Kondratyeva, N Konevskih, A Kornas, E Don, CKK Kour, R Kowalski, M Kox, S Kozlov, K Kral, J Kralik, I Kramer, F Kraus, I Krawutschke, T Kretz, M Krivda, M Krumbhorn, D Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, PG Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kushpil, S Kushpil, V Kweon, MJ Kwon, Y La Rocca, P de Guevara, PL Lafage, V Lara, C Larsen, DT Lazzeroni, C Le Bornec, Y Lea, R Lee, KS Lee, SC Lefevre, F Lehnert, J Leistam, L Lenhardt, M Lenti, V Monzon, IL Vargas, HL Levai, P Li, X Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Liu, L Loggins, VR Loginov, V Lohn, S Lohner, D Lopez, X Noriega, ML Torres, EL Lovhoiden, G Lu, XG Luettig, P Lunardon, M Luparello, G Luquin, L Luzzi, C Ma, K Ma, R Madagodahettige-Don, DM Maevskaya, A Mager, M Mahapatra, DP Maire, A Malaev, M Cervantes, IM Mal'Kevich, D Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Mares, J Margagliotti, GV Margotti, A Marin, A Martashvili, I Martinengo, P Martinez, MI Davalos, AM Garcia, GM Martynov, Y Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, ZL Matyja, A Mayani, D Mazza, G Mazzoni, MA Meddi, F Menchaca-Rocha, A Lorenzo, PM Perez, JM Mereu, P Miake, Y Midori, J Milano, L Milosevic, J Mischke, A Miskowiec, D Mitu, C Mlynarz, J Mohanty, B Molnar, L Zetina, LM Monteno, M Montes, E Morando, M De Godoy, DAM Moretto, S Morsch, A Muccifora, V Mudnic, E Muller, H Muhuri, S Munhoz, MG Munoz, J Musa, L Musso, A Nandi, BK Nania, R Nappi, E Nattrass, C Navach, F Navin, S Nayak, TK Nazarenko, S Nazarov, G Nedosekin, A Nendaz, F Newby, J Nicassio, M Nielsen, BS Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, BS Nilsson, MS Noferini, F Nooren, G Novitzky, N Nyanin, A Nyatha, A Nygaard, C Nystrand, J Obayashi, H Ochirov, A Oeschler, H Oh, SK Oleniacz, J Oppedisano, C Velasquez, AO Ortona, G Oskarsson, A Ostrowski, P Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, SK Palaha, A Palmeri, A Pappalardo, GS Park, WJ Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Peresunko, D Lara, CEP Perini, D Perrino, D Peryt, W Pesci, A Peskov, V Pestov, Y Peters, AJ Petracek, V Petris, M Petrov, P Petrovici, M Petta, C Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Piyarathna, DB Platt, R Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polak, K Polichtchouk, B Pop, A Pospisil, V Potukuchi, B Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puddu, G Pulvirenti, A Punin, V Putis, M Putschke, J Quercigh, E Qvigstad, H Rachevski, A Rademakers, A Rademakers, O Radomski, S Raiha, TS Rak, J Rakotozafindrabe, A Ramello, L Reyes, AR Rammler, M Raniwala, R Raniwala, S Rasanen, SS Read, KF Real, JS Redlich, K Renfordt, R Reolon, AR Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, RA Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Rohr, D Rohrich, D Romita, R Ronchetti, F Rosinsky, P Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Rousseau, S Roy, C Roy, P Montero, AJR Rui, R Rusanov, I Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Sahu, PK Saiz, P Sakai, S Sakata, D Salgado, CA Samanta, T Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Saturnini, P Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, PA Scott, R Segato, G Senyukov, S Seo, J Serci, S Serradilla, E Sevcenco, A Shabratova, G Shahoyan, R Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siemiarczuk, T Silenzi, A Silvermyr, D Simonetti, G Singaraju, R Singh, R Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Skjerdal, K Smakal, R Smirnov, N Snellings, R Sogaard, C Soloviev, A Soltz, R Son, H Song, M Soos, C Soramel, F Spyropoulou-Stassinaki, M Srivastava, BK Stachel, J Stan, I Stefanek, G Stefanini, G Steinbeck, T Stenlund, E Steyn, G Stocco, D Stock, R Stolpovskiy, M Strmen, P Suaide, AAP Vasquez, MAS Sugitate, T Suire, C Sumbera, M Susa, T Swoboda, D Symons, TJM de Toledo, AS Szarka, I Szostak, A Tagridis, C Takahashi, J Takaki, JDT Tauro, A Tavlet, M Munoz, GT Telesca, A Terrevoli, C Thader, J Thomas, D Thomas, JH Tieulent, R Timmins, AR Tlusty, D Toia, A Torii, H Toscano, L Tosello, F Traczyk, T Truesdale, D Trzaska, WH Tumkin, A Turrisi, R Turvey, AJ Tveter, TS Ulery, J Ullaland, K Uras, A Urban, J Urciuoli, GM Usai, GL Vacchi, A Vala, M Palomo, LV Vallero, S van der Kolk, N van Leeuwen, M Vande Vyvre, P Vannucci, L Vargas, A Varma, R Vasileiou, M Vasiliev, A Vechernin, V Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, YP Vodopyanov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, V Wan, R Wang, D Wang, Y Wang, Y Watanabe, K Wessels, JP Westerhoff, U Wiechula, J Wikne, J Wilde, M Wilk, A Wilk, G Williams, MCS Windelband, B Yang, H Yasnopolskiy, S Yi, J Yin, Z Yokoyama, H Yoo, IK Yuan, X Yushmanov, I Zabrodin, E Zampolli, C Zaporozhets, S Zarochentsev, A Zavada, P Zbroszczyk, H Zelnicek, P Zenin, A Zgura, I Zhalov, M Zhang, X Zhou, D Zichichi, A Zinovjev, G Zoccarato, Y Zynovyev, M AF Aamodt, K. Abrahantes Quintana, A. Adamova, D. Adare, A. M. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Aguilar Salazar, S. Ahammed, Z. Ahmad, N. Masoodi, A. Ahmad Ahn, S. U. Akindinov, A. Aleksandrov, D. Alessandro, B. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz Avina, E. Alt, T. Altini, V. Altinpinar, S. Altsybeev, I. Andrei, C. Andronic, A. Anguelov, V. Anson, C. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arbor, N. Arcelli, S. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Ferroli, R. Baldini Baldisseri, A. Baldit, A. Ban, J. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartke, J. Basile, M. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Beck, H. Belikov, I. Bellini, F. Bellwied, R. Belmont-Moreno, E. Beole, S. Berceanu, I. Bercuci, A. Berdermann, E. Berdnikov, Y. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biolcati, E. Blanc, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Boldizsar, L. Bombara, M. Bombonati, C. Book, J. Borel, H. Bortolin, C. Bose, S. Bossu, F. Botje, M. Boettger, S. Boyer, B. Braun-Munzinger, P. Bravina, L. Bregant, M. Breitner, T. Broz, M. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Calvo Villar, E. Camerini, P. Roman, V. Canoa Romeo, G. Cara Carena, F. Carena, W. Carminati, F. Diaz, A. Casanova Caselle, M. Castellanos, J. Castillo Catanescu, V. Cavicchioli, C. Cerello, P. Chang, B. Chapeland, S. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Barroso, V. Chibante Chinellato, D. D. Chochula, P. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Coccetti, F. Coffin, J. -P. Coli, S. Balbastre, G. Conesa del Valle, Z. Conesa Constantin, P. Contin, G. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cuautle, E. Cunqueiro, L. Erasmo, G. D. Dainese, A. Dalsgaard, H. H. Danu, A. Das, D. Das, I. Dash, A. Dash, S. De, S. Moregula, A. De Azevedo de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. De Remigis, R. de Rooij, R. Delagrange, H. Delgado Mercado, Y. Dellacasa, G. Deloff, A. Demanov, V. Denes, E. Deppman, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dietel, T. Divia, R. Djuvsland, O. Dobrin, A. Dobrowolski, T. Dominguez, I. Doenigus, B. Dordic, O. Driga, O. Dubey, A. K. Dubuisson, J. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Engel, H. Erdal, H. A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evrard, S. Eyyubova, G. Fabjan, C. W. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fearick, R. Fedunov, A. Fehlker, D. Fekete, V. Felea, D. Feofilov, G. Fernandez Tellez, A. Ferretti, A. Ferretti, R. Figueredo, M. A. S. Filchagin, S. Fini, R. Finogeev, D. Fionda, F. M. Fiore, E. M. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Fuchs, U. Furano, F. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gadrat, S. Gagliardi, M. Gago, A. Gallio, M. Ganoti, P. Garabatos, C. Gemme, R. Gerhard, J. Germain, M. Geuna, C. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Girard, M. R. Giraudo, G. Giubellino, P. Gladysz-Dziadus, E. Glaessel, P. Gomez, R. Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gonzalez Santos, H. Gorbunov, S. Gotovac, S. Grabski, V. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerra Gutierrez, C. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Harris, J. W. Hartig, M. Hasch, D. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Heinz, M. Helstrup, H. Herghelegiu, A. Hernandez, C. Herrera Corral, G. Herrmann, N. Hetland, K. F. Hicks, B. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Huang, M. Huber, S. Humanic, T. J. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Incani, E. Innocenti, G. M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Jacholkowski, A. Jacobs, P. M. Jancurova, L. Jangal, S. Janik, R. Jayarathna, S. P. Jena, S. Jirden, L. Jones, G. T. Jones, P. G. Jovanovic, P. Jung, H. Jung, W. Jusko, A. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kamermans, R. Kanaki, K. Kang, E. Kang, J. H. Kaplin, V. Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. J. Kim, D. S. Kim, D. W. Kim, H. N. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, S. H. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Boesing, C. Kliemant, M. Klovning, A. Kluge, A. Knichel, M. L. Koch, K. Koehler, M. K. Kolevatov, R. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskih, A. Kornas, E. Don, C. Kottachchi Kankanamge Kour, R. Kowalski, M. Kox, S. Kozlov, K. Kral, J. Kralik, I. Kramer, F. Kraus, I. Krawutschke, T. Kretz, M. Krivda, M. Krumbhorn, D. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kushpil, S. Kushpil, V. Kweon, M. J. Kwon, Y. La Rocca, P. Ladron de Guevara, P. Lafage, V. Lara, C. Larsen, D. T. Lazzeroni, C. Le Bornec, Y. Lea, R. Lee, K. S. Lee, S. C. Lefevre, F. Lehnert, J. Leistam, L. Lenhardt, M. Lenti, V. Leon Monzon, I. Vargas, H. Leon Levai, P. Li, X. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Liu, L. Loggins, V. R. Loginov, V. Lohn, S. Lohner, D. Lopez, X. Noriega, M. Lopez Lopez Torres, E. Lovhoiden, G. Lu, X. -G. Luettig, P. Lunardon, M. Luparello, G. Luquin, L. Luzzi, C. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Malaev, M. Maldonado Cervantes, I. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Mares, J. Margagliotti, G. V. Margotti, A. Marin, A. Martashvili, I. Martinengo, P. Martinez, M. I. Martinez Davalos, A. Garcia, G. Martinez Martynov, Y. Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mazza, G. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Lorenzo, P. Mendez Perez, J. Mercado Mereu, P. Miake, Y. Midori, J. Milano, L. Milosevic, J. Mischke, A. Miskowiec, D. Mitu, C. Mlynarz, J. Mohanty, B. Molnar, L. Montano Zetina, L. Monteno, M. Montes, E. Morando, M. Moreira De Godoy, D. A. Moretto, S. Morsch, A. Muccifora, V. Mudnic, E. Mueller, H. Muhuri, S. Munhoz, M. G. Munoz, J. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Nattrass, C. Navach, F. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nendaz, F. Newby, J. Nicassio, M. Nielsen, B. S. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nooren, G. Novitzky, N. Nyanin, A. Nyatha, A. Nygaard, C. Nystrand, J. Obayashi, H. Ochirov, A. Oeschler, H. Oh, S. K. Oleniacz, J. Oppedisano, C. Ortiz Velasquez, A. Ortona, G. Oskarsson, A. Ostrowski, P. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Pappalardo, G. S. Park, W. J. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Peresunko, D. Lara, C. E. Perez Perini, D. Perrino, D. Peryt, W. Pesci, A. Peskov, V. Pestov, Y. Peters, A. J. Petracek, V. Petris, M. Petrov, P. Petrovici, M. Petta, C. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Piyarathna, D. B. Platt, R. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polak, K. Polichtchouk, B. Pop, A. Pospisil, V. Potukuchi, B. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pulvirenti, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Qvigstad, H. Rachevski, A. Rademakers, A. Rademakers, O. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Rammler, M. Raniwala, R. Raniwala, S. Rasanen, S. S. Read, K. F. Real, J. S. Redlich, K. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J. -P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Rodriguez Cahuantzi, M. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Rosinsky, P. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Rousseau, S. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Rusanov, I. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Sahu, P. K. Saiz, P. Sakai, S. Sakata, D. Salgado, C. A. Samanta, T. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Saturnini, P. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, P. A. Scott, R. Segato, G. Senyukov, S. Seo, J. Serci, S. Serradilla, E. Sevcenco, A. Shabratova, G. Shahoyan, R. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siemiarczuk, T. Silenzi, A. Silvermyr, D. Simonetti, G. Singaraju, R. Singh, R. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Sogaard, C. Soloviev, A. Soltz, R. Son, H. Song, M. Soos, C. Soramel, F. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Stan, I. Stefanek, G. Stefanini, G. Steinbeck, T. Stenlund, E. Steyn, G. Stocco, D. Stock, R. Stolpovskiy, M. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Sumbera, M. Susa, T. Swoboda, D. Symons, T. J. M. de Toledo, A. Szanto Szarka, I. Szostak, A. Tagridis, C. Takahashi, J. Takaki, J. D. Tapia Tauro, A. Tavlet, M. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thaeder, J. Thomas, D. Thomas, J. H. Tieulent, R. Timmins, A. R. Tlusty, D. Toia, A. Torii, H. Toscano, L. Tosello, F. Traczyk, T. Truesdale, D. Trzaska, W. H. Tumkin, A. Turrisi, R. Turvey, A. J. Tveter, T. S. Ulery, J. Ullaland, K. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vacchi, A. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. van Leeuwen, M. Vande Vyvre, P. Vannucci, L. Vargas, A. Varma, R. Vasileiou, M. Vasiliev, A. Vechernin, V. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopyanov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, V. Wan, R. Wang, D. Wang, Y. Wang, Y. Watanabe, K. Wessels, J. P. Westerhoff, U. Wiechula, J. Wikne, J. Wilde, M. Wilk, A. Wilk, G. Williams, M. C. S. Windelband, B. Yang, H. Yasnopolskiy, S. Yi, J. Yin, Z. Yokoyama, H. Yoo, I. -K. Yuan, X. Yushmanov, I. Zabrodin, E. Zampolli, C. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zbroszczyk, H. Zelnicek, P. Zenin, A. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zichichi, A. Zinovjev, G. Zoccarato, Y. Zynovyev, M. CA ALICE Collaboration TI Strange particle production in proton-proton collisions at root s=0.9 TeV with ALICE at the LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID PHI-MESON PRODUCTION; P(P)OVER-BAR COLLISIONS; PBARP INTERACTIONS; HADRON-PRODUCTION; PHYSICS AB The production of mesons containing strange quarks (K-S(0), phi) and both singly and doubly strange baryons (Lambda, (Lambda) over bar, and Xi(-) + (Xi) over bar (+)) are measured at mid-rapidity in pp collisions at root s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (< dN/dy >) of 0.184 +/- 0.002(stat.) +/- 0.006(syst.) for K-S(0) and 0.021 +/- 0.004(stat.) +/- 0.003(syst.) for phi. For baryons, we find < dN/dy > = 0.048 +/- 0.001(stat.) +/- 0.004(syst.) for Lambda, 0.047 +/- 0.002(stat.) +/- 0.005(syst.) for (Lambda) over bar and 0.0101 +/- 0.0020(stat.) +/- 0.0009(syst.) for Xi(-) + (Xi) over bar (+). The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions. C1 [Aamodt, K.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Liu, L.; Nystrand, J.; Ovrebekk, G.; Richter, M.; Rohrich, D.; Skjerdal, K.; Szostak, A.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Abrahantes Quintana, A.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Adamova, D.; Bielcikova, J.; Kushpil, S.; Kushpil, V.; Sumbera, M.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Adare, A. M.; Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Heinz, M.; Hicks, B.; Hille, P. T.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Aggarwal, M. M.; Bhati, A. K.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Rinella, G. Aglieri; Augustinus, A.; Betev, L.; Boccioli, M.; Brun, R.; Roman, V. Canoa; Carena, F.; Carena, W.; Carminati, F.; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Costa, F.; Di Mauro, A.; Divia, R.; Dubuisson, J.; Evrard, S.; Fabjan, C. W.; Ferretti, R.; Floris, M.; Fuchs, U.; Furano, F.; Gheata, A.; Gheata, M.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hayrapetyan, A.; Hristov, P.; Innocenti, P. G.; Jacholkowski, A.; Jirden, L.; Kirsch, S.; Kisiel, A.; Kluge, A.; Leistam, L.; Lippmann, C.; Lohn, S.; Luzzi, C.; Mager, M.; Martinengo, P.; Mastroserio, A.; Lorenzo, P. Mendez; Molnar, L.; Morsch, A.; Mueller, H.; Musa, L.; Perini, D.; Peskov, V.; Peters, A. J.; Pinazza, O.; Piuz, F.; Quercigh, E.; Rademakers, A.; Rademakers, O.; Revol, J. -P.; Riedler, P.; Riegler, W.; Rosinsky, P.; Rossegger, S.; Rusanov, I.; Safarik, K.; Saiz, P.; Schreiner, S.; Schukraft, J.; Schutz, Y.; Shahoyan, R.; Sicking, E.; Simonetti, G.; Soos, C.; Stefanini, G.; Swoboda, D.; Tauro, A.; Tavlet, M.; Telesca, A.; Toia, A.; Toscano, L.; Vande Vyvre, P.; von Haller, B.; Zampolli, C.] European Org Nucl Res CERN, Geneva, Switzerland. [Agocs, A. G.; Barnafoeldi, G. G.; Boldizsar, L.; Denes, E.; Hamar, G.; Levai, P.; Pochybova, S.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Aguilar Salazar, S.; Alfaro Molina, R.; Almaraz Avina, E.; Belmont-Moreno, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Martinez Davalos, A.; Menchaca-Rocha, A.; Sandoval, A.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 04510, DF, Mexico. [Ahammed, Z.; Chattopadhyay, S.; De, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ghosh, P.; Mohanty, B.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Prasad, S. K.; Richter, M.; Samanta, T.; Singaraju, R.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Ahmad, N.; Masoodi, A. Ahmad; Azmi, M. D.; Irfan, M.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kang, E.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Oh, S. K.; Seo, J.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Voloshin, K.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kozlov, K.; Kucheriaev, Y.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Cerello, P.; Chiavassa, E.; Coli, S.; Morales, Y. Corrales; Dash, S.; De Marco, N.; De Remigis, R.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giraudo, G.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Masera, M.; Mazza, G.; Mereu, P.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Siciliano, M.; Vasquez, M. A. Subieta; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Alici, A.; Arcelli, S.; Basile, M.; Bellini, F.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Scioli, G.; Silenzi, A.; Zichichi, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Romeo, G. Cara; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pesci, A.; Scapparone, E.; Scioli, G.; Silenzi, A.; Williams, M. C. S.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Alkin, A.; Grinyov, B.; Martynov, Y.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Alt, T.; Bach, M.; de Cuveland, J.; Gerhard, J.; Gorbunov, S.; Kalcher, S.; Kirsch, S.; Kretz, M.; Painke, F.; Rettig, F.; Rohr, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Altini, V.; Barile, F.; Bruno, G. E.; Erasmo, G. D.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Navach, F.; Nicassio, M.; Perrino, D.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; Erasmo, G. D.; de Cataldo, G.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Nappi, E.; Navach, F.; Nicassio, M.; Paticchio, V.; Perrino, D.; Santoro, R.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Altinpinar, S.; Andronic, A.; Arsene, I. C.; Averbeck, R.; Berdermann, E.; Braun-Munzinger, P.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforschung, Div Res, Darmstadt, Germany. [Altinpinar, S.; Andronic, A.; Arsene, I. C.; Averbeck, R.; Berdermann, E.; Braun-Munzinger, P.; Doenigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivan, C.; Ivanov, M.; Knichel, M. L.; Koehler, M. K.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Romita, R.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Thaeder, J.; Thomas, J. H.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforschung, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Altsybeev, I.; Asryan, A.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Andrei, C.; Berceanu, I.; Bercuci, A.; Catanescu, V.; Herghelegiu, A.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Anguelov, V.; Boettger, S.; Breitner, T.; Engel, H.; Kebschull, U.; Kisel, I.; Lara, C.; Lindenstruth, V.; Steinbeck, T.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anson, C.; Bock, N.; Humanic, T. J.; Lisa, M. A.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Antinori, F.; Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Fabris, D.; Grosso, R.; Lunardon, M.; Morando, M.; Rossi, A.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Turrisi, R.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Antinori, F.; Bianchin, C.; Bombonati, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Rossi, A.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Aphecetche, L.; Batigne, G.; del Valle, Z. Conesa; Delagrange, H.; Driga, O.; Estienne, M.; Germain, M.; Ichou, R.; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Mas, A.; Pillot, P.; Roy, C.; Schutz, Y.; Stocco, D.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Appelshaeuser, H.; Arend, A.; Bailhache, R.; Baumann, C.; Beck, H.; Blume, C.; Book, J.; Buesching, H.; Hartig, M.; Kliemant, M.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Luettig, P.; Pitz, N.; Renfordt, R.; Schuchmann, S.; Stock, R.; Ulery, J.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Arbor, N.; Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, LPSC, Grenoble, France. [Arbor, N.; Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Mao, Y.; Real, J. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble, Grenoble, France. [Armesto, N.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Awes, T. C.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Aysto, J.; Chang, B.; Kalliokoski, T.; Kim, D. J.; Kral, J.; Novitzky, N.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Badala, A.; Barbera, R.; La Rocca, P.; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Morales, Y. Corrales; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; Innocenti, G. M.; Luparello, G.; Masera, M.; Milano, L.; Ortona, G.; Padilla, F.; Poghosyan, M. G.; Siciliano, M.; Vasquez, M. A. Subieta; Vercellin, E.] Sperimentale Univ, Dipartimento Fis, Turin, Italy. [Ferroli, R. Baldini; Coccetti, F.; Preghenella, R.; Zichichi, A.] Ctr & Ric, Ctr Fermi, Rome, Italy. [Ferroli, R. Baldini; Coccetti, F.; Preghenella, R.; Zichichi, A.] Museo Stor Fis Enrico Fermi, Rome, Italy. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Geuna, C.; Pal, S.; Rakotozafindrabe, A.; Yang, H.] IRFU, Commissariat Energie Atom, Saclay, France. [Ahn, S. U.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Crochet, P.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.; Zhang, X.] Univ Clermont Ferrand 2, LPC, Clermont Ferrand, France. [Ahn, S. U.; Baek, Y. W.; Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Crochet, P.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.; Zhang, X.] Univ Blaise Pascal, CNRS, IN2P3, Clermont Ferrand, France. [Ban, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Barbera, R.; La Rocca, P.; Petta, C.; Pulvirenti, A.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barnby, L. S.; Evans, D.; Jones, G. T.; Jones, P. G.; Jovanovic, P.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Platt, R.; Scott, P. A.; Baillie, O. Villalobos] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Bartke, J.; Gladysz-Dziadus, E.; Kornas, E.; Kowalski, M.; Matyja, A.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Bathen, B.; Dietel, T.; Emschermann, D.; Heide, M.; Kalisky, M.; Klein-Boesing, C.; Rammler, M.; Santo, R.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Batyunya, B.; Fedunov, A.; Grigoryan, S.; Jancurova, L.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Belikov, I.; Coffin, J. -P.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Maire, A.; Wan, R.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Bellwied, R.; Cormier, T. M.; Dobrin, A.; Jayarathna, S. P.; Don, C. Kottachchi Kankanamge; Loggins, V. R.; Mlynarz, J.; Pavlinov, A.; Piyarathna, D. B.; Prasad, S. K.; Pruneau, C. A.; Timmins, A. R.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bhasin, A.; Gupta, A.; Gupta, R.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Bianchi, N.; Diaz, A. Casanova; Balbastre, G. Conesa; Cunqueiro, L.; Moregula, A. De Azevedo; Di Nezza, P.; Fantoni, A.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Nazl Frascati Lab, I-00044 Frascati, Italy. [Bielcik, J.; Krus, M.; Pachr, M.; Petracek, V.; Pospisil, V.; Smakal, R.; Tlusty, D.; Wagner, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Lara, C. E. Perez; Snellings, R.; van der Kolk, N.] Natl Inst Subat Phys, Amsterdam, Netherlands. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Ladron de Guevara, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, Madrid, Spain. [Blanco, F.; Jayarathna, S. P.; Madagodahettige-Don, D. M.; Pinsky, L.; Piyarathna, D. B.] Univ Houston, Houston, TX USA. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Bogolyubsky, M.; Kharlov, Y.; Polichtchouk, B.; Sadovsky, S.; Soloviev, A.; Stolpovskiy, M.; Zenin, A.] Protvino High Energy Phys Inst, Protvino 142284, Russia. [Bombara, M.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Bose, S.; Chattopadhyay, S.; Das, D.; Das, I.; Majumdar, A. K. Dutta; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Boyer, B.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lafage, V.; Le Bornec, Y.; Noriega, M. Lopez; Rousseau, S.; Suire, C.; Takaki, J. D. Tapia; Palomo, L. Valencia] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bravina, L.; Dordic, O.; Eyyubova, G.; Kolevatov, R.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Pocheptsov, T.; Qvigstad, H.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zabrodin, E.] Univ Oslo, Dept Phys, Oslo, Norway. [Bregant, M.; Camerini, P.; Contin, G.; Lea, R.; Margagliotti, G. V.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Bregant, M.; Camerini, P.; Contin, G.; Fragiacomo, E.; Grion, N.; Lea, R.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Vacchi, A.; Venaruzzo, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Broz, M.; Fekete, V.; Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Nazarov, G.; Punin, V.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Busch, O.; Constantin, P.; Glaessel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krawutschke, T.; Krumbhorn, D.; Kweon, M. J.; Lohner, D.; Lu, X. -G.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Reygers, K.; Schicker, R.; Schweda, K.; Stachel, J.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Buthelezi, Z.; Cleymans, J.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba Labs, ZA-7925 Cape Town, South Africa. [Cai, X.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Wang, Y.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.] Hua Zhong Normal Univ, Wuhan, Peoples R China. [Calvo Villar, E.; Delgado Mercado, Y.; Gago, A.; Guerra Gutierrez, C.] Pontificia Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru. [Cherney, M.; Nilsen, B. S.; Turvey, A. J.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] Univ Lyon 1, F-69622 Villeurbanne, France. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] IPN Lyon, CNRS, IN2P3, Villeurbanne, France. [Chinellato, D. D.; Cosentino, M. R.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, Brazil. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Verweij, M.] Natl Inst Subat Phys, Utrecht, Netherlands. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Christiansen, P.; Dobrin, A.; Gros, P.; Oskarsson, A.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Chujo, T.; Esumi, S.; Horaguchi, T.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Shimomura, M.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Cicalo, C.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montano Zetina, L.; Ramirez Reyes, A.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Cortes Maldonado, I.; Fernandez Tellez, A.; Gonzalez Santos, H.; Martinez, M. I.; Munoz, J.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, Alessandria, Italy. [Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Cuautle, E.; Dominguez, I.; Maldonado Cervantes, I.; Mayani, D.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Dainese, A.; Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, I.; Zgura, I.] ISS, Bucharest, Romania. [Dash, A.; Mahapatra, D. P.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Moreira De Godoy, D. A.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, BR-09500900 Sao Paulo, Brazil. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [De Falco, A.; Incani, E.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Erdal, H. A.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Finogeev, D.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskih, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Fragkiadakis, M.; Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Girard, M. R.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Gomez, R.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Grigoryan, A.; Hayrapetyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Gunji, T.; Hamagaki, H.; Hori, Y.; Ozawa, K.; Sano, S.] Univ Tokyo, Tokyo, Japan. [Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Jacobs, P. M.; Ploskon, M.; Sakai, S.; Symons, T. J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jena, S.; Nandi, B. K.; Nyatha, A.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Kalweit, A.; Kraus, I.; Oeschler, H.; Ricaud, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Kang, J. H.; Kim, M.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhochschule Worms, ZTT, Worms, Germany. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Mares, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Martashvili, I.; Nattrass, C.; Read, K. F.; Scott, R.] Univ Tennessee, Knoxville, TN USA. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Midori, J.; Obayashi, H.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Newby, J.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France. [Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Bortolin, C.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Fabjan, C. W.] Vienna Univ Technol, A-1040 Vienna, Austria. [Fabjan, C. W.] Austrian Acad Sci, A-1010 Vienna, Austria. [Krawutschke, T.] Fachhochschule Koln, Cologne, Germany. [Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. RP Aamodt, K (reprint author), Univ Bergen, Dept Phys & Technol, Bergen, Norway. EM Paul.Kuijer@nikhef.nl RI Cortese, Pietro/G-6754-2012; Masera, Massimo/J-4313-2012; Oh, Sun Kun/D-6993-2011; Gaardhoje, Jens-Jorgen/F-9008-2011; Mitu, Ciprian/E-6733-2011; Barnby, Lee/G-2135-2010; Coccetti, Fabrizio/H-4004-2011; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Felea, Daniel/C-1885-2012; Sevcenco, Adrian/C-1832-2012; Chinellato, David/D-3092-2012; Bagnasco, Stefano/J-4324-2012; Barbera, Roberto/G-5805-2012; Gagliardi, Martino/J-4787-2012; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Yoo, In-Kwon/J-6222-2012; Turrisi, Rosario/H-4933-2012; Bregant, Marco/I-7663-2012; Christensen, Christian/D-6461-2012; Peitzmann, Thomas/K-2206-2012; feofilov, grigory/A-2549-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Traczyk, Tomasz/C-1310-2013; Ramello, Luciano/F-9357-2013; Castillo Castellanos, Javier/G-8915-2013; Voloshin, Sergei/I-4122-2013; Zarochentsev, Andrey/J-6253-2013; Kondratiev, Valery/J-8574-2013; Barnafoldi, Gergely Gabor/L-3486-2013; Christensen, Christian Holm/A-4901-2010; Levai, Peter/A-1544-2014; Guber, Fedor/I-4271-2013; Martinez Davalos, Arnulfo/F-3498-2013; Wagner, Vladimir/G-5650-2014; Bielcikova, Jana/G-9342-2014; Blau, Dmitry/H-4523-2012; Yang, Hongyan/J-9826-2014; Cosentino, Mauro/L-2418-2014; Vacchi, Andrea/C-1291-2010; Bearden, Ian/M-4504-2014; Sumbera, Michal/O-7497-2014; Kharlov, Yuri/D-2700-2015; Usai, Gianluca/E-9604-2015; Salgado, Carlos A./G-2168-2015; Bruna, Elena/C-4939-2014; HAMAGAKI, HIDEKI/G-4899-2014; Pshenichnov, Igor/A-4063-2008; Altsybeev, Igor/K-6687-2013; Vechernin, Vladimir/J-5832-2013; Adamova, Dagmar/G-9789-2014; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Satyajit/P-2409-2015; Akindinov, Alexander/J-2674-2016; Nattrass, Christine/J-6752-2016; Suaide, Alexandre/L-6239-2016; van der Kolk, Naomi/M-9423-2016; Deppman, Airton/J-5787-2014; Martynov, Yevgen/L-3009-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; Armesto, Nestor/C-4341-2017; Ferretti, Alessandro/F-4856-2013; Fernandez Tellez, Arturo/E-9700-2017; Vickovic, Linda/F-3517-2017; Vinogradov, Leonid/K-3047-2013; OI Gaardhoje, Jens-Jorgen/0000-0001-6122-4698; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Felea, Daniel/0000-0002-3734-9439; Sevcenco, Adrian/0000-0002-4151-1056; Chinellato, David/0000-0002-9982-9577; Barbera, Roberto/0000-0001-5971-6415; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Christensen, Christian/0000-0002-1850-0121; Peitzmann, Thomas/0000-0002-7116-899X; feofilov, grigory/0000-0003-3700-8623; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Traczyk, Tomasz/0000-0002-6602-4094; Castillo Castellanos, Javier/0000-0002-5187-2779; Zarochentsev, Andrey/0000-0002-3502-8084; Kondratiev, Valery/0000-0002-0031-0741; Christensen, Christian Holm/0000-0002-1850-0121; Guber, Fedor/0000-0001-8790-3218; Martinez Davalos, Arnulfo/0000-0002-9481-9548; Cosentino, Mauro/0000-0002-7880-8611; Vacchi, Andrea/0000-0003-3855-5856; Bearden, Ian/0000-0003-2784-3094; Sumbera, Michal/0000-0002-0639-7323; Usai, Gianluca/0000-0002-8659-8378; Salgado, Carlos A./0000-0003-4586-2758; Bruna, Elena/0000-0001-5427-1461; Pshenichnov, Igor/0000-0003-1752-4524; Altsybeev, Igor/0000-0002-8079-7026; Vechernin, Vladimir/0000-0003-1458-8055; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Satyajit/0000-0002-6220-6982; Akindinov, Alexander/0000-0002-7388-3022; Nattrass, Christine/0000-0002-8768-6468; Suaide, Alexandre/0000-0003-2847-6556; van der Kolk, Naomi/0000-0002-8670-0408; Deppman, Airton/0000-0001-9179-6363; Martynov, Yevgen/0000-0003-0753-2205; Armesto, Nestor/0000-0003-0940-0783; Ferretti, Alessandro/0000-0001-9084-5784; Fernandez Tellez, Arturo/0000-0003-0152-4220; Vickovic, Linda/0000-0002-9820-7960; Coccetti, Fabrizio/0000-0001-7041-3394; Vinogradov, Leonid/0000-0001-9247-6230; Riggi, Francesco/0000-0002-0030-8377; Dainese, Andrea/0000-0002-2166-1874; Paticchio, Vincenzo/0000-0002-2916-1671; Monteno, Marco/0000-0002-3521-6333; SANTORO, ROMUALDO/0000-0002-4360-4600; Scarlassara, Fernando/0000-0002-4663-8216; Turrisi, Rosario/0000-0002-5272-337X; Tosello, Flavio/0000-0003-4602-1985; Beole', Stefania/0000-0003-4673-8038; Di Bari, Domenico/0000-0002-5559-8906 FU Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; The European Research Council; European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire'; 'Region Alsace'; 'Region Auvergne'; CEA, France; German BMBF; Helmholtz Association; Greek Ministry of Research and Technology; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala pentru Cercetare, Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center, Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Ministry of Science and Technology; National Research Foundation (NRF), South Africa; Swedish Reseach Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German BMBF and the Helmholtz Association; Greek Ministry of Research and Technology; Hungarian OTKA and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autoritatea Nationala pentru Cercetare, Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS; Ministry of Education of Slovakia; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); The Ministry of Science and Technology and the National Research Foundation (NRF), South Africa; Swedish Reseach Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 42 TC 83 Z9 83 U1 2 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2011 VL 71 IS 3 AR 1594 DI 10.1140/epjc/s10052-011-1594-5 PG 24 WC Physics, Particles & Fields SC Physics GA 778IW UT WOS:000291698400014 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hartl, C Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blekman, F Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Van-der Velde, C Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DD Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zang, J Zhang, Z Ban, Y Guo, S Li, W Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Assran, Y Mahmoud, MA Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Titov, M Verrecchia, P Baffioni, S Beaudette, F Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Porteboeuf, S Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Masetti, G Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Glushkov, I Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Raval, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Walsh, R Wissing, C Autermann, C Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heindl, SM Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Neuland, MB Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Mertzimekis, J Panagiotou, A Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Dhingra, N Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Meneghelli, M Montanari, A Navarria, L Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Merola, M Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Checchia, P De Mattia, M Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Taroni, S Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Martins, P Musella, P Nayak, A Ribeiro, PQ Seixas, J Silva, P Varela, J Wohri, HK Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Colino, N De La Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Llatas, MC Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Gomez, JP Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B D'Enterria, D Dahms, T De Roeck, A Ramos, FD Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Harvey, J Hegeman, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Karavakis, E Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Tsyganov, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bortignon, P Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Regenfus, C Robmann, P Schmidt, A Snoek, H Wilke, L Chang, YH Chen, KH Chen, WT Dutta, S Go, A Kuo, CM Li, SW Lin, W Liu, MH Liu, ZK Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, M Hartley, D Heath, GP Heath, HF Huckvale, B Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Clough, A Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Kcira, D Litvine, V Ma, Y Mott, A Newman, HB Rogan, C Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Kim, B Klimenko, S Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bandurin, D Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Noonan, D Radicci, V Sanders, S Wood, JS Zhukova, V Bolton, T Chakaberia, I Ivanov, A Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Kharchilava, A Kumar, A Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Kaadze, K Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Lungu, G Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Parker, W Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hartl, C. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Van-der Velde, C. Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Torres Da Silva De Araujo, F. Dias, F. A. Dias, M. A. F. Fernandez Perez Tomei, T. R. Gregores, E. M. Marinho, F. Novaes, S. F. Padula, S. S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Assran, Y. Mahmoud, M. A. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Porteboeuf, S. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Masetti, G. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Glushkov, I. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Raval, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Walsh, R. Wissing, C. Autermann, C. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heindl, S. M. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Neuland, M. B. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Mertzimekis, J. Panagiotou, A. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Dhingra, N. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Meneghelli, M. Montanari, A. Navarria, L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Di Matteo, L. Ghezzi, A. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Checchia, P. De Mattia, M. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Taroni, S. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De La Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Martins, P. Musella, P. Nayak, A. Ribeiro, P. Q. Seixas, J. Silva, P. Varela, J. Woehri, H. K. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Colino, N. De La Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chamizo Llatas, M. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Gonzalez Suarez, R. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Covarelli, R. Cure, B. D'Enterria, D. Dahms, T. De Roeck, A. Ramos, F. Duarte Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Harvey, J. Hegeman, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Karavakis, E. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Tsyganov, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bortignon, P. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Schmidt, A. Snoek, H. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Dutta, S. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Liu, Z. K. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, M. Hartley, D. Heath, G. P. Heath, H. F. Huckvale, B. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Clough, A. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De La Barca Cebra, D. Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bandurin, D. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bolton, T. Chakaberia, I. Ivanov, A. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Kaadze, K. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Parker, W. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Prompt and non-prompt J/psi production in pp collisions at root s=7 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID OCTET QUARKONIA PRODUCTION; QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; PSI-PRODUCTION; HADROPRODUCTION; COLLIDERS; FLAVORS; GLUONS; PHOTOS AB The production of J/psi mesons is studied in pp collisions at root s = 7 TeV with the CMS experiment at the LHC. The measurement is based on a dimuon sample corresponding to an integrated luminosity of 314 nb(-1). The J/psi differential cross section is determined, as a function of the J/psi transverse momentum, in three rapidity ranges. A fit to the decay length distribution is used to separate the prompt from the non-prompt (b hadron to J/psi) component. Integrated over J/psi transverse momentum from 6.5 to 30 GeV/c and over rapidity in the range vertical bar y vertical bar < 2.4, the measured cross sections, times the dimuon decay branching fraction, are 70.9 +/- 2.1(stat.) +/- 3.0(syst.) +/- 7.8(luminosity) nb for prompt J/psi mesons assuming unpolarized production and 26.0 +/- 1.4(stat.) +/- 1.6(syst.) +/- 2.9(luminosity) nb for J/psi mesons from b-hadron decays. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Van-der Velde, C.; Vanlaer, P.; Wickens, J.] Univ Libre Brussels, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Torres Da Silva De Araujo, F.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, S. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Assran, Y.; Mahmoud, M. A.] Arab Republ Egypt, Acad Sci Res & Technol, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Porteboeuf, S.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Roinishvili, V.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Buege, V.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heindl, S. M.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Neuland, M. B.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, J.; Panagiotou, A.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.; Pasztor, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Malberti, M.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Merola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Checchia, P.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trent, Trento, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.; Pioppi, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Santocchia, A.; Taroni, S.; Valdata, M.; Volpe, R.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius State Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chamizo Llatas, M.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Kreuzer, P.; Panagiotou, A.; Hajdu, C.; Mohanty, A. K.; Lusito, L.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Ghezzi, A.; Perrozzi, L.; Lucaroni, A.; Volpe, R.; Boccali, T.; Tonelli, G.; Venturi, A.; Pandolfi, F.; Botta, C.; Graziano, A.; Pelliccioni, M.; Pereira, A. Vilela; Varela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; D'Enterria, D.; Dahms, T.; De Roeck, A.; Ramos, F. Duarte; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Karavakis, E.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Tsyganov, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Sharma, V.; Hall-Wilton, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Bortignon, P.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Schmidt, A.; Snoek, H.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] NTU, Taipei, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Hansen, M.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Clough, A.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Avetisyan, A.; Chou, J. P.; Cutts, D.; Esen, S.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De La Barca; Cebra, D.; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Felcini, M.; Wallny, R.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bellan, P.; Barge, D.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bandurin, D.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] UIC, Chicago, IL USA. [Adiguzel, A.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Yang, M.; Li, W.; Wyslouch, B.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Kaadze, K.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, D.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Gregores, E. M.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Cerci, S.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Popescu, S.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Bucharest, Romania. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Yang, Fan/B-2755-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Mignerey, Alice/D-6623-2011; Ruiz, Alberto/E-4473-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Katkov, Igor/E-2627-2012; Wimpenny, Stephen/K-8848-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Janssen, Xavier/E-1915-2013; Oguri, Vitor/B-5403-2013; Alves, Gilvan/C-4007-2013; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; Hoorani, Hafeez/D-1791-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Josa, Isabel/K-5184-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Ferreira Dias, Marco Andre/P-6667-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015 OI Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; Ruiz, Alberto/0000-0002-3639-0368; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Katkov, Igor/0000-0003-3064-0466; Wimpenny, Stephen/0000-0003-0505-4908; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531 FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency CNPq; Brazilian Funding Agency CAPES; Brazilian Funding Agency FAPERJ; Brazilian Funding Agency FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Estonian Academy of Sciences; NICPB; Academy of Finland; Finnish Ministry of Education; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules/CNRS; Commissariat a l'Energie Atomique, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; NRF, Korea; Lithuanian Academy of Sciences; Mexican Funding Agency CINVESTAV; Mexican Funding Agency CONACYT; Mexican Funding Agency SEP; Mexican Funding Agency UASLP-FAI; Pakistan Atomic Energy Commission; State Commission for Scientific Research, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Armenia; JINR, Belarus; JINR, Georgia; JINR, Ukraine; JINR, Uzbekistan; Ministry of Science and Technologies of the Russian Federation; Russian Ministry of Atomic Energy; Ministry of Science and Technological Development of Serbia; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; Swiss Funding Agency ETH Board; Swiss Funding Agency ETH Zurich; Swiss Funding Agency PSI; Swiss Funding Agency SNF; Swiss Funding Agency UniZH; Swiss Funding Agency Canton Zurich; Swiss Funding Agency SER; National Science Council, Taipei; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules/CNRS, and Commissariat a l'Energie Atomique, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy, and Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, and Russian Ministry of Atomic Energy; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'industrie et dans l'Agriculture (FRIA-Belgium); and the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium). NR 44 TC 80 Z9 80 U1 0 U2 45 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD MAR PY 2011 VL 71 IS 3 AR 1575 DI 10.1140/epjc/s10052-011-1575-8 PG 26 WC Physics, Particles & Fields SC Physics GA 778IW UT WOS:000291698400002 ER PT J AU Duijvesz, D Van Den Berg, MS Van Royen, MH Willemsen, R Gritsenko, MA Burnum, KE Romijn, J Dekker, LJM Pasa-Tolic, L Luider, TM Jenster, G AF Duijvesz, D. Van Den Berg, M. S. Van Royen, M. H. Willemsen, R. Gritsenko, M. A. Burnum, K. E. Romijn, J. Dekker, L. J. M. Pasa-Tolic, L. Luider, Th M. Jenster, G. TI PROTEOMIC PROFILING OF EXOSOMES REVEALS NOVEL POTENTIAL BIOMARKERS FOR PROSTATE CANCER SO EUROPEAN UROLOGY SUPPLEMENTS LA English DT Meeting Abstract C1 [Duijvesz, D.; Van Den Berg, M. S.; Romijn, J.; Jenster, G.] Erasmus MC, Dept Urol, Rotterdam, Netherlands. [Van Royen, M. H.] Erasmus MC, Dept Pathol, Rotterdam, Netherlands. [Willemsen, R.] Erasmus MC, Dept Genet, Rotterdam, Netherlands. [Gritsenko, M. A.; Burnum, K. E.; Pasa-Tolic, L.] EMSL, PNNL, Richland, WA USA. [Dekker, L. J. M.; Luider, Th M.] Erasmus MC, Dept Neurol, Rotterdam, Netherlands. NR 0 TC 0 Z9 0 U1 2 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-9056 J9 EUR UROL SUPPL JI Eur. Urol. Suppl. PD MAR PY 2011 VL 10 IS 2 BP 172 EP 172 PG 1 WC Urology & Nephrology SC Urology & Nephrology GA 739KH UT WOS:000288715301441 ER PT J AU Weinert, N Piceno, Y Ding, GC Meincke, R Heuer, H Berg, G Schloter, M Andersen, G Smalla, K AF Weinert, Nicole Piceno, Yvette Ding, Guo-Chun Meincke, Remo Heuer, Holger Berg, Gabriele Schloter, Michael Andersen, Gary Smalla, Kornelia TI PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE 16S rRNA genes; community DNA; clone library; PhyloChip; potato rhizosphere ID GRADIENT GEL-ELECTROPHORESIS; COMMUNITY STRUCTURE; TRANSGENIC POTATOES; MICROBIAL DIVERSITY; FLUORESCENT PSEUDOMONADS; MOLECULAR ANALYSIS; SOIL; RNA; POPULATIONS; MICROARRAY AB The phylogenetic composition of bacterial communities in the rhizosphere of three potato cultivars grown at two distant field sites was analysed. Ribosomal gene fragments amplified from total community DNA were hybridized to PhyloChips. A total of 2432 operational taxonomic units (OTUs) were detected by the PhyloChips, of which 65% were found in the rhizosphere of all cultivars at both field sites. From all detected OTUs, 9% revealed a cultivar-dependent abundance at the one or the other field site and 4% at both sites. Differential abundance on the three cultivars was mainly observed for OTUs belonging to the Pseudomonadales, Actinomycetales and Enterobacteriales. More than 40% of OTUs belonging to Bradyrhizobiales, Sphingomonadales, Burkholderiales, Rhodocyclales, Xanthomonadales and Actinomycetales differed significantly in their abundance between the sites. A sequence analysis of six 16S rRNA gene clone libraries corresponded well with the taxonomic community structure evidenced by the PhyloChip hybridization. Most ribotypes matched OTUs detected by the PhyloChip. Those OTUs that responded to the potato cultivar at both field sites might be of interest in view of cultivar-specific effects on bacterial biocontrol strains and pathogens. C1 [Weinert, Nicole; Ding, Guo-Chun; Heuer, Holger; Smalla, Kornelia] Julius Kuhn Inst, Fed Res Ctr Cultivated Plants JKI, Inst Epidemiol & Pathogen Diagnost, D-38104 Braunschweig, Germany. [Piceno, Yvette; Andersen, Gary] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Meincke, Remo; Berg, Gabriele] Graz Univ Technol, A-8010 Graz, Austria. [Schloter, Michael] Helmholtz Zentrum Munchen, Dept Terr Ecogenet, Oberschleissheim, Germany. RP Smalla, K (reprint author), Julius Kuhn Inst, Fed Res Ctr Cultivated Plants JKI, Inst Epidemiol & Pathogen Diagnost, Messeweg 11-12, D-38104 Braunschweig, Germany. EM kornelia.smalla@jki.bund.de RI Smalla, Kornelia/H-4002-2011; ding, guo-chun/A-6821-2012; Heuer, Holger/B-9329-2008; Piceno, Yvette/I-6738-2016; Andersen, Gary/G-2792-2015 OI ding, guo-chun/0000-0001-6702-3782; Heuer, Holger/0000-0001-6044-8171; Piceno, Yvette/0000-0002-7915-4699; Andersen, Gary/0000-0002-1618-9827 FU Bundesministerium fur Bildung und Forschung [0313277B]; DFG [SPP1315]; US Department of Energy by the University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Rathmann Family Foundation; California State Water Resources Control Board Proposition 50 Clean Beaches Initiative FX This work was funded by grant 0313277B from the Bundesministerium fur Bildung und Forschung. G.-C. D. was supported by grant SPP1315 of the DFG. Part of this work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231 and funded by the Rathmann Family Foundation and the California State Water Resources Control Board Proposition 50 Clean Beaches Initiative grant. The authors would like to thank J. Dennert and F. X. Maidl for the perfect management of the experimental plots in Roggenstein and Oberviehhausen. I.-M. Jungkurth is gratefully acknowledged for critically reading the manuscript. NR 45 TC 60 Z9 63 U1 5 U2 52 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD MAR PY 2011 VL 75 IS 3 BP 497 EP 506 DI 10.1111/j.1574-6941.2010.01025.x PG 10 WC Microbiology SC Microbiology GA 710LK UT WOS:000286513000012 PM 21204872 ER PT J AU Wu, XA Monchy, S Taghavi, S Zhu, W Ramos, J van der Lelie, D AF Wu, Xiao Monchy, Sebastien Taghavi, Safiyh Zhu, Wei Ramos, Juan van der Lelie, Daniel TI Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida SO FEMS MICROBIOLOGY REVIEWS LA English DT Review DE Pseudomonas putida; comparative genomics; W619; KT2440; F1; GB-1 ID COPPER RESISTANCE OPERON; ESCHERICHIA-COLI K-12; ALTERNARIA-ALTERNATA; CATABOLIC PATHWAY; OUTER-MEMBRANE; CUPRIAVIDUS-METALLIDURANS; CRYPTOCOCCUS-NEOFORMANS; MULTICOPPER OXIDASE; TOLUENE DEGRADATION; MANGANESE OXIDATION AB Pseudomonas putida is a gram-negative rod-shaped gammaproteobacterium that is found throughout various environments. Members of the species P. putida show a diverse spectrum of metabolic activities, which is indicative of their adaptation to various niches, which includes the ability to live in soils and sediments contaminated with high concentrations of heavy metals and organic contaminants. Pseudomonas putida strains are also found as plant growth-promoting rhizospheric and endophytic bacteria. The genome sequences of several P. putida species have become available and provide a unique tool to study the specific niche adaptation of the various P. putida strains. In this review, we compare the genomes of four P. putida strains: the rhizospheric strain KT2440, the endophytic strain W619, the aromatic hydrocarbon-degrading strain F1 and the manganese-oxidizing strain GB-1. Comparative genomics provided a powerful tool to gain new insights into the adaptation of P. putida to specific lifestyles and environmental niches, and clearly demonstrated that horizontal gene transfer played a key role in this adaptation process, as many of the niche-specific functions were found to be encoded on clearly defined genomic islands. C1 [Wu, Xiao; Monchy, Sebastien; Taghavi, Safiyh; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Wu, Xiao; Zhu, Wei] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Ramos, Juan] EEZ CSIC, Granada, Spain. RP van der Lelie, D (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM vdlelied@bnl.gov OI Ramos, Juan L./0000-0002-8731-7435 FU US Department of Energy, Office of Science, BER [KP1102010, DE-AC02-98CH10886]; Brookhaven National Laboratory [LDRD09-005]; US Department of Energy; US Department of Energy's Office of Science; Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This work was supported by the US Department of Energy, Office of Science, BER, project number KP1102010 under contract DE-AC02-98CH10886. X.W., S.M., S.T. and D.v.d.L were supported by Laboratory Directed Research and Development funds (LDRD09-005) at the Brookhaven National Laboratory under contract with the US Department of Energy. Thanks are due to Claudine Medigue and the team of the Genoscope annotation platform for their help and the use of the MAGE system for the annotation and comparison of P. putida W619. Sequencing of P. putida W619 was performed at the Joint Genome Institute (JGI) under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. Thanks are due to Max Mergeay for providing precious feedback on heavy metal resistances and their organization in P. putida. NR 122 TC 105 Z9 106 U1 3 U2 65 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0168-6445 J9 FEMS MICROBIOL REV JI Fems Microbiol. Rev. PD MAR PY 2011 VL 35 IS 2 BP 299 EP 323 DI 10.1111/j.1574-6976.2010.00249.x PG 25 WC Microbiology SC Microbiology GA 714VR UT WOS:000286837600004 PM 20796030 ER PT J AU Sun, YG An, CH AF Sun, Yugang An, Changhua TI Shaped gold and silver nanoparticles SO FRONTIERS OF MATERIALS SCIENCE LA English DT Review DE shaped nanoparticles; geometric symmetry; internal crystalline structure; multiple twins; gold; silver AB Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism. C1 [Sun, Yugang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [An, Changhua] China Univ Petr, Coll Chem & Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266555, Peoples R China. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 152 TC 21 Z9 22 U1 4 U2 47 PU HIGHER EDUCATION PRESS PI BEIJING PA SHATANHOU ST 55, BEIJING 100009, PEOPLES R CHINA SN 2095-025X EI 2095-0268 J9 FRONT MATER SCI JI Front. Mater. Sci. PD MAR PY 2011 VL 5 IS 1 BP 1 EP 24 DI 10.1007/s11706-011-0100-1 PG 24 WC Materials Science, Multidisciplinary SC Materials Science GA V32EV UT WOS:000208935400001 ER PT J AU Li, T Hung, MS Wang, YC Mao, JH Tan, JL Jahan, K Roos, H Xu, ZD Jablons, DM You, LA AF Li, Tong Hung, Ming-Szu Wang, Yucheng Mao, Jian-Hua Tan, Jia-Li Jahan, Kenneth Roos, Hannah Xu, Zhidong Jablons, David M. You, Liang TI Transgenic Mice for Cre-Inducible Overexpression of the Cul4A Gene SO GENESIS LA English DT Article DE Cul4A; Cre-mediated expression; mouse model ID SITE-SPECIFIC RECOMBINATION; UBIQUITIN LIGASE MACHINERY; REPORTER MOUSE LINE; MEDIATED RECOMBINATION; EXPRESSION AB The Cullin 4A (Cul4A) gene is important in cell survival, development, growth, and cell cycle control and is amplified in breast and hepatocellular cancers. Recently, we reported that Cul4A plays an oncogenic role in the pathogenesis of mesothelioma. An important strategy for studying Cul4A in different tissues is targeted overexpression of this gene in vivo. Studies of Cul4A in mice have been restricted to the loss-of-function studies using Cul4A knockout mice; gain-of-function studies of Cul4A using transgenic mice have not been reported. We, therefore, generated a gain-of-function transgenic mouse model that over-expresses Cul4A in a Cre-dependent manner. Before Cre recombination, these mice express LacZ during development in most adult tissues. After Cre-mediated excision of the LacZ reporter, the transfected Cul4A gene is expressed along with a C-terminal Myc-tag in different tissues. In this study, Cre-excision was induced in mouse lungs by inhalation of an adenovirus vector encoding Cre recombinase. This mouse model provides a valuable resource for investigating the significance of Cul4A overexpression in various tissues. genesis 49:134-141, 2011. (C) 2011 Wiley-Liss, Inc. C1 [Li, Tong; Hung, Ming-Szu; Jahan, Kenneth; Roos, Hannah; Xu, Zhidong; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. [Li, Tong] Capital Univ Med Sci, Beijing Chao Yang Hosp, Dept Thorac Surg, Beijing, Peoples R China. [Hung, Ming-Szu] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Tan, Jia-Li] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Tan, Jia-Li] Fourth Mil Med Univ, Sch Stomatol, Dept Orthodont, Xian 710032, Shaanxi Prov, Peoples R China. [Tan, Jia-Li] Univ Calif San Francisco, Dept Orofacial Sci, San Francisco, CA 94143 USA. RP Jablons, DM (reprint author), Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. EM Liang.You@ucsfmedctr.org FU National Institutes of Health [1R01 CA140654-01A1]; Estate of Norman Mancini; Barbara Isackson Lung Cancer Research Fund FX Contract grant sponsor: National Institutes of Health, Contract grant number: 1R01 CA140654-01A1 (to L.Y.), Contract grant sponsor: Estate of Norman Mancini and the Barbara Isackson Lung Cancer Research Fund NR 16 TC 8 Z9 8 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1526-954X J9 GENESIS JI Genesis PD MAR PY 2011 VL 49 IS 3 BP 134 EP 141 DI 10.1002/dvg.20708 PG 8 WC Developmental Biology; Genetics & Heredity SC Developmental Biology; Genetics & Heredity GA 740SP UT WOS:000288815000004 PM 21381181 ER PT J AU Haas, BJ Gevers, D Earl, AM Feldgarden, M Ward, DV Giannoukos, G Ciulla, D Tabbaa, D Highlander, SK Sodergren, E Methe, B DeSantis, TZ Petrosino, JF Knight, R Birren, BW AF Haas, Brian J. Gevers, Dirk Earl, Ashlee M. Feldgarden, Mike Ward, Doyle V. Giannoukos, Georgia Ciulla, Dawn Tabbaa, Diana Highlander, Sarah K. Sodergren, Erica Methe, Barbara DeSantis, Todd Z. Petrosino, Joseph F. Knight, Rob Birren, Bruce W. CA Human Microbiome Consortium TI Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons SO GENOME RESEARCH LA English DT Article ID MICROBIAL DIVERSITY; RARE BIOSPHERE; INTRAGENOMIC HETEROGENEITY; INTERGENOMIC RECOMBINATION; GENES; CONSEQUENCE; LIBRARIES; COAMPLIFICATION; AMPLIFICATION; ALIGNMENTS AB Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. C1 [Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Birren, Bruce W.] Broad Inst, Genome Sequencing & Anal Program, Cambridge, MA 02142 USA. [Highlander, Sarah K.; Petrosino, Joseph F.] Baylor Coll Med, Human Genome Sequencing Ctr, Houston, TX 77030 USA. [Highlander, Sarah K.; Petrosino, Joseph F.] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Sodergren, Erica] Washington Univ, Sch Med, Genome Ctr, St Louis, MO 63108 USA. [Methe, Barbara] J Craig Venter Inst, Rockville, MD 20850 USA. [DeSantis, Todd Z.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. RP Haas, BJ (reprint author), Broad Inst, Genome Sequencing & Anal Program, Cambridge, MA 02142 USA. EM bhaas@broadinstitute.org RI Knight, Rob/D-1299-2010; OI Earl, Ashlee/0000-0001-7857-9145 FU NIH [U54-HG003273, U54-HG004973, U01-HG004866]; Broad Institute [U54-HG004969]; NIAID [HHSN27220090018C]; J. Craig Venter Institute (NIAID) [N01-AI30071, U54-AI084844]; Washington University [U54-HG003079, U54-HG004968] FX We thank Qiandong Zeng and Jared White for compiling the bacterial genome-based 16S data set, Robert Edgar and Eric Alm for helpful discussions regarding chimera detection algorithms, and Julie Segre and Sean Conlan for helpful comments on the manuscript. We acknowledge NIH for funding this project with awards to the Baylor College of Medicine (grants U54-HG003273 and U54-HG004973), the Broad Institute (grant U54-HG004969 and NIAID contract HHSN27220090018C), the J. Craig Venter Institute (NIAID contract N01-AI30071 and grant U54-AI084844), Washington University (grants U54-HG003079 and U54-HG004968), and NIH common fund contract U01-HG004866, a Data Analysis and Co-ordination Center for the Human Microbiome Project to Gary Andersen (Lawrence Berkeley National Laboratory). NR 37 TC 810 Z9 830 U1 15 U2 154 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD MAR PY 2011 VL 21 IS 3 BP 494 EP 504 DI 10.1101/gr.112730.110 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 727ZE UT WOS:000287841100015 PM 21212162 ER PT J AU Griera, A Bons, PD Jessell, MW Lebensohn, RA Evans, L Gomez-Rivas, E AF Griera, Albert Bons, Paul D. Jessell, Mark W. Lebensohn, Ricardo A. Evans, Lynn Gomez-Rivas, Enrique TI Strain localization and porphyroclast rotation SO GEOLOGY LA English DT Article ID SIMPLE SHEAR-FLOW; PORPHYROBLAST ROTATION; RIGID PARTICLES; ANALOG EXPERIMENTS; ANISOTROPIC GRAIN; DEFORMATION; BEHAVIOR; INCLUSIONS; INTERFACE; PATTERNS AB It has been debated for decades whether rigid inclusions, such as porphyroclasts and porphyroblasts, do or do not rotate in a softer matrix during deformation. Experiments and numerical simulations with viscous matrix rheologies show ongoing rotation of circular inclusions, whereas using Mohr-Coulomb plasticity results in nonrotation. Because the rocks in which inclusions are found normally undergo deformation by dislocation creep, we applied a full-field crystal plasticity approach to investigate the rotation behavior of rigid circular inclusions. We show that the inclusion's rotation strongly depends on the anisotropy of the matrix minerals. Strongly anisotropic minerals will develop shear bands that reduce the rotation of inclusions. Inhibition of rotation can only occur after a significant amount of strain. Our results may help to explain why geologic rigid objects often show evidence for rotation, but not necessarily in accordance with the viscous theory that is usually applied to these systems. C1 [Griera, Albert] Univ Autonoma Barcelona, Dept Geol, E-08193 Bellaterra, Cerdanyola Vall, Spain. [Bons, Paul D.; Gomez-Rivas, Enrique] Univ Tubingen, Inst Geowissensch, D-72074 Tubingen, Germany. [Jessell, Mark W.] Univ Toulouse, UPS SVT OMP, F-31400 Toulouse, France. [Jessell, Mark W.] LMTG, IRD, F-31400 Toulouse, France. [Lebensohn, Ricardo A.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Evans, Lynn] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. RP Griera, A (reprint author), Univ Autonoma Barcelona, Dept Geol, E-08193 Bellaterra, Cerdanyola Vall, Spain. EM albert.griera@uab.cat RI Gomez-Rivas, Enrique/A-1751-2009; Lebensohn, Ricardo/A-2494-2008; Bons, Paul/F-2942-2011; Griera, Albert/G-8443-2013; Jessell, Mark/H-5132-2014; OI Gomez-Rivas, Enrique/0000-0002-1317-6289; Lebensohn, Ricardo/0000-0002-3152-9105; Bons, Paul/0000-0002-6469-3526; Griera, Albert/0000-0003-4598-8385; jessell, mark/0000-0002-0375-7311; Evans, Lynn/0000-0002-0954-6072 FU European Science Foundation under European Commission [ERAS-CT-2003-980409]; Spanish MCINN (Ministerio de Ciencia e Innovacion) [CGL2010-14890] FX We thank three anonymous reviewers for their constructive comments. This work was supported by the European Science Foundation under the EUROCORES Programme, EuroMinSci, MinSubStrDyn, No. ERAS-CT-2003-980409 of the European Commission, DG Research, FP6. Griera acknowledges support by Spanish MCINN (Ministerio de Ciencia e Innovacion) project CGL2010-14890. NR 36 TC 22 Z9 22 U1 0 U2 10 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD MAR PY 2011 VL 39 IS 3 BP 275 EP 278 DI 10.1130/G31549.1 PG 4 WC Geology SC Geology GA 721SI UT WOS:000287374900023 ER PT J AU Oldenburg, CM Maroto-Valer, MM AF Oldenburg, Curtis M. Maroto-Valer, M. Mercedes TI Welcome SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 [Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Maroto-Valer, M. Mercedes] Univ Nottingham, Nottingham NG7 2RD, England. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov; mercedes.maroto-valer@nottingham.ac.uk RI Oldenburg, Curtis/L-6219-2013; Maroto-Valer, Mercedes/F-5016-2014 OI Oldenburg, Curtis/0000-0002-0132-6016; Maroto-Valer, Mercedes/0000-0003-1643-2863 NR 4 TC 4 Z9 4 U1 0 U2 3 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD MAR PY 2011 VL 1 IS 1 BP 1 EP 2 DI 10.1002/ghg3.012 PG 2 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LP UT WOS:000208615000001 ER PT J AU Oldenburg, CM AF Oldenburg, Curtis M. TI On carbon footprints and growing energy use SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material AB Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO2 emissions in the next ten years? Curtis M. Oldenburg, Editor-in-Chief, considers his own organization's carbon footprint and answers this critical question. (c) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 90 1116 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), 90 1116 Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 4 TC 0 Z9 0 U1 0 U2 6 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD MAR PY 2011 VL 1 IS 1 BP 5 EP 7 DI 10.1002/ghg3.008 PG 3 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LP UT WOS:000208615000003 ER PT J AU Zhou, QL Birkholzer, JT AF Zhou, Quanlin Birkholzer, Jens T. TI On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2 SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE climate change; geologic sequestration; numerical modeling; pressure attenuation; pressure build-up; storage capacity AB The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO2 is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO2 injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO2/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO2 storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO2 storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects. (c) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Zhou, Quanlin; Birkholzer, Jens T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, QL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM qzhou@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011 OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912 FU Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the US Department of Energy [DEAC02-05CH11231] FX The authors wish to thank two anonymous reviewers and the Editor-in-Chief, Dr Oldenburg, for their constructive suggestions for improving the quality of the manuscript. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the US Department of Energy under Contract No. DEAC02-05CH11231. Th e project is jointly coordinated by NETL and the US Environmental Protection Agency. NR 22 TC 41 Z9 43 U1 1 U2 18 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD MAR PY 2011 VL 1 IS 1 BP 11 EP 20 DI 10.1002/ghg3.001 PG 10 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LP UT WOS:000208615000005 ER PT J AU Gong, R Lu, C Wu, WM Cheng, H Gu, B Watson, D Jardine, PM Brooks, SC Criddle, CS Kitanidis, PK Luo, J AF Gong, R. Lu, C. Wu, W. -M. Cheng, H. Gu, B. Watson, D. Jardine, P. M. Brooks, S. C. Criddle, C. S. Kitanidis, P. K. Luo, J. TI Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework SO GROUND WATER LA English DT Article ID STOCHASTIC-CONVECTIVE TRANSPORT; HIGHLY CONTAMINATED AQUIFER; SOLUTE TRANSPORT; NONLINEAR REACTION; POROUS-MEDIA; ZERO-ORDER; SITU; BIOREMEDIATION; DISPERSION; 1ST-ORDER AB A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. C1 [Gong, R.; Lu, C.; Luo, J.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Wu, W. -M.; Cheng, H.; Criddle, C. S.; Kitanidis, P. K.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Gu, B.; Watson, D.; Jardine, P. M.; Brooks, S. C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Luo, J (reprint author), Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. EM jianluo@ce.gatech.edu RI Brooks, Scott/B-9439-2012; Gu, Baohua/B-9511-2012; Cheng, Hefa/A-1193-2007; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Gu, Baohua/0000-0002-7299-2956; Cheng, Hefa/0000-0003-4911-6971; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, Integrated Field Research Challenge (IFRC) at Oak Ridge National Laboratory (ORNL); DOE [DE-AC05-00OR22725] FX This research was sponsored by the U.S. Department of Energy (DOE) Office of Science, Biological and Environmental Research, as part of the Integrated Field Research Challenge (IFRC) at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for DOE under Contract DE-AC05-00OR22725. The authors thank Dr. O.A. Cirpka for providing the original streamline-based numerical codes, Dr. M. Fienen and Ms. T. Mehlhorn for analytical support. We also thank Dr. L. Semprini, Dr. M. Riley, and an anonymous reviewer for their constructive comments on this work. NR 37 TC 5 Z9 5 U1 3 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD MAR-APR PY 2011 VL 49 IS 2 BP 209 EP 218 DI 10.1111/j.1745-6584.2010.00683.x PG 10 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 724NS UT WOS:000287584100015 PM 20132330 ER PT J AU Bearinger, JP Dugan, LC Baker, BR Hall, SB Ebert, K Mioulet, V Madi, M King, DP AF Bearinger, Jane P. Dugan, Lawrence C. Baker, Brian R. Hall, Sara B. Ebert, Katja Mioulet, Valerie Madi, Mikidache King, Donald P. TI Development and Initial Results of a Low Cost, Disposable, Point-of-Care Testing Device for Pathogen Detection SO IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING LA English DT Article DE Device; disposable; methicillin resistant Staphylococcus aureus (MRSA); point-of-care testing (POCT); triage; virus ID MEDIATED ISOTHERMAL AMPLIFICATION; MOUTH-DISEASE-VIRUS; BLUE AB Development of small footprint, disposable, fast, and inexpensive devices for pathogen detection in the field and clinic would benefit human and veterinary medicine by allowing evidence-based responses to future out breaks. We designed and tested an integrated nucleic acid extraction and amplification device employing a loop-mediated isothermal amplification (LAMP) or reverse transcriptase-LAMP assay. Our system provides a screening tool with polymerase-chain-reaction-level sensitivity and specificity for outbreak detection, response, and recovery. Time to result is similar to 90 min. The device utilizes a swab that collects sample and then transfers it to a disc of cellulose-based nucleic acid binding paper. The disc is positioned within a disposable containment tube with a manual loading port. In order to test for the presence of target pathogens, LAMP reagents are loaded through the tube's port into contact with the sample containing cellulose disc. The reagents then are isothermally heated to 63 degrees C for similar to 1 h to achieve sequence-specific target nucleic acid amplification. Due to the presence of a colorimetric dye, amplification induces visible color change in the reagents from purple to blue. As initial demonstrations, we detected methicillin resistant Staphylococcus aureus genomic DNA, as well as recombinant and live foot-and-mouth disease virus. C1 [Bearinger, Jane P.; Dugan, Lawrence C.; Baker, Brian R.; Hall, Sara B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ebert, Katja; Mioulet, Valerie; Madi, Mikidache; King, Donald P.] AFRC, Inst Anim Hlth, Pirbright Lab, Woking GU24 0NF, Surrey, England. RP Bearinger, JP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jane@llnl.gov; dugan3@llnl.gov; baker69@llnl.gov; hall79@llnl.gov; katja.ebert@bbsrc.ac.uk; valerie.mioulet@bbsrc.ac.uk; mikidache.madi@bbsrc.ac.uk; donald.king@bbsrc.ac.uk RI Baker, Brian/C-1628-2009; Institute, Pirbright/K-4476-2014; OI King, Donald/0000-0002-6959-2708 FU Lawrence Livermore National Laboratory [08-ERD-044, DE-AC52-07NA27344]; National Institute of Biomedical Imaging and Bioengineering [U54EB007959]; U.K. Department for Environment, Food and Rural Affairs [SE1124] FX This work was supported in part by Lawrence Livermore National Laboratory under Project 08-ERD-044 and under Contract DE-AC52-07NA27344, in part by the National Institute of Biomedical Imaging and Bioengineering under Award U54EB007959, and in part by the U.K. Department for Environment, Food and Rural Affairs under Project SE1124. NR 19 TC 23 Z9 24 U1 8 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9294 J9 IEEE T BIO-MED ENG JI IEEE Trans. Biomed. Eng. PD MAR PY 2011 VL 58 IS 3 BP 805 EP 808 DI 10.1109/TBME.2010.2089054 PN 2 PG 4 WC Engineering, Biomedical SC Engineering GA 725RG UT WOS:000287663100018 PM 21342806 ER PT J AU Chertkov, M Pan, F Stepanov, MG AF Chertkov, Michael Pan, Feng Stepanov, Mikhail G. TI Predicting Failures in Power Grids: The Case of Static Overloads SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Distance to failure; power flow; rare events AB Here we develop an approach to predict power grid weak points, and specifically to efficiently identify the most probable failure modes in static load distribution for a given power network. This approach is applied to two examples: Guam's power system and also the IEEE RTS-96 system, both modeled within the static dc power flow model. Our algorithm is a power network adaption of the worst configuration heuristics, originally developed to study low probability events in physics and failures in error-correction. One finding is that, if the normal operational mode of the grid is sufficiently healthy, the failure modes, also called instantons, are sufficiently sparse, i.e., the failures are caused by load fluctuations at only a few buses. The technique is useful for discovering weak links which are saturated at the instantons. It can also identify generators working at the capacity and generators under capacity, thus providing predictive capability for improving the reliability of any power network. C1 [Chertkov, Michael] CNLS, Div Theory, Los Alamos, NM 87545 USA. [Chertkov, Michael] New Mexico Consortium, Los Alamos, NM 87545 USA. [Pan, Feng] Los Alamos Natl Lab, D Div, Los Alamos, NM 87545 USA. [Stepanov, Mikhail G.] UA Tucson, Dept Math, Tucson, AZ 85721 USA. RP Chertkov, M (reprint author), CNLS, Div Theory, Los Alamos, NM 87545 USA. EM chertkov@lanl.gov; fpan@lanl.gov; stepanov@math.arizona.edu RI Chertkov, Michael/O-8828-2015 OI Chertkov, Michael/0000-0002-6758-515X; FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE C52-06NA25396]; DTRA/DOD [BRCALL06-Per3-D-2-0022]; NMC via the NSF [CCF-0829945] FX The work at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE C52-06NA25396. This work was supported in part by DTRA/DOD under Grant BRCALL06-Per3-D-2-0022 on "Network Adaptability from WMD Disruption and Cascading Failures." The work of M. Chertkov was supported in part by NMC via the NSF collaborative grant CCF-0829945 on "Harnessing Statistical Physics for Computing and Communications." Paper no. TSG-00084-2010. NR 31 TC 18 Z9 18 U1 1 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2011 VL 2 IS 1 BP 162 EP 172 DI 10.1109/TSG.2010.2090912 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA V29ZX UT WOS:000208787400017 ER PT J AU Ning, JX Wang, JH Gao, WZ Liu, C AF Ning, Jiaxin Wang, Jianhui Gao, Wenzhong Liu, Cong TI A Wavelet-Based Data Compression Technique for Smart Grid SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Data compression; disturbance analysis; wavelet transform AB This paper proposes a wavelet-based data compression approach for the smart grid (SG). In particular, wavelet transform (WT)-based multiresolution analysis (MRA), as well as its properties, are studied for its data compression and denoising capabilities for power system signals in SG. Selection of the Order 2 Daubechies wavelet and scale 5 as the best wavelet function and the optimal decomposition scale, respectively, for disturbance signals is demonstrated according to the criterion of the maximum wavelet energy of wavelet coefficients (WCs). To justify the proposed method, phasor data are simulated under disturbance circumstances in the IEEE New England 39-bus system. The results indicate that WT-based MRA can not only compress disturbance signals but also depress the sinusoidal and white noise contained in the signals. C1 [Ning, Jiaxin] EnerNex Corp, Knoxville, TN USA. [Wang, Jianhui; Liu, Cong] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Gao, Wenzhong] Univ Denver, Dept Elect & Comp Engn, Denver, CO USA. RP Ning, JX (reprint author), EnerNex Corp, Knoxville, TN USA. EM jning@enernex.com; jianhui.wang@anl.gov; Wenzhong.Gao@du.edu; liuc@anl.gov NR 18 TC 38 Z9 42 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD MAR PY 2011 VL 2 IS 1 BP 212 EP 218 DI 10.1109/TSG.2010.2091291 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA V29ZX UT WOS:000208787400023 ER PT J AU Mitri, FG AF Mitri, F. G. TI Potential-Well Model in Acoustic Tweezers-Comment SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Letter DE Acoustic beams; Acoustics; Laser beams; Optimized production technology; Force; Fluids; Propagation ID ORDER BESSEL BEAM; HYPERGEOMETRIC LASER-BEAMS; QUASI-STANDING WAVES; RADIATION FORCE; OPTICAL MANIPULATION; SELF-RECONSTRUCTION; ELASTIC SPHERE; RIGID SPHERE; VORTEX BEAM; SCATTERING AB The production of acoustical vortices-based potential wells for particle trapping is not only restricted to the use of a Laguerre-Gaussian beam. Other useful types of vortex beams include an r-vortex beam, a non-diffracting high-order Bessel and Bessel-Gauss beam, a fractional (diffracting) high-order Bessel beam, a non-diffracting high-order Bessel beam of fractional type alpha, and a hypergeometric beam to name a few. Representative types of vortex beams are chosen here, but the examples are not exhaustive and additional categories of vortex beams may be reported and investigated. Expressions for the incident acoustic pressure field of various vortex beams are provided. The results should assist in the development of a multitude of vortex-based potential-well models for particle entrapment and manipulation. C1 Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 45 TC 16 Z9 16 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD MAR PY 2011 VL 58 IS 3 BP 662 EP 665 DI 10.1109/TUFFC.2011.1850 PG 4 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 738XA UT WOS:000288674700019 PM 21429858 ER PT J AU Campbell, JH Hayden, JS Marker, A AF Campbell, John H. Hayden, Joseph S. Marker, Alex TI High-Power Solid-State Lasers: a Laser Glass Perspective SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID NATIONAL IGNITION FACILITY; RARE-EARTH IONS; THERMAL-SHOCK PARAMETER; DOPED SILICA GLASS; NDGLASS LASER; PHOSPHATE; PERFORMANCE; SYSTEM; ENERGY; PHYSICS AB Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW), and high average power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research, and materials processing, respectively. The requirements for these three laser systems are different, necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating, and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW, and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses are summarized. Proposed advances in these three laser systems will require new glasses and new melting methods, which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades. C1 [Campbell, John H.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hayden, Joseph S.; Marker, Alex] Schott N Amer Inc, Duryea, PA 18642 USA. RP Campbell, JH (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM campbelljh@comcast.net NR 88 TC 35 Z9 37 U1 2 U2 33 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD MAR PY 2011 VL 2 IS 1 SI SI BP 3 EP 29 DI 10.1111/j.2041-1294.2011.00044.x PG 27 WC Materials Science, Ceramics SC Materials Science GA 034CO UT WOS:000310847900002 ER EF