FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Zakharov, LE AF Zakharov, Leonid E. TI Comment on "Wall forces produced during ITER disruptions" [Phys. Plasmas 17, 082505 (2010)] SO PHYSICS OF PLASMAS LA English DT Editorial Material C1 Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Zakharov, LE (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. NR 1 TC 9 Z9 9 U1 0 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD DEC PY 2010 VL 17 IS 12 AR 124703 DI 10.1063/1.3522759 PG 1 WC Physics, Fluids & Plasmas SC Physics GA 700UT UT WOS:000285770500086 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Au revoir, kilogram SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD DEC PY 2010 VL 23 IS 12 BP 19 EP 19 PG 1 WC Physics, Multidisciplinary SC Physics GA 700AC UT WOS:000285703500022 ER PT J AU Hanik, N Gomez, S Schueller, M Orians, CM Ferrieri, RA AF Hanik, Nils Gomez, Sara Schueller, Michael Orians, Colin M. Ferrieri, Richard A. TI Use of gaseous 13NH(3) administered to intact leaves of Nicotiana tabacum to study changes in nitrogen utilization during defence induction SO PLANT CELL AND ENVIRONMENT LA English DT Article DE amino acid synthesis; methyl jasmonate; plant defences; short-lived radiotracers ID INITIAL ORGANIC PRODUCTS; TRUNCATULA CELL-CULTURES; ONE-CARBON METABOLISM; METHYL JASMONATE; FLUX CHARACTERISTICS; HERBIVORE ATTACK; PLANT TOLERANCE; AMMONIUM UPTAKE; ROOT-NODULES; GLYCINE-MAX AB Nitrogen-13 (t(1/2) 9.97 m), a radioactive isotope of nitrogen, offers unique opportunities to explore plant nitrogen utilization over short time periods. Here we describe a method for administering 13N as gaseous 13NH(3) to intact leaves of Nicotiana tabacum L. (cv Samsun), and measuring the labelled amino acids using radio high-performance liquid chromatography (HPLC) on tissue extract. We used this method to study the effects of defence induction on plant nitrogen utilization by applying treatments of methyl jasmonate (MeJA), a potent defence elicitor. MeJA caused a significant increase relative to controls in key [13N]amino acids, including serine, glycine and alanine by 4 h post-treatment, yet had no effect on 13NH(3) incorporation, a process that is primarily under the control of the glutamine synthatase/glutamate synthase pathway (GS/GOGAT) in cellular photorespiration. We suggest that the reconfiguration of nitrogen metabolism may reflect induction of non-photorespiratory sources of nitrogen to better serve the plant's defences. C1 [Schueller, Michael; Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Hanik, Nils] Johannes Gutenberg Univ Mainz, Fachbereich Chem, D-55099 Mainz, Germany. [Gomez, Sara] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. [Orians, Colin M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA. RP Ferrieri, RA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM rferrieri@bnl.gov FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886]; National Research Initiative of the USDA National Institute of Food and Agriculture [2007-35302-18351]; Deutscher Akademischer Austauschdienst (DAAD), Bonn FX This research was supported in part by the U.S. Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-98CH10886, in part by the National Research Initiative of the USDA National Institute of Food and Agriculture, under grant 2007-35302-18351, and by Deutscher Akademischer Austauschdienst (DAAD), Bonn, which supported N.H. NR 51 TC 7 Z9 7 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD DEC PY 2010 VL 33 IS 12 BP 2173 EP 2179 DI 10.1111/j.1365-3040.2010.02215.x PG 7 WC Plant Sciences SC Plant Sciences GA 679MW UT WOS:000284166500014 PM 20716065 ER PT J AU Vanholme, R Ralph, J Akiyama, T Lu, FC Pazo, JR Kim, H Christensen, JH Van Reusel, B Storme, V De Rycke, R Rohde, A Morreel, K Boerjan, W AF Vanholme, Ruben Ralph, John Akiyama, Takuya Lu, Fachuang Pazo, Jorge Rencoret Kim, Hoon Christensen, Jorgen Holst Van Reusel, Brecht Storme, Veronique De Rycke, Riet Rohde, Antje Morreel, Kris Boerjan, Wout TI Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis SO PLANT JOURNAL LA English DT Article DE cell wall; benzodioxane; NMR; phenolic profiling; monolignol; irx ID CAFFEIC ACID 3-O-METHYLTRANSFERASE; O-METHYLTRANSFERASE ACTIVITY; SECONDARY CELL-WALL; FERULATE 5-HYDROXYLASE; 5-HYDROXYCONIFERYL ALCOHOL; TRANSGENIC ALFALFA; MUTANTS DEFICIENT; PLANT-GROWTH; S-LIGNIN; THALIANA AB P>Lignin engineering is a promising strategy to optimize lignocellulosic plant biomass for use as a renewable feedstock for agro-industrial applications. Current efforts focus on engineering lignin with monomers that are not normally incorporated into wild-type lignins. Here we describe an Arabidopsis line in which the lignin is derived to a major extent from a non-traditional monomer. The combination of mutation in the gene encoding caffeic acid O-methyltransferase (comt) with over-expression of ferulate 5-hydroxylase under the control of the cinnamate 4-hydroxylase promoter (C4H:F5H1) resulted in plants with a unique lignin comprising almost 92% benzodioxane units. In addition to biosynthesis of this particular lignin, the comt C4H:F5H1 plants revealed massive shifts in phenolic metabolism compared to the wild type. The structures of 38 metabolites that accumulated in comt C4H:F51 plants were resolved by mass spectral analyses, and were shown to derive from 5-hydroxy-substituted phenylpropanoids. These metabolites probably originate from passive metabolism via existing biochemical routes normally used for 5-methoxylated and 5-unsubstituted phenylpropanoids and from active detoxification by hexosylation. Transcripts of the phenylpropanoid biosynthesis pathway were highly up-regulated in comt C4H:F5H1 plants, indicating feedback regulation within the pathway. To investigate the role of flavonoids in the abnormal growth of comt C4H:F5H1 plants, a mutation in a gene encoding chalcone synthase (chs) was crossed in. The resulting comt C4H:F5H1 chs plants showed partial restoration of growth. However, a causal connection between flavonoid deficiency and this restoration of growth was not demonstrated; instead, genetic interactions between phenylpropanoid and flavonoid biosynthesis could explain the partial restoration. These genetic interactions must be taken into account in future cell-wall engineering strategies. C1 [Vanholme, Ruben; Christensen, Jorgen Holst; Van Reusel, Brecht; Storme, Veronique; De Rycke, Riet; Rohde, Antje; Morreel, Kris; Boerjan, Wout] Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Vanholme, Ruben; Christensen, Jorgen Holst; Van Reusel, Brecht; Storme, Veronique; De Rycke, Riet; Rohde, Antje; Morreel, Kris; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Genet, B-9052 Ghent, Belgium. [Ralph, John; Akiyama, Takuya; Lu, Fachuang; Pazo, Jorge Rencoret; Kim, Hoon] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Ralph, John; Akiyama, Takuya; Lu, Fachuang; Pazo, Jorge Rencoret; Kim, Hoon] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Boerjan, W (reprint author), Univ Ghent VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. EM wout.boerjan@psb.vib-ugent.be RI RENCORET, JORGE/E-1747-2013; OI RENCORET, JORGE/0000-0003-2728-7331; Boerjan, Wout/0000-0003-1495-510X FU United States Department of Energy (DOE) [DE-AI02-00ER15067]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; Research Foundation-Flanders [G.0352.05N]; European Community [211982]; Global Climate and Energy Project (GCEP); Ghent University [01MRB510W]; Agency for Innovation by Science and Technology FX The authors thank Clint Chapple (Department of Biochemistry, Purdue University, West Lafayette, IN) for kindly providing the C4H: F5H1 fah1-2 line, Bart Ivens and David Casini for practical assistance, and Martine De Cock for help in preparing the manuscript. We gratefully acknowledge partial funding through the United States Department of Energy (DOE) Energy Biosciences program (grant number DE-AI02-00ER15067) and the DOE Great Lakes Bioenergy Research Center (DOE Office of Science, grant number BER DE-FC02-07ER64494) to J.R., the Research Foundation-Flanders (grant number G.0352.05N), the European Community's 7th Framework Programme (FP7/2007) under grant agreement no. 211982 (RENEWALL), the Global Climate and Energy Project (GCEP) (grants to W.B. for 'Towards New Degradable Lignin Types' and to J.R. for 'Efficient Biomass Conversion: Delineating the Best Lignin Monomer Substitutes'), and the Multidisciplinary Research Partnership 'Biotechnology for a Sustainable Economy' (01MRB510W) of Ghent University. Some of the NMR experiments on the Bruker DMX-500 cryoprobe system made use of the National Magnetic Resonance Facility at Madison (http://www.nmrfam.wisc.edu). R.V. is indebted to the Agency for Innovation by Science and Technology for a pre-doctoral fellowship. NR 52 TC 56 Z9 57 U1 2 U2 67 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0960-7412 J9 PLANT J JI Plant J. PD DEC PY 2010 VL 64 IS 6 BP 885 EP 897 DI 10.1111/j.1365-313X.2010.04353.x PG 13 WC Plant Sciences SC Plant Sciences GA 693ER UT WOS:000285207900001 PM 20822504 ER PT J AU Nguyen, HT Mishra, G Whittle, E Bevan, SA Merlo, AO Walsh, TA Shanklin, J AF Nguyen, Huu Tam Mishra, Girish Whittle, Edward Bevan, Scott A. Merlo, Ann Owens Walsh, Terence A. Shanklin, John TI Metabolic Engineering of Seeds Can Achieve Levels of omega-7 Fatty Acids Comparable with the Highest Levels Found in Natural Plant Sources SO PLANT PHYSIOLOGY LA English DT Article ID ACYL CARRIER PROTEIN; SUBSTRATE-SPECIFICITY; ARABIDOPSIS-THALIANA; ACP THIOESTERASES; TRANSGENIC PLANTS; OIL; DESATURASE; PHASEOLIN; GENE; BOND AB Plant oils containing omega-7 fatty acids (FAs; palmitoleic 16:1 Delta(9) and cis-vaccenic 18:1 Delta(11)) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of omega-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1 Delta(9) with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased omega-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the beta-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of omega-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased omega-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds. C1 [Nguyen, Huu Tam; Mishra, Girish; Whittle, Edward; Shanklin, John] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Bevan, Scott A.; Merlo, Ann Owens; Walsh, Terence A.] Dow AgroSci, Discovery Res, Indianapolis, IN 46268 USA. RP Shanklin, J (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM shanklin@bnl.gov RI Walsh, Terence/K-1863-2012 OI Walsh, Terence/0000-0003-2640-8189 FU Office of Basic Energy Sciences of the U.S. Department of Energy; Dow Chemical Company; Dow AgroSciences FX This work was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy, The Dow Chemical Company, and Dow AgroSciences. NR 34 TC 32 Z9 36 U1 2 U2 20 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD DEC PY 2010 VL 154 IS 4 BP 1897 EP 1904 DI 10.1104/pp.110.165340 PG 8 WC Plant Sciences SC Plant Sciences GA 688FA UT WOS:000284834000025 PM 20943853 ER PT J AU Chu, MS Okabayashi, M AF Chu, M. S. Okabayashi, M. TI Stabilization of the external kink and the resistive wall mode SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Review ID REVERSED-FIELD PINCH; HIGH-BETA PLASMAS; MHD STABILITY CODE; DIII-D PLASMAS; TOROIDAL-MOMENTUM DISSIPATION; ACTIVE FEEDBACK STABILIZATION; ERROR-FIELD; D TOKAMAK; MAGNETOHYDRODYNAMIC MODES; HYDROMAGNETIC STABILITY AB The pursuit of steady-state economic production of thermonuclear fusion energy has led to research on the stabilization of the external kink and the resistive wall mode. Advances in both experiment and theory, together with improvements in diagnostics, heating and feedback methods have led to substantial and steady progress in the understanding and stabilization of these instabilities. Many of the theory and experimental techniques and results that have been developed are useful not only for the stabilization of the resistive wall mode. They can also be used to improve the general performance of fusion confinement devices. The conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed. C1 [Chu, M. S.] Gen Atom Co, San Diego, CA 92186 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Chu, MS (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FG03-95ER54309, DE-AC02-76CH03073] FX This work was supported by the US Department of Energy under DE-FG03-95ER54309 and DE-AC02-76CH03073. The authors would like to thank the referee for constructive comments; Dr Raffi Nazikian for encouragement, Drs R J LaHaye, Y K In, Y Q Liu, Raffi Nazikian, S A Sabbagh and the referee for reading carefully through the manuscript. They also acknowledge Dr S A Sabbagh for clarification of the experimental results from NSTX. They would also like to thank their colleagues Drs J Bialek, T Bolzonella, A M Garofalo, S C Guo, G L Jackson, M Lanctot, G Matsunaga, G A Navratil, H Reimerdes, K C Shaing, E J Strait and M Takechi for constructive comments. NR 204 TC 107 Z9 107 U1 1 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 123001 DI 10.1088/0741-3335/52/12/123001 PN 1 PG 102 WC Physics, Fluids & Plasmas SC Physics GA 743YS UT WOS:000289056900001 ER PT J AU Fasoli, A Burckel, A Federspiel, L Furno, I Gustafson, K Iraji, D Labit, B Loizu, J Plyushchev, G Ricci, P Theiler, C Diallo, A Mueller, SH Podesta, M Poli, F AF Fasoli, A. Burckel, A. Federspiel, L. Furno, I. Gustafson, K. Iraji, D. Labit, B. Loizu, J. Plyushchev, G. Ricci, P. Theiler, C. Diallo, A. Mueller, S. H. Podesta, M. Poli, F. TI Electrostatic instabilities, turbulence and fast ion interactions in the TORPEX device SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 37th European-Physical-Society-Conference-on-Plasma-Physics CY JUN 22-25, 2010 CL Univ Campus, Helix Arts Ctr, Dublin, IRELAND HO Univ Campus, Helix Arts Ctr ID EDGE TURBULENCE; PLASMA; TRANSPORT; FIELD; DYNAMICS; PROGRESS; HELIUM; WAVES; MODE; BLOB AB Electrostatic turbulence, related structures and their effect on particle, heat and toroidal momentum transport are investigated in TORPEX simple magnetized plasmas using high-resolution diagnostics, control parameters, linear fluid models and nonlinear numerical simulations. The nature of the dominant instabilities is controlled by the value of the vertical magnetic field, B(v), relative to that of the toroidal field, B(T). For B(v)/B(T) > 3%, only ideal interchange instabilities are observed. A critical pressure gradient to drive the interchange instability is experimentally identified. Interchange modes give rise to blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from electrostatic probe measurements using pattern recognition methods. The observed values span a wide range and are described by a single analytical expression, from the small blob size regime in which the blob velocity is limited by cross-field ion polarization currents, to the large blob size regime in which the limitation to the blob velocity comes from parallel currents to the sheath. As a first attempt at controlling the blob dynamical properties, limiter configurations with varying angles between field lines and the conducting surface of the limiter are explored. Mach probe measurements clearly demonstrate a link between toroidal flows and blobs. To complement probe data, a fast framing camera and amovable gas puffing system are installed. Density and light fluctuations show similar signatures of interchange activity. Further developments of optical diagnostics, including an image intensifier and laser-induced fluorescence, are under way. The effect of interchange turbulence on fast ion phase space dynamics is studied using movable fast ion source and detector in scenarios for which the development from linear waves into blobs is fully characterized. A theory validation project is conducted in parallel with TORPEX experiments, based on quantitative comparisons of observables that are defined in the same way in the data and in the output of numerical codes, including 2D and 3D local and global simulations. C1 [Fasoli, A.; Burckel, A.; Federspiel, L.; Furno, I.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Plyushchev, G.; Ricci, P.; Theiler, C.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. [Diallo, A.; Podesta, M.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mueller, S. H.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [Poli, F.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. RP Fasoli, A (reprint author), Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. OI Gustafson, Kyle/0000-0002-1903-9015; Theiler, Christian/0000-0003-3926-1374 NR 58 TC 39 Z9 39 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 124020 DI 10.1088/0741-3335/52/12/124020 PN 2 PG 22 WC Physics, Fluids & Plasmas SC Physics GA 705ZX UT WOS:000286181100021 ER PT J AU Terranova, D Bonfiglio, D Boozer, AH Cooper, AW Gobbin, M Hirshman, SP Lorenzini, R Marrelli, L Martines, E Momo, B Pomphrey, N Predebon, I Sanchez, R Spizzo, G Agostini, M Alfier, A Apolloni, L Auriemma, F Baruzzo, M Bolzonella, T Bonomo, F Brombin, M Canton, A Cappello, S Carraro, L Cavazzana, R Dal Bello, S Delogu, R De Masi, G Drevlak, M Fassina, A Ferro, A Franz, P Gaio, E Gazza, E Giudicotti, L Grando, L Guo, SC Innocente, P Lopez-Bruna, D Manduchi, G Marchiori, G Martin, P Martini, S Menmuir, S Munaretto, S Novello, L Paccagnella, R Pasqualotto, R Pereverzev, GV Piovan, R Piovesan, P Piron, L Puiatti, ME Recchia, M Sattin, F Scarin, P Serianni, G Soppelsa, A Spagnolo, S Spolaore, M Taliercio, C Valisa, M Vianello, N Wang, Z Zamengo, A Zaniol, B Zanotto, L Zanca, P Zuin, M AF Terranova, D. Bonfiglio, D. Boozer, A. H. Cooper, A. W. Gobbin, M. Hirshman, S. P. Lorenzini, R. Marrelli, L. Martines, E. Momo, B. Pomphrey, N. Predebon, I. Sanchez, R. Spizzo, G. Agostini, M. Alfier, A. Apolloni, L. Auriemma, F. Baruzzo, M. Bolzonella, T. Bonomo, F. Brombin, M. Canton, A. Cappello, S. Carraro, L. Cavazzana, R. Dal Bello, S. Delogu, R. De Masi, G. Drevlak, M. Fassina, A. Ferro, A. Franz, P. Gaio, E. Gazza, E. Giudicotti, L. Grando, L. Guo, S. C. Innocente, P. Lopez-Bruna, D. Manduchi, G. Marchiori, G. Martin, P. Martini, S. Menmuir, S. Munaretto, S. Novello, L. Paccagnella, R. Pasqualotto, R. Pereverzev, G. V. Piovan, R. Piovesan, P. Piron, L. Puiatti, M. E. Recchia, M. Sattin, F. Scarin, P. Serianni, G. Soppelsa, A. Spagnolo, S. Spolaore, M. Taliercio, C. Valisa, M. Vianello, N. Wang, Z. Zamengo, A. Zaniol, B. Zanotto, L. Zanca, P. Zuin, M. TI A 3D approach to equilibrium, stability and transport studies in RFX-mod improved regimes SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 37th European-Physical-Society Conference on Plasma Physics CY JUN 22-25, 2010 CL Dublin City Univ, Helix Arts Ctr, Dublin, IRELAND SP European Phys Soc HO Dublin City Univ, Helix Arts Ctr ID REVERSED-FIELD PINCH; TOROIDAL PLASMAS; COEFFICIENTS; CONFINEMENT; EVOLUTION AB The full three-dimensional (3D) approach is now becoming an important issue for all magnetic confinement configurations. It is a necessary condition for the stellarator but also the tokamak and the reversed field pinch (RFP) now cannot be completely described in an axisymmetric framework. For the RFP the observation of self-sustained helical configurations with improved plasma performances require a better description in order to assess a new view on this configuration. In this new framework plasma configuration studies for RFX-mod have been considered both with tools developed for the RFP as well as considering codes originally developed for the stellarator and adapted to the RFP. These helical states are reached through a transition to a very low/reversed shear configuration leading to internal electron transport barriers. These states are interrupted by MHD reconnection events and the large T-e gradients at the barriers indicate that both current and pressure driven modes are to be considered. Furthermore the typically flat T-e profiles in the helical core have raised the issue of the role of electrostatic and electromagnetic turbulence in these reduced chaos regions, so that a stability analysis in the correct 3D geometry is required to address an optimization of the plasma setup. In this view the VMEC code proved to be an effective way to obtain helical equilibria to be studied in terms of stability and transport with a suite of well tested codes. In this work, the equilibrium reconstruction technique as well as the experimental evidence of 3D effects and their first interpretation in terms of stability and transport are presented using both RFP and stellarator tools. C1 [Terranova, D.; Bonfiglio, D.; Gobbin, M.; Lorenzini, R.; Marrelli, L.; Martines, E.; Momo, B.; Predebon, I.; Spizzo, G.; Agostini, M.; Alfier, A.; Apolloni, L.; Auriemma, F.; Baruzzo, M.; Bolzonella, T.; Bonomo, F.; Brombin, M.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Delogu, R.; De Masi, G.; Fassina, A.; Ferro, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Grando, L.; Guo, S. C.; Innocente, P.; Manduchi, G.; Marchiori, G.; Martin, P.; Martini, S.; Menmuir, S.; Munaretto, S.; Novello, L.; Paccagnella, R.; Pasqualotto, R.; Piovan, R.; Piovesan, P.; Piron, L.; Puiatti, M. E.; Recchia, M.; Sattin, F.; Scarin, P.; Serianni, G.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Taliercio, C.; Valisa, M.; Vianello, N.; Wang, Z.; Zamengo, A.; Zaniol, B.; Zanotto, L.; Zanca, P.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Cooper, A. W.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Drevlak, M.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Hirshman, S. P.; Sanchez, R.] ORNL Fus Energy Div, Oak Ridge, TN USA. [Pomphrey, N.; Lopez-Bruna, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Pereverzev, G. V.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. RP Terranova, D (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. EM david.terranova@igi.cnr.it RI Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; zaniol, barbara/L-7745-2013; Cappello, Susanna/H-9968-2013; Spizzo, Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Lopez Bruna, Daniel/L-6539-2014; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Martines, Emilio/B-1418-2009; Bonfiglio, Daniele/I-9398-2012; Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Momo, Barbara/I-7686-2015; spagnolo, silvia/E-9384-2017; OI zaniol, barbara/0000-0001-9934-8370; Cappello, Susanna/0000-0002-2022-1113; Spizzo, Gianluca/0000-0001-8586-2168; Vianello, Nicola/0000-0003-4401-5346; Martines, Emilio/0000-0002-4181-2959; Bonfiglio, Daniele/0000-0003-2638-317X; Marrelli, Lionello/0000-0001-5370-080X; Momo, Barbara/0000-0001-7760-8960; AGOSTINI, MATTEO/0000-0002-3823-1002; Munaretto, Stefano/0000-0003-1465-0971 NR 50 TC 27 Z9 27 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 124023 DI 10.1088/0741-3335/52/12/124023 PN 2 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 705ZX UT WOS:000286181100024 ER PT J AU Wagner, F Becoulet, A Budny, R Erckmann, V Farina, D Giruzzi, G Kamada, Y Kaye, A Koechl, F Lackner, K Marushchenko, N Murakami, M Oikawa, T Parail, V Park, JM Ramponi, G Sauter, O Stork, D Thomas, PR Tran, QM Ward, D Zohm, H Zucca, C AF Wagner, F. Becoulet, A. Budny, R. Erckmann, V. Farina, D. Giruzzi, G. Kamada, Y. Kaye, A. Koechl, F. Lackner, K. Marushchenko, N. Murakami, M. Oikawa, T. Parail, V. Park, J. M. Ramponi, G. Sauter, O. Stork, D. Thomas, P. R. Tran, Q. M. Ward, D. Zohm, H. Zucca, C. TI On the heating mix of ITER SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article; Proceedings Paper CT 37th European-Physical-Society-Conference-on-Plasma-Physics CY JUN 22-25, 2010 CL Univ Campus, Helix Arts Ctr, Dublin, IRELAND HO Univ Campus, Helix Arts Ctr ID CURRENT DRIVE; TRANSPORT; CONFINEMENT; PLASMA; BEAM; PARTICLE; SYSTEMS; JT-60U; MODEL; EDGE AB This paper considers the heating mix of ITER for the two main scenarios. Presently, 73 MW of absorbed power are foreseen in the mix 20/33/20 for ECH, NBI and ICH. Given a sufficient edge stability, Q = 10-the goal of scenario 2-can be reached with 40MW power irrespective of the heating method but depends sensitively inter alia on the H-mode pedestal temperature, the density profile shape and on the characteristics of impurity transport. ICH preferentially heats the ions and would contribute specifically with Delta Q < 1.5. The success of the Q = 5 steady-state scenario 4 with reduced current requires discharges with improved confinement necessitating weakly or strongly reversed shear, f(bs) > 0.5, and strong off-axis current drive (CD). The findings presented here are based on revised CD efficiencies gamma for ECCD and a detailed benchmark of several CD codes. With ECCD alone, the goals of scenario 4 can hardly be reached. Efficient off-axis CD is only possible with NBI. With beams, inductive discharges with f(ni) > 0.8 can be maintained for 3000 s. The conclusion of this study is that the present heating mix of ITER is appropriate. It provides the necessary actuators to induce in a flexible way the best possible scenarios. The development risks of NBI at 1 MeV can be reduced by operation at 0.85 MeV. C1 [Wagner, F.; Erckmann, V.; Lackner, K.; Marushchenko, N.; Zohm, H.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Becoulet, A.; Giruzzi, G.] IRFM, CEA, F-13108 St Paul Les Durance, France. [Budny, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Farina, D.; Ramponi, G.] EURATOM ENEA CNR Assoc, Ist Fis Plasma, I-20125 Milan, Italy. [Kamada, Y.] Japan Atom Energy Res Inst, Naka Fus Res Estab, Naka, Ibaraki 31101, Japan. [Koechl, F.] Assoc EURATOM OAW ATI, Atominst, Tu Wien, Austria. [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Oikawa, T.] EFDA Close Support Unit, D-85748 Garching, Germany. [Parail, V.; Stork, D.; Ward, D.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Sauter, O.; Tran, Q. M.; Zucca, C.] Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland. [Thomas, P. R.] FUSION FOR ENERGY, Barcelona 08019, Spain. [Wagner, F.; Erckmann, V.; Lackner, K.; Marushchenko, N.; Zohm, H.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. RP Wagner, F (reprint author), EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. EM fritz.wagner@ipp.mpg.de OI Zucca, Costanza/0000-0002-0701-5227; Marushchenko, Nikolai/0000-0002-5110-9343 NR 47 TC 26 Z9 26 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD DEC PY 2010 VL 52 IS 12 AR 124044 DI 10.1088/0741-3335/52/12/124044 PN 2 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 705ZX UT WOS:000286181100045 ER PT J AU Zhang, J Zhang, K Feng, JF Small, M AF Zhang, Jie Zhang, Kai Feng, Jianfeng Small, Michael TI Rhythmic Dynamics and Synchronization via Dimensionality Reduction: Application to Human Gait SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID TIME-SERIES ANALYSIS; FRACTAL DYNAMICS; GRANGER CAUSALITY; COMPLEX NETWORKS; STRIDE-INTERVAL; NYSTROM METHOD; HUMAN WALKING; SYSTEMS; DISEASE; FMRI AB Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system. C1 [Zhang, Jie; Feng, Jianfeng] Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China. [Zhang, Jie; Small, Michael] Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China. [Zhang, Kai] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Feng, Jianfeng] Univ Warwick, Dept Comp Sci & Math, Coventry CV4 7AL, W Midlands, England. RP Zhang, J (reprint author), Fudan Univ, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China. EM jzhang080@gmail.com RI Small, Michael/C-9807-2010; OI Small, Michael/0000-0001-5378-1582; feng, jianfeng/0000-0002-9328-5732 FU Hong Kong Polytechnic University [G-YX0N]; Fudan University FX JZ is supported by Hong Kong Polytechnic University(G-YX0N) and Fudan University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 66 TC 24 Z9 25 U1 1 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD DEC PY 2010 VL 6 IS 12 AR e1001033 DI 10.1371/journal.pcbi.1001033 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 698EG UT WOS:000285574600021 PM 21187907 ER PT J AU Hoang, ML Tan, FJ Lai, DC Celniker, SE Hoskins, RA Dunham, MJ Zheng, YX Koshland, D AF Hoang, Margaret L. Tan, Frederick J. Lai, David C. Celniker, Sue E. Hoskins, Roger A. Dunham, Maitreya J. Zheng, Yixian Koshland, Douglas TI Competitive Repair by Naturally Dispersed Repetitive DNA during Non-Allelic Homologous Recombination SO PLOS GENETICS LA English DT Article ID DOUBLE-STRAND BREAK; GENE CONVERSION EVENTS; SACCHAROMYCES-CEREVISIAE; STRUCTURAL VARIATION; MITOTIC RECOMBINATION; MAMMALIAN-CELLS; HUMAN GENOME; CHROMOSOMAL REARRANGEMENTS; SUBSTRATE LENGTH; YEAST GENOME AB Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer. C1 [Hoang, Margaret L.; Tan, Frederick J.; Zheng, Yixian; Koshland, Douglas] Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA. [Hoang, Margaret L.] Carnegie Inst, Dept Embryol, Baltimore, MD USA. [Hoang, Margaret L.] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Lai, David C.] Ingenu Program, Baltimore Polytech Inst, Baltimore, MD USA. [Celniker, Sue E.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Dunham, Maitreya J.] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. RP Hoang, ML (reprint author), Johns Hopkins Univ, Sch Med, Howard Hughes Med Inst, Baltimore, MD 21205 USA. EM koshland@berkeley.edu OI Dunham, Maitreya/0000-0001-9944-2666 FU HHMI; NIH [HG00747] FX This work was funded by HHMI to DK and YZ. Sequencing of chromosome III Ty clusters was also supported by NIH grant HG00747 to Gary H. Karpen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 60 TC 26 Z9 26 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7390 J9 PLOS GENET JI PLoS Genet. PD DEC PY 2010 VL 6 IS 12 AR e1001228 DI 10.1371/journal.pgen.1001228 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 698FM UT WOS:000285578900006 PM 21151956 ER PT J AU Tseng, YC Darling, SB AF Tseng, Yu-Chih Darling, Seth B. TI Block Copolymer Nanostructures for Technology SO POLYMERS LA English DT Review DE block copolymer; lithography; photovoltaics AB Nanostructures generated from block copolymer self-assembly enable a variety of potential technological applications. In this article we review recent work and the current status of two major emerging applications of block copolymer (BCP) nanostructures: lithography for microelectronics and photovoltaics. We review the progress in BCP lithography in relation to the requirements of the semiconductor technology roadmap. For photovoltaic applications, we review the current status of the quest to generate ideal nanostructures using BCPs and directions for future research. C1 [Tseng, Yu-Chih; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Tseng, YC (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ytseng@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 97 TC 62 Z9 62 U1 3 U2 51 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4360 J9 POLYMERS-BASEL JI Polymers PD DEC PY 2010 VL 2 IS 4 BP 470 EP 489 DI 10.3390/polym2040470 PG 20 WC Polymer Science SC Polymer Science GA V27GH UT WOS:000208601200008 ER PT J AU Myung, S Wang, YR Zhang, YHP AF Myung, Suwan Wang, Yiran Zhang, Y. -H. Percival TI Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: Characterization, metabolite stability, and its implications SO PROCESS BIOCHEMISTRY LA English DT Article DE Cell-free synthetic pathway biotransformation (SyPaB); Fructose-1,6-bisphosphatase; In vitro metabolic engineering; Metabolite degradation; Thermotoga maritima; Synthetic biology ID INOSITOL MONOPHOSPHATASE; BIOCHEMICAL-CHARACTERIZATION; HYPERTHERMOPHILIC ENZYMES; CELLULOSIC MATERIALS; ESCHERICHIA-COLI; PURIFICATION; PROTEIN; ACID; GENE; THERMOSTABILITY AB Fructose-1,6-bisphosphatase gene from a hyperthermophilic bacterium Thermotoga maritima was cloned, and the recombinant protein was produced in E. coli, purified, and characterized. The fructose-1,6-bisphosphatase (FBPase) with a molecular mass of ca. 28 kDa was purified from the fusion protein cellulose-binding module (CBM)-intein-FBPase by affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. The substrate fructose 1,6-bisphosphate was not stable at high temperatures, especially at high pHs. The degradation constants of fructose 1,6-bisphosphate, glucose-6-phosphate, and fructose-6-phosphate were determined at different temperatures (37, 60, and 80 degrees C) and pH 7.5 or 9.0. The k(cat) and K-m values of FBPase were 8.57 s(-1) and 0.04 mM at 60 degrees C, as well as 58.7 s(-1) and 0.12 mM at 80 degrees C. This enzyme was very stable at its suboptimal temperatures, with half-life times of ca. 1330 and 55.6h at 60 and 80 degrees C, respectively. At 60 degrees C, this enzyme had an estimated total turn-over number of 20,500,000 (mol product/mol enzyme) and weight-based total turn-over umber of 192,000 (kg product/kg enzyme), respectively. These results indicated that this enzyme would be a stable building block for cell-free synthetic pathway biotransformation (SyPaB) that can implement complicated biochemical reactions. In order to obtain high-yield desired products, we suggest that over-addition or over-expression of the enzymes responsible for converting easily degraded metabolites should be important to prevent unnecessary metabolite loss for in vitro or in vivo synthetic pathway design. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Myung, Suwan; Wang, Yiran; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Myung, Suwan; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Wang, Yi-Ran/C-4643-2013 OI Wang, Yi-Ran/0000-0002-4171-868X FU Air Force Young Investigator Award; MURI [FA9550-08-1-0145]; Dupont Young Faculty Award; DOE; USDA; ICTAS FX This work was supported to YPZ mainly by the Air Force Young Investigator Award and MURI to YPZ (FA9550-08-1-0145), as well as partially by the Dupont Young Faculty Award, DOE-sponsored BioEnergy Science Center, and USDA-sponsored Bioprocessing and Biodesign Center. SM was partially supported by the ICTAS scholarship. NR 36 TC 35 Z9 36 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-5113 EI 1873-3298 J9 PROCESS BIOCHEM JI Process Biochem. PD DEC PY 2010 VL 45 IS 12 BP 1882 EP 1887 DI 10.1016/j.procbio.2010.03.017 PG 6 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering, Chemical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering GA 694US UT WOS:000285325100007 ER PT J AU Kessler, R Bassett, B Belov, P Bhatnagar, V Campbell, H Conley, A Frieman, JA Glazov, A Gonzalez-Gaitan, S Hlozek, R Jha, S Kuhlmann, S Kunz, M Lampeitl, H Mahabal, A Newling, J Nichol, RC Parkinson, D Philip, NS Poznanski, D Richards, JW Rodney, SA Sako, M Schneider, DP Smith, M Stritzinger, M Varughese, M AF Kessler, Richard Bassett, Bruce Belov, Pavel Bhatnagar, Vasudha Campbell, Heather Conley, Alex Frieman, Joshua A. Glazov, Alexandre Gonzalez-Gaitan, Santiago Hlozek, Renee Jha, Saurabh Kuhlmann, Stephen Kunz, Martin Lampeitl, Hubert Mahabal, Ashish Newling, James Nichol, Robert C. Parkinson, David Philip, Ninan Sajeeth Poznanski, Dovi Richards, Joseph W. Rodney, Steven A. Sako, Masao Schneider, Donald P. Smith, Mathew Stritzinger, Maximilian Varughese, Melvin TI Results from the Supernova Photometric Classification Challenge SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; II-P SUPERNOVAE; IA SUPERNOVAE; LEGACY SURVEY; HIGH-REDSHIFT; OBSERVATIONAL CONSTRAINTS; COSMOLOGICAL PARAMETERS; DARK ENERGY; DEEP FIELD AB We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis. C1 [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ACGC, ZA-7701 Rondebosch, South Africa. [Bassett, Bruce] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Bassett, Bruce] African Inst Math Sci, ZA-7945 Muizenberg, South Africa. [Belov, Pavel; Glazov, Alexandre] Deutsch Elektronensynchrotron DESY, D-22607 Hamburg, Germany. [Bhatnagar, Vasudha] Univ Delhi, Dept Comp Sci, Delhi 110007, India. [Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Conley, Alex] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Frieman, Joshua A.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Gonzalez-Gaitan, Santiago] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Hlozek, Renee] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Jha, Saurabh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kuhlmann, Stephen] Argonne Natl Lab, Lemont, IL 60437 USA. [Kunz, Martin] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Mahabal, Ashish] CALTECH, Pasadena, CA 91125 USA. [Parkinson, David] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Philip, Ninan Sajeeth] St Thomas Coll, Dept Phys, Kozhencheri 689641, Kerala, India. [Poznanski, Dovi] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Cosmol Ctr, Div Comp Sci, Berkeley, CA 94720 USA. [Poznanski, Dovi; Richards, Joseph W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Richards, Joseph W.] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA. [Rodney, Steven A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Stritzinger, Maximilian] Las Campanas Observ, Carnegie Observ, La Serena, Chile. [Stritzinger, Maximilian] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Stritzinger, Maximilian] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Varughese, Melvin] Univ Cape Town, Dept Stat Sci, ZA-7701 Rondebosch, South Africa. RP Kessler, R (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RI Parkinson, David/A-8647-2011; Varughese, Melvin/C-7730-2013; Parkinson, David/E-1183-2013; Belov, Pavel/N-2871-2015; OI Varughese, Melvin/0000-0002-5312-1469; Parkinson, David/0000-0002-7464-2351; Belov, Pavel/0000-0002-4004-7001; Sajeeth Philip, Ninan/0000-0002-1243-4258 FU Alfred P. Sloan Foundation; National Science Foundation [AST-0306969]; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX We are grateful to the Carnegie Supernova Project (CSP), Sloan Digital Sky Survey-II (SDSS-II), and Supernova Legacy Survey collaborations for providing unpublished spectroscopically confirmed non-Ia light curves that are critical to this work. Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the participating institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The CSP has been supported by the National Science Foundation under grant AST-0306969. NR 53 TC 47 Z9 47 U1 0 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD DEC PY 2010 VL 122 IS 898 BP 1415 EP 1431 DI 10.1086/657607 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 694XN UT WOS:000285335300002 ER PT J AU Kirk, BL AF Kirk, B. L. TI Overview of Monte Carlo radiation transport codes SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11) CY OCT 12-16, 2009 CL Cape Town, SOUTH AFRICA SP European Radiation Dosimetry Grp (EURADOS) DE Neutron transport; Monte Carlo; Radiation transport AB The Radiation Safety Information Computational Center (RSICC) is the designated central repository of the United States Department of Energy (DOE) for nuclear software in radiation transport, safety, and shielding. Since the center was established in the early 60's, there have been several Monte Carlo (MC) particle transport computer codes contributed by scientists from various countries. An overview of the neutron transport computer codes in the RSICC collection is presented. (C) 2010 Elsevier Ltd. All rights reserved. C1 Oak Ridge Natl Lab, RSICC, Oak Ridge, TN 37831 USA. RP Kirk, BL (reprint author), Oak Ridge Natl Lab, RSICC, POB 2008, Oak Ridge, TN 37831 USA. EM kirkbl@ornl.gov NR 14 TC 3 Z9 4 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD DEC PY 2010 VL 45 IS 10 SI SI BP 1318 EP 1322 DI 10.1016/j.radmeas.2010.05.037 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 708FZ UT WOS:000286349000057 ER PT J AU Kroc, TK AF Kroc, T. K. TI Preliminary investigations of Monte Carlo simulations of neutron energy and let spectra for fast neutron therapy facilities SO RADIATION MEASUREMENTS LA English DT Article; Proceedings Paper CT 11th Neutron and Ion Dosimetry Symposium (NEUDOS-11) CY OCT 12-16, 2009 CL Cape Town, SOUTH AFRICA SP European Radiation Dosimetry Grp (EURADOS) DE Neutron therapy; Spectra; LET AB No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality optimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility. (C) 2010 Elsevier Ltd. All rights reserved. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Kroc, TK (reprint author), Fermilab Natl Accelerator Lab, Mail Stop 301,Kirk & Wilson St, Batavia, IL 60510 USA. EM kroc@fnal.gov NR 5 TC 1 Z9 1 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD DEC PY 2010 VL 45 IS 10 SI SI BP 1334 EP 1337 DI 10.1016/j.radmeas.2010.05.005 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 708FZ UT WOS:000286349000060 ER PT J AU Kane, MC Lascola, RJ Clark, EA AF Kane, Marie C. Lascola, Robert J. Clark, Elliot A. TI Investigation on the effects of beta and gamma irradiation on conducting polymers for sensor applications SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Conductive polymer; Sensors; Irradiation; Polyaniline; Polythiophene ID ELECTRICAL-CONDUCTIVITY; POLYANILINE; RADIATION; DEGRADATION; RAMAN; ACID AB Two conductive polymers were evaluated to be the active materials in a sensor device for the detection of beta radiation. This was accomplished by characterizing the changes in conductivity of electrically conducting polymer films caused by exposure to tritium gas for varying lengths of time. The behavior of these materials when exposed to gamma radiation was also studied to gain further insight into the mechanism of conductivity degradation by ionizing radiation. Two types of conductive polymer, polyaniline (PANi) and poly(3,4-ethylenedioxythiophene) (PEDOT), were chosen as candidate materials for their widespread commercial use. The change of surface resistance (conductivity) of PANi and PEDOT films when exposed to gamma radiation in both air and deuterium environments was evaluated as well as tritium exposures in 10(4) and 10(5) Pa gas. Raman and absorbance spectra of gamma irradiated samples were obtained to determine the mechanism of conductivity degradation in both polymers. Post-irradiation gas analysis of the samples contained in deuterium revealed very little (or no) hydrogen in the containment vessel, indicating that hydrogen-deuterium isotopic exchange was not responsible for the decrease in surface conductivity due to gamma exposure. The effects of irradiation-induced oxidation were also studied for both conductive polymers during gamma irradiation. It was concluded that chain scission via free radical formation and chain cross-linking are most likely the two dominant mechanisms for conductivity change and not de-protonation of the polymer. Published by Elsevier Ltd. C1 [Kane, Marie C.] Sandia Natl Labs, Livermore, CA 94550 USA. [Kane, Marie C.; Lascola, Robert J.; Clark, Elliot A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Kane, MC (reprint author), Sandia Natl Labs, POB 969,MS 9403, Livermore, CA 94550 USA. EM mkane@sandia.gov OI Lascola, Robert/0000-0002-6784-5644 NR 19 TC 8 Z9 8 U1 1 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD DEC PY 2010 VL 79 IS 12 BP 1189 EP 1195 DI 10.1016/j.radphyschem.2010.07.012 PG 7 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 656QJ UT WOS:000282351300004 ER PT J AU Chappell, LJ Whalen, MK Gurai, S Ponomarev, A Cucinotta, FA Pluth, JM AF Chappell, Lori J. Whalen, Mary K. Gurai, Sheena Ponomarev, Artem Cucinotta, Francis A. Pluth, Janice M. TI Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics after Exposure to X Rays and High-Energy Iron Nuclei SO RADIATION RESEARCH LA English DT Article ID DOUBLE-STRAND BREAKS; PHOSPHORYLATED HISTONE H2AX; HUMAN FIBROBLASTS; CELL-CYCLE; TRANSCRIPTION FACTOR; IONIZING-RADIATION; SPACE EXPLORATION; GAMMA-H2AX FOCI; CHROMATIN LOOPS; REPAIR AB We developed a mathematical method to analyze flow cytometry data to describe the kinetics of gamma-H2AX and pATF2 phosphorylation in normal human fibroblast cells after exposure to various qualities of low-dose radiation. Previously reported flow cytometry kinetics for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low-dose range. Distributional analysis revealed significant differences between control and low-dose samples when distributions were compared using the Kolmogorov-Smirnov test. Differences in radiation quality were found in the distribution shapes and when a nonlinear model was used to relate dose and time to the decay of the mean ratio of phospho-protein intensities of irradiated samples to controls. We analyzed cell cycle phase- and radiation quality-dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for gamma-H2AX were higher after exposure to iron nuclei compared to X rays in G(1) cells and in SIG(2) cells. The RBE in G(1) cells for iron nuclei relative to X rays for gamma-H2AX was 2.1 +/- 0.6 and 5.0 +/- 3.5 at 2 and 24 h after irradiation, respectively. For pATF2, a saturation effect was observed with reduced expression at high doses, especially for iron nuclei, with much slower characteristic repair times (>7 h) compared to X rays. RBEs for pATF2 were 0.7 +/- 0.1 and 1.7 +/- 0.5 at 2 and 24 h, respectively. Significant differences in gamma-H2AX and pATF2 levels when irradiated samples were compared to controls were noted even at the lowest dose analyzed (0.05 Gy). These results show that mathematical models can be applied to flow cytometry data to identify important and subtle differences after exposure to various qualities of low-dose radiation. (C) 2010 by Radiation Research Society C1 [Whalen, Mary K.; Gurai, Sheena; Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Chappell, Lori J.; Ponomarev, Artem] USRA, Div Space Life Sci Div, Houston, TX 77058 USA. [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. RP Pluth, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM JMPluth@lbl.gov FU NASA [03-OBPR-07-0032-0027]; U.S. DOE [DE-A103-05ER64843] FX We gratefully acknowledge partial financial support provided by the NASA Space Radiation Program (03-OBPR-07-0032-0027) and the U.S. DOE (DE-A103-05ER64843). NR 47 TC 10 Z9 10 U1 0 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 J9 RADIAT RES JI Radiat. Res. PD DEC PY 2010 VL 174 IS 6 BP 691 EP 702 DI 10.1667/RR2204.1 PN 1 PG 12 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA 690TQ UT WOS:000285031500003 PM 21128792 ER PT J AU Hruszkewycz, SO Harder, R Xiao, X Fuoss, PH AF Hruszkewycz, S. O. Harder, R. Xiao, X. Fuoss, P. H. TI The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SYNCHROTRON-RADIATION; DECOHERENCE; ALGORITHMS; RETRIEVAL; WINDOWS AB Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514085] C1 [Hruszkewycz, S. O.; Fuoss, P. H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Harder, R.; Xiao, X.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors gratefully acknowledge Dr. Ian Robinson and Dr. Meng Liang for providing the Au nanocrystallites. This work, including the use of the Advanced Photon Source, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 22 TC 3 Z9 3 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2010 VL 81 IS 12 AR 123706 DI 10.1063/1.3514085 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 700UW UT WOS:000285770800025 PM 21198031 ER PT J AU Salvadori, MC Teixeira, FS Araujo, WWR Sgubin, LG Sochugov, NS Spirin, RE Brown, IG AF Salvadori, M. C. Teixeira, F. S. Araujo, W. W. R. Sgubin, L. G. Sochugov, N. S. Spirin, R. E. Brown, I. G. TI A high voltage pulse power supply for metal plasma immersion ion implantation and deposition SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FILTERED VACUUM-ARC; INTERNATIONAL WORKSHOP; CARBON; FILMS AB We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969] C1 [Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Sochugov, N. S.; Spirin, R. E.] Russian Acad Sci, Inst High Current Elect, Siberian Div, Tomsk 634055, Russia. [Brown, I. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalvadori@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013 FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 19 TC 2 Z9 2 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD DEC PY 2010 VL 81 IS 12 AR 124703 DI 10.1063/1.3518969 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 700UW UT WOS:000285770800034 PM 21198040 ER PT J AU Rothberg, J Caudy, AA Kelleher, NL Wiley, HS AF Rothberg, Jonathan Caudy, Amy A. Kelleher, Neil L. Wiley, H. Steven TI The Scientist TOP TEN INNOVATIONS 2010 SO SCIENTIST LA English DT Article C1 [Caudy, Amy A.] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA. [Kelleher, Neil L.] Northwestern Univ, Evanston, IL 60208 USA. [Wiley, H. Steven] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 1 U2 5 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD DEC PY 2010 VL 24 IS 12 BP 47 EP 53 PG 7 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 687PV UT WOS:000284791300009 ER PT J AU Li, HQ Misra, A AF Li, Hongqi Misra, Amit TI A dramatic increase in the strength of a nanoporous Pt-Ni alloy induced by annealing SO SCRIPTA MATERIALIA LA English DT Article DE Nanoporous; Mechanical properties; Annealing; Pt-Ni alloy ID MECHANICAL-BEHAVIOR; LOW-TEMPERATURE; THIN-FILMS; GOLD; AU AB The microstructure and mechanical strength of a nanoporous Pt-Ni alloy were characterized before and after 300 degrees C annealing for 1 h. After annealing microhardness increased significantly from 2.1 to 3.8 GPa, while the relative density, ligament morphology and size remained unchanged. The annealing-induced strength increase is believed to be due to microstructure relaxation and grain growth. This study suggests that the mechanical properties of nanoporous metals depend not only on the relative density, ligament size and morphology, but also on the structure inside ligaments. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, Hongqi; Misra, Amit] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Li, HQ (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM hongqi2007@gmail.com; amisra@lanl.gov RI Li, Hongqi/B-6993-2008; Misra, Amit/H-1087-2012 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences FX This study was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The work was performed at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. The authors would like to acknowledge discussions with J.P. Hirth and S.T. Picraux and thank J.K. Baldwin, D. Williams and D.J. Safarik for their help in performing the sputter deposition, carrying out XRD and making the Pt75Ni25 ingot, respectively. NR 28 TC 4 Z9 4 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2010 VL 63 IS 12 BP 1169 EP 1172 DI 10.1016/j.scriptamat.2010.08.026 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 674QT UT WOS:000283763100008 ER PT J AU Smith, JL Collins, HP Bailey, VL AF Smith, Jeffrey L. Collins, Harold P. Bailey, Vanessa L. TI The effect of young biochar on soil respiration SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Biochar; Carbon sequestration; Soil respiration; partial derivative(13)C ID AMENDMENT; CHARCOAL; FERTILITY; CARBON AB The low temperature pyrolysis of organic material produces biochar, a charcoal like substance. Biochar is being promoted as a soil amendment to enhance soil quality, it is also seen as a mechanism of long-term sequestration of carbon. Our experiments tested the hypothesis that biochar is inert in soil. However, we measured an increase in CO(2) production from soils after biochar amendment which increased with increasing rates of biochar. The partial derivative(13)C signature of the CO(2) evolved in the first several days of the incubation was the same as the partial derivative(13)C signature of the biochar, confirming that biochar contributed to the CO(2) flux. This effect diminished by day 6 of the incubation suggesting that most of the biochar C is slowly decomposing. Thus, aside from this short-term mineralization increasing soil C with young biochar may indeed be a long-term C storage mechanism. Published by Elsevier Ltd. C1 [Smith, Jeffrey L.] Washington State Univ, USDA ARS, Pullman, WA 99164 USA. [Collins, Harold P.] USDA ARS, Vegetable & Forage Crops Res Unit, Prosser, WA 99350 USA. [Bailey, Vanessa L.] Pacific NW Natl Lab, Microbiol Biol Sci Div, Richland, WA 99352 USA. RP Smith, JL (reprint author), Washington State Univ, USDA ARS, 215 Johnson Hall, Pullman, WA 99164 USA. EM jlsmith@wsu.edu; hal.collins@ars.usda.gov; vanessa.bailey@pnl.gov RI Ducey, Thomas/A-6493-2011; OI Bailey, Vanessa/0000-0002-2248-8890 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division [DE-AC05-76RL01830] FX This work was supported in part by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Climate Change Research Division under contract DE-AC05-76RL01830 to Pacific Northwest National Laboratory. NR 10 TC 166 Z9 194 U1 11 U2 150 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD DEC PY 2010 VL 42 IS 12 BP 2345 EP 2347 DI 10.1016/j.soilbio.2010.09.013 PG 3 WC Soil Science SC Agriculture GA 681EQ UT WOS:000284294600038 ER PT J AU Nilsson, AM Jonsson, JC AF Nilsson, Annica M. Jonsson, Jacob C. TI Light-scattering properties of a Venetian blind slat used for daylighting applications SO SOLAR ENERGY LA English DT Article DE Raytracing; Venetian blinds; BSDF; ABg model AB The low cost, simplicity, and aesthetic appearance of external and internal shading devices, make them commonly used for daylighting and glare-control applications Shading devices, such as Venetian blinds, screens, and roller shades, generally exhibit light scattering and/or light redirecting properties This requires the bi-directional scattering distribution function (BSDF) of the material to be known in order to accurately predict the daylight distribution and energy flow through the fenestration system Acquiring the complete BSDF is not a straighforward task, and to complete the process it is often required that a model is used to complement the measured data In this project a Venetian blind slat with a white top surface and a brushed aluminum bottom surface was optically characterized A goniophotometer and an integrating sphere spectrophotometer were used to determine the angle resolved and hemispherical reflectance of the sample, respectively The acquired data were fitted to a scattering model providing one Lambertian and one angle dependent description of the surface properties These were used in combination with raytracing to obtain the complete BSDFs of the Venetian blind system (C) 2010 Elsevier Ltd All rights reserved C1 [Nilsson, Annica M.] Uppsala Univ, Angstrom Lab, Dept Engn Sci, SE-75121 Uppsala, Sweden. [Jonsson, Jacob C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Nilsson, AM (reprint author), Uppsala Univ, Angstrom Lab, Dept Engn Sci, POB 534, SE-75121 Uppsala, Sweden. FU Office of Building Technology, State, and Community Programs, of the US Department of Energy [DE-AC02-05CH11231] FX Annica M Nilsson would like to thank Sederholms and Morings stipendfunds for making the stay at Lawrence Berkeley National Laboratory possible The contributions from Jacob C Jonsson were supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the US Department of Energy under Contract No DE-AC02-05CH11231 NR 15 TC 9 Z9 9 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2010 VL 84 IS 12 BP 2103 EP 2111 DI 10.1016/j.solener.2010.09.005 PG 9 WC Energy & Fuels SC Energy & Fuels GA 692BG UT WOS:000285125900013 ER PT J AU Perez, R Kivalov, S Schlemmer, J Hemker, K Renne, D Hoff, TE AF Perez, Richard Kivalov, Sergey Schlemmer, James Hemker, Karl, Jr. Renne, David Hoff, Thomas E. TI Validation of short and medium term operational solar radiation forecasts in the US SO SOLAR ENERGY LA English DT Article DE Solar resource assessment; Irradiance; Forecast; Prediction; Validation ID MODEL AB This paper presents a validation of the short and medium term global irradiance forecasts that are produced as part of the US Solar-Anywhere (20101 data set The short term forecasts that extend up to 6-h ahead are based upon cloud motion derived from consecutive geostationary satellite images The medium term forecasts extend up to 6 days-ahead and are modeled from gridded cloud cover forecasts from the US National Digital Forecast Database The forecast algorithms are validated against ground measurements for seven climatically distinct locations in the United States for 1 year An initial analysis of regional performance using satellite-derived irradiances as a benchmark reference is also presented (C) 2010 Elsevier Ltd All rights reserved C1 [Perez, Richard; Kivalov, Sergey; Schlemmer, James; Hemker, Karl, Jr.] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA. [Renne, David] Natl Renewable Energy Lab, Golden, CO USA. [Hoff, Thomas E.] Clean Power Res, Napa, CA USA. RP Perez, R (reprint author), SUNY Albany, Atmospher Sci Res Ctr, 251 Fuller Rd, Albany, NY 12203 USA. FU Clean Power Research; NREL [AEK98833801] FX The forecast modeling capability was developed as part of the construction of SolarAnywhere (R) under funding from Clean Power Research The present validation analysis performed under funding from NREL (Contract AEK98833801) The first author of this paper and his team at the University at Albany receives funding from Clean Power Research to develop and produce the Solar Anywhere solar resource satellite and forecast data evaluated in this paper NR 18 TC 120 Z9 120 U1 5 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD DEC PY 2010 VL 84 IS 12 BP 2161 EP 2172 DI 10.1016/j.solener.2010.08.014 PG 12 WC Energy & Fuels SC Energy & Fuels GA 692BG UT WOS:000285125900019 ER PT J AU Biswas, R Bhattacharya, J Lewis, B Chakravarty, N Dalal, V AF Biswas, R. Bhattacharya, J. Lewis, B. Chakravarty, N. Dalal, V. TI Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Light-trapping; Nanocrystalline silicon; Photonic crystal; Solar cell ID ABSORPTION ENHANCEMENT AB Nanocrystalline silicon solar cells were enhanced with a photonic crystal back-reflector. Rigorous scattering matrix simulations were used to optimize a photonic crystal back-reflector consisting of a triangular lattice of nano-holes, with a pitch near 800 nm. The photonic crystal back-reflector with a pitch of 800 nm was fabricated on the crystalline silicon substrate by photolithography and reactive-ion etching, and coated with silver and zinc oxide. Nanocrystalline silicon solar cells were grown on the patterned substrates. We observed similar to 7% enhancement of the absorption and photo-generated current relative to a Ag/ZnO substrate, with an enhancement ratio of 1.5 near the band edge. Significant enhancement occurred in photon absorption at near infrared wavelengths greater than 700 nm, due to diffraction resonances of the incoming light. (C) 2010 Elsevier B.V. All rights reserved. C1 [Biswas, R.] Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames, IA 50011 USA. [Biswas, R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Biswas, R.; Bhattacharya, J.; Lewis, B.; Chakravarty, N.; Dalal, V.] Iowa State Univ, Microelect Res Ctr, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Biswas, R (reprint author), Iowa State Univ, Microelect Res Ctr, Dept Phys & Astron, Ames, IA 50011 USA. EM biswasr@iastate.edu FU Microelectronics Research Center (ISU); NSF [ECCS-0824091, ECCS-06013177]; Iowa Powerfund; Department of Energy [DE-AC0207CH11385]; Lightwave Power FX We thank Max Noack and J. Jin for informative discussions and Ben Curtin for lithography and valuable suggestions. We would also like to thank the entire team of the Microelectronics Research Center (ISU) for their support. We thank D. Vellenga and the North Carolina State University Nanofabrication Center for photolithography. We acknowledge support from the NSF under Grants ECCS-0824091 and ECCS-06013177, the Iowa Powerfund and Lightwave Power. The Ames Laboratory is operated for the Department of Energy by Iowa State University under Contract no. DE-AC0207CH11385. NR 26 TC 36 Z9 36 U1 1 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2010 VL 94 IS 12 BP 2337 EP 2342 DI 10.1016/j.solmat.2010.08.007 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 676ZU UT WOS:000283959500056 ER PT J AU Rahman, MR Valasenko, MP Vlasenko, LS Haller, EE Itoh, KM AF Rahman, M. R. Valasenko, M. P. Vlasenko, L. S. Haller, E. E. Itoh, K. M. TI Splitting of electron paramagnetic resonance lines of lithium-oxygen centers in isotopically enriched Si-28 single crystals SO SOLID STATE COMMUNICATIONS LA English DT Article DE Semiconductors; Impurity in semiconductor; Electron paramagnetic resonance ID QUANTUM COMPUTER; SILICON; DONORS; SPECTROSCOPY; GROWTH AB A significant narrowing of the electron paramagnetic resonance (EPR) and additional hyperfine structures of lithium-oxygen (Li-O) centers was observed in isotopically enriched Si-28 single crystals Unexpected splitting was found reflecting the principal axis of the formally assigned trigonal g-tensors being tilted 3 from the (111) crystal axis i e the g-tensor of the Li-O center actually has a monoclinic symmetry Furthermore the splitting of the Li-7 hyperfine lines into four components was observed at a temperature of 3 5 K (C) 2010 Elsevier Ltd All rights reserved C1 [Rahman, M. R.; Itoh, K. M.] Keio Univ, Sch Fdn Sci & Technol, Yokohama, Kanagawa 2238522, Japan. [Valasenko, M. P.; Vlasenko, L. S.] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. [Haller, E. E.] Lawrence Berkeley Natl Lab & UC Berkeley, Berkeley, CA 94720 USA. RP Rahman, MR (reprint author), Keio Univ, Fac Sci & Technol, Dept Appl Phys & Phys Informat, Tokyo 108, Japan. RI Itoh, Kohei/C-5738-2014 FU MEXT [18001002]; Special Coordination Funds for Promoting Science and Technology; FIRST; Keio University FX This work was supported in part by a Grant-in-Aid for Scientific Research by MEXT Specially Promoted Research #18001002 in part by Special Coordination Funds for Promoting Science and Technology in part by FIRST and in part by a Grant-in-Aid for the Global Center of Excellence at Keio University NR 25 TC 2 Z9 2 U1 0 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-1098 J9 SOLID STATE COMMUN JI Solid State Commun. PD DEC PY 2010 VL 150 IS 45-46 BP 2275 EP 2277 DI 10.1016/j.ssc.2010.09.026 PG 3 WC Physics, Condensed Matter SC Physics GA 687QI UT WOS:000284792600017 ER PT J AU Winkler, B Juarez-Arellano, EA Friedrich, A Bayarjargal, L Schroder, F Biehler, J Milman, V Clark, SM Yan, JY AF Winkler, Bjorn Juarez-Arellano, Erick A. Friedrich, Alexandra Bayarjargal, Lkhamsuren Schroder, Florian Biehler, Jasmin Milman, Victor Clark, Simon M. Yan, Jinyuan TI In situ synchrotron X-ray diffraction study of the formation of TaB2 from the elements in a laser heated diamond anvil cell SO SOLID STATE SCIENCES LA English DT Article DE Tantalum boride; Laser heated diamond anvil cell; Synchrotron; DFT calculations ID HIGH-TEMPERATURE SYNTHESIS; HIGH-PRESSURE; SUPERHARD; DIBORIDE AB In situ synchrotron X-ray diffraction was used to observe the reaction induced by laser heating of a mixture of tantalum and boron in a diamond anvil cell Laser heating at pressures of 12 and 24 GPa resulted in the formation of TaB2 The bulk modulus of TaB2 (B-0 = 341(7) GPa) was determined from a fit of a second-order Birch-Murnaghan equation of state to the p V data Density functional theory based calculations complemented the experimental observations and were used to obtain the full tensor of elastic stiffness coefficients The choice of the most appropriate exchange-correlation functional for the description of elastic properties is discussed (C) 2010 Elsevier Masson SAS All rights reserved C1 [Juarez-Arellano, Erick A.] Univ Papaloapan, Tuxtepec 68301, Mexico. [Winkler, Bjorn; Friedrich, Alexandra; Bayarjargal, Lkhamsuren; Schroder, Florian; Biehler, Jasmin] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Milman, Victor] Accelrys, Cambridge, England. [Clark, Simon M.; Yan, Jinyuan] Univ Calif Berkeley, Lawrence Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP Juarez-Arellano, EA (reprint author), Univ Papaloapan, Circuito Cent 200 Parque Ind, Tuxtepec 68301, Mexico. RI Schroder, Florian/D-5872-2012; Milman, Victor/M-6117-2015; Clark, Simon/B-2041-2013 OI Milman, Victor/0000-0003-2258-1347; Juarez-Arellano, Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438 FU Deutsche Forschungsgemeinschaft [Wi-1232 Fr-2491, SPP 1236]; Office of Science Office of Basic Energy Science of the U S Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Science under NSF [EAR 06-49658]; Vereinigung der Freunde u Forderer der Goethe-Umversitat Frankfurt FX This research was supported by Deutsche Forschungsgemeinschaft (Projects Wi-1232 Fr-2491) in the framework of the DFG-SPP 1236 The Advanced Light Source is supported by the Director Office of Science Office of Basic Energy Science of the U S Department of Energy under contract DE-AC02-05CH11231 This research was partially supported by COMPRES the Consortium for Materials Properties Research in Earth Science under NSF Cooperative Agreement EAR 06-49658 and by the Vereinigung der Freunde u Forderer der Goethe-Umversitat Frankfurt NR 22 TC 5 Z9 5 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 J9 SOLID STATE SCI JI Solid State Sci. PD DEC PY 2010 VL 12 IS 12 BP 2059 EP 2064 DI 10.1016/j.solidstatesciences.2010.08.027 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 703CE UT WOS:000285950900022 ER PT J AU Dzyuba, A Romanenko, A Cooley, LD AF Dzyuba, A. Romanenko, A. Cooley, L. D. TI Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID SRF CAVITIES; TYPE-2 SUPERCONDUCTORS; VORTEX ENTRY; NIOBIUM; RESISTANCE; DEFECTS AB A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H-pen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica C 294 257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H-pen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H-pen was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by similar to 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop. C1 [Dzyuba, A.; Romanenko, A.; Cooley, L. D.] Fermilab Natl Accelerator Lab, Tech Div, SRF Mat Grp, Batavia, IL 60510 USA. [Dzyuba, A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. RP Dzyuba, A (reprint author), Fermilab Natl Accelerator Lab, Tech Div, SRF Mat Grp, Batavia, IL 60510 USA. RI Cooley, Lance/E-7377-2015 OI Cooley, Lance/0000-0003-3488-2980 NR 45 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2010 VL 23 IS 12 AR 125011 DI 10.1088/0953-2048/23/12/125011 PG 9 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 684DH UT WOS:000284527200017 ER PT J AU Brey, EM Appel, A Chiu, YC Zhong, Z Cheng, MH Engel, H Anastasio, MA AF Brey, Eric M. Appel, Alyssa Chiu, Yu-Chieh Zhong, Zhong Cheng, Ming-Huei Engel, Holger Anastasio, Mark A. TI X-Ray Imaging of Poly(Ethylene Glycol) Hydrogels Without Contrast Agents SO TISSUE ENGINEERING PART C-METHODS LA English DT Article ID RADIOGRAPHY; IMPLEMENTATION AB Hydrogels have shown promise for a number of tissue engineering applications. However, their high water content results in little or no image contrast when using conventional X-ray imaging techniques. X-ray imaging techniques based on phase-contrast have shown promise for biomedical application due to their ability to provide information about the X-ray refraction properties of samples. Nonporous and porous poly(ethylene glycol) hydrogels were synthesized and imaged using a synchrotron light source employing a silicon analyzer crystal and an X-ray energy of 40-keV. Data were acquired at 21 angular analyzer positions spanning the range of -5 to 5 mu rad. Images that depict the projected X-ray absorption, refraction, and ultra-small-angle scatter (USAXS) properties of the hydrogels were reconstructed from the measurement data. The poly(ethylene glycol) hydrogels could be discerned from surrounding water and soft tissue in the refraction image but not the absorption or USAXS images. In addition, the refraction images of the porous hydrogels have a speckle pattern resulting in increased image texture in comparison to nonporous hydrogels. To our knowledge, this is the first study to show that X-ray phase-contrast imaging techniques can identify and provide detail on hydrogel structure without the addition of contrast agents. C1 [Brey, Eric M.; Appel, Alyssa; Chiu, Yu-Chieh; Anastasio, Mark A.] IIT, Dept Biomed Engn, Chicago, IL 60616 USA. [Brey, Eric M.; Appel, Alyssa] Edward Hines Jr VA Hosp, Hines, IL 60141 USA. [Zhong, Zhong] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Cheng, Ming-Huei; Engel, Holger] Chang Gung Univ, Chang Gung Mem Hosp, Dept Plast & Reconstruct Surg, Coll Med, Tao Yuan, Taiwan. RP Brey, EM (reprint author), IIT, Dept Biomed Engn, 3255 S Dearborn St, Chicago, IL 60616 USA. EM brey@iit.edu FU Veterans Administration; National Science Foundation [0854430, 0731201, 0546113]; National Institute of Health [R01E B009715]; Chang Gung Memorial Hospital (CMRPG) [390101] FX The research has been supported by the Veterans Administration, the National Science Foundation (0854430, 0731201, 0546113), the National Institute of Health (R01E B009715), and Chang Gung Memorial Hospital (CMRPG 390101). NR 13 TC 9 Z9 9 U1 0 U2 7 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1937-3384 EI 1937-3392 J9 TISSUE ENG PART C-ME JI Tissue Eng. Part C-Methods PD DEC PY 2010 VL 16 IS 6 BP 1597 EP 1600 DI 10.1089/ten.tec.2010.0150 PG 4 WC Cell & Tissue Engineering; Biotechnology & Applied Microbiology; Cell Biology SC Cell Biology; Biotechnology & Applied Microbiology GA 685KG UT WOS:000284627000037 PM 20662738 ER PT J AU Yamazaki, I Natarajan, V Bai, ZJ Hamann, B AF Yamazaki, Ichitaro Natarajan, Vijay Bai, Zhaojun Hamann, Bernd TI Segmenting point-sampled surfaces SO VISUAL COMPUTER LA English DT Article DE Point sets; Sampling; Features; Geodesic distance; Normalized cut; Topological methods; Spectral analysis; Multiphase segmentation; Hierarchical segmentation ID SEGMENTATION; MESHES; PARAMETERIZATION; DECOMPOSITION; GENERATION AB Extracting features from point-based representations of geometric surface models is becoming increasingly important for purposes such as model classification, matching, and exploration. In an earlier paper, we proposed a multiphase segmentation process to identify elongated features in point-sampled surface models without the explicit construction of a mesh or other surface representation. The preliminary results demonstrated the strength and potential of the segmentation process, but the resulting segmentations were still of low quality, and the segmentation process could be slow. In this paper, we describe several algorithmic improvements to overcome the shortcomings of the segmentation process. To demonstrate the improved quality of the segmentation and the superior time efficiency of the new segmentation process, we present segmentation results obtained for various point-sampled surface models. We also discuss an application of our segmentation process to extract ridge-separated features in point-sampled surfaces of CAD models. C1 [Yamazaki, Ichitaro; Bai, Zhaojun] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Hamann, Bernd] IDAV, Dept Comp Sci, Davis, CA 95616 USA. [Natarajan, Vijay] Indian Inst Sci, Dept Comp Sci & Automat, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India. RP Yamazaki, I (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA. EM yamazaki@cs.ucdavis.edu; vijayn@csa.iisc.ernet.in; bai@cs.ucdavis.edu; hamann@cs.ucdavis.edu FU National Science Foundation [0313390, 0611548, ACI 9624034]; Information Technology Research (ITR); Indian Institute of Science FX The point sets used in our experiments were downloaded from on-line 3D scan repositories [54, 55]. We used qslim [56] to generate coarse point sets. Yamazaki and Bai were supported in part by the National Science Foundation grants 0313390 and 0611548. Natarajan and Hamann were supported in part by the National Science Foundation grant under contracts ACI 9624034 (CAREER Award) and a large Information Technology Research (ITR) grant. Natarajan was also supported by a faculty startup grant from the Indian Institute of Science. We thank the members of the Visualization and Computer Graphics Research Group at the Institute for Data Analysis and Visualization (IDAV) at the University of California, Davis for helpful discussions. NR 55 TC 7 Z9 8 U1 0 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-2789 J9 VISUAL COMPUT JI Visual Comput. PD DEC PY 2010 VL 26 IS 12 BP 1421 EP 1433 DI 10.1007/s00371-010-0428-z PG 13 WC Computer Science, Software Engineering SC Computer Science GA 678WA UT WOS:000284112400001 ER PT J AU De Steven, D Sharitz, RR Barton, CD AF De Steven, Diane Sharitz, Rebecca R. Barton, Christopher D. TI Ecological Outcomes and Evaluation of Success in Passively Restored Southeastern Depressional Wetlands SO WETLANDS LA English DT Article DE Carolina bay; Mitigation bank; Vegetation dynamics; Wetland restoration ID PRAIRIE POTHOLE WETLANDS; RESTORATION ECOLOGY; COASTAL-PLAIN; VEGETATION DEVELOPMENT; COMMUNITY-DEVELOPMENT; CAROLINA BAY; SELF-DESIGN; REVEGETATION; MANAGEMENT; FRAMEWORK AB Depressional wetlands may be restored passively by disrupting prior drainage to recover original hydrology and relying on natural revegetation. Restored hydrology selects for wetland vegetation; however, depression geomorphology constrains the achievable hydroperiod, and plant communities are influenced by hydroperiod and available species pools. Such constraints can complicate assessments of restoration success. Sixteen drained depressions in South Carolina, USA, were restored experimentally by forest clearing and ditch plugging for potential crediting to a mitigation bank. Depressions were assigned to alternate revegetation methods representing desired targets of herbaceous and wet-forest communities. After five years, restoration progress and revegetation methods were evaluated. Restored hydroperiods differed among wetlands, but all sites developed diverse vegetation of native wetland species. Vegetation traits were influenced by hydroperiod and the effects of early drought, rather than by revegetation method. For mitigation banking, individual wetlands were assessed for improvement from pre-restoration condition and similarity to assigned reference type. Most wetlands met goals to increase hydroperiod, herb-species dominance, and wetland-plant composition. Fewer wetlands achieved equivalence to reference types because some vegetation targets were incompatible with depression hydroperiods and improbable without intensive management. The results illustrated a paradox in judging success when vegetation goals may be unsuited to system constraints. C1 [De Steven, Diane] US Forest Serv, So Res Stn, Ctr Bottomland Hardwoods Res, Stoneville, MS 38776 USA. [Sharitz, Rebecca R.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Barton, Christopher D.] Univ Kentucky, Dept Forestry, Lexington, KY 40546 USA. RP De Steven, D (reprint author), US Forest Serv, So Res Stn, Ctr Bottomland Hardwoods Res, POB 227, Stoneville, MS 38776 USA. EM ddesteven@fs.fed.us FU DOE-Savannah River Operations Office [DE-IA09-76SR00056, DE-IA09-00SR22188]; DOE Office of Biological and Environmental Research [DE-FC09-96SR18546]; USFS-Savannah River [01-CA-11083600-011, 03-CS-11083600-002]; Center for Forested Wetlands Research [01-CA-11330135-457] FX We sincerely thank John Blake, U.S. Forest Service-Savannah River, for sustained dedication to overall project management, and also Randy Kolka and Don Imm for their early contributions. For field assistance, we especially thank J. Singer, J. Mulhouse, L. Lee, P. Stankus, A. Harrison, and A. Lowrance. T. Dell and R. Souter advised on statistics. Comments by B. Collins, R. Kolka, and several reviewers and editors greatly improved the manuscript. Funding was provided by the DOE-Savannah River Operations Office (Agreements DE-IA09-76SR00056 and DE-IA09-00SR22188 with the USFS-Savannah River), the DOE Office of Biological and Environmental Research (Award DE-FC09-96SR18546 to The Univ. of Georgia Research Foundation), and by Cooperative Agreements with the USFS-Savannah River (01-CA-11083600-011, 03-CS-11083600-002) and the Center for Forested Wetlands Research (01-CA-11330135-457). NR 59 TC 9 Z9 9 U1 6 U2 38 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0277-5212 J9 WETLANDS JI Wetlands PD DEC PY 2010 VL 30 IS 6 BP 1129 EP 1140 DI 10.1007/s13157-010-0100-4 PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 691QH UT WOS:000285095400012 ER PT J AU Tonchev, AP Hammond, SL Howell, CR Huibregtse, C Hutcheson, A Kelley, JH Kwan, E Raut, R Rusev, G Tornow, W Kawano, T Vieira, DJ Wilhelmy, JB AF Tonchev, A. P. Hammond, S. L. Howell, C. R. Huibregtse, C. Hutcheson, A. Kelley, J. H. Kwan, E. Raut, R. Rusev, G. Tornow, W. Kawano, T. Vieira, D. J. Wilhelmy, J. B. TI Measurement of the Am-241(gamma,n)Am-240 reaction in the giant dipole resonance region SO PHYSICAL REVIEW C LA English DT Article ID PHOTONEUTRON CROSS-SECTIONS; GAMMA; PHOTONS; AM-241 AB The photodisintegration cross section of the radioactive nucleus Am-241 has been obtained using activation techniques and monoenergetic gamma-ray beams from the HI. S facility. The induced activity of Am-240 produced via the Am-241(gamma,n) reaction was measured in the energy interval from 9 to 16 MeV utilizing high-resolution gamma-ray spectroscopy. The experimental data for the Am-241(gamma,n) reaction in the giant dipole resonance energy region are compared with statistical nuclear-model calculations. C1 [Tonchev, A. P.; Howell, C. R.; Hutcheson, A.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Tonchev, A. P.; Hammond, S. L.; Howell, C. R.; Huibregtse, C.; Hutcheson, A.; Kelley, J. H.; Kwan, E.; Raut, R.; Rusev, G.; Tornow, W.] Triangle Univ Nucl Lab, Durham, NC 27708 USA. [Hammond, S. L.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Huibregtse, C.; Kelley, J. H.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Kawano, T.; Vieira, D. J.; Wilhelmy, J. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Tonchev, AP (reprint author), Duke Univ, Dept Phys, Durham, NC 27708 USA. FU National Nuclear Security Administration through Department of Energy [DE-FG52-09NA29448, DE-PS52-08NA28920]; US Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security; LLC [DE-AC52-06NA25369] FX The authors would like to thank the HI gamma S operational team for providing an excellent photon beam for these measurements. They also would like to acknowledge M. A. Stoyer for the preparation of the 241Am targets and M. B. Chadwick for stimulating the present experimental activity. This work was supported by the National Nuclear Security Administration under the Stewardship Science Academic Alliances Program through Department of Energy Grants No. DE-FG52-09NA29448 and DE-PS52-08NA28920 and performed under the auspices of the US Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25369. NR 22 TC 6 Z9 6 U1 2 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 30 PY 2010 VL 82 IS 5 AR 054620 DI 10.1103/PhysRevC.82.054620 PG 6 WC Physics, Nuclear SC Physics GA 713JT UT WOS:000286735000005 ER PT J AU Wang, JA Chen, GM Wu, WM AF Wang, Jian Chen, Guoming Wu, Weimin TI THE IMPACT OF LO, NLO AND NNLO FOR THE HIGGS SEARCHING AT root s=7 TeV OF LHC SO MODERN PHYSICS LETTERS A LA English DT Article DE NNLO; Higgs searching ID BOSON PRODUCTION AB Most of current Monte Carlo studies on the Higgs searching are based on LO, or NLO calculation. However, in recent years, the next-to-next-to-leading order (NNLO) corrections have been computed for some physics process, and found that the cross section increases the kinematics changes. As the results, the analysis results could be impacted by these high order QCD corrections. We use standard Monte Carlo generator for LO, as well as MC@NLO for NLO and ResBos for NNLO at 7 TeV of LHC to evaluate this impact for physics channel of the Higgs, mass at 165 GeV, to WW, then W decay to lepton and neutrino as the final states. We found the signal rate could be effected by ratio of 1:2.6:3.4 for LO, NLO and NNLO using the same standard H -> WW -> lvlv searching analysis process.(6) C1 [Wang, Jian; Chen, Guoming] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wu, Weimin] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Wang, JA (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. NR 6 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-7323 J9 MOD PHYS LETT A JI Mod. Phys. Lett. A PD NOV 30 PY 2010 VL 25 IS 36 BP 3027 EP 3031 DI 10.1142/S0217732310034146 PG 5 WC Physics, Nuclear; Physics, Particles & Fields; Physics, Mathematical SC Physics GA 677PX UT WOS:000284005400003 ER PT J AU Datye, A Wu, KH Gomes, G Monroy, V Lin, HT Vleugels, J Vanmeensel, K AF Datye, Amit Wu, Kuang-Hsi Gomes, George Monroy, Vivana Lin, Hua-Tay Vleugels, Jozef Vanmeensel, Kim TI Synthesis, microstructure and mechanical properties of Yttria Stabilized Zirconia (3YTZP) - Multi-Walled Nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on Zirconia particles SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Carbon nanotubes; Ceramic-matrix composites; Mechanical properties; Scanning/transmission electron microscopy (STEM); Chemical vapor deposition (CVD) ID MULTIWALLED CARBON NANOTUBES; FIBER-REINFORCED CERAMICS; MATRIX COMPOSITES; CVD; CRYSTALLIZATION; STRENGTH; METALS AB In this research, Yttria Stabilized Zirconia (3YTZP) - carbon nanotube (CNT) composites are fabricated by direct in-situ growth of CNTs on the Zirconia particles, followed by densification via the Spark Plasma Sintering (SPS) technique. Scanning electron microscopy analysis of the 3YTZP-CNT powders shows uniform distribution of CNTs without the formation of agglomerates frequently seen with the traditional ex-situ mixing of CNTs in ceramic compositions. The samples were sintered to nearly 100% theoretical density and with a finer grain size microstructure. High Resolution Transmission Electron Microscopy (HRTEM) and Raman Spectroscopy confirm CNT retention in the sintered nanocomposites up to 1600 degrees C. The flexural strength increases from similar to 260 MPa for samples without CNTs sintered at 1600 degrees C to 312 MPa for samples with similar to 4 wt.% CNTs sintered at the same temperature. A corresponding increase in the indentation fracture toughness is also observed for samples with similar to 4 wt.% CNTs sintered at 1600 degrees C as compared to samples sintered at the same temperature without CNTs. Published by Elsevier Ltd. C1 [Wu, Kuang-Hsi; Gomes, George; Monroy, Vivana] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA. [Datye, Amit] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Lin, Hua-Tay] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Vleugels, Jozef; Vanmeensel, Kim] Katholieke Univ Leuven, Dept Met & Mat Engn, Louvain, Belgium. RP Wu, KH (reprint author), Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA. EM wu@fiu.edu RI Vleugels, Jozef/C-8262-2017 OI Vleugels, Jozef/0000-0003-4432-4675 FU Office of Naval Research (ONR) [N000140610131] FX The authors would like to acknowledge support from the Office of Naval Research (ONR) Grant Number # N000140610131 and Dr. I. Perez of ONR for his support. NR 51 TC 26 Z9 27 U1 3 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD NOV 30 PY 2010 VL 70 IS 14 BP 2086 EP 2092 DI 10.1016/j.compscitech.2010.08.005 PG 7 WC Materials Science, Composites SC Materials Science GA 674PK UT WOS:000283759400008 ER PT J AU McKinlay, JB Laivenieks, M Schindler, BD McKinlay, AA Siddaramappa, S Challacombe, JF Lowry, SR Clum, A Lapidus, AL Burkhart, KB Harkins, V Vieille, C AF McKinlay, James B. Laivenieks, Maris Schindler, Bryan D. McKinlay, Anastasia A. Siddaramappa, Shivakumara Challacombe, Jean F. Lowry, Stephen R. Clum, Alicia Lapidus, Alla L. Burkhart, Kirk B. Harkins, Victoria Vieille, Claire TI A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production SO BMC GENOMICS LA English DT Article ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; MULTOCIDA GENE-EXPRESSION; REDUCED NEUTRAL RED; ESCHERICHIA-COLI; PASTEURELLA-MULTOCIDA; MANNHEIMIA-SUCCINICIPRODUCENS; FERMENTATIVE METABOLISM; IRON ACQUISITION; SCALE ANALYSIS; SEROTYPE-B AB Background: Succinate is produced petrochemically from maleic anhydride to satisfy a small specialty chemical market. If succinate could be produced fermentatively at a price competitive with that of maleic anhydride, though, it could replace maleic anhydride as the precursor of many bulk chemicals, transforming a multi-billion dollar petrochemical market into one based on renewable resources. Actinobacillus succinogenes naturally converts sugars and CO2 into high concentrations of succinic acid as part of a mixed-acid fermentation. Efforts are ongoing to maximize carbon flux to succinate to achieve an industrial process. Results: Described here is the 2.3 Mb A. succinogenes genome sequence with emphasis on A. succinogenes's potential for genetic engineering, its metabolic attributes and capabilities, and its lack of pathogenicity. The genome sequence contains 1,690 DNA uptake signal sequence repeats and a nearly complete set of natural competence proteins, suggesting that A. succinogenes is capable of natural transformation. A. succinogenes lacks a complete tricarboxylic acid cycle as well as a glyoxylate pathway, and it appears to be able to transport and degrade about twenty different carbohydrates. The genomes of A. succinogenes and its closest known relative, Mannheimia succiniciproducens, were compared for the presence of known Pasteurellaceae virulence factors. Both species appear to lack the virulence traits of toxin production, sialic acid and choline incorporation into lipopolysaccharide, and utilization of hemoglobin and transferrin as iron sources. Perspectives are also given on the conservation of A. succinogenes genomic features in other sequenced Pasteurellaceae. Conclusions: Both A. succinogenes and M. succiniciproducens genome sequences lack many of the virulence genes used by their pathogenic Pasteurellaceae relatives. The lack of pathogenicity of these two succinogens is an exciting prospect, because comparisons with pathogenic Pasteurellaceae could lead to a better understanding of Pasteurellaceae virulence. The fact that the A. succinogenes genome encodes uptake and degradation pathways for a variety of carbohydrates reflects the variety of carbohydrate substrates available in the rumen, A. succinogenes's natural habitat. It also suggests that many different carbon sources can be used as feedstock for succinate production by A. succinogenes. C1 [McKinlay, James B.; Laivenieks, Maris; Schindler, Bryan D.; Burkhart, Kirk B.; Harkins, Victoria; Vieille, Claire] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [McKinlay, Anastasia A.] Univ Washington, Dept Genome Sci & Med, Seattle, WA 98195 USA. [Siddaramappa, Shivakumara; Challacombe, Jean F.] DOE Joint Genome Inst, Los Alamos, NM 87545 USA. [Siddaramappa, Shivakumara; Challacombe, Jean F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lowry, Stephen R.; Clum, Alicia; Lapidus, Alla L.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Vieille, Claire] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [McKinlay, James B.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Burkhart, Kirk B.] Univ Wisconsin, Genet Lab, Madison, WI 53706 USA. [Harkins, Victoria] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. RP Vieille, C (reprint author), Michigan State Univ, Dept Microbiol & Mol Genet, 2215 Biomed Biophys Sci Bldg, E Lansing, MI 48824 USA. EM vieille@msu.edu RI Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 FU National Science Foundation [BES-0224596]; Michigan State University (MSU); Michigan Economic Development Corporation; Office of Science of the U.S. Department of Energy [DE AC02 05CH11231] FX This work was supported by the National Science Foundation grant BES-0224596, by a grant from the Michigan State University (MSU) Research Excellence Fund, and by a grant from the Michigan Economic Development Corporation. We wish to thank Dr. J. Gregory Zeikus for allowing us to continue his work on this fascinating and useful organism. We are deeply grateful to the JGI for sequencing the A. succinogenes genome and providing us with the automatic annotation and useful genome analysis tools. The U.S. Department of Energy Joint Genome Institute work was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank Drs. M. Bagdasarian, J.A. Breznak, C.A. Reddy, and Y. Shachar-Hill for valuable insights and discussions. We acknowledge Dr. Carlos Araya for assistance with Python programming. We are grateful to Drs. Peter Bergholz and Hector Alaya-del-Rio for expert advice on manual genome annotations. We thank Christopher B. Jambor for his valuable editing advice. NR 79 TC 37 Z9 442 U1 6 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 30 PY 2010 VL 11 AR 680 DI 10.1186/1471-2164-11-680 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 697YM UT WOS:000285555700001 PM 21118570 ER PT J AU Komanicky, V Iddir, H Chang, KC Menzel, A Karapetrov, G Hennessy, DC Zapol, P You, H AF Komanicky, Vladimir Iddir, Hakim Chang, Kee-Chul Menzel, Andreas Karapetrov, Goran Hennessy, Daniel C. Zapol, Peter You, Hoydoo TI Fabrication and characterization of platinum nanoparticle arrays of controlled size, shape and orientation SO ELECTROCHIMICA ACTA LA English DT Article; Proceedings Paper CT 60th Annual Meeting of ISE CY AUG 16-21, 2009 CL Peking Univ, Beijing, PEOPLES R CHINA HO Peking Univ DE Nanocrystal; Lithography; Electrocatalysis; Oxygen-reduction reaction; Density functional theory ID SINGLE-CRYSTAL SURFACES; OXYGEN REDUCTION; ELECTROOXIDATION; ADSORPTION; METALS; ENERGY; SRTIO3; CO AB We present a rigorous approach for the shape design of supported metal nanoparticle catalysts morphologically identical to each other and epitaxially grown on strontium titanate substrates using electron beam lithography We predict the particle shapes using Wulff construction based on density functional theory calculations of surface energies Then according to the theoretical predictions we are able to tweak morphologies of the already produced nanocrystals by changing annealing conditions The ability to design produce and characterize the catalyst nanoparticles allows us to relate microscopic morphologies with macroscopic oxygen-reduction activities in perchloric acid [Komanicky et al J Am Chem Soc 131 (2009)5732] The unexpectedly high oxygen-reduction activities proportional to inactive (1 0 0) facets led us to suggest a model where the reaction intermediates can cross over to neighboring facets in nanoscale proximity (C) 2010 Elsevier Ltd All rights reserved C1 [Komanicky, Vladimir; Iddir, Hakim; Chang, Kee-Chul; Menzel, Andreas; Karapetrov, Goran; Hennessy, Daniel C.; Zapol, Peter; You, Hoydoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Komanicky, Vladimir] Safarik Univ, Fac Sci, Kosice 04154, Slovakia. [Menzel, Andreas] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP You, H (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Menzel, Andreas/C-4388-2012; Zapol, Peter/G-1810-2012; Chang, Kee-Chul/O-9938-2014; You, Hoydoo/A-6201-2011; Karapetrov, Goran/C-2840-2008 OI Menzel, Andreas/0000-0002-0489-609X; Zapol, Peter/0000-0003-0570-9169; Chang, Kee-Chul/0000-0003-1775-2148; You, Hoydoo/0000-0003-2996-9483; Karapetrov, Goran/0000-0003-1113-0137 NR 22 TC 6 Z9 6 U1 2 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 30 PY 2010 VL 55 IS 27 SI SI BP 7934 EP 7938 DI 10.1016/j.electacta.2010.03.024 PG 5 WC Electrochemistry SC Electrochemistry GA 682WW UT WOS:000284434700022 ER PT J AU Andrejczuk, M Grabowski, WW Reisner, J Gadian, A AF Andrejczuk, M. Grabowski, W. W. Reisner, J. Gadian, A. TI Cloud-aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID STOCHASTIC COLLECTION EQUATION; LARGE-EDDY SIMULATIONS; NOCTURNAL MARINE STRATOCUMULUS; NUMERICAL-SIMULATION; EXPLICIT MICROPHYSICS; CONVECTIVE CLOUDS; FLUX METHOD; ENTRAINMENT; FRAMEWORK; PARTICLES AB Lagrangian Cloud Model (LCM) is a mixed Eulerian/Lagrangian approach to atmospheric large eddy simulation (LES), with two-way coupling between Eulerian dynamics and thermodynamics and Lagrangian microphysics. Since Lagrangian representation of microphysics does not suffer from numerical diffusion in the radius space and solves full droplet growth equations, it may be considered an alternative for the bin approach. This paper documents the development of LCM to include collision/coalescence processes. The proposed algorithm maps Lagrangian parcels collision/coalescence events on the specified two-dimensional grid, with the first dimension spanning aerosol radius and the second dimension spanning the cloud droplet radius. The proposed approach is capable of representation of aerosol activation, deactivation, transport inside the droplets, and processing by clouds and in the future may be used to investigate details of these processes. As an illustration, LCM with collision/coalescence is used to investigate effects of aerosols on cloud microphysics and dynamics for a marine stratocumulus cloud. Two extreme cases are considered that represent low and high aerosol concentrations. It is shown that the aerosol type significantly affects cloud microphysics as well as cloud dynamics. In agreement with previous studies, a larger entrainment rate is simulated for the high aerosol concentration. For the low aerosol concentration, intense collision/coalescence and drizzle modify the aerosol size distribution, reducing the concentration in the dry radius range of 0.02 to 0.2 mu m and increasing the concentration for dry radii larger than 0.3 mu m. C1 [Andrejczuk, M.; Gadian, A.] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. [Grabowski, W. W.] Natl Ctr Atmospher Res, Mesoscale & Microscale Meteorol Div, Boulder, CO 80305 USA. [Reisner, J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Andrejczuk, M (reprint author), Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England. EM m.andrejczuk@leeds.ac.uk FU NERC; NOAA [NA08OAR4310543]; DOE [DE-FG02-08ER64574] FX This work was supported by NERC funding for the VOCALS project, NCAS computer time on HECToR, and BADC data centre. W. W. G. acknowledges support from NOAA grant NA08OAR4310543 and DOE ARM grant DE-FG02-08ER64574. NR 33 TC 24 Z9 24 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 30 PY 2010 VL 115 AR D22214 DI 10.1029/2010JD014248 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 690PL UT WOS:000285016600004 ER PT J AU Choi, K Tong, W Mariani, RD Burkes, DE Munir, ZA AF Choi, Kwanghoon Tong, Wen Mariani, Robert D. Burkes, Douglas E. Munir, Zuhair A. TI Densification of nano-CeO2 ceramics as nuclear oxide surrogate by spark plasma sintering (vol 404, pg 210, 2010) SO JOURNAL OF NUCLEAR MATERIALS LA English DT Correction C1 [Choi, Kwanghoon; Tong, Wen; Munir, Zuhair A.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Mariani, Robert D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Burkes, Douglas E.] Natl Nucl Secur Adm, Washington, DC 20585 USA. RP Munir, ZA (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. NR 1 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV 30 PY 2010 VL 406 IS 3 BP 371 EP 371 DI 10.1016/j.jnucmat.2010.10.017 PG 1 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 687CB UT WOS:000284750400013 ER PT J AU Hinderliter, PM Minard, KR Orr, G Chrisler, WB Thrall, BD Pounds, JG Teeguarden, JG AF Hinderliter, Paul M. Minard, Kevin R. Orr, Galya Chrisler, William B. Thrall, Brian D. Pounds, Joel G. Teeguarden, Justin G. TI ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies SO PARTICLE AND FIBRE TOXICOLOGY LA English DT Article ID MULTIPLE-PATH MODEL; PHARMACOKINETIC MODEL; PBPK MODEL; SILICA NANOPARTICLES; LIFE STAGES; RAT LUNG; KINETICS; DEPOSITION; CLEARANCE; RETENTION AB Background: The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. mu g particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results: The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions: Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a mu g/mL basis and target cell doses on a particle surface area or number basis can be as high as three to six orders of magnitude. As a consequence, in vitro hazard assessments utilizing mass-based exposure metrics have inherently high errors where particle number or surface areas target cells doses are believed to drive response. The gold standard for particle dosimetry for in vitro nanotoxicology studies should be direct experimental measurement of the cellular content of the studied particle. However, where such measurements are impractical, unfeasible, and before such measurements become common, particle dosimetry models such as ISDD provide a valuable, immediately useful alternative, and eventually, an adjunct to such measurements. C1 [Hinderliter, Paul M.; Minard, Kevin R.; Chrisler, William B.; Thrall, Brian D.; Pounds, Joel G.; Teeguarden, Justin G.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Orr, Galya] Pacific NW Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Justin.Teeguarden@pnl.gov OI Teeguarden, Justin/0000-0003-3817-4391; Pounds, Joel/0000-0002-6616-1566 FU Battelle Memorial Institute (CRADA) [PNNL/284]; NIH [ES016212, U19-ES019544]; DOE [DE-AC05-76RLO 1830]; U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory (PNNL) FX Support for this research was provided by Multi-Scale Toxicology Research Initiative sponsored by Battelle Memorial Institute (CRADA #PNNL/284), as well as NIH grants ES016212 and U19-ES019544. Some of the experimental work was performed in the Environmental Molecular Sciences Laboratory, a U.S. Department of Energy, Office of Biological and Environmental Research national scientific user facility at Pacific Northwest National Laboratory (PNNL). PNNL is multi-program national laboratory operated by Battelle for the DOE under Contract No. DE-AC05-76RLO 1830. Portions of this work were funded by the U.S. Department of Energy through the Environmental Biomarkers Initiative at Pacific Northwest National Laboratory (PNNL). NR 59 TC 158 Z9 158 U1 8 U2 56 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1743-8977 J9 PART FIBRE TOXICOL JI Part. Fibre Toxicol. PD NOV 30 PY 2010 VL 7 AR 36 DI 10.1186/1743-8977-7-36 PG 19 WC Toxicology SC Toxicology GA 700YY UT WOS:000285782700001 PM 21118529 ER PT J AU Carr, CW Bude, JD DeMange, P AF Carr, C. W. Bude, J. D. DeMange, P. TI Laser-supported solid-state absorption fronts in silica SO PHYSICAL REVIEW B LA English DT Article AB We develop a model based on simulation and extensive experimentation that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5 GW/cm(2)) laser exposure. Both experiments and simulations show that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. We show that these absorption fronts naturally result from the combination of high-temperature-activated deep subband-gap optical absorptivity, free-electron transport, and thermal diffusion in defect-free silica for temperatures up to 15 000 K and pressures < 10 GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions. C1 [Carr, C. W.; Bude, J. D.; DeMange, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Carr, CW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RI Carr, Chris/F-7163-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-pAC52-07NA27344]; LLNL office of LDRD [LLNL-JRNL-423847] FX The authors would like to thank M. L. Spaeth, B. Sadigh, J. Stolken, M. D. Feit, N. Shen, and the crew of OSL for their assistance in this work. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-pAC52-07NA27344 and funded through LLNL office of LDRD. (LLNL-JRNL-423847). NR 25 TC 55 Z9 58 U1 5 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 30 PY 2010 VL 82 IS 18 AR 184304 DI 10.1103/PhysRevB.82.184304 PG 7 WC Physics, Condensed Matter SC Physics GA V23ZW UT WOS:000208381700001 ER PT J AU Yang, SM Jo, JY Kim, TH Yoon, JG Song, TK Lee, HN Marton, Z Park, S Jo, Y Noh, TW AF Yang, S. M. Jo, J. Y. Kim, T. H. Yoon, J. -G. Song, T. K. Lee, H. N. Marton, Z. Park, S. Jo, Y. Noh, T. W. TI ac dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; WALL DYNAMICS; NUCLEATION; REVERSAL; KINETICS; GROWTH AB We investigated the pinning dominated domain-wall dynamics under an ac field by studying the frequency (f) dependence of hysteresis loops of a uniaxial ferroelectric (FE) system. We measured the fully saturated polarization-electric field (P-E) hysteresis loops of high-quality epitaxial 100-nm-thick PbZr0.2Ti0.8O3 capacitors at various f (5-2000 Hz) and temperatures T (10-300 K). We observed that the coercive field EC is proportional to f(beta) with two scaling regions, which was also reported earlier in magnetic systems [T. A. Moore and J. A. C. Bland, J. Phys.: Condens. Matter 16, R1369 (2004), and references therein]. In addition, we observed that the two scaling regions of EC vs f exist at all measured T. We found that the existence of the two scaling regions should come from a dynamic crossover between the creep and flow regimes of the FE domain-wall motions. By extending the theory of Nattermann et al., which was originally proposed for impure magnet systems [T. Nattermann, V. Pokrovsky, and V. M. Vinokur, Phys. Rev. Lett. 87, 197005 (2001)], to the disordered FE systems, we obtained analytical expressions for the dynamic crossovers between the relaxation and creep, and between the creep and flow regimes. By comparing with the experimental data from our fully saturated P-E hysteresis loop measurements, we could construct a T-E dynamic phase diagram with f as a parameter for hysteretic FE domain dynamics in the presence of an ac field. C1 [Yang, S. M.; Jo, J. Y.; Kim, T. H.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. [Yoon, J. -G.] Univ Suwon, Dept Phys, Hwaseong 445743, Gyunggi Do, South Korea. [Song, T. K.] Changwon Natl Univ, Sch Nano & Adv Mat Engn, Chang Won 641773, Gyeongnam, South Korea. [Lee, H. N.; Marton, Z.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Marton, Z.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Park, S.; Jo, Y.] Korea Basic Sci Inst, Div Mat Sci, Taejon 305333, South Korea. RP Noh, TW (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. EM twnoh@snu.ac.kr RI Lee, Ho Nyung/K-2820-2012; Noh, Tae Won /K-9405-2013; Kim, Tae Heon/C-5935-2015; Yang, Sang Mo/Q-2455-2015 OI Lee, Ho Nyung/0000-0002-2180-3975; Kim, Tae Heon/0000-0003-4835-0707; Yang, Sang Mo/0000-0003-1809-2938 FU Korea government (MEST) [2009-0080567, 2010-0020416]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (Grants No. 2009-0080567 and No. 2010-0020416). The work at Oak Ridge National Laboratory (H.N.L.) was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. NR 30 TC 29 Z9 30 U1 0 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 30 PY 2010 VL 82 IS 17 AR 174125 DI 10.1103/PhysRevB.82.174125 PG 7 WC Physics, Condensed Matter SC Physics GA 760HQ UT WOS:000290315800002 ER PT J AU Esbensen, H Jiang, CL Stefanini, AM AF Esbensen, H. Jiang, C. L. Stefanini, A. M. TI Hindrance in the fusion of Ca-48+Ca-48 SO PHYSICAL REVIEW C LA English DT Article ID INELASTIC-SCATTERING AB The coupled-channels technique is applied to analyze recent fusion data for Ca-48 + Ca-48. The calculations include the excitations of the low-lying 2(+), 3(-), and 5(-) states in projectile and target, and the influence of mutual excitations as well as the two-phonon quadrupole excitations is also investigated. The ion-ion potential is obtained by double-folding the nuclear densities of the reacting nuclei with the M3Y + repulsion effective interaction but a standard Woods-Saxon potential is also applied. The data exhibit a strong hindrance at low energy compared to calculations that are based on a standard Woods-Saxon potential but they can be reproduced quite well by applying the M3Y + repulsion potential with an adjusted radius of the nuclear density. The influence of the polarization of high-lying states on the extracted radius is discussed. C1 [Esbensen, H.; Jiang, C. L.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Stefanini, A. M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Padova, Italy. RP Esbensen, H (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX One of the authors (H.E.) acknowledges discussions with S. Misicu about double-folding potentials. This work was supported by the US Department of Energy, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357. NR 22 TC 40 Z9 41 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 30 PY 2010 VL 82 IS 5 AR 054621 DI 10.1103/PhysRevC.82.054621 PG 8 WC Physics, Nuclear SC Physics GA 713JT UT WOS:000286735000006 ER PT J AU Yang, F Waters, KM Miller, JH Gritsenko, MA Zhao, R Du, XX Livesay, EA Purvine, SO Monroe, ME Wang, YC Camp, DG Smith, RD Stenoien, DL AF Yang, Feng Waters, Katrina M. Miller, John H. Gritsenko, Marina A. Zhao, Rui Du, Xiuxia Livesay, Eric A. Purvine, Samuel O. Monroe, Matthew E. Wang, Yingchun Camp, David G., II Smith, Richard D. Stenoien, David L. TI Phosphoproteomics Profiling of Human Skin Fibroblast Cells Reveals Pathways and Proteins Affected by Low Doses of Ionizing Radiation SO PLOS ONE LA English DT Article ID TUMOR-SUPPRESSOR GENE; DNA-DAMAGE; RADIOADAPTIVE RESPONSE; MASS-SPECTROMETRY; COMPLEX FACT; KAPPA-B; PHOSPHORYLATION; EXPRESSION; ACTIVATION; APOPTOSIS AB Background: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation. Principal Findings: We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure. Semi-quantitative label-free analyses were performed to identify phosphopeptides that are apparently altered by radiation exposure. This screen identified phosphorylation sites on proteins with known roles in radiation responses including TP53BP1 as well as previously unidentified radiation-responsive proteins such as the candidate tumor suppressor SASH1. Bioinformatic analyses suggest that low and high doses of radiation affect both overlapping and unique biological processes and suggest a role for MAP kinase and protein kinase A (PKA) signaling in the radiation response as well as differential regulation of p53 networks at low and high doses of radiation. Conclusions: Our results represent the most comprehensive analysis of the phosphoproteomes of human primary fibroblasts exposed to multiple doses of ionizing radiation published to date and provide a basis for the systems-level identification of biological processes, molecular pathways and individual proteins regulated in a dose dependent manner by ionizing radiation. Further study of these modified proteins and affected networks should help to define the molecular mechanisms that regulate biological responses to radiation at different radiation doses and elucidate the impact of low-dose radiation exposure on human health. C1 [Yang, Feng; Waters, Katrina M.; Gritsenko, Marina A.; Zhao, Rui; Du, Xiuxia; Livesay, Eric A.; Purvine, Samuel O.; Monroe, Matthew E.; Camp, David G., II; Smith, Richard D.; Stenoien, David L.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Miller, John H.] Washington State Univ Tricities, Richland, WA USA. [Wang, Yingchun] Chinese Acad Sci, Inst Genet & Dev Biol, Beijing, Peoples R China. RP Yang, F (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM david.stenoien@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU Department of Energy Low Dose Radiation Research Program National Institutes of Health/National Center for Research Resources Proteomics Center at Pacific Northwest National Laboratory [RR18522]; Battelle [DE-AC05-76RLO 1830] FX Funding came from the Department of Energy Low Dose Radiation Research Program National Institutes of Health/National Center for Research Resources Proteomics Center at Pacific Northwest National Laboratory (RR18522). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; The authors would like to thank Dr. William Morgan for helpful advice during the preparation of this manuscript. Experiments and data analyses were performed in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 65 TC 9 Z9 10 U1 2 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2010 VL 5 IS 11 AR e14152 DI 10.1371/journal.pone.0014152 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687DK UT WOS:000284755100031 PM 21152398 ER PT J AU King, NP Jacobitz, AW Sawaya, MR Goldschmidt, L Yeates, TO AF King, Neil P. Jacobitz, Alex W. Sawaya, Michael R. Goldschmidt, Lukasz Yeates, Todd O. TI Structure and folding of a designed knotted protein SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Anfinsen; energy landscape; folding kinetics; protein folding; topology ID SINGLE-DOMAIN PROTEINS; ENERGY LANDSCAPE; DISULFIDE BOND; ARC REPRESSOR; STABILITY; FUNNELS; STATE AB A very small number of natural proteins have folded configurations in which the polypeptide backbone is knotted. Relatively little is known about the folding energy landscapes of such proteins, or how they have evolved. We explore those questions here by designing a unique knotted protein structure. Biophysical characterization and X-ray crystal structure determination show that the designed protein folds to the intended configuration, tying itself in a knot in the process, and that it folds reversibly. The protein folds to its native, knotted configuration approximately 20 times more slowly than a control protein, which was designed to have a similar tertiary structure but to be unknotted. Preliminary kinetic experiments suggest a complicated folding mechanism, providing opportunities for further characterization. The findings illustrate a situation where a protein is able to successfully traverse a complex folding energy landscape, though the amino acid sequence of the protein has not been subjected to evolutionary pressure for that ability. The success of the design strategy-connecting two monomers of an intertwined homodimer into a single protein chain-supports a model for evolution of knotted structures via gene duplication. C1 [King, Neil P.; Jacobitz, Alex W.; Goldschmidt, Lukasz; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu OI Yeates, Todd/0000-0001-5709-9839 FU National Institutes of Health [R01GM081652] FX The authors thank Katelyn Connell and Susan Marqusee for assistance with folding experiments, Martin Phillips for assistance with stopped-flow fluorimetry, Inna Pashkov for technical assistance, and Sophie Jackson for helpful comments on the manuscript. This work was supported by award R01GM081652 from the National Institutes of Health. NR 31 TC 57 Z9 57 U1 0 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 30 PY 2010 VL 107 IS 48 BP 20732 EP 20737 DI 10.1073/pnas.1007602107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 687ET UT WOS:000284762400030 PM 21068371 ER PT J AU Clem, JR AF Clem, John R. TI Corbino-geometry Josephson weak links in thin superconducting films SO PHYSICAL REVIEW B LA English DT Article ID NONLOCAL INTERACTION; PHASE; JUNCTIONS; BARRIERS AB I consider a Corbino-geometry superconducting-normal-superconducting Josephson weak link in a thin superconducting film, in which current enters at the origin, flows outward, passes through an annular Josephson weak link, and leaves radially. In contrast to sandwich-type annular Josephson junctions, in which the gauge-invariant phase difference obeys the sine-Gordon equation, here the gauge-invariant phase difference obeys an integral equation. I present exact solutions for the gauge-invariant phase difference across the weak link when it contains an integral number N of Josephson vortices and the current is zero. I then study the dynamics when a current is applied, and I derive the effective resistance and the viscous drag coefficient; I compare these results with those in sandwich-type junctions. I also calculate the critical current when there is no Josephson vortex in the weak link but there is a Pearl vortex nearby. C1 [Clem, John R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Clem, John R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Clem, JR (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX I thank J. E. Sadleir, R. H. Hadfield, M. G. Blamire, and V. G. Kogan for stimulating comments and helpful suggestions. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 25 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 29 PY 2010 VL 82 IS 17 AR 174515 DI 10.1103/PhysRevB.82.174515 PG 11 WC Physics, Condensed Matter SC Physics GA 806DF UT WOS:000293784900005 ER PT J AU Mukherjee, G Chowdhury, P Kondev, FG Walker, PM Dracoulis, GD D'Alarcao, R Shestakova, I Abu Saleem, K Ahmad, I Carpenter, MP Heinz, A Janssens, RVF Khoo, TL Lauritsen, T Lister, CJ Seweryniak, D Wiedenhoever, I Cullen, DM Wheldon, C Balabanski, DL Danchev, M Goon, TM Hartley, DJ Riedinger, LL Zeidan, O Riley, MA Kaye, RA Sletten, G AF Mukherjee, G. Chowdhury, P. Kondev, F. G. Walker, P. M. Dracoulis, G. D. D'Alarcao, R. Shestakova, I. Abu Saleem, K. Ahmad, I. Carpenter, M. P. Heinz, A. Janssens, R. V. F. Khoo, T. L. Lauritsen, T. Lister, C. J. Seweryniak, D. Wiedenhoever, I. Cullen, D. M. Wheldon, C. Balabanski, D. L. Danchev, M. Goon, T. M. Hartley, D. J. Riedinger, L. L. Zeidan, O. Riley, M. A. Kaye, R. A. Sletten, G. TI K-hindered decay of a six-quasiparticle isomer in Hf-176 SO PHYSICAL REVIEW C LA English DT Article ID QUASI-PARTICLE STATES; FORBIDDEN TRANSITIONS; RESIDUAL INTERACTIONS; ROTATIONAL BANDS; NUCLEI; REGION AB The structure and decay properties of high-K isomers in Hf-176 have been studied using beam sweeping techniques and the Gammasphere multidetector array. A new Delta K = 8 decay branch, from a K-pi = 22(-), six-quasiparticle, isomeric (t(1/2) = 43 mu s) state at 4864 keV to the 20(-) state of a K-pi = 14(-) band, has been identified. The reduced hindrance factor per degree of K forbiddenness for this decay is measured to be unusually low (f(nu) = 3.2), which suggests K mixing in the states involved. The deduced interaction matrix elements are discussed within the context of relevant K-mixing scenarios. The 3266-keV state, previously interpreted as a K-pi = 16(+) intrinsic state, is reassigned as the J(pi) = 16(+) member of the band based on the K-pi = 15(+) state at 3080 keV. The systematics of f(nu) values as a function of the degree of forbiddenness is discussed in light of this change. C1 [Mukherjee, G.; Chowdhury, P.; D'Alarcao, R.; Shestakova, I.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Kondev, F. G.; Abu Saleem, K.; Ahmad, I.; Carpenter, M. P.; Heinz, A.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Wiedenhoever, I.] Argonne Natl Lab, Argonne, IL 60439 USA. [Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Dracoulis, G. D.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. [Cullen, D. M.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Wheldon, C.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Balabanski, D. L.; Danchev, M.; Goon, T. M.; Hartley, D. J.; Riedinger, L. L.; Zeidan, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Riley, M. A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Kaye, R. A.] Purdue Univ Calumet, Dept Chem Phys, Hammond, IN 46323 USA. [Sletten, G.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. RP Chowdhury, P (reprint author), Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. EM partha_chowdhury@uml.edu RI Wheldon, Carl/F-9203-2013; Heinz, Andreas/E-3191-2014; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94ER40848, DE-AC02-06CH11357]; NSF [PHY-0554762]; EPSRC; STFC; AWE plc FX The efforts of the technical staff of the ATLAS accelerator at Argonne National Laboratory are acknowledged for providing an excellent beam of 48Ca. This work is supported by the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-FG02-94ER40848 and No. DE-AC02-06CH11357. One of the authors (D.H) acknowledges the support of NSF Grant No. PHY-0554762. Support of EPSRC, STFC, and AWE plc is also acknowledged. NR 25 TC 8 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 29 PY 2010 VL 82 IS 5 AR 054316 DI 10.1103/PhysRevC.82.054316 PG 6 WC Physics, Nuclear SC Physics GA 713JO UT WOS:000286734500004 ER PT J AU Alvine, KJ Shutthanandan, V Bennett, WD Bonham, CC Skorski, D Pitman, SG Dahl, ME Henager, CH AF Alvine, K. J. Shutthanandan, V. Bennett, W. D. Bonham, C. C. Skorski, D. Pitman, S. G. Dahl, M. E. Henager, C. H., Jr. TI High-pressure hydrogen materials compatibility of piezoelectric films SO APPLIED PHYSICS LETTERS LA English DT Article ID FERROELECTRIC-FILMS; INDUCED DEGRADATION; CAPACITORS; ELECTRODE AB Hydrogen is well known for materials compatibility issues, including blistering and embrittlement in metals, which are challenges for its use as the next-generation "green" fuel. Beyond metals, hydrogen also degrades piezoelectric materials used as actuators used in direct injection hydrogen internal combustion engines. We present the materials compatibility studies of piezoelectric films in high-pressure hydrogen environments. Absorption of high-pressure hydrogen and composition changes were studied with an elastic recoil detection analysis and Rutherford back-scattering spectrometry in lead zirconate titanate and barium titanate thin films. Hydrogen surface degradation in the form of blistering and Pb mixing was also observed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517445] C1 [Alvine, K. J.; Shutthanandan, V.; Bennett, W. D.; Bonham, C. C.; Skorski, D.; Pitman, S. G.; Dahl, M. E.; Henager, C. H., Jr.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Alvine, KJ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM kyle.alvine@pnl.gov OI Henager, Chuck/0000-0002-8600-6803 FU U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research at the Pacific Northwest National Laboratory FX This research was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC05-76RL01830. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. NR 16 TC 5 Z9 5 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 29 PY 2010 VL 97 IS 22 AR 221911 DI 10.1063/1.3517445 PG 3 WC Physics, Applied SC Physics GA 689XT UT WOS:000284965000027 ER PT J AU Horwat, D Anders, A AF Horwat, David Anders, Andre TI Ion acceleration and cooling in gasless self-sputtering SO APPLIED PHYSICS LETTERS LA English DT Article AB Copper plasma with hyperthermal directed velocity (8.8 eV) but very low temperature (0.6 eV) has been obtained using self-sputtering far above the runaway threshold. Ion energy distribution functions (IEDFs) were simultaneously measured at 34 locations. The IEDFs show the tail of the Thompson distribution near the magnetron target. They transform to shifted Maxwellians with the ions being accelerated and cooled. We deduce the existence of a highly asymmetric, pressure-driven potential hump which acts as a controlling "watershed" between the ion return flux and the expanding plasma. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3521264] C1 [Horwat, David] Nancy Univ, Dept CP2S, Inst Jean Lamour, CNRS,UMR 7198,UPV Metz,Ecole Mines Nancy, F-54042 Nancy, France. [Horwat, David; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Horwat, D (reprint author), Nancy Univ, Dept CP2S, Inst Jean Lamour, CNRS,UMR 7198,UPV Metz,Ecole Mines Nancy, Parc Saurupt,CS14234, F-54042 Nancy, France. EM aanders@lbl.gov RI Horwat, David/I-8740-2012; Anders, Andre/B-8580-2009; OI Anders, Andre/0000-0002-5313-6505; Horwat, David/0000-0001-7938-7647 FU France-Berkeley Fund [2009065]; U.S. Department of Energy [DE-AC02-05CH11231] FX D. H. acknowledges support by the France-Berkeley Fund under Project No. 2009065. Discussions with J. Pelletier and J.-P. Bauer are gratefully acknowledged. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 11 Z9 11 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 29 PY 2010 VL 97 IS 22 AR 221501 DI 10.1063/1.3521264 PG 3 WC Physics, Applied SC Physics GA 689XT UT WOS:000284965000015 ER PT J AU Jung, H Yu, YS Lee, KS Im, MY Fischer, P Bocklage, L Vogel, A Bolte, M Meier, G Kim, SK AF Jung, Hyunsung Yu, Young-Sang Lee, Ki-Suk Im, Mi-Young Fischer, Peter Bocklage, Lars Vogel, Andreas Bolte, Markus Meier, Guido Kim, Sang-Koog TI Observation of coupled vortex gyrations by 70-ps-time- and 20-nm-space-resolved full-field magnetic transmission soft x-ray microscopy SO APPLIED PHYSICS LETTERS LA English DT Article ID RESOLUTION AB We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni80Fe20) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators. (C) 2010 American Institute of Physics. [doi:10.1063/1.3517496] C1 [Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. [Jung, Hyunsung; Yu, Young-Sang; Lee, Ki-Suk; Kim, Sang-Koog] Seoul Natl Univ, Dept Mat Sci & Engn, Nanospin Lab, Seoul 151744, South Korea. [Im, Mi-Young; Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. [Bocklage, Lars; Vogel, Andreas; Bolte, Markus; Meier, Guido] Univ Hamburg, Zentrum Mikrostrukturforsch, D-20355 Hamburg, Germany. RP Kim, SK (reprint author), Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Bolte, Markus/A-6083-2009; MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; Kim, Sang-Koog/J-4638-2014; OI Fischer, Peter/0000-0002-9824-9343; Bocklage, Lars/0000-0001-9769-4173 FU Ministry of Education, Science and Technology [20100000706]; Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05-CH11231]; Deutsche Forschungsgemeinschaft [SFB 668, 1286]; City of Hamburg via Cluster of Excellence FX This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant No. 20100000706). The operation of the microscope was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under DE-AC02-05-CH11231. Financial support of the Deutsche Forschungsgemeinschaft via the SFB 668 "Magnetismus vom Einzelatom zur Nanostruktur," and via the Graduiertenkolleg 1286 "Functional Metal-Semiconductor Hybrid Systems" as well as by the City of Hamburg via Cluster of Excellence "Nano-Spintronics" is gratefully acknowledged. NR 21 TC 37 Z9 38 U1 0 U2 19 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 29 PY 2010 VL 97 IS 22 AR 222502 DI 10.1063/1.3517496 PG 3 WC Physics, Applied SC Physics GA 689XT UT WOS:000284965000050 ER PT J AU Yunus, M Ruden, PP Smith, DL AF Yunus, M. Ruden, P. P. Smith, D. L. TI Spin-polarized charge carrier injection by tunneling from ferromagnetic contacts into organic semiconductors SO APPLIED PHYSICS LETTERS LA English DT Article AB Tunnel-injection of spin-polarized charge carriers from ferromagnetic contacts into organic semiconductors is modeled. Tunneling matrix elements and transition rates for the two spin types are calculated using a transfer Hamiltonian. The tunneling process occurs between extended states of the contact and model "molecular" orbitals. We explore the effects of the tunnel barrier height and of the ferromagnetic contact's Fermi wave vectors on the level of spin injection. The barrier height and the majority and minority spin Fermi wave vectors of the contact have strong effects on the sign and magnitude of spin injection. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3522657] C1 [Yunus, M.; Ruden, P. P.] Univ Minnesota, Minneapolis, MN 55455 USA. [Smith, D. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yunus, M (reprint author), Univ Minnesota, Minneapolis, MN 55455 USA. EM yunus002@umn.edu RI Riminucci, Alberto/D-7525-2011 OI Riminucci, Alberto/0000-0003-0976-1810 FU NSF [ECCS-0724886]; DoE Office of Basic Energy Sciences [08SPCE973] FX This work was supported in part by NSF (Grant No. ECCS-0724886). Access to the facilities of the Minnesota Supercomputing Institute for Digital Simulation and Advanced Computation is gratefully acknowledged. Work at Los Alamos National Laboratory was supported by DoE Office of Basic Energy Sciences Work Proposal No. 08SPCE973. NR 17 TC 2 Z9 2 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 29 PY 2010 VL 97 IS 22 AR 223304 DI 10.1063/1.3522657 PG 3 WC Physics, Applied SC Physics GA 689XT UT WOS:000284965000079 ER PT J AU Bomm, J Buchtemann, A Fiore, A Manna, L Nelson, JH Hill, D van Sark, WGJHM AF Bomm, Jana Buechtemann, Andreas Fiore, Angela Manna, Liberato Nelson, James H. Hill, Diana van Sark, Wilfried G. J. H. M. TI Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites SO BEILSTEIN JOURNAL OF NANOTECHNOLOGY LA English DT Article DE CdSe; luminescence lifetime; nanocomposites; nanorods; quantum yield ID CELLULOSE TRIACETATE FILMS; SEEDED GROWTH; NANOPARTICLES; ROD AB Highly luminescent nanocomposites were prepared by incorporating CdSe/CdS core/shell nanorods into different polymer matrices. The resulting nanocomposites show high transparency of up to 93%. A photoluminescence quantum efficiency of 70% was obtained, with an optimum combination of nanorod (0.05 wt %) and at a UV-initiator concentration of 0.1 wt % for poly(lauryl methacrylate). Nanorods tend to agglomerate in cellulose triacetate. C1 [Bomm, Jana; Buechtemann, Andreas] Fraunhofer Inst Appl Polymer Res IAP, D-14476 Potsdam, Germany. [Fiore, Angela; Manna, Liberato] Natl Nanotechnol Lab INFM NNL, I-73100 Lecce, Italy. [Nelson, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Nelson, James H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hill, Diana] Univ Potsdam, Dept Chem, D-14476 Potsdam, Germany. [van Sark, Wilfried G. J. H. M.] Univ Utrecht, Copernicus Inst Sustainable Dev & Innovat, NL-3584 CS Utrecht, Netherlands. RP Bomm, J (reprint author), Fraunhofer Inst Appl Polymer Res IAP, Geiselbergstr 69, D-14476 Potsdam, Germany. EM jana.bomm@googlemail.com RI van Sark, Wilfried/C-5009-2009 OI van Sark, Wilfried/0000-0002-4738-1088 FU European Union [SES6-CT-2003-502620] FX We acknowledge financial support from the European Union integrated project "FULLSPECTRUM" (SES6-CT-2003-502620). We gratefully thank Marion Schlawne and Dr. Manfred Pinnow from Fraunhofer Institute for Applied Polymer Research (IAP) for TEM measurements. NR 15 TC 34 Z9 34 U1 2 U2 26 PU BEILSTEIN-INSTITUT PI FRANKFURT AM MAIN PA TRAKEHNER STRASSE 7-9, FRANKFURT AM MAIN, 60487, GERMANY SN 2190-4286 J9 BEILSTEIN J NANOTECH JI Beilstein J. Nanotechnol. PD NOV 29 PY 2010 VL 1 BP 94 EP 100 DI 10.3762/bjnano.1.11 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA V21NK UT WOS:000208214100001 PM 21977398 ER PT J AU Pechanova, O Hsu, CY Adams, JP Pechan, T Vandervelde, L Drnevich, J Jawdy, S Adeli, A Suttle, JC Lawrence, AM Tschaplinski, TJ Seguin, A Yuceer, C AF Pechanova, Olga Hsu, Chuan-Yu Adams, Joshua P. Pechan, Tibor Vandervelde, Lindsay Drnevich, Jenny Jawdy, Sara Adeli, Ardeshir Suttle, Jeffrey C. Lawrence, Amanda M. Tschaplinski, Timothy J. Seguin, Armand Yuceer, Cetin TI Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar SO BMC GENOMICS LA English DT Article ID XYLEM SAP PROTEIN; POPULUS-DELTOIDES-BARTR; STRESSED COTTON LEAVES; CELL-WALL-PEROXIDASE; RICE ORYZA-SATIVA; SUCROSE SYNTHASE; ANIONIC PEROXIDASE; DISEASE RESISTANCE; MOLECULAR-CLONING; ABSCISIC-ACID AB Background: Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. Results: We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. Conclusion: These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species. C1 [Pechanova, Olga; Hsu, Chuan-Yu; Adams, Joshua P.; Vandervelde, Lindsay; Yuceer, Cetin] Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA. [Pechan, Tibor] Mississippi State Univ, Life Sci & Biotechnol Inst, Mississippi Agr & Forestry Expt Stn, Mississippi State, MS 39762 USA. [Drnevich, Jenny] Univ Illinois, WM Keck Ctr Comparat & Funct Genom, Urbana, IL 61801 USA. [Jawdy, Sara; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Adeli, Ardeshir] USDA ARS, Mississippi State, MS 39762 USA. [Suttle, Jeffrey C.] USDA ARS, Fargo, ND 58105 USA. [Lawrence, Amanda M.] Mississippi State Univ, Ctr Electron Microscopy, Mississippi State, MS 39762 USA. [Seguin, Armand] Nat Resources Canada, Canadian Forest Serv, Laurentian Forestry Ctr, Stn St Foy, Quebec City, PQ G1V 4C7, Canada. RP Yuceer, C (reprint author), Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA. EM mcy1@msstate.edu OI Tschaplinski, Timothy/0000-0002-9540-6622 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725]; NSF [DBI-0501890, IOS-0845834] FX We thank Y. Kang, M. Monroe, G. Pelletier, K-H. Han, and J-H. Ko for assistance, and J. Kreuzwieser, V. Chiang, and S. Strauss for discussions on the manuscript. MS was conducted at the Life Sciences and Biotechnology Institute, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University. S.J. and T.J.T. were supported by the U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. This work was funded by NSF (DBI-0501890 and IOS-0845834) to C. Y. NR 142 TC 31 Z9 32 U1 5 U2 23 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 29 PY 2010 VL 11 AR 674 DI 10.1186/1471-2164-11-674 PG 22 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 697YI UT WOS:000285555300001 PM 21114852 ER PT J AU Herklotz, A Biegalski, MD Kim, HS Schultz, L Dorr, K Christen, HM AF Herklotz, Andreas Biegalski, Michael D. Kim, Hyun-Sik Schultz, Ludwig Doerr, Kathrin Christen, Hans M. TI Wide-range strain tunability provided by epitaxial LaAl1-xScxO3 template films SO NEW JOURNAL OF PHYSICS LA English DT Article ID THIN-FILMS; FERROELECTRICITY; TEMPERATURE AB The dielectric diamagnetic LaAl1-xScxO3 (LASO) (x = 0-1) is proposed for adjusting of the biaxial in-plane lattice parameter of oxide substrates in the wide range from 3.79 to 4.05 angstrom (6.5%). This range includes the pseudocubic lattice parameters of most of the currently investigated complex oxides. The in-plane lattice parameter of strain-relaxed LASO films depends linearly on the composition, and these films grow with a smooth surface. On several different LASO-buffered substrates, ferromagnetic La0.7Sr0.3MnO3 (LSMO) films have been grown in predetermined strain states. A series of 30 nm thick LSMO films on LASO-buffered LaSrAlO4(001) demonstrates that continuously controlled coherent strains in a wide range, in this case from -1 to +0.6%, can be obtained for the functional oxide films grown on LASO. C1 [Herklotz, Andreas; Schultz, Ludwig; Doerr, Kathrin] IFW Dresden, Inst Metall Mat, D-01069 Dresden, Germany. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Hyun-Sik] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Herklotz, A (reprint author), IFW Dresden, Inst Metall Mat, Helmholtzstr 20, D-01069 Dresden, Germany. EM a.herklotz@ifw-dresden.de RI Schultz, Ludwig/B-3383-2010; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU DFG [FOR520]; US Department of Energy; Division of Scientific User Facilities; Division of Materials Sciences and Engineering FX We acknowledge support from the DFG FOR520 (AH, LS and KD) and from the US Department of Energy, Division of Scientific User Facilities (MDB and HMC) and Division of Materials Sciences and Engineering (HSK). NR 16 TC 3 Z9 3 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 29 PY 2010 VL 12 AR 113053 DI 10.1088/1367-2630/12/11/113053 PG 6 WC Physics, Multidisciplinary SC Physics GA 687KC UT WOS:000284776400003 ER PT J AU Li, SZ Ding, XD Deng, JK Lookman, T Li, J Ren, XB Sun, J Saxena, A AF Li, Suzhi Ding, Xiangdong Deng, Junkai Lookman, Turab Li, Ju Ren, Xiaobing Sun, Jun Saxena, Avadh TI Superelasticity in bcc nanowires by a reversible twinning mechanism SO PHYSICAL REVIEW B LA English DT Article ID SHAPE-MEMORY ALLOYS; STACKING-FAULT ENERGIES; SURFACE FREE-ENERGY; CRACK-TIP; FUNCTIONAL MATERIALS; MOLECULAR-DYNAMICS; CU NANOWIRES; FCC METALS; ALPHA-IRON; DEFORMATION AB Superelasticity (SE) in bulk materials is known to originate from the structure-changing martensitic transition which provides a volumetric thermodynamic driving force for shape recovery. On the other hand, structure-invariant deformation processes, such as twinning and dislocation slip, which result in plastic deformation, cannot provide the driving force for shape recovery. We use molecular-dynamics simulations to show that some bcc metal nanowires exhibit SE by a "reversible" twinning mechanism, in contrast to the above conventional point of view. We show that this reversible twinning is driven by the surface energy change between the twinned and detwinned state. In view of similar recent findings in fcc nanowires, we suggest that SE is a general phenomenon in cubic nanowires and that the driving force for the shape recovery arises from minimizing the surface energy. Furthermore, we find that SE in bcc nanowires is unique in several respects: first, the < 111 > / {112} stacking fault generated by partial dislocation is always preferred over < 111 > / {110} and < 111 > / {123} full dislocation slip. The occurrence of < 111 > / {112} twin or full dislocation slip in bcc nanowires depends on the competition between the emission of subsequent partial dislocations in adjacent {112} planes and the emission of partial dislocations in the same plane. Second, compared to their fcc counterparts, bcc nanowires have a higher energy barrier for the nucleation of twins, but a lower energy barrier for twin migration. This results in certain unique characteristics of SE in bcc nanowires, such as low energy dissipation and low strain hardening. Third, certain refractory bcc nanowires, such as W and Mo, can show SE at very high temperatures, which are higher than almost all of the reported high-temperature shape memory alloys. Our work provides a deeper understanding of superelasticity in nanowires and refractory bcc nanowires are potential candidates for applications in nanoelectromechanical systems operating over a wide temperature range. C1 [Li, Suzhi; Ding, Xiangdong; Deng, Junkai; Li, Ju; Ren, Xiaobing; Sun, Jun] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Ding, Xiangdong; Lookman, Turab; Saxena, Avadh] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Deng, Junkai; Ren, Xiaobing] Natl Inst Mat Sci, Ferroic Phys Grp, Tsukuba, Ibaraki 3050047, Japan. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Ding, XD (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. EM dingxd@mail.xjtu.edu.cn; txl@lanl.gov RI Ren, Xiaobing/B-6072-2009; Deng, Junkai/E-2315-2012; Li, Ju/A-2993-2008; Ding, Xiangdong/K-4971-2013; OI Ren, Xiaobing/0000-0002-4973-2486; Li, Ju/0000-0002-7841-8058; Ding, Xiangdong/0000-0002-1220-3097; Lookman, Turab/0000-0001-8122-5671 FU NSFC [50771079, 50720145101, 50831004]; 973 Program of China [2010CB631003]; 111 project of China [B06025]; U.S. DOE at LANL [DE-AC52-06NA25396]; NSF [CMMI-0728069]; MRSEC [DMR-0520020]; ONR [N00014-05-1-0504]; AFOSR [FA9550-08-1-0325] FX This work was supported by NSFC (Grants No. 50771079, No. 50720145101, and No. 50831004) and the 973 Program of China (Grant No. 2010CB631003) as well as 111 project (B06025) of China. X. D., T. L. and A. S. also acknowledge support from the U.S. DOE at LANL (Grant No. DE-AC52-06NA25396). J.L. acknowledges support by NSF under Grant No. CMMI-0728069, MRSEC under Grant No. DMR-0520020, ONR under Grant No. N00014-05-1-0504, and AFOSR under Grant No. FA9550-08-1-0325. NR 44 TC 35 Z9 36 U1 4 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 29 PY 2010 VL 82 IS 20 AR 205435 DI 10.1103/PhysRevB.82.205435 PG 12 WC Physics, Condensed Matter SC Physics GA 713JX UT WOS:000286735400006 ER PT J AU Dusling, K Zahed, I AF Dusling, Kevin Zahed, Ismail TI Thermal photons from heavy ion collisions: A spectral function approach SO PHYSICAL REVIEW C LA English DT Article ID EMISSION RATES; HADRONIC GAS; LEADING-ORDER; DILEPTON AB We analyze the photon rates from a hadronic gas in equilibrium using chiral-reduction formulas and a density expansion. The chiral reduction is carried to second order in the pion density, which in principal includes all kinetic processes of the type X -> pi gamma and X -> pi pi gamma. The resulting rates are encoded in the form of vacuum correlation functions, which are amenable to experiment. The hadronic rates computed in this work along with the known perturbative quark gluon plasma rates are integrated over the space-time evolution of a hydrodynamic model tuned to hadronic observables. The resulting yields are compared to the recent photon and low-mass dilepton measurements at the Super Proton Synchrotron and Relativistic Heavy Ion Collider. Predictions for the Large Hadron Collider are made. C1 [Dusling, Kevin] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Zahed, Ismail] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Dusling, K (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. OI Dusling, Kevin/0000-0001-9598-0416 FU US DOE [DE-AC02-98CH10886, DE-FG02-88ER40388, DE-FG03-97ER4014] FX K. D. would like to thank Stefan Bathe for useful discussions and Dmitri Peressounko for providing the SPS photon result from the HBT analysis. K. D. would also like to thank Werner Vogelsang for providing his prompt photon production calculations. We are also indebted to Axel Drees for stressing to us the role of the NLO corrections in the analysis of the PHENIX dielectron data. Finally, we are grateful to Ralph Rapp for his careful reading of our manuscript and for making many useful suggestions. K.D. is supported by US DOE Grant No. DE-AC02-98CH10886. The work of I.Z. was supported in part by US DOE Grants No. DE-FG02-88ER40388 and No. DE-FG03-97ER4014. NR 52 TC 17 Z9 17 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 29 PY 2010 VL 82 IS 5 AR 054909 DI 10.1103/PhysRevC.82.054909 PG 11 WC Physics, Nuclear SC Physics GA 713JO UT WOS:000286734500009 ER PT J AU Ferroni, L Koch, V Pinto, MB AF Ferroni, Lorenzo Koch, Volker Pinto, Marcus B. TI Multiple critical points in effective quark models SO PHYSICAL REVIEW C LA English DT Article ID GROSS-NEVEU MODEL; ANHARMONIC-OSCILLATOR; PERTURBATION-THEORY; CRITICAL EXPONENTS; CHIRAL-SYMMETRY; OPTIMIZED EXPANSION; FINITE-TEMPERATURE; PHASE-TRANSITION; DELTA-EXPANSION; DYNAMICAL MODEL AB We consider the two-flavor version of the linear sigma model as well as of the Nambu-Jona-Lasinio model, at finite temperature and quark chemical potential, beyond the mean field approximation. Using parameter values for the pion and quark current masses which weakly break chiral symmetry, we show that both models can present more than one critical end point. In particular, we explicitly show that the appearance of a new critical point associated with a first-order line at high temperature and low densities could help to conciliate some lattice results with model predictions. Using different techniques, we perform an extensive thermodynamical analysis to understand the physical nature of the different critical points. For both models, our results suggest that the new first-order line which starts at vanishing chemical potential has a more chiral character than the usual line which displays a character more reminiscent of a liquid-gas phase transition. C1 [Ferroni, Lorenzo] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Ferroni, Lorenzo; Koch, Volker; Pinto, Marcus B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Pinto, Marcus B.] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianopolis, SC, Brazil. RP Ferroni, L (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue St 1, D-60438 Frankfurt, Germany. RI Pinto, Marcus /D-9598-2013 FU Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; Helmholtz International Center for FAIR; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brazil) FX M.B.P. thanks the Nuclear Theory Group at LBNL for the hospitality during the sabbatical year. We thank J.-L. Kneur, R. Ramos, I. N. Mishustin, W. Figueiredo, P. Costa, Y. Hatta, H. Hansen, and A. Delfino for discussions. This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under Contract No. DE-AC02-05CH11231, by the Helmholtz International Center for FAIR within the framework of the LOEWE program (Landesoffensive zur Entwicklung Wissenschaftlich-Okonomischer Exzellenz) launched by the State of Hesse, and by Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, Brazil). NR 85 TC 16 Z9 16 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 29 PY 2010 VL 82 IS 5 AR 055205 DI 10.1103/PhysRevC.82.055205 PG 19 WC Physics, Nuclear SC Physics GA 713JO UT WOS:000286734500010 ER PT J AU Lane, GJ Dracoulis, GD Kondev, FG Hughes, RO Watanabe, H Byrne, AP Carpenter, MP Chiara, CJ Chowdhury, P Janssens, RVF Lauritsen, T Lister, CJ McCutchan, EA Seweryniak, D Stefanescu, I Zhu, S AF Lane, G. J. Dracoulis, G. D. Kondev, F. G. Hughes, R. O. Watanabe, H. Byrne, A. P. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Janssens, R. V. F. Lauritsen, T. Lister, C. J. McCutchan, E. A. Seweryniak, D. Stefanescu, I. Zhu, S. TI Structure of neutron-rich tungsten nuclei and evidence for a 10(-) isomer in W-190 SO PHYSICAL REVIEW C LA English DT Article ID MULTI-QUASI-PARTICLE; ATOMIC-NUCLEI; K-SELECTION; STATES; TRANSITIONS; LANDSCAPE; TA-179; TRAPS; DECAY; BANDS AB Isomers in the neutron-rich nucleus W-190 have been characterized. A 10(-) state from the 9/2(-)[505] circle times 11/2(+)[615] two-neutron configuration with a 240-mu s lifetime decays via a K-allowed, 97-keV, M2 transition to an 8(+) state with a 160-ns lifetime from the 9/2(-)[505] circle times 7/2(-) [503] neutron configuration. New states have also been identified in W-188, including a K-pi = 8(-), 158-ns isomer from the 9/2(-)[614] circle times 7/2(+)[404] two-proton configuration. The K hindrance is observed to decrease with increasing neutron number, consistent with a trend toward increasing triaxial softness. C1 [Lane, G. J.; Dracoulis, G. D.; Hughes, R. O.; Watanabe, H.; Byrne, A. P.] Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Kondev, F. G.; Chiara, C. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Carpenter, M. P.; Chiara, C. J.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. RP Lane, GJ (reprint author), Australian Natl Univ, Dept Nucl Phys, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. RI Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015 OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734 FU Australian Government [06/07-H-04]; Australian Research Council [DP0345844, DP0986725]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848] FX We are grateful to R. B. Turkentine for making the targets. G.J.L., G.D.D., and R.O.H. acknowledge travel support from Australian Government Access to Major Research Facilites Program Grant No. 06/07-H-04. This research was supported by Discovery Projects (DP0345844 and DP0986725) from the Australian Research Council and by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-94ER40848. NR 29 TC 23 Z9 24 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 29 PY 2010 VL 82 IS 5 AR 051304 DI 10.1103/PhysRevC.82.051304 PG 5 WC Physics, Nuclear SC Physics GA 713JO UT WOS:000286734500002 ER PT J AU Gilbert, JA Field, D Swift, P Thomas, S Cummings, D Temperton, B Weynberg, K Huse, S Hughes, M Joint, I Somerfield, PJ Muhling, M AF Gilbert, Jack A. Field, Dawn Swift, Paul Thomas, Simon Cummings, Denise Temperton, Ben Weynberg, Karen Huse, Susan Hughes, Margaret Joint, Ian Somerfield, Paul J. Muehling, Martin TI The Taxonomic and Functional Diversity of Microbes at a Temperate Coastal Site: A 'Multi-Omic' Study of Seasonal and Diel Temporal Variation SO PLOS ONE LA English DT Article ID WESTERN ENGLISH-CHANNEL; COMMUNITY STRUCTURE; RARE BIOSPHERE; OCEAN; GENOMICS; BACTERIAL; DYNAMICS; WATERS; SEA; METAGENOMICS AB How microbial communities change over time in response to the environment is poorly understood. Previously a six-year time series of 16S rRNA V6 data from the Western English Channel demonstrated robust seasonal structure within the bacterial community, with diversity negatively correlated with day-length. Here we determine whether metagenomes and metatranscriptomes follow similar patterns. We generated 16S rRNA datasets, metagenomes (1.2 GB) and metatranscriptomes (157 MB) for eight additional time points sampled in 2008, representing three seasons (Winter, Spring, Summer) and including day and night samples. This is the first microbial 'multi-omic' study to combine 16S rRNA amplicon sequencing with metagenomic and metatranscriptomic profiling. Five main conclusions can be drawn from analysis of these data: 1) Archaea follow the same seasonal patterns as Bacteria, but show lower relative diversity; 2) Higher 16S rRNA diversity also reflects a higher diversity of transcripts; 3) Diversity is highest in winter and at night; 4) Community-level changes in 16S-based diversity and metagenomic profiles are better explained by seasonal patterns (with samples closest in time being most similar), while metatranscriptomic profiles are better explained by diel patterns and shifts in particular categories (i.e., functional groups) of genes; 5) Changes in key genes occur among seasons and between day and night (i.e., photosynthesis); but these samples contain large numbers of orphan genes without known homologues and it is these unknown gene sets that appear to contribute most towards defining the differences observed between times. Despite the huge diversity of these microbial communities, there are clear signs of predictable patterns and detectable stability over time. Renewed and intensified efforts are required to reveal fundamental deterministic patterns in the most complex microbial communities. Further, the presence of a substantial proportion of orphan sequences underscores the need to determine the gene products of sequences with currently unknown function. C1 [Gilbert, Jack A.; Swift, Paul; Thomas, Simon; Cummings, Denise; Temperton, Ben; Weynberg, Karen; Joint, Ian; Somerfield, Paul J.] Plymouth Marine Lab, Plymouth, Devon, England. [Gilbert, Jack A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [Field, Dawn; Swift, Paul] Natl Environm Res Council NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England. [Huse, Susan] Marine Biol Lab, Josephine Bay Paul Ctr Comparat Mol Biol & Evolut, Woods Hole, MA 02543 USA. [Hughes, Margaret] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England. [Muehling, Martin] TU Bergakad Freiberg, IOZ Interdisciplinary Ctr Ecol, Freiberg, Germany. RP Gilbert, JA (reprint author), Plymouth Marine Lab, Plymouth, Devon, England. EM gilbertjack@gmail.com RI Field, Dawn/C-1653-2010; Somerfield, Paul/J-9189-2014; OI Somerfield, Paul/0000-0002-7581-5621; Weynberg, Karen/0000-0002-9856-2137 FU Natural Environmental Research Council [NE/F00138X/1] FX Funding for this work was provided by a Natural Environmental Research Council (www.nerc.ac.uk) grant, NE/F00138X/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 98 Z9 101 U1 3 U2 64 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 29 PY 2010 VL 5 IS 11 AR e15545 DI 10.1371/journal.pone.0015545 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 686HD UT WOS:000284686500047 PM 21124740 ER PT J AU Liu, P AF Liu, Ping TI Water-gas shift reaction on oxide/Cu(111): Rational catalyst screening from density functional theory SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID MIXED-METAL OXIDE; METHANOL SYNTHESIS; RUTILE TIO2(110); NANOMETER LEVEL; CO OXIDATION; NANOPARTICLES; SURFACES; AU; CU; MECHANISM AB Developing improved catalysts based on a fundamental understanding of reaction mechanism has become one of the grand challenges in catalysis. A theoretical understanding and screening the metal-oxide composite catalysts for the water-gas shift (WGS) reaction is presented here. Density functional theory was employed to identify the key step for the WGS reaction on the Au, Cu-oxide catalysts, where the calculated reaction energy for water dissociation correlates well with the experimental measured WGS activity. Accordingly, the calculated reaction energy for water dissociation was used as the scaling descriptor to screen the inverse model catalysts, oxide/Cu(111), for the better WGS activity. Our calculations predict that the WGS activity increases in a sequence: Cu(111), ZnO/Cu(111) < TiO2/Cu(111), ZrO2/Cu(111) < MoO3/Cu(111). Our results imply that the high performances of Au, Cu-oxide nanocatalysts in the WGS reaction rely heavily on the direct participation of both oxide and metal sites. The degree that the oxide is reduced by Cu plays an important role in determining the WGS activity of oxide/Cu catalysts. The reducible oxide can be transformed from the fully oxidized form to the reduced form due to the interaction with Cu and, therefore, the transfer of electron density from Cu, which helps in releasing the bottleneck water dissociation and, therefore, facilitating the WGS reaction on copper. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506897] C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Liu, P (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM pingliu3@bnl.gov FU U.S. Department of Energy, Division of Chemical Sciences [DE-AC02-98CH10886] FX This research was carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Division of Chemical Sciences. The calculations were carried out using computational resources at the Center for Functional Nanomaterials at Brookhaven National Laboratory. NR 44 TC 13 Z9 13 U1 5 U2 54 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2010 VL 133 IS 20 AR 204705 DI 10.1063/1.3506897 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 690LB UT WOS:000285005200017 PM 21133450 ER PT J AU Muller, A Schippers, S Phaneuf, RA Kilcoyne, ALD Brauning, H Schlachter, AS Lu, M McLaughlin, BM AF Mueller, A. Schippers, S. Phaneuf, R. A. Kilcoyne, A. L. D. Braeuning, H. Schlachter, A. S. Lu, M. McLaughlin, B. M. TI State-resolved valence shell photoionization of Be-like ions: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CROSS-SECTIONS; OSCILLATOR-STRENGTHS; HIGH-RESOLUTION; GROUND-STATE; ATOMIC IONS; C2+ IONS; BERYLLIUM; RECOMBINATION; OXYGEN; C3+ AB High-resolution photoionization experiments were carried out using beams of Be-like C(2+), N(3+) and O(4+) ions with roughly equal populations of the (1)S ground state and the (3)P(o) manifold of metastable components. The energy scales of the experiments are calibrated with uncertainties of 1-10 meV depending on photon energy. Resolving powers beyond 20 000 were reached allowing for the separation of contributions from the individual metastable (3)P(0)(o), (3)P(1)(o) and (3)P(2)(o) states. The measured data compare favourably with semi-relativistic Breit-Pauli R-matrix calculations. C1 [Mueller, A.; Schippers, S.; Braeuning, H.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Phaneuf, R. A.; Lu, M.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kilcoyne, A. L. D.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP Muller, A (reprint author), Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. EM Alfred.Mueller@iamp.physik.uni-giessen.de RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; NATO [976362]; US Department of Energy (DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US National Science Foundation FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as well as by the US Department of Energy (DOE) under contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. B M McLaughlin acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA, and on the Tera-grid at the National Institute for Computational Science (NICS) in TN, USA, which is supported in part by the US National Science Foundation. NR 46 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2010 VL 43 IS 22 AR 225201 DI 10.1088/0953-4075/43/22/225201 PG 17 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 679GI UT WOS:000284149400004 ER PT J AU Jilka, P Millington, C Elsegood, MRJ Frese, JWA Teat, S Kimber, MC AF Jilka, Priti Millington, Claire Elsegood, Mark R. J. Frese, Josef W. A. Teat, Simon Kimber, Marc C. TI The selective mono and difunctionalization of carbocyclic cleft molecules with pyridyl groups and X-ray crystallographic analysis SO TETRAHEDRON LA English DT Article DE Carbocyclic cleft; Chiral cavity; Alkylation; Esterification; Recognition ID TROGERS BASE; ENANTIOMER RECOGNITION; CHIRAL CENTER; CROWN-ETHERS; SUBUNIT; COMPLEMENTARY; DERIVATIVES; FRAMEWORK; CHEMISTRY AB The diesterification and selective mono and dialkylation of carbocyclic analogues of Trager's base with pyridyl groups has been achieved in high yield and good selectivity giving access to a novel range of cleft molecules capable of binding events. Reaction conditions for the selective functionalization of this carbocyclic cleft molecule are discussed as well as the solid state structures of these newly synthesized ligands. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Jilka, Priti; Millington, Claire; Elsegood, Mark R. J.; Frese, Josef W. A.; Kimber, Marc C.] Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England. [Teat, Simon] Berkeley Lab, ALS, Berkeley, CA 94720 USA. RP Kimber, MC (reprint author), Univ Loughborough, Dept Chem, Loughborough LE11 3TU, Leics, England. EM M.C.Kimber@lboro.ac.uk RI Elsegood, Mark/K-1663-2013; Kimber, Marc/B-1472-2010 OI Elsegood, Mark/0000-0002-8984-4175; Kimber, Marc/0000-0003-2943-1974 FU Loughborough University; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX MCK thanks Loughborough University for funding. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 24 TC 3 Z9 3 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0040-4020 J9 TETRAHEDRON JI Tetrahedron PD NOV 27 PY 2010 VL 66 IS 48 BP 9327 EP 9331 DI 10.1016/j.tet.2010.10.027 PG 5 WC Chemistry, Organic SC Chemistry GA 686WK UT WOS:000284728000002 ER PT J AU Kajstura, J Gurusamy, N Ogorek, B Goichberg, P Clavo-Rondon, C Hosoda, T D'Amario, D Bardelli, S Beltrami, AP Cesselli, D Bussani, R del Monte, F Quaini, F Rota, M Beltrami, CA Buchholz, BA Leri, A Anversa, P AF Kajstura, Jan Gurusamy, Narasimman Ogorek, Barbara Goichberg, Polina Clavo-Rondon, Carlos Hosoda, Toru D'Amario, Domenico Bardelli, Silvana Beltrami, Antonio P. Cesselli, Daniela Bussani, Rossana del Monte, Federica Quaini, Federico Rota, Marcello Beltrami, Carlo A. Buchholz, Bruce A. Leri, Annarosa Anversa, Piero TI Myocyte Turnover in the Aging Human Heart SO CIRCULATION RESEARCH LA English DT Article DE gender; aging myopathy; humans; myocyte renewal ID CARDIAC STEM-CELLS; MYOCARDIAL REGENERATION; TELOMERE LENGTH; FAILURE; ACTIVATION; MODELS; CANCER; MOUSE; DEATH; CARDIOMYOGENESIS AB Rationale: The turnover of cardiomyocytes in the aging female and male heart is currently unknown, emphasizing the need to define human myocardial biology. Objective: The effects of age and gender on the magnitude of myocyte regeneration and the origin of newly formed cardiomyocytes were determined. Methods and Results: The interaction of myocyte replacement, cellular senescence, growth inhibition, and apoptosis was measured in normal female (n=32) and male (n=42) human hearts collected from patients 19 to 104 years of age who died from causes other than cardiovascular diseases. A progressive loss of telomeric DNA in human cardiac stem cells (hCSCs) occurs with aging and the newly formed cardiomyocytes inherit short telomeres and rapidly reach the senescent phenotype. Our data provide novel information on the superior ability of the female heart to sustain the multiple variables associated with the development of the senescent myopathy. At all ages, the female heart is equipped with a larger pool of functionally competent hCSCs and younger myocytes than the male myocardium. The replicative potential is higher and telomeres are longer in female hCSCs than in male hCSCs. In the female heart, myocyte turnover occurs at a rate of 10%, 14%, and 40% per year at 20, 60, and 100 years of age, respectively. Corresponding values in the male heart are 7%, 12%, and 32% per year, documenting that cardiomyogenesis involves a large and progressively increasing number of parenchymal cells with aging. From 20 to 100 years of age, the myocyte compartment is replaced 15 times in women and 11 times in men. Conclusions: The human heart is a highly dynamic organ regulated by a pool of resident hCSCs that modulate cardiac homeostasis and condition organ aging. (Circ Res. 2010;107:1374-1386.) C1 [Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Anesthesia, Boston, MA 02115 USA. [Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Med, Boston, MA 02115 USA. [Kajstura, Jan; Gurusamy, Narasimman; Ogorek, Barbara; Goichberg, Polina; Clavo-Rondon, Carlos; Hosoda, Toru; D'Amario, Domenico; Bardelli, Silvana; Quaini, Federico; Rota, Marcello; Leri, Annarosa; Anversa, Piero] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Cardiovasc, Boston, MA 02115 USA. [Beltrami, Antonio P.; Cesselli, Daniela; Beltrami, Carlo A.] Udine Med Sch, Ctr Regenerat Med CIME, Udine, Italy. [Bussani, Rossana] Univ Trieste, Sch Med, Dept Pathol, I-34127 Trieste, Italy. [del Monte, Federica] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Cardiovasc Inst, Boston, MA 02115 USA. [Buchholz, Bruce A.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. RP Kajstura, J (reprint author), Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Anesthesia, Boston, MA 02115 USA. EM jkajstura@partners.org; panversa@partners.org RI beltrami, carlo/A-8026-2008; Hosoda, Toru/G-1873-2010; CESSELLI, DANIELA/C-7052-2008; Beltrami, Antonio Paolo/C-5291-2008 OI Hosoda, Toru/0000-0002-7273-0630; Beltrami, Antonio Paolo/0000-0002-0679-2710 FU NIH [NCRR13641]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Cardiocentro Ticino, Lugano, Switzerland FX This work was supported by NIH grants and the NIH AMS Resource grant NCRR13641. Performed, in part, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. S. B. was supported by a grant from Cardiocentro Ticino, Lugano, Switzerland. NR 50 TC 150 Z9 159 U1 2 U2 17 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7330 J9 CIRC RES JI Circ.Res. PD NOV 26 PY 2010 VL 107 IS 11 BP 1374 EP 1386 DI 10.1161/CIRCRESAHA.110.231498 PG 13 WC Cardiac & Cardiovascular Systems; Hematology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Hematology GA 684WN UT WOS:000284586100011 PM 21088285 ER PT J AU Busche, BJ Tonelli, AE Balik, CM AF Busche, Brad J. Tonelli, Alan E. Balik, C. Maurice TI Properties of polystyrene/poly(dimethyl siloxane) blends partially compatibilized with star polymers containing a gamma-cyclodextrin core and polystyrene arms SO POLYMER LA English DT Article DE Blends; Compatibilization; gamma-CD-star polymer ID FILMS AB A star polymer with a gamma-CD core and PS arms (CD-star) is used to partially compatibilize blends of the immiscible polymers polystyrene (PS) and poly(dimethylsiloxane) (PDMS). The mechanism of compatibilization is threading of the CD core by PDMS and subsequent solubilization in the PS matrix facilitated by the star arms. Films cast from clear solutions in chloroform exhibit large wispy PDMS domains, indicating that some dethreading of CD-star and agglomeration of PDMS takes place during the slow process of solvent evaporation. However, DSC and DMA data show that partial compatibilization takes place, as evidenced by a shift in the PS and PDMS T(g)s toward each other. The shift in PS T-g is greater when CD-star is present compared to samples without CD-star. PDMS also tends to leach out of the solution-cast films during solvent evaporation and post-processing of the films. The amount of retained PDMS is significantly increased when CD-star is present. The DMA data also show that PDMS has a lower molecular mobility when CD-star is present. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Balik, C. Maurice] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Busche, Brad J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Tonelli, Alan E.] N Carolina State Univ, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA. RP Balik, CM (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, Campus Box 7907, Raleigh, NC 27695 USA. EM balik@ncsu.edu RI Balik, C. Maurice/A-5886-2010 FU N. C. State University; National Textile Center [M06-NS02] FX The authors gratefully acknowledge financial support from N. C. State University and the National Textile Center, Grant #M06-NS02. NR 15 TC 5 Z9 5 U1 0 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD NOV 26 PY 2010 VL 51 IS 25 BP 6013 EP 6020 DI 10.1016/j.polymer.2010.10.024 PG 8 WC Polymer Science SC Polymer Science GA 687QR UT WOS:000284793500017 ER PT J AU Liu, CC Arkin, AP AF Liu, Chang C. Arkin, Adam P. TI The Case for RNA SO SCIENCE LA English DT Editorial Material ID SYNTHETIC BIOLOGY; PARTS; RIBOSWITCHES; DEVICES C1 [Liu, Chang C.; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Liu, Chang C.] Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Arkin, Adam P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, QB3 Calif Inst Quantitat Biol Res, Berkeley, CA 94720 USA. RP Liu, CC (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM ccliu@berkeley.edu; aparkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 NR 15 TC 8 Z9 8 U1 0 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 26 PY 2010 VL 330 IS 6008 BP 1185 EP 1186 DI 10.1126/science.1199495 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 685FE UT WOS:000284613700024 PM 21109657 ER PT J AU Barabash, RI Huang, EW Wall, JJ Wilkerson, JH Ren, Y Liu, WJ Vogel, SC Ice, GE Pike, LM Liaw, PK AF Barabash, Rozaliya I. Huang, E-Wen Wall, James J. Wilkerson, James H. Ren, Yang Liu, Wenjun Vogel, Sven C. Ice, Gene E. Pike, Lee M. Liaw, Peter K. TI Texture crossover: Trace from multiple grains to a subgrain SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Neutron scattering; Synchrotron X-ray diffraction; Nickel-based superalloys; Crystal plasticity; Texture ID INDIVIDUAL BULK GRAINS; LATTICE ROTATIONS; DEFORMED METALS; DEFORMATION; STRAIN; RECRYSTALLIZATION; BOUNDARY; NI; DIFFRACTOMETER; DISLOCATIONS AB Neutron and synchrotron X-ray diffractions were used to study the texture development in the face-centered-cubic nickel-based superalloy over gauge volumes ranging from hundreds of cubic millimeters down to sub-cubic micrometers. The bulk averaged results find a uniform texture development from collective slip. However, X-ray microbeam studies at microscale find that the plastic deformation within a single grain is mediated by limited slip, as evidenced by the local strain distribution. Polychromatic microdiffraction shows the formation of several distinct structural zones even in the same grain. A hierarchical heterogeneous geometrically-necessary dislocations arrangement and distinct slip bands are observed within each grain. A depth-dependent change of the stereographic projection within the slip band in the grain is demonstrated. Correlated oscillations of the lattice orientation at the submicron scale evolve into an overall texture at the macroscale. Possible reasons for this observed structural evolution are discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Barabash, Rozaliya I.; Ice, Gene E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Barabash, Rozaliya I.; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Huang, E-Wen] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli, Taiwan. [Wall, James J.; Wilkerson, James H.; Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Ren, Yang; Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Pike, Lee M.] Haynes Int Inc, Kokomo, IN 46901 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. EM barabashr@ornl.gov RI Lujan Center, LANL/G-4896-2012; Huang, E-Wen/A-5717-2015; OI Huang, E-Wen/0000-0003-4986-0661; Vogel, Sven C./0000-0003-2049-0361 FU National Science Foundation (NSF) [DMR-0231320, DMR-0421219, DMR-0909037, CMMI-0900271]; National Science Council (NSC) [NSC99-2218-E-008-009]; Division of Materials Science and Engineering, Office of Basic Energy Science, U.S. Department of Energy; U.S. Department of Energy, Office of Science, and Office of Basic Energy Science [DE-AC02-06CH11357]; Department of Energy's Office of Basic Energy Science; DOE [DE-AC52-06NA25396] FX This research is supported in part by the National Science Foundation (NSF), Programs (DMR-0231320, DMR-0421219, DMR-0909037, and CMMI-0900271) with Drs. C. V. Cooper, A. Ardell, D. Finotello, C. Huber, and C. Bouldin as program directors. EW appreciates the support from the National Science Council (NSC) Program (NSC99-2218-E-008-009). RIB and GEI are sponsored by the Division of Materials Science and Engineering, Office of Basic Energy Science, U.S. Department of Energy. The use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Science under Contract No. DE-AC02-06CH11357. The Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center is funded by the Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract of DE-AC52-06NA25396. NR 45 TC 5 Z9 5 U1 1 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 3 EP 10 DI 10.1016/j.msea.2010.07.035 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200002 ER PT J AU Stott, AC Brauer, JI Garg, A Pepper, SV Abel, PB DellaCorte, C Noebe, RD Glennon, G Bylaska, E Dixon, DA AF Stott, Amanda C. Brauer, Jonathan I. Garg, Anita Pepper, Stephen V. Abel, Philip B. DellaCorte, Christopher Noebe, Ronald D. Glennon, Glenn Bylaska, Eric Dixon, David A. TI Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SHAPE-MEMORY ALLOYS; GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; MECHANICAL-PROPERTIES; PHASE-STABILITY; IN-SITU; TRANSFORMATION BEHAVIOR; ELECTRONIC-PROPERTIES AB Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory. C1 [Stott, Amanda C.; Brauer, Jonathan I.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Stott, Amanda C.; Pepper, Stephen V.; Abel, Philip B.; DellaCorte, Christopher] NASA, Glenn Res Ctr, Tribol & Mech Components Branch, Cleveland, OH 44135 USA. [Garg, Anita; Noebe, Ronald D.] NASA, Glenn Res Ctr, Adv Metall Branch, Cleveland, OH 44135 USA. [Glennon, Glenn] Abbott Ball Co, Hartford, CT 06133 USA. [Bylaska, Eric] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Dixon, DA (reprint author), Univ Alabama, Dept Chem, Shelby Hall,Box 870336, Tuscaloosa, AL 35487 USA. EM dadixon@bama.ua.edu FU NASA [NNX08AY65H]; U.S. Department of Energy, Office of Basic Energy Sciences; National Science Foundation; University of Alabama FX A. Stott thanks NASA Training Grant NNX08AY65H for funding this work. D. A. Dixon thanks the U.S. Department of Energy, Office of Basic Energy Sciences, the National Science Foundation, and the Robert Ramsay Fund of The University of Alabama for partial support of this work. NR 76 TC 6 Z9 6 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19704 EP 19713 DI 10.1021/jp103552s PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900022 ER PT J AU Kim, CY Elam, JW Stair, PC Bedzyk, MJ AF Kim, Chang-Yong Elam, Jeffrey W. Stair, Peter C. Bedzyk, Michael J. TI Redox Driven Crystalline Coherent-Incoherent Transformation for a 2 ML VOx Film Grown on alpha-TiO2(110) SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY STANDING WAVES; SURFACE-STRUCTURE DETERMINATION; SUPPORTED VANADIUM-OXIDES; ATOMIC LAYER DEPOSITION; SINGLE-CRYSTAL; THIN-FILMS; TIO2(110); OXIDATION; SPECTROSCOPY; CATALYSTS AB A redox induced structural transformation for 2 monolayers of vanadia on alpha-TiO2(110) (rutile) was studied by in situ X-ray standing waves and ex situ X-ray photoelectron spectroscopy. The VOX film was grown by atomic layer deposition. Oxidation and reduction were carried out by annealing in O-2 and H-2, respectively. We found that an epitaxial rutile VO2 film was formed in the reduced phase with V4+ cations in lateral alignment with Ti lattice positions. Oxidation was found to produce V5+ cations uncorrelated to the substrate lattice in the oxidized phase. The redox induced structural and oxidation state transformation proved reversible and involved the entire film; not just the surface layer. The current study suggests that the structural order needs to be considered in order to study the activity of supported vanadium oxide catalysts. C1 [Kim, Chang-Yong] Canadian Light Source, Saskatoon, SK S7N 0X4, Canada. [Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Bedzyk, Michael J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Kim, CY (reprint author), Canadian Light Source, 101 Perimeter Rd, Saskatoon, SK S7N 0X4, Canada. RI Bedzyk, Michael/B-7503-2009; Bedzyk, Michael/K-6903-2013; Kim, Chang-Yong/I-3136-2014 OI Kim, Chang-Yong/0000-0002-1280-9718 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [W-31-109-ENG-38, DE-FG02-03ER15457]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE AC02-06CH11357]; MRSEC through NSF [DMR-0520513] FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract W-31-109-ENG-38 and Grant DE-FG02-03ER15457. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE AC02-06CH11357. This work made use of NU Central Facilities supported by the MRSEC through NSF Contract No. DMR-0520513. NR 50 TC 9 Z9 9 U1 0 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19723 EP 19726 DI 10.1021/jp104978a PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900024 ER PT J AU Shane, DT Corey, RL Rayhel, LH Wellons, M Teprovich, JA Zidan, R Hwang, SJ Bowman, RC Conradi, MS AF Shane, David T. Corey, Robert L. Rayhel, Laura H. Wellons, Matthew Teprovich, Joseph A., Jr. Zidan, Ragaiy Hwang, Son-Jong Bowman, Robert C., Jr. Conradi, Mark S. TI NMR Study of LiBH4 with C-60 SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID HYDROGEN STORAGE; DIFFRACTION; REACTIVITY AB LiBH4 doped with 1.6 mol % well-dispersed C-60 is studied with solid-state nuclear magnetic resonance (NMR). Variable-temperature hydrogen NMR shows large changes between the data upon first heating and after exposure to 300 degrees C. After heating, a large fraction on the order of 50% of the hydrogen signal appears in a motionally narrowed peak, similar to a previous report of LiBH4 in a porous carbon aerogel nanoscaffold. Magic-angle spinning (MAS) NMR of C-13 in a C-13-enriched sample finds the C-60 has reacted already in the as-mixed (unheated) material. Dehydriding and rehydriding result in further C-13 spectral changes, with nearly all intensity being found in a broad peak corresponding to aromatic carbons. It thus appears that the previously reported improved dehydriding and rehydriding kinetics of this material at least partially result from in situ formation of a carbon framework. The method may offer a new route to dispersal of hydrides in carbon support structures. C1 [Shane, David T.; Rayhel, Laura H.; Conradi, Mark S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Corey, Robert L.] S Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Wellons, Matthew; Teprovich, Joseph A., Jr.; Zidan, Ragaiy] Savannah River Natl Lab, Energy Secur Directorate, Aiken, SC 29808 USA. [Hwang, Son-Jong] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Bowman, Robert C., Jr.] RCB Hydrides LLC, Franklin, OH 45005 USA. RP Shane, DT (reprint author), Washington Univ, Dept Phys, CB 1105,1 Brookings Dr, St Louis, MO 63130 USA. EM davidshane@go.wustl.edu OI Bowman, Robert/0000-0002-2114-1713 FU Department of Energy through Basic Energy Sciences [DE-FG02-ER46256]; National Science Foundation (NSF) [9724240]; MRSEC of the NSF [DMR-520565] FX We gratefully acknowledge support from the Department of Energy through Basic Energy Sciences Grant DE-FG02-ER46256. The NMR facility at Caltech was supported by the National Science Foundation (NSF) under Grant 9724240 and partially supported by the MRSEC Program of the NSF under Award DMR-520565. NR 19 TC 11 Z9 11 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19862 EP 19866 DI 10.1021/jp107911u PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900043 ER PT J AU Gardner, SN Jaing, CJ McLoughlin, KS Slezak, TR AF Gardner, Shea N. Jaing, Crystal J. McLoughlin, Kevin S. Slezak, Tom R. TI A microbial detection array (MDA) for viral and bacterial detection SO BMC GENOMICS LA English DT Article ID OLIGONUCLEOTIDE MICROARRAY; INFLUENZA-VIRUSES; IDENTIFICATION; HYBRIDIZATION; PATHOGENS AB Background: Identifying the bacteria and viruses present in a complex sample is useful in disease diagnostics, product safety, environmental characterization, and research. Array-based methods have proven utility to detect in a single assay at a reasonable cost any microbe from the thousands that have been sequenced. Methods: We designed a pan-Microbial Detection Array (MDA) to detect all known viruses (including phages), bacteria and plasmids and developed a novel statistical analysis method to identify mixtures of organisms from complex samples hybridized to the array. The array has broader coverage of bacterial and viral targets and is based on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the literature. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments, and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species with homology to sequenced organisms, and to have no significant matches to the human genome sequence. Results: In blinded testing on spiked samples with single or multiple viruses, the MDA was able to correctly identify species or strains. In clinical fecal, serum, and respiratory samples, the MDA was able to detect and characterize multiple viruses, phage, and bacteria in a sample to the family and species level, as confirmed by PCR. Conclusions: The MDA can be used to identify the suite of viruses and bacteria present in complex samples. C1 [Gardner, Shea N.; Jaing, Crystal J.; McLoughlin, Kevin S.; Slezak, Tom R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Slezak, TR (reprint author), Lawrence Livermore Natl Lab, POB 5508, Livermore, CA 94551 USA. EM slezak1@llnl.gov OI McLoughlin, Kevin/0000-0001-9651-4951 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [08-SI-002]; National Biodefense Analysis and Countermeasures Center [L164212/F0901]; Department of Energy [DE-AC52-07NA27344] FX We gratefully acknowledge the generosity of Dr. Joseph DeRisi and his lab and Dr. Robert Tesh for providing samples. We thank James Thissen for performing the PCR tests for lab confirmation of the array results. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by Laboratory Directed Research and Development grant number 08-SI-002 from Lawrence Livermore National Laboratory https://www.llnl.gov/ and the National Biodefense Analysis and Countermeasures Center http://www.dhs.gov/files/labs/gc_1166211221830.shtm award number L164212/F0901. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the National Biodefense Analysis and Countermeasures Center (NBACC), Department of Homeland Security (DHS), or Battelle National Biodefense Institute (BNBI).; There is a patent pending by the authors related to the MDA array design and analysis methods. We are employees of Lawrence Livermore National Security, LLC. LLNS, LLC manages the Lawrence Livermore National Laboratory for the Department of Energy under the contract DE-AC52-07NA27344. NR 30 TC 42 Z9 45 U1 1 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 25 PY 2010 VL 11 AR 668 DI 10.1186/1471-2164-11-668 PG 21 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 695PU UT WOS:000285385800001 PM 21108826 ER PT J AU Torkzaban, S Kim, Y Mulvihill, M Wan, JM Tokunaga, TK AF Torkzaban, Saeed Kim, Yongman Mulvihill, Martin Wan, Jiamin Tokunaga, Tetsu K. TI Transport and deposition of functionalized CdTe nanoparticles in saturated porous media SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Nanoparticles; Transport; Deposition; Ionic strengths ID QUANTUM DOTS; COLLOID TRANSPORT; SOLUTION CHEMISTRY; PATCHY SURFACES; SCALE ADHESION; QUARTZ SANDS; FULLERENE; NANOSCALE; KINETICS; MECHANISMS AB Comprehensive understanding of the transport and deposition of engineered nanoparticles (NPs) in subsurface is required to assess their potential negative impact on the environment. We studied the deposition behavior of functionalized quantum dot (QD) NPs (CdTe) in different types of sands (Accusand, ultrapure quartz, and iron-coated sand) at various solution ionic strengths (IS). The observed transport behavior in ultrapure quartz and iron-coated sand was consistent with conventional colloid deposition theories. However, our results from the Accusand column showed that deposition was minimal at the lowest IS (1 mM) and increased significantly as the IS increased. The effluent breakthrough occurred with a delay, followed by a rapid rise to the maximum normalized concentration of unity. Negligible deposition in the column packed with ultrapure quartz sand (100 mM) and Accusand (1 mM) rules out the effect of straining and suggests the importance of surface charge heterogeneity in QD deposition in Accusand at higher IS. Data analyses further show that only a small fraction of sand surface area contributed in QD deposition even at the highest IS (100 mM) tested. The observed delay in breakthrough curves of QDs was attributed to the fast diffusive mass transfer rate of QDs from bulk solution to the sand surface and QD mass transfer on the solid phase. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis were used to examine the morphology and elemental composition of sand grains. It was observed that there were regions on the sand covered with layers of clay particles. EDX spectra collected from these regions revealed that Si and Al were the major elements suggesting that the clay particles were kaolinite. Additional batch experiments using gold NPs and SEM analysis were performed and it was observed that the gold NPs were only deposited on clay particles originally on the Accusand surface. After removing the clays from the sand surface, we observed negligible QD deposition even at 100 mM IS. We proposed that nanoscale charge heterogeneities on clay particles on Accusand surface played a key role in QD deposition. It was shown that the value of solution IS determined the extent to which the local heterogeneities participated in particle deposition. (C) 2010 Elsevier B.V. All rights reserved. C1 [Torkzaban, Saeed; Kim, Yongman; Mulvihill, Martin; Wan, Jiamin; Tokunaga, Tetsu K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Torkzaban, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM saeed.torkzaban@gmail.com RI Torkzaban, Saeed/G-7377-2013; Tokunaga, Tetsu/H-2790-2014; Wan, Jiamin/H-6656-2014; Kim, Yongman/D-1130-2015 OI Torkzaban, Saeed/0000-0002-5146-9461; Tokunaga, Tetsu/0000-0003-0861-6128; Kim, Yongman/0000-0002-8857-1291 FU Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX Funding was provided through the joint BER-EPA-NSF Nanoparticulate Research Program of the Office of Biological and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231. The authors are grateful to three anonymous referees for their critical reviews and valuable comments that led to the improvement of the manuscript. NR 47 TC 35 Z9 36 U1 3 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD NOV 25 PY 2010 VL 118 IS 3-4 SI SI BP 208 EP 217 DI 10.1016/j.jconhyd.2010.10.002 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 702LG UT WOS:000285895600011 PM 21056917 ER PT J AU Le Beon, M Klinger, Y Al-Qaryouti, M Meriaux, AS Finkel, RC Elias, A Mayyas, O Ryerson, FJ Tapponnier, P AF Le Beon, Maryline Klinger, Yann Al-Qaryouti, Mahmoud Meriaux, Anne-Sophie Finkel, Robert C. Elias, Ata Mayyas, Omar Ryerson, Frederick J. Tapponnier, Paul TI Early Holocene and Late Pleistocene slip rates of the southern Dead Sea Fault determined from Be-10 cosmogenic dating of offset alluvial deposits SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID ACTIVE TECTONICS; YAMMOUNEH FAULT; TRANSFORM-FAULT; EXPOSURE AGES; ARABA VALLEY; JORDAN; EARTHQUAKE; TIBET; RIFT; LEBANON AB [1] Two sites located along the Wadi Araba Fault (WAF) segment of the Dead Sea Fault are targeted for tectonic-morphological analysis. Be-10 cosmogenic radionuclide (CRN) dating of embedded cobbles is used to constrain the age of offset alluvial surfaces. At the first site a 48 +/- 7 m offset alluvial fan, for which Be-10 CRN model ages average 11.1 +/- 4.3 ka, yield a slip rate of 5.4 +/- 2.7 mm/a, with conservative bounds of 1.3-16.4 mm/a. At the second site the scattered distributions of the Be-10 CRN ages from an offset bajada attest to the complex processes involved in sediment transport and emplacement. There, two offsets were identified. The 160 +/- 8 m offset of an incised alluvial fan dated at 37 +/- 5 ka shows a slip rate of 4.5 +/- 0.9 mm/a, with a conservative minimum value of 3.2 mm/a. A larger offset, 626 +/- 37 m, is derived from a prominent channel incised into the bajada. Cobbles from the bajada surface have ages from 33 to 141 ka, with a mean of 87 +/- 26 ka. A slip rate of 8.1 +/- 2.9 mm/a is derived from the mean age, with conservative bounds of 3.8-22.1 mm/a. These results and other published slip rates along the linear WAF segment, from GPS to geological time scales, lack the resolution to fully resolve the question of temporal variations versus consistency of the fault slip rate of the WAF. Yet, given the uncertainties, they are not inconsistent with each other. C1 [Le Beon, Maryline; Klinger, Yann; Tapponnier, Paul] CNRS, Inst Phys Globe Paris, Equipe Tecton, F-75252 Paris 05, France. [Al-Qaryouti, Mahmoud; Mayyas, Omar] Nat Resources Author, Seismol Div, Amman, Jordan. [Meriaux, Anne-Sophie] Newcastle Univ, Sch Geog Polit & Sociol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Finkel, Robert C.] Univ Calif Berkeley, EPS Dept, Berkeley, CA 94720 USA. [Elias, Ata] Amer Univ Beirut, Dept Geol, Beirut, Lebanon. [Ryerson, Frederick J.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. RP Le Beon, M (reprint author), Natl Taiwan Univ, Dept Geosci, 1 Roosevelt Rd,Sec 4, Taipei 10617, Taiwan. EM lebeon@ipgp.jussieu.fr RI Meriaux, Anne-Sophie/G-1754-2010; klinger, yann/B-1226-2011; Tapponnier, .Paul/B-7033-2011 OI Tapponnier, .Paul/0000-0002-7135-1962 FU French INSU/CNRS; French Embassy in Jordan FX We thank Jerome Van der Woerd for fruitful discussion during this work and Anne-Claire Laurent-Morillon for digitalization of landscape interpretations. Thoughtful reviews by G. Hilley and an anonymous reviewer helped to improve the manuscript. Financial support was provided by the French INSU/CNRS programs DyETI and ACI-FNS "Aleas et changements globaux" and by the French Embassy in Jordan. This is IPGP contribution number 3045. NR 69 TC 14 Z9 14 U1 0 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 25 PY 2010 VL 115 AR B11414 DI 10.1029/2009JB007198 PG 24 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 686PI UT WOS:000284707800004 ER PT J AU Lay, EH Rodger, CJ Holzworth, RH Cho, MG Thomas, JN AF Lay, Erin H. Rodger, Craig J. Holzworth, Robert H. Cho, Mengu Thomas, Jeremy N. TI Temporal-spatial modeling of electron density enhancement due to successive lightning strokes SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID LOCATION NETWORK WWLLN; LOWER IONOSPHERE; ELECTROMAGNETIC PULSE; DETECTION EFFICIENCY; UNITED-STATES; VLF; IONIZATION; ATMOSPHERE; ELVES; SIMULATION AB We report results on the temporal-spatial modeling of electron density enhancement due to successive lightning strokes. Stroke rates based on World-Wide Lightning Location Network measurements are used as input to an axisymmetric Finite Difference Time Domain model that describes the effect of lightning electromagnetic pulses (EMP) on the ionosphere. Each successive EMP pulse interacts with a modified background ionosphere due to the previous pulses, resulting in a nonlinear electron density perturbation over time that eventually reaches a limiting value. The qualitative ionospheric response to successive EMPs is presented in 2-D, axisymmetric space. Results from this study show that the nonlinear electron density perturbations due to successive lightning strokes must be taken into account and varies with altitude. The limiting maximum electron density is reached earlier in time for higher altitudes, and the most significant effect occurs at 88 km. The limiting modeled electron density profile in the 83-91 km altitude range does not depend on the initial electron density. C1 [Lay, Erin H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cho, Mengu] Kyushu Inst Technol, Dept Elect Engn, Kitakyushu, Fukuoka 8040011, Japan. [Holzworth, Robert H.; Thomas, Jeremy N.] Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA. [Rodger, Craig J.] Univ Otago, Dept Phys, Dunedin 9016, New Zealand. [Thomas, Jeremy N.] Digipen Inst Technol, Dept Elect & Comp Engn, Redmond, WA USA. RP Lay, EH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Rodger, Craig/A-1501-2011; OI Rodger, Craig/0000-0002-6770-2707; Lay, Erin/0000-0002-1310-9035 NR 42 TC 7 Z9 7 U1 1 U2 7 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 25 PY 2010 VL 115 AR A00E59 DI 10.1029/2009JA014756 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 686PX UT WOS:000284709300001 ER PT J AU Bylaska, EJ Glaesemann, KR Felmy, AR Vasiliu, M Dixon, DA Tratnyek, PG AF Bylaska, Eric J. Glaesemann, Kurt R. Felmy, Andrew R. Vasiliu, Monica Dixon, David A. Tratnyek, Paul G. TI Free Energies for Degradation Reactions of 1,2,3-Trichloropropane from ab Initio Electronic Structure Theory SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID ACTIVE THERMOCHEMICAL TABLES; HALOGENATED ALIPHATIC-COMPOUNDS; SOLVATION FREE-ENERGIES; ZERO-VALENT METALS; CARBON-TETRACHLORIDE; CHLORINATED METHANES; REDUCTIVE DECHLORINATION; THRESHOLD PHOTODETACHMENT; POLYCHLORINATED ETHYLENES; RATE CONSTANTS AB Electronic structure methods were used to calculate the gas and aqueous phase reaction energies for reductive dechlorination (i.e., hydrogenolysis), reductive beta-elimination, dehydrochlorination, and nucleophilic substitution by OH(-) of 1,2,3-trichloropropane. The thermochemical properties Delta H degrees(f)(298.15 K), S degrees(298.15 K, 1 bar), and Delta G(s)(298.15 K, 1 bar) were calculated by using ab initio electronic structure calculations, isodesmic reactions schemes, gas-phase entropy estimates, and continuum solvation models for 1,2,3-trichloropropane and several likely degradation products: CH(3)-CHCl-CH(2)Cl, CH(2)Cl-CH(2)-CH(2)Cl, C(center dot)H(2)-CHCl-CH(2)Cl, CH(2)Cl-C(center dot)H-CH(2)Cl, CH(2)=CCl-CH(2)Cl, cis-CHCl=CH-CH(2)Cl, trans-CHCl=CH-CH(2)Cl, CH(2)=CH-CH(2)Cl, CH(2)Cl-CHCl-CH(2)OH, CH(2)Cl-CHOH-CH(2)Cl, CH(2)=CCl-CH(2)OH, CH(2)=COH-CH(2)Cl, cis-CHOH=CH-CH(2)Cl, trans-CHOH=CH-CH(2)Cl, CH(=O)-CH(2)-CH(2)Cl, and CH(3)-C(=O)-CH(2)Cl. On the basis of these thermochemical estimates, together with a Fe(II)/Fe(III) chemical equilibrium model for natural reducing environments, all of the reactions studied were predicted to be very favorable in the standard state and under a wide range of pH conditions. The most favorable reaction was reductive beta-elimination (Delta G degrees(rxn) approximate to -32 kcal/mol), followed closely by reductive dechlorination (Delta G degrees(rxn) approximate to -27 kcal/mol), dehydrochlorination (Delta G degrees(rxn) approximate to -27 kcal/mol), and nucleophilic substitution by OH(-) (Delta G degrees(rxn) approximate to -25 kcal/mol). For both reduction reactions studied, it was found that the first electron-transfer step, yielding the intermediate C(center dot)H(2)-CHCl-CH(2)Cl and the CH(2)Cl-C(center dot)H-CH(2)Cl species, was not favorable in the standard state (Delta G degrees(rxn) approximate to +15 kcal/mol) and was predicted to occur only at relatively high pH values. This result suggests that reduction by natural attenuation is unlikely. C1 [Bylaska, Eric J.; Glaesemann, Kurt R.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Felmy, Andrew R.] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Vasiliu, Monica; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. [Tratnyek, Paul G.] Oregon Hlth & Sci Univ, OGI Sch Sci & Engn, Beaverton, OR 97006 USA. RP Bylaska, EJ (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. EM eric.bylaska@pnl.gov OI Glaesemann, Kurt/0000-0002-9512-1395 FU BES Nanoscale Science, Engineering, and Technology program; BES Division of Chemical Sciences, Geosciences, and BioSciences of the U.S. Department of Energy, Office of Science [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This research was supported by BES Nanoscale Science, Engineering, and Technology program and BES Geosciences program under the BES Division of Chemical Sciences, Geosciences, and BioSciences of the U.S. Department of Energy, Office of Science, under Grant No. DE-AC05-76RL01830. Some of the calculations were performed on the Spokane and Chinook computing systems at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute. We also wish to thank the Scientific Computing Staff, Office of Energy Research, and the U.S. Department of Energy for a grant of computer time at the National Energy Research Scientific Computing Center (Berkeley, CA). NR 101 TC 6 Z9 6 U1 5 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 25 PY 2010 VL 114 IS 46 BP 12269 EP 12282 DI 10.1021/jp105726u PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 681CS UT WOS:000284287500018 PM 21038905 ER PT J AU Bravaya, KB Kostko, O Dolgikh, S Landau, A Ahmed, M Krylov, AI AF Bravaya, Ksenia B. Kostko, Oleg Dolgikh, Stanislav Landau, Arie Ahmed, Musahid Krylov, Anna I. TI Electronic Structure and Spectroscopy of Nucleic Acid Bases: Ionization Energies, Ionization-Induced Structural Changes, and Photoelectron Spectra SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID INFRARED-LASER SPECTROSCOPY; VACUUM-ULTRAVIOLET PHOTOIONIZATION; MOLECULAR-ORBITAL METHODS; COUPLED-CLUSTER METHODS; BASIS-SETS; GAS-PHASE; AB-INITIO; HELIUM NANODROPLETS; RADICAL CATIONS; PROTON-TRANSFER AB We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C), and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized the five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using the equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the omega B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series, G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25, and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67, and 7.75-7.87 eV for A, T, C, and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 +/- 0.05, 8.95 +/- 0.05, 8.60 +/- 0.05, and 7.75 +/- 0.05 eV). Vibrational progressions for the S(0)-D(0) vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra and differentiated PIE curves. C1 [Bravaya, Ksenia B.; Dolgikh, Stanislav; Landau, Arie; Krylov, Anna I.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Kostko, Oleg; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Krylov, AI (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009; Dolgikh, Stanislav/A-7684-2014 OI Kostko, Oleg/0000-0003-2068-4991; FU National Science Foundation through the CRIF:CRF [CHE-0625419, 0624602, 0625237, CHE-0951634]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was conducted in the framework of the iOpenShell Center for Computational Studies of Electronic Structure and Spectroscopy of Open-Shell and Electronically Excited Species (iopenshell.usc.edu) supported by the National Science Foundation through the CRIF:CRF CHE-0625419 + 0624602 + 0625237 and CHE-0951634 (A.I.K.) grants. O.K. and M.A. acknowledge support by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 76 TC 55 Z9 55 U1 5 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 25 PY 2010 VL 114 IS 46 BP 12305 EP 12317 DI 10.1021/jp1063726 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 681CS UT WOS:000284287500022 PM 21038927 ER PT J AU Wick, CD Chang, TM Dang, LX AF Wick, Collin D. Chang, Tsun-Mei Dang, Liem X. TI Molecular Mechanism of CO2 and SO2 Molecules Binding to the Air/Liquid Interface of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid: A Molecular Dynamics Study with Polarizable Potential Models SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SUM-FREQUENCY GENERATION; TEMPERATURE MOLTEN-SALTS; FORCE-FIELD; CARBON-DIOXIDE; SURFACE-TENSION; AIR/WATER INTERFACE; SIMULATIONS; MONOETHANOLAMINE; SOLUBILITY; SEPARATION AB Molecular dynamics simulations with many-body interactions were carried out to understand the bulk and interfacial absorption of gases in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). A new polarizable molecular model was developed for BMIMBF4, which was found to give the correct liquid density but which also had good agreement with experiment for its surface tension and X-ray reflectivity. The potential of mean force of CO2 and SO2 was calculated across the air BMIMBF4 interface, and the bulk free energies were calculated with the free-energy perturbation method. A new polarizable model was also developed for CO2. The air BMIMBF4 interface had enhanced BMIM density, which was mostly related to its butyl group, followed by enhanced BF4 density a few angstroms toward the liquid bulk. The density profiles were observed to exhibit oscillations between high BMIM and BF4 density indicating the presence of surface layering induced by the interface. The potential of mean force for CO2 and SO2 showed more negative free energies in regions of enhanced BF4 density, while more positive free energies were found in regions of high BMIM density. Moreover, these gases showed free-energy minimums at the interface, where the BMIM alkyl groups were found to be most prevalent. Our results show the importance of ionic liquid interfacial ordering for understanding gas solvation in them. C1 [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wick, Collin D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Chang, Tsun-Mei] Univ Wisconsin, Parkside, WI 53141 USA. RP Dang, LX (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Pacific Northwest National Laboratory's (PNNL) Energy Conversion Initiative (ECI), Internal Laboratory Directed Research and Development (LDRD); Louisiana Board of Regents [3LEQSF(2008-11)-RD-A-21] FX This work was funded by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy and by the Pacific Northwest National Laboratory's (PNNL) Energy Conversion Initiative (ECI), Internal Laboratory Directed Research and Development (LDRD). Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy. In addition, some of the research was funded by the Louisiana Board of Regents Research Competitiveness Subprogram contract number 3LEQSF(2008-11)-RD-A-21. The calculations were carried out using the resources from the Louisiana Optical Network Initiative (LONI) and from the computer resources provided by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 76 TC 32 Z9 32 U1 13 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 25 PY 2010 VL 114 IS 46 BP 14965 EP 14971 DI 10.1021/jp106768y PG 7 WC Chemistry, Physical SC Chemistry GA 681CT UT WOS:000284287700021 PM 20882993 ER PT J AU Shi, W Sorescu, DC AF Shi, Wei Sorescu, Dan C. TI Molecular Simulations of CO2 and H-2 Sorption into Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) Confined in Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MONTE-CARLO; HYDROGEN ADSORPTION; GIBBS ENSEMBLE; FLUIDS; SOLVENTS; TRANSITION; DIFFUSION; DYNAMICS; FUTURE; GASES AB Atomistic simulations are used to study the ionic liquid (IL) 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonypl)amide ([hmim][Tf2N]) confined into (20,20) and (9,9) carbon nanotubes (CNTs) and the effect of confinement upon gas sorption. The cations and the anions exhibit highly ordered structures in the CNT. There are more cations adsorbed close to the (20,20) tube wall while more anions adsorb in the tube center at high IL loadings. The IL molecules in the CNT exhibit self-diffusivity coefficients about 1-2 orders of magnitude larger than the corresponding bulk IL molecules. Sorption of CO2 and H-2 gases in the composite material consisting of CNT and IL indicates that H-2 molecules diffuse about 1.5 times faster than the CO2. In contrast, H-2 diffuses about 10 times faster than CO2 in both the CNT and in bulk IL. The CNT exhibits the largest amount of sorption for both CO2 and H-2, followed by the composite material, and the IL exhibits the least gas sorption. When the temperature is increased, the amount of sorbed CO2 decreases in all three types of systems (IL, CNT, and the composite material) while the H-2 sorption increases in [hmim][Tf2N], decreases in the CNT, and does not change significantly in the composite material. The composite material exhibits higher sorption selectivity for CO2/H-2 than both the IL and the CNT. It is very interesting to note that the IL molecules can be dissolved in the CO2 molecules under confinement due to a favorable negative transferring energy. However, in the absence of confinement the IL molecules will not dissolve in the CO2 due to a very large unfavorable positive transferring energy. C1 [Shi, Wei; Sorescu, Dan C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Shi, Wei] URS Corp, South Pk, PA USA. RP Shi, W (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM shiw@netl.doe.gov FU RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in computational chemistry under the RES contract DE-FE0004000. NR 38 TC 25 Z9 25 U1 5 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 25 PY 2010 VL 114 IS 46 BP 15029 EP 15041 DI 10.1021/jp106500p PG 13 WC Chemistry, Physical SC Chemistry GA 681CT UT WOS:000284287700030 PM 21047100 ER PT J AU Santabarbara, S Kuprov, I Poluektov, O Casal, A Russell, CA Purton, S Evans, MCW AF Santabarbara, Stefano Kuprov, Ilya Poluektov, Oleg Casal, Antonio Russell, Charlotte A. Purton, Saul Evans, Michael C. W. TI Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CORRELATED RADICAL PAIRS; PHOTOSYNTHETIC REACTION CENTERS; BACTERIUM RHODOBACTER-SPHAEROIDES; ECHO ENVELOPE MODULATION; REACTION-CENTER SUBUNITS; SPIN-SPIN INTERACTIONS; SITE-DIRECTED MUTANTS; CHLAMYDOMONAS-REINHARDTII; PARAMAGNETIC-RESONANCE; CHARGE SEPARATION AB The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wildtype cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors FA and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 +/- 0.01 angstrom for [P(700)(+) A(1A)(-)] and 24.25 +/- 0.01 angstrom for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by similar to 60 degrees with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model that explains qualitatively the heterogeneity of ET reactions at cryogenic temperatures is discussed. C1 [Santabarbara, Stefano; Casal, Antonio; Purton, Saul; Evans, Michael C. W.] UCL, Dept Biol, London WC1E 6BT, England. [Santabarbara, Stefano] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland. [Kuprov, Ilya] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England. [Poluektov, Oleg] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Russell, Charlotte A.] Univ London, Sch Biol Sci, London E1 4NS, England. RP Santabarbara, S (reprint author), CNR, Ist Biofis, Via Celoria 26, I-20133 Milan, Italy. EM stefano.santabarbara@cnr.it OI Purton, Saul/0000-0002-9342-1773; Santabarbara, Stefano/0000-0002-7993-2614 FU U.K. Biotechnology and Biological Sciences Research Council (BBSRC) [B18658]; Leverhulme Trust [F/07134/N]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by grant B18658 from the U.K. Biotechnology and Biological Sciences Research Council (BBSRC) and grant F/07134/N from the Leverhulme Trust. O.P. acknowledges support from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357. We thank Drs. P. Heathcote and W.V. Fairclough (Queen Mary, University of London) for their involvement in the initial stages of the design and construction of the site-directed mutants and P. J. Hore for comments on the manuscript. S.S. thanks Dr. F. Rappaport and B. Bailleul (IBPC, Paris) for helpful comments and extensive discussion relating to ET at cryogenic temperatures. NR 84 TC 17 Z9 17 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 25 PY 2010 VL 114 IS 46 BP 15158 EP 15171 DI 10.1021/jp1044018 PG 14 WC Chemistry, Physical SC Chemistry GA 681CT UT WOS:000284287700045 PM 20977227 ER PT J AU Ojeda, M Li, AW Nabar, R Nilekar, AU Mavrikakis, M Iglesia, E AF Ojeda, Manuel Li, Anwu Nabar, Rahul Nilekar, Anand U. Mavrikakis, Manos Iglesia, Enrique TI Kinetically Relevant Steps and H-2/D-2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID IRON-BASED CATALYSTS; HETEROGENEOUS METHANATION; SURFACES; SELECTIVITY; ACTIVATION; ADSORPTION; DISSOCIATION; PATHWAYS; EXCHANGE; ABSENCE AB H-2/D-2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (r(H)/r(D) < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H-2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H-2 and D-2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D-2 leads to a more paraffinic product than does H-2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H-2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation. C1 [Nabar, Rahul; Nilekar, Anand U.; Mavrikakis, Manos] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Ojeda, Manuel; Li, Anwu; Iglesia, Enrique] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Ojeda, Manuel; Li, Anwu; Iglesia, Enrique] EO Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Mavrikakis, M (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM manos@engr.wisc.edu; iglesia@berkeley.edu RI Ojeda, Manuel/A-8584-2008; Mavrikakis, Manos/D-5702-2012; Iglesia, Enrique/D-9551-2017 OI Mavrikakis, Manos/0000-0002-5293-5356; Iglesia, Enrique/0000-0003-4109-1001 FU Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy [DE-FC26-98FT40308]; BP; Methane Conversion Cooperative at the University of California at Berkeley; Ministerio de Educacion y Ciencia (Spain); European Commission [MOIF-CT-2005-007651]; DOE-NETL [DE-FC26-03NT41966]; DOE-BES; Department of Energy's Office of Biological and Environmental Research located at PNNL; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357, DEAC05-00OR22725, DE-AC02-05CH11231] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy under Contract DE-FC26-98FT40308 and by BP as part of the Methane Conversion Cooperative at the University of California at Berkeley. M.O. acknowledges a postdoctoral fellowship from the Ministerio de Educacion y Ciencia (Spain) and the European Commission (Marie Curie MOIF-CT-2005-007651 Action). Work at UW-Madison has been supported by DOE-NETL (DE-FC26-03NT41966) and DOE-BES. The computational work was performed in part using supercomputing resources from the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. CNM, NCCS, and ORNL are supported by the U.S. Department of Energy, Office of Science, under contracts DE-AC02-06CH11357, DEAC05-00OR22725, and DE-AC02-05CH11231, respectively. NR 34 TC 48 Z9 48 U1 4 U2 63 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19761 EP 19770 DI 10.1021/jp1073076 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900029 ER PT J AU DeCaluwe, SC Grass, ME Zhang, CJ El Gabaly, F Bluhm, H Liu, Z Jackson, GS McDaniel, AH McCarty, KF Farrow, RL Linne, MA Hussain, Z Eichhorn, BW AF DeCaluwe, Steven C. Grass, Michael E. Zhang, Chunjuan El Gabaly, Farid Bluhm, Hendrik Liu, Zhi Jackson, Gregory S. McDaniel, Anthony H. McCarty, Kevin F. Farrow, Roger L. Linne, Mark A. Hussain, Zahid Eichhorn, Bryan W. TI In Situ Characterization of Ceria Oxidation States in High-Temperature Electrochemical Cells with Ambient Pressure XPS SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; OXIDE FUEL-CELLS; SOFC ANODES; REDUCTION; SURFACES; CEO2; NANOPARTICLES; HYDROGEN; NI; ELECTROLYSIS AB Ambient pressure X-ray photoelectron spectroscopy (XPS) is used to measure near-surface oxidation states and local electric potentials of thin-film ceria electrodes operating in solid oxide electrochemical cells for H2O electrolysis and H-2 oxidation. Ceria electrodes which are 300 nm thick are deposited on YSZ electrolyte supports with porous Pt counter electrodes for single-chamber tests in H-2/H2O mixtures. Between 635 and 740 degrees C, equilibrium (zero-bias) near-surface oxidation states between 70 and 85% Ce3+ confirm increased surface reducibility relative to bulk ceria. Positive cell biases drive H2O electrolysis on ceria and further increase the percentage of Ce3+ on the surface over 100 mu m from an Au current collector, signifying broad regions of electrochemical activity due to mixed ionic-electronic conductivity of ceria. Negative biases to drive H-2 oxidation decrease the percentage of Ce3+ from equilibrium values but with higher electrode impedances relative to H2O electrolysis. Additional tests indicate that increasing H-2-to-H2O ratios enhances ceria activity for electrolysis. C1 [DeCaluwe, Steven C.; Zhang, Chunjuan; Jackson, Gregory S.; Eichhorn, Bryan W.] Univ Maryland, College Pk, MD 20742 USA. [Grass, Michael E.; Bluhm, Hendrik; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [El Gabaly, Farid; McDaniel, Anthony H.; McCarty, Kevin F.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid] Sandia Natl Labs, Livermore, CA 94551 USA. RP Jackson, GS (reprint author), Univ Maryland, College Pk, MD 20742 USA. EM gsjackso@umd.edu RI DeCaluwe, Steven/B-6074-2011; McCarty, Kevin/F-9368-2012; Liu, Zhi/B-3642-2009; Jackson, Gregory/N-9919-2014 OI McCarty, Kevin/0000-0002-8601-079X; Liu, Zhi/0000-0002-8973-6561; Jackson, Gregory/0000-0002-8928-2459 FU Office of Naval Research [N000140510711]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DEAC02-05CH11231]; United States Department of Energy [DE-AC04-94AL85000] FX UMD participants acknowledge the support of the Office of Naval Research through Contract No. N000140510711 (Dr. Michele Anderson, program manager). Work at LBNL and the ALS was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contract No. DEAC02-05CH11231. Work by Sandia National Laboratories was supported by the Laboratory Directed Research and Development program through Contract No. DE-AC04-94AL85000 of the United States Department of Energy. UMD authors acknowledge the assistance of Mr. Tom Loughran of the Nanocenter who facilitated in cell fabrication. NR 51 TC 44 Z9 44 U1 7 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 25 PY 2010 VL 114 IS 46 BP 19853 EP 19861 DI 10.1021/jp107694z PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 681CU UT WOS:000284287900042 ER PT J AU Barabash, RI Ice, GE AF Barabash, Rozaliya I. Ice, Gene E. TI Local and near surface structure from diffraction Preface SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Editorial Material DE X-ray diffraction; Neutron diffraction; Materials structure AB This special topic of Materials Science and Engineering A highlights novel applications of X-ray and neutron diffraction for the analysis of a range of materials, including conventional and nanostructured materials, thin films, bio-inspired materials, and superalloys. The development of ultra-brilliant synchrotron X-ray sources and recent advances in neutron diffraction provide important new opportunities for the analysis of local and near surface material structures at multiple length scales. (C) 2010 Elsevier B.V. All rights reserved. C1 [Barabash, Rozaliya I.; Ice, Gene E.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. [Barabash, Rozaliya I.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, MST Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov NR 0 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 1 EP 2 DI 10.1016/j.msea.2010.08.065 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200001 ER PT J AU Pang, JWL Ice, GE Liu, WJ AF Pang, Judy W. L. Ice, Gene E. Liu, Wenjun TI The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Synchrotron X-ray diffraction; Plasticity ID STOCHASTIC DISLOCATION DYNAMICS; PLASTIC-DEFORMATION; FLOW-STRESS; MICROSCOPY; FIELD AB We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 mu m with only 18 mu m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity. Published by Elsevier B.V. C1 [Pang, Judy W. L.; Ice, Gene E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Pang, JWL (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Behtel Valley Rd, Oak Ridge, TN 37831 USA. EM pangj@ornl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC05-00OR22725]; UT-Battelle, LLC; DOE, Office of Basic Energy Sciences, Scientific User Facilities Division [W-31-109-ENF-38]; Argonne National Laboratory FX Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Work in part on beamline 34-ID at the Advanced Photon Source which is supported by the DOE, Office of Basic Energy Sciences, Scientific User Facilities Division under contract No. W-31-109-ENF-38 with Argonne National Laboratory. NR 26 TC 6 Z9 6 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 28 EP 31 DI 10.1016/j.msea.2010.05.031 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200004 ER PT J AU Barabash, RI Gao, YF Ice, GE Barabash, OM Chung, JS Liu, W Kroger, R Lohmeyer, H Sebald, K Gutowski, J Bottcher, T Hommel, D AF Barabash, R. I. Gao, Y. F. Ice, G. E. Barabash, O. M. Chung, Jin-Seok Liu, W. Kroeger, R. Lohmeyer, H. Sebald, K. Gutowski, J. Boettcher, T. Hommel, D. TI Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D X-ray microbeam SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Strain; Nitride semiconductors; X-ray microbeam; Dislocations; Lattice rotations ID DEFORMATION; PLASTICITY; ANISOTROPY; STRESS; SCALE AB This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence (mu-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation of complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent. (C) 2010 Elsevier B.V. All rights reserved. C1 [Barabash, R. I.; Ice, G. E.; Barabash, O. M.; Chung, Jin-Seok] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Barabash, R. I.; Gao, Y. F.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Y. F.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Chung, Jin-Seok] Soongsil Univ, Dept Phys, Seoul, South Korea. [Liu, W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kroeger, R.; Lohmeyer, H.; Sebald, K.; Gutowski, J.; Boettcher, T.; Hommel, D.] Univ Bremen, Inst Solid State Phys, Bremen, Germany. RP Barabash, RI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM barabashr@ornl.gov RI Gao, Yanfei/F-9034-2010; Kroeger, Roland/D-5321-2012 OI Gao, Yanfei/0000-0003-2082-857X; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Deutsche Forschungsgemeinschaft [HE 2827/5-1, HO 1388/25-2] FX Research at ORNL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Data collection with PXM has been carried out on beamline ID-34-E at the Advanced Photon Source, Argonne IL. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was further supported by the Deutsche Forschungsgemeinschaft under Contracts No. HE 2827/5-1 and HO 1388/25-2. NR 28 TC 1 Z9 1 U1 0 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 52 EP 57 DI 10.1016/j.msea.2010.04.045 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200007 ER PT J AU Bacciochini, A Ilavsky, J Montavon, G Denoirjean, A Ben-Ettouil, F Valette, S Fauchais, P Wittmann-Teneze, K AF Bacciochini, Antoine Ilavsky, Jan Montavon, Ghislain Denoirjean, Alain Ben-ettouil, Fadhel Valette, Stephane Fauchais, Pierre Wittmann-teneze, Karine TI Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using Ultra-small-angle X-ray scattering (USAXS) SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Ultra-small-angle X-ray scattering (USAXS); Ceramic coating; Suspension plasma spraying; Porous architecture; Thermomechanical properties ID THERMAL BARRIER COATINGS; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; MICROSTRUCTURAL CHARACTERIZATION; HEAT-TRANSFER; GROWN OXIDE; TECHNOLOGY; POROSITY; CONDUCTIVITY; DIFFUSIVITY AB Suspension plasma spraying (SPS) is able to process a stabilized suspension of nanometer-sized feedstock particles to form thin (from 20 to 100 mu m) coatings with unique microstructures. The void (pore) network structure of these ceramic coatings is challenging to characterize and quantify using commonly used techniques due to small sizes involved. Nevertheless, the discrimination of these pores in terms of their size and shape distribution, anisotropy, specific surface area, etc., is critical for the understanding of processing, microstructure, and properties relationships. We will show that one of suitable combinations of techniques providing sufficient detail is ultra-small-angle X-ray scattering (USAXS) and helium pycnometry, combined with scanning electron microscopy (SEM). Yttria-partially stabilized zirconia (YSZ) coatings were manufactured by plasma processing of suspension of particles with average diameter of similar to 50 nm. Several sets of spray parameters (plasma gas mixture, spray distance, electric arc intensity, etc.) were used to generate plasma jets with different mass enthalpies and coefficients of thermal transfer and different heat fluxes transferred to the substrate. Free-standing coatings were studied as-sprayed and annealed at 800 and 1100 degrees C for 10 and 100 h (non-constrained sintering). Results indicate that the SPS coatings exhibit nanosized pore microstructure: average void size was about the same size scale as the feedstock size; i.e., nanometer sizes with multimodal void size distribution. About 80% of the pores (by number) exhibited characteristic dimensions smaller than 30 nm. Total void content of as-sprayed SPS coatings varies between 13% and 20%. Most of the voids were found to be opened with only between one-tenth to one-third of voids volume being inaccessible by intrusion (not connected to either surface). During annealing, even at temperatures as low than 800 degrees C, the microstructure transformed: while the total void content did not change significantly, the void size distribution evolved toward larger sizes. This unique void system, together with the nanometer scale of the particulate matrix itself, gave these coatings very low apparent thermal conductivity (in the order of 0.1 W m(-1) K-1), as rarefaction effect and phonon scattering mechanisms are very likely emphasized. Published by Elsevier B.V. C1 [Ilavsky, Jan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bacciochini, Antoine; Montavon, Ghislain; Denoirjean, Alain; Ben-ettouil, Fadhel; Valette, Stephane; Fauchais, Pierre] Univ Limoges, Fac Sci & Tech, CNRS, SPCTS,UMR 6638, F-87060 Limoges, France. [Wittmann-teneze, Karine] Commissariat Energie Atom French Atom Agcy, F-37000 Monts, France. RP Ilavsky, J (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ilavsky@aps.anl.gov; ghislain.montavon@utbm.fr RI Ilavsky, Jan/D-4521-2013; USAXS, APS/D-4198-2013 OI Ilavsky, Jan/0000-0003-1982-8900; FU French Ministry and Industry and local governments of Region Centre and Limousin; SPCTS; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was partially supported by the French FCE-NANOSURF consortium (Mecachrome, Frechin, CRT Plasma Laser, Cilas, CEA, CITRA) granted by the French Ministry and Industry and local governments of Region Centre and Limousin, the financial support of which is gratefully acknowledged by authors from SPCTS.; Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 57 TC 18 Z9 18 U1 1 U2 26 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 91 EP 102 DI 10.1016/j.msea.2010.06.082 PG 12 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200013 ER PT J AU Balzar, D Popa, NC Vogel, S AF Balzar, D. Popa, N. C. Vogel, S. TI Strain and stress tensors of rolled uranium plate by Rietveld refinement of TOF neutron-diffraction data SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Neutron diffraction; Rietveld refinement; Strain; Stress; Uranium ID ELASTIC-STRAIN; TEXTURE AB We report the complete macroscopic average strain and stress tensors for a cold-rolled uranium plate, based on the neutron TOF measurements. Both tensors were determined by the least-squares refinement of the interplanar spacings of 19 Bragg reflections. Based on the pole figures, as determined by GSAS, a triclinic sample symmetry of the uranium plate was assumed. Strain and stress are tensile in both the transverse and rolling directions and very small in the normal direction (through the thickness of the plate). Shear strain and stress components are compressive and of significant magnitude. (C) 2010 Elsevier B.V. All rights reserved. C1 [Balzar, D.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Popa, N. C.] Natl Inst Mat Phys, Bucharest, Romania. [Vogel, S.] Los Alamos Natl Lab, Los Alamos Neutron Scattering Ctr, Los Alamos, NM USA. RP Balzar, D (reprint author), Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. EM balzar@du.edu RI Popa, Nicolae/B-8182-2011; Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361 NR 13 TC 4 Z9 4 U1 0 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 122 EP 126 DI 10.1016/j.msea.2010.06.002 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200016 ER PT J AU Jana, S Mishra, RS Baumann, JA Grant, G AF Jana, S. Mishra, R. S. Baumann, J. A. Grant, G. TI Effect of process parameters on abnormal grain growth during friction stir processing of a cast Al alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Aluminum alloys; Friction stir processing; Abnormal grain growth; Microstructure ID STRENGTH ALUMINUM-ALLOYS; CELLULAR MICROSTRUCTURES; TENSILE PROPERTIES; UNIFIED THEORY; HEAT-TREATMENT; FEM MODEL; STABILITY; TEXTURE; RECRYSTALLIZATION; SUPERPLASTICITY AB The effects of process parameters and friction stir processing (FSP) run configurations on the stability of nugget microstructure at elevated temperatures were evaluated. Cast plates of an Al-7Si-0.6Mg alloy were friction stir processed using a combination of tool rotation rates and tool traverse speeds. All single pass runs showed some extent of abnormal grain growth (AGG), whereas multi-pass runs were more resistant to AGG. Additionally, higher tool rotation rate was found to be beneficial for controlling AGG. These effects were analyzed by comparing the result of this work with other published results and AGG models. (C) 2010 Elsevier B.V. All rights reserved. C1 [Jana, S.; Mishra, R. S.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. [Baumann, J. A.] Boeing Co, St Louis, MO 63166 USA. [Jana, S.; Grant, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Mishra, RS (reprint author), Missouri Univ Sci & Technol, Dept Mat Sci & Engn, B37 McNutt Hall,1870 Miner Circle, Rolla, MO 65409 USA. EM rsmishra@mst.edu RI Mishra, Rajiv/A-7985-2009 OI Mishra, Rajiv/0000-0002-1699-0614 NR 44 TC 14 Z9 15 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 189 EP 199 DI 10.1016/j.msea.2010.08.049 PG 11 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200025 ER PT J AU Hsiung, LL AF Hsiung, Luke L. TI On the mechanism of anomalous slip in bcc metals SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Anomalous slip; Jogged screw dislocations; Coplanar dislocation arrays ID CENTERED-CUBIC METALS; TANTALUM SINGLE-CRYSTALS; PLASTIC-DEFORMATION; NIOBIUM; ALLOYS AB The anomalous-slip behavior of bcc metals has been studied by TEM analyses of dislocation substructures developed in a [(2) over bar 920]-oriented Mo single crystal uniaxially compressed at room temperature to a total-strain of 0.4%. It is found that the initial dislocation lines in association with "grown-in" super-jogs can act as effective sources for the formation of both a(0)/2[1 (1) over bar 1] (Schmid factor = 0.5) and a(0)/2[1 (1) over bar 1] (Schmid factor = 0.167) coplanar screw dislocation arrays in the ((1) over bar 0 1) primary slip plane. The interaction between the multiplied a(0)/2[1 1 1] dislocations and pre-existing a(0)/2[1 (1) over bar 1] dislocation segments, which block the motion of the a(0)/2[1 1 1] dislocations, renders the multiplication of a(0)/2[1 (1) over bar 1] dislocations and leads to the formation of a(0)/2[1 1 1] and a(0)/2[1 (1) over bar 1] dislocation arrays on the ((1) over bar 0 1) primary slip plane. The occurrence of {0 (1) over bar 1} anomalous slip is accordingly proposed to be resulting from the mutual trapping of a(0)/2[1 1 1] and a(0)/2[1 (1) over bar1 1] coplanar dislocation arrays on the ((1) over bar 0 1) primary slip plane, which renders a cross-slip propagation of both a(0)/2[1 1 1] and a(0)/2[1 (1) over bar 1] screw dislocations from the ((1) over bar 0 1) plane onto the {0 (1) over bar 1} planes and thus activates the {0 1 (1) over bar 1} < 1 1 1 > slip systems. Published by Elsevier B.V. C1 Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. RP Hsiung, LL (reprint author), Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, L-352,POB 808, Livermore, CA 94551 USA. EM hsiungl@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author would like to express his gratitude to Mary LeBlanc and Dr. David Lassila for performing crystal purification and uniaxial compression experiments. NR 17 TC 14 Z9 15 U1 1 U2 35 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 25 PY 2010 VL 528 IS 1 BP 329 EP 337 DI 10.1016/j.msea.2010.09.017 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 687OQ UT WOS:000284788200042 ER PT J AU Unocic, KA Pint, BA AF Unocic, K. A. Pint, B. A. TI Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 37th International Conference on Metallurgical Coatings and Thin Films CY APR 26-30, 2010 CL San Diego, CA SP Amer Vacuum Soc, Adv Surface Engn Div DE MCrAlY; Bond coat; Alumina; Segregation; Yttrium; Hafnium ID THERMAL-BARRIER COATINGS; OXIDATION BEHAVIOR; ELEMENT ADDITIONS; FORMING ALLOYS; BOND COAT; PERFORMANCE; SUPERALLOYS; DEPOSITION; DIFFUSION; SYSTEMS AB A commercial NiCoCrAlYHfSi coating deposited on a Ni-base superalloy substrate was characterized before and after high temperature oxidation. The combination of Y, Hf and Si additions is reported to improve coating performance. Advanced characterization techniques including scanning-transmission electron microscopy were used to study the segregation behavior of Y and Hf ions to the alumina grain boundaries after 200 h at 1050 degrees C and 100 and 200 h exposures at 1100 degrees C. After both exposure times, two distinct oxide layers were observed. The outer transient layer included many Y- and Hf-rich oxide particles. The inner layer consisted of columnar alpha-Al(2)O(3) grains normal to the surface of the coating. Segregation of Y and Hf ions was found on the alumina grain boundaries as has been observed in model alloys with similar compositions. Isothermal exposures for up to 200 h at 1050 degrees and 1100 degrees C caused a minimal increase in surface roughness. However, 200 1-h cycles at 1100 degrees C resulted in a more significant increase in surface roughness. Published by Elsevier B.V. C1 [Unocic, K. A.; Pint, B. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Unocic, KA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM unocicka@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 21 TC 18 Z9 19 U1 1 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 25 PY 2010 VL 205 IS 5 BP 1178 EP 1182 DI 10.1016/j.surfcoat.2010.08.111 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 697BN UT WOS:000285487700002 ER PT J AU Dryepondt, S Pint, BA AF Dryepondt, Sebastien Pint, Bruce A. TI Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 37th International Conference on Metallurgical Coatings and Thin Films CY APR 26-30, 2010 CL San Diego, CA SP Amer Vacuum Soc, Adv Surface Engn Div DE Aluminide coating; DBTT; Hardness; Creep ID RENE 80; CREEP; DEPOSITION; FATIGUE AB The ductility of various coatings deposited by chemical vapor deposition, pack cementation and slurry processes on Fe- and Ni-based alloys was characterized by indentation at room temperature. A hot indentation apparatus has also been developed to more rapidly determine the ductile to brittle transition temperature of coated specimens. Creep testing has been conducted on bare and coated alloy 230 (NiCrW) specimens at 800 degrees C with a significant decrease in creep life observed. Based on the observed failure of coated 230 specimens, the impact of coating ductility on substrate creep properties is discussed. Published by Elsevier B.V. C1 [Dryepondt, Sebastien; Pint, Bruce A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Dryepondt, S (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM dryepondtsn@ornl.gov; pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 13 TC 4 Z9 4 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 25 PY 2010 VL 205 IS 5 BP 1195 EP 1199 DI 10.1016/j.surfcoat.2010.08.081 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 697BN UT WOS:000285487700005 ER PT J AU Pint, BA Haynes, JA Zhang, Y AF Pint, B. A. Haynes, J. A. Zhang, Y. TI Effect of superalloy substrate and bond coating on TBC lifetime SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 37th International Conference on Metallurgical Coatings and Thin Films CY APR 26-30, 2010 CL San Diego, CA SP Amer Vacuum Soc, Adv Surface Engn Div DE TBC lifetime; Pt diffusion coating; Pt aluminide coating; Scale adhesion; Oxidation ID THERMAL BARRIER COATINGS; SINGLE-CRYSTAL SUPERALLOYS; GAMMA' NIPTAL COATINGS; NI-BASED SUPERALLOYS; OXIDATION BEHAVIOR; ALUMINIDE COATINGS; WATER-VAPOR; PLATINUM; SYSTEMS; PERFORMANCE AB Several different single-crystal superalloys were coated with different bond coatings to study the effect of composition on the cyclic oxidation lifetime of an yttria-stabilized zirconia (YSZ) top coating deposited by electron beam physical vapor deposition from a commercial source. Three different superalloys were coated with a 7 mu m Pt layer that was diffused into the surface prior to YSZ deposition. One of the superalloys, N5, was coated with a low activity, Pt-modified aluminide coating and Pt-diffusion coatings with 3 and 7 mu m of Pt. Three coatings of each type were furnace cycled to failure in 1 h cycles at 1150 degrees C to assess average coating lifetime. The 7 mu m Pt diffusion coating on N5 had an average YSZ coating lifetime >50% higher than a Pt-modified aluminide coating on N5. Without a YSZ coating, the Pt-modified aluminide coating on N5 showed the typical surface deformation during cycling, however, the deformation was greatly reduced when constrained by the YSZ coating. The 3 mu m Pt diffusion coating had a similar average lifetime as the Pt-modified aluminide coating but a much wider scatter. The Pt diffusion bond coating on superalloy X4 containing Ti exhibited the shortest YSZ coating lifetime, this alloy-coating combination also showed the worst alumina scale adhesion without a YSZ coating. The third generation superalloy N6 exhibited the longest coating lifetime with a 7 mu m Pt diffusion coating. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Haynes, J. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Y.] Tennessee Technol Univ, Cookeville, TN 38505 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 28 TC 22 Z9 22 U1 3 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 25 PY 2010 VL 205 IS 5 BP 1236 EP 1240 DI 10.1016/j.surfcoat.2010.08.154 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 697BN UT WOS:000285487700012 ER PT J AU Kartal, G Timur, S Eryilmaz, OL Erdemir, A AF Kartal, G. Timur, S. Eryilmaz, O. L. Erdemir, A. TI Influence of process duration on structure and chemistry of borided low carbon steel SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 37th International Conference on Metallurgical Coatings and Thin Films CY APR 26-30, 2010 CL San Diego, CA SP Amer Vacuum Soc, Adv Surface Engn Div DE Boriding; Electrolysis time; Molten salts; Surface treatment ID MOLTEN-SALTS; SURFACE MODIFICATION; RESIDUAL-STRESSES; MECHANISM; WEAR AB In this study, we employed an ultra-fast bonding technique to grow hard boride layers on low carbon steel substrates using an induction furnace at 900 degrees C. The technique utilizes an electrochemical cell in which it is possible to achieve very thick (i.e., about 90 mu m thick) boride layers in about 30 min. The effects of process duration on boride layer thickness, composition, and structural morphology were investigated using microscopic and X-ray diffraction (XRD) methods. We also developed an empirical equation for the growth rate of boride layers. XRD results revealed two principal boride phases: FeB and Fe(2)B thickness of which was very dependent on the process duration. For example, Fe(2)B phase was more dominant during shorter bonding times (i.e., up to 15 min.) but FeB became much more pronounced at much longer durations. The growth rate of total boride layer was nearly linear up to 30 min of treatment. However during much longer process duration, the growth rate assumed a somewhat parabolic character that could be expressed as d=1.4904 (t)(0.5) + 11.712). where d (in mu m) is the growth rate, t (in s) is duration. The mechanical characterization of the bonded surfaces in plane and in cross-sections has confirmed hardness values as high 19 GPa at or near the bonded surface (where FeB phase is present). However, the hardness gradually decreased to 14 to 16 GPa levels in the region where Fe2B phase was found. Published by Elsevier B.V. C1 [Eryilmaz, O. L.; Erdemir, A.] Argonne Natl Lab, Div Energy Technol, Argonne, IL 60439 USA. [Kartal, G.; Timur, S.] Istanbul Tech Univ, Dept Met & Mat Engn, Maslak, Turkey. RP Erdemir, A (reprint author), Argonne Natl Lab, Div Energy Technol, 9700 S Cass Ave, Argonne, IL 60439 USA. EM erdemir@anl.gov RI Timur, Servet/J-2893-2012 NR 34 TC 10 Z9 10 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 25 PY 2010 VL 205 IS 5 BP 1578 EP 1583 DI 10.1016/j.surfcoat.2010.08.050 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 697BN UT WOS:000285487700070 ER PT J AU Reichhardt, CJO Reichhardt, C AF Reichhardt, C. J. Olson Reichhardt, C. TI Fluctuations, jamming, and yielding for a driven probe particle in disordered disk assemblies SO PHYSICAL REVIEW E LA English DT Article ID TRANSITION; DYNAMICS; FLOW AB Using numerical simulations we examine the velocity fluctuations and velocity-force curve characteristics of a probe particle driven with constant force through a two-dimensional disordered assembly of disks which has a well-defined jamming point J at a density of phi(J) = 0.843. As phi increases toward phi(J), the average velocity of the probe particle decreases and the velocity fluctuations show an increasingly intermittent or avalanchelike behavior. When phi is within a few percent of the jamming density, the velocity distributions are exponential, while when phi is less than 1% away from jamming, the velocity distributions have a power-law character with exponents in agreement with recent experiments. The velocity power spectra exhibit a crossover from a Lorentzian form to a 1/f shape near jamming. We extract a correlation length exponent nu which is in good agreement with recent shear simulations. For phi > phi(J), there is a critical threshold force F-c that must be applied for the probe particle to move through the sample which increases with increasing phi. The velocity-force curves are linear below jamming, while at jamming they have a power-law form. The onset of the probe motion above phi(J) occurs via a local yielding of the particles around the probe particle which we term a local shear banding effect. C1 [Reichhardt, C. J. Olson; Reichhardt, C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Reichhardt, CJO (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. OI Reichhardt, Cynthia/0000-0002-3487-5089 FU NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396] FX We thank M. Hastings, L. Silbert, and S. Teitel for useful comments. This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396. NR 36 TC 18 Z9 19 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV 24 PY 2010 VL 82 IS 5 AR 051306 DI 10.1103/PhysRevE.82.051306 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 713JU UT WOS:000286735100002 ER PT J AU Yanez, R Loveland, W Vinodkumar, AM Sprunger, PH Prisbrey, L Peterson, D Zhu, S Kolata, JJ Villano, A Liang, JF AF Yanez, R. Loveland, W. Vinodkumar, A. M. Sprunger, P. H. Prisbrey, L. Peterson, D. Zhu, S. Kolata, J. J. Villano, A. Liang, J. F. TI Isospin dependence of capture cross sections: The S-36+Pb-208 reaction SO PHYSICAL REVIEW C LA English DT Article ID FUSION EXCITATION-FUNCTIONS; BARRIER DISTRIBUTIONS; ENHANCEMENT; FISSION AB The capture-fission cross section for the S-36+Pb-208 reaction was measured for seven center-of-mass energies ranging from 147.5 to 210.2 MeV. A comparison of the deduced interaction barriers from "distribution of barriers" measurements and simple 1/E-c.m. plots for 13 well-characterized systems shows the validity of the latter approach for deducing interaction barriers, especially for reaction systems involving radioactive beams where the former measurements are not currently feasible. Application of the 1/E-c.m. plot technique for the S-36+Pb-208 reaction gives an interaction barrier height of 140.4 +/- 1.4 MeV. This value as well as the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved isospin-dependent quantum molecular dynamics model and a modified version of capture cross-section systematics by Swiatecki et al. The deduced barriers for these n-rich systems are lower than one would expect from semiempirical systematics based upon the Bass potential. In addition to the barrier lowering, there is an enhanced subbarrier cross section in these n-rich systems not predicted by the Bass potential systematics. These enhanced subbarrier cross sections may be important in the synthesis of the heaviest nuclei. C1 [Yanez, R.; Loveland, W.; Vinodkumar, A. M.; Sprunger, P. H.; Prisbrey, L.] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA. [Peterson, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Kolata, J. J.; Villano, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Liang, J. F.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Yanez, R (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. RI Attukalathil, Vinodkumar/A-7441-2009 OI Attukalathil, Vinodkumar/0000-0002-8204-7800 FU Office of High Energy and Nuclear Physics, Nuclear Physics Division, US Department of Energy [DE-FG06-97ER41026, DE-AC02-06CH11357]; US National Science Foundation [PHY06-52591] FX We thank John Greene for providing the targets used in this experiment. We thank B. Shumard for technical assistance during this experiment. We thank K. Siwek-Wilczynska and Bao-An Bian for allowing us to use their model predictions prior to publication. We thank R. Pardo and the ATLAS accelerator staff for providing us with high-quality beams during the experiment. This work was supported, in part, by the Office of High Energy and Nuclear Physics, Nuclear Physics Division, US Department of Energy, under Grant No. DE-FG06-97ER41026, Contract No. DE-AC02-06CH11357, and the US National Science Foundation under Grant No. PHY06-52591. NR 26 TC 5 Z9 5 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 24 PY 2010 VL 82 IS 5 AR 054615 DI 10.1103/PhysRevC.82.054615 PG 8 WC Physics, Nuclear SC Physics GA 713JD UT WOS:000286733400001 ER PT J AU Li, XP Lu, WC Wang, CZ Ho, KM AF Li, Xiao-Ping Lu, Wen-Cai Wang, C. Z. Ho, K. M. TI Structures of Pb-n (n=21-30) clusters from first-principles calculations SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID LEAD CLUSTERS; CARBON CLUSTERS; SPECTROSCOPIC PROPERTIES; TIN; ENERGY; IONS; SIZE; STABILITIES; POTENTIALS; TRANSITION AB Neutral lead clusters Pb-n (n = 21-30) were studied using a genetic algorithm (GA)/tight-binding (TB) search combined with density functional theory (DFT)-Perdew-Burke-Ernzerhof (PBE) calculations. The calculated results show that the Pb-n (22 <= n <= 30) clusters favor endohedral cage structures with two (Pb22-26) or three (Pb27-30) endohedral atoms. The binding energies, stabilities, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of the Pb-n clusters were also discussed. The results from our calculations also indicate that Pb-24 and Pb-28 are especially stable clusters compared with their neighbors. C1 [Li, Xiao-Ping; Lu, Wen-Cai] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Coll Phys, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, Lab Fiber Mat & Modern Text, Growing Base State Key Lab, Qingdao 266071, Shandong, Peoples R China. [Wang, C. Z.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, C. Z.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. RP Lu, WC (reprint author), Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China. EM wencailu@jlu.edu.cn OI Wang, Chong/0000-0003-4489-4344 FU National Natural Science Foundation of China [20773047, 21043001]; Iowa State University [DE-AC02-07CH11358]; Office of Basic Energy Sciences, National Energy Research Supercomputing Center (NERSC) in Berkeley FX This work was supported by the National Natural Science Foundation of China (Grant Nos 20773047 and 21043001). Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was also supported by the Director for Energy Research, Office of Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. NR 44 TC 6 Z9 6 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 24 PY 2010 VL 22 IS 46 AR 465501 DI 10.1088/0953-8984/22/46/465501 PG 6 WC Physics, Condensed Matter SC Physics GA 675OA UT WOS:000283838800011 PM 21403370 ER PT J AU Treat, ND Campos, LM Dimitriou, MD Ma, BW Chabinyc, ML Hawker, CJ AF Treat, Neil D. Campos, Luis M. Dimitriou, Michael D. Ma, Biwu Chabinyc, Michael L. Hawker, Craig J. TI Nanostructured Hybrid Solar Cells: Dependence of the Open Circuit Voltage on the Interfacial Composition SO ADVANCED MATERIALS LA English DT Article ID PHOTOVOLTAIC DEVICES; POLYMER; EFFICIENCY; TITANIA; LAYER AB Nanostructured amorphous titanium suboxide electrodes are fabricated to determine the effects of the electrode geometry on the device performance of poly(3-hexylthiophene): (6,6)-phenyl C61 butyric acid methyl ester inverted solar cells. It is found that a combination of electrode geometry and active layer processing influences the open circuit voltage in these devices. C1 [Treat, Neil D.; Campos, Luis M.; Dimitriou, Michael D.; Chabinyc, Michael L.; Hawker, Craig J.] Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA. [Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Chabinyc, ML (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA. EM mchabinyc@engineering.ucsb.edu; hawker@mrl.ucsb.edu RI Chabinyc, Michael/E-2387-2011; Hawker, Craig/G-4971-2011; Ma, Biwu/B-6943-2012; Campos, Luis/B-4757-2010; Treat, Neil/A-8999-2010 OI Hawker, Craig/0000-0001-9951-851X; FU UCSB Materials Research Laboratory (NSF) [DMR05-20415]; Office of Science, Offi ce of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02 - 05CH11231]; ConvEne IGERT [NSF-DGE 0801627]; NSF; University of California FX The use of the central facilities of the UCSB Materials Research Laboratory (NSF Grant DMR05-20415) is gratefully acknowledged. Portions of this work were performed as a user project at the Molecular Foundry, at Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Offi ce of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02 - 05CH11231. NDT acknowledges support from the ConvEne IGERT Program (NSF-DGE 0801627) and NSF Graduate Research Fellowship Program. LMC thanks the University of California for support with a President's Fellowship. NR 28 TC 17 Z9 17 U1 1 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 24 PY 2010 VL 22 IS 44 BP 4982 EP + DI 10.1002/adma.201001967 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 695SY UT WOS:000285394100010 PM 20827684 ER PT J AU Burckel, DB Wendt, JR Ten Eyck, GA Ginn, JC Ellis, AR Brener, I Sinclair, MB AF Burckel, D. Bruce Wendt, Joel R. Ten Eyck, Gregory A. Ginn, James C. Ellis, A. Robert Brener, Igal Sinclair, Michael B. TI Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers SO ADVANCED MATERIALS LA English DT Article ID OPTICAL FREQUENCIES; NEGATIVE-INDEX; PHOTONIC METAMATERIAL; RESONATORS; REFRACTION; LENS AB Membrane projection lithography is used to create vertically oriented splitring resonators which show measured electric and magnetic resonances (lambda = 22, 11, and 7 mu m). We then create composite structures with 5 split ring resonators per unit cell (image). This approach provides a long-sought, manufacturable path toward the realization of 3D optical and infrared metamaterials. C1 [Burckel, D. Bruce; Ginn, James C.; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Burckel, DB (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM dbburck@sandia.gov RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Bonnie McKenzie for providing SEM images. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 22 TC 51 Z9 51 U1 2 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 24 PY 2010 VL 22 IS 44 BP 5053 EP + DI 10.1002/adma.201002429 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 695SY UT WOS:000285394100024 PM 20941794 ER PT J AU Martin, J Bruno, VM Fang, ZD Meng, XD Blow, M Zhang, T Sherlock, G Snyder, M Wang, Z AF Martin, Jeffrey Bruno, Vincent M. Fang, Zhide Meng, Xiandong Blow, Matthew Zhang, Tao Sherlock, Gavin Snyder, Michael Wang, Zhong TI Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads SO BMC GENOMICS LA English DT Article ID ALIGNMENT; REVEALS; TOOL AB Background: Comprehensive annotation and quantification of transcriptomes are outstanding problems in functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a powerful tool for addressing these problems, its success is dependent upon the availability and quality of reference genome sequences, thus limiting the organisms to which it can be applied. Results: Here, we describe Rnnotator, an automated software pipeline that generates transcript models by de novo assembly of RNA-Seq data without the need for a reference genome. We have applied the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly accurate (95%) and reconstruct full-length genes for the majority of the existing gene models (54.3%). Furthermore, our analyses revealed many novel transcribed regions that are absent from well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis based on a reference genome for comprehensive transcriptomics. Conclusions: These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts in the absence of a complete reference genome. C1 [Martin, Jeffrey; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Wang, Zhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. [Martin, Jeffrey; Meng, Xiandong; Blow, Matthew; Zhang, Tao; Wang, Zhong] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Bruno, Vincent M.] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA. [Fang, Zhide] LSU, Hlth Sci Ctr, Sch Publ Hlth, New Orleans, LA 70112 USA. [Sherlock, Gavin; Snyder, Michael] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA. RP Wang, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. EM zhongwang@lbl.gov RI Wang, Zhong/E-7897-2011; Sherlock, Gavin/E-9110-2012; Blow, Matthew/G-6369-2012; OI Blow, Matthew/0000-0002-8844-9149; Sherlock, Gavin/0000-0002-1692-4983 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NIAID at the NIH [R01AI077737] FX The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Gavin Sherlock is supported by R01AI077737 from the NIAID at the NIH. NR 17 TC 90 Z9 96 U1 2 U2 19 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 24 PY 2010 VL 11 AR 663 DI 10.1186/1471-2164-11-663 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 694MT UT WOS:000285303000001 PM 21106091 ER PT J AU Leri, AC Hakala, JA Marcus, MA Lanzirotti, A Reddy, CM Myneni, SCB AF Leri, Alessandra C. Hakala, J. Alexandra Marcus, Matthew A. Lanzirotti, Antonio Reddy, Christopher M. Myneni, Satish C. B. TI Natural organobromine in marine sediments: New evidence of biogeochemical Br cycling SO GLOBAL BIOGEOCHEMICAL CYCLES LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; BROMINATED FLAME RETARDANTS; ORGANIC-CARBON RATIOS; MEDITERRANEAN SEDIMENTS; CONSTRUCTED WETLANDS; PEAT BOGS; MATTER; ORGANOHALOGENS; HALOGEN; WATER AB Organobromine (Br(org)) compounds, commonly recognized as persistent, toxic anthropogenic pollutants, are also produced naturally in terrestrial and marine systems. Several enzymatic and abiotic bromination mechanisms have been identified, as well as an array of natural Brorg molecules associated with various marine organisms. The fate of the carbon-bromine functionality in the marine environment, however, remains largely unexplored. Oceanographic studies have noted an association between bromine (Br) and organic carbon (C(org)) in marine sediments. Even so, there has been no direct chemical evidence that Br in the sediments exists in a stable form apart from inorganic bromide (Br(inorg)), which is widely presumed conservative in marine systems. To investigate the scope of natural Brorg production and its fate in the environment, we probed Br distribution and speciation in estuarine and marine sediments using in situ X-ray spectroscopy and spectromicroscopy. We show that Br(org) is ubiquitous throughout diverse sedimentary environments, occurring in correlation with C(org) and metals such as Fe, Ca, and Zn. Analysis of sinking particulate carbon from the seawater column links the Brorg observed in sediments to biologically produced Br(org) compounds that persist through humification of natural organic matter (NOM). Br speciation varies with sediment depth, revealing biogeochemical cycling of Br between organic and inorganic forms as part of the burial and degradation of NOM. These findings illuminate the chemistry behind the association of Br with C(org) in marine sediments and cast doubt on the paradigmatic classification of Br as a conservative element in seawater systems. C1 [Leri, Alessandra C.; Myneni, Satish C. B.] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Hakala, J. Alexandra; Myneni, Satish C. B.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lanzirotti, Antonio] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. [Reddy, Christopher M.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. [Myneni, Satish C. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Leri, AC (reprint author), Marymount Manhattan Coll, Dept Nat Sci & Math, 221 E 71st St, New York, NY 10021 USA. EM aleri@mmm.edu FU U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences [DE-AC02-98CH10886]; National Science Foundation (NSF) Chemical Sciences; NSF; DOE-BES Materials Sciences Division [DE-AC03-76SF00098]; DOE-Geosciences [DE-FG02-92ER14244]; DOE Office of Biological and Environmental Research, Environmental Remediation Sciences Division [DE-FC09-96-SR18546] FX The authors are indebted to M. Hay, J. Majzlan, D. Sigman, B. Ward, S. Manganini, R. Robinson, D. Graham, C. Lee, C. Nelson, W. Rao, and the SSRL staff scientists. This investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences Programs, the National Science Foundation (NSF) Chemical Sciences Program, and an NSF Graduate Research Fellowship (ACL). Use of the ALS was supported by the DOE-BES Materials Sciences Division under contract DE-AC03-76SF00098. Use of the SSRL, a national user facility operated by Stanford University, was supported by the DOE-BES. Use of the NSLS was supported by the DOE-BES under contract DE-AC02-98CH10886. Portions of this work were performed at beamline X26A at the NSLS. Beamline X26A is supported by the DOE-Geosciences (DE-FG02-92ER14244 to the University of Chicago-CARS) and DOE Office of Biological and Environmental Research, Environmental Remediation Sciences Division (DE-FC09-96-SR18546 to the University of Georgia). The authors are grateful for the constructive suggestions provided by two anonymous reviewers. NR 52 TC 15 Z9 15 U1 0 U2 45 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0886-6236 J9 GLOBAL BIOGEOCHEM CY JI Glob. Biogeochem. Cycle PD NOV 24 PY 2010 VL 24 AR GB4017 DI 10.1029/2010GB003794 PG 15 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA 686NS UT WOS:000284703600001 ER PT J AU Chen, LJ Thorne, RM Jordanova, VK Horne, RB AF Chen, Lunjin Thorne, Richard M. Jordanova, Vania K. Horne, Richard B. TI Global simulation of magnetosonic wave instability in the storm time magnetosphere SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EQUATORIAL NOISE; PROTON; MODEL; PLASMASPHERE; PROPAGATION; CLUSTER; IONS AB Coupling between the Rice Convection Model and Ring Current-Atmospheric Interactions Model codes is used to simulate the dynamical evolution of ring current ion phase space density and the thermal electron density distribution for the 22 April 2001 storm. The simulation demonstrates that proton ring distributions (df(perpendicular to)/dv(perpendicular to) > 0) develop over a broad spatial region during the storm main phase, leading to the instability of equatorial magnetosonic waves. Calculations of the convective growth rate of magnetosonic waves for multiples of the proton gyrofrequency from 2 to 42 are performed globally. We find that the ratio between the perpendicular ring velocity and the equatorial Alfven speed determines the frequency range of unstable magnetosonic waves. Low harmonic waves (omega < 10 Omega(H+)) tend to be excited in the high-density nightside plasmasphere and within the duskside plume, whereas higher-frequency waves (omega > 20 Omega(H+)) are excited over a broad spatial region of low density outside the morningside plasmasphere. C1 [Chen, Lunjin; Thorne, Richard M.] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90095 USA. [Horne, Richard B.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher Sci, 405 Hilgard Ave,Box 951565,7127 Math Sci Bldg, Los Angeles, CA 90095 USA. EM clj@atmos.ucla.edu RI Chen, Lunjin/L-1250-2013; OI Chen, Lunjin/0000-0003-2489-3571; Horne, Richard/0000-0002-0412-6407; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX08AQ88G, NNH08AJ01I, NNX08A135G] FX The research was supported by NASA grants NNX08AQ88G, NNH08AJ01I, and NNX08A135G. The authors wish to thank Michelle Thomsen of Los Alamos National Laboratory for many helpful discussions in the course of this study and thank Chih-Ping Wang and Matina Gkioulidou for running RCM simulation for the simulated storm. NR 30 TC 56 Z9 56 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 24 PY 2010 VL 115 AR A11222 DI 10.1029/2010JA015707 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 686PS UT WOS:000284708800005 ER PT J AU Damiano, PA Brambles, OJ Lotko, W Zhang, B Wiltberger, M Lyon, J AF Damiano, P. A. Brambles, O. J. Lotko, W. Zhang, B. Wiltberger, M. Lyon, J. TI Effects of solar wind dynamic pressure on the ionospheric O+ fluence during the 31 August 2005 storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION OUTFLOW; POLAR-CAP; MAGNETOSPHERE; REGION; DEPENDENCE; SIMULATION; UPFLOWS; ENERGY; CUSP; IMF AB The Multifluid-Lyon-Fedder-Mobarry (MFLFM) global simulation model incorporating an ionospheric cusp O+ outflow model based on an empirical relation between downward DC Poynting flux and O+ outflow flux regulated by the precipitating electron number flux (F-en) is used to simulate the 31 August 2005 storm. A baseline run incorporating the original solar wind data is contrasted against a case where the solar wind dynamic pressure (P-dyn) is artificially adjusted to see what effects this variable has on the O+ fluence generated in the model. Consistent with data, it is found that both the fluence and O+ outflow flux have a positive correlation with the solar wind dynamic pressure. Additionally, changes in P-dyn affect the downward Poynting flux only marginally and regulates both outflow flux and cusp outflow area via F-en. Increases in P-dyn lead to increased cusp electron precipitation, which has the physical effect of enhancing the upwelling O+ population available for outflow. C1 [Damiano, P. A.; Brambles, O. J.; Lotko, W.; Zhang, B.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Lyon, J.] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA. [Wiltberger, M.] Natl Ctr Atmospher Res, High Altitude Observ, Boulder, CO 80301 USA. RP Damiano, PA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, MS29,C Site, Princeton, NJ 08543 USA. EM pdamiano@pppl.gov RI Wiltberger, Michael/B-8781-2008 OI Wiltberger, Michael/0000-0002-4844-3148 FU NASA [NNX08AI36G, NNX07AQ16G]; National Science Foundation [ATM-0120950]; National Center for Atmospheric Research [36761008] FX The research was supported by the NASA Sun-Earth Connection Theory Program (grant NNX08AI36G), the NASA Living With a Star Targeted Research and Technology Program (grant NNX07AQ16G), and the Center for Integrated Space Weather Modeling funded by the National Science Foundation STC program under cooperative agreement ATM-0120950. Computing resources for the research were provided by the National Center for Atmospheric Research under CISL project 36761008. NR 28 TC 11 Z9 11 U1 0 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 24 PY 2010 VL 115 AR A00J07 DI 10.1029/2010JA015583 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 686PS UT WOS:000284708800002 ER PT J AU Lee, B Rudd, RE Klepeis, JE AF Lee, Byeongchan Rudd, Robert E. Klepeis, John E. TI Using alloying to promote the subtle rhombohedral phase transition in vanadium SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID AUGMENTED-WAVE METHOD; HIGH-PRESSURE; INTRINSIC DIFFUSION; LATTICE-DYNAMICS; TITANIUM ALLOYS; OXYGEN AB Recently it has been suggested theoretically and discovered experimentally that pressure can induce body-centered cubic vanadium to transition to a rhombohedral phase. Here we show using density functional theory calculations that alloying can affect the same transition, and in particular alloying can increase the stability of the rhombohedral phase, reducing the pressure needed to induce the transition. These calculations are full supercell calculations, as opposed to the virtual crystal approximation and other approximate schemes that neglect atomic relaxation and local bonding effects. These results suggest a way in which alloying provides a means of designing this class of exotic phases to be more robust. C1 [Lee, Byeongchan] Kyung Hee Univ, Yongin 446701, Gyeonggi, South Korea. [Rudd, Robert E.; Klepeis, John E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lee, B (reprint author), Kyung Hee Univ, 1 Seochon Giheung, Yongin 446701, Gyeonggi, South Korea. EM airbc@khu.ac.kr OI Rudd, Robert/0000-0002-6632-2681 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Ministry of Education, Science and Technology [2010-0025566] FX We are grateful to Livermore Computing for allocations on Zeus. RER's and JEK's work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This research was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025566). NR 29 TC 1 Z9 1 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 24 PY 2010 VL 22 IS 46 AR 465503 DI 10.1088/0953-8984/22/46/465503 PG 5 WC Physics, Condensed Matter SC Physics GA 675OA UT WOS:000283838800013 PM 21403372 ER PT J AU Vaknin, D Garlea, VO Demmel, F Mamontov, E Nojiri, H Martin, C Chiorescu, I Qiu, Y Kogerler, P Fielden, J Engelhardt, L Rainey, C Luban, M AF Vaknin, D. Garlea, V. O. Demmel, F. Mamontov, E. Nojiri, H. Martin, C. Chiorescu, I. Qiu, Y. Koegerler, P. Fielden, J. Engelhardt, L. Rainey, C. Luban, M. TI Level crossings and zero-field splitting in the {Cr-8}-cubane spin cluster studied using inelastic neutron scattering and magnetization SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID ANISOTROPY; MOLECULES; MAGNET AB Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr-8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight Cr-III paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects. C1 [Vaknin, D.; Koegerler, P.; Fielden, J.; Luban, M.] Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. [Garlea, V. O.; Mamontov, E.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Demmel, F.] Rutherford Appleton Lab, ISIS Pulsed Neutron Facil, Didcot OX11 0QX, Oxon, England. [Nojiri, H.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. [Martin, C.; Chiorescu, I.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Martin, C.; Chiorescu, I.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Qiu, Y.] NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, College Pk, MD 20742 USA. [Engelhardt, L.; Rainey, C.] Francis Marion Univ, Dept Phys & Astron, Florence, SC 29501 USA. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Nojiri, Hiroyuki/B-3688-2011; Kogerler, Paul/H-5866-2013; Mamontov, Eugene/Q-1003-2015; Garlea, Vasile/A-4994-2016; Vaknin, David/B-3302-2009 OI Kogerler, Paul/0000-0001-7831-3953; Mamontov, Eugene/0000-0002-5684-2675; Garlea, Vasile/0000-0002-5322-7271; Vaknin, David/0000-0002-0899-9248 FU Office of Basic Energy Sciences, US Department of Energy [DE-AC02-07CH11358]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; NSF [DMR-0654118, DMR-0645408, DMR-0454672]; FMU Professional Development Committee; MEXT, Japan [451] FX We thank R E P Winpenny and J Schnack for valuable discussions. The work at the Ames Laboratory was supported by the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-07CH11358. The research at Oak Ridge National Laboratory's Spallation Neutron Source, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work at the NHMFL was supported by NSF cooperative agreement Grant No. DMR-0654118 and NSF Grant No. DMR-0645408. The work at the NCNR is supported in part by the National Science Foundation under Agreement No. DMR-0454672. L E acknowledges support from the FMU Professional Development Committee. H N acknowledges support by Grant-in-Aid on Priority Areas 'High Field Spin Science in 100 T' (Grant No. 451) from MEXT, Japan. NR 24 TC 5 Z9 6 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 24 PY 2010 VL 22 IS 46 AR 466001 DI 10.1088/0953-8984/22/46/466001 PG 8 WC Physics, Condensed Matter SC Physics GA 675OA UT WOS:000283838800020 PM 21403379 ER PT J AU Zhou, YG Zu, XT Yang, P Xiao, HY Gao, F AF Zhou, Y. G. Zu, X. T. Yang, P. Xiao, H. Y. Gao, F. TI Oxygen-induced magnetic properties and metallic behavior of a BN sheet SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article AB In this paper, an ab initio method has been employed to study the adsorption energies, electronic structures and magnetic properties of a BN sheet functionalized by an oxygen ( O) atom. The adsorption process is typically exothermic, and some unusual properties can be revealed with different adsorption sites. The energy gap of the BN sheet narrows due to the strong hybridization between O and BN electronic states when the O locates above a BN bond or a nitrogen atom. Upon the adsorption of O above a B3N3 ring or a boron atom, the electrons of the O-adsorbed BN system are polarized, which gives rise to a magnetic moment of 2.0 mu(B). In this case, the Fermi level crosses the valence band, resulting in the O-adsorbed BN system being metallic. Furthermore, potential energy curve analysis shows that the magnetism and metallicity of the BN system can be modulated by the external temperature and pressure. C1 [Zhou, Y. G.; Zu, X. T.; Xiao, H. Y.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Yang, P.; Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, F (reprint author), Pacific NW Natl Lab, MS K8-93,POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Yang, Ping/E-5355-2011; Xiao, Haiyan/A-1450-2012; Gao, Fei/H-3045-2012; OI Yang, Ping/0000-0003-4726-2860 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-76RL01830]; Royal Academy of Engineering; US Department of Energy's Office of Biological and Environmental Research FX This study was financially supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-76RL01830. X T Zu was supported by the Royal Academy of Engineering-Research Exchanges with China and India Awards. A portion of this research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research, located at Pacific Northwest National Laboratory and operated for DOE by Battelle. NR 18 TC 3 Z9 3 U1 1 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 24 PY 2010 VL 22 IS 46 AR 465303 DI 10.1088/0953-8984/22/46/465303 PG 8 WC Physics, Condensed Matter SC Physics GA 675OA UT WOS:000283838800005 PM 21403364 ER PT J AU Johnson, JC Nozik, AJ Michl, J AF Johnson, Justin C. Nozik, Arthur J. Michl, Josef TI High Triplet Yield from Singlet Fission in a Thin Film of 1,3-Diphenylisobenzofuran SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ENERGY-TRANSFER; BACTERIOCHLOROPHYLL; CAROTENOIDS; PATHWAY AB Direct observation of triplet absorption and ground-state depletion upon pulsed excitation of a polycrystalline thin solid film of 1,3-diphenylisobenzofuran at 77 K revealed a 200 +/- 30% triplet yield, which was attributed to singlet fission. C1 [Nozik, Arthur J.; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Johnson, Justin C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague, Czech Republic. RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. EM michl@eefus.colorado.edu RI Michl, Josef/G-9376-2014; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [XAT-5-33636-01, DE-FG36-08GO18017]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences [DE-AC36-08GO28308] FX We thank the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Photovoltaics Program (XAT-5-33636-01 and DE-FG36-08GO18017 to J.M.) and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences (DE-AC36-08GO28308 to J.C.J. and A.J.N.). NR 14 TC 103 Z9 103 U1 5 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 24 PY 2010 VL 132 IS 46 BP 16302 EP 16303 DI 10.1021/ja104123r PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 687QC UT WOS:000284792000002 PM 21043452 ER PT J AU Schlueter, JA Wiehl, L Park, H de Souza, M Lang, M Koo, HJ Whangbo, MH AF Schlueter, John A. Wiehl, Leonore Park, Hyunsoo de Souza, Mariano Lang, Michael Koo, Hyun-Joo Whangbo, Myung-Hwan TI Enhanced Critical Temperature in a Dual-Layered Molecular Superconductor SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PRESSURE ORGANIC SUPERCONDUCTOR; ELECTRON-DONOR MOLECULE; BEDT-TTF; STRUCTURAL GENEALOGY; SALTS; CONDUCTORS; TETRATHIAFULVALENE; CRYSTAL; PHASES AB Single-crystal X-ray diffraction has shown that the high-critical-temperature (T(c)) phase of the filamentary molecular superconductor (BEDT-TTF)(2)Ag(CF(3))(4)(1,1,2-trichloroethane) [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] contains layers of BEDT-TTF radical cations with alternating kappa- and alpha'-type packing motifs. This molecule-based superconductor with dual BEDT-TTF packing motifs has a T(c) five times higher than that of its polymorph that contains only kappa-type packing. C1 [Schlueter, John A.; Park, Hyunsoo] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wiehl, Leonore] Goethe Univ Frankfurt, Inst Geosci, D-60438 Frankfurt, Germany. [de Souza, Mariano; Lang, Michael] Goethe Univ Frankfurt, Inst Phys, D-60438 Frankfurt, Germany. [Koo, Hyun-Joo] Kyung Hee Univ, Dept Chem, Seoul 130701, South Korea. [Koo, Hyun-Joo] Kyung Hee Univ, Res Inst Basic Sci, Seoul 130701, South Korea. [Whangbo, Myung-Hwan] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Schlueter, JA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM JASchlueter@anl.gov RI de Souza, Mariano/F-5219-2012 OI de Souza, Mariano/0000-0002-2466-3402 FU National Science Foundation/Department of Energy [NSF/CHE-0822838]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-FG02-86ER45259] FX We thank D. Naumann and T. Roy (Universitat Koln) for providing the [Ag(CF3)4]- anion. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at NCSU was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259, and by the resources of the NERSC Center and the HPC center of NCSU. NR 22 TC 21 Z9 21 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 24 PY 2010 VL 132 IS 46 BP 16308 EP 16310 DI 10.1021/ja105854m PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 687QC UT WOS:000284792000004 PM 21038887 ER PT J AU Wang, GF Sun, W Luo, Y Fang, N AF Wang, Gufeng Sun, Wei Luo, Yong Fang, Ning TI Resolving Rotational Motions of Nano-objects in Engineered Environments and Live Cells with Gold Nanorods and Differential Interference Contrast Microscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SINGLE-PARTICLE TRACKING; TUG-OF-WAR; ORIENTATION SENSORS; MOLECULAR MOTORS; TORQUE COMPONENT; CARGO TRANSPORT; MYOSIN-V; KINESIN; F-1-ATPASE; NANOPARTICLES AB Gold nanorods are excellent orientation probes due to their anisotropic optical properties. Their dynamic rotational motion in the 3D space can be disclosed with Nomarski-type differential interference contrast (DIC) microscopy. We demonstrate that by using the combination of gold nanorod probes and DIC microscopy, we are able to resolve rotational motions of nano-cargos transported by motor proteins at video rate not only on engineered surfaces but also on cytoskeleton tracks in live cells. C1 [Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM nfang@iastate.edu RI Wang, Gufeng/B-3972-2011; Fang, Ning/A-8456-2011 FU Iowa State University [DE-AC02-07CH11358]; Chemical Sciences, Geosciences, and Biosciences Division; Basic Energy Sciences; Office of Science; U.S. Department of Energy; Iowa Center for Advanced Neurotoxicology FX The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy, and the Iowa Center for Advanced Neurotoxicology (Seed Funding). The authors thank Dr. William O. Hancock at The Pennsylvania State University for kindly providing BL21 (DE3) E. coli bacteria with the full-length His-tagged kinesin plasmid and Drs. Edward W. Yu and Feng Long at Iowa State University for help in purifying kinesin proteins. NR 40 TC 74 Z9 75 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 24 PY 2010 VL 132 IS 46 BP 16417 EP 16422 DI 10.1021/ja106506k PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 687QC UT WOS:000284792000032 PM 21043495 ER PT J AU Bishop, CL Bergin, AMH Fessart, D Borgdorff, V Hatzimasoura, E Garbe, JC Stampfer, MR Koh, J Beach, DH AF Bishop, Cleo L. Bergin, Ann-Marie H. Fessart, Delphine Borgdorff, Viola Hatzimasoura, Elizabeth Garbe, James C. Stampfer, Martha R. Koh, Jim Beach, David H. TI Primary Cilium-Dependent and -Independent Hedgehog Signaling Inhibits p16(INK4A) SO MOLECULAR CELL LA English DT Article ID GLYCOGEN-SYNTHASE KINASE-3; TUMOR-SUPPRESSOR; CELL-DIVISION; REPLICATIVE SENESCENCE; INK4/ARF LOCUS; TARGET GENE; EXPRESSION; CANCER; PHOSPHORYLATION; BINDING AB In a genome-wide siRNA, analysis of P16(INK4a) (p16) modulators, we identify the Hedgehog (Hh) pathway component SUFU and formally demonstrate that Hh signaling promotes mitogenesis by suppression of p16. A fragment of the Hh-responsive GLI2 transcription factor directly binds and inhibits the p16 promoter and senescence is associated with the loss of nuclear GLI2. Hh components partially reside in the primary cilium (PC), and the small fraction of cells in mass culture that elaborate a PC have the lowest expression of p16. Suppression of p16 is effected by both PC-dependent and -independent routes, and ablation of p16 renders cells insensitive to an Hh inhibitor and increases PC formation. These results directly link a well-established developmental mitogenic pathway with a key tumor suppressor and contribute to the molecular understanding of replicative senescence, Hh-mediated oncogenesis, and potentially the role of p16 in aging. C1 [Bishop, Cleo L.; Bergin, Ann-Marie H.; Fessart, Delphine; Borgdorff, Viola; Hatzimasoura, Elizabeth; Beach, David H.] Barts & London Queen Marys Sch Med & Dent, Blizard Inst Cell & Mol Sci, London E1 2AT, England. [Garbe, James C.; Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Koh, Jim] Duke Univ, Sch Med, Dept Surg, Div Surg Sci, Durham, NC 27710 USA. RP Bishop, CL (reprint author), Barts & London Queen Marys Sch Med & Dent, Blizard Inst Cell & Mol Sci, 4 Newark St, London E1 2AT, England. EM c.l.bishop@qmul.ac.uk RI FESSART, Delphine/J-2784-2014 OI FESSART, Delphine/0000-0001-7566-5670 FU Medical Research Council; The Wellcome Trust; Cancer Research UK; MRC; NIH [U54 CA112970]; Office of Energy Research, Office of Health and Biological Research, U.S. Department of Energy [DE-AC02-05CH11231] FX We thank M. Overhoff, M. Philpott, and J. Wang for useful discussion and critical reading of the manuscript. C.L.B. was supported by the Medical Research Council and The Wellcome Trust, D.F. by Cancer Research UK, A.M.H.B. by the MRC, V.B. and E.H. by The Wellcome Trust. J.C.G. and M.R.S. were supported by NIH U54 CA112970 and the Office of Energy Research, Office of Health and Biological Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 22 Z9 22 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD NOV 24 PY 2010 VL 40 IS 4 BP 533 EP 547 DI 10.1016/j.molcel.2010.10.027 PG 15 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 690FR UT WOS:000284988400007 PM 21095584 ER PT J AU Kim, MG Kreyssig, A Lee, YB Kim, JW Pratt, DK Thaler, A Bud'ko, SL Canfield, PC Harmon, BN McQueeney, RJ Goldman, AI AF Kim, M. G. Kreyssig, A. Lee, Y. B. Kim, J. W. Pratt, D. K. Thaler, A. Bud'ko, S. L. Canfield, P. C. Harmon, B. N. McQueeney, R. J. Goldman, A. I. TI Commensurate antiferromagnetic ordering in Ba(Fe1-xCox)(2)As-2 determined by x-ray resonant magnetic scattering at the Fe K edge SO PHYSICAL REVIEW B LA English DT Article AB We describe x-ray resonant magnetic diffraction measurements at the Fe K edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)(2)As-2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane-wave method with a local density functional. C1 [Kim, M. G.; Kreyssig, A.; Lee, Y. B.; Pratt, D. K.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kim, M. G.; Kreyssig, A.; Lee, Y. B.; Pratt, D. K.; Thaler, A.; Bud'ko, S. L.; Canfield, P. C.; Harmon, B. N.; McQueeney, R. J.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kim, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, MG (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Kim, Min Gyu/B-8637-2012; Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014; McQueeney, Robert/A-2864-2016 OI Kim, Min Gyu/0000-0001-7676-454X; Thaler, Alexander/0000-0001-5066-8904; McQueeney, Robert/0000-0003-0718-5602 FU U.S. DOE, Office of Science, Basic Energy Sciences [DE-AC02-07CH11358]; U.S. DOE [DE-AC02-06CH11357] FX We acknowledge valuable discussions with J. Lang, J. Schmalian, and R. M. Fernandes. The work at Ames Laboratory was supported by the U.S. DOE, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 36 TC 19 Z9 19 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 24 PY 2010 VL 82 IS 18 AR 180412 DI 10.1103/PhysRevB.82.180412 PG 4 WC Physics, Condensed Matter SC Physics GA V25LC UT WOS:000208478500001 ER PT J AU Blum, T Zhou, R Doi, T Hayakawa, M Izubuchi, T Uno, S Yamada, N AF Blum, Tom Zhou, Ran Doi, Takumi Hayakawa, Masashi Izubuchi, Taku Uno, Shunpei Yamada, Norikazu TI Electromagnetic mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice QCD plus QED SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; FERMIONS; RATIOS; DIFFERENCE; SCATTERING AB Results computed in lattice QCD + QED are presented for the electromagnetic mass splittings of the low-lying hadrons. These are used to determine the renormalized, nondegenerate, light quark masses. It is found that m(u) ((MS) over bar) = 2.24(10)(34), m(d)((MS) over bar) = 4.65(15)(32), and m(s)((MS) over bar) = 97.6(2.9)(5.5) MeV at the renormalization scale 2 GeV, where the first error is statistical and the second systematic. We find the lowest-order electromagnetic splitting (m(pi+) - m(pi 0))(QED) = 3.38(23) MeV, the splittings including next-to-leading order, (m(pi+) - m(pi 0))(QED) = 4.50(23) MeV, (m(K+) - m(K0))(QED) = 1.87(10) MeV, and the m(u) not equal m(d) contribution to the kaon mass difference, (m(K+) - m(K0))((mu - md)) = 5.840(96) MeV. All errors are statistical only, and the next-to-leading-order pion splitting is only approximate in that it does not contain all next-to-leading-order contributions. We also computed the proton-neutron mass difference, including for the first time, QED interactions in a realistic 2 + 1 flavor calculation. We find (m(p) - m(n))(QED) = 0.383(68) MeV, m(p) - m(n))((mu - md)) = -2.51(14) MeV (statistical errors only), and the total m(p) - m(n) = -2.13(16) x (70) MeV, where the first error is statistical, and the second, part of the systematic error. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations, using domain wall fermions and the Iwasaki gauge action (gauge coupling beta = 2.13 and lattice cutoff a(-1) approximate to 1.78 GeV). We use two lattice sizes, 16(3) and 24(3) ((1.8 fm)(3) and (2.7 fm)(3)), to address finite-volume effects. Noncompact QED is treated in the quenched approximation. The valence pseudoscalar meson masses in our study cover a range of about 250 to 700 MeV, though we use only those up to about 400 MeV to quote final results. We present new results for the electromagnetic low-energy constants in SU(3) and SU(2) partially quenched chiral perturbation theory to the next-to-leading order, obtained from fits to our data. Detailed analysis of systematic errors in our results and methods for improving them are discussed. Finally, new analytic results for SU(2)(L) x SU(2)(R)-plus-kaon chiral perturbation theory, including the one-loop logs proportional to alpha(em)m, are given. C1 [Blum, Tom; Zhou, Ran] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Blum, Tom; Zhou, Ran; Izubuchi, Taku; Uno, Shunpei] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Doi, Takumi] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Doi, Takumi] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Hayakawa, Masashi; Uno, Shunpei] Nagoya Univ, Dept Phys, Nagoya, Aichi 4648602, Japan. [Yamada, Norikazu] High Energy Accelerator Res Org KEK, Inst Particle & Nucl Studies, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan. [Yamada, Norikazu] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. RP Blum, T (reprint author), Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. RI zhou, ran/O-6309-2014 OI zhou, ran/0000-0002-0640-1820 FU U.S. DOE [21.5985]; JSPS [20540261, 22224003, 227180]; Japanese Ministry of Education [20105001, 20105002, 22740183]; Nagoya University; LLC with the U.S. Department of Energy [DE-AC02-98CH10886] FX We thank E. Scholz and the RBC and UKQCD collaborations for providing us with the pure QCD LEC's used in this work. T. B. thanks N. Christ for helpful discussions on the EM induced part of the residual mass. T. I. thanks C. Bernard, M. Creutz, and E. Eichten for illuminating discussions. T. B. and T. I. thank G. Colangelo for helpful discussions on finite-volume chiral perturbation theory. T. B. and T. I. thank the organizers of the CERN Theory Institute "Future directions in Lattice Gauge Theory-LGT10,'' where a part of this paper was finalized. T. B. and T.I. also appreciate discussions on fK/fpi (Sec. VIII) with G. Colangelo, A. Juettner, L. Lellouch, C. Sachrajda, and Y. Kuramashi held at the workshop. T. I. also thanks W. Marciano concerning this section. We are grateful to USQCD and the RBRC for providing time on the DOE and RBRC QCDOC supercomputers at BNL for the computations reported here. T.B. and R.Z. were supported in part by the U.S. DOE under Contract No. DE-FG02-92ER40716, T.D. by JSPS Grant-in-Aid No. 21.5985, M. H. by JSPS Grant-in-Aid of Scientific Research (C) Grant No. 20540261 and (S) Grant No. 22224003, T.I. and N.Y. by Grant-in-Aid of the Japanese Ministry of Education (Nos. 20105001, 20105002, 22740183), and S.U. by the JSPS Grant-in-Aid No. 227180 and Nagoya University Global COE program, Quest for Fundamental Principles in the Universe. This manuscript has been authored by an employee (T.I.) of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. NR 67 TC 66 Z9 67 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 24 PY 2010 VL 82 IS 9 AR 094508 DI 10.1103/PhysRevD.82.094508 PG 47 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731RX UT WOS:000288128100006 ER PT J AU Chekanov, SV Levy, C Proudfoot, J Yoshida, R AF Chekanov, S. V. Levy, C. Proudfoot, J. Yoshida, R. TI New approach for jet-shape identification of TeV-scale particles at the LHC SO PHYSICAL REVIEW D LA English DT Article ID HADRON-COLLISIONS AB A new approach to jet-shape identification based on linear regression is discussed. It is designed for searches for new particles at the TeV scale decaying hadronically with strongly collimated jets. We illustrate the method using a Monte Carlo simulation for pp collisions at the LHC with the goal to reduce the contribution of QCD-induced events. We focus on a rather generic example X -> t (t) over bar -> hadrons, with X being a heavy particle, but the approach is well suited for reconstruction of other decay channels characterized by a cascade decay of known states. C1 [Chekanov, S. V.; Levy, C.; Proudfoot, J.; Yoshida, R.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Levy, C.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. RP Chekanov, SV (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX We thank Lily Asquith for discussion and checking alternative jet algorithms. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (''Argonne''). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 24 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 24 PY 2010 VL 82 IS 9 AR 094029 DI 10.1103/PhysRevD.82.094029 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731RX UT WOS:000288128100004 ER PT J AU Kribs, GD Martin, A Roy, TS Spannowsky, M AF Kribs, Graham D. Martin, Adam Roy, Tuhin S. Spannowsky, Michael TI Discovering Higgs bosons of the MSSM using jet substructure SO PHYSICAL REVIEW D LA English DT Article ID FERMILAB TEVATRON; STANDARD MODEL; LHC; MASS; COLLIDERS; HADRON; QUARKS; PHYSICS; SEARCH; DECAYS AB We present a qualitatively new approach to discover Higgs bosons of the minimal supersymmetric standard model (MSSM) at the LHC using jet substructure techniques applied to boosted Higgs decays. These techniques are ideally suited to the MSSM, since the lightest Higgs boson overwhelmingly decays to b (b) over bar throughout the entire parameter space, while the heavier neutral Higgs bosons, if light enough to be produced in a cascade, also predominantly decay to b (b) over bar. The Higgs production we consider arises from superpartner production where superpartners cascade decay into Higgs bosons. We study this mode of Higgs production for several superpartner hierarchies: m((q) over bar,) m((g) over bar) > m((W) over bar,(B) over bar) > m(h) + mu; m((q) over bar,) m((g) over bar) > m((W) over bar,(B) over bar) > m(h,H,A) + mu; and m((q) over bar), m((g) over bar) > m((W) over bar) > m(h) + mu with m((B) over bar) similar or equal to mu. In these cascades, the Higgs bosons are boosted, with pT > 200 GeV a large fraction of the time. Since Higgses appear in cascades originating from squarks and/or gluinos, the cross section for events with at least one Higgs can be the same order as squark/gluino production. Given 10 fb(-1) of 14 TeV LHC data, with m(<(q)over bar)> less than or similar to 1 TeV, and one of the above superpartner mass hierarchies, our estimate of S/root B p of the Higgs signal is sufficiently high that the b<(b)over bar> mode can become the discovery mode of the lightest Higgs boson of the MSSM. C1 [Kribs, Graham D.; Roy, Tuhin S.; Spannowsky, Michael] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Martin, Adam] Dept Theoret Phys, Fermilab, Batavia, IL 60510 USA. RP Kribs, GD (reprint author), Univ Oregon, Dept Phys, Eugene, OR 97403 USA. FU U. S. Department of Energy [DE-FG02-96ER40969]; Fermilab; LLC with U.S. Department of Energy [DE-AC02-07CH11359] FX G.D.K. thanks Fermilab and the Perimeter Institute and T.S.R. thanks the Weizmann Institute and Fermilab for hospitality where part of this work was completed. This work was supported in part by the U. S. Department of Energy under Contract No. DE-FG02-96ER40969 (G.D.K., T.S.R., M.S.). A.M. is supported by Fermilab operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 68 TC 52 Z9 52 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 24 PY 2010 VL 82 IS 9 AR 095012 DI 10.1103/PhysRevD.82.095012 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 731RX UT WOS:000288128100008 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Calvet, S Camacho-Perez, E Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, MS Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhou, N Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Calvet, S. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. S. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhou, N. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb(-1) of p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMICAL SUPERSYMMETRY BREAKING; UNIVERSAL EXTRA DIMENSIONS; E(+)E(-) COLLISIONS; HADRON COLLIDERS; LIGHT GRAVITINO; CROSS-SECTIONS; PHOTON; MODEL; DETECTOR; MASS AB We report a search for diphoton events with large missing transverse energy produced in p (p) over bar collisions at root s = 1.96 TeV. The data were collected with the D0 detector at the Fermilab Tevatron Collider and correspond to 6.3 fb(-1) of integrated luminosity. The observed missing transverse energy distribution is well described by the standard model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the standard model. In a gauge-mediated supersymmetry breaking scenario, the breaking scale Lambda is excluded for Lambda < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius R-c is excluded for R-c(-1) < 477 GeV. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Carrasco-Lizarraga, M. A.; van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [Carrasco-Lizarraga, M. A.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Rangel, M. S.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Cooke, M. S.; Haas, A.; Parsons, J.; Tuts, P. M.; Zhou, N.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Gerbaudo, Davide/J-4536-2012; Zhou, Ning/D-1123-2017; Li, Liang/O-1107-2015; Wimpenny, Stephen/K-8848-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Perfilov, Maxim/E-1064-2012; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; Boos, Eduard/D-9748-2012; Santos, Angelo/K-5552-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012 OI Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Wimpenny, Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192 FU DOE (USA); NSF (USA); CEA (France); CNRS/IN2P3 (France); FASI (Russia); Rosatom (Russia); RFBR (Russia); CNPq (Brazil); FAPERJ (Brazil); FAPESP (Brazil); FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET (Argentina); UBACyT (Argentina) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); NR 46 TC 19 Z9 19 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2010 VL 105 IS 22 AR 221802 DI 10.1103/PhysRevLett.105.221802 PG 8 WC Physics, Multidisciplinary SC Physics GA 713IK UT WOS:000286731000004 ER PT J AU Anzai, H Ino, A Kamo, T Fujita, T Arita, M Namatame, H Taniguchi, M Fujimori, A Shen, ZX Ishikado, M Uchida, S AF Anzai, H. Ino, A. Kamo, T. Fujita, T. Arita, M. Namatame, H. Taniguchi, M. Fujimori, A. Shen, Z. -X. Ishikado, M. Uchida, S. TI Energy-Dependent Enhancement of the Electron-Coupling Spectrum of the Underdoped Bi2Sr2CaCu2O8+delta Superconductor SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; INSULATOR TRANSITIONS; STATE AB We have determined the electron-coupling spectrum of superconducting Bi2Sr2CaCu2O8+delta from high-resolution angle-resolved photoemission spectra by two deconvolution-free robust methods. As hole concentration decreases, the coupling spectral weight at low energies less than or similar to 15 meV shows a twofold and nearly band-independent enhancement, while that around similar to 65 meV increases moderately, and that in greater than or similar to 130 meV decreases leading to a crossover of dominant coupling excitation between them. Our results suggest the competition among multiple screening effects, and provide important clues to the source of sufficiently strong low-energy coupling, lambda(LE) approximate to 1, in an underdoped system. C1 [Anzai, H.; Ino, A.; Kamo, T.; Fujita, T.; Taniguchi, M.] Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan. [Arita, M.; Namatame, H.; Taniguchi, M.] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashihiroshima 7390046, Japan. [Fujimori, A.; Ishikado, M.; Uchida, S.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shen, Z. -X.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Shen, Z. -X.] Stanford Univ, Stanford Synchrotron Radiat Lab, Stanford, CA 94305 USA. RP Anzai, H (reprint author), Hiroshima Univ, Grad Sch Sci, Higashihiroshima 7398526, Japan. FU KAKENHI [20740199]; JSPS FX This work was supported by KAKENHI (20740199). H. A. acknowledges financial support from JSPS. The ARPES experiments were performed under the approval of HRSC (Proposal No. 07-A-2). NR 32 TC 22 Z9 22 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2010 VL 105 IS 22 AR 227002 DI 10.1103/PhysRevLett.105.227002 PG 4 WC Physics, Multidisciplinary SC Physics GA 713IK UT WOS:000286731000020 PM 21231415 ER PT J AU Baghdasaryan, H Weinstein, LB Laget, JM Adhikari, KP Aghasyan, M Amarian, M Anghinolfi, M Avakian, H Ball, J Battaglieri, M Bedlinskiy, I Bennett, RP Berman, BL Biselli, AS Bookwalter, C Briscoe, WJ Brooks, WK Bultmann, S Burkert, VD Carman, DS Crede, V D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dickson, R Djalali, C Dodge, GE Doughty, D Dupre, R Egiyan, H El Alaoui, A El Fassi, L Eugenio, P Fegan, S Gabrielyan, MY Gilfoyle, GP Giovanetti, KL Gohn, W Gothe, RW Griffioen, KA Guidal, M Guo, L Gyurjyan, V Hakobyan, H Hanretty, C Hyde, CE Hicks, K Holtrop, M Ilieva, Y Ireland, DG Joo, K Keller, D Khandaker, M Khetarpal, P Kim, A Kim, W Klein, A Klein, FJ Konczykowski, P Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Kvaltine, ND Livingston, K Lu, HY MacGregor, IJD Markov, N Mayer, M McAndrew, J McKinnon, B Meyer, CA Mikhailov, K Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Nepali, C Niccolai, S Niculescu, G Niculescu, I Osipenko, M Ostrovidov, AI Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Pisano, S Pogorelko, O Pozdniakov, S Price, JW Procureur, S Protopopescu, D Ricco, G Ripani, M Rosner, G Rossi, P Sabatie, F Salgado, C Schumacher, RA Seraydaryan, H Smith, GD Sober, DI Sokhan, D Stepanyan, SS Stepanyan, S Stoler, P Strauch, S Taiuti, M Tang, W Taylor, CE Tedeschi, DJ Ungaro, M Vineyard, MF Voutier, E Watts, DP Weygand, DP Wood, MH Zhao, B Zhao, ZW AF Baghdasaryan, H. Weinstein, L. B. Laget, J. M. Adhikari, K. P. Aghasyan, M. Amarian, M. Anghinolfi, M. Avakian, H. Ball, J. Battaglieri, M. Bedlinskiy, I. Bennett, R. P. Berman, B. L. Biselli, A. S. Bookwalter, C. Briscoe, W. J. Brooks, W. K. Bueltmann, S. Burkert, V. D. Carman, D. S. Crede, V. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dickson, R. Djalali, C. Dodge, G. E. Doughty, D. Dupre, R. Egiyan, H. El Alaoui, A. El Fassi, L. Eugenio, P. Fegan, S. Gabrielyan, M. Y. Gilfoyle, G. P. Giovanetti, K. L. Gohn, W. Gothe, R. W. Griffioen, K. A. Guidal, M. Guo, L. Gyurjyan, V. Hakobyan, H. Hanretty, C. Hyde, C. E. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, A. Kim, W. Klein, A. Klein, F. J. Konczykowski, P. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Kvaltine, N. D. Livingston, K. Lu, H. Y. MacGregor, I. J. D. Markov, N. Mayer, M. McAndrew, J. McKinnon, B. Meyer, C. A. Mikhailov, K. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Nepali, C. Niccolai, S. Niculescu, G. Niculescu, I. Osipenko, M. Ostrovidov, A. I. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pisano, S. Pogorelko, O. Pozdniakov, S. Price, J. W. Procureur, S. Protopopescu, D. Ricco, G. Ripani, M. Rosner, G. Rossi, P. Sabatie, F. Salgado, C. Schumacher, R. A. Seraydaryan, H. Smith, G. D. Sober, D. I. Sokhan, D. Stepanyan, S. S. Stepanyan, S. Stoler, P. Strauch, S. Taiuti, M. Tang, W. Taylor, C. E. Tedeschi, D. J. Ungaro, M. Vineyard, M. F. Voutier, E. Watts, D. P. Weygand, D. P. Wood, M. H. Zhao, B. Zhao, Z. W. CA CLAS Collaboration TI Tensor Correlations Measured in He-3(e, e ' pp)n SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEI AB We have measured the He-3(e, e' pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs by using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum p(tot). For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low p(tot) and rises to approximately 0.5 at large p(tot). This shows the dominance of tensor over central correlations at this relative momentum. C1 [Baghdasaryan, H.; Weinstein, L. B.; Adhikari, K. P.; Amarian, M.; Bennett, R. P.; Bueltmann, S.; Dodge, G. E.; Hyde, C. E.; Klein, A.; Kuhn, S. E.; Mayer, M.; Nepali, C.; Sabatie, F.; Seraydaryan, H.] Old Dominion Univ, Norfolk, VA 23529 USA. [Dupre, R.; El Alaoui, A.; El Fassi, L.] Argonne Natl Lab, Argonne, IL 60441 USA. [Morrison, B.; Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Dey, B.; Dickson, R.; Lu, H. Y.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Sober, D. I.] Catholic Univ Amer, Washington, DC 20064 USA. [Ball, J.; Konczykowski, P.; Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Markov, N.; Ungaro, M.] Univ Connecticut, Storrs, CT 06269 USA. [McAndrew, J.; Watts, D. P.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Gabrielyan, M. Y.; Guo, L.] Florida Int Univ, Miami, FL 33199 USA. [Bookwalter, C.; Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.] Florida State Univ, Tallahassee, FL 32306 USA. [Berman, B. L.; Briscoe, W. J.; Munevar, E.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Taylor, C. E.] Idaho State Univ, Pocatello, ID 83209 USA. [Aghasyan, M.; Avakian, H.; De Sanctis, E.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Anghinolfi, M.; Battaglieri, M.; De Vita, R.; Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Guidal, M.; Niccolai, S.; Pisano, S.; Sokhan, D.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; Mikhailov, K.; Pogorelko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, G.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, A.; Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Egiyan, H.; Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.; Niculescu, G.; Tang, W.] Ohio Univ, Athens, OH 45701 USA. [Biselli, A. S.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Strauch, S.; Tedeschi, D. J.] Univ S Carolina, Columbia, SC 29208 USA. [Laget, J. M.; Avakian, H.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Deur, A.; Doughty, D.; Gyurjyan, V.; Klein, F. J.; Kubarovsky, V.; Mokeev, V.; Nadel-Turonski, P.; Park, K.; Pasyuk, E.; Stepanyan, S.; Weygand, D. P.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. RP Weinstein, LB (reprint author), Old Dominion Univ, Norfolk, VA 23529 USA. EM weinstein@odu.edu RI Sabatie, Franck/K-9066-2015; Ireland, David/E-8618-2010; MacGregor, Ian/D-4072-2011; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Osipenko, Mikhail/N-8292-2015; OI Sabatie, Franck/0000-0001-7031-3975; Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Osipenko, Mikhail/0000-0001-9618-3013; Hyde, Charles/0000-0001-7282-8120 FU Italian Istituto Nazionale di Fisica Nucleare; Chilean CONICYT; French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique; United Kingdom Science and Technology Facilities Council (STFC); U.S. Department of Energy and National Science Foundation; National Research Foundation of Korea; United States Department of Energy [DE-AC05-060R23177] FX We acknowledge the outstanding efforts of the staff of the Accelerator and Physics Divisions (especially the CLAS target group) at Jefferson Lab that made this experiment possible. This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the Chilean CONICYT, the French Centre National de la Recherche Scientifique and Commissariat a l'Energie Atomique, the United Kingdom Science and Technology Facilities Council (STFC), the U.S. Department of Energy and National Science Foundation, and the National Research Foundation of Korea. Jefferson Science Associates, LLC, operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC05-060R23177. NR 27 TC 14 Z9 15 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 24 PY 2010 VL 105 IS 22 AR 222501 DI 10.1103/PhysRevLett.105.222501 PG 5 WC Physics, Multidisciplinary SC Physics GA 713IK UT WOS:000286731000006 PM 21231381 ER PT J AU Kazakov, SY Shchelkunov, SV Yakovlev, VP Kanareykin, A Nenasheva, E Hirshfield, JL AF Kazakov, S. Yu Shchelkunov, S. V. Yakovlev, V. P. Kanareykin, A. Nenasheva, E. Hirshfield, J. L. TI Fast ferroelectric phase shifters for energy recovery linacs SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by similar to 10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL). Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of similar to 30 ns for 77 deg, corresponding to <0.5 ns per deg of rf phase. Other crucial issues (losses, phase shift values, etc.) are discussed. C1 [Kazakov, S. Yu; Hirshfield, J. L.] Omega P Inc, New Haven, CT 06510 USA. [Kazakov, S. Yu; Yakovlev, V. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Shchelkunov, S. V.; Hirshfield, J. L.] Yale Univ, Beam Phys Lab, New Haven, CT 06511 USA. [Kanareykin, A.] Euclid Techlabs LLC, Solon, OH 44139 USA. [Nenasheva, E.] Ceramics Ltd, St Petersburg 194223, Russia. RP Kazakov, SY (reprint author), Omega P Inc, 258 Bradley St, New Haven, CT 06510 USA. EM sergey.shchelkunov@gmail.com FU Office of High Energy Physics, U.S. Department of Energy FX This work was supported by the Office of High Energy Physics, U.S. Department of Energy. We also acknowledge the help of Timergali Khabiboulline (FNAL), Harald Hahn (BNL), and E. M. Choi (formerly of BNL). NR 20 TC 3 Z9 3 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV 24 PY 2010 VL 13 IS 11 AR 113501 DI 10.1103/PhysRevSTAB.13.113501 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 688AR UT WOS:000284820800001 ER PT J AU Kuchenreuther, JM Grady-Smith, CS Bingham, AS George, SJ Cramer, SP Swartz, JR AF Kuchenreuther, Jon M. Grady-Smith, Celestine S. Bingham, Alyssa S. George, Simon J. Cramer, Stephen P. Swartz, James R. TI High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli SO PLOS ONE LA English DT Article ID CLOSTRIDIUM-PASTEURIANUM; ONLY HYDROGENASE; ACTIVE-SITE; DESULFOVIBRIO-DESULFURICANS; CHLAMYDOMONAS-REINHARDTII; THERMOTOGA-MARITIMA; LIGHT SENSITIVITY; IRON-HYDROGENASE; MATURATION; CLUSTER AB Background: The realization of hydrogenase-based technologies for renewable H-2 production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases. Principal Findings: In this report, we describe an improved Escherichia coli-based expression system capable of producing 8-30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H-2 evolution with rates comparable to those of enzymes isolated from their respective native organisms. Significance: The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H-2-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments. C1 [Kuchenreuther, Jon M.; Bingham, Alyssa S.; Swartz, James R.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Grady-Smith, Celestine S.; George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Grady-Smith, Celestine S.; George, Simon J.; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Swartz, James R.] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA. RP Kuchenreuther, JM (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM jswartz@stanford.edu FU United States Department of Energy BioEnergy Science FX This work was funded by the United States Department of Energy BioEnergy Science Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 44 TC 55 Z9 56 U1 2 U2 27 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 24 PY 2010 VL 5 IS 11 AR e15491 DI 10.1371/journal.pone.0015491 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 684TK UT WOS:000284572000030 PM 21124800 ER PT J AU Kirkil, G Constantinescu, G AF Kirkil, Gokhan Constantinescu, George TI Flow and turbulence structure around an in-stream rectangular cylinder with scour hole SO WATER RESOURCES RESEARCH LA English DT Article ID DETACHED EDDY SIMULATION; HORSESHOE VORTEX; SPHERE; PIERS; LES; TRANSPORT; MODEL; BODY AB Most of the erosion around obstacles present in alluvial streams takes place after the formation of a scour hole of sufficiently large dimensions to stabilize the large-scale oscillations of the horseshoe vortex (HV) system. The present paper uses eddy resolving techniques to reveal the unsteady dynamics of the coherent structures present in the flow field around an in-stream vertical cylinder (e. g., bridge pier) with a large scour hole at a channel Reynolds number defined with the channel depth and the bulk channel velocity of 2.4 x 10(5). The cylinder has a rectangular section and is placed perpendicular to the incoming flow. The geometry of the scour hole is obtained from an experiment conducted as part of the present work. The mechanisms driving the bed erosion during the advanced stages of the scour process around the vertical plate are discussed. Simulation results demonstrate the critical role played by these large-scale turbulent eddies and their interactions in driving the local scour. The paper analyzes the changes in the flow and turbulence structure with respect to the initial stages of the scour process (flat bed conditions) for a cylinder of identical shape and orientation. Results show the wake loses its undular shape due to suppression of the antisymmetrical shedding of the roller vortices. Also, the nature of the interactions between the necklace vortices of the HV system and the eddies present inside the detached shear layers (DSLs) changes as the scour process evolves. This means that information on the vortical structure of the flow at the initiation of the scour process, or during its initial stages, are insufficient to understand the local scour mechanisms. The paper also examines the effect of the shape of the obstruction on the dynamics of the vortical eddies and how it affects the bed erosion processes during the advanced stages of the local scour. In particular, the paper provides an explanation for the observed increase in the maximum scour depth for bed-mounted cylinders of rectangular section compared to cylinders of same width but of circular section. This increase is explained by the larger coherence of the HV system, the increased regularity of the interactions between the legs of the necklace vortices and the eddies shed in the DSLs, and the stronger coherence of the wake eddies, during both the initial and the later stages of the local scour process, for cases in which the obstruction has sharp edges that fix the separation point on the in-stream obstacle at all flow depths (e.g., rectangular cylinder). C1 [Constantinescu, George] Univ Iowa, Stanley Hydraul Lab, Dept Civil & Environm Engn, IIHR Hydrosci & Engn, Iowa City, IA 52242 USA. RP Kirkil, G (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, POB 808,L-103, Livermore, CA 94551 USA. EM sconstan@engineering.uiowa.edu RI constantinescu, george/A-8896-2008; Kirkil, Gokhan/D-8481-2014 OI constantinescu, george/0000-0001-7060-8378; FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors would like to thank Robert Ettema for his advice on various aspects of this research and the National Center for High Performance Computing (NCHC) in Taiwan, in particular W.F. Tsai for providing the computational resources needed to perform some of the simulations as part of the collaboration program between NCHC and IIHR-Hydroscience and Engineering. The first author would also like to acknowledge the Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy under contract DE-AC52-07NA27344. NR 39 TC 19 Z9 19 U1 1 U2 12 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 24 PY 2010 VL 46 AR W11549 DI 10.1029/2010WR009336 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 686QU UT WOS:000284711600009 ER PT J AU Ashino, T Varadarajan, S Urao, N Chen, GF Wang, H Huo, YQ Finney, L Vogt, S Kohno, T McKinney, RD Ushio-Fukai, M Fukai, T AF Ashino, Takashi Varadarajan, Sudhahar Urao, Norifumi Chen, Gin-Fu Wang, Huan Huo, Yuqing Finney, Lydia Vogt, Stefan Kohno, Takashi McKinney, Ronald D. Ushio-Fukai, Masuko Fukai, Tohru TI IQGAP1, a Rac1 Binding Scaffold Protein, Interacts with Copper Transporter ATP7A: Role in ATP7A-mediated PDGF-induced VSMC Migration and Neointimal Formation SO CIRCULATION LA English DT Meeting Abstract DE Growth factors; Arteriosclerosis; Signal transduction; Vascular disease; Smooth muscle C1 Univ Illinois, Chicago, IL USA. Univ Minnesota, Minneapolis, MN USA. Argonne Natl Lab, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0009-7322 J9 CIRCULATION JI Circulation PD NOV 23 PY 2010 VL 122 IS 21 SU S MA A18886 PG 2 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA V21UD UT WOS:000208231602967 ER PT J AU Matsui, H Koike, M Kondo, Y Takegawa, N Fast, JD Poschl, U Garland, RM Andreae, MO Wiedensohler, A Sugimoto, N Zhu, T AF Matsui, H. Koike, M. Kondo, Y. Takegawa, N. Fast, J. D. Poeschl, U. Garland, R. M. Andreae, M. O. Wiedensohler, A. Sugimoto, N. Zhu, T. TI Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID ASIAN DUST; ORGANIC AEROSOLS; AIR-POLLUTION; EAST-ASIA; MODEL; EMISSIONS; CHINA; MASS; PERFORMANCE; VALIDATION AB Model calculations were conducted using the Weather Research and Forecasting model coupled with chemistry (WRF-chem) for the region around Beijing, China, in the summer of 2006, when the CAREBeijing-2006 intensive campaign was conducted. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. The model calculations generally captured the observed variability of various surface and column aerosol optical parameters in and around Beijing. At the surface, the spatial and temporal variations of aerosol absorption and scattering coefficients corresponded well to those of elemental carbon and sulfate mass concentrations, respectively, and were controlled by local-scale (<100 km and <24 hours) and regional-scale (<500 km and <3 days) emissions, respectively. The contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer. This variation led to a considerable increase in column aerosol optical depth and was responsible for the differences in regional and temporal variations between surface and column aerosol optical properties around Beijing. These processes are expected to be common in other megacity regions as well. Model calculations, however, underestimated or overestimated the absolute levels of aerosol optical properties in and around Beijing by up to 60%. Sensitivity studies showed that these discrepancies were mostly due to the uncertainties in aerosol mixing state and aerosol density (affecting mass extinction efficiency) in the model calculations. Good agreement with measurements is achieved when these aerosol properties are accurately predicted or assumed; however, significant bias can result when these properties are inadequately treated, even if total aerosol mass concentrations are reproduced well in the model calculations. C1 [Matsui, H.; Kondo, Y.; Takegawa, N.] Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, Tokyo 1538904, Japan. [Koike, M.] Univ Tokyo, Dept Earth & Planetary Sci, Grad Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan. [Fast, J. D.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Poeschl, U.; Garland, R. M.; Andreae, M. O.] Max Planck Inst Chem, Biogeochem Dept, D-55020 Mainz, Germany. [Wiedensohler, A.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany. [Sugimoto, N.] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Zhu, T.] Peking Univ, State Key Joint Lab Environm Simulat & Pollut Con, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. RP Matsui, H (reprint author), Univ Tokyo, Adv Sci & Technol Res Ctr, Meguro Ku, 4-6-1 Komaba, Tokyo 1538904, Japan. EM matsui@atmos.rcast.u-tokyo.ac.jp; koike@eps.s.u-tokyo.ac.jp; y.kondo@atmos.rcast.u-tokyo.ac.jp; takegawa@atmos.rcast.u-tokyo.ac.jp; jerome.fast@pnl.gov; u.poschl@mpic.de; rehema123@gmail.com; m.andreae@mpic.de; ali@tropos.de; nsugimot@nies.go.jp; tzhu@pku.edu.cn RI Poschl, Ulrich/A-6263-2010; Koike, Makoto/F-4366-2011; ZHU, TONG/H-6501-2011; Kondo, Yutaka/D-1459-2012; Wiedensohler, Alfred/D-1223-2013; Sugimoto, Nobuo/C-5189-2015; Andreae, Meinrat/B-1068-2008; OI Poschl, Ulrich/0000-0003-1412-3557; Sugimoto, Nobuo/0000-0002-0545-1316; Andreae, Meinrat/0000-0003-1968-7925; Garland, Rebecca/0000-0002-1855-8622 FU Beijing Council of Science and Technology [HB200504-6, HB200504-2]; Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in Japan; University of Tokyo; Max Planck Society of Germany FX We are indebted to all of the CAREBeijing-2006 campaign participants for their cooperation and support. Special thanks are due to the staff and students of Peking University for leading and carrying out this project funded by the Beijing Council of Science and Technology (HB200504-6, HB200504-2). The authors would like to thank W. I. Gustafson Jr. at PNNL for providing useful comments on WRF-chem model calculations and J. C. Barnard at PNNL for his comments regarding this work. This study was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in Japan. This study was also supported in part by the Alliance for Global Sustainability (AGS) project, University of Tokyo, and by the Max Planck Society of Germany. This study was conducted as a part of the Mega-Cities: Asia Task under the framework of the International Global Atmospheric Chemistry (IGAC) project. NR 64 TC 11 Z9 11 U1 0 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 23 PY 2010 VL 115 AR D22207 DI 10.1029/2010JD013895 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 686OA UT WOS:000284704400004 ER PT J AU Sui, L Huang, L Podsiadlo, P Kotov, NA Kieffer, J AF Sui, L. Huang, L. Podsiadlo, P. Kotov, N. A. Kieffer, J. TI Brillouin Light Scattering Investigation of the Mechanical Properties of Layer-by-Layer Assembled Cellulose Nanocrystal Films SO MACROMOLECULES LA English DT Article ID ELASTIC-CONSTANTS; WHOLE SET; COMPOSITES; FIBERS; NANOSCALE; FUTURE; FORM AB Composite thin films containing cellulose nanocrystal (cellN) polyanions embedded between either poly(diallyldimethylammonium chloride) (PDDA) or chitosan were fabricated using the layer by layer (LBL) deposition technique The in plane and out of plane elastic constants of the composites were measured using Brillouin light scattering as a function of film thickness and cellulose content Compared to the pure cast polymer films the addition of celIN raises the elastic constants within the growth plane by a factor of 2 and 3 for [chitosan/cellN] and [PDDA/cellN] films respectively, while in the growth direction the elastic constant increases by 50% for [PDDA/cellN] and not at all for [chitosan/cellN] With increasing amounts of celIN in the films the stiffness Increases in the growth plane at a higher rate than in the growth direction These trends reflect the contribution of the cellulose nanocrystals within and cross layers to load transmission The results are interpreted in terms of processes that occur during film deposition and the resulting spatial arrangements of the nanocrystals C1 [Sui, L.; Kotov, N. A.; Kieffer, J.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Huang, L.] Dept Mat Sci & Engn, Troy, NY 12180 USA. [Podsiadlo, P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kotov, N. A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. RP Kieffer, J (reprint author), Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RI Huang, Liping/B-4412-2008; OI Kotov, Nicholas/0000-0002-6864-5804 FU AFOSR [FA9550 05 1 0143] FX The authors thank Prof Joerg Lahann for the use of their elliposmeter This project is supported by AFOSR Grant FA9550 05 1 0143 NR 35 TC 19 Z9 20 U1 4 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 23 PY 2010 VL 43 IS 22 BP 9541 EP 9548 DI 10.1021/ma1016488 PG 8 WC Polymer Science SC Polymer Science GA 679QX UT WOS:000284177000042 ER PT J AU Shakeripour, H Tanatar, MA Petrovic, C Taillefer, L AF Shakeripour, H. Tanatar, M. A. Petrovic, C. Taillefer, Louis TI Universal heat conduction and nodal gap structure of the heavy-fermion superconductor CeIrIn5 SO PHYSICAL REVIEW B LA English DT Article ID THERMAL-CONDUCTIVITY; UPT3 AB The effect of impurity scattering on the thermal conductivity kappa of the heavy-fermion superconductor CeIrIn5 was studied for a current parallel (J parallel to c) and perpendicular (J parallel to a) to the tetragonal c axis. For J parallel to a, adding La impurities does not change the residual linear term kappa(0a)/T, showing that heat conduction in the basal plane is universal, compelling evidence that the superconducting gap vanishes along a symmetry-imposed line. By contrast, for J parallel to c, La impurities greatly enhance the residual linear term kappa(0c)/T. This is strong evidence that the line of nodes lies within the basal plane, a gap structure which is inconsistent with the d-wave symmetry proposed for the isostructural superconductor CeCoIn5. Different symmetries in the two materials could explain why the phase diagram of this heavy-fermion family consists of two separate superconducting domes. We also compare our data on CeIrIn5 to corresponding data on the heavy-fermion superconductor UPt3, where no universal conduction is observed. C1 [Shakeripour, H.; Tanatar, M. A.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Shakeripour, H.; Tanatar, M. A.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Petrovic, C.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Petrovic, C.; Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON, Canada. RP Shakeripour, H (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. EM louis.taillefer@usherbrooke.ca RI Petrovic, Cedomir/A-8789-2009 OI Petrovic, Cedomir/0000-0001-6063-1881 FU NSERC; FQRNT; FCI; Canada Research Chairs Program; Brookhaven Science Associates [DE-Ac02-98CH10886] FX We thank I. Vekhter and M. J. Graf for helpful discussions and J. Corbin for his assitance with the experiments. L.T. acknowledges support from the Canadian Institute for Advanced Research and funding from NSERC, FQRNT, FCI, and the Canada Research Chairs Program. The work was partially carried out at the Brookhaven National Laboratory, which is operated for the U.S. Department of Energy by Brookhaven Science Associates (Grant No. DE-Ac02-98CH10886). NR 28 TC 8 Z9 8 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 23 PY 2010 VL 82 IS 18 AR 184531 DI 10.1103/PhysRevB.82.184531 PG 5 WC Physics, Condensed Matter SC Physics GA 684CX UT WOS:000284525900011 ER PT J AU Hartley, DJ Janssens, RVF Riedinger, LL Riley, MA Wang, X Aguilar, A Carpenter, MP Chiara, CJ Chowdhury, P Darby, IG Garg, U Ijaz, QA Kondev, FG Lakshmi, S Lauritsen, T Ma, WC McCutchan, EA Mukhopadhyay, S Seyfried, EP Shirwadkar, U Stefanescu, I Tandel, SK Vanhoy, JR Zhu, S AF Hartley, D. J. Janssens, R. V. F. Riedinger, L. L. Riley, M. A. Wang, X. Aguilar, A. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Darby, I. G. Garg, U. Ijaz, Q. A. Kondev, F. G. Lakshmi, S. Lauritsen, T. Ma, W. C. McCutchan, E. A. Mukhopadhyay, S. Seyfried, E. P. Shirwadkar, U. Stefanescu, I. Tandel, S. K. Vanhoy, J. R. Zhu, S. TI Band crossings in Ta-166 SO PHYSICAL REVIEW C LA English DT Article ID HIGH-SPIN STATES; COINCIDENCE DATA; NUCLEI AB High-spin states in the odd-odd nucleus Ta-166 are investigated through the 5n channel of the V-51 + Sn-120 reaction. Four new bands are observed and linked into the previous level scheme. Configurations for the bands are proposed, based on measured alignments and B(M1)/B(E2) transition strength ratios. C1 [Hartley, D. J.; Seyfried, E. P.; Vanhoy, J. R.] USN Acad, Dept Phys, Annapolis, MD 21402 USA. [Janssens, R. V. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; McCutchan, E. A.; Stefanescu, I.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Riedinger, L. L.; Darby, I. G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Riley, M. A.; Wang, X.; Aguilar, A.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Chiara, C. J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Chiara, C. J.; Stefanescu, I.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.; Lakshmi, S.; Shirwadkar, U.; Tandel, S. K.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Garg, U.; Mukhopadhyay, S.] Univ Notre Dame, Dept Phys, South Bend, IN 46556 USA. [Ijaz, Q. A.; Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. RP Hartley, DJ (reprint author), USN Acad, Dept Phys, Annapolis, MD 21402 USA. RI Soundara Pandian, Lakshmi/C-8107-2013; Carpenter, Michael/E-4287-2015 OI Soundara Pandian, Lakshmi/0000-0003-3099-1039; Carpenter, Michael/0000-0002-3237-5734 FU National Science Foundation [PHY-0854815, PHY-0754674, PHY07-58100]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848, DE-FG02-96ER40983] FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We thank D. C. Radford and H. Q. Jin for their software support. This work is funded by the National Science Foundation under Grants No. PHY-0854815 (USNA), No. PHY-0754674 (FSU), and No. PHY07-58100 (ND), as well as by the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40848 (UML), and No. DE-FG02-96ER40983 (UT). NR 17 TC 4 Z9 4 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 23 PY 2010 VL 82 IS 5 AR 057302 DI 10.1103/PhysRevC.82.057302 PG 4 WC Physics, Nuclear SC Physics GA 713JA UT WOS:000286733100005 ER PT J AU Barger, V Gao, Y McCaskey, M Shaughnessy, G AF Barger, Vernon Gao, Yu McCaskey, Mathew Shaughnessy, Gabe TI Light Higgs boson, light dark matter, and gamma rays SO PHYSICAL REVIEW D LA English DT Article ID SEARCHES; SCALAR; LEP; DETECTOR; MODEL AB A light Higgs boson is preferred by M-W and m(t) measurements. A complex scalar singlet addition to the standard model allows a better fit to these measurements through a new light singlet dominated state. It then predicts a light dark matter (DM) particle that can explain the signals of DM scattering from nuclei in the CoGeNT and DAMA/LIBRA experiments. Annihilations of this DM in the galactic halo, AA -> b (b) over bar, c (c) over bar, tau(+)tau(-), lead to gamma rays that naturally improve a fit to the Fermi Large Area Telescope data in the central galactic regions. The associated light neutral Higgs boson may also be discovered at the Large Hadron Collider. C1 [Barger, Vernon; Gao, Yu; McCaskey, Mathew] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Shaughnessy, Gabe] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. RP Barger, V (reprint author), Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RI lebert, thomas/H-4032-2011 FU U.S. Department of Energy Division of High Energy Physics [DE-FG02-95ER40896, DE-FG02-05ER41361, DE-FG02-08ER41531, DE-FG02-91ER40684, DE-AC02-06CH11357]; Wisconsin Alumni Research Foundation; National Science Foundation [PHY-0503584] FX We thank D. Hooper for helpful information about Fermi data. This work was supported in part by the U.S. Department of Energy Division of High Energy Physics under Grants Nos. DE-FG02-95ER40896, DE-FG02-05ER41361, DE-FG02-08ER41531, DE-FG02-91ER40684, and Contract No. DE-AC02-06CH11357, by the Wisconsin Alumni Research Foundation, and by the National Science Foundation under Grant No. PHY-0503584. NR 62 TC 29 Z9 29 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 23 PY 2010 VL 82 IS 9 AR 095011 DI 10.1103/PhysRevD.82.095011 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 684DR UT WOS:000284528500004 ER PT J AU ter Veen, S Buitink, S Falcke, H James, CW Mevius, M Scholten, O Singh, K Stappers, B de Vries, KD AF ter Veen, S. Buitink, S. Falcke, H. James, C. W. Mevius, M. Scholten, O. Singh, K. Stappers, B. de Vries, K. D. TI Limit on the ultrahigh-energy cosmic-ray flux with the Westerbork synthesis radio telescope SO PHYSICAL REVIEW D LA English DT Article ID AIR-SHOWERS; CERENKOV RADIATION; EMISSION; NEUTRINOS; ELECTRONS; SPECTRUM; PULSES; CHARGE AB A particle cascade (shower) in a dielectric, for example, as initiated by an ultra-high-energy cosmic ray, will have an excess of electrons which will emit coherent Cerenkov radiation, known as the Askaryan effect. In this work we study the case in which such a particle shower occurs in a medium just below its surface. We show, for the first time, that the radiation transmitted through the surface is independent of the depth of the shower below the surface when observed from far away, apart from trivial absorption effects. As a direct application we use the recent results of the NuMoon project, where a limit on the neutrino flux for energies above 10(22) eV was set using the Westerbork Synthesis Radio Telescope by measuring pulsed radio emission from the Moon, to set a limit on the flux of ultra-high-energy cosmic rays. C1 [ter Veen, S.; Falcke, H.; James, C. W.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Buitink, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Falcke, H.] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Mevius, M.; Scholten, O.; Singh, K.; de Vries, K. D.] Univ Groningen, Kernfys Versneller Inst, NL-9747 AA Groningen, Netherlands. [Singh, K.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Stappers, B.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. RP ter Veen, S (reprint author), Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. EM s.terveen@astro.ru.nl RI Falcke, Heino/H-5262-2012; James, Clancy/G-9178-2015; OI Falcke, Heino/0000-0002-2526-6724; James, Clancy/0000-0002-6437-6176; Buitink, Stijn/0000-0002-6177-497X FU Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); European Research Council FX This work was performed as part of the research programs of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), with financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), and an advanced grant (Falcke) of the European Research Council. This paper is partly based on the master's thesis of S. ter Veen [36]. NR 43 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 23 PY 2010 VL 82 IS 10 AR 103014 DI 10.1103/PhysRevD.82.103014 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 684DY UT WOS:000284529500001 ER PT J AU He, J Borisevich, A Kalinin, SV Pennycook, SJ Pantelides, ST AF He, Jun Borisevich, Albina Kalinin, Sergei V. Pennycook, Stephen J. Pantelides, Sokrates T. TI Control of Octahedral Tilts and Magnetic Properties of Perovskite Oxide Heterostructures by Substrate Symmetry SO PHYSICAL REVIEW LETTERS LA English DT Article ID MISFIT RELAXATION MECHANISMS; MORPHOTROPIC PHASE-BOUNDARY; FERROELECTRIC THIN-FILMS; DOMAIN CONFIGURATIONS; MANGANITES; INTERFACES; EXCHANGE; DIAGRAM; BIFEO3 AB Perovskite transition-metal oxides are networks of corner-sharing octahedra whose tilts and distortions are known to affect their electronic and magnetic properties. We report calculations on a model interfacial structure which avoids chemical influences and show that the symmetry mismatch imposes an interfacial layer with distortion modes that do not exist in either bulk material, creating new interface properties driven by symmetry alone. Depending on the resistance of the octahedra to deformation, the interface layer can be as small as one unit cell or extend deep into the thin film. C1 [He, Jun; Borisevich, Albina; Pennycook, Stephen J.; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Jun; Pennycook, Stephen J.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP He, J (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI He, Jun/F-6264-2011; Kalinin, Sergei/I-9096-2012; Borisevich, Albina/B-1624-2009 OI Kalinin, Sergei/0000-0001-5354-6152; Borisevich, Albina/0000-0002-3953-8460 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; DOE [DE-FG02-09ER46554]; Vanderbilt University FX This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, by DOE Grant No. DE-FG02-09ER46554, and by the McMinn Endowment at Vanderbilt University. Computations were performed at the National Energy Research Scientific Computing Center. NR 38 TC 87 Z9 87 U1 10 U2 109 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2010 VL 105 IS 22 AR 227203 DI 10.1103/PhysRevLett.105.227203 PG 4 WC Physics, Multidisciplinary SC Physics GA 684EQ UT WOS:000284532900027 PM 21231419 ER PT J AU Oikawa, A Joshi, HJ Rennie, EA Ebert, B Manisseri, C Heazlewood, JL Scheller, HV AF Oikawa, Ai Joshi, Hiren J. Rennie, Emilie A. Ebert, Berit Manisseri, Chithra Heazlewood, Joshua L. Scheller, Henrik Vibe TI An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development SO PLOS ONE LA English DT Article ID CARBOHYDRATE-ACTIVE ENZYMES; GENOME-WIDE ANALYSIS; REDUCING END-GROUPS; CELL-WALL; SUBCELLULAR-LOCALIZATION; GLUCURONOXYLAN BIOSYNTHESIS; ARABINOGALACTAN PROTEINS; ENDOPLASMIC-RETICULUM; TRANSCRIPTION FACTORS; TARGETING SEQUENCES AB Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM ((p) under bar lant protein (fa) under bar mily i (n) under bar formation-based predic (to) under barr for endo (m) under bar embrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity. C1 [Oikawa, Ai; Joshi, Hiren J.; Rennie, Emilie A.; Ebert, Berit; Manisseri, Chithra; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA. [Oikawa, Ai; Joshi, Hiren J.; Ebert, Berit; Manisseri, Chithra; Heazlewood, Joshua L.; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Rennie, Emilie A.; Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Oikawa, A (reprint author), Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA USA. EM HScheller@lbl.gov RI Heazlewood, Joshua/A-2554-2008; Scheller, Henrik/A-8106-2008; Ebert, Berit/F-1856-2016 OI Heazlewood, Joshua/0000-0002-2080-3826; Scheller, Henrik/0000-0002-6702-3560; Ebert, Berit/0000-0002-6914-5473 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; Japanese Yamada Science Foundation; National Institutes of Health (NIH) FX This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. A.O. was additionally supported by funds from Japanese Yamada Science Foundation, and E.A.R. was supported by a National Institutes of Health (NIH) Pre-doctoral Training Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 82 TC 47 Z9 59 U1 1 U2 20 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 23 PY 2010 VL 5 IS 11 AR e15481 DI 10.1371/journal.pone.0015481 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 684DM UT WOS:000284527900020 PM 21124849 ER PT J AU Chen, JS Hubbard, SS Gaines, D Korneev, V Baker, G Watson, D AF Chen, Jinsong Hubbard, Susan S. Gaines, David Korneev, Valeri Baker, Gregory Watson, David TI Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints SO WATER RESOURCES RESEARCH LA English DT Article ID HYDRAULIC CONDUCTIVITY; TOMOGRAPHY; DIFFERENCE; PARAMETERS; TRANSPORT AB We develop a Bayesian model to invert surface seismic refraction data with depth constraints from boreholes for characterization of aquifer geometry and apply it to seismic and borehole data sets collected at the contaminated Oak Ridge National Laboratory site in Tennessee. Rather than the traditional approach of first inverting the seismic arrival times for seismic velocity and then using that information to aid in the spatial interpolation of wellbore data, we jointly invert seismic first arrival time data and wellbore-based information, such as depths of key lithological boundaries. We use a staggered-grid finite difference algorithm with second-order accuracy in time and fourth-order accuracy in space to model seismic full waveforms and use an automated method to pick the first arrival times. We use Markov Chain Monte Carlo methods to draw many samples from the joint posterior probability distribution, on which we can estimate the key interfaces and their associated uncertainty as a function of horizontal location and depth. We test the developed method on both synthetic and field case studies. The synthetic studies show that the developed method is effective at rigorous incorporation of multiscale data and the Bayesian inversion reduces uncertainty in estimates of aquifer zonation. Applications of the approach to field data, including two surface seismic profiles located 620 m apart from each other, reveal the presence of a low-velocity subsurface zone that is laterally persistent. This geophysically defined feature is aligned with the plume axis, suggesting it may serve as an important regional preferential flow pathway. C1 [Chen, Jinsong; Hubbard, Susan S.; Korneev, Valeri] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gaines, David; Baker, Gregory] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Watson, David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, JS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM jchen@lbl.gov RI Chen, Jinsong/A-1374-2009; Hubbard, Susan/E-9508-2010; Watson, David/C-3256-2016 OI Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy FX Funding for this study was provided by the U.S. Department of Energy, Biological and Environmental Research Program as part of the Oak Ridge National Laboratory Integrated Field Research Center project. We wish to thank Jacob Sheehan from Battelle for providing seismic refraction data along the S3 survey profile and for offering constructive comments on this study. We thank David F. Aldridge from Sandia National Laboratory who suggested and demonstrated a validity of using the Delta function source waveform for numerical modeling, Guping Tang from the Oak Ridge National Laboratory for providing the figure of nitrate plume distribution, and three anonymous reviewers and the Editors for helpful and insightful suggestions. NR 39 TC 9 Z9 9 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 23 PY 2010 VL 46 AR W11539 DI 10.1029/2009WR008715 PG 16 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 686QS UT WOS:000284711400004 ER PT J AU Grate, JW Zhang, CY Wietsma, TW Warner, MG Anheier, NC Bernacki, BE Orr, G Oostrom, M AF Grate, Jay W. Zhang, Changyong Wietsma, Thomas W. Warner, Marvin G. Anheier, Norman C., Jr. Bernacki, Bruce E. Orr, Galya Oostrom, Mart TI A note on the visualization of wetting film structures and a nonwetting immiscible fluid in a pore network micromodel using a solvatochromic dye SO WATER RESOURCES RESEARCH LA English DT Article ID NILE RED; SCALE; TRANSPORT; MIXTURES; REMOVAL; QUALITY; SENSORS; LIQUIDS; PROBE AB Micromodel technologies are a useful and important method to study pore-scale fluidic processes, using two-dimensional formats that enable direct visualization of processes within patterned microstructures. In this technical note, Nile red, 9-diethylamino-5H-benzo [alpha]phenoxazine-5-one, is demonstrated as a single dye whose solvatochromism enables selective visualization of two immiscible liquid fluids in a pore network micromodel containing a homogeneous array of pillars. Nile red dissolves in, and partitions between, hexadecane as a nonwetting fluid and polyethylene glycol 200 (PEG200) as a hydrophilic wetting fluid in a micromodel with silicon oxide surfaces. Both the absorption spectra and fluorescence emission spectra are sensitive to the solvent environment, such that the two phases can be distinguished by the observed color or the fluorescence emission band. Bright field, epifluorescence, confocal fluorescence, and hyperspectral microscopy methods were used to image the micromodel after displacing PEG200 in the model with hexadecane. Using a single solvatochromic dye facilitates direct visualization and identification of both phases anywhere in the micromodel on the basis of color and also enables collection of complementary fluorescent images for each phase. The use of Nile red with these imaging methods facilitates selective visualization of phase identity at specific locations; the interfaces between the two immiscible liquid phases; wetting behavior of the wetting phase within the pore network; and retention of the wetting phase as thin films around pillars and as bridges across the pore throats. The pillars and wetting phase bridges create a network of obstacles defining a tortuous flow path for the displacing nonwetting phase. C1 [Grate, Jay W.; Zhang, Changyong; Wietsma, Thomas W.; Warner, Marvin G.; Anheier, Norman C., Jr.; Bernacki, Bruce E.; Orr, Galya; Oostrom, Mart] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Grate, JW (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM jwgrate@pnl.gov RI Zhang, Changyong/A-8012-2013 FU PNNL FX The authors thank Jonathon W. Pittman for help with the Nile red spectroscopy. A portion of this research was carried out in the William R. Wiley Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) scientific user facility operated for the DOE by the Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute. The Laboratory Directed Research and Development Program at PNNL supported this research. NR 33 TC 12 Z9 12 U1 1 U2 21 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 23 PY 2010 VL 46 AR W11602 DI 10.1029/2010WR009419 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 686QS UT WOS:000284711400010 ER PT J AU Vineis, CJ Shakouri, A Majumdar, A Kanatzidis, MG AF Vineis, Christopher J. Shakouri, Ali Majumdar, Arun Kanatzidis, Mercouri G. TI Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features SO ADVANCED MATERIALS LA English DT Review ID MULTILAYER THERMIONIC REFRIGERATION; QUANTUM-DOT SUPERLATTICES; THERMAL-CONDUCTIVITY; SEEBECK COEFFICIENT; SILICON NANOWIRES; WELL STRUCTURES; POWER FACTOR; HIGH FIGURE; MERIT; PERFORMANCE AB The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data-especially related to materials-have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts. C1 [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vineis, Christopher J.] SiOnyx Inc, Beverly, MA 01801 USA. [Shakouri, Ali] Univ Calif Santa Cruz, Dept Elect Engn, Santa Cruz, CA 95064 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM shakouri@ucsc.edu; m-kanatzidis@northwestern.edu FU ONR; DARPA FX Financial support from ONR and the ONR MURI program (Dr M. Gross Program Manager) and DARPA NMP program (Dr. K. Latt Program Manager) are gratefully acknowledged. We thank Mr. J. Ravichandran (UC Berkeley) for providing Figure 1, Prof. Z. Bian (UCSC) for the calculations in Figure 2, and Dr. M. Bulsara (MIT) for providing the TEM image of Figure 3b. In addition, we greatly appreciate critical reviews of this manuscript by Dr. M. Gross, Dr. T. Sands, Dr. J. Bowers, and Dr. D. Morelli. NR 95 TC 590 Z9 593 U1 63 U2 587 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 22 PY 2010 VL 22 IS 36 BP 3970 EP 3980 DI 10.1002/adma.201000839 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 666HE UT WOS:000283104600001 PM 20661949 ER PT J AU Sutter, PW Albrecht, PM Sutter, EA AF Sutter, P. W. Albrecht, P. M. Sutter, E. A. TI Graphene growth on epitaxial Ru thin films on sapphire SO APPLIED PHYSICS LETTERS LA English DT Article ID LAYER; ELECTRONICS; SURFACES; RU(0001) AB Single crystalline Ru(0001) thin films epitaxially grown on sapphire (0001) substrates were used as sacrificial metal templates for the synthesis of high-quality graphene with uniform monolayer thickness and full surface coverage. Removal of the metal template by etching transferred monolayer graphene with good crystal quality onto the insulating sapphire support. Our findings demonstrate epitaxial Ru(0001) films on sapphire (0001) as a substrate for the scalable synthesis of high-quality graphene for applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518490] C1 [Sutter, P. W.; Albrecht, P. M.; Sutter, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, PW (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH1-886] FX We thank Kim Kisslinger for technical assistance. Work performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-98CH1-886. NR 27 TC 56 Z9 56 U1 6 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 22 PY 2010 VL 97 IS 21 AR 213101 DI 10.1063/1.3518490 PG 3 WC Physics, Applied SC Physics GA 685GX UT WOS:000284618300041 ER PT J AU Troparevsky, MC Sabau, AS Lupini, AR Zhang, ZY AF Troparevsky, M. Claudia Sabau, Adrian S. Lupini, Andrew R. Zhang, Zhenyu TI Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference SO OPTICS EXPRESS LA English DT Article ID LIGHT-ABSORPTION; SOLAR-CELLS; FILMS; ENHANCEMENT; INTERFACES AB We present a novel way to account for partially coherent interference in multilayer systems via the transfer-matrix method. The novel feature is that there is no need to use modified Fresnel coefficients or the square of their amplitudes to work in the incoherent limit. The transition from coherent to incoherent interference is achieved by introducing a random phase of increasing intensity in the propagating media. This random phase can simulate the effect of defects or impurities. This method provides a general way of dealing with optical multilayer systems, in which coherent and incoherent interference are treated on equal footing. (C) 2010 Optical Society of America C1 [Troparevsky, M. Claudia; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Troparevsky, M. Claudia; Sabau, Adrian S.; Lupini, Andrew R.; Zhang, Zhenyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Troparevsky, MC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM mtropare@utk.edu RI Sabau, Adrian/B-9571-2008 OI Sabau, Adrian/0000-0003-3088-6474 FU U.S. Department of Energy [DE-AC05-00OR22725]; NSF [DMR-0906025]; DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN); DOE (Office of Energy Efficiency and Renewable Energy) [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was supported in part by NSF (Grant No. DMR-0906025), DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN), and DOE (Office of Energy Efficiency and Renewable Energy, Industrial Technologies Program) under contract DE-AC05-00OR22725. NR 20 TC 46 Z9 46 U1 5 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 22 PY 2010 VL 18 IS 24 BP 24715 EP 24721 DI 10.1364/OE.18.024715 PG 7 WC Optics SC Optics GA 698IF UT WOS:000285586800098 PM 21164818 ER PT J AU Kim, JM Cho, IH Lee, SY Kang, HC Conley, R Liu, CA Macrander, AT Noh, DY AF Kim, Jae Myung Cho, In Hwa Lee, Su Yong Kang, Hyon Chol Conley, Ray Liu, Chian Macrander, Albert T. Noh, Do Young TI Observation of the Talbot effect using broadband hard x-ray beam SO OPTICS EXPRESS LA English DT Article ID GRATINGS AB We demonstrated the Talbot effect using a broadband hard x-ray beam (Delta lambda/lambda similar to 1). The exit wave-field of the x-ray beam passing through a grating with a sub micro-meter scale period was successfully replicated and recorded at effective Talbot distance, Z(T). The period was reduced to half at Z(T)/4 and 3/4Z(T), and the phase reversal was observed at Z(T)/2. The propagating wave-field recorded on photoresists was consistent with a simulated result. (c) 2010 Optical Society of America C1 [Kim, Jae Myung; Cho, In Hwa; Lee, Su Yong; Noh, Do Young] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea. [Kang, Hyon Chol] Chosun Univ, Dept Adv Mat Engn, Kwangju 501759, South Korea. [Kang, Hyon Chol] Chosun Univ, Educ Ctr Mould Technol Adv Mat & Parts BK21, Kwangju 501759, South Korea. [Conley, Ray] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Liu, Chian; Macrander, Albert T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, JM (reprint author), Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju 500712, South Korea. EM dynoh@gist.ac.kr RI Conley, Ray/C-2622-2013 FU National Core Research Center [R15-2008-006-00000-0]; National Research Foundation (NRF) of Korea [2010-0023604]; GIST; Department of Energy, Office of Basic Energy Science [DE-AC-02-06CH11357, DE-AC-02-98CH10886] FX This work was supported by National Core Research Center grant (No. R15-2008-006-00000-0) and general research program (No. 2010-0023604) provided by National Research Foundation (NRF) of Korea. We also acknowledge the support from GIST through, 'Photonics 2010'. project. Work at Argonne was supported by the Department of Energy, Office of Basic Energy Science under contract DE-AC-02-06CH11357. Work at Brookhaven was supported by the Department of Energy, Office of Basic Energy Sciences under contract DE-AC-02-98CH10886. NR 16 TC 16 Z9 16 U1 2 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 22 PY 2010 VL 18 IS 24 BP 24975 EP 24982 DI 10.1364/OE.18.024975 PG 8 WC Optics SC Optics GA 698IF UT WOS:000285586800108 PM 21164842 ER PT J AU Liu, YM Wang, S Park, YS Yin, XB Zhang, X AF Liu, Yongmin Wang, Sheng Park, Yong-Shik Yin, Xiaobo Zhang, Xiang TI Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity SO OPTICS EXPRESS LA English DT Article ID GRATINGS; LIGHT; EXTRACTION; SURFACE AB We show that photons can be efficiently extracted from fluorescent molecules, utilizing the strongly enhanced local field of a two-dimensional dielectric annular Bragg resonant cavity. Due to the diffraction and constructive interference together with the annular focusing, the periodic ring structure converts the normal incident light into planar guided modes and forms a hot spot at the center of the structure. Theoretically, the field can be enhanced more than 40 times, which leads to the averaged 20-fold enhancement of the fluorescence signal observed in experiments. Compared with fluorescence enhancement by plasmonic structures, this dielectric approach does not suffer from pronounced quenching that often occurs near metallic structures. These results not only can be applied as ultrasensitive sensors for various biological systems, but also have broad potential applications, such as optical trapping and fluorescent microscopy. (C) 2010 Optical Society of America C1 [Liu, Yongmin; Wang, Sheng; Park, Yong-Shik; Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, NSF, NSEC, Berkeley, CA 94720 USA. [Yin, Xiaobo; Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Liu, YM (reprint author), Univ Calif Berkeley, NSF, NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Liu, Yongmin/F-5322-2010; Zhang, Xiang/F-6905-2011; Wang, Sheng/F-4095-2012 FU National Science Foundation (NSF) Nanoscale Science and Engineering Center [CMMI-0751621] FX This work was supported by the National Science Foundation (NSF) Nanoscale Science and Engineering Center (CMMI-0751621) NR 27 TC 6 Z9 6 U1 4 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 22 PY 2010 VL 18 IS 24 BP 25029 EP 25034 DI 10.1364/OE.18.025029 PG 6 WC Optics SC Optics GA 698IF UT WOS:000285586800096 PM 21164848 ER PT J AU Mocella, V Dardano, P Rendina, I Cabrini, S AF Mocella, Vito Dardano, Principia Rendina, Ivo Cabrini, Stefano TI An extraordinary directive radiation based on optical antimatter at near infrared SO OPTICS EXPRESS LA English DT Article ID NEGATIVE REFRACTION AB In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (lambda = 1.55 mu m) the light scattered out is extremely directive (Delta theta(out) = 0.06 degrees), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy. (C) 2010 Optical Society of America C1 [Mocella, Vito; Dardano, Principia; Rendina, Ivo] CNR IMM Unita Napoli, I-80131 Naples, Italy. [Cabrini, Stefano] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Mocella, V (reprint author), CNR IMM Unita Napoli, Via P Castellino 111, I-80131 Naples, Italy. EM vito.mocella@na.imm.cnr.it RI rendina, ivo/F-8266-2013; OI rendina, ivo/0000-0002-3861-373X; Mocella, Vito/0000-0001-8793-0486 NR 16 TC 23 Z9 23 U1 0 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 22 PY 2010 VL 18 IS 24 BP 25068 EP 25074 DI 10.1364/OE.18.025068 PG 7 WC Optics SC Optics GA 698IF UT WOS:000285586800063 PM 21164852 ER PT J AU Nam, SH Zhou, JF Taylor, AJ Efimov, A AF Nam, Sung Hyun Zhou, Jiangfeng Taylor, Antoinette J. Efimov, Anatoly TI Dirac dynamics in one-dimensional graphenelike plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly SO OPTICS EXPRESS LA English DT Article AB We introduce a new class of plasmonic crystals possessing graphene-like internal symmetries and Dirac-type spectrum in k-space. We study dynamics of surface plasmon polaritons supported in the plasmonic crystals by employing the formalism of Dirac dynamics for relativistic quantum particles. Through an analogy with graphene, we introduce a concept of pseudo-spin and chirality to indicate built-in symmetry of the plasmonic crystals near Dirac point. The surface plasmon polaritons with different pseudo-spin states are shown to split in the crystals into two beams, analogous to spin Hall effect. (C) 2010 Optical Society of America C1 [Nam, Sung Hyun; Zhou, Jiangfeng; Taylor, Antoinette J.; Efimov, Anatoly] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Nam, SH (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM sunghnam@gmail.com RI Zhou, Jiangfeng/D-4292-2009; OI Zhou, Jiangfeng/0000-0002-6958-3342; Efimov, Anatoly/0000-0002-5559-4147 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-6NA25396] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-6NA25396. NR 20 TC 5 Z9 5 U1 0 U2 10 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 22 PY 2010 VL 18 IS 24 BP 25329 EP 25338 DI 10.1364/OE.18.025329 PG 10 WC Optics SC Optics GA 698IF UT WOS:000285586800084 PM 21164881 ER PT J AU Contreras-Reyes, AM Guerout, R Neto, PAM Dalvit, DAR Lambrecht, A Reynaud, S AF Contreras-Reyes, Ana M. Guerout, Romain Maia Neto, Paulo A. Dalvit, Diego A. R. Lambrecht, Astrid Reynaud, Serge TI Casimir-Polder interaction between an atom and a dielectric grating SO PHYSICAL REVIEW A LA English DT Article ID FORCE AB We develop the scattering approach to calculate the exact dispersive Casimir-Polder potential between a ground-state atom and a rectangular grating. Our formalism allows, in principle, for arbitrary values of the grating amplitude and period, and of the atom-grating distance. We compute numerically the potential for a Rb atom on top of a Si grating and compare the results with the potential for a flat surface taken at the local atom-surface distance (proximity force approximation). Except for very short separation distances, the potential is nearly sinusoidal along the direction transverse to the grooves. C1 [Contreras-Reyes, Ana M.; Maia Neto, Paulo A.] Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil. [Guerout, Romain; Lambrecht, Astrid; Reynaud, Serge] UPMC, ENS, CNRS, Lab Kastler Brossel, F-75252 Paris 05, France. [Dalvit, Diego A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Contreras-Reyes, AM (reprint author), Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, Brazil. RI Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 FU CAPES-COFECUB; CNPq; DARPA; CASIMIR; FAPERJ-CNE FX We would like to thank Francois Impens and Valery Marachevsky for discussions. This work was partially supported by CAPES-COFECUB, CNPq, DARPA, ESF Research Networking Programme CASIMIR, and FAPERJ-CNE. NR 40 TC 22 Z9 23 U1 3 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV 22 PY 2010 VL 82 IS 5 AR 052517 DI 10.1103/PhysRevA.82.052517 PG 6 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 683GL UT WOS:000284460400003 ER PT J AU Hong, T Stock, C Cabrera, I Broholm, C Qiu, Y Leao, JB Poulton, SJ Copley, JRD AF Hong, Tao Stock, C. Cabrera, I. Broholm, C. Qiu, Y. Leao, J. B. Poulton, S. J. Copley, J. R. D. TI Neutron scattering study of a quasi-two-dimensional spin-1/2 dimer system: Piperazinium hexachlorodicuprate under hydrostatic pressure SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; TLCUCL3; STATE AB We report inelastic neutron scattering study of a quasi-two-dimensional S=1/2 dimer system piperazinium hexachlorodicuprate under hydrostatic pressure. The spin gap Delta becomes softened with the increase of the hydrostatic pressure up to P=9.0 kbar. The observed threefold degenerate triplet excitation at P=6.0 kbar is consistent with the theoretical prediction and the bandwidth of the dispersion relation is unaffected within the experimental uncertainty. At P=9.0 kbar the spin gap is reduced to Delta=0.55 meV from Delta=1.0 meV at ambient pressure. C1 [Hong, Tao] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Stock, C.; Cabrera, I.; Broholm, C.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Stock, C.; Cabrera, I.; Broholm, C.; Qiu, Y.; Leao, J. B.; Poulton, S. J.; Copley, J. R. D.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Hong, T (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RI Hong, Tao/F-8166-2010; Broholm, Collin/E-8228-2011; Cabrera, Ivelisse/L-5999-2013 OI Hong, Tao/0000-0002-0161-8588; Broholm, Collin/0000-0002-1569-9892; Cabrera, Ivelisse/0000-0002-0287-8437 FU NSF [DMR-0454672, DMR-0306940, DMR-0706553]; Division of Scientific User Facilities, Office of BES, DOE FX We thank R. Paul for help with neutron activation analysis. The DAVE program is supported by the NSF under Agreement No. DMR-0454672. The work at ORNL was partially funded by the Division of Scientific User Facilities, Office of BES, DOE. The work at JHU was supported by the NSF under Grants No. DMR-0306940 and No. DMR-0706553. The work at NIST utilized facilities supported in part by the NSF under Agreement No. DMR-0454672. NR 25 TC 8 Z9 8 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2010 VL 82 IS 18 AR 184424 DI 10.1103/PhysRevB.82.184424 PG 4 WC Physics, Condensed Matter SC Physics GA 683GW UT WOS:000284462200006 ER PT J AU Yin, TY Zhang, XY Gunter, L Priya, R Sykes, R Davis, M Wullschleger, SD Tuskan, GA AF Yin, Tongming Zhang, Xinye Gunter, Lee Priya, Ranjan Sykes, Robert Davis, Mark Wullschleger, Stan D. Tuskan, Gerald A. TI Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus SO PLOS ONE LA English DT Article ID CINNAMYL ALCOHOL-DEHYDROGENASE; QUANTITATIVE TRAIT LOCI; CELLULOSIC ETHANOL; BIOFUEL PRODUCTION; DUPLICATED GENES; WOOD CHEMISTRY; GENOME; TRICHOCARPA; BIOMASS; POPLAR AB In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration. C1 [Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Wullschleger, Stan D.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Tuskan, Gerald A.] Bioenergy Sci Ctr, Oak Ridge, TN USA. [Yin, Tongming] Nanjing Forestry Univ, Key Lab Forest Genet & Gene Engn, Nanjing, Peoples R China. [Sykes, Robert; Davis, Mark] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO USA. RP Yin, TY (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM gtk@ornl.gov RI Tuskan, Gerald/A-6225-2011; Wullschleger, Stan/B-8297-2012; Gunter, Lee/L-3480-2016; OI Tuskan, Gerald/0000-0003-0106-1289; Wullschleger, Stan/0000-0002-9869-0446; Gunter, Lee/0000-0003-1211-7532; davis, mark/0000-0003-4541-9852 FU Oak Ridge National Laboratory (ORNL); U.S. Department of Energy, Office of Science, Biological and Environmental Research Carbon Sequestration Program and Bioenergy Science Center; US Department of Energy [DE-AC05-00OR22725] FX Funding for this research was provided by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL) and the U.S. Department of Energy, Office of Science, Biological and Environmental Research Carbon Sequestration Program and Bioenergy Science Center. ORNL is managed by UT-Battelle, LLC for the US Department of Energy under contract no. DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 45 TC 8 Z9 11 U1 1 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 22 PY 2010 VL 5 IS 11 AR e14021 DI 10.1371/journal.pone.0014021 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 683HW UT WOS:000284467200002 PM 21151641 ER PT J AU Zhang, XW Zunger, A Trimarchi, G AF Zhang, Xiuwen Zunger, Alex Trimarchi, Giancarlo TI Structure prediction and targeted synthesis: A new NanN2 diazenide crystalline structure SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID TOTAL-ENERGY; ELECTRONIC-STRUCTURE; SEMICONDUCTORS; OPTIMIZATION; STABILITY; METALS; NA3N AB Significant progress in theoretical and computational techniques for predicting stable crystal structures has recently begun to stimulate targeted synthesis of such predicted structures. Using a global space-group optimization (GSGO) approach that locates ground-state structures and stable stoichiometries from first-principles energy functionals by objectively starting from randomly selected lattice vectors and random atomic positions, we predict the first alkali diazenide compound NanN2, manifesting homopolar N-N bonds. The previously predicted Na3N structure manifests only heteropolar Na-N bonds and has positive formation enthalpy. It was calculated based on local Hartree-Fock relaxation of a fixed-structure type (Li3P-type) found by searching an electrostatic point-ion model. Synthesis attempts of this positive Delta H compound using activated nitrogen yielded another structure (anti-ReO3-type). The currently predicted (negative formation enthalpy) diazenide Na2N2 completes the series of previously known BaN2 and SrN2 diazenides where the metal sublattice transfers charge into the empty N-2 Pi(g) orbital. This points to a new class of alkali nitrides with fundamentally different bonding, i.e., homopolar rather than heteropolar bonds and, at the same time, illustrates some of the crucial subtleties and pitfalls involved in structure predictions versus planned synthesis. Attempts at synthesis of the stable Na2N2 predicted here will be interesting. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488440] C1 [Zhang, Xiuwen; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Trimarchi, Giancarlo] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Zhang, XW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex_zunger@nrel.gov RI Zunger, Alex/A-6733-2013; ZHANG, XIUWEN/K-7383-2012; Trimarchi, Giancarlo/A-8225-2010 OI Trimarchi, Giancarlo/0000-0002-0365-3221 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers [DE-AC36-08GO28308] FX We thank Professor Martin Jansen for correspondence of his works (Refs. 1, 2, and 6) and for pointing out to us Ref. 29. We are grateful to Professor Kenneth R. Poeppelmeier and Dr. Stephan Lany for very helpful discussions. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Energy Frontier Research Centers, under Award No. DE-AC36-08GO28308 to NREL. NR 33 TC 11 Z9 11 U1 3 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2010 VL 133 IS 19 AR 194504 DI 10.1063/1.3488440 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 684KF UT WOS:000284548100018 PM 21090865 ER PT J AU Byrd, JM Shea, TJ Denes, P Siddons, P Attwood, D Kaertner, F Moog, L Li, Y Sakdinawat, A Schlueter, R AF Byrd, J. M. Shea, T. J. Denes, P. Siddons, P. Attwood, D. Kaertner, F. Moog, L. Li, Y. Sakdinawat, A. Schlueter, R. TI Enabling instrumentation and technology for 21st century light sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Review DE Light sources; Instrumentation; Synchrotron radiation ID NOISE; RADIATION; UNDULATOR; SIGNALS; LASERS; JITTER AB We present the summary from the Accelerator Instrumentation and Technology working group, one of the five working groups that participated in the BES-sponsored Workshop on Accelerator Physics of Future Light Sources held in Gaithersburg, MD September 15-17, 2009. We describe progress and potential in three areas: attosecond instrumentation, photon detectors for user experiments, and insertion devices. (C) 2010 Elsevier B.V. All rights reserved. C1 [Byrd, J. M.; Denes, P.; Schlueter, R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Shea, T. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Siddons, P.] Brookhaven Natl Lab, Long Isl City, NY 11973 USA. [Attwood, D.; Sakdinawat, A.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kaertner, F.] MIT, Cambridge, MA 02139 USA. [Moog, L.; Li, Y.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Byrd, JM (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM JMByrd@lbl.gov NR 46 TC 5 Z9 5 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2010 VL 623 IS 3 BP 910 EP 920 DI 10.1016/j.nima.2010.06.244 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 681TX UT WOS:000284343800007 ER PT J AU Ronzhin, A Albrow, MG Demarteau, M Los, S Malik, S Pronko, A Ramberg, E Zatserklyaniy, A AF Ronzhin, A. Albrow, M. G. Demarteau, M. Los, S. Malik, S. Pronko, A. Ramberg, E. Zatserklyaniy, A. TI Development of a 10 ps level time of flight system in the Fermilab Test Beam Facility SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE SiPm; Photodetectors; TOF AB We describe here the development of a time of flight (TOF) system with 10-20 ps resolution for particle identification in a beam line. The detector resolution also was measured with the start and stop counters close together in the 120 GeV proton beam of the Fermilab Test Beam Facility. We tested both microchannel plate photomultipliers (MCP PMT) and silicon photomultipliers (SiPMs), in both cases using Cherenkov light produced in fused silica (quartz) radiators. Published by Elsevier B.V. C1 [Ronzhin, A.; Albrow, M. G.; Demarteau, M.; Los, S.; Pronko, A.; Ramberg, E.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Malik, S.] Rockefeller Univ, New York, NY 10021 USA. [Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00681 USA. RP Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM ronzhin@fnal.gov RI Rinaldi2, Carlos/D-4479-2011 NR 7 TC 16 Z9 16 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2010 VL 623 IS 3 BP 931 EP 941 DI 10.1016/j.nima.2010.08.025 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 681TX UT WOS:000284343800010 ER PT J AU Kouzes, RT Ely, JH Erikson, LE Kernan, WJ Lintereur, AT Siciliano, ER Stephens, DL Stromswold, DC Van Ginhoven, RM Woodring, ML AF Kouzes, Richard T. Ely, James H. Erikson, Luke E. Kernan, Warnick J. Lintereur, Azaree T. Siciliano, Edward R. Stephens, Daniel L. Stromswold, David C. Van Ginhoven, Renee M. Woodring, Mitchell L. TI Neutron detection alternatives to He-3 for national security applications SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detection; Helium-3; Radiation detection; Homeland security; National security; MCNP ID LINED PROPORTIONAL-COUNTERS; BF3; OPTIMIZATION; PERFORMANCE; FLUXES AB One of the main uses for He-3 is in gas proportional counters for neutron detection. Large radiation detection systems deployed for homeland security and proliferation detection applications use such systems. Due to the large increase in use of 3He for homeland security and basic research, the supply has dwindled, and can no longer meet the demand. This has led to the search for an alternative technology to replace the use of He-3-based neutron detectors. In this paper, we review the testing of currently commercially available alternative technologies for neutron detection in large systems used in various national security applications. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kouzes, Richard T.; Ely, James H.; Erikson, Luke E.; Kernan, Warnick J.; Lintereur, Azaree T.; Siciliano, Edward R.; Stephens, Daniel L.; Stromswold, David C.; Van Ginhoven, Renee M.; Woodring, Mitchell L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kouzes, RT (reprint author), Pacific NW Natl Lab, MS K7-36,POB 999, Richland, WA 99352 USA. EM rkouzes@pnl.gov FU United States Department of Energy [NA-22, DE-AC05-76RLO]; Pacific Northwest National Laboratory; Department of Defense and the Department of Homeland Security; PNNL-SA-72544 FX This work was supported largely by the United States Department of Energy (NA-22). Additional support was provided by Pacific Northwest National Laboratory, the Department of Defense and the Department of Homeland Security. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under Contract DE-AC05-76RLO 1830. PNNL-SA-72544. NR 38 TC 98 Z9 101 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 21 PY 2010 VL 623 IS 3 BP 1035 EP 1045 DI 10.1016/j.nima.2010.08.021 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 681TX UT WOS:000284343800024 ER PT J AU Giele, WT Kunszt, Z Winter, J AF Giele, Walter T. Kunszt, Zoltan Winter, Jan TI Efficient color-dressed calculation of virtual corrections SO NUCLEAR PHYSICS B LA English DT Article DE QCD; NLO computations; Jets; Hadronic colliders ID ONE-LOOP AMPLITUDES; HELICITY AMPLITUDES; HADRON-COLLISIONS; CROSS-SECTIONS; SCATTERING; LEVEL; TREE; COLLIDERS; UNITARITY AB With the advent of generalized unitarity and parametric integration techniques, the construction of a generic Next-to-Leading Order Monte Carlo becomes feasible. Such a generator will entail the treatment of QCD color in the amplitudes. We extend the concept of color dressing to one-loop amplitudes, resulting in the formulation of an explicit algorithmic solution for the calculation of arbitrary scattering processes at Next-to-Leading order. The resulting algorithm is of exponential complexity, that is the numerical evaluation time of the virtual corrections grows by a constant multiplicative factor as the number of external partons is increased. To study the properties of the method, we calculate the virtual corrections to n-gluon scattering. Published by Elsevier B.V. C1 [Giele, Walter T.; Winter, Jan] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kunszt, Zoltan] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Kunszt, Zoltan] CERN, CH-1211 Geneva, Switzerland. RP Winter, J (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM jwinter@fnal.gov RI Kunszt, Zoltan/G-3420-2013 FU United States Department of Energy [DE-AC02-07CH11359] FX We would like to thank Giulia Zanderighi, Kirill Melnikov, Stefan Hoche and Tanju Gleisberg for helpful discussions on the subject. Fermilab is operated by Fermi Research Alliance, LLC, under contract DE-AC02-07CH11359 with the United States Department of Energy. NR 50 TC 16 Z9 16 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV 21 PY 2010 VL 840 IS 1-2 BP 214 EP 270 DI 10.1016/j.nuclphysb.2010.07.007 PG 57 WC Physics, Particles & Fields SC Physics GA 650EV UT WOS:000281832900009 ER PT J AU Cao, NN Huesman, RH Moses, WW Qi, JY AF Cao, Nannan Huesman, Ronald H. Moses, William W. Qi, Jinyi TI Detection performance analysis for time-of-flight PET SO PHYSICS IN MEDICINE AND BIOLOGY LA English DT Article ID TO-NOISE RATIO; LIKELIHOOD RECONSTRUCTION; MAP RECONSTRUCTION; RESOLUTION; OBSERVER; SCANNER; IMPACT; SPECT AB In this paper, we investigate the performance of time-of-flight (TOF) positron emission tomography (PET) in improving lesion detectability. We present a theoretical approach to compare lesion detectability of TOF versus non-TOF systems and perform computer simulations to validate the theoretical prediction. A single-ring TOF PET tomograph is simulated using SimSET software, and images are reconstructed in 2D from list-mode data using a maximum a posteriori method. We use a channelized Hotelling observer to assess the detection performance. Both the receiver operating characteristic (ROC) and localization ROC curves are compared for the TOF and non-TOF PET systems. We first studied the SNR gains for TOF PET with different scatter and random fractions, system timing resolutions and object sizes. We found that the TOF information improves the lesion detectability and the improvement is greater with larger fractions of randoms, better timing resolution and bigger objects. The scatters by themselves have little impact on the SNR gain after correction. Since the true system timing resolution may not be known precisely in practice, we investigated the effect of mismatched timing kernels and showed that using a mismatched kernel during reconstruction always degrades the detection performance, no matter whether it is narrower or wider than the real value. Using the proposed theoretical framework, we also studied the effect of lumpy backgrounds on the detection performance. Our results indicated that with lumpy backgrounds, the TOF PET still outperforms the non-TOF PET, but the improvement is smaller compared with the uniform background case. More specifically, with the same correlation length, the SNR gain reduces with bigger number of lumpy patches and greater lumpy amplitudes. With the same variance, the SNR gain reaches the minimum when the width of the Gaussian lumps is close to the size of the tumor. C1 [Cao, Nannan; Qi, Jinyi] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. [Huesman, Ronald H.; Moses, William W.; Qi, Jinyi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Cao, NN (reprint author), Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA. EM qi@ucdavis.edu RI Qi, Jinyi/A-1768-2010 OI Qi, Jinyi/0000-0002-5428-0322 FU Office of Science, Office of Biological and Environmental Research, Medical Science Division of the US Department of Energy [DE-AC02-05CH11231]; National Institutes of Health National Institute of Biomedical Imaging and Bioengineering [R01-EB006085, R01EB000194] FX This work is supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Medical Science Division of the US Department of Energy under Contract No. DE-AC02-05CH11231, and in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering under grant numbers R01-EB006085 and R01EB000194. NR 26 TC 6 Z9 8 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-9155 J9 PHYS MED BIOL JI Phys. Med. Biol. PD NOV 21 PY 2010 VL 55 IS 22 BP 6931 EP 6950 DI 10.1088/0031-9155/55/22/021 PG 20 WC Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Engineering; Radiology, Nuclear Medicine & Medical Imaging GA 674YT UT WOS:000283789700024 PM 21048292 ER PT J AU Haynes, K Cannon, JM Skillman, ED Jackson, DC Gehrz, R AF Haynes, Korey Cannon, John M. Skillman, Evan D. Jackson, Dale C. Gehrz, Robert TI SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: dwarf; galaxies: evolution; galaxies: individual (NGC 55, NGC 3109, IC 5152); galaxies: irregular ID UNIDENTIFIED INFRARED-EMISSION; ELEMENTAL ABUNDANCE VARIATIONS; DWARF GALAXIES; CHEMICAL ENRICHMENT; INTERSTELLAR DUST; LOW-LUMINOSITY; MASSIVE STARS; SPITZER VIEW; LOCAL GROUP; SPECTRA AB Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) approximate to 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of similar to 50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 mu m)/(11.3 mu m), (7.7 mu m)/(11.3 mu m), (8.6 mu m)/(11.3 mu m), (7.7 mu m)/(6.2 mu m), and (8.6 mu m)/(6.2 mu m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 mu m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 mu m)/(6.2 mu m) and (8.6 mu m)/(6.2 mu m) to the mixed (CC/CH) mode PAH ratio (7.7 mu m)/(11.3 mu m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity. C1 [Haynes, Korey; Cannon, John M.] Macalester Coll, Dept Phys & Astron, St Paul, MN 55105 USA. [Haynes, Korey] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Skillman, Evan D.; Gehrz, Robert] Univ Minnesota, Dept Astron, Minneapolis, MN 55455 USA. [Jackson, Dale C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Haynes, K (reprint author), Macalester Coll, Dept Phys & Astron, 1600 Grand Ave, St Paul, MN 55105 USA. EM khaynes5@gmu.edu; jcannon@macalester.edu; skillman@astro.umn.edu; dcjacks@sandia.gov; gehrz@astro.umn.edu FU NASA [1321212, 1256406, 1215746]; NASA's Astrophysics Data System; National Science Foundation; Spitzer Science Center FX This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through contract 1321212, issued by JPL/Caltech to J.M.C. at Macalester College. R. D. G. was supported in part by NASA through contracts 1256406 and 1215746 issued by JPL/Caltech to the University of Minnesota. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and NASA's Astrophysics Data System. This publication has made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We acknowledge Daniel A. Dale, J.D. Smith, Thomas Varberg, and the Spitzer Science Center for helpful discussions and support. Finally, we thank the anonymous referee for a careful and insightful report that improved this manuscript. NR 46 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 215 EP 232 DI 10.1088/0004-637X/724/1/215 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900020 ER PT J AU Croft, S Bower, GC Ackermann, R Atkinson, S Backer, D Backus, P Barott, WC Bauermeister, A Blitz, L Bock, D Bradford, T Cheng, C Cork, C Davis, M DeBoer, D Dexter, M Dreher, J Engargiola, G Fields, E Fleming, M Forster, JR Gutierrez-Kraybill, C Harp, G Helfer, T Hull, C Jordan, J Jorgensen, S Keating, G Kilsdonk, T Law, C van Leeuwen, J Lugten, J MacMahon, D McMahon, P Milgrome, O Pierson, T Randall, K Ross, J Shostak, S Siemion, A Smolek, K Tarter, J Thornton, D Urry, L Vitouchkine, A Wadefalk, N Welch, J Werthimer, D Whysong, D Williams, PKG Wright, M AF Croft, Steve Bower, Geoffrey C. Ackermann, Rob Atkinson, Shannon Backer, Don Backus, Peter Barott, William C. Bauermeister, Amber Blitz, Leo Bock, Douglas Bradford, Tucker Cheng, Calvin Cork, Chris Davis, Mike DeBoer, Dave Dexter, Matt Dreher, John Engargiola, Greg Fields, Ed Fleming, Matt Forster, James R. Gutierrez-Kraybill, Colby Harp, Gerry Helfer, Tamara Hull, Chat Jordan, Jane Jorgensen, Susanne Keating, Garrett Kilsdonk, Tom Law, Casey van Leeuwen, Joeri Lugten, John MacMahon, Dave McMahon, Peter Milgrome, Oren Pierson, Tom Randall, Karen Ross, John Shostak, Seth Siemion, Andrew Smolek, Ken Tarter, Jill Thornton, Douglas Urry, Lynn Vitouchkine, Artyom Wadefalk, Niklas Welch, Jack Werthimer, Dan Whysong, David Williams, Peter K. G. Wright, Melvyn TI THE ALLEN TELESCOPE ARRAY TWENTY-CENTIMETER SURVEY-A 690 DEG(2), 12 EPOCH RADIO DATA SET. I. CATALOG AND LONG-DURATION TRANSIENT STATISTICS (vol 719, pg 45, 2010) SO ASTROPHYSICAL JOURNAL LA English DT Correction C1 [Croft, Steve; Bower, Geoffrey C.; Backer, Don; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Cheng, Calvin; Dexter, Matt; Engargiola, Greg; Fields, Ed; Forster, James R.; Gutierrez-Kraybill, Colby; Helfer, Tamara; Hull, Chat; Jorgensen, Susanne; Keating, Garrett; Law, Casey; MacMahon, Dave; Milgrome, Oren; Siemion, Andrew; Thornton, Douglas; Urry, Lynn; Welch, Jack; Werthimer, Dan; Whysong, David; Williams, Peter K. G.; Wright, Melvyn] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ackermann, Rob; Atkinson, Shannon; Backus, Peter; Bradford, Tucker; Davis, Mike; Dreher, John; Harp, Gerry; Jordan, Jane; Kilsdonk, Tom; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Smolek, Ken; Tarter, Jill] SETI Inst, Mountain View, CA 94043 USA. [Barott, William C.] Embry Riddle Aeronaut Univ, Elect Comp Software & Syst Engn Dept, Daytona Beach, FL 32114 USA. [Cork, Chris; Fleming, Matt; Vitouchkine, Artyom] Minex Engn, Antioch, CA 94509 USA. [DeBoer, Dave] CSIRO ATNF, Epping, NSW 1710, Australia. [van Leeuwen, Joeri] ASTRON, NL-7990 AA Dwingeloo, Netherlands. [Lugten, John] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [McMahon, Peter] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Wadefalk, Niklas] Chalmers, Dept Microtechnol & Nanosci MC2, SE-41296 Gothenburg, Sweden. RP Croft, S (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall 3411, Berkeley, CA 94720 USA. OI Croft, Steve/0000-0003-4823-129X NR 1 TC 3 Z9 3 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 827 EP 827 DI 10.1088/0004-637X/724/1/827 PG 1 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900069 ER PT J AU Raskin, C Scannapieco, E Rockefeller, G Fryer, C Diehl, S Timmes, FX AF Raskin, Cody Scannapieco, Evan Rockefeller, Gabriel Fryer, Chris Diehl, Steven Timmes, F. X. TI Ni-56 PRODUCTION IN DOUBLE-DEGENERATE WHITE DWARF COLLISIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; nuclear reactions, nucleosynthesis, abundances; supernovae: general; white dwarfs ID PRE-SUPERNOVA EVOLUTION; GLOBULAR-CLUSTERS; IA SUPERNOVAE; STELLAR HYDRODYNAMICS; MASS; MODELS; SIMULATIONS; EXPLOSION; CONSISTENCY; MECHANISMS AB We present a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae. Using a smooth particle hydrodynamics code with a 13-isotope, alpha-chain nuclear network, we examine the resulting Ni-56 yield as a function of total mass, mass ratio, and impact parameter. We showthat several combinations of white dwarf masses and impact parameters are able to produce sufficient quantities of Ni-56 to be observable at cosmological distances. We find that the Ni-56 production in double-degenerate white dwarf collisions ranges from sub-luminous to the super-luminous, depending on the parameters of the collision. For all mass pairs, collisions with small impact parameters have the highest likelihood of detonating, but Ni-56 production is insensitive to this parameter in high-mass combinations, which significantly increases their likelihood of detection. We also find that the Ni-56 dependence on total mass and mass ratio is not linear, with larger-mass primaries producing disproportionately more Ni-56 than their lower-mass secondary counterparts, and symmetric pairs of masses producing more Ni-56 than asymmetric pairs. C1 [Raskin, Cody; Scannapieco, Evan; Timmes, F. X.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Rockefeller, Gabriel; Fryer, Chris; Diehl, Steven] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Timmes, F. X.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Raskin, C (reprint author), Arizona State Univ, Sch Earth & Space Explorat, POB 871404, Tempe, AZ 85287 USA. RI Rockefeller, Gabriel/G-2920-2010 OI Rockefeller, Gabriel/0000-0002-9029-5097 FU National Science Foundation [AST 08-06720]; National Aeronautics and Space Administration [PVS0401]; Arizona State University FX This work was supported by the National Science Foundation under grant AST 08-06720, by the National Aeronautics and Space Administration under NESSF grant PVS0401, and by a grant from the Arizona State University chapter of the GPSA. All simulations were conducted at the Ira A. Fulton High Performance Computing Center at Arizona State University. We thank James Rhoads and Sumner Starrfield for insightful discussions, and our anonymous referee for useful suggestions and feedback. NR 47 TC 33 Z9 33 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 111 EP 125 DI 10.1088/0004-637X/724/1/111 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900011 ER PT J AU Heger, A Woosley, SE AF Heger, Alexander Woosley, S. E. TI NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; Galaxy: abundances; nuclear reactions, nucleosynthesis, abundances; stars: abundances; stars: evolution; supernovae: general ID LESS-THAN -5.0; POOR STARS; 1ST STARS; POPULATION-III; ABUNDANCE PATTERNS; SOLAR-METALLICITY; OXYGEN ABUNDANCE; ZERO-METALLICITY; UNEVOLVED STAR; DRIVEN WINDS AB The evolution and explosion of metal-free stars with masses 10-100 M(circle dot) are followed, and their nucleosynthetic yields, light curves, and remnant masses determined. Such stars would have been the first to form after the big bang and may have left a distinctive imprint on the composition of the early universe. When the supernova yields are integrated over a Salpeter initial mass function (IMF), the resulting elemental abundance pattern is qualitatively solar, but with marked deficiencies of odd-Z elements with 7 <= Z <= 13. Neglecting the contribution of the neutrino wind from the neutron stars that they form, no appreciable abundances are made for elements heavier than germanium. The computed pattern compares favorably with what has been observed in metal-deficient stars with [Z] less than or similar to -3. The amount of ionizing radiation from this generation of stars is similar to 2.16 MeV per baryon (4.15 B per M(circle dot); where 1 B = 1 Bethe = 10(51) erg) for a Salpeter IMF, and may have played a role in reionizing the universe. Neglecting rotation, most of the stars end their lives as blue supergiants and form supernovae with distinctive light curves resembling SN 1987A, but some produce primary nitrogen due to dredge-up and become red supergiants. These make brighter supernovae like typical Type IIp's. For the lower mass supernovae considered, the distribution of remnant masses clusters around typical modern neutron star masses, but above 20-30 M(circle dot), with the value depending on explosion energy, black holes are copiously formed by fallback, with a maximum hole mass of similar to 40 M(circle dot). A novel automated fitting algorithm is developed for determining optimal combinations of explosion energy, mixing, and IMF in the large model database to agree with specified data sets. The model is applied to the low-metallicity sample of Cayrel et al. and the two ultra-iron-poor stars HE0107-5240 and HE1327-2326. Best agreement with these very low metallicity stars is achieved with very little mixing, and none of the metal-deficient data sets considered show the need for a high-energy explosion component. In contrast, explosion energies somewhat less than 1.2 B seem to be preferred in most cases. C1 [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Los Alamos Natl Lab, Astrophys & Cosmol Grp T2, Los Alamos, NM 87545 USA. [Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Heger, A (reprint author), Univ Minnesota, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM alex@physics.umn.edu; woosley@ucolick.org FU NSF [AST 02-06111]; DOE [DOE-FC02-01ER41176, DOE-FC02-06ER41438, DE-SC0002300/FC02-09ER41618]; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; UMN; US Department of Energy [DE-FG02-87ER40328] FX This work was supported by NSF (AST 02-06111), and the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; grants DOE-FC02-01ER41176 and DOE-FC02-06ER41438). At LANL, A.H. performed this work under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and at UMN A.H. has been supported by the DOE Program for Scientific Discovery through Advanced Computing (SciDAC; DE-SC0002300/FC02-09ER41618), and by the US Department of Energy under grant DE-FG02-87ER40328. NR 66 TC 166 Z9 168 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2010 VL 724 IS 1 BP 341 EP 373 DI 10.1088/0004-637X/724/1/341 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678RC UT WOS:000284096900030 ER PT J AU Kuzmin, D Moller, M Shadid, JN Shashkov, M AF Kuzmin, Dmitri Moeller, Matthias Shadid, John N. Shashkov, Mikhail TI Failsafe flux limiting and constrained data projections for equations of gas dynamics SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Systems of conservation laws; Finite elements; Maximum principle; Flux-corrected transport; Local extremum diminishing interpolation ID CORRECTED TRANSPORT; CONSERVATION-LAWS; FEM-FCT; INTERPOLATION; SCHEMES AB A new approach to flux limiting for systems of conservation laws is presented. The Galerkin finite element discretization/L-2 projection is equipped with a failsafe mechanism that prevents the birth and growth of spurious local extrema. Within the framework of a synchronized flux-corrected transport (FCT) algorithm, the velocity and pressure fields are constrained using node-by-node transformations from the conservative to the primitive variables. An additional correction step is included to ensure that all the quantities of interest (density, velocity, pressure) are bounded by the physically admissible low-order values. The result is a conservative and bounded scheme with low numerical diffusion. The new failsafe FCT limiter is integrated into a high-resolution finite element scheme for the Euler equations of gas dynamics. Also, bounded L-2 projection operators for conservative interpolation/initialization are designed. The performance of the proposed limiting strategy and the need for a posteriori control of flux-corrected solutions are illustrated by numerical examples. (C) 2010 Elsevier Inc. All rights reserved. C1 [Kuzmin, Dmitri] Univ Erlangen Nurnberg, D-91058 Erlangen, Germany. [Moeller, Matthias] Dortmund Univ Technol, Inst Appl Math LS 3, D-44227 Dortmund, Germany. [Shadid, John N.] Sandia Natl Labs, Computat Sci R&D Grp, Albuquerque, NM 87185 USA. [Shashkov, Mikhail] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kuzmin, D (reprint author), Univ Erlangen Nurnberg, Haberstr 2, D-91058 Erlangen, Germany. EM kuzmin@am.uni-erlangen.de; matthias.moeller@math.tu-dortmund.de; jnshadi@sandia.gov; shashkov@lanl.gov FU German Research Association (DFG) [KU 1530/3-1, SFB 708] FX This research was supported by the German Research Association (DFG) under grant KU 1530/3-1 and within the framework of SFB 708. NR 25 TC 9 Z9 9 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 20 PY 2010 VL 229 IS 23 BP 8766 EP 8779 DI 10.1016/j.jcp.2010.08.009 PG 14 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 670FD UT WOS:000283405700007 ER PT J AU Matsui, H Puhl-Quinn, PA Bonnell, JW Farrugia, CJ Jordanova, VK Khotyaintsev, YV Lindqvist, PA Georgescu, E Torbert, RB AF Matsui, H. Puhl-Quinn, P. A. Bonnell, J. W. Farrugia, C. J. Jordanova, V. K. Khotyaintsev, Yu. V. Lindqvist, P. -A. Georgescu, E. Torbert, R. B. TI Characteristics of storm time electric fields in the inner magnetosphere derived from Cluster data SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; LATITUDE PLASMA CONVECTION; RING CURRENT; EDI; DEPENDENCE; SHEET; IONOSPHERE; SUBSTORMS; PRESSURE; FLOWS AB Storm-time electric fields in the inner magnetosphere measured by Cluster are reported in this study. First, we show two events around the time when Dst index is at a minimum. The electric field possibly related to subauroral ion drifts and/or undershielding is measured inside the inner edge of the electron plasma sheet in the eveningside. For the second event observed in the nightside, the electric field is partly related to dipolarization and is considered as inductive. An electric field without coincident magnetic signatures is also observed. Spatial coherence of the electric field is not large when we check multispacecraft data. It is inferred that the electric field in the magnetotail penetrates inside the region 1 current, while it is not clear about the electric field within the region 2 current from our data. Then superposed epoch analyses using 71 storms are performed. Electric fields at R = 3.5-6R(E) and less than 25 degrees of magnetic latitudes are enhanced around the minimum Dst at all magnetic local times. Electric fields during the recovery phase decay on a time scale shorter than that of Dst index, which could be interpreted in terms of the relation between electric field and ring current during that storm phase. AC electric fields are generally larger than DC electric fields, indicating that the former component might play some role in accelerating ring current particles. These results will be useful to update our empirical electric field model. C1 [Matsui, H.; Farrugia, C. J.; Torbert, R. B.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Puhl-Quinn, P. A.] AER Inc, Lexington, MA 02421 USA. [Bonnell, J. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Jordanova, V. K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Khotyaintsev, Yu. V.] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden. [Lindqvist, P. -A.] Royal Inst Technol, Alfven Lab, SE-10044 Stockholm, Sweden. [Georgescu, E.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. RP Matsui, H (reprint author), Univ New Hampshire, Ctr Space Sci, 8 Coll Rd, Durham, NH 03824 USA. EM hiroshi.matsui@unh.edu RI Khotyaintsev, Yuri/C-4745-2008; Lindqvist, Per-Arne/G-1221-2016; OI Lindqvist, Per-Arne/0000-0001-5617-9765; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNX07AI03G, NNG05GG25G] FX We thank the reviewers for the useful comments to improve the manuscript. Helpful discussions with M. F. Thomsen and J. Goldstein are acknowledged. EFW data are provided through Cluster Active Archive. We would like to thank N. F. Ness and D. J. McComas for ACE MAG and SWEPAM data, respectively. Both data are obtained from NASA CDA Website. Dst, AL, AU, and SYM-H indices are provided by World Data Center at Kyoto University. This work was supported by NASA grants NNX07AI03G and NNG05GG25G. NR 64 TC 3 Z9 3 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 20 PY 2010 VL 115 AR A11215 DI 10.1029/2010JA015450 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PR UT WOS:000284488200001 ER PT J AU Parra, M An, XL Mohandas, N Conboy, JG AF Parra, Marilyn An, Xiuli Mohandas, Narla Conboy, John G. TI In Vivo Analysis of Erythroid Protein 4.1 Pre-mRNA Splicing Mechanisms: Use of Antisense Morpholinos to Assay Function of Deep Intron Regulatory Elements SO BLOOD LA English DT Meeting Abstract CT 52nd Annual Meeting of the American-Society-of-Hematology (ASH) CY DEC 04-07, 2010 CL Orlando, FL SP Amer Soc Hematol C1 [Parra, Marilyn; Conboy, John G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [An, Xiuli; Mohandas, Narla] New York Blood Ctr, New York, NY 10021 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 19 PY 2010 VL 116 IS 21 BP 356 EP 356 PG 1 WC Hematology SC Hematology GA 752BH UT WOS:000289662200816 ER PT J AU Guber, KH Derrien, H Leal, LC Arbanas, G Wiarda, D Koehler, PE Harvey, JA AF Guber, K. H. Derrien, H. Leal, L. C. Arbanas, G. Wiarda, D. Koehler, P. E. Harvey, J. A. TI Astrophysical reaction rates for Ni-58,Ni-60(n,gamma) from new neutron capture cross section measurements SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; TRANSMISSION; STATES AB New neutron capture cross sections of Ni-58,Ni-60 were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator. The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture cross sections were included in the analyses. From these resonance parameters and the direct capture contribution, new (n,gamma) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models describing the so-called weak s process. C1 [Guber, K. H.; Derrien, H.; Leal, L. C.; Arbanas, G.; Wiarda, D.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Koehler, P. E.; Harvey, J. A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Guber, KH (reprint author), Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. EM guberkh@ornl.gov FU US Department of Energy [DE-AC05-00OR22725]; Office of Science FX We would like to acknowledge C. Ausmus, D. Brasher, J. White, and T. Bigelow who kept ORELA smoothly running. The enriched metallic capture samples were prepared by C. Ausmus. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-00OR22725. The work that is presented in this paper was sponsored by the US Department of Energy's Nuclear Criticality Safety Program and the Office of Science. NR 25 TC 11 Z9 11 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 19 PY 2010 VL 82 IS 5 AR 057601 DI 10.1103/PhysRevC.82.057601 PG 4 WC Physics, Nuclear SC Physics GA 713IV UT WOS:000286732500004 ER PT J AU Mao, Z Lin, JF Jacobs, C Watson, HC Xiao, Y Chow, P Alp, EE Prakapenka, VB AF Mao, Z. Lin, J. F. Jacobs, C. Watson, H. C. Xiao, Y. Chow, P. Alp, E. E. Prakapenka, V. B. TI Electronic spin and valence states of Fe in CaIrO3-type silicate post-perovskite in the Earth's lowermost mantle SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID X-RAY-EMISSION; FERRIC IRON; MOSSBAUER-SPECTROSCOPY; PHASE-TRANSITION; FERROUS IRON; D''-LAYER; MGSIO3 AB The electronic spin and valence states of Fe in post-perovskite ((Mg0.75Fe0.25)SiO3) have been investigated by synchrotron X-ray diffraction, Mossbauer and X-ray emission spectroscopy at 142 GPa and 300 K. Rietveld refinement of the X-ray diffraction patterns revealed that our sample was dominated by CaIrO3-type post-perovskite. Combined Mossbauer and X-ray emission results show that Fe in post-perovskite is predominantly Fe2+ (70%) in the intermediate-spin state with extremely high quadrupole splitting of 3.77(25) mm/s. The remaining 30% Fe can be assigned to two sites. Compared with recent studies, our results indicate that the intermediate-spin Fe2+ is stabilized in CaIrO3-type post-perovskite over a wide range of Fe content, whereas the low-spin Fe3+ is more dominant in the 2 x 1 kinked post-perovskite structure. The characterization of these structural and compositional effects on the spin and valence states of Fe in post-perovskite can help in understanding the geochemical and geophysical behavior of the core-mantle region. Citation: Mao, Z., J. F. Lin, C. Jacobs, H. C. Watson, Y. Xiao, P. Chow, E. E. Alp, and V. B. Prakapenka (2010), Electronic spin and valence states of Fe in CaIrO3-type silicate post-perovskite in the Earth's lowermost mantle, Geophys. Res. Lett., 37, L22304, doi:10.1029/2010GL045021. C1 [Mao, Z.; Lin, J. F.; Jacobs, C.] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. [Watson, H. C.] No Illinois Univ, Dept Geol & Environm Geosci, De Kalb, IL 60115 USA. [Xiao, Y.; Chow, P.] Argonne Natl Lab, Adv Photon Source, Carnegie Inst Washington, HPCAT, Argonne, IL 60439 USA. [Prakapenka, V. B.] Univ Chicago, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. RP Mao, Z (reprint author), Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA. EM zhu.mao@jsg.utexas.edu RI Lin, Jung-Fu/B-4917-2011; Mao, Zhu/A-9015-2015; OI Watson, Heather/0000-0003-4307-6518 FU US National Science Foundation [EAR-0838221]; Carnegie/DOE Alliance Center (CDAC); NSF [EAR-0622171]; Jackson School of Geosciences; DOE-NNSA; DOE-BES; Department of Energy [DE-FG02-94ER14466] FX We acknowledge I. Kantor for experimental assistance and G. Vanko for discussion on the data analysis. Z. Mao and J. F. Lin acknowledge support from the US National Science Foundation (EAR-0838221), Energy Frontier Research in Extreme Environments (EFree), and the Carnegie/DOE Alliance Center (CDAC). C. Jacobs acknowledges NSF REU program and Thomas and Ray Burke Student Job Program of the Jackson School of Geosciences for financial support. This work was performed at HPCAT and GSECARS, APS, ANL supported through funding from DOE-NNSA, DOE-BES, NSF(EAR-0622171) and Department of Energy (DE-FG02-94ER14466). NR 28 TC 13 Z9 13 U1 0 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 19 PY 2010 VL 37 AR L22304 DI 10.1029/2010GL045021 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 683MI UT WOS:000284479500003 ER PT J AU Salameh, MA Soares, AS Navaneetham, D Sinha, D Walsh, PN Radisky, ES AF Salameh, Moh'd A. Soares, Alexei S. Navaneetham, Duraiswamy Sinha, Dipali Walsh, Peter N. Radisky, Evette S. TI Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PANCREATIC TRYPSIN-INHIBITOR; FACTOR PATHWAY INHIBITOR; COAGULATION-FACTOR-XIA; HUMAN BRAIN TRYPSIN; SERINE PROTEINASES; PLASMINOGEN-ACTIVATOR; INTERSCAFFOLDING ADDITIVITY; GEL-ELECTROPHORESIS; NEUTROPHIL ELASTASE; CRYSTAL-STRUCTURES AB An important functional property of protein protease inhibitors is their stability to proteolysis. Mesotrypsin is a human trypsin that has been implicated in the proteolytic inactivation of several protein protease inhibitors. We have found that bovine pancreatic trypsin inhibitor (BPTI), a Kunitz protease inhibitor, inhibits mesotrypsin very weakly and is slowly proteolyzed, whereas, despite close sequence and structural homology, the Kunitz protease inhibitor domain of the amyloid precursor protein (APPI) binds to mesotrypsin 100 times more tightly and is cleaved 300 times more rapidly. To define features responsible for these differences, we have assessed the binding and cleavage by mesotrypsin of APPI and BPTI reciprocally mutated at two nonidentical residues that make direct contact with the enzyme. We find that Arg at P(1) (versus Lys) favors both tighter binding and more rapid cleavage, whereas Met (versus Arg) at P'(2) favors tighter binding but has minimal effect on cleavage. Surprisingly, we find that the APPI scaffold greatly enhances proteolytic cleavage rates, independently of the binding loop. We draw thermodynamic additivity cycles analyzing the interdependence of P(1) and P'(2) substitutions and scaffold differences, finding multiple instances in which the contributions of these features are nonadditive. We also report the crystal structure of the mesotrypsin.APPI complex, in which we find that the binding loop of APPI displays evidence of increased mobility compared with BPTI. Our data suggest that the enhanced vulnerability of APPI to mesotrypsin cleavage may derive from sequence differences in the scaffold that propagate increased flexibility and mobility to the binding loop. C1 [Salameh, Moh'd A.; Radisky, Evette S.] Mayo Clin, Ctr Canc, Dept Canc Biol, Jacksonville, FL 32224 USA. [Soares, Alexei S.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Navaneetham, Duraiswamy; Sinha, Dipali; Walsh, Peter N.] Temple Univ, Sch Med, Dept Med, Sol Sherry Thrombosis Res Ctr, Philadelphia, PA 19140 USA. [Navaneetham, Duraiswamy; Sinha, Dipali; Walsh, Peter N.] Temple Univ, Sch Med, Dept Biochem, Sol Sherry Thrombosis Res Ctr, Philadelphia, PA 19140 USA. RP Radisky, ES (reprint author), 310 Griffin Bldg,4500 San Pablo Rd, Jacksonville, FL 32224 USA. EM radisky.evette@mayo.edu RI Radisky, Evette/C-8526-2012; Soares, Alexei/F-4800-2014 OI Radisky, Evette/0000-0003-3121-109X; Soares, Alexei/0000-0002-6565-8503 FU National Institutes of Health [P50 CA091956-08, HL74124, HL46213]; Bankhead-Coley Florida Biomedical Research Program [07BN-07]; Department of Defense [PC094054]; Offices of Biological and Environmental Research and of Basic Energy Sciences of the United States Department of Energy; National Center for Research Resources of the National Institutes of Health FX This work was supported, in whole or in part, by National Institutes of Health Grants P50 CA091956-08 (to E. S. R.) and HL74124 and HL46213 (to P. N. W.). This work was also supported by Bankhead-Coley Florida Biomedical Research Program Grant 07BN-07 (to E. S. R.) and Department of Defense Grant PC094054 (to E. S. R.). Diffraction data were measured at beamlines X12-B, X12-C, and X25 of the National Synchrotron Light Source, which is supported by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the United States Department of Energy and the National Center for Research Resources of the National Institutes of Health. NR 93 TC 17 Z9 17 U1 0 U2 4 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 19 PY 2010 VL 285 IS 47 BP 36884 EP 36896 DI 10.1074/jbc.M110.171348 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 679FE UT WOS:000284146100026 PM 20861008 ER PT J AU Spanswick, E Reeves, GD Donovan, E Friedel, RHW AF Spanswick, E. Reeves, G. D. Donovan, E. Friedel, R. H. W. TI Injection region propagation outside of geosynchronous orbit SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID TAIL CURRENT DISRUPTION; ENERGETIC PARTICLE; SUBSTORM INJECTIONS; BOUNDARY; PLASMA; FIELDS; SATELLITE; ELECTRONS; EXPANSION; MODEL AB Using radial alignments of the Polar and Geotail satellites with the Los Alamos National Laboratory (LANL) fleet of geosynchronous observations, we investigate the radial propagation of the dispersionless substorm injection region outside 6.6 R(E). We compare the delay between injection onset observed at geosynchronous orbit and a second spacecraft in the same meridian (within 1 hr of Magnetic Local Time (MLT)) but at a different radial distance. Our results are consistent with earlier studies showing predominantly Earthward propagation of the substorm injection region at or near geosynchronous orbit. However, observations with spacecraft located further down tail (R > similar to 9 R(E)) conclusively show that tailward propagation of the dispersionless injection region must also occur. A statistical study of events using 10 years of Polar, Geotail, and LANL observations shows that dispersionsless injections are most likely to initiate at radial distances of 6.6-9 R(E). Injections typically start at this location and expand radially inward toward geosynchronous orbit and outward into the midtail central plasma sheet. Implications of these results on injection region models are discussed. C1 [Spanswick, E.; Donovan, E.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. [Reeves, G. D.; Friedel, R. H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Spanswick, E (reprint author), Univ Calgary, Dept Phys & Astron, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. EM elspansw@lanl.gov RI Friedel, Reiner/D-1410-2012; Reeves, Geoffrey/E-8101-2011; OI Friedel, Reiner/0000-0002-5228-0281; Reeves, Geoffrey/0000-0002-7985-8098; Donovan, Eric/0000-0002-8557-4155 FU Natural Sciences and Engineering Research Council (Canada); Alberta Ingenuity Fund; Canadian Space Agency FX We thank T. Nagai and T. Mukai for making the Geotail LEP and MFI data available through the CDA Web data facility operated and maintained by the NSSDC. The work of ES and ED is supported by the Natural Sciences and Engineering Research Council (Canada), the Alberta Ingenuity Fund, and the Canadian Space Agency. NR 28 TC 4 Z9 4 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 19 PY 2010 VL 115 AR A11214 DI 10.1029/2009JA015066 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 683PP UT WOS:000284488000001 ER PT J AU Kim, Y Zhou, M Moy, S Morales, J Cunningham, MA Joachimiak, A AF Kim, Youngchang Zhou, Min Moy, Shiu Morales, Jennifer Cunningham, Mark A. Joachimiak, Andrzej TI High-Resolution Structure of the Nitrile Reductase QueF Combined with Molecular Simulations Provide Insight into Enzyme Mechanism SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE queuosine; oxidoreductase; QueF; nitrile reduction ID TRANSFER-RNA MODIFICATION; QUEUOSINE-BIOSYNTHESIS; DYNAMICS; OXIDOREDUCTASE; CYCLOHYDROLASE; NUCLEOSIDES; REFINEMENT; MODEL; FOLD AB Here, we report the 1.53-angstrom crystal structure of the enzyme 7-cyano-7-deazaguanine reductase (QueF) from Vibrio cholerae, which is responsible for the complete reduction of a nitrile (C N) bond to a primary amine (H2C-NH2). At present, this is the only example of a biological pathway that includes reduction of a nitrile bond, establishing QueF as particularly noteworthy. The structure of the QueF monomer resembles two connected ferrodoxin-like domains that assemble into dimers. Ligands identified in the crystal structure suggest the likely binding conformation of the native substrates NADPH and 7-cyano-7-deazaguanine. We also report on a series of numerical simulations that have shed light on the mechanism by which this enzyme affects the transfer of four protons (and electrons) to the 7-cyano-7-deazaguanine substrate. In particular, the simulations suggest that the initial step of the catalytic process is the formation of a covalent adduct with the residue Cys194, in agreement with previous studies. The crystal structure also suggests that two conserved residues (His233 and Asp102) play an important role in the delivery of a fourth proton to the substrate. (C) 2010 Published by Elsevier Ltd. C1 [Kim, Youngchang; Zhou, Min; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. [Kim, Youngchang; Zhou, Min; Moy, Shiu; Joachimiak, Andrzej] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. [Morales, Jennifer; Cunningham, Mark A.] Univ Texas Pan Amer, Edinburg, TX 78539 USA. RP Cunningham, MA (reprint author), Argonne Natl Lab, Midwest Ctr Struct Genom, 9700 S Cass Ave, Argonne, IL 60439 USA. EM cunningham@utpa.edu; andrzejj@anl.gov FU National Institutes of Health [GM074942]; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; National Science Foundation [HRD-0703584] FX The authors would like to thank the members of the Midwest Center for Structural Genomics and Structural Biology Center for their support and Marat Valiev at Pacific Northwest National Laboratory for his help with NWChem. This research has been funded in part by a grant from the National Institutes of Health (GM074942) and by the U.S. Department of Energy, Office of Biological and Environmental Research, under Contract DE-AC02-06CH11357. One of us (M.A.C.) has also received support through the National Science Foundation's FaST program (HRD-0703584), administered by the Department of Educational Programs at Argonne National Laboratory. The authors acknowledge the Texas Advanced Computing Center at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this article dagger. NR 36 TC 19 Z9 20 U1 0 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD NOV 19 PY 2010 VL 404 IS 1 BP 127 EP 137 DI 10.1016/j.jmb.2010.09.042 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 686CI UT WOS:000284674000010 PM 20875425 ER PT J AU Berman, AM Bergman, RG Ellman, JA AF Berman, Ashley M. Bergman, Robert G. Ellman, Jonathan A. TI Rh(I)-Catalyzed Direct Arylation of Azines SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID C-H BOND; CATALYZED DIRECT ARYLATION; HETEROAROMATIC-COMPOUNDS; HETEROCYCLIC CHLORIDES; NITROGEN-HETEROCYCLES; CROSS-COUPLINGS; N-OXIDES; ACTIVATION; FUNCTIONALIZATION; ALKYLATION AB The Rh(I)-catalyzed direct arylation of azines has been developed Quinolines and 2-substituted pyridines couple with aryl bromides to efficiently afford ortho-arylated azine products using the commercially available and air-stable catalyst [RhCl(CO)(2)](2) Electron-deficient and electron-rich aromatic bromides couple in good yields, and hydroxyl, chloro, fluoro, trifluoromethyl, ether, and ketone functionalities are compatible with the reaction conditions Aroyl chlorides also serve as effective azine coupling partners to give ortho-arylation products via a decarbonylation pathway C1 [Berman, Ashley M.; Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Berman, Ashley M.; Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; DOE, Office of Basic Energy Sciences, Chemical Sciences Division, U S Department of Energy [DE-AC03-76SF00098]; NRSA [GM082080] FX This work was supported by NIH Grant GM069559 to J A E and the DOE, Office of Basic Energy Sciences, Chemical Sciences Division, U S Department of Energy, under Contract DE-AC03-76SF00098 to R G B A M B was supported by a NRSA postdoctoral fellowship (GM082080) NR 36 TC 52 Z9 52 U1 0 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD NOV 19 PY 2010 VL 75 IS 22 BP 7863 EP 7868 DI 10.1021/jo101793r PG 6 WC Chemistry, Organic SC Chemistry GA 678MO UT WOS:000284080300039 PM 21033740 ER PT J AU Fang, YP He, W Du, HF Liu, HL Wu, QO Zhang, XQ Yang, HT Cheng, ZH Shen, JA AF Fang, Ya-Peng He, Wei Du, Hai-Feng Liu, Hao-Liang Wu, Qiong Zhang, Xiang-Qun Yang, Hai-Tao Cheng, Zhao-Hua Shen, Jian TI Improvement of the uniformity and dipole ferromagnetism in Co nanodots assemblies on Pb/Si(111) via step tuned dimensionality variation SO NANOTECHNOLOGY LA English DT Article ID 2-DIMENSIONAL ARRAYS; FE; PARTICLES; SUPERPARAMAGNETISM; MAGNETISM; CU(111); FILMS; SHAPE AB We fabricated quasi-one-dimensional Co nanochain assemblies and two-dimensional Co nanodot assemblies on Pb/Si(111) substrates by step decoration. The morphology and magnetic properties of these two kinds of Co nanodot assemblies were investigated by in situ scanning tunneling microscopy and magneto-optical Kerr effect measurements. It was found that the steps cannot only improve the uniformity of the Co nanodots, but also increase the critical temperature T(c). Monte Carlo simulation indicates that the ferromagnetism mainly originates from the dipolar interactions and the critical temperature T(c) can be enhanced by introducing an in-plane uniaxial magnetic anisotropy via the step tuned dimensionality variation of the nanodot assemblies. C1 [Fang, Ya-Peng; He, Wei; Du, Hai-Feng; Liu, Hao-Liang; Wu, Qiong; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua] Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. [Fang, Ya-Peng; He, Wei; Du, Hai-Feng; Liu, Hao-Liang; Wu, Qiong; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Shen, Jian] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Cheng, ZH (reprint author), Chinese Acad Sci, Inst Phys, State Key Lab Magnetism, Beijing 100190, Peoples R China. EM zhcheng@aphy.iphy.ac.cn FU National Basic Research Program of China (973 program) [2009CB929201, 2010CB934202]; National Natural Sciences Foundation of China [50931006, 50721001, 10774179] FX This work was supported by the National Basic Research Program of China (973 program, Grant Nos 2009CB929201 and 2010CB934202) and the National Natural Sciences Foundation of China (50931006, 50721001, 10774179). NR 26 TC 3 Z9 3 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 19 PY 2010 VL 21 IS 46 AR 465703 DI 10.1088/0957-4484/21/46/465703 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 671HF UT WOS:000283491000017 PM 20972310 ER PT J AU Decca, RS Fischbach, E Klimchitskaya, GL Krause, DE Lopez, D Mostepanenko, VM AF Decca, R. S. Fischbach, E. Klimchitskaya, G. L. Krause, D. E. Lopez, D. Mostepanenko, V. M. TI Possibility of measuring the thermal Casimir interaction between a plate and a cylinder attached to a micromachined oscillator SO PHYSICAL REVIEW A LA English DT Article ID LONG-RANGE INTERACTIONS; MU-M; FORCE; CONSTRAINTS; PHYSICS; METAL AB We investigate the possibility of measuring the thermal Casimir force and its gradient in the configuration of a plate and a microfabricated cylinder attached to a micromachined oscillator. The Lifshitz-type formulas in this configuration are derived using the proximity force approximation. The accuracy of the obtained expressions is determined from a comparison with exact results available in ideal metal case. Computations of the thermal correction to both the Casimir force and its gradient are performed in the framework of different theoretical approaches proposed in the literature. The correction to the Casimir force and its gradient due to lack of parallelism of the plate and cylinder is determined using the nonmultiplicative approach. The error introduced in the theory due to the finite length of the cylinder is estimated. We propose that both static and dynamic experiments measuring the thermal Casimir interaction between a cylinder and a plate using a micromachined oscillator can shed additional light on the thermal Casimir force problem. Specifically, it is shown that the static experiment is better adapted for the measurement of thermal effects. C1 [Decca, R. S.] Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. [Fischbach, E.; Krause, D. E.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Klimchitskaya, G. L.] NW Tech Univ, St Petersburg 191065, Russia. [Krause, D. E.] Wabash Coll, Dept Phys, Crawfordsville, IN 47933 USA. [Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mostepanenko, V. M.] Noncommercial Partnership Sci Instruments, Moscow 103905, Russia. RP Decca, RS (reprint author), Indiana Univ Purdue Univ, Dept Phys, Indianapolis, IN 46202 USA. RI Krause, Dennis/O-3170-2013 FU NSF [PHY-0701236]; LANL [49423-001-07]; DARPA [09-Y557]; DOE [DE-76ER071428]; Department of Physics, Purdue University; Russian Ministry of Education [P-184] FX R.S.D. acknowledges NSF support through Grant No. PHY-0701236 and LANL support through Contract No. 49423-001-07. D.L. and R.S.D. acknowledge support from DARPA Grant No. 09-Y557. E.F. was supported in part by the DOE under Grant No. DE-76ER071428. G.L.K. and V.M.M. are grateful to the Department of Physics, Purdue University, for financial support. G.L.K. was also partially supported by Russian Ministry of Education Grant No. P-184. NR 70 TC 12 Z9 12 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD NOV 19 PY 2010 VL 82 IS 5 AR 052515 DI 10.1103/PhysRevA.82.052515 PG 12 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 682IU UT WOS:000284395600005 ER PT J AU Kurita, N Lee, HO Tokiwa, Y Miclea, CF Bauer, ED Ronning, F Thompson, JD Fisk, Z Ho, PC Maple, MB Sengupta, P Vekhter, I Movshovich, R AF Kurita, Nobuyuki Lee, Han-Oh Tokiwa, Yoshi Miclea, Corneliu F. Bauer, Eric D. Ronning, Filip Thompson, J. D. Fisk, Zachary Ho, Pei-Chun Maple, M. Brian Sengupta, Pinaki Vekhter, Ilya Movshovich, Roman TI Thermal and magnetic properties of the low-temperature antiferromagnet Ce4Pt12Sn25 SO PHYSICAL REVIEW B LA English DT Article ID FERMI-LIQUID BEHAVIOR; KONDO-LATTICE; ELECTRIC-FIELDS; DIAGRAM; ALLOYS; MODEL; HEAT AB We report specific heat (C) and magnetization (M) of single crystalline Ce4Pt12Sn25 at temperature down to similar to 50 mK and in fields up to 3 T. C/T exhibits a sharp anomaly at 180 mK, with a large Delta C/T similar to 30 J/mol Ce K-2, which, together with the corresponding cusplike magnetization anomaly, indicates an antiferromagnetic (AFM) ground state with a Neel temperature T-N = 180 m K. Numerical calculations based on a Heisenberg model reproduce both zero-field C and M data, thus placing Ce4Pt12Sn25 in the weak exchange coupling J < J(c) limit of the Doniach diagram, with a very small Kondo scale T-K << T-N. Magnetic field suppresses the AFM state at H* approximate to 0.7 T, much more effectively than expected from the Heisenberg model, indicating additional effects possibly due to frustration or residual Kondo screening. C1 [Kurita, Nobuyuki; Lee, Han-Oh; Tokiwa, Yoshi; Miclea, Corneliu F.; Bauer, Eric D.; Ronning, Filip; Thompson, J. D.; Sengupta, Pinaki; Movshovich, Roman] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Lee, Han-Oh; Fisk, Zachary] Univ Calif Irvine, Irvine, CA 92697 USA. [Ho, Pei-Chun; Maple, M. Brian] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Ho, Pei-Chun] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Sengupta, Pinaki] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637371, Singapore. [Vekhter, Ilya] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. RP Kurita, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Miclea, Corneliu Florin/C-5047-2011; Bauer, Eric/D-7212-2011; Vekhter, Ilya/M-1780-2013; Sengupta, Pinaki/B-6999-2011; Tokiwa, Yoshifumi/P-6593-2015 OI Tokiwa, Yoshifumi/0000-0002-6294-7879 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. National Science Foundation [DMR-0802478]; U.S. DOE [DE-FG02-08ER46492] FX We would like to thank Hironori Sakai for useful discussions. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Research at UCSD was supported by the U.S. National Science Foundation under Grant No. DMR-0802478. I.V. was supported in part by the U.S. DOE under Grant No. DE-FG02-08ER46492. NR 35 TC 3 Z9 3 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 19 PY 2010 VL 82 IS 17 AR 174426 DI 10.1103/PhysRevB.82.174426 PG 7 WC Physics, Condensed Matter SC Physics GA 682JI UT WOS:000284397500006 ER PT J AU Wang, J Beeli, P Ren, Y Zhao, GM AF Wang, Jun Beeli, Pieder Ren, Yang Zhao, Guo-meng TI Giant magnetic moment enhancement of nickel nanoparticles embedded in multiwalled carbon nanotubes SO PHYSICAL REVIEW B LA English DT Article ID GRAPHITE; FERROMAGNETISM; GRAPHENE AB report a giant magnetic moment enhancement of ferromagnetic nickel nanoparticles (11 nm) embedded in multiwalled carbon nanotubes (MWCNTs). High-energy synchrotron x-ray diffraction experiment and chemical analysis are used to accurately determine the ferromagnetic nickel concentration. Magnetic measurements show that the room-temperature saturation magnetization of the nickel nanoparticles embedded in the MWCNTs is enhanced by a factor of about 3.4 +/- 1.0 as compared with what they would be expected to have for free nanoparticles. The giant moment enhancement is unlikely to be explained by a magnetic proximity effect but possibly arise from the interplay between ferromagnetism in nickel nanoparticles and strong diamagnetism in multiwalled carbon nanotubes. C1 [Wang, Jun; Zhao, Guo-meng] Ningbo Univ, Fac Sci, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China. [Beeli, Pieder; Zhao, Guo-meng] Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, J (reprint author), Ningbo Univ, Fac Sci, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China. EM gzhao2@calstatela.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Natural Science Foundation of China [10874095]; Science Foundation of China, Zhejiang [Y407267, 2009C31149]; Natural Science Foundation of Ningbo [2008B10051, 2009B21003]; K. C. Wong Magna Foundation; Y. G. Bao's Foundation FX We thank M. Du and F. M. Zhou for the elemental analyses using ICP-MS. We also thank the Palmdale Institute of Technology for the use of the VSM. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported by the National Natural Science Foundation of China(Grant No. 10874095), the Science Foundation of China, Zhejiang (Grants No. Y407267 and No. 2009C31149), the Natural Science Foundation of Ningbo (Grants No. 2008B10051 and No. 2009B21003), K. C. Wong Magna Foundation, and Y. G. Bao's Foundation. NR 17 TC 11 Z9 11 U1 0 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 19 PY 2010 VL 82 IS 19 AR 193410 DI 10.1103/PhysRevB.82.193410 PG 4 WC Physics, Condensed Matter SC Physics GA 682JW UT WOS:000284399700002 ER PT J AU Daniel, SF Linder, EV AF Daniel, Scott F. Linder, Eric V. TI Confronting general relativity with further cosmological data SO PHYSICAL REVIEW D LA English DT Article ID MICROWAVE; PARAMETERS; SPECTRA; GROWTH AB Deviations from general relativity in order to explain cosmic acceleration generically have both time and scale-dependent signatures in cosmological data. We extend our previous work by investigating model-independent gravitational deviations in bins of redshift and length scale, by incorporating further cosmological probes such as temperature-galaxy and galaxy-galaxy cross-correlations, and by examining correlations between deviations. Markov Chain Monte Carlo likelihood analysis of the model-independent parameters fitting current data indicates that at low redshift general relativity deviates from the best fit at the 99% confidence level. We trace this to two different properties of the CFHTLS weak lensing data set and demonstrate that COSMOS weak lensing data does not show such deviation. Upcoming galaxy survey data will greatly improve the ability to test time and scale-dependent extensions to gravity and we calculate the constraints that the BigBOSS galaxy redshift survey could enable. C1 [Daniel, Scott F.; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. [Linder, Eric V.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Daniel, SF (reprint author), Ewha Womans Univ, Inst Early Universe, Seoul, South Korea. FU World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Tristan Smith for helpful discussions and insight and Chanju Kim for timely hardware fixes. We acknowledge use of NASA's Legacy Archive for Microwave Background Data Analysis (LAMBDA). This work has been supported by the World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea. E.L. has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 41 Z9 41 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 19 PY 2010 VL 82 IS 10 AR 103523 DI 10.1103/PhysRevD.82.103523 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KW UT WOS:000284403400002 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Ebert, M Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Ebert, M. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for B+ -> (D+K0) and B+ -> (D+K0) decays SO PHYSICAL REVIEW D LA English DT Article AB We report a search for the rare decays B+ -> (D+K0) and B+ -> D+K*(0) in an event sample of approximately 465 x 10(6) B (B) over bar pairs collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC National Accelerator Laboratory. We find no significant evidence for either mode and we set 90% probability upper limits on the branching fractions of B(B+ -> (D+K0)) < 2.9 x 10(-6) and B(B+ -> D+K*(0)) < 3.0 x 10(-6) C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Ayad, R.; Toki, W. H.] Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Depe ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartmento Fis, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Sordini, V.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, Ctr Saclay, SPP, Irfu, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Corwin, Luke/0000-0001-7143-3821; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Cibinetto, Gianluigi/0000-0002-3491-6231; Hamel de Monchenault, Gautier/0000-0002-3872-3592; dong, liaoyuan/0000-0002-4773-5050; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Pacetti, Simone/0000-0002-6385-3508; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866; Martinelli, Maurizio/0000-0003-4792-9178; Lafferty, George/0000-0003-0658-4919; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Strube, Jan/0000-0001-7470-9301; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Carpinelli, Massimo/0000-0002-8205-930X; Paoloni, Eugenio/0000-0001-5969-8712; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 FU SLAC; US Department of Energy; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel); National Science Foundation; Deutsche Forschungsgemeinschaft (Germany) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 13 TC 0 Z9 0 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 19 PY 2010 VL 82 IS 9 AR 092006 DI 10.1103/PhysRevD.82.092006 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KM UT WOS:000284402400001 ER PT J AU Barai, P Sampath, R Nukala, PKVV Simunovic, S AF Barai, Pallab Sampath, Rahul Nukala, Phani Kumar V. V. Simunovic, Srdan TI Scaling of surface roughness in perfectly plastic disordered media SO PHYSICAL REVIEW E LA English DT Article ID 3-DIMENSIONAL FUSE NETWORKS; FRACTURE SURFACES; INTERFACES; MODELS AB This paper investigates surface roughness characteristics of localized plastic yield surface in a perfectly plastic disordered material. We model the plastic disordered material using perfectly plastic random spring model. Our results indicate that plasticity in a disordered material evolves in a diffusive manner until macroscopic yielding, which is in contrast to the localized failure observed in brittle fracture of disordered materials. On the other hand, the height-height fluctuations of the plastic yield surfaces generated by the spring model exhibit roughness exponents similar to those obtained in the brittle fracture of disordered materials, albeit anomalous scaling of plastic surface roughness is not observed. The local and global roughness exponents (zeta(loc) and zeta, respectively) are equal to each other, and the two-dimensional crack roughness exponent is estimated to be zeta(loc) = zeta = 0.67 +/- 0.03. The probability density distribution p[Delta h(l)] of the height differences Delta h(l) = [h(x + l) - h(x)] of the crack profile follows a Gaussian distribution. C1 [Barai, Pallab; Sampath, Rahul; Nukala, Phani Kumar V. V.; Simunovic, Srdan] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Barai, P (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RI Sampath, Rahul/G-3396-2011 FU Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This research was sponsored by the Mathematical, Information and Computational Sciences Division, Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 25 TC 3 Z9 3 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 19 PY 2010 VL 82 IS 5 AR 056116 DI 10.1103/PhysRevE.82.056116 PN 2 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 682LV UT WOS:000284406000001 PM 21230554 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Calvet, S Camacho-Perez, E Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F DeMair, D Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, W Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Calvet, S. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. DeMair, D. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Events with Leptonic Jets and Missing Transverse Energy in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID DARK-MATTER AB We present the first search for pair production of isolated jets of charged leptons in association with a large imbalance in transverse energy in p (p) over bar collisions using 5: 8 fb(-1) of integrated luminosity collected by the D0 detector at the Fermilab Tevatron Collider. No excess is observed above the standard model background, and the result is used to set upper limits on the production cross section of pairs of supersymmetric chargino and neutralino particles as a function of "dark-photon'' mass, where the dark photon is produced in the decay of the lightest supersymmetric particle. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, Inst Natl Polytech Grenoble,LPSC, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; Bunichev, V.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Maravin, Y.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; DeMair, D.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; De, Kaushik/N-1953-2013; Ancu, Lucian Stefan/F-1812-2010; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Novaes, Sergio/D-3532-2012; Yip, Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Santos, Angelo/K-5552-2012; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Merkin, Mikhail/D-6809-2012; Boos, Eduard/D-9748-2012; Mercadante, Pedro/K-1918-2012; Fisher, Wade/N-4491-2013 OI Li, Liang/0000-0001-6411-6107; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China); DAE FX We thank A. Falkowski, J. Ruderman, M. Strassler, S. Thomas, I. Yavin, and J. Wacker for many useful discussions and guidance. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 28 TC 20 Z9 20 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 211802 DI 10.1103/PhysRevLett.105.211802 PG 7 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400006 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Calvet, S Camacho-Perez, E Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evans, JA Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, Y Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Luty, MA Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Calvet, S. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evans, J. A. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Luty, M. A. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for New Fermions ("Quirks'') at the Fermilab Tevatron Collider SO PHYSICAL REVIEW LETTERS LA English DT Article AB We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2: 4 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p (p) over bar collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107, 119, and 133 GeV for the mass of a charged quirk with strong dynamics scale Lambda in the range from 10 keV to 1 MeV and N = 2, 3, and 5, respectively. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph] Univ Clermont Ferrand, CNRS IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, IN2P3, LPSC,Inst Natl Polytech Grenoble, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.; Kumar, A.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02215 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Evans, J. A.; Gershtein, Y.; Luty, M. A.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Juste, Aurelio/I-2531-2015; Wimpenny, Stephen/K-8848-2013; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Gerbaudo, Davide/J-4536-2012; Santos, Angelo/K-5552-2012; Ancu, Lucian Stefan/F-1812-2010; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Yip, Kin/D-6860-2013; Gutierrez, Phillip/C-1161-2011; Bolton, Tim/A-7951-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012 OI Williams, Mark/0000-0001-5448-4213; Weber, Michele/0000-0002-2770-9031; Grohsjean, Alexander/0000-0003-0748-8494; Melnychuk, Oleksandr/0000-0002-2089-8685; Bassler, Ursula/0000-0002-9041-3057; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Malik, Sudhir/0000-0002-6356-2655; Blazey, Gerald/0000-0002-7435-5758; Wahl, Horst/0000-0002-1345-0401; Gershtein, Yuri/0000-0002-4871-5449; Bean, Alice/0000-0001-5967-8674; Carrera, Edgar/0000-0002-0857-8507; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Haas, Andrew/0000-0002-4832-0455; Li, Liang/0000-0001-6411-6107; Sawyer, Lee/0000-0001-8295-0605; Hedin, David/0000-0001-9984-215X; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; de Jong, Sijbrand/0000-0002-3120-3367; Landsberg, Greg/0000-0002-4184-9380; Blessing, Susan/0000-0002-4455-7279; Duperrin, Arnaud/0000-0002-5789-9825; Hoeneisen, Bruce/0000-0002-6059-4256; Beuselinck, Raymond/0000-0003-2613-7446; Heinson, Ann/0000-0003-4209-6146; grannis, paul/0000-0003-4692-2142; Wimpenny, Stephen/0000-0003-0505-4908; De, Kaushik/0000-0002-5647-4489; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Ancu, Lucian Stefan/0000-0001-5068-6723; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Dudko, Lev/0000-0002-4462-3192; FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI; Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE; DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF; KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC; Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF; DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 18 TC 4 Z9 4 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 211803 DI 10.1103/PhysRevLett.105.211803 PG 6 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400007 PM 21231291 ER PT J AU Baek, SH Sakai, H Bauer, ED Mitchell, JN Kennison, JA Ronning, F Thompson, JD AF Baek, S. -H. Sakai, H. Bauer, E. D. Mitchell, J. N. Kennison, J. A. Ronning, F. Thompson, J. D. TI Anisotropic Spin Fluctuations and Superconductivity in "115" Heavy Fermion Compounds: Co-59 NMR Study in PuCoGa5 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SINGLE-CRYSTAL; RELAXATION; SYSTEMS; PURHGA5; METALS AB We report results of Co-59 nuclear magnetic resonance measurements on a single crystal of superconducting PuCoGa5 in its normal state. The nuclear spin-lattice relaxation rates and the Knight shifts as a function of temperature reveal an anisotropy of spin fluctuations with finite wave vector q. By comparison with the isostructural members, we conclude that antiferromagnetic XY-type anisotropy of spin fluctuations plays an important role in mediating superconductivity in these heavy fermion materials. C1 [Baek, S. -H.; Sakai, H.; Bauer, E. D.; Mitchell, J. N.; Kennison, J. A.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. RP Baek, SH (reprint author), IFW Dresden, PF 270116, D-01171 Dresden, Germany. EM sakai.hironori@jaea.go.jp RI Bauer, Eric/D-7212-2011; Mitchell, Jeremy/E-2875-2010; Baek, Seung-Ho/F-4733-2011 OI Mitchell, Jeremy/0000-0001-7109-3505; Baek, Seung-Ho/0000-0002-0059-8255 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Los Alamos Laboratory FX We thank N. J. Curro, S. Kambe, S. E. Brown, H. Ikeda, and T. Takimoto for useful suggestions and discussions. H. S. acknowledges the hospitality of Los Alamos National Laboratory. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and supported in part by the Los Alamos Laboratory Directed Research and Development program. NR 30 TC 10 Z9 10 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 217002 DI 10.1103/PhysRevLett.105.217002 PG 4 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400027 PM 21231343 ER PT J AU Davoudiasl, H Morrissey, DE Sigurdson, K Tulin, S AF Davoudiasl, Hooman Morrissey, David E. Sigurdson, Kris Tulin, Sean TI Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches. C1 [Davoudiasl, Hooman] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Morrissey, David E.; Tulin, Sean] TRIUMF, Theory Grp, Vancouver, BC V6T 2A3, Canada. [Sigurdson, Kris] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. RP Davoudiasl, H (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU United States Department of Energy [DE-AC02-98CH10886]; NSERC of Canada FX We thank M. Buckley, K. Freese, G. Kribs, M. Ramsey-Musolf, J. Shelton, A. Spray, M. Wise, and K. Zurek for helpful conversations. D. M. and K. S. thank the Aspen Center for Physics and Perimeter Institute for Theoretical Physics for hospitality while this work was being completed. S. T. thanks Caltech where a portion of this work was completed. The work of H. D. is supported in part by the United States Department of Energy under Grant Contract No. DE-AC02-98CH10886. The research of D. M. and K. S. is supported in part by NSERC of Canada Discovery Grants. NR 32 TC 120 Z9 120 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 211304 DI 10.1103/PhysRevLett.105.211304 PG 4 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400003 PM 21231286 ER PT J AU Dean, DJ Langanke, K Nam, H Nazarewicz, W AF Dean, D. J. Langanke, K. Nam, H. Nazarewicz, W. TI Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the Shell-Model Monte Carlo Approach SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANGULAR-MOMENTUM; LEVEL DENSITIES; THERMAL-PROPERTIES; EXCITED NUCLEI; SUPERCONDUCTIVITY; SUPERFLUIDITY; INERTIA; SYSTEMS; STATE; LIMIT AB Rotational motion of heated (72)Ge is studied within the microscopic shell-model Monte Carlo approach. We investigate the angular momentum alignment and nuclear pairing correlations associated with J(pi) Cooper pairs as a function of the rotational frequency and temperature. The reentrance of pairing correlations with temperature is predicted at high rotational frequencies. It manifests itself through the anomalous behavior of specific heat and level density. C1 [Dean, D. J.; Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Langanke, K.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Langanke, K.] Tech Univ Darmstadt, Inst Kernphys, D-64291 Darmstadt, Germany. [Nam, H.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. RP Dean, DJ (reprint author), Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. OI Dean, David/0000-0002-5688-703X FU U.S. Department of Energy (University of Tennessee) [DE-FG02-96ER40963] FX Useful comments from Nguyen Dinh Dang are gratefully appreciated. Supported by the U.S. Department of Energy under Contract No. DE-FG02-96ER40963 (University of Tennessee). Computational resources provided by the National Energy Research Scientific Computing Center (Berkeley) and the National Center for Computational Sciences (Oak Ridge). NR 47 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 212504 DI 10.1103/PhysRevLett.105.212504 PG 4 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400009 PM 21231296 ER PT J AU Laguna-Marco, MA Haskel, D Souza-Neto, N Lang, JC Krishnamurthy, VV Chikara, S Cao, G van Veenendaal, M AF Laguna-Marco, M. A. Haskel, D. Souza-Neto, N. Lang, J. C. Krishnamurthy, V. V. Chikara, S. Cao, G. van Veenendaal, M. TI Orbital Magnetism and Spin-Orbit Effects in the Electronic Structure of BaIrO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-ABSORPTION; DENSITY-WAVE FORMATION; CIRCULAR-DICHROISM; WEAK FERROMAGNETISM; PROBE; IR AB The electronic structure and magnetism of Ir 5d(5) states in nonmetallic, weakly ferromagnetic BaIrO3 are probed with x-ray absorption techniques. Contrary to expectation, the Ir 5d orbital moment is found to be similar to 1.5 times larger than the spin moment. This unusual, atomiclike nature of the 5d moment is driven by a strong spin-orbit interaction in heavy Ir ions, as confirmed by the nonstatistical large branching ratio at Ir L-2,L-3 absorption edges. As a consequence, orbital interactions cannot be neglected when addressing the nature of magnetic ordering in BaIrO3. The local moment behavior persists even as the metallic-paramagnetic phase boundary is approached with Sr doping or applied pressure. C1 [Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N.; Lang, J. C.; van Veenendaal, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Krishnamurthy, V. V.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Chikara, S.; Cao, G.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [van Veenendaal, M.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Laguna-Marco, MA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM laguna@icmm.csic.es; haskel@aps.anl.gov; veenendaal@niu.edu RI Laguna-Marco, M. A./G-8042-2011; Souza-Neto, Narcizo/G-1303-2010; Chikara, Shalinee/E-4654-2017 OI Laguna-Marco, M. A./0000-0003-4069-0395; Souza-Neto, Narcizo/0000-0002-7474-8017; FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357]; Spanish MEC; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; NSF [DMR-0552267, DMR-0856234] FX Work at Argonne is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. M. A. L.-M. acknowledges the Spanish MEC for a post-doctoral grant. M. v. V. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DE-FG02-03ER46097. S. C. and G. C. were supported by NSF through Grants No. DMR-0552267 and No. DMR-0856234. NR 32 TC 58 Z9 59 U1 4 U2 76 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 216407 DI 10.1103/PhysRevLett.105.216407 PG 4 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400019 PM 21231332 ER PT J AU Sikorski, M Gutt, C Chushkin, Y Lippmann, M Franz, H AF Sikorski, M. Gutt, C. Chushkin, Y. Lippmann, M. Franz, H. TI Dynamics at the Liquid-Vapor Interface of a Supercooled Organic Glass Former SO PHYSICAL REVIEW LETTERS LA English DT Article ID X-RAY-SCATTERING; TRANSITION TEMPERATURE; POLYSTYRENE FILMS; POLYMER-FILMS; SURFACES AB We investigated the dynamics near the liquid-vapor interface of the supercooled model organic glass former dibutyl phthalate by using surface-sensitive x-ray scattering techniques. Our results reveal significant enhancement of the relaxation rate over a wide length-scales range. The analysis of the dispersion relation of long-wavelength surface fluctuations yields a nonzero value of the share modulus near the free surface. At the molecular level, the dynamics in the near surface region (10-15 nm) is inhomogeneous. The mobility is decreasing with increasing distance from the free surface. Below the bulk glass transition, two distinct relaxation times were observed differing by 1 order of magnitude. The observed fast relaxation proves the existence of a high mobility liquidlike surface layer of 10 nm thickness on top of a frozen in bulk system. C1 [Sikorski, M.; Gutt, C.; Lippmann, M.; Franz, H.] Deutsch Elektronen Synchrotron HASYLAB DESY, D-22607 Hamburg, Germany. [Chushkin, Y.] ESRF, F-38043 Grenoble, France. RP Sikorski, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RI Gutt, Christian/H-9846-2012; Gutt, Christian/F-6337-2013 NR 22 TC 10 Z9 10 U1 0 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 19 PY 2010 VL 105 IS 21 AR 215701 DI 10.1103/PhysRevLett.105.215701 PG 4 WC Physics, Multidisciplinary SC Physics GA 682MJ UT WOS:000284407400017 PM 21231323 ER PT J AU DiDonato, RJ Young, ND Butler, JE Chin, KJ Hixson, KK Mouser, P Lipton, MS DeBoy, R Methe, BA AF DiDonato, Raymond J., Jr. Young, Nelson D. Butler, Jessica E. Chin, Kuk-Jeong Hixson, Kim K. Mouser, Paula Lipton, Mary S. DeBoy, Robert Methe, Barbara A. TI Genome Sequence of the Deltaproteobacterial Strain NaphS2 and Analysis of Differential Gene Expression during Anaerobic Growth on Naphthalene SO PLOS ONE LA English DT Article ID POLYCYCLIC AROMATIC-HYDROCARBONS; SULFATE-REDUCING BACTERIUM; MARINE HARBOR SEDIMENTS; QUANTIFYING EXPRESSION; DENITRIFYING BACTERIUM; ENRICHMENT CULTURE; INITIAL REACTION; DEGRADATION; GEOBACTERACEAE; TOLUENE AB Background: Anaerobic polycyclic hydrocarbon (PAH) degradation coupled to sulfate reduction may be an important mechanism for in situ remediation of contaminated sediments. Steps involved in the anaerobic degradation of 2-methylnaphthalene have been described in the sulfate reducing strains NaphS3, NaphS6 and N47. Evidence from N47 suggests that naphthalene degradation involves 2-methylnaphthalene as an intermediate, whereas evidence in NaphS2, NaphS3 and NaphS6 suggests a mechanism for naphthalene degradation that does not involve 2-methylnaphthalene. To further characterize pathways involved in naphthalene degradation in NaphS2, the draft genome was sequenced, and gene and protein expression examined. Results: Draft genome sequencing, gene expression analysis, and proteomic analysis revealed that NaphS2 degrades naphthoyl-CoA in a manner analogous to benzoyl-CoA degradation. Genes including the previously characterized NmsA, thought to encode an enzyme necessary for 2-methylnaphthalene metabolism, were not upregulated during growth of NaphS2 on naphthalene, nor were the corresponding protein products. NaphS2 may possess a non-classical dearomatizing enzyme for benzoate degradation, similar to one previously characterized in Geobacter metallireducens. Identification of genes involved in toluene degradation in NaphS2 led us to determine that NaphS2 degrades toluene, a previously unreported capacity. The genome sequence also suggests that NaphS2 may degrade other monoaromatic compounds. Conclusion: This study demonstrates that steps leading to the degradation of 2-naphthoyl-CoA are conserved between NaphS2 and N47, however while NaphS2 possesses the capacity to degrade 2-methylnaphthalene, naphthalene degradation likely does not proceed via 2-methylnaphthalene. Instead, carboxylation or another form of activation may serve as the first step in naphthalene degradation. Degradation of toluene and 2-methylnaphthalene, and the presence of at least one bss-like and bbs-like gene cluster in this organism, suggests that NaphS2 degrades both compounds via parallel mechanisms. Elucidation of the key genes necessary for anaerobic naphthalene degradation may provide the ability to track naphthalene degradation through in situ transcript monitoring. C1 [DiDonato, Raymond J., Jr.; Young, Nelson D.; Butler, Jessica E.; Mouser, Paula] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [Chin, Kuk-Jeong] Georgia State Univ, Dept Biol, Atlanta, GA USA. [Hixson, Kim K.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [DeBoy, Robert; Methe, Barbara A.] J Craig Venter Inst, Rockville, MD USA. RP DiDonato, RJ (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. EM rdidonat@hotmail.com FU Office of Naval [N000140310315] FX This research was funded by the Office of Naval Research grant N000140310315. ONR's website is http://www.onr.navy.mil. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 41 TC 25 Z9 25 U1 2 U2 54 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 19 PY 2010 VL 5 IS 11 AR e14072 DI 10.1371/journal.pone.0014072 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 682JY UT WOS:000284400100017 PM 21124915 ER PT J AU Ronald, PC Beutler, B AF Ronald, Pamela C. Beutler, Bruce TI Plant and Animal Sensors of Conserved Microbial Signatures SO SCIENCE LA English DT Review ID INNATE IMMUNITY; DISEASE RESISTANCE; SIGNALING PATHWAYS; TOLL; GENE; BACTERIAL; RECOGNITION; ARABIDOPSIS; RECEPTORS; FLAGELLIN AB The last common ancestor of plants and animals may have lived 1 billion years ago. Plants and animals have occasionally exchanged genes but, for the most part, have countered selective pressures independently. Microbes (bacteria, eukaryotes, and viruses) were omnipresent threats, influencing the direction of multicellular evolution. Receptors that detect molecular signatures of infectious organisms mediate awareness of nonself and are integral to host defense in plants and animals alike. The discoveries leading to elucidation of these receptors and their ligands followed a similar logical and methodological pathway in both plant and animal research. C1 [Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA 94710 USA. [Ronald, Pamela C.] Kyung Hee Univ, Crop Biotech Inst, Yongin 446701, South Korea. [Ronald, Pamela C.] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin 446701, South Korea. [Beutler, Bruce] Scripps Res Inst, Dept Genet, La Jolla, CA 92037 USA. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu NR 27 TC 118 Z9 125 U1 4 U2 56 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 19 PY 2010 VL 330 IS 6007 BP 1061 EP 1064 DI 10.1126/science.1189468 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 682BU UT WOS:000284374700031 PM 21097929 ER PT J AU Bajaj, VS Paulsen, J Harel, E Pines, A AF Bajaj, Vikram S. Paulsen, Jeffrey Harel, Elad Pines, Alexander TI Zooming In on Microscopic Flow by Remotely Detected MRI SO SCIENCE LA English DT Article ID MAGNETIC-RESONANCE; MICROFLUIDIC CHIP; NMR; RESOLUTION; MAGNETOMETER; BIOSENSOR AB Magnetic resonance imaging (MRI) can elucidate the interior structure of an optically opaque object in unparalleled detail but is ultimately limited by the need to enclose the object within a detection coil; acquiring the image with increasingly smaller pixels reduces the sensitivity, because each pixel occupies a proportionately smaller fraction of the detector's volume. We developed a technique that overcomes this limitation by means of remotely detected MRI. Images of fluids flowing in channel assemblies are encoded into the phase and intensity of the constituent molecules' nuclear magnetic resonance signals and then decoded by a volume-matched detector after the fluids flow out of the sample. In combination with compressive sampling, we thus obtain microscopic images of flow and velocity distributions similar to 10(6) times faster than is possible with conventional MRI on this hardware. Our results illustrate the facile integration of MRI with microfluidic assays and suggest generalizations to other systems involving microscopic flow. C1 [Bajaj, Vikram S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bajaj, VS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM vsbajaj@lbl.gov; pines@berkeley.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX We thank D. Wemmer for his careful reading of the manuscript and L.-S. Bouchard for helpful discussions. Supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-05CH11231 (V. S. B., J.P., E. H., A. P.). We thank the Agilent Foundation for its generous and unrestricted gift. The Lawrence Berkeley National Laboratory has applied for a patent on aspects of this method. The authors declare no competing interests. Author contributions: V. S. B., J.P., E. H., and A. P. designed the experiments. V. S. B., J.P., and E. H. performed the experiments. V. S. B. and J.P. analyzed the data and wrote the paper. NR 27 TC 36 Z9 36 U1 1 U2 49 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 19 PY 2010 VL 330 IS 6007 BP 1078 EP 1081 DI 10.1126/science.1192313 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 682BU UT WOS:000284374700036 PM 20929729 ER PT J AU Park, SI Shenoi, J Pagel, JM Hamlin, DK Wilbur, DS Orgun, N Kenoyer, AL Frayo, S Axtman, A Back, T Lin, YK Fisher, DR Gopal, AK Green, DJ Press, OW AF Park, Steven I. Shenoi, Jaideep Pagel, John M. Hamlin, Don K. Wilbur, D. Scott Orgun, Nural Kenoyer, Aimee L. Frayo, Shani Axtman, Amanda Back, Tom Lin, Yukang Fisher, Darrell R. Gopal, Ajay K. Green, Damian J. Press, Oliver W. TI Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease SO BLOOD LA English DT Article ID B-CELL LYMPHOMAS; ANTI-CD20 MONOCLONAL-ANTIBODY; STREPTAVIDIN FUSION PROTEIN; CHEMOTHERAPY PLUS RITUXIMAB; POLYMERASE-CHAIN-REACTION; IODINE I-131 TOSITUMOMAB; ALPHA-EMITTING NUCLIDES; REFRACTORY LOW-GRADE; FOLLICULAR LYMPHOMA; ADVANCED-STAGE AB Radioimmunotherapy (RIT) with alpha-emitting radionuclides is an attractive approach for the treatment of minimal residual disease because the short path lengths and high energies of alpha-particles produce optimal cytotoxicity at small target sites while minimizing damage to surrounding normal tissues. Pretargeted RIT (PRIT) using antibody-streptavidin (Ab-SA) constructs and radiolabeled biotin allows rapid, specific localization of radioactivity at tumor sites, making it an optimal method to target alpha-emitters with short half-lives, such as bismuth-213 ((213)Bi). Athymic mice bearing Ramos lymphoma xenografts received anti-CD20 1F5(scFv)(4)SA fusion protein (FP), followed by a dendrimeric clearing agent and [(213)Bi] DOTA-biotin. After 90 minutes, tumor uptake for 1F5(scFv) 4SA was 16.5% +/- 7.0% injected dose per gram compared with 2.3% +/- .9% injected dose per gram for the control FP. Mice treated with anti-CD20 PRIT and 600 mu Ci [(213)Bi] DOTA-biotin exhibited marked tumor growth delays compared with controls (mean tumor volume .01 +/- .02 vs. 203.38 +/- 83.03 mm(3) after 19 days, respectively). The median survival for the 1F5(scFv) 4SA group was 90 days compared with 23 days for the control FP (P < .0001). Treatment was well tolerated, with no treatment-related mortalities. This study demonstrates the favorable biodistribution profile and excellent therapeutic efficacy attainable with (213)Bi-labeled anti-CD20 PRIT. (Blood. 2010;116(20):4231-4239) C1 [Shenoi, Jaideep; Pagel, John M.; Orgun, Nural; Kenoyer, Aimee L.; Frayo, Shani; Axtman, Amanda; Lin, Yukang; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA. [Park, Steven I.] Univ N Carolina, Dept Med, Chapel Hill, NC USA. [Shenoi, Jaideep; Pagel, John M.; Gopal, Ajay K.; Green, Damian J.; Press, Oliver W.] Univ Washington, Dept Med, Seattle, WA USA. [Hamlin, Don K.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Back, Tom] Univ Gothenburg, Sahlgrenska Acad, Dept Radiat Phys, Gothenburg, Sweden. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Press, OW (reprint author), Fred Hutchinson Canc Res Ctr, 1100 Fairview Ave N,M-S D3-395, Seattle, WA 98109 USA. EM press@u.washington.edu OI Back, Tom/0000-0002-3375-9473 FU National Institutes of Health [PO1 CA44991, RO1 CA109663]; Lymphoma Research Foundation FX This work was supported by National Institutes of Health grants PO1 CA44991 and RO1 CA109663, the Lymphoma Research Foundation (O.W.P.) and gifts from David and Patricia Giuliani, Mary and Geary Britton-Simmons, James and Sherry Raisbeck, the Wyner-Stokes Foundation, and the Hext Family Foundation. S.I.P. is the recipient of a Lymphoma Research Foundation Fellowship Award. NR 57 TC 21 Z9 22 U1 3 U2 7 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD NOV 18 PY 2010 VL 116 IS 20 BP 4231 EP 4239 DI 10.1182/blood-2010-05-282327 PG 9 WC Hematology SC Hematology GA 681YC UT WOS:000284359400031 PM 20702781 ER PT J AU Greyson, EC Stepp, BR Chen, XD Schwerin, AF Paci, I Smith, MB Akdag, A Johnson, JC Nozik, AJ Michl, J Ratner, MA AF Greyson, Eric C. Stepp, Brian R. Chen, Xudong Schwerin, Andrew F. Paci, Irina Smith, Millicent B. Akdag, Akin Johnson, Justin C. Nozik, Arthur J. Michl, Josef Ratner, Mark A. TI Singlet Exciton Fission for Solar Cell Applications Energy Aspects of Interchromophore Coupling SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PI-ELECTRON STATES; TETRACENE CRYSTALS; MAGNETIC-FIELD; POLY(P-PHENYLENE VINYLENE); TRIPLET EXCITATIONS; TRANS-BUTADIENE; FUSION; FLUORESCENCE; ANTHRACENE AB Singlet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules Previous studies have identified promising building blocks for singlet fission in molecular systems but little work has investigated how these individual chromophores should be combined to maximize triplet yield We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield We use density functional theory to compute the electron transfer matrix element and the thermodynamics of fission for several promising chromophore pairs and find a trade-off between the desire to maximize this element and the desire to keep the singlet fission process exoergic We identify promising molecular systems for singlet fission and suggest future experiments C1 [Chen, Xudong; Schwerin, Andrew F.; Smith, Millicent B.; Akdag, Akin; Michl, Josef] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Greyson, Eric C.; Paci, Irina; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Johnson, Justin C.; Nozik, Arthur J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Stepp, Brian R.; Michl, Josef] Acad Sci Czech Republic, Inst Organ Chem & Biochem, CR-16610 Prague 6, Czech Republic. RP Michl, J (reprint author), Univ Colorado, Dept Chem & Biochem, 215 UCB, Boulder, CO 80309 USA. RI Michl, Josef/G-9376-2014; Nozik, Arthur/A-1481-2012; Nozik, Arthur/P-2641-2016 FU U S Department of Energy EERE [DOE XAT 5-33636 01]; U S Department of Energy Office of Basic Energy Sciences Division of Chemical Sciences Geosciences and Biosciences; Ministry of Education of the Czech Republic [N00014 05 1 0021, OISE-0532040]; DOE [1542544/XAT 5 33636 01, DE FG36 08GO18017] FX This project was partly supported by the U S Department of Energy EERE DOE XAT 5-33636 01 AJN and JCJ were supported by the U S Department of Energy Office of Basic Energy Sciences Division of Chemical Sciences Geosciences and Biosciences We are also grateful to the chemistry division of the ONR (N00014 05 1 0021) NSF (OISE-0532040) KONTAKT project of the Ministry of Education of the Czech Republic and to the DOE (1542544/XAT 5 33636 01 DE FG36 08GO18017) for support of this work This paper is dedicated to Professor Mike Wasielewski scholar leader teacher scientist and treasured friend NR 72 TC 63 Z9 64 U1 7 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14223 EP 14232 DI 10.1021/jp909002d PG 10 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000014 PM 20025238 ER PT J AU Xie, M Gruen, DM AF Xie, Ming Gruen, Dieter M. TI Potential Impact of ZT=4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article AB State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies C1 [Xie, Ming; Gruen, Dieter M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Xie, Ming] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA. RP Gruen, DM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI xie, ming/A-1438-2012 FU U S Department of Energy Office of Basic Energy Science and Energy Efficiency Renewable Energy, Office of Vehicle Technologies at Argonne National Laboratory [DE-AC02-06CH11357] FX This work was performed under the auspices of the U S Department of Energy Office of Basic Energy Science and Energy Efficiency Renewable Energy, Office of Vehicle Technologies, under Contract No DE-AC02-06CH11357 at Argonne National Laboratory managed by the University of Chicago LLC NR 16 TC 15 Z9 16 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14339 EP 14342 DI 10.1021/jp9117387 PG 4 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000027 PM 20196558 ER PT J AU Poluektov, OG Filippone, S Martin, N Sperlich, A Deibel, C Dyakonov, V AF Poluektov, Oleg G. Filippone, Salvatore Martin, Nazario Sperlich, Andreas Deibel, Carsten Dyakonov, Vladimir TI Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions High Frequency Pulsed EPR Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RESONANCE; FULLERENES; EFFICIENT; POLYMER; CELLS; C-70; C-60; PAIR AB Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9 5 GHz (X-band) and 130 GHz (D-band) The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C(60)-PCBM), and two different soluble C(70)-derivates C(70)-PCBM and diphenylmethano[70]fullerene oligoether (C(70)-DPM-OE) The first experimental identification of the negative polaron localized on the C(70)-cage in polymer-fullerene bulk heterojunctions has been obtained When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P(+) and P(-) in PHT-C(70) bulk heterojunctions Comparing signals from C(70)-derivatives with different side-chains we have obtained experimental proof that the polaron is localized on the cage of the C(70) molecule C1 [Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Filippone, Salvatore; Martin, Nazario] Univ Complutense Madrid, Fac Ciencias Quim, Dept Quim Organ, E-28040 Madrid, Spain. [Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir] Univ Wurzburg, D-97074 Wurzburg, Germany. [Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir] Bavarian Ctr Appl Energy Res eV ZAE Bayern, D-97074 Wurzburg, Germany. RP Poluektov, OG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Deibel, Carsten/A-8735-2008; Dyakonov, Vladimir/F-6862-2013; Filippone, Salvatore/K-2360-2014; Martin, Nazario/B-4329-2008; OI Deibel, Carsten/0000-0002-3061-7234; Dyakonov, Vladimir/0000-0001-8725-9573; Filippone, Salvatore/0000-0002-2860-8566; Martin, Nazario/0000-0002-5355-1477; Sperlich, Andreas/0000-0002-0850-6757 FU U S Department of Energy Office of Science Office of Basic Energy Sciences; German Research Foundation DFG [DY18/6 1]; MICINN of Spain [CT2008-00795/BQU, 2010C 07-25200]; CAM [P PPQ 000225 0505]; ANSER FX The work at ANL was supported as part of the ANSER an Energy Frontier Research Center funded by the U S Department of Energy Office of Science Office of Basic Energy Sciences The work at the University of Wurzburg was supported by the German Research Foundation DFG, within the SPP "Elementary processes in organic photovoltaics', under contract DY18/6 1 The MICINN of Spain (project CT2008-00795/BQU, R&C program, and Consolider Ingenio 2010C 07-25200) and the CAM (project P PPQ 000225 0505) are also acknowledged V D acknowledges financial support from ANSER during his research visit at ANL NR 17 TC 37 Z9 37 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14426 EP 14429 DI 10.1021/jp1012347 PG 4 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000038 PM 20392099 ER PT J AU Mehmood, F Greeley, J Zapol, P Curtiss, LA AF Mehmood, F. Greeley, J. Zapol, P. Curtiss, L. A. TI Comparative Density Functional Study of Methanol Decomposition on Cu-4 and Co-4 Clusters SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; FISCHER-TROPSCH SYNTHESIS; AB-INITIO; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; ADSORPTION; CATALYST; SURFACES; CU(110) AB A density functional theory study of the decomposition of methanol on Cu-4 and Co-4 clusters is presented The reaction intermediates and activation barriers have been determined for reaction steps to form H-2 and CO For both clusters, methanol decomposition initiated by C-H and O-H bond breaking was investigated In the case of a Cu-4 cluster, methanol dehydrogenation through hydroxymethyl (CH2OH), hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO) is found to be slightly more favorable For a Co-4 cluster, the dehydrogenation pathway through methoxy (CH3O) and formaldehyde (CH2O) is slightly more favorable Each of these pathways results in formation of CO and H-2 The Co cluster pathway is very favorable thermodynamically and kinetically for dehydrogenation However, since CO binds strongly, it is likely to poison methanol decomposition to H-2 and CO at low temperatures In contrast, for the Cu cluster, CO poisoning is not likely to be a problem since it does not bind strongly, but the dehydrogenation steps are not energetically favorable Pathways involving C-O bond cleavage are even less energetically favorable The results are compared to our previous study of methanol decomposition on Pd-4 and Pd-8 clusters Finally, all reaction energy changes and transition state energies, including those for the Pd clusters, are related in a linear, Bronsted-Evans-Polanyi plot C1 [Mehmood, F.; Zapol, P.; Curtiss, L. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Greeley, J.; Curtiss, L. A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U S Department of Energy [DE AC0206CH11357] FX Work including use of the Center for Nanoscale Materials is supported by the U S Department of Energy under Contract DE AC0206CH11357 We acknowledge grants of computer time from EMSL a national scientific user facility located at Pacific Northwest National Laboratory and the ANL Laboratory Computing Resource Center (LCRC) NR 56 TC 17 Z9 17 U1 7 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14458 EP 14466 DI 10.1021/jp101594z PG 9 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000042 PM 20704288 ER PT J AU Szarko, JM Rolczynski, BS Guo, JC Liang, YY He, F Mara, MW Yu, LP Chen, LX AF Szarko, Jodi M. Rolczynski, Brian S. Guo, Jianchang Liang, Yongye He, Feng Mara, Michael W. Yu, Luping Chen, Lin X. TI Electronic Processes in Conjugated Diblock Oligomers Mimicking Low Band-Gap Polymers. Experimental and Theoretical Spectral Analysis SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID HETEROJUNCTION SOLAR-CELLS; ALPHA-OLIGOTHIOPHENES; ORGANIC PHOTOVOLTAICS; THIOPHENE OLIGOMERS; CHARGE-TRANSPORT; CHAIN-LENGTH; THIENOPYRAZINE; COPOLYMERS; ABSORPTION; RELAXATION AB Conjugated oligomers containing a common central thienothiophene unit symmetrically connected to two identical thiophene oligomers were studied as model systems for a series of low bandgap organic diblock copolymers The oligothiophene side chain fragments were varied in length as a means to tune the electronic coupling between the thienothiophene and oligothiophene moieties The fragment length dependence of both the ground and excited-state electronic and structural properties of a series of diblock oligomers were investigated in detail The charge transfer character in these diblock oligomers, revealed by their optical absorption and fluorescence spectra, is responsible for their low band gap and energy gap tunability compared with their homooligomer counterparts The electronic spectra and theoretical analysis indicate a partially localized central charge in the first excited state Using experimental results and comparing them with theoretical calculations we estimate that the electronic effects from a single thienothiophene unit spreads over seven to nine adjacent units through pi-conjugation along the oligomers C1 [Guo, Jianchang; Liang, Yongye; He, Feng; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Guo, Jianchang; Liang, Yongye; He, Feng; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Szarko, Jodi M.; Rolczynski, Brian S.; Guo, Jianchang; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Argonne NW Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. [Szarko, Jodi M.; Rolczynski, Brian S.; Guo, Jianchang; Mara, Michael W.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Szarko, Jodi M.; Rolczynski, Brian S.; Mara, Michael W.; Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Yu, LP (reprint author), Univ Chicago, Dept Chem, 929 E 57th St, Chicago, IL 60637 USA. RI Liang, Yongye/D-1099-2010; Liang, Yongye/D-9275-2012; He, Feng/J-2878-2014; OI He, Feng/0000-0002-8596-1366; Szarko, Jodi/0000-0002-2181-9408 FU Division of Chemical Sciences Office of Basic Energy Sciences; U S Department of Energy [DE AC02-06CH11357]; National Science Foundation; University of Chicago; Northwestern University; U S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE SC0001059] FX This work is supported by the Division of Chemical Sciences Office of Basic Energy Sciences the U S Department of Energy under contract DE AC02-06CH11357 (for L X C) We gratefully acknowledge the financial support of the National Science Foundation and the NSF MRSEC program at the University of Chicago The UC/ANL collaborative seed grant (L Y and L X C) and the Setup fund from Northwestern University (L X C) provided partial support of this research The most recent fluorescence upconversion anisotropy work was supported as part of the ANSER Center an Energy Frontier Research Center funded by the U S Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE SC0001059 We would also like to thank Carmen Herrmann for helpful discussions NR 59 TC 18 Z9 18 U1 4 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14505 EP 14513 DI 10.1021/jp101925b PG 9 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000047 PM 20491461 ER PT J AU Lockard, JV Kabehie, S Zink, JI Smolentsev, G Soldatov, A Chen, LX AF Lockard, Jenny V. Kabehie, Sanaz Zink, Jeffrey I. Smolentsev, Grigory Soldatov, Alexander Chen, Lin X. TI Influence of Ligand Substitution on Excited State Structural Dynamics in Cu(I) Bisphenanthroline Complexes SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-STRUCTURES; ENERGY-TRANSFER; COPPER(I) PHENANTHROLINES; PHOTOPHYSICAL PROPERTIES; INORGANIC EXCIPLEXES; CU(NN)(2)(+) SYSTEMS; CU(NN)2+ SYSTEMS; SOLID-STATE; X-RAY; CRYSTAL AB This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu-I diimine complexes Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu-I(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline) [Cu-I(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu-I(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states Similarities between the [Cu-I(detp)(2)](+) and [Cu-I(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions The solution-phase X-ray absorption spectra of [Cu-I(detp)(2)](+), [Cu-I(phen)(2)](+), and [Cu-I(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region C1 [Lockard, Jenny V.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chen, Lin X.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kabehie, Sanaz; Zink, Jeffrey I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Smolentsev, Grigory; Soldatov, Alexander] So Fed Univ, Res Ctr Nanoscale Struct Matter, Rostov Na Donu 344090, Russia. [Smolentsev, Grigory] Lund Univ, Dept Chem Phys, SE-22100 Lund, Sweden. RP Lockard, JV (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Soldatov, Alexander/E-9323-2012 OI Soldatov, Alexander/0000-0001-8411-0546 FU U S Department of Energy Office of Science, Office of Basic Energy Sciences [DE AC02-06CH11357, DE-AC0206CH11357]; Joint Civilian Research and Development Fund [U S RUC1 2870 RO 07]; Russian Foundation of Basic Research (Russia) [07 03 91142]; ERC; NSF [NSF CHE 0809384] FX We would like to acknowledge the support by the U S Department of Energy Office of Science, Office of Basic Energy Sciences under Contracts DE AC02-06CH11357 Work at the Advanced Photon Source was supported by the U S Department of Energy Office of Science Office of Basic Energy Sciences under Contract No DE-AC02 06CH11357 The research is supported by the Joint Civilian Research and Development Fund Grant (U S RUC1 2870 RO 07)/Russian Foundation of Basic Research (Russia, 07 03 91142) Work of G S was partially supported by ERC Advanced investigator grant to V Sundstrom VISCHEM 226136 The work of SK and JIZ was supported by the NSF grant NSF CHE 0809384 We thank Dr Karen Mulfort for synthesizing the [Cu(I)phen2]+ reference compound and for NMR characterization of the [Cu(I)(detp)2]+ complex and Drs Xiaoyi Zhang and Klaus Attenkofer of the Advanced Photon Source for the assistance in beamline operation NR 50 TC 27 Z9 27 U1 2 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14521 EP 14527 DI 10.1021/jp102278u PG 7 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000049 PM 20666433 ER PT J AU Jung, H Gulis, G Gupta, S Redding, K Gosztola, DJ Wiederrecht, GP Stroscio, MA Dutta, M AF Jung, Hyeson Gulis, Galina Gupta, Subhadra Redding, Kevin Gosztola, David J. Wiederrecht, Gary P. Stroscio, Michael A. Dutta, Mitra TI Optical and Electrical Measurement of Energy Transfer between Nanocrystalline Quantum Dots and Photosystem I SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CHLAMYDOMONAS-REINHARDTII; REACTION CENTERS; RESOLUTION; TRANSPORT; DEVICES; DONORS AB In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSI!) In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process Our PL experiments showed that emission from the NQDs is quenched and the fluorescence from PSI is enhanced Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI This nonradiative energy transfer occurs in similar to 6 ps Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse C1 [Jung, Hyeson; Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Elect Engn, Chicago, IL 60607 USA. [Gulis, Galina; Gupta, Subhadra] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [Redding, Kevin] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Gosztola, David J.; Wiederrecht, Gary P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Stroscio, Michael A.] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. [Stroscio, Michael A.; Dutta, Mitra] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Dutta, M (reprint author), Univ Illinois, Dept Elect Engn, Chicago, IL 60607 USA. RI Gosztola, David/D-9320-2011 OI Gosztola, David/0000-0003-2674-1379 FU NSF [MCB 0854851]; U S Department of Energy, Office of Science Office of Basic Energy Sciences [DE AC02 06CH11357, DE SC0001059] FX We thank Prof P T Snee in the Depart merit of Chemistry at the University of Illinois at Chicago for providing the CdSe NQDs Work in KR s laboratory was supported by a CAREER award from the NSF (MCB 0854851) Use of the Center for Nanoscale Materials was supported by the U S Department of Energy Office of Science Office of Basic Energy Sciences under Contract No DE AC02 06CH11357 G P W also acknowledges support from the Argonne Northwestern Solar Energy Research Center an Energy Frontier Research Center funded by the US Department of Energy, Office of Science Office of Basic Energy Sciences under Award Number DE SC0001059 NR 27 TC 4 Z9 5 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14544 EP 14549 DI 10.1021/jp102291e PG 6 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000052 PM 20806934 ER PT J AU Mulfort, KL Tiede, DM AF Mulfort, Karen L. Tiede, David M. TI Supramolecular Cobaloxime Assemblies for H-2 Photocatalysis An Initial Solution State Structure-Function Analysis SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID PHOTOINDUCED ELECTRON-TRANSFER; ELECTROCATALYTIC HYDROGEN EVOLUTION; PHOTOPHYSICAL PROPERTIES; HOMOGENEOUS SYSTEM; LOW OVERPOTENTIALS; CHARGE SEPARATION; COMPLEXES; DONOR; ACCEPTOR; ENERGY AB In this report we have investigated the correlations between structure and light-induced electron transfer of one known and three new axially coordinated cobaloxime-based supramolecular photocatalysts for the reduction of protons to hydrogen Solution-phase X-ray scattering and ultrafast transient optical spectroscopy analyses were used in tandem to correlate the self-assembled photocatalysts structural integrity in solution with electron transfer and charge separation between the photosensitizer and catalyst fragments Biphasic excited state decay kinetics were observed for several of the assemblies, suggesting that configurational dispersion plays a role in limiting photoinduced electron transfer Notably, an assembly featuring a "push-pull" donor-photosensitizer-acceptor triad motif exhibits considerable ultrafast excited state quenching and, of the assemblies examined presents the strongest opportunity for efficient solar energy conversion These results will assist in the design and development of next-generation supramolecular photocatalyst architectures C1 [Mulfort, Karen L.; Tiede, David M.] Argonne Natl Lab, Div Chem Sci & Engn, Argonne, IL 60439 USA. RP Tiede, DM (reprint author), Argonne Natl Lab, Div Chem Sci & Engn, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Division of Chemical Sciences, Geosciences, and Biosciences Office of Basic Energy Sciences of the U S Department of Energy [DE-AC02 06CH11357]; U S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE AC02 06CH11357]; Argonne National Lab FX This work was funded by the Division of Chemical Sciences, Geosciences, and Biosciences Office of Basic Energy Sciences of the U S Department of Energy through Grant DE-AC02 06CH11357 Use of the Center for Nanoscale Materials was supported by the U S Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No DE AC02 06CH11357 We thank Dr David J Gosztola for his expert assistance with the transient absorption facility at the Center for Nanoscale Materials of Argonne National Laboratory Dr Jenny V Lockard for initial transient absorption measurements and Professor Lin X Chen for insightful discussions We also thank the staff at Sector 12 of the Advanced Photon Source, in particular Dr Soenke Seifert and Dr Nadia Leyarovska K M gratefully acknowledges a Director s Postdoctoral Fellowship from Argonne National Lab NR 69 TC 35 Z9 35 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14572 EP 14581 DI 10.1021/jp1023636 PG 10 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000056 PM 20593845 ER PT J AU Cave, RJ Edwards, ST Kouzelos, JA Newton, MD AF Cave, Robert J. Edwards, Stephen T. Kouzelos, J. Andrew Newton, Marshall D. TI Reduced Electronic Spaces for Modeling Donor/Acceptor Interactions SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TRANSFER MATRIX-ELEMENTS; CREUTZ-TAUBE ION; TRANSITION-METAL-COMPLEXES; GENERALIZED MULLIKEN-HUSH; CHARGE-TRANSFER COMPLEXES; AB-INITIO; MIXED-VALENCE; MOLECULAR CALCULATIONS; BLOCK DIAGONALIZATION; COUPLING ELEMENT AB Diabatic states for donor (D) and acceptor (A) interactions in electron transfer (ET) processes are formulated and evaluated, along with coupling elements (H-DA) and effective D/A separation distances (r(DA)), for reduced electronic spaces of variable size, using the generalized Mulliken Hush model (GMH), applicable to an arbitrary state space and nuclear configuration, and encompassing Robin Day class III and as well as class II situations Once the electronic state space is selected (a set of n >= 2 adiabatic states approximated by an orbital space based on an effective 1-electron (1-e) Hamiltonian), the charge-localized GMH diabatic states are obtained as the eigenstates of the dipole moment operator, with rotations to yield locally adiabatic states for sites with multiple states The 1-e states and energies are expressed in terms of Kohn-Sham orbitals and orbital energies Addressing questions as to whether the estimate of H-DA "improves" as one increases n and in what sense the GMH approach "converges with n we carry out calculations for three mixed-valence binuclear Ru complexes, from which we conclude that the 2-state (2-st) model gives the most appropriate estimate of the effective coupling, similar (to within a rms deviation of <= 15%) to coupling elements obtained by superexchange correction of HDA values based on larger spaces (n = 3-6), and thus yielding a quasi-invariant value for Him over the range explored in the calculations (n = 2-6) An analysis of the coupling and associated D and A states shows that the 2 st coupling involves crucial mixing with intervening bridge states (D and A "tails"), while increasingly larger state spaces for the same system yield increasingly more localized D and A states (and weaker coupling), with H-DA tending to approach the limit of "bare" or "through space" coupling These results help to reconcile seemingly contradictory assertions in the recent literature regarding the proper role of multistate frameworks in the formulation of coupling for both intra- and intermolecular ET systems The present results are compared in detail with other reported results C1 [Cave, Robert J.; Edwards, Stephen T.; Kouzelos, J. Andrew] Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. [Newton, Marshall D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Cave, RJ (reprint author), Harvey Mudd Coll, Dept Chem, Claremont, CA 91711 USA. FU National Science Foundation [CHE-9731634, CHE 0353199]; Donors of the Petroleum Research Fund; Harvey Mudd College; Division of Chemical Sciences Geosciences, and Biosciences Office of Basic Energy Sciences of the US Department of Energy [DE-AC02 98CH10886] FX R J C gratefully acknowledges financial support from the National Science Foundation (CHE-9731634, CHE 0353199), the Donors of the Petroleum Research Fund and Harvey Mudd College The Division of Chemical Sciences Geosciences, and Biosciences Office of Basic Energy Sciences of the US Department of Energy is gratefully acknowledged for funding the research carried out by M D N through Grant DE-AC02 98CH10886 NR 85 TC 16 Z9 16 U1 2 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14631 EP 14641 DI 10.1021/jp102353q PG 11 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000063 PM 21070059 ER PT J AU Finkelstein-Shapiro, D Tarakeshwar, P Rajh, T Mujica, V AF Finkelstein-Shapiro, Daniel Tarakeshwar, Pilarisetty Rajh, Tijana Mujica, Vladimiro TI Photoinduced Kinetics of SERS in Bioinorganic Hybrid Systems A Case Study Dopamine-TiO2 SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ENHANCED RAMAN-SCATTERING; TIO2 NANOPARTICLES; SILVER ELECTRODE; QUANTUM DOTS; SURFACE; SPECTROSCOPY; SIZE; MOLECULES; FILMS; PYRIDINE AB The reported observation of SERS on semiconductors has confirmed the feasibility of distinguishing the charge-transfer mechanism from the electromagnetic one responsible for the enhancement of the signal in metal nanoparticles Experimental investigation of the well characterized dopamine-TiO2 system revealed an unexpected dependence on coverage and size We propose here a theoretical model applicable to SERS on semiconducting substrates that explains this remarkable behavior The model is based on a competition mechanism arising from the formation of an electron gas in the conduction band of the semiconductor due to the photoexcitation of a charge-transfer complex Taking into account the two competing effects, a linear increase in the Raman intensity arising from increasing coverage and a quenching effect due to the photon absorption by the electron gas provides excellent agreement between our model and the experiment for 5 nm nanoparticles Discrepancies for the case of 2 nm nanoparticles are attributed to quantum confinement, an effect that is investigated elsewhere C1 [Finkelstein-Shapiro, Daniel; Mujica, Vladimiro] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Tarakeshwar, Pilarisetty; Mujica, Vladimiro] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Rajh, Tijana; Mujica, Vladimiro] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Finkelstein-Shapiro, D (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Tarakeshwar, P./B-6609-2008; OI Tarakeshwar, P./0000-0002-0893-0670; Finkelstein Shapiro, Daniel/0000-0001-8015-5376 NR 34 TC 16 Z9 16 U1 6 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14642 EP 14645 DI 10.1021/jp1023718 PG 4 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000064 PM 20687568 ER PT J AU Becht, GA Lee, S Seifert, S Firestone, MA AF Becht, Gregory A. Lee, Sungwon Seifert, Sonke Firestone, Millicent A. TI Solvent Tunable Optical Properties of a Polymerized Vinyl- and Thienyl-Substituted Ionic Liquid SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID CONJUGATED POLYMERS; PHYSICAL-PROPERTIES; SOLID-STATE; POLYTHIOPHENE; THIOPHENE; DERIVATIVES; DESIGN; OLIGOTHIOPHENES; ASSEMBLIES; COMPOSITE AB Thermal free radical polymerization of a self-assembled, bifunctional imidazolium-based ionic liquid (IL) monomer bearing both vinyl and thienyl groups is reported FT-IR spectroscopy proves that the polymerization occurs through both the vinyl and thienyl groups The polymer is resistant to swelling in water and common organic solvents The as-synthesized polymer can be readily chemically doped and de-doped Small-angle X-ray scattering studies indicate that the dried polymer adopts a weakly ordered lamellar structure The p-doped, ethanol-solvated polymer undergoes a structural conversion to a nonlamellar phase The absorption and photoluminescence spectra can be modulated in both the neutral (thiophene) and p-doped states depending on whether the polymer is dry or ethanol-solvated The results demonstrate the possibility of incorporating solvent responsive optical characteristics in a it-conjugated polymer C1 [Becht, Gregory A.; Lee, Sungwon; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Seifert, Sonke] Argonne Natl Lab, X Ray Sci Div, Argonne, IL 60439 USA. RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Office of Basic Energy Sciences Division of Materials Sciences United States Department of Energy [DE AC02 06CH11357] FX This work was supported by the Office of Basic Energy Sciences Division of Materials Sciences United States Department of Energy under Contract No DE AC02 06CH11357 to the UChicago, LLC NR 45 TC 10 Z9 10 U1 3 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 18 PY 2010 VL 114 IS 45 BP 14703 EP 14711 DI 10.1021/jp102904e PG 9 WC Chemistry, Physical SC Chemistry GA 677US UT WOS:000284018000072 PM 20845948 ER PT J AU Prozorov, R Tanatar, MA Shen, B Cheng, P Wen, HH Bud'ko, SL Canfield, PC AF Prozorov, R. Tanatar, M. A. Shen, Bing Cheng, Peng Wen, Hai-Hu Bud'ko, S. L. Canfield, P. C. TI Anomalous Meissner effect in pnictide superconductors SO PHYSICAL REVIEW B LA English DT Article ID UPPER CRITICAL-FIELD; SURFACE-BARRIER; SINGLE-CRYSTALS AB The Meissner effect has been studied in Ba(Fe0.926Co0.074)(2)As-2 and Ba0.6K0.4Fe2As2 single crystals and compared to well known, type-II superconductors LuNi2B2C and V3Si. Whereas flux penetration is mostly determined by the bulk pinning (and, perhaps, surface barrier) resulting in a large negative magnetization, the flux expulsion upon cooling in a magnetic field is very small, which could also be due to pinning and/or surface-barrier effects. However, in stark contrast with the expected behavior, the amount of the expelled flux increases almost linearly with the applied magnetic field, at least up to our maximum field of 5.5 T, which far exceeds the upper limit for the surface barrier. One interpretation of the observed behavior is that there is a field-driven suppression of magnetic pair breaking. C1 [Prozorov, R.; Tanatar, M. A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Prozorov, R.; Tanatar, M. A.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shen, Bing; Cheng, Peng; Wen, Hai-Hu] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. RP Prozorov, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM prozorov@ameslab.gov RI Prozorov, Ruslan/A-2487-2008; Canfield, Paul/H-2698-2014 OI Prozorov, Ruslan/0000-0002-8088-6096; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; Natural Science Foundation of China; Ministry of Science and Technology of China [2011CB605900]; Alfred P. Sloan Foundation FX We thank V. G. Kogan, J. R. Clem, A. Gurevich, L. Burlachkov, and E. Phideaux for useful discussions and D. K. Christen for providing V3Si crystal. The work at The Ames National Laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH11358. The work in Beijing (growth of K-doped BaFe2As2 crystals and VSM measurement) was partially supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (973 Project No. 2011CB605900). R. P. acknowledges support from the Alfred P. Sloan Foundation. NR 29 TC 14 Z9 14 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 18 PY 2010 VL 82 IS 18 AR 180513 DI 10.1103/PhysRevB.82.180513 PG 4 WC Physics, Condensed Matter SC Physics GA 682JN UT WOS:000284398200002 ER PT J AU Salje, EKH Safarik, DJ Modic, KA Gubernatis, JE Cooley, JC Taylor, RD Mihaila, B Saxena, A Lookman, T Smith, JL Fisher, RA Pasternak, M Opeil, CP Siegrist, T Littlewood, PB Lashley, JC AF Salje, E. K. H. Safarik, D. J. Modic, K. A. Gubernatis, J. E. Cooley, J. C. Taylor, R. D. Mihaila, B. Saxena, A. Lookman, T. Smith, J. L. Fisher, R. A. Pasternak, M. Opeil, C. P. Siegrist, T. Littlewood, P. B. Lashley, J. C. TI Tin telluride: A weakly co-elastic metal SO PHYSICAL REVIEW B LA English DT Article ID STRUCTURAL PHASE-TRANSITIONS; LOW CARRIER CONCENTRATION; IV-VI-SEMICONDUCTORS; SOFT TO-PHONON; LOW-TEMPERATURE; HEAT-CAPACITY; MEAN-FIELD; SNTE-MNTE; RAMAN-SCATTERING; LANDAU THEORY AB We report resonant ultrasound spectroscopy (RUS), dilatometry/magnetostriction, magnetotransport, magnetization, specific-heat, and Sn-119 Mossbauer spectroscopy measurements on SnTe and Sn0.995Cr0.005Te. Hall measurements at T=77 K indicate that our Bridgman-grown single crystals have a p-type carrier concentration f 3.4 x 10(19) cm(-3) and that our Cr-doped crystals have an n-type concentration of 5.8 x 10(22) cm(-3). Although our SnTe crystals are diamagnetic over the temperature range 2 <= T <= 1100 K, the Cr-doped crystals are room-temperature ferromagnets with a Curie temperature of 294 K. For each sample type, three-terminal capacitive dilatometry measurements detect a subtle 0.5 mu m distortion at T-c approximate to 85 K. Whereas our RUS measurements on SnTe show elastic hardening near the structural transition, pointing to co-elastic behavior, similar measurements on Sn0.995Cr0.005Te show a pronounced softening, pointing to ferroelastic behavior. Effective Debye temperature, theta(D), values of SnTe obtained from Sn-119 Mossbauer studies show a hardening of phonons in the range 60-115 K (theta(D) = 162 K) as compared with the 100-300 K range (theta(D)=150 K). In addition, a precursor softening extending over approximately 100 K anticipates this collapse at the critical temperature and quantitative analysis over three decades of its reduced modulus finds Delta C-44/C-44=A vertical bar(T-T-0)/T-0 vertical bar(-kappa) with kappa = 0.50 +/- 0.02, a value indicating a three-dimensional softening of phonon branches at a temperature T-0 similar to 75 K, considerably below T-c. We suggest that the differences in these two types of elastic behaviors lie in the absence of elastic domain-wall motion in the one case and their nucleation in the other. C1 [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Salje, E. K. H.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Fisher, R. A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Pasternak, M.] Tel Aviv Univ, IL-69978 Ramat Aviv, Israel. [Opeil, C. P.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Siegrist, T.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Littlewood, P. B.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. RP Salje, EKH (reprint author), Univ Cambridge, Dept Earth Sci, Downing St, Cambridge CB2 3EQ, England. RI Littlewood, Peter/B-7746-2008; Mihaila, Bogdan/D-8795-2013; Cooley, Jason/E-4163-2013; Salje, Ekhard/M-2931-2013; OI Mihaila, Bogdan/0000-0002-1489-8814; Salje, Ekhard/0000-0002-8781-6154; Safarik, Douglas/0000-0001-8648-9377; Lookman, Turab/0000-0001-8122-5671 FU Department of Energy's Laboratory Directed Research and Development Program FX This work was supported in part by the Department of Energy's Laboratory Directed Research and Development Program. NR 58 TC 19 Z9 19 U1 3 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 18 PY 2010 VL 82 IS 18 AR 184112 DI 10.1103/PhysRevB.82.184112 PG 9 WC Physics, Condensed Matter SC Physics GA 682JN UT WOS:000284398200004 ER PT J AU Shamoto, S Ishikado, M Christianson, AD Lumsden, MD Wakimoto, S Kodama, K Iyo, A Arai, M AF Shamoto, Shin-ichi Ishikado, Motoyuki Christianson, Andrew D. Lumsden, Mark D. Wakimoto, Shuichi Kodama, Katsuaki Iyo, Akira Arai, Masatoshi TI Inelastic neutron scattering study of the resonance mode in the optimally doped pnictide superconductor LaFeAsO0.92F0.08 SO PHYSICAL REVIEW B LA English DT Article AB An optimally doped iron-based superconductor LaFeAsO0.92F0.08 with T-c=29 K has been studied by inelastic powder neutron scattering. The magnetic excitation at Q=1.15 angstrom(-1) is enhanced below T-c, leading to a peak at E-res similar to 13 meV as the resonance mode, in addition to the formation of a gap at low energy below the crossover energy Delta(c) similar to 10 meV. The peak energy at Q=1.15 angstrom(-1) corresponds to 5.2k(B)T(c) in good agreement with the other values of resonance mode observed in iron-based superconductors. Although the phonon density of states has a peak at the same energy as the resonance mode in the present superconductor, the Q dependence is consistent with the resonance being of predominately magnetic origin. C1 [Shamoto, Shin-ichi; Ishikado, Motoyuki; Wakimoto, Shuichi; Kodama, Katsuaki] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Shamoto, Shin-ichi; Ishikado, Motoyuki; Wakimoto, Shuichi; Kodama, Katsuaki; Iyo, Akira; Arai, Masatoshi] JST, Transformat Res Project Iron Pnictides TRIP, Tokyo 1020075, Japan. [Christianson, Andrew D.; Lumsden, Mark D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Iyo, Akira] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058562, Japan. [Arai, Masatoshi] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki 3191195, Japan. RP Shamoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. RI christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012 OI christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; JST, TRIP; [17001001] FX We acknowledge F. Esaka, H. Eisaki, and J. A. Fernandez-Baca for their help and fruitful discussions with K. Kakurai, M. Machida, T. Egami, and K. Kuroki. The experiment was conducted under U.S.-Japan collaboration program and with support of the Grant-in-Aid for Specially Promoted Research (No. 17001001) and JST, TRIP. This work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 26 TC 28 Z9 28 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 18 PY 2010 VL 82 IS 17 AR 172508 DI 10.1103/PhysRevB.82.172508 PG 4 WC Physics, Condensed Matter SC Physics GA 682IY UT WOS:000284396200003 ER PT J AU Chiara, CJ Stefanescu, I Hoteling, N Walters, WB Janssens, RVF Broda, R Carpenter, MP Fornal, B Hecht, AA Krolas, W Lauritsen, T Pawlat, T Seweryniak, D Wang, X Wohr, A Wrzesinski, J Zhu, S AF Chiara, C. J. Stefanescu, I. Hoteling, N. Walters, W. B. Janssens, R. V. F. Broda, R. Carpenter, M. P. Fornal, B. Hecht, A. A. Krolas, W. Lauritsen, T. Pawlat, T. Seweryniak, D. Wang, X. Woehr, A. Wrzesinski, J. Zhu, S. TI Influence of the nu g(9/2) orbital on level structures of neutron-rich (61,62)Mn36,37 SO PHYSICAL REVIEW C LA English DT Article ID ISOTOPES; NUCLEI; DECAY; MODEL AB Level structures in Mn-61,62(36,37) were studied with Gammasphere in the reaction of a 430-MeV Ni-64 beam and a thick U-238 target. The newly identified levels decrease in excitation energy compared to the analogous structures in the lighter Mn isotopes and behave similarly to states in the corresponding Fe isotones that involve g(9/2) neutron excitations. This behavior illustrates the importance of the inclusion of the nu g(9/2) orbital in any realistic shell-model calculations in this region. C1 [Chiara, C. J.; Stefanescu, I.; Hoteling, N.; Walters, W. B.; Hecht, A. A.; Woehr, A.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chiara, C. J.; Stefanescu, I.; Hoteling, N.; Janssens, R. V. F.; Carpenter, M. P.; Hecht, A. A.; Lauritsen, T.; Seweryniak, D.; Wang, X.; Woehr, A.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Broda, R.; Fornal, B.; Krolas, W.; Pawlat, T.; Wrzesinski, J.] Niewodniczanski Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Krolas, W.] Joint Inst Heavy Ion Res, Oak Ridge, TN 37831 USA. [Wang, X.; Woehr, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Chiara, CJ (reprint author), Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RI Krolas, Wojciech/N-9391-2013; Carpenter, Michael/E-4287-2015 OI Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-FG02-94-ER40834, DE-AC02-06CH11357]; Polish Ministry of Science [1P03B05929, NN202103333] FX This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-94-ER40834 and Contract No. DE-AC02-06CH11357, and the Polish Ministry of Science under Contracts No. 1P03B05929 and No. NN202103333. NR 23 TC 18 Z9 18 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 18 PY 2010 VL 82 IS 5 AR 054313 DI 10.1103/PhysRevC.82.054313 PG 5 WC Physics, Nuclear SC Physics GA 713IR UT WOS:000286731900001 ER PT J AU Aguilar-Arevalo, AA Anderson, CE Bazarko, AO Brice, SJ Brown, BC Bugel, L Cao, J Coney, L Conrad, JM Cox, DC Curioni, A Dharmapalan, R Djurcic, Z Finley, DA Fleming, BT Ford, R Garcia, FG Garvey, GT Grange, J Green, C Green, JA Hart, TL Hawker, E Imlay, R Johnson, RA Karagiorgi, G Kasper, P Katori, T Kobilarcik, T Kourbanis, I Koutsoliotas, S Laird, EM Linden, SK Link, JM Liu, Y Liu, Y Louis, WC Mahn, KBM Marsh, W Mauger, C McGary, VT McGregor, G Metcalf, W Meyers, PD Mills, F Mills, GB Monroe, J Moore, CD Mousseau, J Nelson, RH Nienaber, P Nowak, JA Osmanov, B Ouedraogo, S Patterson, RB Pavlovic, Z Perevalov, D Polly, CC Prebys, E Raaf, JL Ray, H Roe, BP Russell, AD Sandberg, V Schirato, R Schmitz, D Shaevitz, MH Shoemaker, FC Smith, D Soderberg, M Sorel, M Spentzouris, P Spitz, J Stancu, I Stefanski, RJ Sung, M Tanaka, HA Tayloe, R Tzanov, M Van de Water, RG Wascko, MO White, DH Wilking, MJ Yang, HJ Zeller, GP Zimmerman, ED AF Aguilar-Arevalo, A. A. Anderson, C. E. Bazarko, A. O. Brice, S. J. Brown, B. C. Bugel, L. Cao, J. Coney, L. Conrad, J. M. Cox, D. C. Curioni, A. Dharmapalan, R. Djurcic, Z. Finley, D. A. Fleming, B. T. Ford, R. Garcia, F. G. Garvey, G. T. Grange, J. Green, C. Green, J. A. Hart, T. L. Hawker, E. Imlay, R. Johnson, R. A. Karagiorgi, G. Kasper, P. Katori, T. Kobilarcik, T. Kourbanis, I. Koutsoliotas, S. Laird, E. M. Linden, S. K. Link, J. M. Liu, Y. Liu, Y. Louis, W. C. Mahn, K. B. M. Marsh, W. Mauger, C. McGary, V. T. McGregor, G. Metcalf, W. Meyers, P. D. Mills, F. Mills, G. B. Monroe, J. Moore, C. D. Mousseau, J. Nelson, R. H. Nienaber, P. Nowak, J. A. Osmanov, B. Ouedraogo, S. Patterson, R. B. Pavlovic, Z. Perevalov, D. Polly, C. C. Prebys, E. Raaf, J. L. Ray, H. Roe, B. P. Russell, A. D. Sandberg, V. Schirato, R. Schmitz, D. Shaevitz, M. H. Shoemaker, F. C. Smith, D. Soderberg, M. Sorel, M. Spentzouris, P. Spitz, J. Stancu, I. Stefanski, R. J. Sung, M. Tanaka, H. A. Tayloe, R. Tzanov, M. Van de Water, R. G. Wascko, M. O. White, D. H. Wilking, M. J. Yang, H. J. Zeller, G. P. Zimmerman, E. D. TI Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at E-nu similar to 1 GeV SO PHYSICAL REVIEW D LA English DT Article ID STRANGE FORM-FACTORS; PION ABSORPTION; SCATTERING; PROTON; SIMULATION; DEUTERIUM; NUCLEON; PHYSICS; MU AB We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH2) as a function of four-momentum transferred squared, Q(2). It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M-A that provides a best fit for M-A = 1.39 +/- 0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q(2) has been measured. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at Q(2) - 0, Delta s, is found to be Delta s = 0.08 +/- 0.26. C1 [Dharmapalan, R.; Liu, Y.; Stancu, I.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Djurcic, Z.] Argonne Natl Lab, Argonne, IL 60439 USA. [Koutsoliotas, S.] Bucknell Univ, Lewisburg, PA 17837 USA. [Hawker, E.; Johnson, R. A.; Raaf, J. L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Coney, L.; Hart, T. L.; Nelson, R. H.; Tzanov, M.; Wilking, M. J.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Mahn, K. B. M.; Monroe, J.; Shaevitz, M. H.; Sorel, M.] Columbia Univ, New York, NY 10027 USA. [Smith, D.] Embry Riddle Aeronaut Univ, Prescott, AZ 86301 USA. [Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Green, C.; Kasper, P.; Kobilarcik, T.; Kourbanis, I.; Marsh, W.; Mills, F.; Moore, C. D.; Polly, C. C.; Prebys, E.; Russell, A. D.; Schmitz, D.; Spentzouris, P.; Stefanski, R. J.; Zeller, G. P.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Grange, J.; Mousseau, J.; Osmanov, B.; Ray, H.] Univ Florida, Gainesville, FL 32611 USA. [Cox, D. C.; Green, J. A.; Katori, T.; Tayloe, R.] Indiana Univ, Bloomington, IN 47405 USA. [Garvey, G. T.; Green, C.; Green, J. A.; Hawker, E.; Louis, W. C.; Mauger, C.; McGregor, G.; Mills, G. B.; Pavlovic, Z.; Sandberg, V.; Schirato, R.; Van de Water, R. G.; White, D. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bugel, L.; Imlay, R.; Metcalf, W.; Nowak, J. A.; Ouedraogo, S.; Sung, M.; Wascko, M. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Conrad, J. M.; Karagiorgi, G.; Katori, T.; McGary, V. T.] MIT, Cambridge, MA 02139 USA. [Aguilar-Arevalo, A. A.; Cao, J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Liu, Y.; Roe, B. P.; Yang, H. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A.] Princeton Univ, Princeton, NJ 08544 USA. [Nienaber, P.] St Marys Univ Minnesota, Winona, MN 55987 USA. [Link, J. M.; Perevalov, D.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J.] Yale Univ, New Haven, CT 06520 USA. RP Aguilar-Arevalo, AA (reprint author), Univ Alabama, Tuscaloosa, AL 35487 USA. RI Cao, Jun/G-8701-2012; Link, Jonathan/L-2560-2013; Nowak, Jaroslaw/P-2502-2016; Yang, Haijun/O-1055-2015; OI Cao, Jun/0000-0002-3586-2319; Link, Jonathan/0000-0002-1514-0650; Nowak, Jaroslaw/0000-0001-8637-5433; Aguilar-Arevalo, Alexis A./0000-0001-9279-3375 NR 53 TC 232 Z9 232 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 18 PY 2010 VL 82 IS 9 AR 092005 DI 10.1103/PhysRevD.82.092005 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 682KI UT WOS:000284402000003 ER PT J AU Kolossvary, I Bowers, KJ AF Kolossvary, Istvan Bowers, Kevin J. TI Global optimization of additive potential energy functions: Predicting binary Lennard-Jones clusters SO PHYSICAL REVIEW E LA English DT Article ID THERMODYNAMICS AB We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms. C1 [Kolossvary, Istvan] Budapest Univ Technol & Econ, Dept Chem, H-1111 Budapest, Hungary. [Kolossvary, Istvan] BIOKOL Res LLC, Madison, NJ 07940 USA. [Bowers, Kevin J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kolossvary, I (reprint author), DE Shaw Res LLC, New York, NY 10036 USA. EM istvan@kolossvary.hu NR 15 TC 7 Z9 7 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV 18 PY 2010 VL 82 IS 5 AR 056711 DI 10.1103/PhysRevE.82.056711 PN 2 PG 6 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 682LT UT WOS:000284405800005 PM 21230623 ER PT J AU Yoon, M Tomanek, D AF Yoon, Mina Tomanek, David TI Equilibrium structure of ferrofluid aggregates SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID PHASE-DIAGRAMS; FLUIDS; SIMULATION AB We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single-and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles. C1 [Yoon, Mina] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yoon, Mina] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Tomanek, David] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Yoon, M (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Tomanek, David/B-3275-2009; Yoon, Mina/A-1965-2016 OI Tomanek, David/0000-0003-1131-4788; Yoon, Mina/0000-0002-1317-3301 FU National Science Foundation [EEC-0832785]; Materials Science and Engineering Division, Office of Basic Energy Sciences, US Department of Energy [ERKCS81]; Max Planck Society, Germany FX This work has been funded by the National Science Foundation Cooperative Agreement # EEC-0832785, titled 'NSEC: Center for High-rate Nanomanufacturing'. Computational resources have been provided by the Michigan State University High Performance Computing Center. MY is sponsored by the Materials Science and Engineering Division, Office of Basic Energy Sciences, US Department of Energy (Grant No. ERKCS81) and the Max Planck Society, Germany. We acknowledge useful discussions with Savas Berber and the research group of Weili Luo. NR 16 TC 13 Z9 13 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 17 PY 2010 VL 22 IS 45 AR 455105 DI 10.1088/0953-8984/22/45/455105 PG 6 WC Physics, Condensed Matter SC Physics GA 673HZ UT WOS:000283651400041 PM 21339625 ER PT J AU Zilman, A Bel, G AF Zilman, A. Bel, G. TI Crowding effects in non-equilibrium transport through nano-channels SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID FACILITATED MEMBRANE-TRANSPORT; NUCLEAR-PORE COMPLEX; SELECTIVE TRANSPORT; SINGLE-MOLECULE; OPEN BOUNDARIES; PROTEIN IMPORT; TRANSLOCATION; PERMEATION; DIFFUSION; BETA AB Transport through nano-channels plays an important role in many biological processes and industrial applications. Gaining insights into the functioning of biological transport processes and the design of man-made nano-devices requires an understanding of the basic physics of such transport. A simple exclusion process has proven to be very useful in explaining the properties of several artificial and biological nano-channels. It is particularly useful for modeling the influence of inter-particle interactions on transport characteristics. In this paper, we explore several models of the exclusion process using a mean field approach and computer simulations. We examine the effects of crowding inside the channel and in its immediate vicinity on the mean flux and the transport times of single molecules. Finally, we discuss the robustness of the theory's predictions with respect to the crucial characteristics of the hindered diffusion in nano-channels that need to be included in the model. C1 [Zilman, A.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. [Zilman, A.; Bel, G.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Div Theoret, Los Alamos, NM 87545 USA. [Bel, G.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Zilman, A (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys Grp, POB 1663, Los Alamos, NM 87545 USA. RI BEL, GOLAN/F-1573-2012; Bel, Golan/C-6528-2008 OI BEL, GOLAN/0000-0002-3307-9478; Bel, Golan/0000-0002-3307-9478 FU US Department of Energy [DE-AC52-06NA25396] FX This work was performed under the auspices of the US Department of Energy under contract DE-AC52-06NA25396. NR 58 TC 8 Z9 8 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 17 PY 2010 VL 22 IS 45 AR 454130 DI 10.1088/0953-8984/22/45/454130 PG 11 WC Physics, Condensed Matter SC Physics GA 673HZ UT WOS:000283651400032 PM 21339616 ER PT J AU Snezhko, A Barlan, K Aranson, IS Gelfand, VI AF Snezhko, Alexey Barlan, Kari Aranson, Igor S. Gelfand, Vladimir I. TI Statistics of Active Transport in Xenopus Melanophores Cells SO BIOPHYSICAL JOURNAL LA English DT Article ID MOLECULAR MOTORS; ORGANELLE TRANSPORT; FILAMENTS AB The transport of cell cargo, such as organelles and protein complexes in the cytoplasm, is determined by cooperative action of molecular motors stepping along polar cytoskeletal elements. Analysis of transport of individual organelles generated useful information about the properties of the motor proteins and underlying cytoskeletal elements. In this work, for the first time (to our knowledge), we study collective movement of multiple organelles using Xenopus melanophores, pigment cells that translocate several thousand of pigment granules (melanosomes), spherical organelles of a diameter of similar to 1 mu m. These cells disperse melanosomes in the cytoplasm in response to high cytoplasmic cAMP, while at low cAMP melanosomes cluster at the cell center. Obtained results suggest spatial and temporal organization, characterized by strong correlations between movement of neighboring organelles, with correlation length of similar to 4 mu m and pair lifetime similar to 5 s. Furthermore, velocity statistics revealed strongly non-Gaussian velocity distribution with high velocity tails demonstrating exponential behavior suggestive of strong velocity correlations. Depolymerization of vimentin intermediate filaments using a dominant-negative vimentin mutant or actin with cytochalasin B reduced correlation of behavior of individual particles. Based on our analysis, we concluded that steric repulsion is dominant, but both intermediate filaments and actin microfilaments are involved in dynamic cross-linking organelles in the cytoplasm. C1 [Snezhko, Alexey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Barlan, Kari; Gelfand, Vladimir I.] Northwestern Univ, Feinberg Sch Med, Dept Cell & Mol Biol, Chicago, IL 60611 USA. [Aranson, Igor S.] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA. RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM snezhko@anl.gov RI Aranson, Igor/I-4060-2013 OI Gelfand, Vladimir/0000-0002-6361-2798; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357]; National Institutes of Health [GM-52111] FX A.S. and I.S.A. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering (contract No. DE AC02-06CH11357). K.B. and V.I.G. were supported by the National Institutes of Health (grant No. GM-52111). NR 18 TC 6 Z9 6 U1 0 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD NOV 17 PY 2010 VL 99 IS 10 BP 3216 EP 3223 DI 10.1016/j.bpj.2010.09.065 PG 8 WC Biophysics SC Biophysics GA 682YK UT WOS:000284438700015 PM 21081069 ER PT J AU Varma, S Rempe, SB AF Varma, Sameer Rempe, Susan B. TI Multibody Effects in Ion Binding and Selectivity SO BIOPHYSICAL JOURNAL LA English DT Article ID KCSA POTASSIUM CHANNEL; FREE-ENERGY; MOLECULAR SIMULATION; WATER CLUSTERS; FORCE-FIELD; AB-INITIO; POLARIZATION; SOLVATION; HYDRATION; K+ AB Selective binding of ions to biomolecules plays a vital role in numerous biological processes. To understand the specific role of induced effects in selective ion binding, we use quantum chemical and pairwise-additive force-field simulations to study Na(+) and K(+) binding to various small molecules representative of ion binding functional groups in biomolecules. These studies indicate that electronic polarization significantly contributes to both absolute and relative ion-binding affinities. Furthermore, this contribution depends on both the number and the specific chemistries of the coordinating molecules, thus highlighting the complexity of ion-ligand interactions. Specifically, multibody interactions reduce as well as enhance the dipole moments of the ion-coordinating molecules, thereby affecting observables like coordination number distributions of ions. The differential polarization induced in molecules coordinating these two equivalently charged, but different-sized, ions also depends upon the number of coordinating molecules, showing the importance of multibody effects in distinguishing these ions thermodynamically. Because even small differences in ionic radii (0.4 angstrom for Na(+) and K(+)) produce differential polarization trends critical to distinguishing ions thermodynamically, it is likely that polarization plays an important role in thermodynamically distinguishing other ions and charged chemical and biological functional groups. C1 [Varma, Sameer; Rempe, Susan B.] Sandia Natl Labs, Biol & Mat Sci Ctr, Albuquerque, NM 87185 USA. RP Varma, S (reprint author), IIT, Biol Chem & Phys Sci Div, Chicago, IL 60616 USA. EM svarma@iit.edu; slrempe@sandia.gov RI Rempe, Susan/H-1979-2011 FU National Institutes of Health, Bethesda, MD; Sandia's Laboratory; U.S. Department of Energy, National Nuclear Security Administration [DE-AC04-94AL8500] FX This work was supported in part by the National Institutes of Health, Bethesda, MD, through its Road Map for Medical Research and in part by Sandia's Laboratory Directed Research and Development program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy, National Nuclear Security Administration, under contract No. DE-AC04-94AL8500. NR 46 TC 22 Z9 22 U1 0 U2 16 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD NOV 17 PY 2010 VL 99 IS 10 BP 3394 EP 3401 DI 10.1016/j.bpj.2010.09.019 PG 8 WC Biophysics SC Biophysics GA 682YK UT WOS:000284438700034 PM 21081088 ER PT J AU Veser, G AF Veser, Gotz TI Multiscale process intensification for catalytic partial oxidation of methane From nanostructured catalysts to integrated reactor concepts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 6th World Congress on Oxidation Catalysis (6WCOC) CY JUL 05-10, 2009 CL Lille, FRANCE DE Process intensification; Catalytic partial oxidation; Methane; Syngas; Integrated reactors; Nanocatalysts ID CHEMICAL-LOOPING COMBUSTION; REVERSE-FLOW REACTOR; TEMPERATURE PARTIAL OXIDATION; SYNTHESIS GAS; MULTIFUNCTIONAL REACTORS; HETEROGENEOUS CATALYSIS; OPERATION; DESIGN; SCALE; BED AB Process intensification (PI) is an exciting area of chemical and process engineering with increasing Importance in the design and development of cleaner more efficient and more sustainable processes The present contribution reviews work from the author s laboratory on catalytic partial oxidation of methane (CPOM) as example for a multiscale approach to process intensification It is shown that regenerative heat-integration via flow reversal is an efficient way to overcome thermodynamic limitations present at autothermal reactor operation and that nano-engineered catalysts can complement and enable these reactor concepts by combining high activity with exceptional catalyst stability Most significantly the combination of heat-integration with nanostructured catalysts yields synergies which are characteristic for multiscale process intensification resulting in the present case in strongly increased syngas yields of 80% in a simple air-fed autothermal CPOM process (C) 2010 Elsevier B V All rights reserved C1 [Veser, Gotz] Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, Pittsburgh, PA 15260 USA. [Veser, Gotz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, Swanson Sch Engn, 1249 Benedum Hall, Pittsburgh, PA 15260 USA. RI Veser, Goetz/I-5727-2013 NR 69 TC 9 Z9 10 U1 2 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 17 PY 2010 VL 157 IS 1-4 BP 24 EP 32 DI 10.1016/j.cattod.2010.04.040 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 683UM UT WOS:000284502000005 ER PT J AU Gardner, TH Spivey, JJ Campos, A Hissam, JC Kugler, EL Roy, AD AF Gardner, Todd H. Spivey, James J. Campos, Andrew Hissam, Jason C. Kugler, Edwin L. Roy, Amitava D. TI Catalytic partial oxidation of CH4 over Ni-substituted barium hexaaluminate catalysts SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT 6th World Congress on Oxidation Catalysis (6WCOC) CY JUL 05-10, 2009 CL Lille, FRANCE DE Hexaaluminate; Partial oxidation; Nickel; Methane ID SYNTHESIS GAS; METHANE; COMBUSTION; CATION AB Ba0 75NiyAl12-yO19-delta (y = 0 2 0 4 0 6 0 8 and 1 0) catalysts were tested for the partial oxidation of CH4 at temperatures between 200 and 900 degrees C Temperature programmed reaction results indicate that light-off for the partial oxidation reaction occurred between 665 and 687 degrees C for all catalysts Isothermal runs performed at 900 C on the catalysts showed stable reaction product concentrations consistent with equilibrium Post-reaction analysts of the used catalysts showed that there are two distinct zones in the catalyst bed In a short leading edge of the bed the apparently complete consumption of oxygen leads to a catalyst which XANES analysis shows is primarily NI-substituted into the hexaaluminate phase In the downstream portion of the bed Ni is shown to be present as metallic Ni This corresponds to a reaction sequence in which the oxidation of CH4 proceeds at the Inlet until all oxygen is reacted followed by the reaction of CO2 and H2O with unreacted CH4 and its derivatives to produce the final syngas mixture From the change in the unit-cell dimensions with Ni substitution there is a clear indication that Ni2+ which has a larger ionic radius than aluminum substitutes for Al3+ in the hexaaluminate lattice in the synthesis process and there is no restructuring of the bulk hexaaluminate phase after the Ni is removed from the lattice Published by Elsevier B V C1 [Gardner, Todd H.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Spivey, James J.; Campos, Andrew] Louisiana State Univ, Cain Dept Chem Engn, Baton Rouge, LA 70803 USA. [Hissam, Jason C.; Kugler, Edwin L.] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Roy, Amitava D.] Louisiana State Univ, J Bennett Johnson Sr Ctr Adv Microstruct & Device, Baton Rouge, LA 70806 USA. RP Gardner, TH (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26505 USA. NR 20 TC 11 Z9 11 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD NOV 17 PY 2010 VL 157 IS 1-4 BP 166 EP 169 DI 10.1016/j.cattod.2010.05.033 PG 4 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 683UM UT WOS:000284502000029 ER PT J AU Zwolak, M Wilson, J Di Ventra, M AF Zwolak, Michael Wilson, James Di Ventra, Massimiliano TI Dehydration and ionic conductance quantization in nanopores SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID TRANSVERSE ELECTRONIC TRANSPORT; SOLID-STATE NANOPORES; SINGLE-STRANDED-DNA; ELECTROSTATIC PROBLEMS; TOPOLOGICAL CONTROL; POTASSIUM CHANNEL; CARBON NANOTUBES; ENERGY BARRIERS; MOLECULAR-BASIS; MASS-TRANSPORT AB There has been tremendous experimental progress in the last decade in identifying the structure and function of biological pores (ion channels) and fabricating synthetic pores. Despite this progress, many questions still remain about the mechanisms and universal features of ionic transport in these systems. In this paper, we examine the use of nanopores to probe ion transport and to construct functional nanoscale devices. Specifically, we focus on the newly predicted phenomenon of quantized ionic conductance in nanopores as a function of the effective pore radius-a prediction that yields a particularly transparent way to probe the contribution of dehydration to ionic transport. We study the role of ionic species in the formation of hydration layers inside and outside of pores. We find that the ion type plays only a minor role in the radial positions of the predicted steps in the ion conductance. However, ions with higher valency form stronger hydration shells, and thus, provide even more pronounced, and therefore, more easily detected, drops in the ionic current. Measuring this phenomenon directly, or from the resulting noise, with synthetic nanopores would provide evidence of the deviation from macroscopic (continuum) dielectric behavior due to microscopic features at the nanoscale and may shed light on the behavior of ions in more complex biological channels. C1 [Zwolak, Michael] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wilson, James; Di Ventra, Massimiliano] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Zwolak, M (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. RI Di Ventra, Massimiliano/E-1667-2011; Zwolak, Michael/G-2932-2013 OI Di Ventra, Massimiliano/0000-0001-9416-189X; Zwolak, Michael/0000-0001-6443-7816 FU US Department of Energy; NIH-NHGRI FX This research is supported by the US Department of Energy through the LANL/LDRD Program (MZ) and by the NIH-NHGRI (JW and MD). NR 70 TC 9 Z9 9 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 17 PY 2010 VL 22 IS 45 AR 454126 DI 10.1088/0953-8984/22/45/454126 PG 12 WC Physics, Condensed Matter SC Physics GA 673HZ UT WOS:000283651400028 PM 21152075 ER PT J AU Poineau, F Johnstone, EV Weck, PF Kim, E Forster, PM Scott, BL Sattelberger, AP Czerwinski, KR AF Poineau, Frederic Johnstone, Erik V. Weck, Philippe F. Kim, Eunja Forster, Paul M. Scott, Brian L. Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Synthesis and Structure of Technetium Trichloride SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID UNTERSUCHUNGEN; TRIHALIDES; CLUSTERS; CHLORIDE; RHENIUM AB Technetium trichloride has been synthesized by reaction of Tc-2(O2CCH3)(4)Cl-2 with HCl(g) at 300 degrees C. The mechanism of formation mimics the one described earlier in the literature for rhenium. Tc-2(O2CCH3)(2)Cl-4 [P (1) over bar; a = 6.0303(12) angstrom, b = 6.5098(13) angstrom, c = 8.3072(16) angstrom, alpha = 112.082(2)degrees, beta = 96.667(3)degrees, gamma = 108.792(3)degrees; Tc-Tc = 2.150(1) angstrom] is formed as an intermediate in the reaction at 100 C. Technetium trichloride is formed above 250 degrees C and is isostructural with its rhenium homologue. The structure consists of Tc3Cl9 clusters [R (3) over barm; a = b = 10.1035(19) angstrom, c = 20.120(8) angstrom] and the Tc-Tc separation is 2.444(1) angstrom. Calculations on TcX3 (X = Cl, Br) have confirmed the stability of TcCl3 and suggest the existence of a polymorph of TcBr3 with the ReBr3 structure. C1 [Poineau, Frederic; Johnstone, Erik V.; Weck, Philippe F.; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Kim, Eunja] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Scott, Brian L.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; , Philippe/0000-0002-7610-2893; Forster, Paul/0000-0003-3319-4238 FU U.S. Department of Energy [DE-AC07-05ID14517]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Mr. Tom O'Dou for outstanding health physics support and Dr. Gordon Jarvinen (Los Alamos) for a generous loan of NH4TcO4. Funding for this research was provided by a subcontract through Battelle 0089445 from the U.S. Department of Energy (Agreement DE-AC07-05ID14517). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 22 TC 24 Z9 24 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 15864 EP 15865 DI 10.1021/ja105730e PG 2 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200010 PM 20977207 ER PT J AU Huang, J Kovalenko, MV Talapin, DV AF Huang, Jing Kovalenko, Maksym V. Talapin, Dmitri V. TI Alkyl Chains of Surface Ligands Affect Polytypism of CdSe Nanocrystals and Play an Important Role in the Synthesis of Anisotropic Nanoheterostructures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; SEEDED-GROWTH; QUANTUM DOTS; NANOPARTICLES; NANORODS; SHAPE; SEMICONDUCTORS; MONODISPERSE; NANOWIRES; BINDING AB We show that the length of the alkyl chain of surface ligands can shift the equilibrium between the wurtzite and zinc blende polytypes of CdSe nanocrystals. In-situ wide-angle X-ray scattering measurements reveal that short-chain (e.g., propyl) phosphonic acids stabilize CdSe nanocrystals with the zinc blende phase whereas octadecylphosphonic acid stabilize nanocrystals with the wurtzite phase. We also demonstrate how this effect can be used to improve the shape selectivity in the synthesis of anisotropic CdSe/CdS and ZnSe/CdS nanoheterostructures. C1 [Huang, Jing; Kovalenko, Maksym V.; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Kovalenko, Maksym/B-6844-2008 OI Kovalenko, Maksym/0000-0002-6396-8938 FU NSF [DMR-0847535]; Chicago Energy Initiative; U.S. Department of Energy [DE-AC02-06CH11357] FX We thank D. Baranov, T. Witten, and S. Sibener for stimulating discussions. The work was supported by NSF CAREER Award DMR-0847535 and the Chicago Energy Initiative. The work at the Center for Nanoscale Materials at Argonne National Laboratory was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 33 TC 60 Z9 60 U1 7 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 15866 EP 15868 DI 10.1021/ja105132u PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200011 PM 20964404 ER PT J AU Laskin, J Yang, ZB Song, T Lam, C Chu, IK AF Laskin, Julia Yang, Zhibo Song, Tao Lam, Corey Chu, Ivan K. TI Effect of the Basic Residue on the Energetics, Dynamics, and Mechanisms of Gas-Phase Fragmentation of Protonated Peptides SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SURFACE-INDUCED DISSOCIATION; COLLISION-INDUCED DISSOCIATION; TANDEM MASS-SPECTROMETRY; AMINO-ACID-RESIDUES; FT-ICR MS; ORGANIC-MOLECULES; ION CHEMISTRY; ASPARTIC-ACID; AB-INITIO; B IONS AB The effect of the basic residue on the energetics, dynamics, and mechanisms of backbone fragmentation of protonated peptides was investigated. Time-resolved and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogues, in which arginine is replaced with less basic lysine and histidine residues, was examined using a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS). SID experiments demonstrated different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. Because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone and imine/enol pathways of arginine-containing peptides on a long time scale of the FTICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by canonical pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogues. C1 [Laskin, Julia; Yang, Zhibo] Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. [Song, Tao; Lam, Corey; Chu, Ivan K.] Univ Hong Kong, Dept Chem, Hong Kong, Hong Kong, Peoples R China. RP Laskin, J (reprint author), Pacific NW Natl Lab, Fundamental Sci Div, Richland, WA 99352 USA. EM julia.laskin@pnl.gov RI Song, Tao/D-8800-2012; Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); University of Hong Kong and Hong Kong Research Grant Council, Special Administrative Region, China [7012/08P]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830] FX This study was partially supported by the grant from the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE), and the University of Hong Kong and Hong Kong Research Grant Council, Special Administrative Region, China (Project No. 7012/08P). The research described in this article was performed at the DOE's W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 69 TC 18 Z9 18 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16006 EP 16016 DI 10.1021/ja104438z PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200043 PM 20977217 ER PT J AU Murnen, HK Rosales, AM Jaworsk, JN Segalman, RA Zuckermann, RN AF Murnen, Hannah K. Rosales, Adrianne M. Jaworsk, Jonathan N. Segalman, Rachel A. Zuckermann, Ronald N. TI Hierarchical Self-Assembly of a Biomimetic Diblock Copolypeptoid into Homochiral Superhelices SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SYNCHROTRON X-RAY; BLOCK-COPOLYMERS; AMYLOID FIBRILS; ACHIRAL MOLECULES; PROTEIN NANOTUBES; BETA-SHEETS; PEPTIDE; CHIRALITY; ORIGIN; HELIX AB The aqueous self-assembly of a sequence-specific bioinspired peptoid diblock copolymer into monodisperse superhelices is demonstrated to be the result of a hierarchical process, strongly dependent on the charging level of the molecule. The partially charged amphiphilic diblock copolypeptoid 30-mer, [N-(2-phenethyl)glycine](15)-[N-(2-carboxyethyl)glycine](15), forms superhelices in high yields, with diameters of 624 +/- 69 nm and lengths ranging from 2 to 20 mu m. Chemical analogs coupled with X-ray scattering and crystallography of a model compound have been used to develop a hierarchical model of self-assembly. Lamellar stacks roll up to form a supramolecular double helical structure with the internal ordering of the stacks being mediated by crystalline aromatic side chain-side chain interactions within the hydrophobic block. The role of electrostatic and hydrogen bonding interactions in the hydrophilic block is also investigated and found to be important in the self-assembly process. C1 [Murnen, Hannah K.; Rosales, Adrianne M.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Jaworsk, Jonathan N.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Segalman, Rachel A.; Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM segalman@berkeley.edu; mzuckermann@lbl.gov RI Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103 FU Office of Naval Research; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Department of Defense; National Science Foundation; Defense Threat Reduction Agency FX This work was supported by the Office of Naval Research in the form of a Presidential Early Career Award in Science and Engineering (PECASE) for R.A.S. Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, and XRD experiments were performed at the Advanced Light Source (ALS). Both are Lawrence Berkeley National Laboratory user facilities supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The authors thank Dr. James Holton and George Meigs for experimental assistance and Dr. Gary Ren for helpful discussions. H.K.M. acknowledges the Department of Defense for an NDSEG fellowship, and A.M.R. acknowledges the National Science Foundation for a graduate fellowship. J.N.J. acknowledges the Defense Threat Reduction Agency for financial support. NR 72 TC 61 Z9 61 U1 2 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16112 EP 16119 DI 10.1021/ja106340f PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200054 PM 20964429 ER PT J AU Stoffelsma, C Rodriguez, P Garcia, G Garcia-Araez, N Strmcnik, D Markovic, NM Koper, MTM AF Stoffelsma, Chantal Rodriguez, Paramaconi Garcia, Gonzalo Garcia-Araez, Nuria Strmcnik, Dusan Markovic, Nenad M. Koper, Marc T. M. TI Promotion of the Oxidation of Carbon Monoxide at Stepped Platinum Single-Crystal Electrodes in Alkaline Media by Lithium and Beryllium Cations SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID SULFURIC-ACID-SOLUTIONS; ADSORPTION; REDUCTION; PT(111); NITRATE; ELECTROCATALYSIS; HYDROXIDE; GERMANIUM; MECHANISM; SURFACES AB The role of alkali cations (Li(+), Na(+) K(+) Cs(+), and Be(2+)) on the blank voltammetric response and the oxidative stripping of carbon monoxide from stepped Pt single-crystal electrodes in alkaline media has been investigated by cyclic voltammetry. A strong influence of the nature of the cation on both the blank voltammetric profile and the CO oxidation is observed and related to the influence of the cation on the specific adsorption of OH on the platinum surface. Especially Li(+) and Be(2+) cations markedly affect the adsorption of OH and thereby have a significant promoting effect on CO(ads) oxidation. The voltammetric experiments suggest that, on Pt(111), the influence of Li(+) (and Be(2+)) is primarily through a weakening of the repulsive interactions between the OH in the OH adlayer, whereas in the presence of steps also, the onset of OH adsorption is at a lower potential, both on steps and on terraces. C1 [Stoffelsma, Chantal; Rodriguez, Paramaconi; Garcia, Gonzalo; Garcia-Araez, Nuria; Koper, Marc T. M.] Leiden Univ, Leiden Inst Chem, NL-2300 RA Leiden, Netherlands. [Garcia-Araez, Nuria] FOM, Inst Atom & Mol Phys AMOLF, NL-1009 DB Amsterdam, Netherlands. [Strmcnik, Dusan; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Rodriguez, P (reprint author), Leiden Univ, Leiden Inst Chem, POB 9502, NL-2300 RA Leiden, Netherlands. EM rodriguezperezpb@chem.leidenuniv.nl; m.koper@chem.leidenuniv.nl RI Koper, Marc/C-5026-2009; Garcia-Araez, Nuria/A-5194-2013; Rodriguez, Paramaconi/A-6214-2014; GARCIA, GONZALO/L-9936-2014 OI Garcia-Araez, Nuria/0000-0001-9095-2379; Rodriguez, Paramaconi/0000-0002-1517-0964; GARCIA, GONZALO/0000-0002-5476-0182 FU Netherlands Organization for Scientific Research (NWO); European Commission [214936-2]; University of Chicago; University of Argonne, LLC; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX P.R., G.G., and M.T.M.K. acknowledge financial support from The Netherlands Organization for Scientific Research (NWO) and the European Commission (through FP7 Initial Training Network "ELCAT", Grant Agreement No. 214936-2). D.S. and N.M.M. would like to acknowledge support by the contract between the University of Chicago and Argonne, LLC, and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357). N.G. acknowledges the European Commission (FP7) for the award of a Marie Curie fellowship. NR 32 TC 42 Z9 42 U1 5 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16127 EP 16133 DI 10.1021/ja106389k PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200056 PM 20979396 ER PT J AU Duque, JG Densmore, CG Doorn, SK AF Duque, Juan G. Densmore, Crystal G. Doorn, Stephen K. TI Saturation of Surfactant Structure at the Single-Walled Carbon Nanotube Surface SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY GRADIENT ULTRACENTRIFUGATION; SODIUM DODECYL-SULFATE; SDS SURFACTANTS; FLUORESCENCE; DIAMETER; MICELLES; LUMINESCENCE; SPECTROSCOPY; AGGREGATION; SELECTIVITY AB Density gradient ultracentrifugation (DGU) and fluorescence spectroscopy are used to probe the limiting behaviors of the dynamic response of surfactant structure at the single-walled carbon nanotube (SWNT) surface to reorganizing forces, including changes in surfactant concentration and electrolyte screening. DGU results indicate that, as surfactant (sodium dodecyl sulfate, SDS) concentration is increased, SDS adsorbed on metallic SWNTs becomes limited in its ability to reorganize before SDS adsorbed on semiconducting species. A diameter-dependent enhancement is observed in photoluminescence intensities from semiconducting SWNTS upon initial titration with NaCl. This response to electrostatic screening diminishes as SDS concentration is increased. The results are understood as a saturation of the surfactant structural response, defined as both a loss in ability to increase SDS loading at the SWNT surface and a loss in ability to reorient surface structure in response to a reorganizing force. Saturation of response is found to be reversible and also occurs as a result of restricting SDS mobility. These results confirm several aspects of recent molecular dynamics simulations of SDS behavior on SWNTs and have important implications for tunability of density-based separation approaches using cosurfactant systems that include SDS. C1 [Doorn, Stephen K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Duque, Juan G.] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect Grp C PCS, Los Alamos, NM 87545 USA. [Densmore, Crystal G.] Los Alamos Natl Lab, Chem Diagnost & Engn Grp C CDE, Los Alamos, NM 87545 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol MPA CINT, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM skdoorn@lanl.gov RI Duque, Juan/G-2657-2010 FU LANL-LDRD FX We thank the Smalley Institute for Nanoscale Science and Technology at Rice University for supplying SWNTs. This work was supported by LANL-LDRD funding. J.G.D. thanks the LANL-LDRD Director's Postdoctoral Fellowship. This work was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. NR 60 TC 45 Z9 45 U1 5 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16165 EP 16175 DI 10.1021/ja106836f PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200060 PM 20973529 ER PT J AU Freedman, DE Han, TH Prodi, A Muller, P Huang, QZ Chen, YS Webb, SM Lee, YS McQueen, TM Nocera, DG AF Freedman, Danna E. Han, Tianheng H. Prodi, Andrea Mueller, Peter Huang, Qing-Zhen Chen, Yu-Sheng Webb, Samuel M. Lee, Young S. McQueen, Tyrel M. Nocera, Daniel G. TI Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated Kagome Magnet, Herbertsmithite, ZnCu3(OH)(6)Cl-2 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CRYSTAL-STRUCTURE; CATION DISTRIBUTION; SCATTERING; DIFFRACTION; ANTIFERROMAGNET; ADSORPTION; FRAMEWORK; FERRITE AB Structural characterization, exploiting X-ray scattering differences at elemental absorption edges, is developed to quantitatively determine crystallographic site-specific metal disorder. We apply this technique to the problem of Zn-Cu chemical disorder in ZnCu3(OH)(6)Cl-2. This geometrically frustrated kagome antiferromagnet is one of the best candidates for a spin-liquid ground state, but chemical disorder has been suggested as a mundane explanation for its magnetic properties. Using anomalous scattering at the Zn and Cu edges, we determine that there is no Zn occupation of the intralayer Cu sites within the kagome layer; however there is Cu present on the Zn intersite, leading to a structural formula of (Zn0.85Cu0.15)-Cu-3(OH)(6)Cl-2. The lack of Zn mixing onto the kagome lattice sites lends support to the idea that the electronic ground state in ZnCu3(OH)(6)Cl-2 and its relatives is nontrivial. C1 [Freedman, Danna E.; Mueller, Peter; McQueen, Tyrel M.; Nocera, Daniel G.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Han, Tianheng H.; Prodi, Andrea; Lee, Young S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Huang, Qing-Zhen] NIST, Gaithersburg, MD 20899 USA. [Chen, Yu-Sheng] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Webb, Samuel M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Nocera, DG (reprint author), MIT, Dept Chem, 6-335, Cambridge, MA 02139 USA. EM nocera@mit.edu RI Muller, Peter/A-8858-2008; Webb, Samuel/D-4778-2009; OI Muller, Peter/0000-0001-6530-3852; Webb, Samuel/0000-0003-1188-0464; Freedman, Danna/0000-0002-2579-8835 FU NSF [DMR 0819762]; DOE [DE-FG02-04ER46134]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886] FX This work was supported primarily by the MRSEC Program of the NSF under Award Number DMR 0819762 and DOE under Grant No. DE-FG02-04ER46134. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 41 TC 68 Z9 68 U1 3 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16185 EP 16190 DI 10.1021/ja1070398 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200062 PM 20964423 ER PT J AU Mugridge, JS Szigethy, G Bergman, RG Raymond, KN AF Mugridge, Jeffrey S. Szigethy, Geza Bergman, Robert G. Raymond, Kenneth N. TI Encapsulated Guest-Host Dynamics: Guest Rotational Barriers and Tumbling as a Probe of Host Interior Cavity Space SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID H BOND ACTIVATION; SUPRAMOLECULAR HOST; MOLECULAR RECOGNITION; SYNTHETIC RECEPTOR; ANIONIC HOST; CATALYSIS; EXCHANGE; CAPSULES; CLUSTER; STABILIZATION AB The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; raymond@socrates.berkeley.edu FU NSF [CHE-0233882, CHE-0840505]; Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX The authors would like to thank Dr. Jamin Krinsky and Dr. Kathleen Durkin for assistance with computational and modeling studies and acknowledge NSF Grants CHE-0233882 and CHE-0840505, which fund the UC Berkeley Molecular Graphics and Computational Facility. We also thank Dr. Michael Pluth, Dr. Carmelo Sgarlata, Courtney Hastings, and Casey Brown for helpful discussions. This work has been supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231 and an NSF predoctoral fellowship to J.S.M. NR 65 TC 28 Z9 28 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 17 PY 2010 VL 132 IS 45 BP 16256 EP 16264 DI 10.1021/ja107656g PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 680AK UT WOS:000284202200069 PM 20977233 ER PT J AU Acosta, VM Jarmola, A Bauch, E Budker, D AF Acosta, V. M. Jarmola, A. Bauch, E. Budker, D. TI Optical properties of the nitrogen-vacancy singlet levels in diamond SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR-SPIN QUBITS; N-V CENTERS; DEFECT CENTERS; COUPLED ELECTRON; SPECTROSCOPY; MICROSCOPY; DYNAMICS; ENTANGLEMENT; POLARIZATION; RESOLUTION AB We report measurements of the optical properties of the 1042 nm transition of negatively charged nitrogen-vacancy (NV) centers in type-1b diamond. The results indicate that the upper level of this transition couples to the m(s) = +/- 1 sublevels of the E-3 excited state and is short lived with a lifetime of less than or similar to 1 ns. The lower level is shown to have a temperature-dependent lifetime of 462(10) ns at 4.4 K and 219(3) ns at 295 K. The light-polarization dependence of 1042 nm absorption confirms that the transition is between orbitals of A(1) and E character. The results shed light on the NV level structure and optical pumping mechanism. C1 [Acosta, V. M.; Jarmola, A.; Bauch, E.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Acosta, VM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM vmacosta@berkeley.edu RI Acosta, Victor/G-8176-2011; Budker, Dmitry/F-7580-2016; OI Budker, Dmitry/0000-0002-7356-4814; Acosta, Victor/0000-0003-0058-9954 FU NSF [PHY-0855552] FX The authors are grateful to A. Gali, N. Manson, L. Rogers, M. Doherty, P. Hemmer, E. Corsini, B. Patton, M. Ledbetter, and L. Zipp for valuable discussions. This work was supported by NSF under Grant No. PHY-0855552. NR 40 TC 61 Z9 61 U1 5 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2010 VL 82 IS 20 AR 201202 DI 10.1103/PhysRevB.82.201202 PG 4 WC Physics, Condensed Matter SC Physics GA 681IY UT WOS:000284306400003 ER PT J AU Bud'ko, SL Kogan, VG Hodovanets, H Ran, S Moser, SA Lampe, MJ Canfield, PC AF Bud'ko, S. L. Kogan, V. G. Hodovanets, H. Ran, S. Moser, S. A. Lampe, M. J. Canfield, P. C. TI Evolution of ground state and upper critical field in R1-xGdxNi2B2C (R = Lu, Y): Coexistence of superconductivity and spin-glass state SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC BOROCARBIDE SUPERCONDUCTORS; ANISOTROPIC SUPERCONDUCTORS; WAVE SUPERCONDUCTIVITY; PAIR-BREAKING; IMPURITIES; YNI2B2C; TEMPERATURE; LUNI2B2C; HEAT; TRANSITIONS AB We report effects of local magnetic moment, Gd3+, doping (x less than or similar to 0.3) on superconducting and magnetic properties of the closely related Lu1-xGdxNi2B2C and Y1-xGdxNi2B2C series. The superconducting transition temperature decreases and the heat capacity jump associated with it drops rapidly with Gd doping; qualitative changes with doping are also observed in the temperature-dependent upper critical field behavior, and a region of coexistence of superconductivity and spin-glass state is delineated on the x-T phase diagram. The evolution of superconducting properties can be understood within Abrikosov-Gor'kov theory of magnetic impurities in superconductors taking into account the paramagnetic effect on upper critical field with additional contributions particular for the family under study. C1 [Bud'ko, S. L.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Bud'ko, SL (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU U.S. Department of Energy-Basic Energy Sciences [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U.S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358. This manuscript was finalized during the Ames floods of 2010, the second "hundred year floods" in a 15 year time span. NR 58 TC 2 Z9 2 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2010 VL 82 IS 17 AR 174513 DI 10.1103/PhysRevB.82.174513 PG 7 WC Physics, Condensed Matter SC Physics GA 681IS UT WOS:000284305800008 ER PT J AU Chaudhury, RP Ye, F Fernandez-Baca, JA Wang, YQ Sun, YY Lorenz, B Mook, HA Chu, CW AF Chaudhury, R. P. Ye, F. Fernandez-Baca, J. A. Wang, Y. -Q. Sun, Y. Y. Lorenz, B. Mook, H. A. Chu, C. W. TI Magnetic and multiferroic phases of single-crystalline Mn0.85Co0.15WO4 SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-DIFFRACTION; MNWO4; TRANSITIONS; PRESSURE AB The magnetic and multiferroic phase diagram of Mn0.85Co0.15WO4 single crystals is investigated by means of magnetic, heat-capacity, dielectric, polarization, and neutron-scattering experiments. Three magnetic phase transitions are detected through distinct anomalies in all physical quantities. The ferroelectric polarization is observed only along the b axis below 10 K but not along the a axis as recently suggested. The magnetic phases studied by neutron scattering are very complex. Up to four different magnetic structures, partially coexisting at certain temperature ranges, have been identified. Upon decreasing temperature two commensurate phases (AF4, AF1) are followed by an incommensurate phase (AF5) and a second incommensurate phase (AF2) is detected as a minor phase. The ferroelectric polarization is possibly associated with both (AF2 and AF5) phases. C1 [Chaudhury, R. P.; Wang, Y. -Q.; Sun, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, TCSUH, Houston, TX 77204 USA. [Chaudhury, R. P.; Wang, Y. -Q.; Sun, Y. Y.; Lorenz, B.; Chu, C. W.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Ye, F.; Fernandez-Baca, J. A.; Mook, H. A.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Fernandez-Baca, J. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Chu, C. W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Chaudhury, RP (reprint author), Univ Houston, TCSUH, Houston, TX 77204 USA. RI Ye, Feng/B-3210-2010; Fernandez-Baca, Jaime/C-3984-2014 OI Ye, Feng/0000-0001-7477-4648; Fernandez-Baca, Jaime/0000-0001-9080-5096 FU T.L.L. Temple Foundation; J.J. and R. Moores Endowment; State of Texas through TCSUH; USAF Office of Scientific Research, at LBNL through the U.S. Department of Energy; Division of Scientific User Facilities of the Office of Basic Energy Sciences, U.S. Department of Energy FX This work is supported in part by the T.L.L. Temple Foundation, the J.J. and R. Moores Endowment, the State of Texas through TCSUH, the USAF Office of Scientific Research, at LBNL through the U.S. Department of Energy, and by the Division of Scientific User Facilities of the Office of Basic Energy Sciences, U.S. Department of Energy. NR 36 TC 27 Z9 27 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2010 VL 82 IS 18 AR 184422 DI 10.1103/PhysRevB.82.184422 PG 5 WC Physics, Condensed Matter SC Physics GA 681IT UT WOS:000284305900006 ER PT J AU Deng, HX Li, JB Li, SS Peng, HW Xia, JB Wang, LW Wei, SH AF Deng, Hui-Xiong Li, Jingbo Li, Shu-Shen Peng, Haowei Xia, Jian-Bai Wang, Lin-Wang Wei, Su-Huai TI Band crossing in isovalent semiconductor alloys with large size mismatch: First-principles calculations of the electronic structure of Bi and N incorporated GaAs SO PHYSICAL REVIEW B LA English DT Article ID IMPURITIES; GAAS1-XNX; NITROGEN; GAINNAS; STATES; TRAPS AB For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs(1-x)N(x) becomes an N-derived state and the valence-band edge of GaAs(1-x)Bi(x) becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture. C1 [Deng, Hui-Xiong; Li, Jingbo; Li, Shu-Shen; Peng, Haowei; Xia, Jian-Bai] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Deng, HX (reprint author), Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, POB 912, Beijing 100083, Peoples R China. EM jbli@semi.ac.cn RI Peng, Haowei/K-4654-2012 OI Peng, Haowei/0000-0002-6502-8288 FU "973" program of the National Basic Research Program of China [G2009CB929300]; National Natural Science Foundation of China [60821061, 60776061]; Chinese Academy of Sciences; U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the "973" program of the National Basic Research Program of China under Grant No. G2009CB929300 and the National Natural Science Foundation of China under Grants No. 60821061 and No. 60776061. J.L. acknowledges financial support by the "One-hundred-Talent-Plan" program of the Chinese Academy of Sciences. The work at NREL was supported by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308. NR 34 TC 31 Z9 31 U1 1 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2010 VL 82 IS 19 AR 193204 DI 10.1103/PhysRevB.82.193204 PG 4 WC Physics, Condensed Matter SC Physics GA 681IV UT WOS:000284306100002 ER PT J AU Kim, JS Seo, SSA Chisholm, MF Kremer, RK Habermeier, HU Keimer, B Lee, HN AF Kim, J. S. Seo, S. S. A. Chisholm, M. F. Kremer, R. K. Habermeier, H. -U. Keimer, B. Lee, H. N. TI Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices SO PHYSICAL REVIEW B LA English DT Article ID DIELECTRIC PROPERTIES; MOTT-INSULATOR; HETEROSTRUCTURES; INTERFACE; TITANATE; OXIDES; SRTIO3 AB We report magnetotransport properties of heterointerfaces between the Mott insulator LaTiO3 and the band insulator SrTiO3 in a delta-doping geometry. At low temperatures, we have found a strong nonlinearity in the magnetic field dependence of the Hall resistivity, which can be effectively controlled by varying the temperature and the electric field. We attribute this effect to multichannel conduction of interfacial charges generated by an electronic reconstruction. In particular, the formation of a highly mobile conduction channel revealed by our data is explained by the greatly increased dielectric permeability of SrTiO3 at low temperatures and its electric field dependence reflects the spatial distribution of the quasi-two-dimensional electron gas. C1 [Kim, J. S.; Seo, S. S. A.; Kremer, R. K.; Habermeier, H. -U.; Keimer, B.] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany. [Kim, J. S.] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Seo, S. S. A.; Chisholm, M. F.; Lee, H. N.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kim, JS (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. EM hnlee@ornl.gov RI Kim, Jun Sung/G-8861-2012; Seo, Sung Seok/B-6964-2008; Lee, Ho Nyung/K-2820-2012 OI Kim, Jun Sung/0000-0002-1413-7265; Seo, Sung Seok/0000-0002-7055-5314; Lee, Ho Nyung/0000-0002-2180-3975 FU Division of Materials Sciences and Engineering, U.S. Department of Energy; National Research Foundation of Korea [2009-0076700]; DFG [SFB/TRR 80] FX We thank K. B. Lee and S. Okamoto for useful discussions and comments. The work at ORNL was supported by the Division of Materials Sciences and Engineering, U. S. Department of Energy. The work at POSTECH was supported by the National Research Foundation of Korea through Basic Science Research Program (Grant No. 2009-0076700). We also acknowledge support by the DFG under Grant No. SFB/TRR 80. NR 26 TC 64 Z9 64 U1 5 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2010 VL 82 IS 20 AR 201407 DI 10.1103/PhysRevB.82.201407 PG 4 WC Physics, Condensed Matter SC Physics GA 681IY UT WOS:000284306400005 ER PT J AU de Putter, R Takada, M AF de Putter, Roland Takada, Masahiro TI Halo-galaxy lensing: A full sky approach SO PHYSICAL REVIEW D LA English DT Article ID N-BODY SIMULATIONS; SCALE-DEPENDENT BIAS; NON-GAUSSIANITY; MASS FUNCTION; DARK MATTER; CLUSTERS; MODEL AB The halo-galaxy lensing correlation function or the average tangential shear profile over sampled halos is a very powerful means of measuring the halo masses, the mass profile, and the halo-mass correlation function of very large separations in the linear regime. We reformulate the halo-galaxy lensing correlation in harmonic space. We find that, counterintuitively, errors in the conventionally used flat-sky approximation remain at a percent level even at very small angles. The errors increase at larger angles and for lensing halos at lower redshifts: the effect is at a few percent level at the baryonic acoustic oscillation scales for lensing halos of z similar to 0.2, and comparable with the effect of primordial non-Gaussianity with f(NL) similar to 10 at large separations. Our results allow one to readily estimate/correct for the full-sky effect on a high-precision measurement of the average shear profile available from upcoming wide-area lensing surveys. C1 [de Putter, Roland] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [de Putter, Roland] Inst Fis Corpuscular, Valencia, Spain. [de Putter, Roland] Inst Ciencies Cosmos, Barcelona, Spain. [Takada, Masahiro] Univ Tokyo, IPMU, Chiba 2778582, Japan. RP de Putter, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank A. Stebbins for useful discussions. This work is supported in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan. R. d. P has been supported in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 9 Z9 9 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 17 PY 2010 VL 82 IS 10 AR 103522 DI 10.1103/PhysRevD.82.103522 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 681JF UT WOS:000284307100002 ER PT J AU Fomin, N Arrington, J Day, DB Gaskell, D Daniel, A Seely, J Asaturyan, R Benmokhtar, F Boeglin, W Boillat, B Bosted, P Bruell, A Bukhari, MHS Christy, ME Chudakov, E Clasie, B Connell, SH Dalton, MM Dutta, D Ent, R El Fassi, L Fenker, H Filippone, BW Garrow, K Hill, C Holt, RJ Horn, T Jones, MK Jourdan, J Kalantarians, N Keppel, CE Kiselev, D Kotulla, M Lindgren, R Lung, AF Malace, S Markowitz, P Mckee, P Meekins, DG Miyoshi, T Mkrtchyan, H Navasardyan, T Niculescu, G Okayasu, Y Opper, AK Perdrisat, C Potterveld, DH Punjabi, V Qian, X Reimer, PE Roche, J Rodriguez, VM Rondon, O Schulte, E Segbefia, E Slifer, K Smith, GR Solvignon, P Tadevosyan, V Tajima, S Tang, L Testa, G Trojer, R Tvaskis, V Vulcan, WF Wasko, C Wesselmann, FR Wood, SA Wright, J Zheng, X AF Fomin, N. Arrington, J. Day, D. B. Gaskell, D. Daniel, A. Seely, J. Asaturyan, R. Benmokhtar, F. Boeglin, W. Boillat, B. Bosted, P. Bruell, A. Bukhari, M. H. S. Christy, M. E. Chudakov, E. Clasie, B. Connell, S. H. Dalton, M. M. Dutta, D. Ent, R. El Fassi, L. Fenker, H. Filippone, B. W. Garrow, K. Hill, C. Holt, R. J. Horn, T. Jones, M. K. Jourdan, J. Kalantarians, N. Keppel, C. E. Kiselev, D. Kotulla, M. Lindgren, R. Lung, A. F. Malace, S. Markowitz, P. Mckee, P. Meekins, D. G. Miyoshi, T. Mkrtchyan, H. Navasardyan, T. Niculescu, G. Okayasu, Y. Opper, A. K. Perdrisat, C. Potterveld, D. H. Punjabi, V. Qian, X. Reimer, P. E. Roche, J. Rodriguez, V. M. Rondon, O. Schulte, E. Segbefia, E. Slifer, K. Smith, G. R. Solvignon, P. Tadevosyan, V. Tajima, S. Tang, L. Testa, G. Trojer, R. Tvaskis, V. Vulcan, W. F. Wasko, C. Wesselmann, F. R. Wood, S. A. Wright, J. Zheng, X. TI Scaling of the F-2 Structure Function in Nuclei and Quark Distributions at x > 1 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INCLUSIVE ELECTRON-SCATTERING; INELASTIC LEPTON SCATTERING; DEPENDENCE AB We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x > 1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the "superfast" quarks probed at x > 1. The falloff at x > 1 is noticeably stronger in H-2 and He-3, but nearly identical for all heavier nuclei. C1 [Fomin, N.; Day, D. B.; Dalton, M. M.; Hill, C.; Lindgren, R.; Mckee, P.; Rondon, O.; Slifer, K.; Tajima, S.; Wasko, C.; Wright, J.; Zheng, X.] Univ Virginia, Charlottesville, VA 22903 USA. [Fomin, N.] Univ Tennessee, Knoxville, TN USA. [Arrington, J.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Solvignon, P.; Zheng, X.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Gaskell, D.; Bosted, P.; Bruell, A.; Chudakov, E.; Ent, R.; Fenker, H.; Horn, T.; Jones, M. K.; Keppel, C. E.; Lung, A. F.; Meekins, D. G.; Roche, J.; Smith, G. R.; Tang, L.; Vulcan, W. F.; Wood, S. A.] Thomas Jefferson Natl Lab, Newport News, VA USA. [Daniel, A.; Bukhari, M. H. S.; Kalantarians, N.; Rodriguez, V. M.] Univ Houston, Houston, TX USA. [Seely, J.; Clasie, B.] MIT, Cambridge, MA 02139 USA. [Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Benmokhtar, F.; Horn, T.] Univ Maryland, College Pk, MD 20742 USA. [Boeglin, W.; Markowitz, P.] Florida Int Univ, Miami, FL 33199 USA. [Boillat, B.; Jourdan, J.; Kiselev, D.; Kotulla, M.; Testa, G.; Trojer, R.] Univ Basel, Basel, Switzerland. [Christy, M. E.; Keppel, C. E.; Malace, S.; Segbefia, E.; Tang, L.; Tvaskis, V.] Hampton Univ, Hampton, VA 23668 USA. [Connell, S. H.] Univ Johannesburg, Johannesburg, South Africa. [Dutta, D.] Mississippi State Univ, Jackson, MS USA. [Dutta, D.; Qian, X.] Duke Univ, Durham, NC USA. [Filippone, B. W.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Garrow, K.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Miyoshi, T.; Okayasu, Y.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Niculescu, G.] James Madison Univ, Harrisonburg, VA 22807 USA. [Opper, A. K.; Roche, J.] Ohio Univ, Athens, OH 45701 USA. [Perdrisat, C.] Coll William & Mary, Williamsburg, VA USA. [Punjabi, V.; Wesselmann, F. R.] Norfolk State Univ, Norfolk, VA USA. RP Fomin, N (reprint author), Univ Virginia, Charlottesville, VA 22903 USA. RI Holt, Roy/E-5803-2011; Arrington, John/D-1116-2012; Rondon Aramayo, Oscar/B-5880-2013; Reimer, Paul/E-2223-2013; Day, Donal/C-5020-2015; Dalton, Mark/B-5380-2016; OI Arrington, John/0000-0002-0702-1328; Day, Donal/0000-0001-7126-8934; Dalton, Mark/0000-0001-9204-7559; Qian, Xin/0000-0002-7903-7935 FU NSF [NSF-0244899]; DOE [DE-FG02-96ER40950, DE-AC02-06CH11357, DE-AC05-06OR23177]; JSA; LLC operates JLab; South African NRF FX We thank the JLab technical staff and accelerator division for their contributions. This work supported in part by the NSF and DOE, including Grant No. NSF-0244899 and DOE Contracts No. DE-FG02-96ER40950, No. DE-AC02-06CH11357, and No. DE-AC05-06OR23177 under which JSA, LLC operates JLab, and the South African NRF. NR 25 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2010 VL 105 IS 21 AR 212502 DI 10.1103/PhysRevLett.105.212502 PG 5 WC Physics, Multidisciplinary SC Physics GA 681JR UT WOS:000284308500008 PM 21231294 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hartl, C Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Thomas, L Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Damiao, DDJ Pol, ME Souza, MHG Carvalho, W Da Costa, EM Martins, CDO De Souza, SF Mundim, L Nogima, H Oguri, V Goicochea, JMO Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zang, J Zhang, Z Ban, Y Guo, S Hu, Z Li, W Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Abdel-Basit, A Assran, Y Mahmoud, MA Hektor, A Kadastik, M Kannike, K Muentel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Falkiewicz, A Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Bender, W Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Magass, C Masetti, G Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Glushkov, I Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Raval, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Walsh, R Wissing, C Autermann, C Bobrovskyi, S Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Srivastava, AK Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Neuland, MB Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Mertzimekis, T Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Tancini, V Buontempo, S Montoya, CAC Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bellato, M Biasotto, M Bisello, D Branca, A Carlin, R Checchia, P De Mattia, M Dorigo, T Gasparini, F Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Nespolo, M Passaseo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Zotto, P Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Taroni, S Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Sarkar, S Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, D Son, DC Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Seo, E Shin, S Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, EDLC Lopez-Fernandez, R Hernandes, AS Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Martins, P Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varela, J Wori, HK Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Lychkovskaya, N Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Colino, N De la Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Llatas, MC Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Gomez, JP Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bell, AJ Benedetti, D Bernet, C Bhattacharyya, AK Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B D'Enterria, D Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Gowdy, S Guiducci, L Hansen, M Harvey, J Hegeman, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Karavakis, E Lecoq, P Leonidopoulos, C Lourenc, C Macpherson, A Maeki, T Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Polese, G Racz, A Rolandi, G Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Stoye, M Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Jaeger, A Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Snoek, H Wilke, L Chang, YH Chen, KH Chen, WT Dutta, S Go, A Kuo, CM Li, SW Lin, W Liu, MH Liu, ZK Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wang, M Wei, JT Adiguzel, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Grimes, M Hansen, M Heath, GP Heath, HF Huckvale, B Jackson, J Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Bose, T Jarrin, EC Clough, A Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Segala, M Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Chen, Y Gataullin, M Kcira, D Litvine, V Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Liu, Y Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Saelim, M Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hahn, A Hanlon, J Harris, RM Hirschauer, J Hooberman, B James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Muniz, L Pakhotin, Y Petterson, M Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Snowball, M Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F O'Brien, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Noonan, D Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Kharchilava, A Kumar, A Smith, K Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Kaadze, K Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Ling, TY Rodenburg, M Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Meier, M Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Boulahouache, C Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Lungu, G Mesropian, C Yan, M Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Boutle, S Buehler, M Conetti, S Cox, B Francis, B Hirosky, R Ledovskoy, A Lin, C Neu, C Patel, T Yohay, R Gollapinni, S Harr, R Karchin, PE Loggins, V Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Liu, J Lomidze, D Loveless, R Mohapatra, A Parker, W Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hartl, C. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Thomas, L. Velde, C. Vander Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Damiao, D. De Jesus Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Nogima, H. Oguri, V. Goicochea, J. M. Otalora Da Silva, W. L. Prado Santoro, A. Do Amaral, S. M. Silva Sznajder, A. De Araujo, F. Torres Da Silva Dias, F. A. Dias, M. A. F. Tomei, T. R. Fernandez Perez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Abdel-Basit, A. Assran, Y. Mahmoud, M. A. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Haerkoenen, J. Heikkinen, A. Karimaeki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maeenpaea, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Falkiewicz, A. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Bender, W. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Magass, C. Masetti, G. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Glushkov, I. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Raval, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Walsh, R. Wissing, C. Autermann, C. Bobrovskyi, S. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Srivastava, A. K. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Neuland, M. B. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Mertzimekis, T. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Tancini, V. Buontempo, S. Montoya, C. A. Carrillo Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bellato, M. Biasotto, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Gasparini, F. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Nespolo, M. Passaseo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Zotto, P. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Taroni, S. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Sarkar, S. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Seo, E. Shin, S. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Valdez, H. Castilla Burelo, E. De la Cruz Lopez-Fernandez, R. Hernandes, A. Sanchez Villasenor-Cendejas, L. M. Moreno, S. Carrillo Valencia, F. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Martins, P. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varela, J. Woehri, H. K. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Lychkovskaya, N. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Colino, N. De la Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Garcia, J. M. Vizan Cabrillo, I. J. Calderon, A. Llatas, M. Chamizo Chuang, S. H. Campderros, J. Duarte Felcini, M. Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Suarez, R. Gonzalez Jorda, C. Pardo, P. Lobelle Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Gomez, J. Piedra Rodrigo, T. Jimeno, A. Ruiz Scodellaro, L. Sanudo, M. Sobron Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bell, A. J. Benedetti, D. Bernet, C. Bhattacharyya, A. K. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Covarelli, R. Cure, B. D'Enterria, D. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Gowdy, S. Guiducci, L. Hansen, M. Harvey, J. Hegeman, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Karavakis, E. Lecoq, P. Leonidopoulos, C. Lourenc, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Polese, G. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Stoye, M. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Jaeger, A. Mejias, B. Millan Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Snoek, H. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Dutta, S. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Liu, Z. K. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wang, M. Wei, J. T. Adiguzel, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Goekbulut, G. Gueler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Oenenguet, G. Ozdemir, K. Ozturk, S. Polatoez, A. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Guelmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Oezbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hansen, M. Heath, G. P. Heath, H. F. Huckvale, B. Jackson, J. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. A. Nikitenko Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Bose, T. Jarrin, E. Carrera Clough, A. Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Segala, M. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De la Barca Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Saelim, M. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Muniz, L. Pakhotin, Y. Petterson, M. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. O'Brien, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Noonan, D. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Kaadze, K. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Ling, T. Y. Rodenburg, M. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Meier, M. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Boulahouache, C. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Buehler, M. Conetti, S. Cox, B. Francis, B. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Patel, T. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Loggins, V. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Liu, J. Lomidze, D. Loveless, R. Mohapatra, A. Parker, W. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Search for Dijet Resonances in 7 TeV pp Collisions at CMS SO PHYSICAL REVIEW LETTERS LA English DT Article ID P(P)OVER-BAR COLLISIONS; PHENOMENOLOGY; COLLIDER; PHYSICS AB A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb(-1) collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E-6 diquarks, in specific mass intervals. This extends previously published limits on these models. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Brussels, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.] Univ Ghent, B-9000 Ghent, Belgium. [Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Damiao, D. De Jesus; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Nogima, H.; Oguri, V.; Goicochea, J. M. Otalora; Da Silva, W. L. Prado; Santoro, A.; Do Amaral, S. M. Silva; Sznajder, A.; De Araujo, F. Torres Da Silva] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Abdel-Basit, A.; Assran, Y.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Haerkoenen, J.; Heikkinen, A.; Karimaeki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maeenpaea, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules, IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, IN2P3 CNRS, Univ Lyon, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Roinishvili, V.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Univ Aachen, RWTH, Inst Phys 1, D-5100 Aachen, Germany. [Ata, M.; Bender, W.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Magass, C.; Masetti, G.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Univ Aachen, RWTH, Phys Inst 3 A, D-5100 Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Univ Aachen, RWTH, Phys Inst 3 B, D-5100 Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Glushkov, I.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Raval, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Bobrovskyi, S.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Srivastava, A. K.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Neuland, M. B.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T.; Panagiotou, A.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Research, EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Research, HECR, Bombay, Maharashtra, India. [Hashemi, M.; Jafari, A.; Khakzad, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Creanza, D.; De Filippis, N.; De Palma, M.; Iaselli, G.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Maggi, G.; My, S.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Broccolo, G.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Lenzi, P.; Benussi, L.] Univ Florence, Florence, Italy. [Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Tancini, V.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Tancini, V.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Passaseo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.] Univ Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Taroni, S.; Valdata, M.; Volpe, R.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Sarkar, S.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.] Univ Pisa, Pisa, Italy. [Azzurri, P.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Sarkar, S.; Tonelli, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Colafranceschi, S.] Univ Roma La Sapienza, Fac Ingn, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Seo, E.; Shin, S.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Valdez, H. Castilla; Burelo, E. De la Cruz; Lopez-Fernandez, R.; Hernandes, A. Sanchez; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Moreno, S. Carrillo; Valencia, F. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Martins, P.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Lychkovskaya, N.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; A. Nikitenko] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] PN Lebedev Phys Inst, Moscow, Russia. [Azhgirey, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Colino, N.; De la Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Garcia, J. M. Vizan] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Llatas, M. Chamizo; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Suarez, R. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Gomez, J. Piedra; Rodrigo, T.; Jimeno, A. Ruiz; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar; del Arbol, P. Martinez Ruiz] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bhattacharyya, A. K.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; D'Enterria, D.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Gowdy, S.; Guiducci, L.; Hansen, M.; Harvey, J.; Hegeman, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Karavakis, E.; Lecoq, P.; Leonidopoulos, C.; Lourenc, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Polese, G.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Stoye, M.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Jaeger, A.; Mejias, B. Millan; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Snoek, H.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Dutta, S.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Liu, Z. K.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Goekbulut, G.; Gueler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Oenenguet, G.; Ozdemir, K.; Ozturk, S.; Polatoez, A.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Guelmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Oezbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hansen, M.; Heath, G. P.; Heath, H. F.; Huckvale, B.; Jackson, J.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; A. Nikitenko; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.] Baylor Univ, Waco, TX 76798 USA. [Bose, T.; Jarrin, E. Carrera; Clough, A.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Segala, M.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De la Barca; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Wallny, R.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Saelim, M.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Askew, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Gomez, J. Piedra; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Pakhotin, Y.; Petterson, M.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Noonan, D.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Kaadze, K.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Ling, T. Y.; Rodenburg, M.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Meier, M.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Buehler, M.; Conetti, S.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Patel, T.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Loggins, V.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Liu, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Parker, W.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Hammer, J.; Piotrzkowski, K.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Panagiotou, A.; Hajdu, C.; Pant, L. M.; Tropiano, A.; De Guio, F.; Ghezzi, A.; De Cosa, A.; Perrozzi, L.; Lucaroni, A.; Volpe, R.; Bernardini, J.; Boccali, T.; Tenchini, R.; Tonelli, G.; Cavallari, F.; Pandolfi, F.; Rahatlou, S.; Botta, C.; Graziano, A.; Pelliccioni, M.; Pereira, A. Vilela; Varela, J.; Kossov, M.; Grishin, V.; Nesvold, E.; Sharma, V.; Hall-Wilton, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Plestina, R.; Beaudette, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Abdel-Basit, A.] Cairo Univ, Cairo, Egypt. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Biasotto, M.; Lacaprara, S.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Rovelli, C.] Univ Roma La Sapienza, INFN, Sez Roma, Rome, Italy. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Cerci, S.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. Istanbul Tech Univ, TR-80626 Istanbul, Turkey. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Varela, Joao/K-4829-2016; Fassi, Farida/F-3571-2016; Menasce, Dario Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Verwilligen, Piet/M-2968-2014; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Vinogradov, Alexander/M-5331-2015; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Gulmez, Erhan/P-9518-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Marinho, Franciole/N-8101-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Grandi, Claudio/B-5654-2015; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Snigirev, Alexander/D-8912-2012; Brona, Grzegorz/E-5544-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Horvath, Dezso/A-4009-2011; Palinkas, Jozsef/B-2993-2011; Ganjour, Serguei/D-8853-2011; Mignerey, Alice/D-6623-2011; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Stahl, Achim/E-8846-2011; Yang, Fan/B-2755-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Wimpenny, Stephen/K-8848-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Alves, Gilvan/C-4007-2013; Santoro, Alberto/E-7932-2014 OI Luukka, Panja/0000-0003-2340-4641; De Guio, Federico/0000-0001-5927-8865; Sogut, Kenan/0000-0002-9682-2855; Giubilato, Piero/0000-0003-4358-5355; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Vilela Pereira, Antonio/0000-0003-3177-4626; CHANG, PAO-TI/0000-0003-4064-388X; Varela, Joao/0000-0003-2613-3146; Faccioli, Pietro/0000-0003-1849-6692; Grachov, Oleg/0000-0002-4294-9025; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Belyaev, Alexander/0000-0002-1733-4408; Leonardo, Nuno/0000-0002-9746-4594; Mercier, Damien/0000-0001-5063-7067; Fassi, Farida/0000-0002-6423-7213; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Levchenko, Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; TUVE', Cristina/0000-0003-0739-3153; Gulmez, Erhan/0000-0002-6353-518X; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Marinho, Franciole/0000-0002-7327-0349; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Grandi, Claudio/0000-0001-5998-3070; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Novaes, Sergio/0000-0003-0471-8549; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Azzi, Patrizia/0000-0002-3129-828X; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Stahl, Achim/0000-0002-8369-7506; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X; Wimpenny, Stephen/0000-0003-0505-4908; Troitsky, Sergey/0000-0001-6917-6600; FU FMSR (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences; NICPB (Estonia); Academy of Finland; ME; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST; MAE (Russia); MSTD (Serbia); MICINN; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK; TAEK (Turkey); STFC (United Kingdom); DOE; NSF (U.S.) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.). NR 25 TC 106 Z9 106 U1 3 U2 60 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2010 VL 105 IS 21 AR 211801 DI 10.1103/PhysRevLett.105.211801 PG 14 WC Physics, Multidisciplinary SC Physics GA 681JR UT WOS:000284308500006 PM 21231289 ER PT J AU Kolpak, AM Walker, FJ Reiner, JW Segal, Y Su, D Sawicki, MS Broadbridge, CC Zhang, Z Zhu, Y Ahn, CH Ismail-Beigi, S AF Kolpak, A. M. Walker, F. J. Reiner, J. W. Segal, Y. Su, D. Sawicki, M. S. Broadbridge, C. C. Zhang, Z. Zhu, Y. Ahn, C. H. Ismail-Beigi, S. TI Interface-Induced Polarization and Inhibition of Ferroelectricity in Epitaxial SrTiO3/Si SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTALLINE OXIDES; THIN-FILMS; SILICON; BATIO3; PHASE AB We use SrTiO3/Si as a model system to elucidate the effect of the interface on ferroelectric behavior in epitaxial oxide films on silicon. Using both first-principles computations and synchrotron x-ray diffraction measurements, we show that structurally imposed boundary conditions at the interface stabilize a fixed (pinned) polarization in the film but inhibit ferroelectric switching. We demonstrate that the interface chemistry responsible for these phenomena is general to epitaxial silicon-oxide interfaces, impacting on the design of silicon-based functional oxide devices. C1 [Kolpak, A. M.; Walker, F. J.; Reiner, J. W.; Segal, Y.; Sawicki, M. S.; Broadbridge, C. C.; Zhu, Y.; Ahn, C. H.; Ismail-Beigi, S.] Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Kolpak, A. M.; Walker, F. J.; Reiner, J. W.; Segal, Y.; Ahn, C. H.; Ismail-Beigi, S.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Su, D.; Zhu, Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sawicki, M. S.; Broadbridge, C. C.] So Connecticut State Univ, Dept Phys, New Haven, CT 06515 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kolpak, AM (reprint author), Yale Univ, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. RI Kim, Yu Jin/A-2433-2012; Su, Dong/A-8233-2013; Ismail-Beigi, Sohrab/F-2382-2014; Zhang, Zhan/A-9830-2008 OI Walker, Frederick/0000-0002-8094-249X; Su, Dong/0000-0002-1921-6683; Ismail-Beigi, Sohrab/0000-0002-7331-9624; Zhang, Zhan/0000-0002-7618-6134 FU National Science Foundation under MRSEC [DMR 0520495, DMR 1006256]; SRC; NCSA; Yale HPC; U.S. Department of Energy, Office of Science, Office of Basic Energy Science [DE-AC02-06CH11357, DE-AC02-98CH10886] FX We acknowledge support from the National Science Foundation under MRSEC DMR 0520495 and DMR 1006256, and SRC, as well as computational support from NCSA TeraGrid and Yale HPC. We thank the team of the 33ID beam line at the APS for technical assistance. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at Brookhaven was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 28 TC 32 Z9 32 U1 2 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2010 VL 105 IS 21 AR 217601 DI 10.1103/PhysRevLett.105.217601 PG 4 WC Physics, Multidisciplinary SC Physics GA 681JR UT WOS:000284308500027 PM 21231354 ER PT J AU Wang, YM Ott, RT Hamza, AV Besser, MF Almer, J Kramer, MJ AF Wang, Y. M. Ott, R. T. Hamza, A. V. Besser, M. F. Almer, J. Kramer, M. J. TI Achieving Large Uniform Tensile Ductility in Nanocrystalline Metals SO PHYSICAL REVIEW LETTERS LA English DT Article ID PLASTIC-DEFORMATION; STRENGTH; COBALT AB Synchrotron x-ray diffraction and high-resolution electron microscopy revealed the origin of different strain hardening behaviors (and dissimilar tensile ductility) in nanocrystalline Ni and nanocrystalline Co. Planar defect accumulations and texture evolution were observed in Co but not in Ni, suggesting that interfacial defects are an effective passage to promote strain hardening in truly nanograins. Twinning becomes less significant in Co when grain sizes reduce to below similar to 15 nm. This study offers insights into achieving excellent mechanical properties in nanocrystalline materials. C1 [Wang, Y. M.; Hamza, A. V.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Ott, R. T.; Besser, M. F.; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, YM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM ymwang@llnl.gov; rtott@ameslab.gov RI Wang, Yinmin (Morris)/F-2249-2010 OI Wang, Yinmin (Morris)/0000-0002-7161-2034 FU U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Basic Energy Sciences, U.S. DOE [DE-AC02-07CH11358]; U.S. DOE [DE-AC02-06CH11357] FX This work was performed under the auspices of the U.S. DOE (DE-AC52-07NA27344) by Lawrence Livermore National Laboratory. The work at Ames Laboratory was supported by the Office of Basic Energy Sciences, U.S. DOE (DE-AC02-07CH11358). The APS was supported by the U.S. DOE (DE-AC02-06CH11357). NR 19 TC 30 Z9 30 U1 7 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 17 PY 2010 VL 105 IS 21 AR 215502 DI 10.1103/PhysRevLett.105.215502 PG 4 WC Physics, Multidisciplinary SC Physics GA 681JR UT WOS:000284308500019 PM 21231320 ER PT J AU Elliott, SR Guiseppe, VE LaRoque, BH Johnson, RA Mashnik, SG AF Elliott, S. R. Guiseppe, V. E. LaRoque, B. H. Johnson, R. A. Mashnik, S. G. TI Fast-neutron activation of long-lived isotopes in enriched Ge SO PHYSICAL REVIEW C LA English DT Article ID DOUBLE-BETA-DECAY; COSMOGENIC ACTIVATION; GERMANIUM; GE-76; MASS AB We measured the production of Co-57, Mn-54, Ge-68, Zn-65, and Co-60 in a sample of Ge enriched in isotope 76 due to high-energy neutron interactions. These isotopes, especially Ge-68, are critical in understanding background in Ge detectors used for double beta decay experiments. They are produced by cosmogenic-neutron interactions in the detectors while they reside on the Earth's surface. These production rates were measured at neutron energies of a few hundred MeV. We compared the measured production to that predicted by cross-section calculations based on CEM03.02. The cross-section calculations overpredict our measurements by approximately a factor of 3 depending on isotope. We then use the measured cosmic-ray neutron flux, our measurements, and the CEM03.02 cross sections to predict the cosmogenic production rate of these isotopes. The uncertainty in extrapolating the cross-section model to higher energies dominates the total uncertainty in the cosmogenic production rate. C1 [Elliott, S. R.; Guiseppe, V. E.; LaRoque, B. H.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Johnson, R. A.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Mashnik, S. G.] Los Alamos Natl Lab, XCP Div, Los Alamos, NM 87545 USA. RP Elliott, SR (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM elliotts@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory; Nuclear Physics office of the US Department of Energy [2011LANLE9BW] FX We gratefully acknowledge the support of the US Department of Energy through the LANL/LDRD Program for this work. We thank Frank Avignone III for providing the enriched Ge sample and we thank Jason Detwiler for a careful reading of this manuscript. This work benefited from the use of the Los Alamos Neutron Science Center, funded by the US Department of Energy under Contract No. DE-AC52-06NA25396. We are grateful for the ToF SIMS measurements that were performed by Zihua Zhu using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank Richard Kouzes for making arrangements for the ToF SIMS measurements. This work also benefited from our underground laboratory at the Waste Isolation Pilot Plant (WIPP), which we operate with support from the Nuclear Physics office of the US Department of Energy under Contract No. 2011LANLE9BW. Finally, we thank our friends and hosts at WIPP for their continuing support of our activities underground at that facility. NR 34 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 16 PY 2010 VL 82 IS 5 AR 054610 DI 10.1103/PhysRevC.82.054610 PG 9 WC Physics, Nuclear SC Physics GA 680TR UT WOS:000284258600002 ER PT J AU Oh, SW Myung, ST Oh, SM Oh, KH Amine, K Scrosati, B Sun, YK AF Oh, Sung Woo Myung, Seung-Taek Oh, Seung-Min Oh, Kyu Hwan Amine, Khalil Scrosati, Bruno Sun, Yang-Kook TI Double Carbon Coating of LiFePO4 as High Rate Electrode for Rechargeable Lithium Batteries SO ADVANCED MATERIALS LA English DT Article ID CATHODE MATERIALS; ION BATTERIES; COATED LIFEPO4; CAPACITY; ROUTE; CELLS AB Micrometer-size LiFePO4 spheres with homogeneous double carbon coating layers have been prepared as potential electrode materials for battery applications. The double carbon-coated LiFePO4 electrodes in a lithium-ion cell exhibited discharge capacities of the order of 160 mAh g(-1) and 115 mAh g(-1) at 25 degrees C under 0.1 C-rate and 10 C-rate, respectively. C1 [Scrosati, Bruno] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy. [Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA. [Oh, Kyu Hwan] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea. [Myung, Seung-Taek] Iwate Univ, Dept Chem Engn, Morioka, Iwate 0208551, Japan. [Oh, Sung Woo; Oh, Seung-Min; Sun, Yang-Kook] Hanyang Univ, Dept WCU Energy Engn, Seoul 133791, South Korea. RP Scrosati, B (reprint author), Univ Roma La Sapienza, Dept Chem, Piazza Aldo Moro 5, I-00185 Rome, Italy. EM bruno.scrosati@uniroma1.it; yksun@hanyang.ac.kr RI Sun, Yang-Kook/B-9157-2013; Amine, Khalil/K-9344-2013 OI Sun, Yang-Kook/0000-0002-0117-0170; FU Education, Science, and Technology [R31-2008-000-10092]; Korea government (MEST) [2009-0092780] FX This research was supported by WCU (World Class University) program through the Korea Science and Engineering Foundation by Education, Science, and Technology (R31-2008-000-10092) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0092780). NR 23 TC 229 Z9 236 U1 24 U2 258 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 16 PY 2010 VL 22 IS 43 BP 4842 EP + DI 10.1002/adma.200904027 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 685HJ UT WOS:000284619500009 PM 20648516 ER PT J AU Utschig, LM Tiede, DM Poluektov, OG AF Utschig, Lisa M. Tiede, David M. Poluektov, Oleg G. TI Light-Induced Alteration of Low-Temperature Interprotein Electron Transfer between Photosystem I and Flavodoxin SO BIOCHEMISTRY LA English DT Article ID CROSS-LINKED COMPLEX; FERREDOXIN-NADP(+) REDUCTASE; ACCEPTOR AB Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction. C1 [Utschig, Lisa M.; Tiede, David M.; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Utschig, LM (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM utschig@anl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work is supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 21 TC 2 Z9 2 U1 0 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 16 PY 2010 VL 49 IS 45 BP 9682 EP 9684 DI 10.1021/bi101507j PG 3 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 675MC UT WOS:000283833800002 PM 20961074 ER PT J AU Lee, SS Fenter, P Park, C Sturchio, NC Nagy, KL AF Lee, Sang Soo Fenter, Paul Park, Changyong Sturchio, Neil C. Nagy, Kathryn L. TI Hydrated Cation Speciation at the Muscovite (001)-Water Interface SO LANGMUIR LA English DT Article ID X-RAY REFLECTIVITY; MOLECULAR-DYNAMICS SIMULATION; FULVIC-ACID; 001 SURFACE; ADSORPTION; SORPTION; CHARGE; MEDIA; IONS AB Charged materials in aqueous systems interact according to their interfacial properties, typically described by the electrical double layer (EDL). Distributions or divalent metal cations at the muscovite (001)-solution interlace observed using resonant anomalous X-ray reflectivity demonstrate an unexpected complexity with respect to the EDL structure. Three forms of adsorbed cations can coexist: the classical inner-sphere and outer-sphere complexes and a third "extended" outer-sphere complex located farther from the surface. Their relative proportions are controlled by the energy balance among cation hydration, interface hydration, and electrostatic attraction. Systematic trends in coverage and position establish the defining role of cation hydration in stabilizing the multiple coexisting species. C1 [Lee, Sang Soo; Fenter, Paul; Park, Changyong] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Sturchio, Neil C.; Nagy, Kathryn L.] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA. RP Lee, SS (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sslee@anl.gov RI Lee, Sang Soo/B-9046-2012; Park, Changyong/A-8544-2008; OI Park, Changyong/0000-0002-3363-5788; Fenter, Paul/0000-0002-6672-9748 FU Office of Basic Energy Sciences; Department of Energy [DE-AC02-06CH11357]; National Science Foundation [EAR-0447310]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [DE-FG02-06ER15364]; [DE-FG02-03ER15381] FX This work was supported by the Geosciences Research Program, Office of Basic Energy Sciences. United States Department of Energy under contract DE-AC02-06CH11357 to UChicago Argonne, LLC as the operator of Argonne National Laboratory and grants DE-FG02-06ER15364 and DE-FG02-03ER15381 and National Science Foundation grant EAR-0447310 to the University of Illinois at Chicago. The reflectivity data were collected at beamlines 6-ID-B (MU-CAT) and 33-ID-D (UNI-XOR) at the Advanced Photon Source. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-06CH11357 to UChicago Argonne. EEC as operator of Argonne National Laboratory. Thoughtful comments from three anonymous reviewers aided the revision of this letter. NR 47 TC 44 Z9 45 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 16 PY 2010 VL 26 IS 22 BP 16647 EP 16651 DI 10.1021/la1032866 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 675NQ UT WOS:000283837800006 PM 20932042 ER PT J AU Holder, PG Finley, DT Stephanopoulos, N Walton, R Clark, DS Francis, MB AF Holder, Patrick G. Finley, Daniel T. Stephanopoulos, Nicholas Walton, Ross Clark, Douglas S. Francis, Matthew B. TI Dramatic Thermal Stability of Virus-Polymer Conjugates in Hydrophobic Solvents SO LANGMUIR LA English DT Article ID TOBACCO-MOSAIC-VIRUS; PROTEIN KINETIC STABILITY; ORGANIC-SOLVENTS; SURFACE MODIFICATION; WATER; SOLUBILIZATION; COMPOSITES; TEMPLATES; PARTICLES; NANOWIRES AB We have developed a method for integrating the self-assembling tobacco mosaic virus capsid into hydrophobic solvents and hydrophobic polymers. The capsid was modified at tyrosine residues to display an array or linear poly(ethylene glycol) chains, allowing it to be transferred into chloroform. In a subsequent step, the capsids could he transferred to a variety of hydrophobic solvents, including benzyl alcohol, o-dichlorohenzene, and diglyme. The thermal stability of the material against denaturation increased from 70 degrees C in water to at least 160 degrees C in hydrophobic solvents. With a view toward material fabrication, the polymer-coated TMV rods were also incorporated into solid polystyrene and thermally cast at 110 degrees C. Overall, this process significantly expands the range of processing conditions for TMV-based materials, with the goal of incorporating these templated nanoscale systems into conductive polymer matrices. C1 [Holder, Patrick G.; Finley, Daniel T.; Stephanopoulos, Nicholas; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Clark, Douglas S.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Francis, Matthew B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Walton, Ross] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM francis@cchem.berkeley.edu RI Holder, Patrick/D-3202-2013; Holder, Patrick/O-4876-2016 OI Holder, Patrick/0000-0003-0971-191X; Holder, Patrick/0000-0003-0971-191X FU NSF [CHE-0449772]; UC Berkeley [1 T32 GMO66698] FX This work was generously funded by the NSF (CHE-0449772). P.G.H. was supported by the UC Berkeley Chemical Biology Graduate Program (NRSA Training Grant 1 T32 GMO66698). The authors thank Dr. Harvey R. Johnson for helpful discussions. Prof. A. Paul Alivasatos, Prof. Peidong Yang, and Prof. Jean M. J. Frechet are acknowledged for the use or materials and instrumentation. They also thank the DC Berkeley Electron Microscopy Facility for guidance. NR 36 TC 27 Z9 27 U1 1 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 16 PY 2010 VL 26 IS 22 BP 17383 EP 17388 DI 10.1021/la1039305 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 675NQ UT WOS:000283837800101 PM 20964388 ER PT J AU Dai, Q Lam, M Swanson, S Yu, RHR Milliron, DJ Topuria, T Jubert, PO Nelson, A AF Dai, Qiu Lam, Michelle Swanson, Sally Yu, Rui-Hui Rachel Milliron, Delia J. Topuria, Teya Jubert, Pierre-Olivier Nelson, Alshakim TI Monodisperse Cobalt Ferrite Nanomagnets with Uniform Silica Coatings SO LANGMUIR LA English DT Article ID IRON-OXIDE NANOPARTICLES; MAGNETIC-PROPERTIES; INTERPARTICLE INTERACTIONS; MN NANOPARTICLES; MFE2O4 M; NANOCRYSTALS; PARTICLES; CO; ASSEMBLIES; COLLOIDS AB Ferro- and ferrimagnetic nanoparticles are difficult to manipulate in solution as a consequence of the formation of magnetically induced nanoparticle aggregates, which hamper the utility of these particles for applications ranging from data storage to bionanotechnology. Nonmagnetic shells that encapsulate these magnetic particles can reduce the interparticle magnetic interactions and improve the dispersibility of the nanoparticles in solution. A route to create uniform silica shells around individual cobalt ferrite nanoparticles-which uses poly(acrylic acid) to bind to the nanoparticles surface and inhibit nanoparticle aggregation prior to the addition of a silica precursor-was developed. In the absence of the poly(acrylic acid) the cobalt ferrite nanoparticles irreversibly aggregated during the silica shell formation. The thickness of the silica shell around the core-shell nanoparticles could be controlled in order to tune the interparticle magnetic coupling as well as inhibit magnetically induced nanoparticle aggregation. These ferrimagnetic core-silica shell structures form stable dispersion in polar solvents such as EtOH and water, which is critical for enabling technologies that require the assembly or derivatization of ferrimagnetic particles in solution. C1 [Dai, Qiu; Lam, Michelle; Swanson, Sally; Yu, Rui-Hui Rachel; Topuria, Teya; Jubert, Pierre-Olivier; Nelson, Alshakim] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Milliron, Delia J.] Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94611 USA. RP Jubert, PO (reprint author), IBM Almaden Res Ctr, 650 Harry Rd, San Jose, CA 95120 USA. EM pjubert@us.ibm.com; alshak@us.ibm.com RI Milliron, Delia/D-6002-2012 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-ACO2-05CH11231]; IBM FX We thank IBM for funding and support. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-ACO2-05CH11231 NR 40 TC 34 Z9 35 U1 3 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 16 PY 2010 VL 26 IS 22 BP 17546 EP 17551 DI 10.1021/la103042q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 675NQ UT WOS:000283837800124 PM 20961061 ER PT J AU Fang, XW Wang, CZ Yao, YX Ding, ZJ Ho, KM AF Fang, X. W. Wang, C. Z. Yao, Y. X. Ding, Z. J. Ho, K. M. TI Atomistic cluster alignment method for local order mining in liquids and glasses SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; SHORT-RANGE ORDER; WAVE BASIS-SET; METALLIC GLASSES; MOLECULAR-DYNAMICS; FORMING ABILITY; ALLOYS; ZR; PACKING AB An atomistic cluster alignment method is developed to identify and characterize the local atomic structural order in liquids and glasses. With the "order mining" idea for structurally disordered systems, the method can detect the presence of any type of local order in the system and can quantify the structural similarity between a given set of templates and the aligned clusters in a systematic and unbiased manner. Moreover, population analysis can also be carried out for various types of clusters in the system. The advantages of the method in comparison with other previously developed analysis methods are illustrated by performing the structural analysis for four prototype systems (i.e., pure Al, pure Zr, Zr(35)Cu(65), and Zr(36)Ni(64)). The results show that the cluster alignment method can identify various types of short-range orders (SROs) in these systems correctly while some of these SROs are difficult to capture by most of the currently available analysis methods (e.g., Voronoi tessellation method). Such a full three-dimensional atomistic analysis method is generic and can be applied to describe the magnitude and nature of noncrystalline ordering in many disordered systems. C1 [Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ho, K. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Fang, X. W.; Wang, C. Z.; Yao, Y. X.; Ho, K. M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China. [Fang, X. W.; Ding, Z. J.] Univ Sci & Technol China, Dept Phys, Hefei 230026, Anhui, Peoples R China. RP Wang, CZ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM wangcz@ameslab.gov RI Yao, Yongxin/B-7320-2008 FU U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering at the National Energy Research Supercomputing Centre (NERSC) in Berkeley [DE-AC02-07CH11358]; China Scholarship Council [2008634035]; National Natural Science Foundation of China [10874160, 11074232]; "111" project FX We thank S. G. Hao, Li Huang, and S. Y. Wang for useful discussions and providing us their MD simulation trajectories on Zr35Cu65, Zr36Ni64, and Zr. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. X. W. F. acknowledges the support from China Scholarship Council (File No. 2008634035) and Z.J.D. acknowledges the National Natural Science Foundation of China (Grant Nos. 10874160 and 11074232) and "111" project. NR 36 TC 48 Z9 48 U1 7 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2010 VL 82 IS 18 AR 184204 DI 10.1103/PhysRevB.82.184204 PG 10 WC Physics, Condensed Matter SC Physics GA 680TJ UT WOS:000284257500004 ER PT J AU Gray, AX Papp, C Balke, B Yang, SH Huijben, M Rotenberg, E Bostwick, A Ueda, S Yamashita, Y Kobayashi, K Gullikson, EM Kortright, JB Groot, FMF Rijnders, G Blank, DHA Ramesh, R Fadley, CS AF Gray, A. X. Papp, C. Balke, B. Yang, S. -H. Huijben, M. Rotenberg, E. Bostwick, A. Ueda, S. Yamashita, Y. Kobayashi, K. Gullikson, E. M. Kortright, J. B. de Groot, F. M. F. Rijnders, G. Blank, D. H. A. Ramesh, R. Fadley, C. S. TI Interface properties of magnetic tunnel junction La0.7Sr0.3MnO3/SrTiO3 superlattices studied by standing-wave excited photoemission spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID ROOM-TEMPERATURE; MAGNETORESISTANCE; OXIDES AB The chemical and electronic-structure profiles of magnetic tunnel junction (MTJ) La0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) superlattices have been quantitatively determined via soft and hard x-ray standing-wave excited photoemission, x-ray absorption and x-ray reflectivity, in conjunction with x-ray optical and core-hole multiplet theoretical modeling. Epitaxial superlattice samples consisting of 48 and 120 bilayers of LSMO and STO, each nominally four unit cells thick, and still exhibiting LSMO ferromagnetism, were studied. By varying the incidence angle around the superlattice Bragg condition, the standing wave was moved vertically through the interfaces. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the superlattice and its interfaces was quantitatively derived with angstrom precision. The multilayers were found to have a small similar to 6% change in periodicity from top to bottom. Interface compositional mixing or roughness over similar to 6 angstrom was also found, as well as a significant change in the soft x-ray optical coefficients of LSMO near the interface. The soft x-ray photoemission data exhibit a shift in the position of the Mn 3p peak near the interface, which is not observed for Mn 3s. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced (MTJ) performance of LSMO/STO compared to ideal theoretical expectations. C1 [Gray, A. X.; Fadley, C. S.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Gray, A. X.; Papp, C.; Balke, B.; Kortright, J. B.; Ramesh, R.; Fadley, C. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Papp, C.] Univ Erlangen Nurnberg, Lehrstuhl Phys Chem 2, D-91058 Erlangen, Germany. [Balke, B.] Johannes Gutenberg Univ Mainz, Inst Anorgan & Analyt Chem, D-55099 Mainz, Germany. [Yang, S. -H.] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Huijben, M.; Rijnders, G.; Blank, D. H. A.] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Rotenberg, E.; Bostwick, A.; Gullikson, E. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ueda, S.; Yamashita, Y.; Kobayashi, K.] Natl Inst Mat Sci, NIMS Beamline Stn SPring 8, Mikazuki, Hyogo 6795148, Japan. [de Groot, F. M. F.] Univ Utrecht, Dept Chem, NL-3584 CA Utrecht, Netherlands. [Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Gray, AX (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RI Institute (DINS), Debye/G-7730-2014; Gray, Alexander/F-9267-2011; Balke, Benjamin/A-5958-2009; MSD, Nanomag/F-6438-2012; UEDA, Shigenori/H-2991-2011; de Groot, Frank/A-1918-2009; Bostwick, Aaron/E-8549-2010; Papp, Christian /N-7738-2013; Rotenberg, Eli/B-3700-2009; YAMASHITA, Yoshiyuki/H-2704-2011 OI Balke, Benjamin/0000-0003-3275-0634; Papp, Christian /0000-0002-1733-4387; Rotenberg, Eli/0000-0002-3979-8844; FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan FX The authors acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are also grateful to HiSOR, Hiroshima University and JAEA/SPring-8 for the development of hard x-ray photoelectron spectroscopy at BL15XU of SPring-8. The experiments at BL15XU were performed under the approval of NIMS Beamline Station (Proposal No. 2009A4906). This work was partially supported by the Nanotechnology Network Project, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. NR 36 TC 34 Z9 34 U1 2 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2010 VL 82 IS 20 AR 205116 DI 10.1103/PhysRevB.82.205116 PG 9 WC Physics, Condensed Matter SC Physics GA 680TO UT WOS:000284258300004 ER PT J AU Jo, JY Sichel, RJ Dufresne, EM Lee, HN Nakhmanson, SM Evans, PG AF Jo, Ji Young Sichel, Rebecca J. Dufresne, Eric M. Lee, Ho Nyung Nakhmanson, Serge M. Evans, Paul G. TI Component-specific electromechanical response in a ferroelectric/dielectric superlattice SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; POLARIZATION ENHANCEMENT; PIEZOELECTRICITY AB The electronic and electromechanical properties of complex oxide superlattices are closely linked to the evolution of the structure and electrical polarization of the component layers in applied electric fields. Efforts to deduce the responses of the individual components of the superlattice to applied fields have focused on theoretical approaches because of the limitations of available experimental techniques. Time-resolved x-ray microdiffraction provides a precise crystallographic probe of each component using the shift in wave vector and change in intensity of superlattice satellite reflections. We report in detail the methods to measure and analyze the x-ray diffraction patterns in applied electric field and their application to a 2-unit-cell BaTiO(3)/4-unit-cell CaTiO(3) superlattice. We find that the overall piezoelectric distortion is shared between the two components. Theoretical predictions of the electromechanical properties of a superlattice with the same composition constrained to tetragonal symmetry are in excellent agreement with the experiments. Lattice instability analysis, however, suggests that the low-temperature ground state could exhibit antiferrodistortive rotations of TiO(6) octahedra within and/or at the interfaces of the CaTiO(3) component. C1 [Jo, Ji Young; Sichel, Rebecca J.; Evans, Paul G.] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Jo, Ji Young; Sichel, Rebecca J.; Evans, Paul G.] Univ Wisconsin, Mat Sci Program, Madison, WI 53706 USA. [Dufresne, Eric M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Nakhmanson, Serge M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Jo, JY (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. RI Evans, Paul/A-9260-2009; Nakhmanson, Serge/A-6329-2014; Lee, Ho Nyung/K-2820-2012 OI Evans, Paul/0000-0003-0421-6792; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy [DE-FG02-04ER46147, DE-AC02-06CH11357]; U.S. National Science Foundation [DMR-0705370]; Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC05-00OR22725] FX P.G.E. acknowledges support by the U.S. Department of Energy through Contract No. DE-FG02-04ER46147 and by the U.S. National Science Foundation through Grant No. DMR-0705370. H.N.L. acknowledges support from the Materials Sciences and Engineering Division, U.S. Department of Energy through Contract No. DE-AC05-00OR22725. S.M.N. and the use of the Advanced Photon Source were supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. NR 37 TC 5 Z9 5 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2010 VL 82 IS 17 AR 174116 DI 10.1103/PhysRevB.82.174116 PG 10 WC Physics, Condensed Matter SC Physics GA 680TG UT WOS:000284257200005 ER PT J AU Koshelev, AE AF Koshelev, A. E. TI Stability of dynamic coherent states in intrinsic Josephson-junction stacks near internal cavity resonance SO PHYSICAL REVIEW B LA English DT Article ID I-V CHARACTERISTICS; PHASE-LOCKING; ARRAYS; SUPERCONDUCTORS; RADIATION; BI2SR2CACU2O8+DELTA; MILLIMETER; EMISSION AB Stacks of intrinsic Josephson junctions in the resistive state can by efficiently synchronized by the internal cavity mode resonantly excited by the Josephson oscillations. We study the stability of dynamic coherent states near the resonance with respect to small perturbations. Three states are considered: the homogeneous and alternating-kink states in zero magnetic field and the homogeneous state in the magnetic field near the value corresponding to half flux quantum per junction. We found two possible instabilities related to the short-scale and long-scale perturbations. The homogeneous state in modulated junction is typically unstable with respect to the short-scale alternating phase deformations unless the Josephson current is completely suppressed in one half of the stack. The kink state is stable with respect to such deformations and homogeneous state in the magnetic field is only stable within a certain range of frequencies and fields. Stability with respect to the long-range deformations is controlled by resonance excitations of fast modes at finite wave vectors and typically leads to unstable range of the wave vectors. This range shrinks with approaching the resonance and increasing the in-plane dissipation. As a consequence, in finite-height stacks the stability frequency range near the resonance increases with decreasing the height. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Koshelev, AE (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX I would like to acknowledge many useful discussions with U. Welp, L. Bulaevskii, X. Hu, S. Z. Lin, K. Gray, L. Ozyuzer, K. Kadowaki, H. Wang, and R. Kleiner. This work was supported by UChicago Argonne, LLC, operator of Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, operated under Contract No. DE-AC02-06CH11357. NR 37 TC 35 Z9 35 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2010 VL 82 IS 17 AR 174512 DI 10.1103/PhysRevB.82.174512 PG 14 WC Physics, Condensed Matter SC Physics GA 680TG UT WOS:000284257200009 ER PT J AU Shchegolkov, DY Azad, AK O'Hara, JF Simakov, EI AF Shchegolkov, D. Yu. Azad, A. K. O'Hara, J. F. Simakov, E. I. TI Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers SO PHYSICAL REVIEW B LA English DT Article AB We present two different designs of robust, easily manufactured metamaterial-based films of subwavelength thickness capable of full absorption of incident terahertz radiation at certain frequencies. Both designs allow a choice between the total absorption of all polarizations or only one linear polarization while the other polarization is reflected. Even if the films are optimized for normal incidence, the absorption remains greater than 99% for angles up to similar to 35 degrees in the TE and up to similar to 65 degrees in the TM case. In the first design, the maximum absorption frequency shifts considerably with angle, and in the second design it is independent of angle. C1 [Shchegolkov, D. Yu.; Azad, A. K.; O'Hara, J. F.; Simakov, E. I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shchegolkov, DY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Azad, Abul/B-1163-2011; OI Azad, Abul/0000-0002-7784-7432; Shchegolkov, Dmitry/0000-0002-0721-3397; Simakov, Evgenya/0000-0002-7483-1152 FU U.S. Department of Energy through the LANL/LDRD FX The authors benefitted from discussions with Antoinette Taylor and N.A. Moody and gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program. NR 17 TC 100 Z9 104 U1 4 U2 50 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2010 VL 82 IS 20 AR 205117 DI 10.1103/PhysRevB.82.205117 PG 6 WC Physics, Condensed Matter SC Physics GA 680TO UT WOS:000284258300005 ER PT J AU Felizardo, M Morlat, T Fernandes, AC Girard, TA Marques, JG Ramos, AR Auguste, M Boyer, D Cavaillou, A Sudre, C Poupeney, J Payne, RF Miley, HS Puibasset, J AF Felizardo, M. Morlat, T. Fernandes, A. C. Girard, T. A. Marques, J. G. Ramos, A. R. Auguste, M. Boyer, D. Cavaillou, A. Sudre, C. Poupeney, J. Payne, R. F. Miley, H. S. Puibasset, J. CA SIMPLE Collaboration TI First Results of the Phase II SIMPLE Dark Matter Search SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHAMBER AB We report results of a 14.1 kgd measurement with 15 superheated droplet detectors of total active mass 0.208 kg, comprising the first stage of a 30 kg d Phase II experiment. In combination with the results of the neutron-spin sensitive XENON10 experiment, these results yield a limit of |a(p)| < 0.32 for M-W = 50 GeV/c(2) on the spin-dependent sector of weakly interacting massive particle- nucleus interactions with a 50% reduction in the previously allowed region of the phase space, formerly defined by XENON, KIMS, and PICASSO. In the spin-independent sector, a limit of 2.3 x 10(-5) pb at M-W 45 GeV/c(2) is obtained. C1 [Felizardo, M.; Morlat, T.; Fernandes, A. C.; Girard, T. A.; Marques, J. G.; Ramos, A. R.] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. [Felizardo, M.] Univ Nova Lisboa, Dept Phys, P-2829516 Caparica, Portugal. [Felizardo, M.; Fernandes, A. C.; Marques, J. G.; Ramos, A. R.] Inst Tecnol & Nucl, P-2686953 Sacavem, Portugal. [Morlat, T.; Girard, T. A.] Univ Nova Lisboa, Dept Phys, P-1749016 Lisbon, Portugal. [Auguste, M.; Boyer, D.; Cavaillou, A.; Sudre, C.; Poupeney, J.] Observ Cote Azur, Lab Souterrain Bas Bruit, F-84400 Rustrel Pays Dapt, France. [Payne, R. F.; Miley, H. S.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Puibasset, J.] CNRS, Ctr Rech Mat Divisee, F-45071 Orleans 02, France. [Puibasset, J.] Univ Orleans, F-45071 Orleans 02, France. RP Girard, TA (reprint author), Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal. EM criodets@cii.fc.ul.pt RI Lopes Ramos Wahl, Ana Rita/C-1337-2012; Marques, Jose/H-6145-2011; Fernandes, Ana/A-6974-2013; Felizardo, Miguel/N-1798-2015; OI Lopes Ramos Wahl, Ana Rita/0000-0001-6652-7698; Marques, Jose/0000-0002-3724-5664; Felizardo, Miguel/0000-0002-6458-1428; Fernandes, Ana/0000-0001-6880-7634; Girard, Thomas/0000-0003-4113-880X FU Portuguese Foundation for Science and Technology (FCT) [PDTC/FIS/83424/2006]; Nuclear Physics Center of the University of Lisbon FX We thank Dr. F. Giuliani for numerous suggestions and advice, Dr. P. Loaiza for the radioassays of the site concrete and steel, Eng J. Albuquerque of CRIOLAB, Lda for technical assistance during the measurement staging, and the Casolis for their hospitality during our various residences near the LSBB. This work was supported in part by Grant No. PDTC/FIS/83424/2006 of the Portuguese Foundation for Science and Technology (FCT), and by the Nuclear Physics Center of the University of Lisbon. NR 24 TC 53 Z9 53 U1 1 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 16 PY 2010 VL 105 IS 21 AR 211301 DI 10.1103/PhysRevLett.105.211301 PG 4 WC Physics, Multidisciplinary SC Physics GA 680UB UT WOS:000284259600003 PM 21231283 ER PT J AU Yokoyama, T Masujin, K Schmerr, MJ Shu, YJ Okada, H Iwamaru, Y Imamura, M Matsuura, Y Murayama, Y Mohri, S AF Yokoyama, Takashi Masujin, Kentaro Schmerr, Mary Jo Shu, Yujing Okada, Hiroyuki Iwamaru, Yoshifumi Imamura, Morikazu Matsuura, Yuichi Murayama, Yuichi Mohri, Shirou TI Intraspecies Prion Transmission Results in Selection of Sheep Scrapie Strains SO PLOS ONE LA English DT Article ID BOVINE SPONGIFORM ENCEPHALOPATHY; CREUTZFELDT-JAKOB-DISEASE; MOLECULAR ANALYSIS; NATURAL SCRAPIE; TRANSGENIC MICE; INTERSPECIES TRANSMISSION; MONOCLONAL-ANTIBODIES; ABNORMAL ISOFORM; PROTEIN; BSE AB Background: Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined. Methodology/Principal Findings: In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain. Conclusions/Significance: Our results indicate that prion strain selection occurs after both inter-and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie. C1 [Yokoyama, Takashi; Masujin, Kentaro; Shu, Yujing; Okada, Hiroyuki; Iwamaru, Yoshifumi; Imamura, Morikazu; Matsuura, Yuichi; Murayama, Yuichi; Mohri, Shirou] Natl Inst Anim Hlth, Pr Dis Res Ctr, Tsukuba, Ibaraki 305, Japan. [Schmerr, Mary Jo] Iowa State Univ, Ames Lab, Ames, IA USA. RP Yokoyama, T (reprint author), Natl Inst Anim Hlth, Pr Dis Res Ctr, Tsukuba, Ibaraki 305, Japan. EM tyoko@affrc.go.jp FU Ministry of Agriculture, Forestry, and Fisheries of Japan; Ministry of Health, Labour and Welfare of Japan; Bio-oriented Technology Research Advancement Institution ( Tokyo, Japan) FX This work was supported by grants from the BSE control project of the Ministry of Agriculture, Forestry, and Fisheries of Japan, and in part by grants from the Ministry of Health, Labour and Welfare of Japan and in part by grants from Bio-oriented Technology Research Advancement Institution ( Tokyo, Japan). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 50 TC 19 Z9 19 U1 0 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 16 PY 2010 VL 5 IS 11 AR e15450 DI 10.1371/journal.pone.0015450 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 680TI UT WOS:000284257400024 PM 21103326 ER PT J AU Nogales, E AF Nogales, Eva TI When cytoskeletal worlds collide SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Editorial Material ID PLASMID; PROKARYOTES; FILAMENTS; MECHANISM; SEPTINS; PROTEIN; COMPLEX; PARM; FTSZ C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU Howard Hughes Medical Institute NR 19 TC 4 Z9 4 U1 0 U2 1 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 16 PY 2010 VL 107 IS 46 BP 19609 EP 19610 DI 10.1073/pnas.1014665107 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 680UT UT WOS:000284261800004 PM 21059902 ER PT J AU Thomson, AM Calvin, KV Chini, LP Hurtt, G Edmonds, JA Bond-Lamberty, B Frolking, S Wise, MA Janetos, AC AF Thomson, Allison M. Calvin, Katherine V. Chini, Louise P. Hurtt, George Edmonds, James A. Bond-Lamberty, Ben Frolking, Steve Wise, Marshall A. Janetos, Anthony C. TI Climate mitigation and the future of tropical landscapes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE agricultural productivity; climate change; integrated assessment; land use change ID LAND-USE CHANGE; RESIDUE BIOMASS; FORESTS; ENERGY; DEFORESTATION; EMISSIONS; BOREAL; AMAZON; GENERATION; TEMPERATE AB Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 Wm(-2) ( approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies. C1 [Thomson, Allison M.; Calvin, Katherine V.; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Ben; Wise, Marshall A.; Janetos, Anthony C.] Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Chini, Louise P.; Hurtt, George] Univ Maryland, Dept Geog, College Pk, MD 20740 USA. [Frolking, Steve] Univ New Hampshire, Inst Study Earth Oceans & Space, Complex Syst Res Ctr, Durham, NH 03824 USA. RP Thomson, AM (reprint author), Univ Maryland, Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM allison.thomson@pnl.gov RI Thomson, Allison/B-1254-2010; Bond-Lamberty, Ben/C-6058-2008; Hurtt, George/A-8450-2012; OI Bond-Lamberty, Ben/0000-0001-9525-4633; Calvin, Katherine/0000-0003-2191-4189 FU US Department of Energy's Office of Science; US Environmental Protection Agency; US National Aeronautics and Space Administration FX We thank Elizabeth Malone and three anonymous reviewers for valuable feedback on an earlier version of this paper. This study was supported in part by the US Department of Energy's Office of Science, the US Environmental Protection Agency, and the US National Aeronautics and Space Administration. NR 47 TC 37 Z9 37 U1 3 U2 30 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 16 PY 2010 VL 107 IS 46 BP 19633 EP 19638 DI 10.1073/pnas.0910467107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 680UT UT WOS:000284261800010 PM 20921413 ER PT J AU Braun, A Wang, HX Funk, T Seifert, S Cairns, EJ AF Braun, Artur Wang, Hongxin Funk, Tobias Seifert, Soenke Cairns, Elton J. TI Depth profile analysis of a cycled lithium ion manganese oxide battery electrode via the valence state of manganese, with soft X-ray emission spectroscopy SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium battery; X-ray spectroscopy; Depth profile; Manganese oxide; Valence state ID ABSORPTION; SCATTERING; SPINEL; FILMS; CELL; XPS AB A 50-mu m thick lithium manganese oxide (parent material LiMn(2)O(4)) battery electrode (positive electrode; cathode) was charged, slightly discharged and then sliced with a scotch tape test-type method. A selected number of slices was then subject to synchrotron soft X-ray emission spectroscopy near the Mn L(alpha,beta) emission lines in order to determine changes in the oxidation state of the manganese as a function of sampling depth. The emission spectra showed a minute yet noticeable and systematic chemical shift of up to 0.25 eV between the layer near the current collector and the layer near the electrolyte separator. The average manganese oxidation state near the separator was smaller than the average oxidation state in the interior of the electrode, or near the current collector. Since the data provide an oxidation state depth profile of the cathode, a Li(+) depth profile can be inferred. This method provides information on the spatial chemical inhomogeneity of electrodes prior to and after electrochemical cycling, and thus can aid in degradation studies. (C) 2010 Elsevier B.V. All rights reserved. C1 [Braun, Artur] Swiss Fed Labs Mat Sci & Technol, Empa, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Braun, Artur; Cairns, Elton J.] Ernest Orlando Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Wang, Hongxin; Funk, Tobias] Ernest Orlando Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wang, Hongxin] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Seifert, Soenke] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Cairns, Elton J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Braun, A (reprint author), Swiss Fed Labs Mat Sci & Technol, Empa, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM artur.braun@alumni.ethz.ch RI BRAUN, Artur/A-1154-2009; Cairns, Elton/E-8873-2012 OI BRAUN, Artur/0000-0002-6992-7774; Cairns, Elton/0000-0002-1179-7591 FU Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC03-76SF00098]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science/BES, of the U.S. DoE [DE-AC02-05CH11231]; European Commission [CT-2006-042095] FX This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The ALS is supported by the Director, Office of Science/BES, of the U.S. DoE, # DE-AC02-05CH11231. Financial support for A.B. by the European Commission (MIRG # CT-2006-042095) is acknowledged. NR 19 TC 2 Z9 2 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2010 VL 195 IS 22 SI SI BP 7644 EP 7648 DI 10.1016/j.jpowsour.2010.05.053 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 639KX UT WOS:000280974800022 ER PT J AU Capdevila, C Miller, MK Toda, I Chao, J AF Capdevila, C. Miller, M. K. Toda, I. Chao, J. TI Influence of the alpha-alpha ' phase separation on the tensile properties of Fe-base ODS PM 2000 alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Mechanical characterization; Ferrous alloy; Mechanical alloying; Tomography; Spinodal decomposition ID 475 DEGREES C; SPINODAL DECOMPOSITION; CHROMIUM ALLOY; ATOMIC-LEVEL; RECRYSTALLIZATION; DEFORMATION; POROSITY; PM2000; TEMPERATURE; MODULUS AB The yield and ultimate tensile strengths of an ultrafine grained, oxide dispersion strengthened (ODS) PM 2000 alloy increased during aging at 475 degrees C. Atom probe tomography and X-ray diffraction analysis revealed that the decrease in lattice parameter and the increases in the yield and ultimate tensile strengths were correlated with phase separation into Fe-rich alpha and Cr-enriched alpha' phases. The lattice misfit between the emerging alpha and alpha' domains and the resulting elastic strain, and the increment of the elastic modulus with aging time due to the corresponding decrease of lattice parameter during alpha-alpha' phase separation, can be regarded as the main causes of hardening. (c) 2010 Elsevier B.V. All rights reserved. C1 [Capdevila, C.; Toda, I.; Chao, J.] Ctr Nacl Invest Met CENIM CSIC, Dept Met Phys, MATERALIA Grp, Madrid 28040, Spain. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Capdevila, C (reprint author), Ctr Nacl Invest Met CENIM CSIC, Dept Met Phys, MATERALIA Grp, Avda Gregorio del Amo 8, Madrid 28040, Spain. EM ccm@cenim.csic.es RI Capdevila, Carlos/B-6970-2015 OI Capdevila, Carlos/0000-0002-1869-4085 FU Spanish Ministerio de Ciencia e Innovacion [ENE2009 13766-C04-01]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX PM 2000 (TM) is a trademark of Plansee GmbH. LEAP (R) is a registered trademark of Imago Scientific Instruments. The authors acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacion through the Plan Nacional 2009 (ENE2009 13766-C04-01). Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 36 TC 13 Z9 13 U1 0 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2010 VL 527 IS 29-30 BP 7931 EP 7938 DI 10.1016/j.msea.2010.08.083 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 676EJ UT WOS:000283892600063 ER PT J AU Angell, CT Yee, R Joshi, TH Swanberg, E Norman, EB Hicks, CL Klimenko, A Korbly, S Wilson, C Kulp, WD Warren, GA Bray, TH Copping, R Glans, PA Tyliszczak, T Shuh, DK AF Angell, C. T. Yee, R. Joshi, T. H. Swanberg, E. Norman, E. B. Hicks, C. L., Jr. Klimenko, A. Korbly, S. Wilson, C. Kulp, W. D. Warren, G. A. Bray, T. H. Copping, R. Glans, P. A. Tyliszczak, T. Shuh, D. K. TI Nuclear resonance fluorescence of Np-237 SO PHYSICAL REVIEW C LA English DT Article AB Measurements of states excited by nuclear resonance fluorescence in Np-237 were performed using a bremsstrahlung beam. Fifteen new states were observed in the region of 1.7 to 2.5 MeV. They can be used to detect or assay Np-237 nondestructively for applications in security and safeguards. The states are populated with similar strength as those states found previously in U-235 and Pu-239 but are spread out more in energy. C1 [Angell, C. T.; Yee, R.; Joshi, T. H.; Swanberg, E.; Norman, E. B.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Hicks, C. L., Jr.; Klimenko, A.; Korbly, S.; Wilson, C.] Passport Syst Inc, Billerica, MA 01862 USA. [Kulp, W. D.] Georgia Inst Technol, Dept Phys, Atlanta, GA 30332 USA. [Warren, G. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bray, T. H.; Copping, R.; Glans, P. A.; Tyliszczak, T.; Shuh, D. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Norman, E. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Angell, CT (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM cangell@nuc.berkeley.edu OI Angell, Christopher/0000-0003-0333-6557 FU US Department of Homeland Security; Office of Science, Office of Basic Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This research was funded by the US Department of Homeland Security. Parts of this research and the ALS were supported by the Director, Office of Science, Office of Basic Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. NR 15 TC 4 Z9 4 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 EI 1089-490X J9 PHYS REV C JI Phys. Rev. C PD NOV 15 PY 2010 VL 82 IS 5 AR 054310 DI 10.1103/PhysRevC.82.054310 PG 6 WC Physics, Nuclear SC Physics GA 680BI UT WOS:000284205900003 ER PT J AU Marginean, I Page, JS Tolmachev, AV Tang, KQ Smith, RD AF Marginean, Ioan Page, Jason S. Tolmachev, Aleksey V. Tang, Keqi Smith, Richard D. TI Achieving 50% Ionization Efficiency in Subambient Pressure Ionization with Nanoelectrospray SO ANALYTICAL CHEMISTRY LA English DT Article ID ELECTRODYNAMIC ION FUNNEL; CAPILLARY-ZONE-ELECTROPHORESIS; HIGHLY-CHARGED DROPLETS; MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION; LIQUID-CHROMATOGRAPHY; INTERFACE; TRANSMISSION; SENSITIVITY; EVAPORATION AB Inefficient ionization and poor transmission of the charged species produced by an electrospray from the ambient pressure mass spectrometer source into the high vacuum region required for mass analysis significantly limits achievable sensitivity. Here, we present evidence that, when operated at flow rates of 50 nL/min, a new electrospray-based ion source operated at similar to 20 Torr can deliver similar to 50% of the analyte ions initially in the solution as charged desolvated species into the rough vacuum region of mass spectrometers. The ion source can be tuned to optimize the analyte signal for readily ionized species while reducing the background contribution. C1 [Marginean, Ioan; Page, Jason S.; Tolmachev, Aleksey V.; Tang, Keqi; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, POB 999, Richland, WA 99352 USA. EM rds@pnl.gov RI Marginean, Ioan/A-4183-2008; Smith, Richard/J-3664-2012 OI Marginean, Ioan/0000-0002-6693-0361; Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR018522]; DOE [DE-AC05-76RLO 1830] FX This research was supported by the NIH National Center for Research Resources (RR018522). Experimental portions were performed in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the PNNL in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RLO 1830. NR 38 TC 22 Z9 23 U1 4 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2010 VL 82 IS 22 BP 9344 EP 9349 DI 10.1021/ac1019123 PG 6 WC Chemistry, Analytical SC Chemistry GA 678MQ UT WOS:000284080500032 PM 21028835 ER PT J AU Perdian, DC Lee, YJ AF Perdian, D. C. Lee, Young Jin TI Imaging MS Methodology for More Chemical Information in Less Data Acquisition Time Utilizing a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer SO ANALYTICAL CHEMISTRY LA English DT Article ID ARABIDOPSIS-THALIANA; TISSUE-SECTIONS; ELECTROSPRAY-IONIZATION; STRUCTURAL-CHARACTERIZATION; ATMOSPHERIC-PRESSURE; SMALL MOLECULES; BRAIN-TISSUE; MATRIX; METABOLITES; PROTEINS AB A novel mass spectrometric imaging method is developed to reduce the data acquisition time and provide rich chemical information using a hybrid linear ion trap-orbitrap mass spectrometer. In this method, the linear ion trap and orbitrap are used in tandem to reduce the acquisition time by incorporating multiple linear ion trap scans during an orbitrap scan utilizing a spiral raster step plate movement The data acquisition time was decreased by 43-49% in the current experiment compared to that of orbitrap-only scans; however, 75% or more time could be saved for higher mass resolution and with a higher repetition rate laser. Using this approach, a high spatial resolution of 10 mu m was maintained at ion trap imaging, while orbitrap spectra were acquired at a lower spatial resolution, 20-40 mu m, all with far less data acquisition time. Furthermore, various MS imaging methods were developed by interspersing MS/MS and MS(n) ion trap scans during orbitrap scans to provide more analytical information on the sample. This method was applied to differentiate and localize structural isomers of several flavonol glycosides from an Arabidopsis flower petal in which MS/MS, MS(n), ion trap, and orbitrap images were all acquired in a single data acquisition. C1 [Perdian, D. C.; Lee, Young Jin] US DOE, Ames Lab, Ames, IA 50011 USA. [Lee, Young Jin] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. RP Lee, YJ (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yjlee@iastate.edu RI Lee, Young Jin/F-2317-2011 OI Lee, Young Jin/0000-0002-2533-5371 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences; DOE [DE-AC02-07CH11358] FX We thank Basil Nikolau and Zhihong Song, Iowa State University of Science and Technology, for providing the A. thaliana plant samples. We also thank Maria Prieto-Conaway and Huy Bui, Thermo Scientific, for helpful discussions and support regarding this work. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences. The Ames Laboratory is operated by the Iowa State University of Science and Technology under DOE Contract DE-AC02-07CH11358. NR 38 TC 37 Z9 37 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2010 VL 82 IS 22 BP 9393 EP 9400 DI 10.1021/ac102017q PG 8 WC Chemistry, Analytical SC Chemistry GA 678MQ UT WOS:000284080500038 PM 20977220 ER PT J AU Bharadwaj, R Chen, ZW Datta, S Holmes, BM Sapra, R Simmons, BA Adams, PD Singh, AK AF Bharadwaj, Rajiv Chen, Zhiwei Datta, Supratim Holmes, Bradley M. Sapra, Rajat Simmons, Blake A. Adams, Paul D. Singh, Anup K. TI Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion SO ANALYTICAL CHEMISTRY LA English DT Article ID CAPILLARY-ZONE-ELECTROPHORESIS; CARBOHYDRATE GEL-ELECTROPHORESIS; HIGH-RESOLUTION SEPARATION; 8-AMINONAPHTHALENE-1,3,6-TRISULFONIC ACID; POLYSACCHARIDE ANALYSIS; ENZYMATIC-HYDROLYSIS; IONIC LIQUIDS; OLIGOSACCHARIDES; SWITCHGRASS; MOBILITIES AB The hydrolysis of biomass to fermentable sugars using glycosyl hydrolases such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Enhancement in hydrolysis efficiency is necessary and requires improvement in both enzymes and processing strategies. Advances in both areas in turn strongly depend on the progress in developing high-throughput assays to rapidly and quantitatively screen a large number of enzymes and processing conditions. For example, the characterization of various cellodextrins and xylooligomers produced during the time course of saccharification is important in the design of suitable reactors, enzyme cocktail compositions, and biomass pretreatment schemes. We have developed a microfluidicchip-based assay for rapid and precise characterization of glycans and xylans resulting from biomass hydrolysis. The technique enables multiplexed separation of soluble cellodextrins and xylose oligomers in around 1 min (10-fold faster than HPLC). The microfluidic device was used to elucidate the mode of action of Tm_Ce15A, a novel cellulase from hyperthermophile Thermotoga maritima. The results demonstrate that the cellulase is active at 80 degrees C and effectively hydrolyzes cellodextrins and ionic-liquid-pretreated switchgrass and Avicel to glucose, cellobiose, and cellotriose. The proposed microscale approach is ideal for quantitative large-scale screening of enzyme libraries for biomass hydrolysis, for development of energy feedstocks, and for polysaccharide sequencing. C1 [Bharadwaj, Rajiv; Adams, Paul D.; Singh, Anup K.] Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. [Bharadwaj, Rajiv; Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M.; Sapra, Rajat; Simmons, Blake A.; Singh, Anup K.] Sandia Natl Labs, Livermore, CA 94551 USA. [Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M.; Sapra, Rajat; Simmons, Blake A.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bharadwaj, R (reprint author), Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. EM rbharad@sandia.gov RI Chen, Zhiwei/B-9727-2011; Adams, Paul/A-1977-2013; OI Adams, Paul/0000-0001-9333-8219; Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; U.S. Department of Energy's Nuclear Security Administration [DE-AC04-94AL85000] FX Switchgrass (MPV2) was kindly provided by Dr. Ken Vogel of the U.S. Department of Agriculture, Agricultural Research Service, Lincoln, NE. We gratefully thank April Wong for her assistance with the electrophoresis assays. Special thanks go to Ujvalla Gupta for the stimulating discussions and encouragement. This work was part of the Department of Energy Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between the Lawrence Berkeley National Laboratory and the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin company, for the U.S. Department of Energy's Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 39 TC 9 Z9 9 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2010 VL 82 IS 22 BP 9513 EP 9520 DI 10.1021/ac102243f PG 8 WC Chemistry, Analytical SC Chemistry GA 678MQ UT WOS:000284080500054 PM 20964411 ER PT J AU Taylor, LC Lavrik, NV Sepaniak, MJ AF Taylor, Lisa C. Lavrik, Nickolay V. Sepaniak, Michael J. TI High-Aspect-Ratio, Silicon Oxide-Enclosed Pillar Structures in Microfluidic Liquid Chromatography SO ANALYTICAL CHEMISTRY LA English DT Article ID PRESSURE-DRIVEN; ELECTRIC-FIELD; ELECTROKINETIC TRANSPORT; ARRAY COLUMNS; SEPARATION; NANOCHANNELS; CHANNELS; DISPERSION; NANOCAPILLARY; PERFORMANCE AB The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 mu m for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions. C1 [Lavrik, Nickolay V.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Taylor, Lisa C.; Sepaniak, Michael J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Lavrik, NV (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM msepaniak@utk.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX A portion of this research at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Special thanks to Stephen Gibson and the UTK Center for Mass Sepctrometry and Dr. Bin Zhao for assistance with sample analysis. NR 50 TC 23 Z9 23 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2010 VL 82 IS 22 BP 9549 EP 9556 DI 10.1021/ac1023342 PG 8 WC Chemistry, Analytical SC Chemistry GA 678MQ UT WOS:000284080500059 PM 21028836 ER PT J AU Nikolova, L LaGrange, T Reed, BW Stern, MJ Browning, ND Campbell, GH Kieffer, JC Siwick, BJ Rosei, F AF Nikolova, L. LaGrange, T. Reed, B. W. Stern, M. J. Browning, N. D. Campbell, G. H. Kieffer, J-C. Siwick, B. J. Rosei, F. TI Nanocrystallization of amorphous germanium films observed with nanosecond temporal resolution SO APPLIED PHYSICS LETTERS LA English DT Article ID SILICON THIN-FILMS; IN-SITU; EXPLOSIVE CRYSTALLIZATION; GE FILMS AB Using dynamic transmission electron microscopy we measure nucleation and growth rates during laser driven crystallization of amorphous germanium (a-Ge) films supported by silicon monoxide membranes. The films were crystallized using single 532 nm laser pulses at a fluence of similar to 128 mJ cm(-2). Devitrification processes initiate less than 20 ns after excitation and are complete within similar to 55 ns. The nucleation rate was estimated by tracking crystallite density as a function of time and reached a maximum of similar to 1.6 X 10(22) nuclei/cm(3) s. This study provides information on nanocrystallization phenomena in a-Ge, which is important for the implementation of nanostructured group IV semiconductors in optoelectronics devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518069] C1 [Nikolova, L.; Kieffer, J-C.; Rosei, F.] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3C 1S2, Canada. [LaGrange, T.; Reed, B. W.; Browning, N. D.; Campbell, G. H.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Stern, M. J.; Siwick, B. J.] McGill Univ, Dept Phys, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Stern, M. J.; Siwick, B. J.] McGill Univ, Dept Chem, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada. [Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Rosei, F.] McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 2K6, Canada. RP Nikolova, L (reprint author), Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3C 1S2, Canada. EM nikolova@emt.inrs.ca; lagrange2@llnl.gov; bradley.siwick@mcgill.ca; rosei@emt.inrs.ca RI Campbell, Geoffrey/F-7681-2010; Nikolova, Liliya/F-3932-2012; Reed, Bryan/C-6442-2013; OI Browning, Nigel/0000-0003-0491-251X FU NSERC of Canada; FQRNT and MDEIE of Quebec; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; LLNL [DE-AC52-07NA27344]; Canada Research Chairs; NSERC; FQRNT FX L.N., J.-C.K., B.J.S., and F. R. were supported by NSERC of Canada and FQRNT and MDEIE of Quebec. T.LG., N.B., B. W. R., and G. C. were supported through grants by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. B.J.S., J.-C.K., and F. R. acknowledge partial salary support from the Canada Research Chairs program. L.N. acknowledges CGS Alexander Graham Bell from NSERC and FQRNT for postgraduate fellowships. NR 12 TC 20 Z9 20 U1 1 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 15 PY 2010 VL 97 IS 20 AR 203102 DI 10.1063/1.3518069 PG 3 WC Physics, Applied SC Physics GA 684JC UT WOS:000284545200050 ER PT J AU Park, H Xu, Y Varga, K Qi, JB Feldman, LC Lupke, G Tolk, N AF Park, Heungman Xu, Ying Varga, Kalman Qi, Jingbo Feldman, Leonard C. Luepke, Gunter Tolk, Norman TI Photon energy threshold for filling boron induced charge traps in SiO2 near the Si/SiO2 interface using second harmonic generation SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSPORT; SILICON AB We report the experimental determination of the threshold energy for filling the B+ induced charge traps in SiO2 near the Si/SiO2 interface, using a two-color pump-probe approach involving internal photoemission and second harmonic generation. The threshold photon energy for filling the B+ induced charge trap is 2.61 eV (lambda=475 nm) for single photon excitation between the silicon valence band and the B+ trap energy level in SiO2. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518070] C1 [Park, Heungman; Xu, Ying; Varga, Kalman; Qi, Jingbo; Feldman, Leonard C.; Tolk, Norman] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Xu, Ying] Zomega Terahertz Corp, Troy, NY 12180 USA. [Qi, Jingbo] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Feldman, Leonard C.] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, New Brunswick, NJ 08901 USA. [Luepke, Gunter] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. RP Park, H (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM heungman.park@vanderbilt.edu RI Varga, Kalman/A-7102-2013 FU Department of Energy (DOE), Basic Energy Sciences [DE-FGO2-99ER45781] FX This work was supported by Department of Energy (DOE), Basic Energy Sciences, Grant No. DE-FGO2-99ER45781. NR 19 TC 4 Z9 4 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 15 PY 2010 VL 97 IS 20 AR 202105 DI 10.1063/1.3518070 PG 3 WC Physics, Applied SC Physics GA 684JC UT WOS:000284545200029 ER PT J AU Perkins, CL Egaas, B Repins, I To, B AF Perkins, Craig L. Egaas, Brian Repins, Ingrid To, Bobby TI Quantitative analysis of graded Cu(In1-x,Ga-x)Se-2 thin films by AES, ICP-OES, and EPMA SO APPLIED SURFACE SCIENCE LA English DT Article DE CIGS; Auger; Electron probe microanalysis; Photovoltaics; Solar ID RAY PHOTOELECTRON-SPECTROSCOPY; CU(IN,GA)SE-2 SOLAR-CELLS; MEAN FREE PATHS; LAYERS; MICROANALYSIS; SURFACES; AUGER AB The overall composition and the compositional profile of the quaternary semiconductor Cu(In1-x,Ga-x)Se-2 (CIGS) have strong effects on the performance of photovoltaic devices based on it. Recent work that has yielded similar to 20% efficient solar cells based on CIGS has forced extra attention on quantitative analysis of the absorber layers. In this paper we present details of the procedures used to generate detailed compositional profiles of graded Cu(In1-x, Gax) Se2 thin films by Auger electron spectroscopy (AES) that when integrated, agree quantitatively with inductively-coupled plasma optical emission spectrometry (ICP-OES) data on the same films. The effects of sample rotation during sputter depth profiling on the quantification results are described. Details of the procedures used for the ICP-OES and wavelength-dispersed electron probe microanalysis (EPMA) analyses are also presented. Finally, we show why X-ray microanalysis techniques alone should not be used to argue that specific windows of copper and gallium concentrations can yield high performance devices. (C) Elsevier B.V. All rights reserved. C1 [Perkins, Craig L.] NCPV, Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Perkins, CL (reprint author), NCPV, Natl Renewable Energy Lab, 1617 Cole Blvd,MS 3218, Golden, CO 80401 USA. EM craig.perkins@nrel.gov FU U.S. Department of Energy with National Renewable Energy Laboratory [DE-AC36-08-GO28308] FX The authors thank Raghu Bhattacharya for development and maintenance of NREL's ICP-OES capability and Helio Moutinho for useful discussions regarding AFM image processing. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 27 TC 19 Z9 19 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 15 PY 2010 VL 257 IS 3 BP 878 EP 886 DI 10.1016/j.apsusc.2010.07.085 PG 9 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 651QJ UT WOS:000281941900040 ER PT J AU Hooker, JM Kim, SW Reibel, AT Alexoff, D Xu, YW Shea, C AF Hooker, Jacob M. Kim, Sung Won Reibel, Achim T. Alexoff, David Xu, Youwen Shea, Colleen TI Evaluation of [C-11]metergoline as a PET radiotracer for 5HTR in nonhuman primates SO BIOORGANIC & MEDICINAL CHEMISTRY LA English DT Article DE Metergoline; Carbon-11; PET; Serotonin; Altanserin ID 5-HT2A RECEPTORS; PHARMACOLOGICAL CHARACTERIZATION; SEROTONIN TRANSPORTER; METERGOLINE; RADIOLIGAND; VOLUNTEERS; BINDING; ANTAGONIST; DISORDER; LIGAND AB Metergoline, a serotonin receptor antagonist, was labeled with carbon-11 in order to evaluate its pharmacokinetics and distribution in non-human primates using positron emission tomography. [C-11]Metergoline had moderate brain uptake and exhibited heterogeneous specific binding, which was blocked by pretreatment with metergoline and altanserin throughout the cortex. Non-specific binding and insensitivity to changes in synaptic serotonin limit its potential as a PET radiotracer. However, the characterization of [C-11]metergoline pharmacokinetics and binding in the brain and peripheral organs using PET improves our understanding of metergoline drug pharmacology. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hooker, Jacob M.; Kim, Sung Won; Reibel, Achim T.; Alexoff, David; Xu, Youwen; Shea, Colleen] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Hooker, Jacob M.] Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA. [Hooker, Jacob M.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Div Nucl Med & Mol Imaging, Boston, MA 02114 USA. [Kim, Sung Won] NIAAA, Rockville, MD 20892 USA. [Reibel, Achim T.] Johannes Gutenberg Univ Mainz, Mainz, Germany. RP Hooker, JM (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM hooker@nmr.mgh.harvard.edu OI Hooker, Jacob/0000-0002-9394-7708 FU U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-98CH10886]; NIH [1F32EB008320]; NIMH PDSP [HHSN-271-2008-00025-C] FX This work was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy, supported by its Office of Biological and Environmental Research. J.M.H. was supported by an NIH Postdoctoral Fellowship (1F32EB008320) and through the Goldhaber Distinguished Fellowship program at BNL. The authors are grateful to Dr. Michael Schueller for cyclotron operation and the PET imaging team at BNL (Pauline Carter, Payton King, and Don Warner) for carrying out primate imaging experiments and to Dr. Joanna Fowler for scientific input. The receptor binding profile for metergoline was generously provided by the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract # HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. NR 37 TC 5 Z9 5 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0968-0896 J9 BIOORGAN MED CHEM JI Bioorg. Med. Chem. PD NOV 15 PY 2010 VL 18 IS 22 BP 7739 EP 7745 DI 10.1016/j.bmc.2010.04.039 PG 7 WC Biochemistry & Molecular Biology; Chemistry, Medicinal; Chemistry, Organic SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 673HK UT WOS:000283649900005 PM 20451398 ER PT J AU Pinwattana, K Wang, J Lin, CT Wu, H Du, D Lin, YH Chailapakul, O AF Pinwattana, Kulwadee Wang, Jun Lin, Chiann-Tso Wu, Hong Du, Dan Lin, Yuehe Chailapakul, Orawon TI CdSe/ZnS quantum dots based electrochemical immunoassay for the detection of phosphorylated bovine serum albumin SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Electrochemical immunoassay; Quantum dots; Biomarker; Phosphorylated bovine serum albumin ID PROTEIN-PHOSPHORYLATION; GOLD NANOPARTICLES; MASS-SPECTROMETRY; ANTIGEN; LABELS; AMPLIFICATION; IMMUNOSENSOR; SYSTEM AB A CdSe/ZnS quantum dot (QD) based electrochemical immunoassay of phosphorylated bovine serum albumin (BSA-OP) as a protein biomarker is presented. The QDs were used as labels for amplifying electrochemical signals and were conjugated with a secondary anti-phosphoserine antibody in a heterogeneous sandwich immunoassay. In this assay, the model phosphorylated protein BSA-OP was added to the primary BSA antibody coated polystyrene microwells, and then the QD labeled anti-phosphoserine antibody was added for completing immunorecognition. Finally, the bound QD was dissolved in an acid-dissolution step and was detected by electrochemical stripping analysis. The measured current responses were proportional to the concentration of BSA-OP. Under optimal conditions, the voltammetric response was linear over the range of 0.5-500 ng mL(-1) of BSA-OP, with a detection limit of 0.5 ng mL(-1). It also shows good reproducibility with a relative standard deviation of 8.6%. This QD-based electrochemical immunoassay offers great promise for simple and cost-effective analysis of protein biomarkers. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Jun; Lin, Chiann-Tso; Wu, Hong; Du, Dan; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pinwattana, Kulwadee; Chailapakul, Orawon] Chulalongkorn Univ, Fac Sci, Dept Chem, Bangkok 10330, Thailand. [Chailapakul, Orawon] Chulalongkorn Univ, Ctr Excellence Petr Petrochem & Adv Mat, Bangkok 10330, Thailand. RP Lin, YH (reprint author), Pacific NW Natl Lab, 902 Battele Blvd Richland, Richland, WA 99352 USA. EM yuehe.lin@pnl.gov; corawon@chula.ac.th RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012; OI Lin, Yuehe/0000-0003-3791-7587; PINWATTANA, KULWADEE/0000-0002-5543-2623 FU Office of the Higher Education Commission, Thailand; Thai Government; National Institutes of Health through the National Institute of Neurological Disorders and Stroke, National Institute of Health [U01 NS058161-01]; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory; DOE [DE-AC05-76L01830]; [PCU028.2010] FX K.P. would like to thank the Office of the Higher Education Commission, Thailand for supporting by grant fund under the program Strategic Scholarships for Frontier Research Network for the Join PhD Program Thai Doctoral Degree for this research. O.C. would also like to thank the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture, Chulalongkorn University, and PCU028.2010. This work was performed at Pacific Northwest National Laboratory (PNNL) and partially supported by Grant U01 NS058161-01 from the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke, National Institute of Health. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. The TEM characterization work was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. PNNL is operated for DOE by Battelle under Contract DE-AC05-76L01830. NR 23 TC 43 Z9 46 U1 1 U2 35 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD NOV 15 PY 2010 VL 26 IS 3 BP 1109 EP 1113 DI 10.1016/j.bios.2010.08.021 PG 5 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA 675GB UT WOS:000283813600025 PM 20850960 ER PT J AU Schilling, F Schroder, L Palaniappan, KK Zapf, S Wemmer, DE Pines, A AF Schilling, Franz Schroder, Leif Palaniappan, Krishnan K. Zapf, Sina Wemmer, David E. Pines, Alexander TI MRI Thermometry Based on Encapsulated Hyperpolarized Xenon SO CHEMPHYSCHEM LA English DT Article DE imaging agents; NMR spectroscopy; sensors thermometry; xenon ID NUCLEAR-MAGNETIC-RESONANCE; POLARIZED NOBLE-GASES; FUNCTIONALIZED XENON; BIOSENSOR; NMR; XE-129 AB A new approach to MRI thermometry using encapsulated hyperpolarized xenon is demonstrated The method is based on the temperature dependent chemical shift of hyperpolarized xenon in a cryptophane-A cage This shift is linear with a slope of 029 ppm degrees C(-1) which is perceptibly higher than the shift of the proton resonance frequency of water (ca 0 01 ppm degrees C(-1)) that is currently used for MRI thermometry Using spectroscopic imaging techniques, we collected temperature maps of a phantom sample that could discriminate by direct NMR detection between temperature differences of 0 1 degrees C at a sensor concentration of 150 mu M Alternatively, the xenon-in-cage chemical shift was determined by indirect detection using saturation transfer techniques (Hyper-CEST) that allow detection of nanomolar agent concentrations Thermometry based on hyperpolarized xenon sensors improves the accuracy of currently available MRI thermometry methods, potentially giving rise to biomedical applications of biosensors functionalized for binding to specific target molecules C1 [Schilling, Franz; Zapf, Sina] Univ Wurzburg, D-97074 Wurzburg, Germany. [Schilling, Franz; Schroder, Leif; Palaniappan, Krishnan K.; Wemmer, David E.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Schilling, F (reprint author), Tech Univ Munich, Dept Chem, D-85748 Garching, Germany. RI Schroder, Leif/H-6036-2011; OI Schroder, Leif/0000-0003-4901-0325; Schilling, Franz/0000-0001-5239-4628 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Studienstiftung des deutschen Volkes; Deutsche Forschungsgemeinschaft [SCHR 995/1-1, SCHR 995/2-1]; European Research Council [242710] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No DE-AC02-05CH11231 FS acknowledges support from Studienstiftung des deutschen Volkes L S acknowledges support from the Deutsche Forschungsgemeinschaft through Emmy Noether Fellowships (SCHR 995/1-1 and SCHR 995/2-1) and by the European Research Council through Starting Grant BiosensorImaging under ERC Grant Agreement No 242710 FS thanks Prof Peter M Jakob for scientific support We would like to thank Prof Matthew B Francis for helpful discussions on sensor construction NR 25 TC 21 Z9 21 U1 2 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD NOV 15 PY 2010 VL 11 IS 16 BP 3529 EP 3533 DI 10.1002/cphc.201000507 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 691LF UT WOS:000285080600023 PM 20821795 ER PT J AU Bradford, PD Wang, X Zhao, HB Maria, JP Jia, QX Zhu, YT AF Bradford, Philip D. Wang, Xin Zhao, Haibo Maria, Jon-Paul Jia, Quanxi Zhu, Y. T. TI A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes SO COMPOSITES SCIENCE AND TECHNOLOGY LA English DT Article DE Carbon nanotubes; Nanocomposites; Polymer-matrix composites (PMCs); Electrical properties; Mechanical properties ID POLYMER COMPOSITES; MECHANICAL-PROPERTIES; FIBERS; YARNS; PROPERTY; WAVINESS; ARRAYS; SPUN; FILM AB Conventional micro-fiber-reinforced composites provide insight into critical structural features needed for obtaining maximum composite strength and stiffness the reinforcements should be long, well aligned in a unidirectional orientation, and should have a high reinforcement volume fraction. It has long been a challenge for researchers to process CNT composites with such structural features. Here we report a method to quickly produce macroscopic CNT composites with a high volume fraction of millimeter long, well aligned CNTs. Specifically, we use the novel method, shear pressing, to process tall, vertically aligned CNT arrays into dense aligned CNT preforms, which are subsequently processed into composites Alignment was confirmed through SEM analysis while a CNT volume fraction in the composites was calculated to be 27%, based on thermogravimetric analysis data Tensile testing of the preforms and composites showed promising mechanical properties with tensile strengths reaching 400 MPa. (C) 2010 Elsevier Ltd All rights reserved C1 [Bradford, Philip D.; Wang, Xin; Zhao, Haibo; Maria, Jon-Paul; Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Zhu, YT (reprint author), N Carolina State Univ, Dept Mat Sci & Engn, 911 Partners Way, Raleigh, NC 27695 USA. RI Zhu, Yuntian/B-3021-2008; Wang, Xin/F-3130-2011; Jia, Q. X./C-5194-2008; OI Zhu, Yuntian/0000-0002-5961-7422; Bradford, Philip/0000-0002-4448-5033 FU US Department of Energy through LDRD of the Los Alamos National laboratory; North Carolina Space Grant FX We appreciate the financial support by the US Department of Energy through LDRD of the Los Alamos National laboratory and the North Carolina Space Grant NR 37 TC 74 Z9 75 U1 6 U2 45 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0266-3538 J9 COMPOS SCI TECHNOL JI Compos. Sci. Technol. PD NOV 15 PY 2010 VL 70 IS 13 SI SI BP 1980 EP 1985 DI 10.1016/j.compscitech.2010.07.020 PG 6 WC Materials Science, Composites SC Materials Science GA 672TY UT WOS:000283611000028 ER PT J AU Fisk, WJ Eliseeva, EA Mendell, MJ AF Fisk, William J. Eliseeva, Ekaterina A. Mendell, Mark J. TI Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis SO ENVIRONMENTAL HEALTH LA English DT Review ID ENVIRONMENTAL RISK-FACTORS; HOME DAMPNESS; OTITIS-MEDIA; HOUSING CHARACTERISTICS; HEALTH; SYMPTOMS; EXPOSURE; CHILDREN; ASTHMA; ADULTS AB Background: Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. Methods: For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. Results: The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication bias was evident. Estimated attributable risk proportions ranged from 8% to 20%. Conclusions: Residential dampness and mold are associated with substantial and statistically significant increases in both respiratory infections and bronchitis. If these associations were confirmed as causal, effective control of dampness and mold in buildings would prevent a substantial proportion of respiratory infections. C1 [Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, Berkeley, CA USA. RP Fisk, WJ (reprint author), Lawrence Berkeley Natl Lab, Indoor Environm Dept, Environm Energy Technol Div, 1 Cyclotron Rd 90R3058, Berkeley, CA USA. EM WJFisk@lbl.gov FU Indoor Environments Division, Office of Radiation and Indoor Air of the U.S. Environmental Protection Agency (EPA) [DW-89-92224401]; US Department of Energy [DE-AC02-05CH11231] FX This study was funded through interagency agreement DW-89-92224401 between the Indoor Environments Division, Office of Radiation and Indoor Air of the U.S. Environmental Protection Agency (EPA) and the US Department of Energy under contract DE-AC02-05CH11231, to support EPA's IAQ Scientific Findings Resource Bank. Conclusions in this paper are those of the authors and not necessarily those of the U.S. EPA. NR 47 TC 31 Z9 32 U1 4 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1476-069X J9 ENVIRON HEALTH-GLOB JI Environ. Health PD NOV 15 PY 2010 VL 9 AR 72 DI 10.1186/1476-069X-9-72 PG 11 WC Environmental Sciences; Public, Environmental & Occupational Health SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health GA 692FJ UT WOS:000285138100002 PM 21078183 ER PT J AU MacLeod, M Scheringer, M McKone, TE Hungerbuhler, K AF MacLeod, Matthew Scheringer, Martin McKone, Thomas E. Hungerbuhler, Konrad TI The State of Multimedia Mass-Balance Modeling in Environmental Science and Decision-Making SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PERSISTENT ORGANIC POLLUTANTS; CYCLE IMPACT ASSESSMENT; POLYCHLORINATED-BIPHENYLS; GLOBAL FRACTIONATION; NORTHERN-HEMISPHERE; COLD CONDENSATION; RISK-ASSESSMENT; LAKE-ONTARIO; TRANSPORT; FATE C1 [MacLeod, Matthew; Scheringer, Martin; Hungerbuhler, Konrad] ETH, Zurich, Switzerland. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP MacLeod, M (reprint author), ETH, Zurich, Switzerland. EM matthew.macleod@itm.su.se; martin.scheringer@chem.ethz.ch RI MacLeod, Matthew/D-5919-2013 OI MacLeod, Matthew/0000-0003-2562-7339 FU Swiss National Science Foundation [200020-116622]; Laboratory Directed Research and Development (LDRD) grant at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX Authors at ETH Zurich were supported by a grant (200020-116622) from the Swiss National Science Foundation. T.E.M. was supported by a Laboratory Directed Research and Development (LDRD) grant at the Lawrence Berkeley National Laboratory, which is operated for the U.S. Department of Energy (DOE) under contract grant DE-AC02-05CH11231. NR 44 TC 42 Z9 43 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2010 VL 44 IS 22 BP 8360 EP 8364 DI 10.1021/es100968w PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 680QA UT WOS:000284248300002 PM 20964363 ER PT J AU Dale, BE Bals, BD Kim, S Eranki, P AF Dale, Bruce E. Bals, Bryan D. Kim, Seungdo Eranki, Pragnya TI Biofuels Done Right: Land Efficient Animal Feeds Enable Large Environmental and Energy Benefits SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CROPPING SYSTEMS; UNITED-STATES; ETHANOL-PRODUCTION; COVER CROPS; BIOENERGY; CORN; TILLAGE; CARBON; MANURE; YIELD AB There is an intense ongoing debate regarding the potential scale of biofuel production without creating adverse effects on food supply. We explore the possibility of three land-efficient technologies for producing food (actually animal feed), including leaf protein concentrates, pretreated forages, and double crops to increase the total amount of plant biomass available for biofuels. Using less than 30% of total U.S. cropland, pasture, and range, 400 billion liters of ethanol can be produced annually without decreasing domestic food production or agricultural exports. This approach also reduces U.S. greenhouse gas emissions by 670 Tg CO(2)-equivalent per year, or over 10% of total U.S. annual emissions, while increasing soil fertility and promoting biodiversity. Thus we can replace a large fraction of U.S. petroleum consumption without indirect land use change. C1 [Dale, Bruce E.; Bals, Bryan D.; Kim, Seungdo; Eranki, Pragnya] Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. [Dale, Bruce E.; Kim, Seungdo; Eranki, Pragnya] Michigan State Univ, Great Lakes Bioenergy Res Ctr, Lansing, MI 48910 USA. RP Dale, BE (reprint author), Michigan State Univ, Biomass Convers Res Lab, Dept Chem Engn & Mat Sci, 3815 Technol Blvd,Suite 1045, Lansing, MI 48910 USA. EM bdale@egr.msu.edu FU DOE Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494]; Michigan Agricultural Experiment Station; General Motors Corporation FX This work was funded by DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. Support was also provided by the Michigan Agricultural Experiment Station and by General Motors Corporation. NR 27 TC 46 Z9 47 U1 2 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2010 VL 44 IS 22 BP 8385 EP 8389 DI 10.1021/es101864b PG 5 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 680QA UT WOS:000284248300006 PM 20958023 ER PT J AU Choi, JK Fthenakis, V AF Choi, Jun-Ki Fthenakis, Vasilis TI Design and Optimization of Photovoltaics Recycling Infrastructure SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REVERSE LOGISTICS; NETWORKS AB With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States. C1 [Choi, Jun-Ki; Fthenakis, Vasilis] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Choi, JK (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM jkchoi@bnl.gov RI Choi, Jun-Ki/I-2576-2012 FU USDOE [DE-AC02-76CH000016] FX This research is supported by the Solar Technologies Program, Energy Efficiency and Renewable Energy, USDOE Contract DE-AC02-76CH000016. We also thank members of PVCYCLE and IEA PVPS Task 12 for useful discussions. NR 24 TC 12 Z9 12 U1 1 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2010 VL 44 IS 22 BP 8678 EP 8683 DI 10.1021/es101710g PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 680QA UT WOS:000284248300051 PM 20886824 ER PT J AU Fthenakis, V Clark, DO Moalem, M Chandler, P Ridgeway, RG Hulbert, FE Cooper, DB Maroulis, PJ AF Fthenakis, Vasilis Clark, Daniel O. Moalem, Mehran Chandler, Phil Ridgeway, Robert G. Hulbert, Forrest E. Cooper, David B. Maroulis, Peter J. TI Life-Cycle Nitrogen Trifluoride Emissions from Photovoltaics SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REMOTE MICROWAVE PLASMA; CHAMBER CLEANS; NF3 AB Amorphous- and nanocrystalline-silicon thin-film photovoltaic modules are made in high-throughput manufacturing lines that necessitate quickly cleaning the reactor. Using NF(3), a potent greenhouse gas, as the cleaning agent triggered concerns as recent reports reveal that the atmospheric concentrations of this gas have increased significantly. We quantified the lifecycle emissions of NF(3) in photovoltaic (PV) manufacturing, on the basis of actual measurements at the facilities of a major producer of NF(3) and of a manufacturer of PV end-use equipment From these, we defined the best practices and technologies that are the most likely to keep worldwide atmospheric concentrations of NF(3) at very low radiative forcing levels. For the average U.S. insolation and electricity-grid conditions, the greenhouse gas (GHG) emissions from manufacturing and using NF(3) in current PV a-Si and tandem a-Si/nc-Si facilities add 2 and 7 g CO(2eq)/kWh, which can be displaced within the first 1-4 months of the PV system life. C1 [Fthenakis, Vasilis] Brookhaven Natl Lab, New York, NY USA. [Fthenakis, Vasilis] Columbia Univ, New York, NY USA. [Clark, Daniel O.; Moalem, Mehran; Chandler, Phil] Appl Mat Inc, Santa Clara, CA 95054 USA. [Ridgeway, Robert G.; Hulbert, Forrest E.; Cooper, David B.; Maroulis, Peter J.] Air Prod & Chem Inc, Allentown, PA USA. RP Fthenakis, V (reprint author), Brookhaven Natl Lab, New York, NY USA. EM vmf@bnl.gov FU US-DOE [DE-AC02-76CH000016] FX Support to one of the authors (V.M.) from the US-DOE Solar Technologies Program with Contract DE-AC02-76CH000016 to BNL is gratefully acknowledged. NR 23 TC 9 Z9 10 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2010 VL 44 IS 22 BP 8750 EP 8757 DI 10.1021/es100401y PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 680QA UT WOS:000284248300062 PM 21067246 ER PT J AU Rustad, JR Casey, WH Yin, QZ Bylaska, EJ Felmy, AR Bogatko, SA Jackson, VE Dixon, DA AF Rustad, James R. Casey, William H. Yin, Qing-Zhu Bylaska, Eric J. Felmy, Andrew R. Bogatko, Stuart A. Jackson, Virgil E. Dixon, David A. TI Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHODS; METAL STABLE-ISOTOPES; HYDRATION FREE-ENERGY; CALCIUM-CARBONATE; BASIS-SETS; AB-INITIO; EQUILIBRIUM FRACTIONATION; MOSSBAUER-SPECTROSCOPY; EXCHANGE-REACTIONS AB Density-functional electronic structure calculations are used to compute the equilibrium constants for Mg-26/Mg-24 and Ca-44/Ca-40 isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 10(3)In (K) at 25 degrees C, of -5.3, -1.1, and +1.2 for Mg-26/Mg-24 exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq) with positive values indicating enrichment of the heavy isotope in the mineral phase. For Ca-44/Ca-40 exchange between calcite and Ca2+(aq) at 25 degrees C, the calculations predict values of +1.5 for Ca2+(aq) in 6-fold coordination and +4.1 for Ca2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as M(CO3)(6)(10-) and M(H2O)(6)(2+) embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Rustad, James R.; Casey, William H.; Yin, Qing-Zhu] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Casey, William H.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Bylaska, Eric J.; Felmy, Andrew R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bogatko, Stuart A.] Univ Calif San Diego, Dept Chem, La Jolla, CA 92093 USA. [Jackson, Virgil E.; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. RP Rustad, JR (reprint author), Univ Calif Davis, Dept Geol, 1 Shields Ave, Davis, CA 95616 USA. EM jrrustad@ucdavis.edu RI Yin, Qing-Zhu/B-8198-2009; Bogatko, Stuart/C-8394-2013 OI Yin, Qing-Zhu/0000-0002-4445-5096; Bogatko, Stuart/0000-0001-9759-2580 FU NASA [NNX07AV56G]; Chemistry and Geosciences Division, Office of Basic Energy Sciences, United States Department of Energy; University of Alabama; Molecular Science Computing Facility of the Environmental Molecular Sciences Laboratory FX This work was supported by NASA Grant NNX07AV56G to W.H.C., Q.-Z.Y., and J.R.R. D.A.D. acknowledges support from the Chemistry and Geosciences Division, Office of Basic Energy Sciences, United States Department of Energy and the Robert Ramsay Fund of the University of Alabama. A.R.F. and E.J.B. acknowledge support from the Chemistry and Geosciences Division, Office of Basic Energy Sciences, United States Department of Energy. We thank the Molecular Science Computing Facility of the Environmental Molecular Sciences Laboratory for a generous grant of computer time. We are grateful to Drs. Veniamin B. Polyakov, Matthew S. Fantle, an anonymous reviewer, and Associate Editor Clark Johnson for their careful reading and excellent suggestions for improving the manuscript. In particular, we thank the Associate Editor for providing data in electronic form for Figs. 5 and 6 from the Beard et al. (2010) reference. NR 82 TC 78 Z9 82 U1 7 U2 65 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2010 VL 74 IS 22 BP 6301 EP 6323 DI 10.1016/j.gca.2010.08.018 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 678LT UT WOS:000284077400004 ER PT J AU Saldi, GD Schott, J Pokrovsky, OS Oelkers, EH AF Saldi, Giuseppe D. Schott, Jacques Pokrovsky, Oleg S. Oelkers, Eric H. TI An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 degrees C as a function of pH, total dissolved carbonate concentration, and chemical affinity SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ATOMIC-FORCE MICROSCOPY; ACIDIC AQUEOUS-SOLUTION; SOLUTION INTERFACE; DOLOMITE DISSOLUTION; SURFACE SPECIATION; CO2 SEQUESTRATION; ATM PCO(2); KINETICS; TEMPERATURE; CALCITE AB Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 degrees C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M <= I <= 1 M), total dissolved carbonate concentration (10(-4) M < Sigma CO(2) < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 degrees C, pH, and aqueous CO(3)(2-) activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory (Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r(d) = k(Mg) {> MgOH(2)(+)}(4)[1 - exp (-4A/RT)] where r(d) represents the BET surface area normalized dissolution rate, {> MgOH(2)(+)} stands for the concentration of hydrated magnesium centers on the magnesite surface, k(Mg) designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and Sigma CO(2) stem from a corresponding decrease in {> MgOH(2)(+)}. This decrease in {> MgOH(2)(+)} results from the increasing stability of the > MgCO(3)(-) and >MgOH degrees surface species with increasing temperature, pH and CO(3)(2-) activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.] Univ Toulouse, LMTG, CNRS, OMP, F-31400 Toulouse, France. RP Saldi, GD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM saldi@lmtg.obs-mip.fr; oelkers@lmtg.obs-mip.fr OI Oelkers, Eric/0000-0002-5759-524X FU Centre National de la Recherche Scientifique; European Community through the MIR Early Stage Training Network [MEST-CT-2005-021120] FX We would like to thank Jean-Claude Harrichoury and Alain Castillo for the constant technical assistance throughout the duration of the experimental work, Carole Causserand for her generous help during the analytical part of the work, and Philippe de Parseval for providing a sample of the Huaziyu magnesite. We are also grateful to Pascale Benezeth, Jean-Louis Dandurand, and Robert Gout for helpful discussions during the course of this study. Support from Centre National de la Recherche Scientifique, and the European Community through the MIR Early Stage Training Network (MEST-CT-2005-021120) is gratefully acknowledged. NR 47 TC 21 Z9 22 U1 3 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2010 VL 74 IS 22 BP 6344 EP 6356 DI 10.1016/j.gca.2010.07.012 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 678LT UT WOS:000284077400006 ER PT J AU Bonal, L Huss, GR Krot, AN Nagashima, K Ishii, HA Bradley, JP AF Bonal, L. Huss, G. R. Krot, A. N. Nagashima, K. Ishii, H. A. Bradley, J. P. TI Highly N-15-enriched chondritic clasts in the CB/CH-like meteorite Isheyevo SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID INTERPLANETARY DUST PARTICLES; MACROMOLECULAR ORGANIC-MATTER; CARBONACEOUS CHONDRITES; ISOTOPIC COMPOSITIONS; NITROGEN ISOTOPE; INTERSTELLAR CHEMISTRY; REFRACTORY INCLUSIONS; PRIMITIVE CHONDRITE; HEAVY NITROGEN; LITHIC CLASTS AB The metal-rich carbonaceous chondrites (CB and CH) have the highest whole-rock N-15-enrichments (delta N-15 up to 1500 parts per thousand) among planetary materials. They are also characterized by the absence of interchondrule fine-grained matrix. The only fine-grained material is present as lithic clasts, which experienced extensive aqueous alteration in contrast to the surrounding high-temperature components (chondrules, refractory inclusions, metal grains). Hence, the clasts are foreign objects that were incorporated at a late stage into the final parent body of Isheyevo. Their origin is poorly constrained. Based on mineralogy, petrography, and thermal processing of the aromatic carbonaceous component, different types of clasts have been previously identified in the CB/CH-like chondrite Isheyevo. Here, we focus on the rare lithic clasts characterized by the presence of anhydrous silicates (chondrules, chondrule fragments, and CAIs). Their mineralogy and oxygen isotopic compositions reveal them to be micro-chondrules, fragments of chondrules, and refractory inclusions related to those in the Isheyevo host, suggesting accretion in the same region. In contrast to previously studied IDPs or primitive chondritic matrices, the fine-grained material in the clasts we studied is highly and rather uniformly enriched in heavy nitrogen, with bulk delta N-15 values ranging between 1000 parts per thousand and 1300 parts per thousand. It is also characterized by the presence of numerous N-15 hotspots (delta N-15 ranging from 1400 parts per thousand to 4000 parts per thousand). No bulk (delta D <-240 parts per thousand) or localized deuterium enrichments were observed. These clasts have the highest bulk enrichment in heavy nitrogen measured to date in a fine-grained material. They represent a unique material, of asteroidal or cometary origin, in our collection of cosmomaterials. We show that they were N-15-enriched before their incorporation in the final parent body of Isheyevo. They experienced an extensive aqueous alteration that most likely played a role in redistributing N-15 over the whole fine-grained material and may have significantly modified its initial hydrogen isotopic composition. Based on a review of isotopic fractionation models, we conclude that the nitrogen isotopic fractionation process, its timing, and its location are still poorly constrained. The N-15-rich clasts may represent the surviving original carrier of the N-15 anomaly in Isheyevo whole-rock. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bonal, L.; Huss, G. R.; Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean Earth Sci & Technol, Honolulu, HI 96822 USA. [Ishii, H. A.; Bradley, J. P.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Bonal, L (reprint author), Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean Earth Sci & Technol, Honolulu, HI 96822 USA. EM lbonal@ciw.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNG05GG48G, NNX08AG58G, NNX07AZ43, NNH09AK261] FX We thank Nick Teslich at LLNL who assisted with the FIB sample preparation. Portions of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by NASA grants NNG05GG48G and NNX08AG58G (G.R. Huss, P.I.), NNX07AZ43 (A.N. Krot, P.I.), and NNH09AK261 (H.A. Ishii). We thank Dr. Smail Mostefaoui, Dr. Christine Floss, and an anonymous reviewer for the critical reading of the initial manuscript and their constructive comments. We also thank the associate editor Dr. Sara Russell for her pertinent insights. This is Hawai`i Institute of Geophysics and Planetology publication No. 1865 and School of Ocean and Earth Science and Technology publication No. 7978. NR 63 TC 28 Z9 28 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2010 VL 74 IS 22 BP 6590 EP 6609 DI 10.1016/j.gca.2010.08.017 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 678LT UT WOS:000284077400020 ER PT J AU Jin, GB Ringe, E Long, GJ Grandjean, F Sougrati, MT Choi, ES Wells, DM Balasubramanian, M Ibers, JA AF Jin, Geng Bang Ringe, Emilie Long, Gary J. Grandjean, Fernande Sougrati, Moulay T. Choi, Eun Sang Wells, Daniel M. Balasubramanian, Mahalingam Ibers, James A. TI Structural, Electronic, and Magnetic Properties of UFeS3 and UFeSe3 SO INORGANIC CHEMISTRY LA English DT Article ID SPIN-STATE CROSSOVER; CRYSTAL-STRUCTURE; TRANSPORT-PROPERTIES; OPTICAL-PROPERTIES; SINGLE-CRYSTALS; URANIUM; CHALCOGENIDES; PYRAZOLYL; SULFIDE; PZ AB Black prisms of UFeS3 and UFeSe3 have been synthesized by solid-state reactions of U, Fe, and S or Se with CsCl as a flux at 1173 K. The structure of these isostructural compounds consists of layers of edge- and corner-sharing FeS6 or FeSe6 octahedra that are separated by layers of face- and edge-sharing US8 or USe8 bicapped trigonal prisms. The isomer shifts in the iron-57 Mossbauer spectra of both UFeS3 and UFeSe3 are consistent with the presence of high-spin iron(II) ions octahedrally coordinated to S or Se. The XANES spectra of UFeS3 and UFeSe3 are consistent with uranium(IV). Single-crystal magnetic susceptibility measurements along the three crystallographic axes of UFeSe3 reveal a substantial magnetic anisotropy with a change of easy axis from the a-axis above 40 K to the b-axis below 40 K, a change that results from competition between the iron(II) and uranium(IV) anisotropies. The temperature dependence of the magnetic susceptibility along the three axes is characteristic of two-dimensional magnetism. A small shoulder-like anomaly is observed in the magnetic susceptibilities along the a- and b-axes at 96 and 107 K, respectively. Below 107 K, the iron-57 Mossbauer spectra of UFeS3 and UFeSe3 show that the iron nuclei experience a magnetic hyperfine field that results from long-range magnetic ordering of at least the iron(II) magnetic moments because the field exhibits Brillouin-like behavior. Below 40 K there is no significant change in the Mossbauer spectra as a result of change in magnetic anisotropy. The complexity of the iron-57 Mossbauer spectra and the temperature and field dependencies of the magnetic properties point toward a complex long-range magnetic structure of two independent iron(II) and uranium(IV) two-dimensional sublattices. The temperature dependence of the single-crystal resistivity of UFeSe3 measured along the a-axis reveals semiconducting behavior between 30 and 300 K with an energy gap of about 0.03 eV below the 53 K maximum in susceptibility, of about 0.05 eV between 50 and 107 K, and of 0.03 eV above 107 K; a negative magnetoresistance was observed below 60 K. C1 [Long, Gary J.] Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Jin, Geng Bang; Ringe, Emilie; Wells, Daniel M.; Ibers, James A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Grandjean, Fernande; Sougrati, Moulay T.] Univ Liege, Dept Phys, B-4000 Sart Tilman Par Liege, Belgium. [Choi, Eun Sang] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Choi, Eun Sang] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Balasubramanian, Mahalingam] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Long, GJ (reprint author), Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. EM glong@mst.edu; ibers@chem.northwestern.edu RI Sougrati, Moulay Tahar/B-6283-2011 OI Sougrati, Moulay Tahar/0000-0003-3740-2807 FU U.S. Department of Energy, Basic Energy Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering [ER-15522]; National Science Foundation [DMR05-20513, DMR-0084173]; Fonds National de la Recherche Scientifique, Belgium [9.456595, 1.5.064.05]; State of Florida; NSERC; University of Washington; Simon Fraser University; Pacific Northwest National Laboratory; Advanced Photon Source; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Dr. Christos Malliakas and Prof. Mercouri G. Kanatzidis for help with the use of their UV-vis-NIR and FT-IR spectrometers and Prof. N. Edelstein for helpful discussions during the course of this work. The research at Northwestern University was supported by the U.S. Department of Energy, Basic Energy Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522. Resistivity measurements were collected at the Northwestern Materials Research Science and Engineering Center, Magnet and Low Temperature Facility supported by the National Science Foundation (DMR05-20513). Fernande Grand jean acknowledges the Fonds National de la Recherche Scientifique, Belgium (Grants 9.456595 and 1.5.064.05) for financial support. Magnetic measurements were performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation through Grant DMR-0084173 and the State of Florida. PNC/XOR facilities at the Advanced Photon Source and research at these facilities are supported by the U.S. Department of Energy. Basic Energy Sciences. a major facilities access grant from NSERC, the University of Washington, Simon Fraser University, the Pacific Northwest National Laboratory, and the Advanced Photon Source. Use of the Advanced Photon Source is also supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 56 TC 14 Z9 14 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 15 PY 2010 VL 49 IS 22 BP 10455 EP 10467 DI 10.1021/ic101474e PG 13 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 675FC UT WOS:000283810800036 PM 20964309 ER PT J AU Papatriantafyllopoulou, C Stamatatos, TC Wernsdorfer, W Teat, SJ Tasiopoulos, AJ Escuer, A Perlepes, SP AF Papatriantafyllopoulou, Constantina Stamatatos, Theocharis C. Wernsdorfer, Wolfgang Teat, Simon J. Tasiopoulos, Anastasios J. Escuer, Albert Perlepes, Spyros P. TI Combining Azide, Carboxylate, and 2-Pyridyloximate Ligands in Transition-Metal Chemistry: Ferromagnetic Ni-5(II) Clusters with a Bowtie Skeleton SO INORGANIC CHEMISTRY LA English DT Article ID SINGLE-MOLECULE MAGNETS; HIGH-SPIN MOLECULES; TETRANUCLEAR NICKEL(II) COMPLEXES; MIXED-VALENCE COBALT(II/III); NI-II COMPLEX; HIGH-NUCLEARITY; GROUND-STATE; CRYSTAL-STRUCTURES; KETONE OXIME; STRUCTURAL-CHARACTERIZATION AB The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N-3(-)) in nickel(II) carboxylate chemistry has afforded two new Ni-5(II) clusters, [Ni-5(O2CR')(2)(N-3)(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni-5(mu-N-3)(2)(mu(3)-N-3)(2)}(6+) cores of the two clusters are almost identical and contain the five Ni-II atoms in a bowtie topology. Two N-3(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on mu(3)-N-3(-) groups link the central Ni-II atoms with the two peripheral metal ions on either side of the molecule, while the Ni center dot center dot center dot Ni bases of the triangles are each bridged by one end-on mu-N-3(-) group. Variable-temperature, solid-state direct(dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (chi(M)'') signals at temperatures below similar to 3:5 K; complex 2 reveals no chi(M)'' signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds. C1 [Escuer, Albert] Univ Barcelona, Dept Quim Inorgan, Barcelona 08028, Spain. [Papatriantafyllopoulou, Constantina; Stamatatos, Theocharis C.; Perlepes, Spyros P.] Univ Patras, Dept Chem, Patras 26504, Greece. [Wernsdorfer, Wolfgang] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Wernsdorfer, Wolfgang] Univ J Fourier, F-38042 Grenoble 9, France. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tasiopoulos, Anastasios J.] Univ Cyprus, Dept Chem, CY-1678 Nicosia, Cyprus. RP Escuer, A (reprint author), Univ Barcelona, Dept Quim Inorgan, Marti Franques 1-11, Barcelona 08028, Spain. EM albert.escuer@ub.edu; perlepes@patreas.upatras.gr RI Escuer, Albert/L-4706-2014; Wernsdorfer, Wolfgang/M-2280-2016 OI Escuer, Albert/0000-0002-6274-6866; Wernsdorfer, Wolfgang/0000-0003-4602-5257 FU Cyprus Research Promotion Foundation [TECH-NO/0506/06]; CICYT [CTQ2009-07264]; Operational and Vocational Training II Program (PYTHAGORAS) [b.365.037]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank one of the reviewers for helpful suggestions concerning the possible formation of NiO in the preparation of complex 1. Financial support from the Cyprus Research Promotion Foundation (Grant TECH-NO/0506/06 to A.J.T.), CICYT Projects (Grant CTQ2009-07264 and ICREA-Academia Award to A.E.), the Operational and Vocational Training II Program (PYTHAGORAS; Grant b.365.037 to S.P.P.) is gratefully acknowledged. We also acknowledge a provision of time at the Advanced Light Source synchrotron, which is supported by the Director, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 167 TC 59 Z9 59 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 15 PY 2010 VL 49 IS 22 BP 10486 EP 10496 DI 10.1021/ic1014829 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 675FC UT WOS:000283810800039 PM 20964448 ER PT J AU Potter, RG Camaioni, DM Vasiliu, M Dixon, DA AF Potter, Robert G. Camaioni, Donald M. Vasiliu, Monica Dixon, David A. TI Thermochemistry of Lewis Adducts of BH3 and Nucleophilic Substitution of Triethylamine on NH3BH3 in Tetrahydrofuran SO INORGANIC CHEMISTRY LA English DT Article ID MOLECULAR ADDITION-COMPOUNDS; ELECTRONIC-STRUCTURE THEORY; COUPLED-CLUSTER THEORY; LITHIUM-ION BATTERIES; CONSISTENT BASIS-SETS; MM3 FORCE-FIELD; BOND-DISSOCIATION ENERGIES; HYDROGEN STORAGE-SYSTEMS; CONVERGENT BASIS-SETS; GAUSSIAN-BASIS SETS AB The thermochemistry of the formation of Lewis base adducts of BH3 in tetrahydrofuran (THF) solution and the gas phase and the kinetics of substitution on ammonia borane by triethylamine are reported. The dative bond energy of Lewis adducts were predicted using density functional theory at the B3LYP/DZVP2 and B3LYP/6-311+G** levels and correlated ab initio molecular orbital theories, including MP2, G3(MP2), and G3(MP2)B3LYP, and compared with available experimental data and accurate CCSD(T)/CBS theory results. The analysis showed that the G3 methods using either the MP2 or the B3LYP geometries reproduce the benchmark results usually to within similar to 1 kcal/mol. Energies calculated at the MP2/aug-cc-pVTZ level for geometries optimized at the B3LYP/DZVP2 or B3LYP/6-311+G** levels give dative bond energies 2-4 kcal/mol larger than benchmark values. The enthalpies for forming adducts in THF were determined by calorimetry and compared with the calculated energies for the gas phase reaction: THFBH3 + L -> LBH3 + THF. The formation of NH3BH3 in THF was observed to yield significantly more heat than gas phase dative bond energies, predict, consistent with strong solvation of NH3BH3. Substitution of NEt3 on NH3BH3 is an equilibrium process in THF solution; (K approximate to 0.2 at 25 degrees C). The reaction obeys a reversible bimolecular kinetic rate law with the Arrhenius parameters: log A = 14.7 +/- 1.1 and E-a = 28.1 +/- 1.5 kcal/mol. Simulation of the mechanism using the SM8 continuum solvation model shows the reaction most likely proceeds primarily by a classical S(N)2 mechanism. C1 [Potter, Robert G.; Camaioni, Donald M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Vasiliu, Monica; Dixon, David A.] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA. RP Camaioni, DM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM camaioni@pnl.gov; dadixon@bama.ua.edu FU Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-PS36-03GO93013]; University of Alabama; Department of Energy's Office of Biological and Environmental Research FX This work was funded by the Department of Energy, Office of Energy Efficiency and Renewable Energy under the Hydrogen Storage Grand Challenge, Solicitation No. DE-PS36-03GO93013. This work was done as part of the Chemical Hydrogen Storage Center. D.A.D. also thanks the Robert Ramsay Chair Fund of The University of Alabama for support. A Portion of this work was performed using the Molecular Sciences Computing Facility (MSCF) at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 149 TC 20 Z9 20 U1 4 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 15 PY 2010 VL 49 IS 22 BP 10512 EP 10521 DI 10.1021/ic101481c PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 675FC UT WOS:000283810800042 PM 20932027 ER PT J AU Tian, GX Martin, LR Rao, LF AF Tian, Guoxin Martin, Leigh R. Rao, Linfeng TI Complexation of Lactate with Neodymium(III) and Europium(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption, and Luminescence Spectroscopy SO INORGANIC CHEMISTRY LA English DT Article ID LANTHANIDE IONS; HLLW TREATMENT; CTH-PROCESS; TRANSITIONS; ACIDS; CONSTANTS; AMERICIUM(III); HYDROLYSIS; EXTRACTION; LIGANDS AB The complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy, and microcalorimetry. The stability constants of three successive lactate complexes (ML(2+), ML(2)(+), and ML(3)(aq), where M stands for Nd and Eu and L stands for lactate) at 10, 25, 40, 55, and 70 degrees C were determined. The enthalpies of complexation at 25 degrees C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd(3+) and Eu(3+)) with lactate is exothermic and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated a-hydroxyl group of lactate participates in the complexation. C1 [Tian, Guoxin; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Martin, Leigh R.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM LRao@lbl.gov RI Martin, Leigh/P-3167-2016 OI Martin, Leigh/0000-0001-7241-7110 FU U.S. Department of Energy, Office of Nuclear Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; DOE [DE-AC07-05ID14517] FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, Fuel Research and Development Program, under Contract DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. L.R.M. acknowledges support from DOE NE FCR&D Thermodynamics and Kinetics program, under DOE Idaho Operations Office Contract DE-AC07-05ID14517 while preparing this manuscript. The authors thank the anonymous reviewers for their helpful comments. NR 35 TC 21 Z9 21 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD NOV 15 PY 2010 VL 49 IS 22 BP 10598 EP 10605 DI 10.1021/ic101592h PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 675FC UT WOS:000283810800050 PM 20964412 ER PT J AU Blair, MW Bennett, BL Tornga, SC Smith, NA Muenchausen, RE AF Blair, Michael W. Bennett, Bryan L. Tornga, Stephanie C. Smith, Nickolaus A. Muenchausen, Ross E. TI Reduced dimensionality effects on phonon transport SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID SPIN-LATTICE-RELAXATION; INORGANIC SCINTILLATORS; ENERGY RESOLUTION; MAGNESIUM-NITRATE; TUTTON SALTS; CRYSTALS; EPR; OXYORTHOSILICATE; NANOPHOSPHORS; LUMINESCENCE AB Electron paramagnetic resonance (EPR) spectroscopy has been used to study energy transport properties of both bulk and nanophosphor (nominally 30 nm) oxyorthosilicate samples, and we were able to separate the effects of crystal disorder and relaxation lifetime broadening on the EPR linewidths. The low temperature linewidths (T<10 K) were inhomogeneously broadened and dominated by crystal disorder effects and the nanophosphors showed an order of magnitude increase in crystal disorder. Both bulk and nanophosphor samples showed significant lifetime broadening involving direct relaxation via phonons and the Orbach relaxation process. At low temperatures, the lifetimes of the bulk samples displayed the influence of the lattice-bath relaxation time as well as the spin-lattice relaxation time while the lifetimes of the nanophosphor samples were not influenced by the lattice-bath relaxation time. The results imply that reduced dimensionality in insulators does reduce the lattice-bath relaxation time, although the exact relationship cannot be confirmed by this study largely due to the nonideal nature of the materials studied. (C) 2010 American Institute of Physics. [doi:10.1063/1.3510533] C1 [Blair, Michael W.; Bennett, Bryan L.; Tornga, Stephanie C.; Smith, Nickolaus A.; Muenchausen, Ross E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Blair, MW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM mblair@lanl.gov NR 34 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 104311 DI 10.1063/1.3510533 PG 7 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000125 ER PT J AU Crandall, RS AF Crandall, Richard S. TI Nature of the metastable boron-oxygen complex formation in crystalline silicon SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID CELL PERFORMANCE DEGRADATION; DOPED CZOCHRALSKI SILICON; SOLAR-CELLS; LIFETIME SPECTROSCOPY; ELECTRONIC-PROPERTIES; CARRIER LIFETIME; TEMPERATURE; CENTERS; DEFECT AB Transient capacitance measurements reveal new physics of metastable defect formation in boron-doped oxygen-containing crystalline silicon solar cells. These measurements demonstrate that holes are deeply trapped during defect formation and removed during thermal annealing with activation energy of 1.3 eV. Previous theoretical models {Du et al., [Phys. Rev. Lett. 97, 256602 (2006)] and Adey et al., [Phys. Rev. Lett. 93, 055504 (2004)]} are supported by present findings that defect formation is a slow two-stage process with activation energies of 0.17 eV and 0.4 eV at high and low temperature, respectively. Repulsive hole capture by a positive oxygen-dimer determines the defect formation rate at low temperature {Du et al., [ Phys. Rev. Lett. 97, 256602 (2006)]}. The high temperature process is governed by a structural conversion of the dimer {Du et al., [Phys. Rev. Lett. 97, 256602 (2006)] and Adey et al., [Phys. Rev. Lett. 93, 055504 (2004)]}. An abnormally low rate prefactor allows this low-enthalpy reaction to be observed at the higher temperature. This dimer conversion presents an excellent example of an "entropy barrier" that explains the low conversion rate. Disparate formation and annealing results published here and in other publications are related by the Meyer-Neldel rule with an isokinetic temperature of 410 K. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3490754] C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Crandall, RS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM bellucci@lnf.infn.it FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX The author is indebted to Tihu Wang, Matthew Page, Hao-Chih Yuan, and David Young for sample preparation and other experimental help. I also benefited from many helpful discussions with Howard Branz and Mao-Hua Du. This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 26 TC 7 Z9 7 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 103713 DI 10.1063/1.3490754 PG 6 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000078 ER PT J AU Deng, HX Xiang, X Zheng, WG Yuan, XD Wu, SY Jiang, XD Gao, F Zu, XT Sun, K AF Deng, H. X. Xiang, X. Zheng, W. G. Yuan, X. D. Wu, S. Y. Jiang, X. D. Gao, F. Zu, X. T. Sun, K. TI Theory of absorption rate of carriers in fused silica under intense laser irradiation SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID STRONG ELECTROMAGNETIC-WAVE; TRANSPARENT MATERIALS; IMPACT IONIZATION; PHOTON-ABSORPTION; FIELD; DIELECTRICS; BREAKDOWN; DYNAMICS; DAMAGE; SIO2 AB A nonperturbative quantum theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the nonperturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on terawatt per centimeter square intensity laser. c 2010 American Institute of Physics. [doi:10.1063/1.3512963] C1 [Deng, H. X.; Xiang, X.; Wu, S. Y.; Zu, X. T.] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Zheng, W. G.; Yuan, X. D.; Jiang, X. D.] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China. [Gao, F.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Deng, H. X.; Sun, K.] Univ Michigan, Dept Mat Engn & Sci, Ann Arbor, MI 48109 USA. RP Deng, HX (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM xtzu@uestc.edu.cn; kaisun@umich.edu RI Gao, Fei/H-3045-2012; ye, xin/K-2615-2014 FU Fundamental Research Funds for the Central Universities [ZYGX2009J046, ZYGX2009X007]; China Scholarship Council (CSC); A123 Systems, Inc. USA [N011921]; Royal Academy of Engineering in UK FX This work was supported by the Fundamental Research Funds for the Central Universities (Grant Nos. ZYGX2009J046 and ZYGX2009X007), the China Scholarship Council (CSC), the A123 Systems, Inc. USA (Grant No. N011921), and Royal Academy of Engineering in UK. NR 26 TC 7 Z9 7 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 103116 DI 10.1063/1.3512963 PG 5 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000031 ER PT J AU Hopkins, PE Bauer, ML Duda, JC Smoyer, JL English, TS Norris, PM Beechem, TE Stewart, DA AF Hopkins, Patrick E. Bauer, Matthew L. Duda, John C. Smoyer, Justin L. English, Timothy S. Norris, Pamela M. Beechem, Thomas E. Stewart, Derek A. TI Ultrafast thermoelectric properties of gold under conditions of strong electron-phonon nonequilibrium SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID BRILLOUIN-ZONE INTEGRATIONS; SCATTERING; METALS AB The electronic scattering rates in metals after ultrashort pulsed laser heating can be drastically different than those predicted from free electron theory. The large electron temperature achieved after ultrashort pulsed absorption and subsequent thermalization can lead to excitation of subconduction band thermal excitations of electron orbitals far below the Fermi energy. In the case of noble metals, which all have a characteristic flat d-band several electron volts well below the Fermi energy, the onset of d-band excitations has been shown to increase electron-phonon scattering rates by an order of magnitude. In this paper, we investigate the effects of these large electronic thermal excitations on the ultrafast thermoelectric transport properties of gold, a characteristic noble metal. Under conditions of strong electron-phonon nonequilibrium (relatively high electron temperatures and relatively low lattice temperatures, T-e >> T-L), we find that the Wiedemann-Franz law breaks down and the Seebeck coefficient is massively enhanced. Although we perform representative calculations for Au, these results are expected to be similar for the other noble metals (Ag and Cu) due to the characteristic large d-band separation from the Fermi energy. (C) 2010 American Institute of Physics. [doi:10.1063/1.3511341] C1 [Hopkins, Patrick E.; Beechem, Thomas E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bauer, Matthew L.; Duda, John C.; Smoyer, Justin L.; English, Timothy S.; Norris, Pamela M.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Stewart, Derek A.] Cornell Univ, Cornell Nanoscale Sci & Technol Facil, Ithaca, NY 14853 USA. RP Hopkins, PE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM pehopki@sandia.gov RI Duda, John/A-7214-2011; Stewart, Derek/B-6115-2008; OI Stewart, Derek/0000-0001-7355-2605 FU LDRD Program Office; National Science Foundation; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX P.E.H. is greatly appreciative for funding from the LDRD Program Office through the Harry S. Truman Fellowship Program. J.C.D. and T.S.E. are grateful for financial support from the National Science Foundation through the Graduate Research Fellowship Program. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed-Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. First principle calculations were performed on the Intel Cluster at the Cornell Nanoscale Facility, which is part of the National Nanotechnology Infrastructure Network funded by the National Science Foundation. NR 36 TC 4 Z9 4 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 104907 DI 10.1063/1.3511341 PG 6 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000153 ER PT J AU Meng, LJ Peng, XY Tang, C Zhang, KW Stocks, GM Zhong, JX AF Meng, L. J. Peng, X. Y. Tang, C. Zhang, K. W. Stocks, G. M. Zhong, J. X. TI A quasicore-shell structure of FeCo and FeNi nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID EMBEDDED-ATOM-METHOD; MAGNETIC-PROPERTIES; ALLOY NANOCRYSTALS; MULTILAYERS; CLUSTERS; METALS AB Based on semiempirical generalized embedded atom method (GEAM), we carried out molecular dynamics and Monte Carlo simulations to study the structural properties of FeCo and FeNi nanoparticles. It is found that these two kinds of nanoparticles possess a new stable quasicore-shell structure, no matter whether they are in molten or condensed state and whether they are prepared by annealing or quenching. In FeCo (FeNi) nanoparticles of various sizes and atom compositions, the quasicore-shell structure is always preferred, with the shell formed only by Fe atoms and the core formed by randomly distributed Co(Ni) and Fe atoms. We have also investigated the formation mechanism of the quasicore-shell structure by energy difference analysis of the pure and doped icosahedra structure of FeCo and FeNi nanoparticles. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3514089] C1 [Meng, L. J.; Peng, X. Y.; Tang, C.; Zhang, K. W.; Zhong, J. X.] Xiangtan Univ, Key Lab Quantum Engn & Micronano Energy Technol H, Xiangtan 411105, Hunan, Peoples R China. [Meng, L. J.; Peng, X. Y.; Tang, C.; Zhang, K. W.; Zhong, J. X.] Xiangtan Univ, Fac Mat & Photoelect Phys, Xiangtan 411105, Hunan, Peoples R China. [Stocks, G. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Meng, LJ (reprint author), Xiangtan Univ, Key Lab Quantum Engn & Micronano Energy Technol H, Xiangtan 411105, Hunan, Peoples R China. EM xiangyang.peng@fysik.uu.se; jxzhong@xtu.edu.cn RI Zhong, Jianxin/G-1027-2013; Stocks, George Malcollm/Q-1251-2016 OI Zhong, Jianxin/0000-0002-9781-6836; Stocks, George Malcollm/0000-0002-9013-260X FU Key Laboratory for Quantum Engineering and Micro-Nano Energy technology of Hunan Province, Xiangtan University, China; Education Foundation of Science and Technology Innovation of the Ministry of Education, China [708068]; Cheung Kong Scholars Programme of China; National Natural Science Foundation of China [10774127, 10874143, 10974166, 10802071]; Research Foundation of Education Bureau of Hunan Province, China [10A118, 09A094]; Specialized Research Fund for the Doctoral Program of Higher Education [200805300003, 10QDZ03, 10QDZ19] FX The authors gratefully acknowledge the support of the Key Laboratory for Quantum Engineering and Micro-Nano Energy technology of Hunan Province, Xiangtan University, China, Education Foundation of Science and Technology Innovation of the Ministry of Education, China (Grant No. 708068), the Cheung Kong Scholars Programme of China, the Grants from National Natural Science Foundation of China (Grant Nos. 10774127, 10874143, 10974166, and 10802071), Research Foundation of Education Bureau of Hunan Province, China (Grant Nos. 10A118 and 09A094) and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Nos. 200805300003, 10QDZ03, and 10QDZ19). NR 37 TC 2 Z9 2 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 104314 DI 10.1063/1.3514089 PG 5 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000128 ER PT J AU Sankaranarayanan, SKRS Singh, R Bhethanabotla, VR AF Sankaranarayanan, Subramanian K. R. S. Singh, Reetu Bhethanabotla, Venkat R. TI Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID PARTICLE REMOVAL; ADSORPTION; PROPAGATION; MICROARRAYS; TRENCHES; CRYSTAL; RESIST AB Biosensors typically operate in liquid media for detection of biomarkers and suffer from fouling resulting from nonspecific binding of protein molecules to the device surface. In the current work, using a coupled field finite element fluid-structure interaction simulation, we have identified that fluid motion induced by high intensity sound waves, such as those propagating in these sensors, can lead to the efficient removal of the nonspecifically bound proteins thereby eliminating sensor fouling. We present a computational analysis of the acoustic-streaming phenomenon induced biofouling elimination by surface acoustic-waves (SAWs) propagating on a lithium niobate piezoelectric crystal. The transient solutions generated from the developed coupled field fluid solid interaction model are utilized to predict trends in acoustic-streaming induced forces for varying design parameters such as voltage intensity, device frequency, fluid viscosity, and density. We utilize these model predictions to compute the various interaction forces involved and thereby identify the possible mechanisms for removal of nonspecifically-bound proteins. For the range of sensor operating conditions simulated, our study indicates that the SAW motion acts as a body force to overcome the adhesive forces of the fouling proteins to the device surface whereas the acoustic-streaming induced hydrodynamic forces prevent their reattachment. The streaming velocity fields computed using the finite element models in conjunction with the proposed particle removal mechanism were used to identify the optimum conditions that lead to improved removal efficiency. We show that it is possible to tune operational parameters such as device frequency and input voltage to achieve effective elimination of biofouling proteins in typical biosensing media. Our simulation results agree well with previously reported experimental observations. The findings of this work have significant implications in designing reusable, selective, and highly sensitive biosensors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3503851] C1 [Sankaranarayanan, Subramanian K. R. S.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Sankaranarayanan, Subramanian K. R. S.; Singh, Reetu; Bhethanabotla, Venkat R.] Univ S Florida, Sensors Res Lab, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. RP Sankaranarayanan, SKRS (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM skrssank@anl.gov; venkat@eng.usf.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [ECCS-0801929, 733 CHE-0722887] FX The authors thank the computational facility provided by the Center for Nanoscale Materials-Argonne National Laboratory. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also thank the Academic Computing Center and the Engineering Computing Center at University of South Florida for providing the computational support. The authors thank Dr. Stefan Cular of DTRA for useful discussions. This work was supported by NSF Grant Nos. ECCS-0801929 and 733 CHE-0722887. NR 49 TC 10 Z9 10 U1 7 U2 28 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 104507 DI 10.1063/1.3503851 PG 11 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000138 ER PT J AU Yao, MZ Zhang, X Ma, L Chen, W Joly, AG Huang, JS Wang, QW AF Yao, Mingzhen Zhang, Xing Ma, Lun Chen, Wei Joly, Alan G. Huang, Jinsong Wang, Qingwu TI Luminescence enhancement of CdTe nanostructures in LaF3:Ce/CdTe nanocomposites SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT International Conference on Flexible and Printed Electronics CY NOV 11-13, 2009 CL JEJU, SOUTH KOREA ID SHAPE CONTROL; QUANTUM DOTS; NANOPARTICLES; NANOCRYSTALS; CRYSTALS; FLUORESCENCE; SPECTROSCOPY; IONS AB Radiation detection demands new scintillators with high quantum efficiency, high energy resolution, and short luminescence lifetimes. Nanocomposites consisting of quantum dots and Ce3+ doped nanophosphors may be able to meet these requirements. Here, we report the luminescence enhancement of LaF3:Ce/CdTe nanocomposites which were synthesized by a wet chemistry method. CdTe quantum dots in LaF3:Ce/CdTe nanocomposites are converted into nanowires, while in LaF3/CdTe nanocomposites no such conversion is observed. As a result, the CdTe luminescence in LaF3:Ce/CdTe nanocomposites is enhanced about five times, while in LaF3/CdTe nanocomposites no enhancement was observed. Energy transfer, light reabsorption, and defect passivation are the likely reasons for the luminescence enhancement. (C) 2010 American Institute of Physics. [doi:10.1063/1.3506416] C1 [Yao, Mingzhen; Zhang, Xing; Ma, Lun; Chen, Wei] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Joly, Alan G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Huang, Jinsong] Univ Nebraska, Dept Mech Engn, Lincoln, NE 68588 USA. [Wang, Qingwu] Agiltron Inc, Woburn, MA 01801 USA. RP Yao, MZ (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM weichen@uta.edu; agjoly@pnl.gov FU UTA; NSF; DHS [2008-DN-077-ARI016-03, CBET-1039068]; DOD [DTRA08-005]; U.S. Army Medical Research Acquisition Activity (USAMRAA) [W81XWH-10-1-0279, W81XWH-10-1-0234]; Department of Energy's Office of Biological and Environmental Research at the Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy [DE-AC06-76RLO1830] FX We would like to acknowledge the support from the start-up funds from UTA, the NSF, and DHS joint ARI program (2008-DN-077-ARI016-03, CBET-1039068), DOD DTRA08-005, and the U.S. Army Medical Research Acquisition Activity (USAMRAA) under Contracts of W81XWH-10-1-0279 and W81XWH-10-1-0234. Part of the research described was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC06-76RLO1830. NR 30 TC 10 Z9 10 U1 3 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 15 PY 2010 VL 108 IS 10 AR 103104 DI 10.1063/1.3506416 PG 7 WC Physics, Applied SC Physics GA 690KZ UT WOS:000285005000019 ER PT J AU Gong, KP Chen, WF Sasaki, K Su, D Vukmirovic, MB Zhou, WP Izzo, EL Perez-Acosta, C Hirunsit, P Balbuena, PB Adzic, RR AF Gong, Kuanping Chen, Wei-Fu Sasaki, Kotaro Su, Dong Vukmirovic, Miomir B. Zhou, Weiping Izzo, Elise L. Perez-Acosta, Carmen Hirunsit, Pussana Balbuena, Perla B. Adzic, Radoslav R. TI Platinum-monolayer electrocatalysts Palladium interlayer on IrCo alloy core improves activity in oxygen-reduction reaction SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Electrocatalysts; Iridium; Platinum; Palladium; Oxygen reduction ID INITIO MOLECULAR-DYNAMICS; TRANSITION; METALS; CATALYSTS; SURFACES; IRIDIUM AB We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core a Pd interlayer and a surface Pt monolayer emphasizing the interlayer s role in improving electrocatalytic activity for the oxygen reduction reaction on Pt in HClO(4) solution We prepared the IrCo alloys by decomposing at 800 C hexacyanometalate KCoIr(cN)(6) adsorbed on the carbon surfaces The synthesis of Ir(3)Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 degrees C Thereafter we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer The electrocatalysts were characterized using structural- and electrochemical techniques For Pt(ML)/Pd(ML)/IrCo/C we observed a Pt mass activity of 1 18 A/mg((Pt)) and the platinum group-metals mass of 0 16 A/mg((Pt Pd Ir)) In comparison without a Pd interlayer le Pt(ML)/IrCo/C the activities of 0 15 A/mg(pt) and 0 036 A/mg((Pt Pd Ir)) were considerably lower We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction A similar trend was observed for Pt(ML)/Pd(ML), and Pt(ML) deposited on Ir(3)Co/C alloy core We used density functional theory to interpret the observed phenomena (C) 2010 Elsevier B V All rights reserved C1 [Gong, Kuanping; Chen, Wei-Fu; Sasaki, Kotaro; Su, Dong; Vukmirovic, Miomir B.; Zhou, Weiping; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Izzo, Elise L.; Perez-Acosta, Carmen] UTC Power Corp, S Windsor, CT USA. [Hirunsit, Pussana; Balbuena, Perla B.] Texas A&M Univ, Dept Chem Engn, College Stn, TX 77843 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Chen, Wei-Fu/C-5692-2012; zhou, weiping/C-6832-2012; Su, Dong/A-8233-2013 OI zhou, weiping/0000-0002-8058-7280; Su, Dong/0000-0002-1921-6683 FU US Department of Energy Divisions of Chemical and Material Sciences [DE-AC02-98CH10886]; UTC Power Corporation South Windsor [DE-FG36-07GO17019]; Department of Energy Basic Energy Sciences [DE-FG02-05ER15729] FX This work is supported in part by US Department of Energy Divisions of Chemical and Material Sciences under the Contract No DE-AC02-98CH10886 and in part under a grant titled Highly Dispersed Alloy Cathode Catalyst for Durability (Contract No DE-FG36-07GO17019) via a subcontract from UTC Power Corporation South Windsor CT P B B also acknowledges the financial support of the Department of Energy Basic Energy Sciences Grant DE-FG02-05ER15729 NR 30 TC 28 Z9 28 U1 6 U2 50 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD NOV 15 PY 2010 VL 649 IS 1-2 SI SI BP 232 EP 237 DI 10.1016/j.jelechem.2010.04.011 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 687BZ UT WOS:000284750200031 ER PT J AU Zhang, F Wu, WM Parker, JC Mehlhorn, T Kelly, SD Kemner, KM Zhang, GX Schadt, C Brooks, SC Criddle, CS Watson, DB Jardine, PM AF Zhang, Fan Wu, Wei-Min Parker, Jack C. Mehlhorn, Tonia Kelly, Shelly D. Kemner, Kenneth M. Zhang, Gengxin Schadt, Christopher Brooks, Scott C. Criddle, Craig S. Watson, David B. Jardine, Philip M. TI Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Bio-stimulation; Microbial reduction; Intermediate products; Acetate; Hydrogen; Simulate ID CHAIN FATTY-ACIDS; IN-SITU BIOSTIMULATION; REDUCING BACTERIA; SP NOV.; BIOREDUCTION; AQUIFER; U(VI); GROUNDWATER; TRANSPORT; IRON AB Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Fan; Zhang, Gengxin] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100085, Peoples R China. [Wu, Wei-Min; Criddle, Craig S.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Parker, Jack C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Mehlhorn, Tonia; Schadt, Christopher; Brooks, Scott C.; Watson, David B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Kelly, Shelly D.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Jardine, Philip M.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. RP Zhang, F (reprint author), Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, POB 2871, Beijing 100085, Peoples R China. EM zhangfan@itpcas.ac.cn RI Brooks, Scott/B-9439-2012; Schadt, Christopher/B-7143-2008; BM, MRCAT/G-7576-2011; Watson, David/C-3256-2016 OI Brooks, Scott/0000-0002-8437-9788; Schadt, Christopher/0000-0001-8759-2448; Watson, David/0000-0002-4972-4136 FU U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research; U.S. Department of Energy [DE-AC05-000R22725] FX This research was funded by the U.S. Department of Energy, Office of Science, Office of the Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-000R22725. The authors thank Kenneth Lowe and Xiangping Yin for analytical help. NR 44 TC 12 Z9 13 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 J9 J HAZARD MATER JI J. Hazard. Mater. PD NOV 15 PY 2010 VL 183 IS 1-3 BP 482 EP 489 DI 10.1016/j.jhazmat.2010.07.049 PG 8 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 659ZY UT WOS:000282607600061 PM 20702039 ER PT J AU Calef, MT AF Calef, Matthew T. TI Riesz s-equilibrium measures on d-dimensional fractal sets as s approaches d SO JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS LA English DT Article DE Riesz potential; Equilibrium measure; Fractal ID POTENTIALS; DENSITIES AB Let A be a compact set in R(P) of Hausdorff dimension d. For s E (0,d), the Riesz s-equilibrium measure mu(s,A) is the unique Borel probability measure with support in A that minimizes the double integral over the Riesz s-kernel vertical bar x - y vertical bar(-s) over all such probability measures. In this paper we show that if A is a strictly self-similar d-fractal. then mu(s,A) converges in the weak-star topology to normalized d-dimensional Hausdorff measure restricted to A as s approaches d from below. (C) 2010 Elsevier Inc. All rights reserved. C1 Los Alamos Natl Lab, Computat Phys CCS 2, Los Alamos, NM 87545 USA. RP Calef, MT (reprint author), Los Alamos Natl Lab, Computat Phys CCS 2, Los Alamos, NM 87545 USA. OI Calef, Matthew/0000-0003-4701-7224 NR 18 TC 1 Z9 1 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-247X J9 J MATH ANAL APPL JI J. Math. Anal. Appl. PD NOV 15 PY 2010 VL 371 IS 2 BP 564 EP 572 DI 10.1016/j.jmaa.2010.05.061 PG 9 WC Mathematics, Applied; Mathematics SC Mathematics GA 634FY UT WOS:000280566900016 ER PT J AU Egeland, GW Zuck, LD Cannon, WR Lessing, PA Medvedev, PG AF Egeland, G. W. Zuck, L. D. Cannon, W. R. Lessing, P. A. Medvedev, P. G. TI Dry bag isostatic pressing for improved green strength of surrogate nuclear fuel pellets SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID POWDER COMPACTION; MECHANICS; CERAMICS; DEFECTS; BINDER AB Dry bag isostatic pressing is proposed for mass production of nuclear fuel pellets Dry bag isostatically pressed rods of a fuel surrogate (95% CeO(2)-5% HfO(2)) 200 mm long by 8 mm diameter were cut into pellets using a wire saw Four different binders and CeO(2) powder obtained from two different sources were investigated The strength of the isostatically pressed pellets for all binder systems measured by diametral compression was about 50% higher than pellets produced by uniaxial dry pressing at the same pressure It was proposed that the less uniform density of uniaxially pressed pellets accounted for the lower strength The strength of pellets containing CeO(2) powder with significantly higher moisture content was five times higher than pellets containing CeO(2) powder with a low moisture content even though they were 25% less dense Capillary pressure of the moisture was thought to supply the added binding strength Published by Elsevier B V C1 [Egeland, G. W.; Zuck, L. D.; Cannon, W. R.; Lessing, P. A.; Medvedev, P. G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Egeland, GW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. FU DOE [LDRD NU101] FX We would like to thank DOE for funding this project under LDRD NU101 We also would like to thank Randy Lloyd of Idaho National Lab for invaluable assistance with mechanical testing The authors also wish to thank Kenneth J Morris of Isoform Ltd Shropshire TF9 1QS United Kingdom for dry bag isostatic pressing of rods STI Number INL/JOU-09-17331 NR 22 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV 15 PY 2010 VL 406 IS 2 BP 205 EP 211 DI 10.1016/j.jnucmat.2010.08.022 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 681HX UT WOS:000284303100001 ER PT J AU Lau, GY Tucker, MC Jacobson, CP Visco, SJ Gleixner, SH DeJonghe, LC AF Lau, Grace Y. Tucker, Michael C. Jacobson, Craig P. Visco, Steven J. Gleixner, Stacy H. DeJonghe, Lutgard C. TI Chromium transport by solid state diffusion on solid oxide fuel cell cathode SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cell; Stainless steel; Chromium; LSM; LSCF; LNF ID ELECTRODES; DEPOSITION; INTERCONNECT AB Iron-chromium ferritic stainless steel is widely used in solid oxide fuel cell (SOFC) components. At 650-800 degrees C, stainless steels form a protective chromia oxide scale. This low conductivity catalytic compound can degrade SOFC cathode performance. The migration of Cr species onto the cathode occurs through vapor transport and/or solid state diffusion, and electrochemical reactions may affect the migration. It is important to understand the relative Cr transport and reaction rates to evaluate the most viable commercially available cathode material. This study characterizes the migration of Cr species through solid state diffusion and vapor deposition. Chromia blocks and chromia-forming stainless steel interconnects were held in contact with LSM (Lanthanum Strontium Manganese Oxide), LSCF (Lanthanum Strontium Cobalt Ferrite) and LNF (Lanthanum Nickel Ferrite) perovskite pellets in Cr-saturated air at 700 degrees C for 300 h. XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), EDS (Energy Dispersive X-ray Spectroscopy) and Ion Milling by FIB (Focused Ion Beam) were used to detect Cr on and within the perovskite pellets. Cr transport and reaction on LSCF is the most severe, followed by LSM. Cr transport is observed on LNF, but without noticeable reaction. Published by Elsevier B.V. C1 [Lau, Grace Y.; Tucker, Michael C.; Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gleixner, Stacy H.] San Jose State Univ, Dept Chem & Mat Engn, San Jose, CA 95192 USA. RP Lau, GY (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, 1 Cyclotron Rd,MS 62-203, Berkeley, CA 94720 USA. EM gylau@lbl.gov FU NETL through US Department of Energy [DE-AC03-76SF00098] FX I would like to thank Dr. Hideto Kurokawa for help in this project. This project was sponsored in part by NETL through the SECA program by the US Department of Energy under the contract number DE-AC03-76SF00098. NR 15 TC 14 Z9 14 U1 1 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2010 VL 195 IS 22 SI SI BP 7540 EP 7547 DI 10.1016/j.jpowsour.2010.06.017 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 639KX UT WOS:000280974800008 ER PT J AU Yoon, KJ Cramer, CN Stevenson, JW Marina, OA AF Yoon, Kyung Joong Cramer, Carolyn N. Stevenson, Jeffry W. Marina, Olga A. TI Advanced ceramic interconnect material for solid oxide fuel cells: Electrical and thermal properties of calcium- and nickel-doped yttrium chromites SO JOURNAL OF POWER SOURCES LA English DT Article DE Doped yttrium chromite; Perovskite; Solid oxide fuel cell; Ceramic interconnect; Conductivity; Sinterability ID SUBSTITUTED LANTHANUM CHROMITE; NI)O3 PEROVSKITE SYSTEM; ELECTROCHEMICAL PROPERTIES; MECHANICAL-PROPERTIES; TRANSPORT-PROPERTIES; CATION SUBSTITUTION; SEEBECK COEFFICIENT; CHEMICAL-STABILITY; CONDUCTIVITY; EXPANSION AB The structural, thermal and electrical characteristics of calcium- and nickel-doped yttrium chromites were studied for potential use as the interconnect material in high temperature solid oxide fuel cells (SOFCs) and other high temperature electrochemical and thermoelectric devices. The Y(0.8)Ca(0.2)Cr(1-x)Ni(x)O(3+/-delta) compositions with x = 0-0.15 showed single phase orthorhombic perovskite structures between 25 and 1200 degrees C over a wide range of oxygen partial pressures. Nickel doping remarkably enhanced sintering behavior of otherwise refractory chromites, and densities 94% of theoretical density were obtained after sintering at 1400 degrees C in air with 15 at.% Ni. The thermal expansion coefficient (TEC) was increased with nickel content to closely match that of an 8 mol% yttria-stabilized zirconia (YSZ) electrolyte for 0.05 <= x <= 0.15. Nickel doping significantly improved the electrical conductivity in both oxidizing and reducing atmospheres. Undesirable oxygen ion "leakage" current was insignificant in dual atmosphere conditions. No interfacial interactions with YSZ were detected after firing at 1400 degrees C. Published by Elsevier B.V. C1 [Yoon, Kyung Joong] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Yoon, KJ (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. EM kyungjoong.yoon@pnl.gov FU U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA); U.S. Department of Energy [DE-AC06-76RLO 1830] FX The authors appreciate the high temperature XRD performed by T. Varga, the SEM analysis by A.L. Schemer-Kohrn, and SEM sample preparation by S. Carlson. The work summarized in this paper was funded by the U.S. Department of Energy's Solid-State Energy Conversion Alliance (SECA) Core Technology Program. PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. NR 47 TC 13 Z9 13 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2010 VL 195 IS 22 SI SI BP 7587 EP 7593 DI 10.1016/j.jpowsour.2010.06.040 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 639KX UT WOS:000280974800015 ER PT J AU Vijayakumar, M Burton, SD Huang, C Li, LY Yang, ZG Graff, GL Liu, J Hu, JZ Skyllas-Kazacos, M AF Vijayakumar, M. Burton, Sarah D. Huang, Cheng Li, Liyu Yang, Zhenguo Graff, Gordon L. Liu, Jun Hu, Jianzhi Skyllas-Kazacos, Maria TI Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery SO JOURNAL OF POWER SOURCES LA English DT Article DE Vanadium redox flow battery; Vanadyl ion; Water exchange reaction; Molecular dynamics; O-17 NMR ID HYPERFINE COUPLING-CONSTANTS; TRANSITION-METAL-COMPLEXES; DENSITY-FUNCTIONAL THEORY; NMR-RELAXATION; PHOTOVOLTAIC SYSTEMS; ABSORPTION-SPECTRA; EXCHANGE REACTIONS; SHIELDING TENSORS; AQUEOUS-SOLUTIONS; CELL ELECTROLYTE AB The vanadium(IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature H-1 and O-17 nuclear magnetic resonance (NMR) spectroscopy. The structure and kinetics of vanadium(IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium(IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)(5)](2+) forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3 M and in the temperature range of 240-340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second-coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on H-1 and O-17 NMR results. (C) 2010 Elsevier B.V. All rights reserved. C1 [Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jianzhi] Pacific NW Natl Lab, Richland, WA 99352 USA. [Skyllas-Kazacos, Maria] Univ New S Wales, Sydney, NSW 2052, Australia. RP Yang, ZG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM vijayakumar.murugesan@pnl.gov; zgary.yang@pnl.gov; Jianzhi.Hu@pnl.gov RI Murugesan, Vijayakumar/C-6643-2011; Hu, Jian Zhi/F-7126-2012 OI Murugesan, Vijayakumar/0000-0001-6149-1702; FU Pacific Northwest National Laboratory (PNNL); Office of Electricity (OE Delivery & Energy Reliability (OE); U.S. Department of Energy (DOE) [57558]; DOE's Office of Biological and Environmental Research (BER) FX The work is supported by Laboratory-Directed Research and Development Program (LDRD) of the Pacific Northwest National Laboratory (PNNL), and by the Office of Electricity (OE Delivery & Energy Reliability (OE)), U.S. Department of Energy (DOE) under contract #57558. The NMR work was carried out at the Environmental and Molecular Science Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research (BER). PNNL is a multiprogram laboratory operated by Battelle Memorial Institute for the Department of Energy under contract DE-AC05-76RL01830. We thank Dr. Birgit Schwenzer and Prof. Huamin Zhang for valuable suggestions and fruitful discussions. NR 48 TC 47 Z9 50 U1 6 U2 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2010 VL 195 IS 22 SI SI BP 7709 EP 7717 DI 10.1016/j.jpowsour.2010.05.008 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 639KX UT WOS:000280974800030 ER PT J AU Qiao, JW Zhang, JT Jiang, F Zhang, Y Liaw, PK Ren, Y Chen, GL AF Qiao, J. W. Zhang, J. T. Jiang, F. Zhang, Y. Liaw, P. K. Ren, Y. Chen, G. L. TI Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Bulk amorphous glasses; Composites; Fracture; Synchrotron X-ray diffraction; Bridgman solidification ID BRIDGMAN SOLIDIFICATION; MECHANICAL-PROPERTIES; TENSILE DUCTILITY AB Lightweight and plastic Ti-based bulk-metallic-glass-matrix composites (BMGMCs) were fabricated by the Bridgman solidification. The beta-Ti dendrites were uniformly distributed within the glass matrix. By tailoring the withdrawal velocity,nu, the linear dependences of the spanning length, s, and the volume fraction, nu(f), of dendrites can be determined as: s = 30 nu + 139 and nu(f) = 12 nu + 50, respectively. The plasticity of Ti-based BMGMCs was extensively studied in terms of the interdendrite spacing and the volume fraction of dendrites. An inverted U-shaped characteristic of the plasticity with the withdrawal velocity has been identified and explained. The present research gave a way for the design of plastic BMGMCs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Qiao, J. W.; Zhang, J. T.; Zhang, Y.; Chen, G. L.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Qiao, J. W.; Jiang, F.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ren, Y.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Qiao, JW (reprint author), Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. EM qiaojunwei@gmail.com; drzhangy@skl.ustb.edu.cn RI ZHANG, Yong/B-7928-2009 OI ZHANG, Yong/0000-0002-6355-9923 FU National Basic Research Program of China (the 973 Program) [2007CB613903]; National Science Foundation [DMR-0231320, DMR-0421219, DMR-0909037, CMMI-0900271]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Y.Z. would like to acknowledge the support by the National Basic Research Program of China (the 973 Program) under the contract No. of 2007CB613903. P.K.L. is very grateful to the support by the National Science Foundation Programs (DMR-0231320, DMR-0421219, DMR-0909037, and CMMI-0900271) with Drs. C.V. Cooper, A. Ardell, D. Finotello, C. Huber, and C. Bouldin as Pro-gram Directors. The Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 21 Z9 23 U1 6 U2 31 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2010 VL 527 IS 29-30 BP 7752 EP 7756 DI 10.1016/j.msea.2010.08.055 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 676EJ UT WOS:000283892600038 ER PT J AU Zhang, XJ Huang, L Chen, X Liaw, PK An, K Zhang, T Wang, GY AF Zhang, Xinjian Huang, Lu Chen, Xu Liaw, Peter K. An, Ke Zhang, Tao Wang, Gongyao TI Mechanical behavior of Fe75Mo5P10C7.5B2.5 bulk-metallic glass under torsional loading SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Bulk-metallic glass; Fe75Mo5P10C7.5B2.5; Fracture strength; Torsional fatigue; Fracture morphology ID SOFT-MAGNETIC PROPERTIES; FATIGUE BEHAVIOR; AMORPHOUS-ALLOYS; FRACTURE-BEHAVIOR; COMPOSITE; SYSTEMS; MODEL; STATE AB Pure- and cyclic-torsional studies were conducted on a Fe75Mo5P10C7.5B2.5 (atomic percent, at.%) bulk-metallic glass at room temperature for an understanding of its damage and fracture mechanisms. Under pure-torsional loading, the metallic glass exhibited very little plastic strain before fracture. The fracture initiated along the maximum tensile-stress plane, which is about 45 to the axial direction. The shear-fracture strength (similar to 510 MPa) is much lower than the compressive-fracture strength (similar to 3280 MPa), which suggests that different deformation mechanisms be present under various loading modes. Instead of an apparent vein-type structure, the fracture morphologies revealed a crack-initiation site, a mirror region, a mist region, and a hackle region. Under cyclic-torsional loading, fatigue cracks initiated from casting defects, and propagate generally along the maximum tensile-stress plane. A slight cyclic-hardening behavior was observed in initial loading steps. The fatigue-fracture surface consists of three main regions: the fatigue crack-initiation, crack-propagation, and final-fast-fracture areas. The striations resulting from the blunting and re-sharpening of the fatigue crack tip were observed in the crack-propagation region. Based on these results, the damage and fracture mechanisms of the metallic glass induced by torsional loadings are elucidated. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Xinjian; Chen, Xu] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China. [Huang, Lu; Liaw, Peter K.; Wang, Gongyao] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [An, Ke] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Huang, Lu; Zhang, Tao] Beijing Univ Aeronaut & Astronaut, Key Lab Aerosp Mat & Performance, Minist Educ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. RP Chen, X (reprint author), Tianjin Univ, Sch Chem Engn & Technol, 92 Weijin Rd, Tianjin 300072, Peoples R China. EM xchen@tju.edu.cn RI Chen, Xu/A-8487-2008; Huang, Lu/H-5325-2012; Huang, Lu/L-4643-2013; An, Ke/G-5226-2011; Zhang, Tao/O-4911-2014 OI Huang, Lu/0000-0001-8318-2687; Huang, Lu/0000-0001-8318-2687; An, Ke/0000-0002-6093-429X; FU Program for Changjiang Scholars and Innovative Research Team in University [IRT0641]; Program of Introducing Talents of Discipline to Universities [B06006]; National Science Foundation; Division of Materials Sciences and Engineering. Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX This work is supported by the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0641) and the Program of Introducing Talents of Discipline to Universities (No. B06006). Peter K. Liaw would like to acknowledge the support of the National Science Foundation International Materials Institutes (IMI) Program with Drs C. Huber, U. Venkateswaran, and D. Finotello as program directors. K. An acknowledges the support by the Division of Materials Sciences and Engineering. Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors are grateful to Dr. A. Takeuchi of Tohoku University for his helpful suggestions and literatures. NR 38 TC 1 Z9 1 U1 3 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD NOV 15 PY 2010 VL 527 IS 29-30 BP 7801 EP 7807 DI 10.1016/j.msea.2010.08.072 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 676EJ UT WOS:000283892600045 ER PT J AU Bissell, MJ AF Bissell, Mina J. TI Cell Biology: A Love Affair SO MOLECULAR BIOLOGY OF THE CELL LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Bissell, MJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov FU NCI NIH HHS [R01 CA057621, R37 CA064786] NR 3 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 J9 MOL BIOL CELL JI Mol. Biol. Cell PD NOV 15 PY 2010 VL 21 IS 22 BP 3790 EP 3790 DI 10.1091/mbc.E10-04-0337 PG 1 WC Cell Biology SC Cell Biology GA 680FC UT WOS:000284216800012 PM 21079012 ER PT J AU Nogales, E AF Nogales, Eva TI My Dream of a Fantastic Voyage to See the Inner Workings of a Cell SO MOLECULAR BIOLOGY OF THE CELL LA English DT Editorial Material C1 [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU Howard Hughes Medical Institute NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC CELL BIOLOGY PI BETHESDA PA 8120 WOODMONT AVE, STE 750, BETHESDA, MD 20814-2755 USA SN 1059-1524 J9 MOL BIOL CELL JI Mol. Biol. Cell PD NOV 15 PY 2010 VL 21 IS 22 BP 3815 EP 3815 DI 10.1091/mbc.E10-05-0385 PG 1 WC Cell Biology SC Cell Biology GA 680FC UT WOS:000284216800026 PM 21079026 ER PT J AU Aoki, S Ariga, A Arrabito, L Autiero, D Besnier, M Bozza, C Buontempo, S Carrara, E Consiglio, L Cozzi, M D'Ambrosio, N De Lellis, G Declais, Y De Serio, M Di Capua, F Di Crescenzo, A Di Ferdinando, D Di Marco, N Duchesneau, D Ereditato, A Esposito, LS Fukuda, T Giacomelli, G Giorgini, M Grella, G Hamada, K Ieva, M Juget, F Kitagawa, N Knuesel, J Kodama, K Komatsu, M Kose, U Kreslo, I Laktineh, I Longhin, A Lundberg, B Lutter, G Mandrioli, G Marotta, A Meisel, F Migliozzi, P Morishima, K Muciaccia, MT Naganawa, N Nakamura, M Nakano, T Niwa, K Nonoyama, Y Paolone, V Pastore, A Patrizii, L Pistillo, C Pozzato, M Pupilli, F Rameika, R Rescigno, R Rosa, G Russo, A Sato, O Lavina, LS Simone, S Sioli, M Sirignano, C Sirri, G Strolin, P Tenti, M Tioukov, V Yoshida, J Yoshioka, T AF Aoki, S. Ariga, A. Arrabito, L. Autiero, D. Besnier, M. Bozza, C. Buontempo, S. Carrara, E. Consiglio, L. Cozzi, M. D'Ambrosio, N. De Lellis, G. Declais, Y. De Serio, M. Di Capua, F. Di Crescenzo, A. Di Ferdinando, D. Di Marco, N. Duchesneau, D. Ereditato, A. Esposito, L. S. Fukuda, T. Giacomelli, G. Giorgini, M. Grella, G. Hamada, K. Ieva, M. Juget, F. Kitagawa, N. Knuesel, J. Kodama, K. Komatsu, M. Kose, U. Kreslo, I. Laktineh, I. Longhin, A. Lundberg, B. Lutter, G. Mandrioli, G. Marotta, A. Meisel, F. Migliozzi, P. Morishima, K. Muciaccia, M. T. Naganawa, N. Nakamura, M. Nakano, T. Niwa, K. Nonoyama, Y. Paolone, V. Pastore, A. Patrizii, L. Pistillo, C. Pozzato, M. Pupilli, F. Rameika, R. Rescigno, R. Rosa, G. Russo, A. Sato, O. Lavina, L. Scotto Simone, S. Sioli, M. Sirignano, C. Sirri, G. Strolin, P. Tenti, M. Tioukov, V. Yoshida, J. Yoshioka, T. TI Measurement of low-energy neutrino cross-sections with the PEANUT experiment SO NEW JOURNAL OF PHYSICS LA English DT Article ID NUCLEAR-EMULSIONS; OPERA EXPERIMENT; BEAM; MICROSCOPES; MOMENTUM; SYSTEM; EVENT AB The PEANUT experiment was designed to study the NuMi neutrino beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a micrometric tracking device and are interleaved with lead plates used as passive material. The detector is designed to precisely reconstruct the topology of neutrino interactions and hence to measure the different contributions to the cross section. We present here the full reconstruction and analysis of 147 neutrino interactions and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross section at the energies of the NuMi neutrino beam. This technique could be applied for beam monitoring in future neutrino facilities, and this paper shows its proof-of-principle. C1 [Buontempo, S.; De Lellis, G.; Di Capua, F.; Di Crescenzo, A.; Marotta, A.; Migliozzi, P.; Russo, A.; Lavina, L. Scotto; Strolin, P.; Tioukov, V.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [Ariga, A.; Ereditato, A.; Juget, F.; Knuesel, J.; Kreslo, I.; Lutter, G.; Meisel, F.; Pistillo, C.] Univ Bern, High Energy Phys Lab, A Einstein Ctr Fundamental Phys, CH-3012 Bern, Switzerland. [Arrabito, L.; Autiero, D.; Declais, Y.; Laktineh, I.] Univ Lyon 1, CNRS, IN2P3, IPNL, F-69622 Villeurbanne, France. [Besnier, M.; Duchesneau, D.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Bozza, C.; Grella, G.; Kose, U.; Sirignano, C.] Univ Salerno, Dipartimento Fis, I-84084 Salerno, Italy. [Bozza, C.; Grella, G.; Kose, U.; Sirignano, C.] Ist Nazl Fis Nucl, I-84084 Salerno, Italy. [Aoki, S.] Kobe Univ, Kobe, Hyogo 6578501, Japan. [Carrara, E.; Longhin, A.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Carrara, E.; Longhin, A.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Consiglio, L.; Cozzi, M.; Giacomelli, G.; Giorgini, M.; Pozzato, M.; Tenti, M.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Consiglio, L.; Di Ferdinando, D.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Pozzato, M.; Sioli, M.; Sirri, G.; Tenti, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40127 Bologna, Italy. [D'Ambrosio, N.; Esposito, L. S.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [De Lellis, G.; Di Crescenzo, A.; Russo, A.; Strolin, P.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [De Serio, M.; Ieva, M.; Muciaccia, M. T.; Pastore, A.; Simone, S.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Di Marco, N.] Univ Aquila, Dipartimento Fis, I-67100 Laquila, Italy. [Di Marco, N.] Ist Nazl Fis Nucl, I-67100 Laquila, Italy. [Fukuda, T.; Hamada, K.; Kitagawa, N.; Komatsu, M.; Morishima, K.; Naganawa, N.; Nakamura, M.; Nakano, T.; Niwa, K.; Nonoyama, Y.; Sato, O.; Yoshida, J.; Yoshioka, T.] Nagoya Univ, Nagoya, Aichi 4648602, Japan. [Kodama, K.] Aichi Univ Educ, Kariya, Aichi 4488542, Japan. [Lundberg, B.; Rameika, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Muciaccia, M. T.; Pastore, A.; Simone, S.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Paolone, V.] Univ Pittsburgh, Dept Phys, Pittsburgh, PA 15260 USA. [Rosa, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Rosa, G.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. RP De Lellis, G (reprint author), Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. EM delellis@na.infn.it RI buotempo, salvatore/B-5210-2012; sirignano, cesare/I-8498-2012; Sirri, Gabriele/J-5067-2012; Tioukov, Valeri/H-9939-2016; Migliozzi, Pasquale/I-6427-2015; Aoki, Shigeki/L-6044-2015; OI D'Ambrosio, Nicola/0000-0001-9849-8756; Sirri, Gabriele/0000-0003-2626-2853; Tioukov, Valeri/0000-0001-5981-5296; Grella, Giuseppe/0000-0002-0147-9477; Simone, Saverio/0000-0003-3631-8398; Longhin, Andrea/0000-0001-9103-9936; Migliozzi, Pasquale/0000-0001-5497-3594; Tenti, Matteo/0000-0002-4254-5901; De Serio, Marilisa/0000-0003-4915-7933 NR 26 TC 2 Z9 2 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 15 PY 2010 VL 12 AR 113028 DI 10.1088/1367-2630/12/11/113028 PG 15 WC Physics, Multidisciplinary SC Physics GA 687JH UT WOS:000284774300002 ER PT J AU Azhgirey, IL Belyakov-Bodin, VI Degtyarev, II Sherstnev, VA Mashnik, SG Gallmeier, FX Lu, W AF Azhgirey, I. L. Belyakov-Bodin, V. I. Degtyarev, I. I. Sherstnev, V. A. Mashnik, S. G. Gallmeier, F. X. Lu, W. TI CTOF measurements and Monte Carlo analyses of neutron spectra for the backward direction from a lead target irradiated with 200-1000 MeV protons SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Measurement; Neutron spectrum; Comparison; Prediction by the MARS; The RTS&T; The MCNPX; The MCNP6 code systems ID INTRANUCLEAR-CASCADE CALCULATION; MODEL AB A calorimetric time-of-flight technique was used for real-time high-precision measurement of neutron spectra at an angle of 175 degrees from the initial proton beam direction which hits a face plane of a cylindrical lead target of 20 cm in diameter and 25 cm thick A comparison was performed between the neutron spectra predicted by the MARS RTS&T MCNP6 and the MCNPX 2 6 0 transport codes and that measured for 200 400 600 800 and 1000 MeV protons Neutron spectra were measured within the energy range from 0 7 to 250 MeV almost continuously The transport codes tested here describe with different success the measured spectra depending on the energy of the detected neutrons and on the incident proton energy but all the models agree reasonably well with our data (C) 2010 Elsevier B V All rights reserved C1 [Azhgirey, I. L.; Belyakov-Bodin, V. I.; Degtyarev, I. I.] Inst High Energy Phys, Protvino, Russia. [Sherstnev, V. A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Mashnik, S. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gallmeier, F. X.; Lu, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Belyakov-Bodin, VI (reprint author), Inst High Energy Phys, Protvino, Russia. FU US DOE FX We are grateful to G A Losev and A V Feofilov (both of the Institute for High Energy Physics) for providing the beam so reliably under the conditions demanded for this experiment This work was partially supported by the US DOE NR 38 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 15 PY 2010 VL 268 IS 22 BP 3426 EP 3433 DI 10.1016/j.nimb.2010.09.005 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 686BE UT WOS:000284671000003 ER PT J AU Osipenko, M Ricco, G Simula, S Ripani, M Taiuti, M Adhikari, KP Amaryan, MJ Anghinolfi, M Avakian, H Baghdasaryan, H Battaglieri, M Batourine, V Bedlinskiy, I Biselli, AS Branford, D Briscoe, WJ Brooks, WK Burkert, VD Careccia, SL Carman, DS Cole, PL Collins, P Crede, V D'Angelo, A Daniel, A Dashyan, N De Vita, R De Sanctis, E Deur, A Dey, B Dhamija, S Dickson, R Djalali, C Doughty, D Dupre, R Egiyan, H El Alaoui, A Eugenio, P Fegan, S Forest, TA Fradi, A Gabrielyan, MY Gevorgyan, N Gilfoyle, GP Giovanetti, KL Gohn, W Gothe, RW Griffioen, KA Guo, L Hafidi, K Hakobyan, H Hanretty, C Hassall, N Heddle, D Hicks, K Holtrop, M Ilieva, Y Ireland, DG Isupov, EL Jawalkar, SS Jo, HS Joo, K Keller, D Khandaker, M Khetarpal, P Kim, W Klein, A Klein, FJ Kubarovsky, V Kuhn, SE Kuleshov, SV Kuznetsov, V Livingston, K Lu, HY Martinez, D Mayer, M McAndrew, J McCracken, ME McKinnon, B Meyer, CA Mirazita, M Mokeev, V Moreno, B Moriya, K Morrison, B Moutarde, H Munevar, E Nadel-Turonski, P Nasseripour, R Niccolai, S Niculescu, I Ostrovidov, AI Paremuzyan, R Park, K Park, S Pasyuk, E Pereira, SA Pisano, S PogoreIko, O Pozdniakov, S Price, JW Procureur, S Prok, Y Protopopescu, D Raue, BA Rosner, G Rossi, P Sabatie, F Saini, MS Salamanca, J Salgado, C Saracco, P Schumacher, RA Seraydaryan, H Sharabian, YG Smith, ES Sober, D Sokhan, D Stepanyan, SS Stepanyan, S Stoler, P Strauch, S Tedeschi, DJ Tkachenko, S Ungaro, M Vernarsky, B Vineyard, MF Voutier, E Watts, DP Weygand, DP Wood, MH Yegneswaran, A Zhang, J Zhao, B AF Osipenko, M. Ricco, G. Simula, S. Ripani, M. Taiuti, M. Adhikari, K. P. Amaryan, M. J. Anghinolfi, M. Avakian, H. Baghdasaryan, H. Battaglieri, M. Batourine, V. Bedlinskiy, I. Biselli, A. S. Branford, D. Briscoe, W. J. Brooks, W. K. Burkert, V. D. Careccia, S. L. Carman, D. S. Cole, P. L. Collins, P. Crede, V. D'Angelo, A. Daniel, A. Dashyan, N. De Vita, R. De Sanctis, E. Deur, A. Dey, B. Dhamija, S. Dickson, R. Djalali, C. Doughty, D. Dupre, R. Egiyan, H. El Alaoui, A. Eugenio, P. Fegan, S. Forest, T. A. Fradi, A. Gabrielyan, M. Y. Gevorgyan, N. Gilfoyle, G. P. Giovanetti, K. L. Gohn, W. Gothe, R. W. Griffioen, K. A. Guo, L. Hafidi, K. Hakobyan, H. Hanretty, C. Hassall, N. Heddle, D. Hicks, K. Holtrop, M. Ilieva, Y. Ireland, D. G. Isupov, E. L. Jawalkar, S. S. Jo, H. S. Joo, K. Keller, D. Khandaker, M. Khetarpal, P. Kim, W. Klein, A. Klein, F. J. Kubarovsky, V. Kuhn, S. E. Kuleshov, S. V. Kuznetsov, V. Livingston, K. Lu, H. Y. Martinez, D. Mayer, M. McAndrew, J. McCracken, M. E. McKinnon, B. Meyer, C. A. Mirazita, M. Mokeev, V. Moreno, B. Moriya, K. Morrison, B. Moutarde, H. Munevar, E. Nadel-Turonski, P. Nasseripour, R. Niccolai, S. Niculescu, I. Ostrovidov, A. I. Paremuzyan, R. Park, K. Park, S. Pasyuk, E. Pereira, S. Anefalos Pisano, S. PogoreIko, O. Pozdniakov, S. Price, J. W. Procureur, S. Prok, Y. Protopopescu, D. Raue, B. A. Rosner, G. Rossi, P. Sabatie, F. Saini, M. S. Salamanca, J. Salgado, C. Saracco, P. Schumacher, R. A. Seraydaryan, H. Sharabian, Y. G. Smith, E. S. Sober, D. Sokhan, D. Stepanyan, S. S. Stepanyan, S. Stoler, P. Strauch, S. Tedeschi, D. J. Tkachenko, S. Ungaro, M. Vernarsky, B. Vineyard, M. F. Voutier, E. Watts, D. P. Weygand, D. P. Wood, M. H. Yegneswaran, A. Zhang, J. Zhao, B. TI Measurement of the nucleon structure function F-2 in the nuclear medium and evaluation of its moments SO NUCLEAR PHYSICS A LA English DT Article DE Moments; Nuclear modifications; Nucleon structure; Higher twists; QCD; OPE ID INELASTIC STRUCTURE FUNCTIONS; STRUCTURE-FUNCTION RATIOS; INCLUSIVE ELECTRON-SCATTERING; RADIATIVE-CORRECTIONS; PRECISION-MEASUREMENT; CROSS-SECTIONS; NNLO EVOLUTION; LEADING TWIST; HIGH Q2; CARBON AB We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W approximate to 2.4 GeV with four-momentum transfers Q(2) ranging from 0.2 to 5 (GeV/c)(2). These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q(2) and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F-2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q(2)-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F-2 moments exhibits the well-known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainties, to be smaller with respect to the deuteron case for n < 7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium. (C) 2010 Elsevier B.V. All rights reserved. C1 [Osipenko, M.; Ricco, G.; Ripani, M.; Taiuti, M.; Anghinolfi, M.; Battaglieri, M.; De Vita, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Dupre, R.; El Alaoui, A.; Hafidi, K.] Argonne Natl Lab, Argonne, IL 60441 USA. [Collins, P.; Morrison, B.; Pasyuk, E.] Arizona State Univ, Tempe, AZ 85287 USA. [Price, J. W.] Calif State Univ Dominguez Hills, Carson, CA 90747 USA. [Wood, M. H.] Canisius Coll, Buffalo, NY 14208 USA. [Dey, B.; Dickson, R.; McCracken, M. E.; Meyer, C. A.; Moriya, K.; Schumacher, R. A.; Vernarsky, B.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Klein, F. J.; Nadel-Turonski, P.; Sober, D.] Catholic Univ Amer, Washington, DC 20064 USA. [Moreno, B.; Moutarde, H.; Procureur, S.; Sabatie, F.] CEA, Ctr Saclay, Irfu Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Doughty, D.; Heddle, D.] Christopher Newport Univ, Newport News, VA 23606 USA. [Gohn, W.; Joo, K.; Ungaro, M.; Zhao, B.] Univ Connecticut, Storrs, CT 06269 USA. [Branford, D.; McAndrew, J.; Sokhan, D.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Biselli, A. S.] Fairfield Univ, Fairfield, CT 06824 USA. [Dhamija, S.; Gabrielyan, M. Y.; Raue, B. A.] Florida Int Univ, Miami, FL 33199 USA. [Crede, V.; Eugenio, P.; Hanretty, C.; Ostrovidov, A. I.; Park, S.; Saini, M. S.] Florida State Univ, Tallahassee, FL 32306 USA. [Briscoe, W. J.; Munevar, E.; Niculescu, I.] George Washington Univ, Washington, DC 20052 USA. [Cole, P. L.; Forest, T. A.; Martinez, D.; Salamanca, J.] Idaho State Univ, Pocatello, ID 83209 USA. [Avakian, H.; De Sanctis, E.; Pereira, S. Anefalos; Rossi, P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [D'Angelo, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Fradi, A.; Jo, H. S.; Niccolai, S.; Pisano, S.] Inst Phys Nucl, F-91406 Orsay, France. [Bedlinskiy, I.; Kuleshov, S. V.; PogoreIko, O.; Pozdniakov, S.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Giovanetti, K. L.; Niculescu, I.] James Madison Univ, Harrisonburg, VA 22807 USA. [Kim, W.; Kuznetsov, V.; Park, K.; Stepanyan, S. S.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Voutier, E.] Univ Grenoble 1, CNRS, LPSC, INPG,IN2P3, Grenoble, France. [Egiyan, H.; Holtrop, M.] Univ New Hampshire, Durham, NH 03824 USA. [Khandaker, M.; Salgado, C.] Norfolk State Univ, Norfolk, VA 23504 USA. [Daniel, A.; Hicks, K.; Keller, D.] Ohio Univ, Athens, OH 45701 USA. [Adhikari, K. P.; Amaryan, M. J.; Careccia, S. L.; Forest, T. A.; Klein, A.; Kuhn, S. E.; Mayer, M.; Sabatie, F.; Seraydaryan, H.; Tkachenko, S.; Zhang, J.] Old Dominion Univ, Norfolk, VA 23529 USA. [Biselli, A. S.; Khetarpal, P.; Stoler, P.] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Gilfoyle, G. P.; Vineyard, M. F.] Univ Richmond, Richmond, VA 23173 USA. [D'Angelo, A.] Univ Roma Tor Vergata, I-00133 Rome, Italy. [Simula, S.] Ist Nazl Fis Nucl, Sez ROMA 3, I-00146 Rome, Italy. [Osipenko, M.; Isupov, E. L.; Mokeev, V.] Skobeltsyn Nucl Phys Inst, Moscow 119899, Russia. [Djalali, C.; Gothe, R. W.; Ilieva, Y.; Lu, H. Y.; Nasseripour, R.; Park, K.; Strauch, S.; Tedeschi, D. J.] Univ S Carolina, Columbia, SC 29208 USA. [Avakian, H.; Batourine, V.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Cole, P. L.; Deur, A.; Doughty, D.; Guo, L.; Heddle, D.; Klein, F. J.; Kubarovsky, V.; Mokeev, V.; Raue, B. A.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Yegneswaran, A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Vineyard, M. F.] Union Coll, Schenectady, NY 12308 USA. [Brooks, W. K.; Hakobyan, H.; Joo, K.; Kuleshov, S. V.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Fegan, S.; Hassall, N.; Ireland, D. G.; Livingston, K.; McKinnon, B.; Protopopescu, D.; Rosner, G.; Watts, D. P.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Baghdasaryan, H.; Prok, Y.] Univ Virginia, Charlottesville, VA 22901 USA. [Egiyan, H.; Griffioen, K. A.; Jawalkar, S. S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Dashyan, N.; Gevorgyan, N.; Hakobyan, H.; Paremuzyan, R.; Sharabian, Y. G.; Stepanyan, S.] Yerevan Phys Inst, Yerevan 375036, Armenia. RP Osipenko, M (reprint author), Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. EM osipenko@ge.infn.it RI Ireland, David/E-8618-2010; Lu, Haiyun/B-4083-2012; Protopopescu, Dan/D-5645-2012; Isupov, Evgeny/J-2976-2012; Zhao, Bo/J-6819-2012; Brooks, William/C-8636-2013; Kuleshov, Sergey/D-9940-2013; Schumacher, Reinhard/K-6455-2013; D'Angelo, Annalisa/A-2439-2012; Meyer, Curtis/L-3488-2014; El Alaoui, Ahmed/B-4638-2015; Sabatie, Franck/K-9066-2015; Osipenko, Mikhail/N-8292-2015; Zhang, Jixie/A-1461-2016; Saracco, Paolo/F-3466-2012; OI Ireland, David/0000-0001-7713-7011; Zhao, Bo/0000-0003-3171-5335; Brooks, William/0000-0001-6161-3570; Kuleshov, Sergey/0000-0002-3065-326X; Schumacher, Reinhard/0000-0002-3860-1827; D'Angelo, Annalisa/0000-0003-3050-4907; Meyer, Curtis/0000-0001-7599-3973; Sabatie, Franck/0000-0001-7031-3975; Osipenko, Mikhail/0000-0001-9618-3013; Saracco, Paolo/0000-0002-3013-9404; Simula, Silvano/0000-0002-5533-6746 FU Istituto Nazionale di Fisica Nucleare; French Commissariat a l'Energie Atomique; French Centre National de la Recherche Scientifique; U.S. Department of Energy [DE-AC05-84ER40150]; National Science Foundation; National Research Foundation of Korea FX This work was supported by the Istituto Nazionale di Fisica Nucleare, the French Commissariat a l'Energie Atomique, the French Centre National de la Recherche Scientifique, the U.S. Department of Energy, the National Science Foundation and the National Research Foundation of Korea. The Southeastern Universities Research Association (SURA) operated the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under contract DE-AC05-84ER40150. NR 84 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV 15 PY 2010 VL 845 BP 1 EP 32 DI 10.1016/j.nuclphysa.2010.05.059 PG 32 WC Physics, Nuclear SC Physics GA 638NR UT WOS:000280902100001 ER PT J AU Chen, SY Walsh, A Luo, Y Yang, JH Gong, XG Wei, SH AF Chen, Shiyou Walsh, Aron Luo, Ye Yang, Ji-Hui Gong, X. G. Wei, Su-Huai TI Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors SO PHYSICAL REVIEW B LA English DT Article ID DIPOLAR TETRAHEDRAL STRUCTURES; FILM SOLAR-CELLS; NANOCRYSTALS; CRYSTALS; ENERGY; DIFFRACTION; DERIVATIVES; STABILITY; ABSORBER; CU AB The I(2)-II-IV-VI(4) quaternary chalcogenide semiconductors (e.g., Cu(2)ZnGeS(4), Cu(2)ZnSnS(4), Cu(2)ZnGeSe(4) Cu(2)CdSnSe(4), and Ag(2)CdGeSe(4)) have been studied for more than 40 years but the nature of their crystal structures has proved contentious. Literature reports exist for the stannite and kesterite mineral structures, which are zinc-blende-derived structures, and wurtzite-stannite, which is a wurtzite-derived structure. In this paper, through a global search based on the valence octet rule (local charge neutrality), we report a wurtzite-derived structure corresponding to the kesterite structure, namely, wurtzite-kesterite (space group Pc), which is the ground state for some I(2)-II-IV-VI(4) compounds, but is easily confused with the wurtzite-stannite space group Pmn2(1)) structure. We show that there is a clear relationship between the properties of the wurtzite-kesterite and zinc-blende-derived kesterite structures, as well as between wurtzite-stannite and stannite. Contributions from the strain and Coulomb energies are found to play an important role in determining the structural stability. The underlying trends can be explained according to the size and ionicity of the group-I, -II, -IV, and -VI atoms. Electronic-structure calculations show that the wurtzite-derived structures have properties similar to the zinc-blende-derived structures, but their band gaps are relatively larger, which has also been observed for binary II-VI semiconductors. C1 [Chen, Shiyou; Walsh, Aron; Luo, Ye; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Lab Computat Phys Sci, Shanghai 200433, Peoples R China. [Chen, Shiyou; Walsh, Aron; Luo, Ye; Yang, Ji-Hui; Gong, X. G.] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. [Chen, Shiyou] E China Normal Univ, Lab Polar Mat & Devices, Shanghai 200241, Peoples R China. [Walsh, Aron] UCL, Dept Chem, London WC1E 6BT, England. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, SY (reprint author), Fudan Univ, Lab Computat Phys Sci, Shanghai 200433, Peoples R China. RI Walsh, Aron/A-7843-2008; gong, xingao /B-1337-2010; gong, xingao/D-6532-2011 OI Walsh, Aron/0000-0001-5460-7033; FU Natural Sciences Foundation (NSF) of China [10934002, 1095011032, 60990312, 10950110324]; Research Program of Shanghai municipality; Special Funds for Major State Basic Research; NSF of Shanghai [10ZR1408800]; Fundamental Research Funds for the Central Universities; U.S. Department of Energy [DE-AC36-08GO28308]; MOE FX The work in Fudan is supported by the Natural Sciences Foundation (NSF) of China (Grants No. 10934002 and No. 1095011032), the Research Program of Shanghai municipality and MOE, the Special Funds for Major State Basic Research. The work in ECNU is supported by NSF of Shanghai (Grant No. 10ZR1408800) and NSF of China (Grant No. 60990312) and the Fundamental Research Funds for the Central Universities. A.W. would like to acknowledge funding from NSF of China (Grant No. 10950110324). The work at NREL is funded by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. NR 47 TC 130 Z9 131 U1 8 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 15 PY 2010 VL 82 IS 19 AR 195203 DI 10.1103/PhysRevB.82.195203 PG 8 WC Physics, Condensed Matter SC Physics GA 680BD UT WOS:000284205400003 ER PT J AU Okamoto, S Senechal, D Civelli, M Tremblay, AMS AF Okamoto, S. Senechal, D. Civelli, M. Tremblay, A. -M. S. TI Dynamical electronic nematicity from Mott physics SO PHYSICAL REVIEW B LA English DT Article ID HUBBARD-MODEL; TEMPERATURE; SUPERCONDUCTIVITY; DIMENSIONS; TRANSITION; PLAQUETTE; SYSTEMS; PHASE AB Very large anisotropies in transport quantities have been observed in the presence of very small in-plane structural anisotropy in many strongly correlated electron materials. By studying the two-dimensional Hubbard model with dynamical-mean-field theory for clusters, we show that such large anisotropies can be induced without static stripe order if the interaction is large enough to yield a Mott transition. Anisotropy decreases at large frequency. The maximum effect on conductivity anisotropy occurs in the underdoped regime, as observed in high-temperature superconductors. C1 [Okamoto, S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Senechal, D.; Tremblay, A. -M. S.] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Senechal, D.; Tremblay, A. -M. S.] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Civelli, M.] Inst Max Von Laue Paul Langevin, Theory Grp, F-38042 Grenoble, France. [Tremblay, A. -M. S.] Canadian Inst Adv Res, Toronto, ON, Canada. RP Okamoto, S (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM okapon@ornl.gov RI Okamoto, Satoshi/G-5390-2011 OI Okamoto, Satoshi/0000-0002-0493-7568 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; NSERC (Canada); Tier I Canada Research Chair FX We thank G. Sordi, J. Chang, and L. Taillefer for discussions. The work of S.O. was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work was partially supported by NSERC (Canada) and by the Tier I Canada Research Chair Program (A.-M.S.T.). Some of the computational resources were provided by RQCHP and Compute Canada. NR 39 TC 32 Z9 32 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 15 PY 2010 VL 82 IS 18 AR 180511 DI 10.1103/PhysRevB.82.180511 PG 4 WC Physics, Condensed Matter SC Physics GA 680BB UT WOS:000284205000002 ER PT J AU Singh, DJ Seo, SSA Lee, HN AF Singh, David J. Seo, Sung Seok A. Lee, Ho Nyung TI Optical properties of ferroelectric Bi4Ti3O12 SO PHYSICAL REVIEW B LA English DT Article ID BISMUTH TITANATE; ELECTRONIC-STRUCTURE; SINGLE CRYSTALS; LOW-TEMPERATURE; 1ST-PRINCIPLES; DIFFRACTION; REFINEMENT; BEHAVIOR; FILMS AB We report optical properties of ferroelectric Bi4Ti3O12 based on spectroscopic ellipsometry and calculations with the recently developed density functional of Tran and Blaha. We find a close accord between the experiment and the calculated results with this functional, including the energy onset of optical transitions and the scale of the optical conductivity. The band gap is indirect, with a value of 2.9 eV, and an onset of direct optical transitions at 3.1 eV. C1 [Singh, David J.; Seo, Sung Seok A.; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012; Seo, Sung Seok/B-6964-2008; Lee, Ho Nyung/K-2820-2012 OI Seo, Sung Seok/0000-0002-7055-5314; Lee, Ho Nyung/0000-0002-2180-3975 FU Oak Ridge National Laboratory FX We are grateful for helpful discussions with Sushil Auluck. This work was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Batelle, LLC for the U.S. Department of Energy. NR 32 TC 52 Z9 52 U1 0 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 15 PY 2010 VL 82 IS 18 AR 180103 DI 10.1103/PhysRevB.82.180103 PG 4 WC Physics, Condensed Matter SC Physics GA 680BB UT WOS:000284205000001 ER PT J AU Rudolph, D Andersson, LL Bengtsson, R Ekman, J Erten, O Fahlander, C Johansson, EK Ragnarsson, I Andreoiu, C Bentley, MA Carpenter, MP Charity, RJ Clark, RM Fallon, P Macchiavelli, AO Reviol, W Sarantites, DG Seweryniak, D Svensson, CE Williams, SJ AF Rudolph, D. Andersson, L. -L. Bengtsson, R. Ekman, J. Erten, O. Fahlander, C. Johansson, E. K. Ragnarsson, I. Andreoiu, C. Bentley, M. A. Carpenter, M. P. Charity, R. J. Clark, R. M. Fallon, P. Macchiavelli, A. O. Reviol, W. Sarantites, D. G. Seweryniak, D. Svensson, C. E. Williams, S. J. TI Isospin and deformation studies in the odd-odd N = Z nucleus Co-54 SO PHYSICAL REVIEW C LA English DT Article ID SHELL-MODEL DESCRIPTION; HIGH-SPIN STATES; ROTATIONAL BANDS; CHANNEL-SELECTION; NI-56; DECAY; SPECTROSCOPY; GAMMASPHERE AB High-spin states in the odd-odd N = Z nucleus Co-54 have been investigated by the fusion-evaporation reaction Si-28(S-32,1 alpha 1p1n)Co-54. Gamma-ray information gathered with the Ge detector array Gammasphere was correlated with evaporated particles detected in the charged particle detector system Microball and a 1 pi neutron detector array. A significantly extended excitation scheme of Co-54 is presented, which includes a candidate for the isospin T = 1, 6(+) state of the 1f(7/2)(-2) multiplet. The results are compared to large-scale shell-model calculations in the fp shell. Effective interactions with and without isospin-breaking terms have been used to probe isospin symmetry and isospin mixing. A quest for deformed high-spin rotational cascades proved negative. This feature is discussed by means of cranking calculations. C1 [Rudolph, D.; Andersson, L. -L.; Ekman, J.; Erten, O.; Fahlander, C.; Johansson, E. K.; Andreoiu, C.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Bengtsson, R.; Ragnarsson, I.] Lund Univ, LTH, Dept Math Phys, S-22100 Lund, Sweden. [Bentley, M. A.; Williams, S. J.] Univ Keele, Sch Chem & Phys, Keele ST5 5BG, Staffs, England. [Carpenter, M. P.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Charity, R. J.; Reviol, W.; Sarantites, D. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Svensson, C. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Rudolph, D (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden. RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; Carpenter, Michael/E-4287-2015 OI Rudolph, Dirk/0000-0003-1199-3055; Carpenter, Michael/0000-0002-3237-5734 FU Swedish Research Council; US Department of Energy [DE-AC03-76SF00098, DE-FG02-88ER-40406, DE-AC02-06CH11357] FX We thank the accelerator crews and the Gammasphere support staff at Argonne and Berkeley for their supreme efforts. The target maker, Jette Agnete Sorensen, at the Niels Bohr Institute, Copenhagen, Denmark, is also warmly thanked. This work is supported in part by the Swedish Research Council and the US Department of Energy under Grants No. DE-AC03-76SF00098 (Lawrence Berkeley National Laboratory), DE-FG02-88ER-40406 (WU), and DE-AC02-06CH11357 (Argonne National Laboratory). NR 60 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 15 PY 2010 VL 82 IS 5 AR 054309 DI 10.1103/PhysRevC.82.054309 PG 14 WC Physics, Nuclear SC Physics GA 680BI UT WOS:000284205900002 ER PT J AU Kilcoyne, ALD Aguilar, A Muller, A Schippers, S Cisneros, C Alna'Washi, G Aryal, NB Baral, KK Esteves, DA Thomas, CM Phaneuf, RA AF Kilcoyne, A. L. D. Aguilar, A. Mueller, A. Schippers, S. Cisneros, C. Alna'Washi, G. Aryal, N. B. Baral, K. K. Esteves, D. A. Thomas, C. M. Phaneuf, R. A. TI Confinement Resonances in Photoionization of Xe@C-60(+) SO PHYSICAL REVIEW LETTERS LA English DT Article ID 4D THRESHOLD; ATOMS; C-60; BUCKMINSTERFULLERENE; DISTORTION; COMPLEXES; XENON; BA AB Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C-60 cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe@C-60(+) ion beam. The phenomenon was observed in the Xe@C-583(+) product ion channel. C1 [Kilcoyne, A. L. D.; Aguilar, A.] LBNL, Adv Light Source, Berkeley, CA 94720 USA. [Mueller, A.; Schippers, S.] Univ Giessen, IAMP, D-35392 Giessen, Germany. [Cisneros, C.] UNAM, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico. [Alna'Washi, G.] Hashemite Univ, Zarqa 13115, Jordan. [Aryal, N. B.; Baral, K. K.; Esteves, D. A.; Thomas, C. M.; Phaneuf, R. A.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Kilcoyne, ALD (reprint author), LBNL, Adv Light Source, MS 7-100, Berkeley, CA 94720 USA. RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC03-76SF0098, DE-FG02-03ER15424]; Deutsche Forschungsgemeinschaft [Mu 1068/10]; CONACYT, Mexico [82521] FX This research was funded by the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC03-76SF0098 and Grant No. DE-FG02-03ER15424, by the Deutsche Forschungsgemeinschaft under project Mu 1068/10, and by CONACYT-82521, Mexico. NR 23 TC 67 Z9 70 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 15 PY 2010 VL 105 IS 21 AR 213001 DI 10.1103/PhysRevLett.105.213001 PG 4 WC Physics, Multidisciplinary SC Physics GA 680CD UT WOS:000284208800004 PM 21231297 ER PT J AU Moreno, GA Messina, R Dalvit, DAR Lambrecht, A Neto, PAM Reynaud, S AF Moreno, G. A. Messina, R. Dalvit, D. A. R. Lambrecht, A. Maia Neto, P. A. Reynaud, S. TI Disorder in Quantum Vacuum: Casimir-Induced Localization of Matter Waves SO PHYSICAL REVIEW LETTERS LA English DT Article ID ANDERSON LOCALIZATION AB Disordered geometrical boundaries such as rough surfaces induce important modifications to the mode spectrum of the electromagnetic quantum vacuum. In analogy to Anderson localization of waves induced by a random potential, here we show that the Casimir-Polder interaction between a cold atomic sample and a rough surface also produces localization phenomena. These effects, that represent a macroscopic manifestation of disorder in quantum vacuum, should be observable with Bose-Einstein condensates expanding in proximity of rough surfaces. C1 [Moreno, G. A.] UBA, IFIBA Dept Fis FCEyN, RA-1428 Buenos Aires, DF, Argentina. [Moreno, G. A.; Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Messina, R.; Lambrecht, A.; Reynaud, S.] UPMC, ENS, CNRS, Lab Kastler Brossel, F-75252 Paris 05, France. [Messina, R.] SYRTE Observ Paris, F-75014 Paris, France. [Maia Neto, P. A.] UFRJ, Inst Fis, BR-21941972 Rio De Janeiro, Brazil. RP Moreno, GA (reprint author), UBA, IFIBA Dept Fis FCEyN, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina. RI Messina, Riccardo/F-4750-2012; Fluidos Complexos, INCT/H-9172-2013; Reynaud, Serge/J-8061-2014; Lambrecht, Astrid/K-1208-2014 OI Reynaud, Serge/0000-0002-1494-696X; Lambrecht, Astrid/0000-0002-5193-1222 FU CONICET; UBA; ANPCyT; Los Alamos LDRD; CAPES-COFECUB; ESF; CNPq; FAPERJ-CNE FX G. A. M. thanks E. Calzetta and J. J. Zarate for helpful discussions. This work was partially supported by CONICET, UBA, ANPCyT, Los Alamos LDRD program, CAPES-COFECUB, ESF Research Networking Program CASIMIR (www.casimir-network.com), CNPq, and FAPERJ-CNE. NR 20 TC 8 Z9 8 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 15 PY 2010 VL 105 IS 21 AR 210401 DI 10.1103/PhysRevLett.105.210401 PG 4 WC Physics, Multidisciplinary SC Physics GA 680CD UT WOS:000284208800001 PM 21231273 ER PT J AU Wang, J Xu, XG Spurr, R Wang, YX Drury, E AF Wang, Jun Xu, Xiaoguang Spurr, Robert Wang, Yuxuang Drury, Easan TI Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Remote sensing of aerosols; Particulate matter air quality; Atmospheric correction in dusty condition; Air quality in China ID DEPTH; RADIANCES; TRANSPORT; MODEL AB A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithm first uses a "dynamic lower envelope" approach to sample the MODIS dark-pixel reflectance data in low AOT conditions, to derive the local surface visible (0.65 mu m)/near infrared (NIR, 2.1 mu m) reflectance ratio. Joint retrievals of AOT at 0.65 mu m and surface reflectance at 2.1 mu m are then performed, based on the time, location, and spectral-dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized vector radiative transfer model (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT. Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong correlation (R = 0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and time period. The small bias is partially due to the consideration of dust effect at 2.1 mu m channel, without which the bias is -0.05. The surface PM10 (particulate matter with diameter less than 10 mu m) concentrations derived using this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-Chem simulations alone, or those inferred from the MODIS Collection 5 AOT. This study underscores the value of using satellite reflectance to improve the air quality modeling and monitoring. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Jun; Xu, Xiaoguang] Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, Lincoln, NE 68588 USA. [Wang, Jun] NASA Goddard Space Flight, Climate & Radiat Branch, Greenbelt, MD USA. [Spurr, Robert] RT Solut Inc, Cambridge, MA USA. [Wang, Yuxuang] Tsinghua Univ, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. [Drury, Easan] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Wang, J (reprint author), Univ Nebraska Lincoln, Dept Earth & Atmospher Sci, 303 Bessey Hall, Lincoln, NE 68588 USA. EM jwang7@unl.edu RI Chem, GEOS/C-5595-2014; Wang, Yuxuan/C-6902-2014; Xu, Xiaoguang/B-8203-2016; Wang, Jun/A-2977-2008 OI Wang, Yuxuan/0000-0002-1649-6974; Xu, Xiaoguang/0000-0001-9583-980X; Wang, Jun/0000-0002-7334-0490 FU NASA FX This research is supported by the NASA Earth Sciences New Investigator Program and Radiation Science Program. We thank the data services provided by the Goddard Earth Science Data Center and the AERONET team in NASA GSFC., and the computational support provided by the Holland Computing Center of the University of Nebraska. J. Wang is grateful to Ralph Kahn for his constructive comments on the early version of this manuscript. NR 34 TC 34 Z9 36 U1 5 U2 30 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2575 EP 2583 DI 10.1016/j.rse.2010.05.034 PG 9 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000016 ER PT J AU Wang, YJ Lyapustin, AI Privette, JL Cook, RB SanthanaVannan, SK Vermote, EF Schaaf, CL AF Wang, Yujie Lyapustin, Alexei I. Privette, Jeffrey L. Cook, Robert B. SanthanaVannan, Suresh K. Vermote, Eric F. Schaaf, Crystal L. TI Assessment of biases in MODIS surface reflectance due to Lambertian approximation SO REMOTE SENSING OF ENVIRONMENT LA English DT Article DE Surface reflectance; Surface albedo; MODIS; Atmospheric correction; AERONET; Aeronet based surface reflectance validation network (ASRVN); Aerosol; Ross-thick-li-sparse BRDF model ID ALBEDO; LAND; BRDF; RADIOMETER; RETRIEVAL; PRODUCTS; AERONET; SPACE AB Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands. (C) 2010 Elsevier Inc. All rights reserved. C1 [Wang, Yujie] Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Greenbelt, MD 20771 USA. [Wang, Yujie; Lyapustin, Alexei I.] Univ Maryland Baltimore Cty, GEST Ctr, Catonsville, MD 21228 USA. [Privette, Jeffrey L.] NOAA, Satellite & Informat Serv, NCDC, Asheville, NC 28801 USA. [Cook, Robert B.; SanthanaVannan, Suresh K.] Oak Ridge Natl Lab DAAC, Oak Ridge, TN 37830 USA. [Vermote, Eric F.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Schaaf, Crystal L.] Boston Univ, Dept Geog, Boston, MA 02215 USA. RP Wang, YJ (reprint author), Univ Maryland, Goddard Earth Sci & Technol Ctr, Goddard Space Flight Ctr, NASA, Code 614-4, Greenbelt, MD 20771 USA. EM yujie.wang@nasa.gov RI Privette, Jeffrey/G-7807-2011; Vermote, Eric/K-3733-2012; Lyapustin, Alexei/H-9924-2014; OI Privette, Jeffrey/0000-0001-8267-9894; Lyapustin, Alexei/0000-0003-1105-5739; Cook, Robert/0000-0001-7393-7302 FU NASA [NNX08AE94A] FX The research of A. Lyapustin and Y. Wang was funded by the NASA Terrestrial Ecology Program (Dr. Wickland). C. Schaaf was funded by the NASA grant NNX08AE94A. NR 31 TC 32 Z9 34 U1 2 U2 23 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0034-4257 EI 1879-0704 J9 REMOTE SENS ENVIRON JI Remote Sens. Environ. PD NOV 15 PY 2010 VL 114 IS 11 BP 2791 EP 2801 DI 10.1016/j.rse.2010.06.013 PG 11 WC Environmental Sciences; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Remote Sensing; Imaging Science & Photographic Technology GA 655IE UT WOS:000282242000033 ER PT J AU Valek, P Brandt, PC Buzulukova, N Fok, MC Goldstein, J McComas, DJ Perez, JD Roelof, E Skoug, R AF Valek, P. Brandt, P. C. Buzulukova, N. Fok, M-C. Goldstein, J. McComas, D. J. Perez, J. D. Roelof, E. Skoug, R. TI Evolution of low-altitude and ring current ENA emissions from a moderate magnetospheric storm: Continuous and simultaneous TWINS observations SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ADVANCED COMPOSITION EXPLORER; CARBON FOILS; NEUTRAL ATOMS; IMAGE MISSION; IONS; SUBSTORM; TIME AB The moderate storm of 22 July 2009 is the largest measured during the extended solar minimum between December 2006 and March 2010. We present observations of this storm made by the two wide-angle imaging neutral-atom spectrometers (TWINS) mission. The TWINS mission measures energetic neutral atoms (ENAs) using sensors mounted on two separate spacecrafts. Because the two spacecrafts' orbital planes are significantly offset, the pair provides a nearly optimal combination of continuous magnetospheric observations from at least one of the TWINS platforms with several hours of simultaneous, dual-platform viewing over each orbit. The ENA imaging study presented in this paper is the first reported magnetospheric storm for which both continuous coverage and stereoscopic imaging were available. Two populations of ENAs are observed during this storm. The first are emissions from the ring current and come from a parent population of trapped ions in the inner magnetosphere. The second, low-altitude emissions (LAEs), are the result of precipitating ions which undergo multiple charge exchange and stripping collisions with the oxygen exosphere. The temporal evolution of this storm shows that the LAEs begin earlier and are the brightest emissions seen during the main phase, while later, during the recovery, the LAE is only as bright as the bulk ring current emissions. C1 [Valek, P.; Goldstein, J.; McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [Brandt, P. C.; Roelof, E.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Buzulukova, N.; Fok, M-C.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Perez, J. D.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Skoug, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Valek, P.; Goldstein, J.; McComas, D. J.] Univ Texas San Antonio, Dept Phys, San Antonio, TX USA. RP Valek, P (reprint author), SW Res Inst, San Antonio, TX 78228 USA. RI Fok, Mei-Ching/D-1626-2012; Brandt, Pontus/N-1218-2016; OI Brandt, Pontus/0000-0002-4644-0306; Valek, Philip/0000-0002-2318-8750 FU TWINS mission; NASA Goddard Space Flight Center FX This work was supported by the TWINS mission, which is a part of NASA's Explorer program. For N. Buzulukova, this research was supported by an appointment at the NASA Goddard Space Flight Center, administered by CRESST/UMD through a contract with NASA. Real Time Dst and AE indices are from supplied by World Data Center for Geomagnetism, Kyoto. We thank the geomagnetic observatories (Kakioka [JMA], Honolulu and San Juan [USGS], Hermanus [RSA], Alibag [IIG]), NiCT, INTERMAGNET, and many others for their cooperation to make the real-time (quicklook) Dst index available. NR 39 TC 25 Z9 25 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 13 PY 2010 VL 115 AR A11209 DI 10.1029/2010JA015429 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 680II UT WOS:000284225200002 ER PT J AU Wu, P Liu, KJ Winske, D Gary, SP Schwadron, NA Funsten, HO AF Wu, Pin Liu, Kaijun Winske, Dan Gary, S. Peter Schwadron, Nathan A. Funsten, Herbert O. TI Hybrid simulations of the termination shock: Suprathermal ion velocity distributions in the heliosheath SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERSTELLAR BOUNDARY EXPLORER; QUASI-PERPENDICULAR SHOCKS; SUPERCRITICAL COLLISIONLESS SHOCKS; SOLAR-WIND; MAGNETIC-FIELDS; OUTER HELIOSPHERE; PICKUP PROTONS; BOW SHOCK; ENA FLUX; ACCELERATION AB The Los Alamos hybrid simulation code is used to examine kinetic properties of pickup ions at the heliospheric termination shock and in the downstream heliosheath. All simulations are one-dimensional in spatial variations, represent the electrons as a zero-mass fluid, and address only perpendicular shocks. Interpretation of measurements from the IBEX and Voyager spacecraft depend sensitively on the properties of the suprathermal ions downstream of the termination shock, so this research addresses three topics concerning such ions. First, a careful examination of pickup ion trajectories shows that their initial acceleration does not require specular reflection at the shock, as is sometimes assumed, but is the consequence of gyromotion by selected ions at the shock. The primary factor in this energy gain is a gyro-phase-dependent interaction with the motional electric field upstream of, and the magnetic field at, the shock. Second, shock simulations are carried out in which the upstream pickup ions are assumed to have four different types of velocity distributions. The downstream ion perpendicular velocity distributions f(nu(perpendicular to)) are similar in each of the runs and may be approximately characterized as a thermal Maxwellian and a suprathermal distribution. The only significant difference among the four downstream distributions is in the tails of the suprathermal component. Third, simulations are carried out for three different upstream Mach numbers; the results show that faster solar wind flows lead to increased fluxes of ions in the tails of the suprathermal component and are generally consistent with energetic neutral atom observations by the IBEX spacecraft. C1 [Liu, Kaijun; Winske, Dan; Gary, S. Peter; Funsten, Herbert O.] Los Alamos Natl Lab, Int Space & Response Div, Grp ISR 1, Los Alamos, NM 87545 USA. [Wu, Pin; Schwadron, Nathan A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. RP Wu, P (reprint author), Univ Delaware, Dept Phys & Astron, Sharp Lab 217, Newark, DE 19716 USA. EM pgary@lanl.gov RI Dong, Li/F-4931-2010; Funsten, Herbert/A-5702-2015 OI Funsten, Herbert/0000-0002-6817-1039 FU U.S. Department of Energy; National Aeronautics and Space Administration; IBEX program; NASA [NNX07AC15G] FX The research described here is based on the Ph.D. thesis of Dr. Pin Wu, "Ion Kinetics at the Heliospheric Termination Shock," Boston University, 2009. PW thanks Len Burlaga and Joe Giacalone for sharing their insights, Michael E. Shay and William H. Matthaeus for their discussions, encouragement, and support, and the members of her thesis committee for their guidance. The authors thank Sandra Chapman, Harald Kucharek, and Gary Zank for many insightful and stimulating conversations concerning termination shocks and the outer heliosphere. The portion of this work performed at Los Alamos National Laboratory was carried out under the auspices of the U.S. Department of Energy and was supported in part by the Solar and Heliospheric Physics SR&T and IBEX Programs of the National Aeronautics and Space Administration. NAS was supported by the IBEX program and the NASA LWS EMMREM project (grant NNX07AC15G). NR 58 TC 15 Z9 15 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 13 PY 2010 VL 115 AR A11105 DI 10.1029/2010JA015384 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 680II UT WOS:000284225200001 ER PT J AU Shin, TJ Lee, B Seong, BS Han, YS Lee, CH Song, HH Stein, RS Ree, M AF Shin, Tae Joo Lee, Byeongdu Seong, Baik Shuk Han, Young Soo Lee, Chang-Hee Song, Hyun Hoon Stein, Richard S. Ree, Moonhor TI Composition-dependent phase segregation and cocrystallization behaviors of blends of metallocene-catalyzed octene-LLDPE(D) and LDPE(H) SO POLYMER LA English DT Article DE Small angle neutron scattenng (SANS); Small angle X ray scattenng (SAXS); O mLLDPE/LDPE blend ID X-RAY-SCATTERING; SMALL-ANGLE NEUTRON; LOW-DENSITY POLYETHYLENE; ORGANOSILICATE DIELECTRIC FILMS; CHAIN-BRANCHED POLYETHYLENES; I-MOTIF DNA; THIN-FILMS; RHEOLOGICAL PROPERTIES; CRYSTALLIZATION BEHAVIOR; MECHANICAL-PROPERTIES AB The morphological structures of slowly cooled blends of deuterated metallocene-catalyzed octene linear low-density polyethylene (O-mLLDPE(D)) and hydrogenous low-density polyethylene (LDPE(H)) were studied by using small angle neutron scattering in combination with complementary small angle X-ray scattering and differential scanning calorimetry The phase segregation which is more nanoscale than macroscale and cocrystallization behaviors were found to vary with the blend composition Phase-segregated O-mLLDPE(D) lamellae are predominantly formed in LDPE(H)-rich compositions In contrast few segregated O-mLLDPE(D) lamellae form in O-mLLDPE(D)-rich compositions and instead O-mLLDPE(D) lamellar stacks are extensively cocrystallized with LDPE(H) mostly in the interlamellar amorphous region (C) 2010 Elsevier Ltd All rights reserved C1 [Shin, Tae Joo; Ree, Moonhor] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Ctr Electro Photo Behav Adv Mol Syst, Dept Chem,Polymer Res Inst, Pohang 790784, South Korea. [Shin, Tae Joo; Ree, Moonhor] Pohang Univ Sci & Technol, Sch Mol Sci BK, Pohang 790784, South Korea. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Seong, Baik Shuk; Han, Young Soo; Lee, Chang-Hee] HANARO Ctr, Korea Atom Energy Res Inst, Taejon 305600, South Korea. [Song, Hyun Hoon] Hannam Univ, Dept Adv Mat, Taejon 305811, South Korea. [Stein, Richard S.] Univ Massachusetts, Polymer Res Inst, Amherst, MA 01003 USA. [Stein, Richard S.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Ree, M (reprint author), Pohang Univ Sci & Technol, Pohang Accelerator Lab, Ctr Electro Photo Behav Adv Mol Syst, Dept Chem,Polymer Res Inst, Pohang 790784, South Korea. RI Ree, Moonhor/F-5347-2013; Shin, Tae Joo/R-7434-2016; OI Shin, Tae Joo/0000-0002-1438-3298; Lee, Byeongdu/0000-0003-2514-8805 FU Ministry of Education Science & Technology (MEST) [20090060053]; National Research Foundation (NRF) of Korea (Center for Electro-Photo Behaviors in Advanced Molecular Systems); MEST POSCO; POSTECH Foundation; US DOE-BES [DE-AC02-06CH11357] FX This study was supported by the Ministry of Education Science & Technology (MEST) (Basic Research Grant of Nuclear Energy Grant 20090060053 KISTEP World Class University Program and BK21 Program) and by the National Research Foundation (NRF) of Korea (Center for Electro-Photo Behaviors in Advanced Molecular Systems) The synchrotron X-ray scattering measurements at Pohang Light Source were supported by MEST POSCO and POSTECH Foundation This work was also benefited from the Argonne National Laboratory funded by the US DOE-BES under Contract No DE-AC02-06CH11357 NR 54 TC 11 Z9 11 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD NOV 12 PY 2010 VL 51 IS 24 BP 5799 EP 5806 DI 10.1016/j.polymer.2010.09.075 PG 8 WC Polymer Science SC Polymer Science GA 680PY UT WOS:000284248100019 ER PT J AU Zhou, H Zhou, SX Walian, PJ Jap, BK AF Zhou, Hua Zhou, Shuxia Walian, Peter J. Jap, Bing K. TI Dependency of gamma-secretase complex activity on the structural integrity of the bilayer SO BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS LA English DT Article DE Membrane protein; Aspartyl protease; Alzheimer's disease ID LIPID RAFTS; INTRACELLULAR DOMAIN; INTRAMEMBRANE PROTEOLYSIS; SIGNAL-TRANSDUCTION; HUMAN BRAIN; BETA-APP; IN-VIVO; PRESENILIN; CLEAVAGE; RECONSTITUTION AB gamma-secretase is a membrane protein complex associated with the production of All peptides that are pathogenic in Alzheimer's disease. We have characterized the activity of gamma-secretase complexes under a variety of detergent solubilization and reconstitution conditions, and the structural state of proteoliposomes by electron microscopy. We found that gamma-secretase activity is highly dependent on the physical state or integrity of the membrane bilayer - partial solubilization may increase activity while complete solubilization will abolish it. The activity of well-solubilized gamma-secretase can be restored to near native levels when properly reconstituted into a lipid bilayer environment. (C) 2010 Elsevier Inc. All rights reserved. C1 [Zhou, Hua; Zhou, Shuxia; Walian, Peter J.; Jap, Bing K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Zhou, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM hzhou2@lbl.gov FU National Institutes of Health; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by funding from the National Institutes of Health (BK. Jap) and by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 3 Z9 4 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0006-291X J9 BIOCHEM BIOPH RES CO JI Biochem. Biophys. Res. Commun. PD NOV 12 PY 2010 VL 402 IS 2 BP 291 EP 296 DI 10.1016/j.bbrc.2010.10.017 PG 6 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 688PA UT WOS:000284862300022 PM 20937251 ER PT J AU Jamros, MA Oliveira, LC Whitford, PC Onuchic, JN Adams, JA Blumenthal, DK Jennings, PA AF Jamros, Michael A. Oliveira, Leandro C. Whitford, Paul C. Onuchic, Jose N. Adams, Joseph A. Blumenthal, Donald K. Jennings, Patricia A. TI Proteins at Work A COMBINED SMALL ANGLE X-RAY SCATTERING AND THEORETICAL DETERMINATION OF THE MULTIPLE STRUCTURES INVOLVED ON THE PROTEIN KINASE FUNCTIONAL LANDSCAPE SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID TERMINAL SRC KINASE; FAMILY TYROSINE KINASES; ENERGY LANDSCAPE; CRYSTAL-STRUCTURE; C-SRC; CONFORMATIONAL TRANSITIONS; CATALYTIC-ACTIVITY; STRUCTURAL BASIS; SH2 DOMAIN; CSK AB C-terminal Src kinase (Csk) phosphorylates and down-regulates the Src family tyrosine kinases (SFKs). Crystallographic studies of Csk found an unusual arrangement of the SH2 and SH3 regulatory domains about the kinase core, forming a compact structure. However, recent structural studies of mutant Csk in the presence of an inhibitor indicate that the enzyme accesses an expanded structure. To investigate whether wt-Csk may also access open conformations we applied small angle x-ray scattering (SAXS). We find wt-Csk frequently occupies an extended conformation where the regulatory domains are removed from the kinase core. In addition, all-atom structure-based simulations indicate Csk occupies two free energy basins. These basins correspond to ensembles of distinct global conformations of Csk: a compact structure and an extended structure. The transitions between these structures are entropically driven and accessible via thermal fluctuations that break local interactions. We further characterized the ensemble by generating theoretical scattering curves for mixed populations of conformations from both basins and compared the predicted scattering curves to the experimental profile. This population-combination analysis is more consistent with the experimental data than any rigid model. It suggests that Csk adopts a broad ensemble of conformations in solution, populating extended conformations not observed in the crystal structure that may play an important role in the regulation of Csk. The methodology developed here is broadly applicable to biological macromolecules and will provide useful information about what ensembles of conformations are consistent with the experimental data as well as the ubiquitous dynamic reversible assembly processes inherent in biology. C1 [Jennings, Patricia A.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Oliveira, Leandro C.; Whitford, Paul C.; Onuchic, Jose N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Oliveira, Leandro C.; Whitford, Paul C.; Onuchic, Jose N.] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA. [Adams, Joseph A.] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Whitford, Paul C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Blumenthal, Donald K.] Univ Utah, Dept Pharmacol & Toxicol, Salt Lake City, UT 84112 USA. RP Jennings, PA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM pajennin@ucsd.edu RI Oliveira, Leandro /F-8638-2012; OI Oliveira, Leandro /0000-0002-6932-6792; Blumenthal, Donald/0000-0002-8614-1167 FU National Institutes of Health [5T32GM008326, DK54441, GM67969]; National Science Foundation [PHY-0822283]; [NSF-MCB-0543906] FX This work was supported, in whole or in part, by National Institutes of Health Grants 5T32GM008326, DK54441, and GM67969. Support was also provided by the Center for Theoretical Biological Physics sponsored by National Science Foundation Grant PHY-0822283 with additional support from NSF-MCB-0543906. NR 58 TC 21 Z9 21 U1 1 U2 12 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 12 PY 2010 VL 285 IS 46 BP 36121 EP 36128 DI 10.1074/jbc.M110.116947 PG 8 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 675QK UT WOS:000283845300088 PM 20801888 ER PT J AU Rambo, RP Williams, GJ Tainer, JA AF Rambo, Robert P. Williams, Gareth J. Tainer, John A. TI Achieving Fidelity in Homologous Recombination Despite Extreme Complexity: Informed Decisions by Molecular Profiling SO MOLECULAR CELL LA English DT Editorial Material ID DNA-REPAIR AB In this issue of Molecular Cell, Savir and Tlusty (2010) apply signal detection theory to show that homologous recombination machinery is optimally tuned to find homologous DNA sequences within an exceptionally high background of heterologous sequences. C1 [Rambo, Robert P.; Williams, Gareth J.; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. RP Tainer, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Adv Light Source, Berkeley, CA 94720 USA. EM jat@scripps.edu FU NCI NIH HHS [P01 CA092584, P01 CA092584-09, P01 CA092584-10] NR 10 TC 2 Z9 2 U1 1 U2 2 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 J9 MOL CELL JI Mol. Cell PD NOV 12 PY 2010 VL 40 IS 3 BP 347 EP 348 DI 10.1016/j.molcel.2010.10.032 PG 2 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 684NJ UT WOS:000284556300002 PM 21070960 ER PT J AU Proksch, R Kalinin, SV AF Proksch, Roger Kalinin, Sergei V. TI Energy dissipation measurements in frequency-modulated scanning probe microscopy SO NANOTECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; SURFACE; CALIBRATION AB Local dissipation measurements by scanning probe microscopy have attracted increasing interest as a method for probing energy losses and hysteretic phenomena due to magnetic, electrical, and structural transformations at the tip-surface junction. One challenge of this technique is the lack of a standard for ensuring quantification of the dissipation signal. In the following, we explored magnetic dissipation imaging of an yttrium-iron garnet (YIG) sample, using a number of similar but not identical cantilever probes. Typical frequency-dependent dispersion of the actuator-probe assembly commonly approached +/- 1 part in 10(3) Hz(-1), much larger than the minimum detectable level of +/- 1 part in 10(5) Hz(-1). This cantilever-dependent behavior results in a strong crosstalk between the conservative (frequency) and dissipative channels. This crosstalk was very apparent in the YIG dissipation images and in fact should be an inherent feature of single-frequency heterodyne detection schemes. It may also be a common effect in other dissipation imaging, even down to the atomic level, and in particular may be a significant issue when there are correlations between the conservative and dissipative components. On the other hand, we present a simple method for correcting for this effect. This correction technique resulted in self-consistent results for the YIG dissipation measurements and would presumably be effective for other systems as well. C1 [Proksch, Roger] Asylum Res, Santa Barbara, CA USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Proksch, R (reprint author), Asylum Res, Santa Barbara, CA USA. RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 FU ORNL LDRD FX We thank Anil Gannepalli for checking algebra and calculations, Jason Cleveland and Stephen Jesse for many fruitful discussions of dissipation imaging and Ruben Perez for illuminating discussions of FM-AFM. The work is supported in part (SVK) by the ORNL LDRD funding. NR 24 TC 23 Z9 23 U1 1 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 12 PY 2010 VL 21 IS 45 AR 455705 DI 10.1088/0957-4484/21/45/455705 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 697VS UT WOS:000285548400019 PM 20947936 ER PT J AU Fan, R Kinane, CJ Charlton, TR Dorner, R Ali, M de Vries, MA Brydson, RMD Marrows, CH Hickey, BJ Arena, DA Tanner, BK Nisbet, G Langridge, S AF Fan, R. Kinane, C. J. Charlton, T. R. Dorner, R. Ali, M. de Vries, M. A. Brydson, R. M. D. Marrows, C. H. Hickey, B. J. Arena, D. A. Tanner, B. K. Nisbet, G. Langridge, S. TI Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; METAL-ALLOYS; MULTILAYERS; TRANSITION; PRESSURE; RH AB The nanoscale magnetic structure of FeRh epilayers has been studied by polarized neutron reflectometry. Epitaxial films with a nominal thickness of 500 angstrom were grown on MgO (001) substrates via molecular-beam epitaxy and capped with 20 angstrom of MgO. The FeRh films show a clear transition from the antiferromagnetic (AF) state to the ferromagnetic (FM) state with increasing temperature. Surprisingly the films possess a FM moment even at a temperature 80 K below the AF-FM transition temperature of the film. We have quantified the magnitude and spatial extent of this FM moment, which is confined to within similar to 60-80 angstrom of the FeRh near the top and bottom interfaces. These interfacial FM layers account for the unusual effects previously observed in films with thickness <100 angstrom. Given the delicate energy balance between the AF and FM ground states we suggest a metastable FM state resides near to the interface within an AF matrix. The length scale over which the FM region resides is consistent with the strained regions of the film. C1 [Fan, R.; Kinane, C. J.; Charlton, T. R.; Langridge, S.] Rutherford Appleton Lab, Sci & Technol Facil Council, ISIS, Didcot OX11 0QX, Oxon, England. [Dorner, R.; Ali, M.; de Vries, M. A.; Brydson, R. M. D.; Marrows, C. H.; Hickey, B. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Arena, D. A.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Tanner, B. K.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Nisbet, G.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. RP Fan, R (reprint author), Rutherford Appleton Lab, Sci & Technol Facil Council, ISIS, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England. EM raymond.fan@stfc.ac.uk RI Marrows, Christopher/D-7980-2011; Hickey, B J/B-3333-2016; OI Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393; Langridge, Sean/0000-0003-1104-0772 FU EPSRC; STFC Center for Materials Physics and Chemistry; Nuffield Foundation; Department of Energy Office of Basic Energy Sciences FX This work was supported by the EPSRC, STFC Center for Materials Physics and Chemistry, the Nuffield Foundation, and Department of Energy Office of Basic Energy Sciences. We would like to thank ISIS and Diamond Light Source Ltd. for the provision of neutron and x-ray beamtime, respectively. NR 34 TC 43 Z9 43 U1 5 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 12 PY 2010 VL 82 IS 18 AR 184418 DI 10.1103/PhysRevB.82.184418 PG 5 WC Physics, Condensed Matter SC Physics GA 679EG UT WOS:000284142800007 ER PT J AU Nielsen, E Bhatt, RN AF Nielsen, Erik Bhatt, R. N. TI Search for ferromagnetism in doped semiconductors in the absence of transition metal ions SO PHYSICAL REVIEW B LA English DT Article ID DEGENERATE HUBBARD-MODEL; N-TYPE SILICON; INSULATOR-TRANSITION; DISORDERED-SYSTEMS; ELECTRON CORRELATIONS; MAGNETIC-PROPERTIES; SMALL CLUSTERS; PYRITE NIS2; COULOMB GAP; S-BAND AB In contrast to semiconductors doped with transition metal magnetic elements (e.g., Ga(1-x)Mn(x)As), which become ferromagnetic at temperatures below similar to 10(2) K, semiconductors doped with nonmagnetic ions (e. g., silicon doped with phosphorous) have not shown evidence of ferromagnetism down to millikelvin temperatures. This is despite the fact that for low densities the system is expected to be well modeled by the Hubbard model, which is predicted to have a ferromagnetic ground state at T=0 on two-dimensional (2D) or three-dimensional bipartite lattices in the limit of strong correlation near half-filling. We examine the impurity band formed by hydrogenic centers in semiconductors at low densities, and show that it is described by a generalized Hubbard model which has, in addition to strong electron-electron interaction and disorder, an intrinsic electron-hole asymmetry. With the help of mean-field methods as well as exact diagonalization of clusters around half filling, we can establish the existence of a ferromagnetic ground state, at least on the nanoscale, which is more robust than that found in the standard Hubbard model. This ferromagnetism is most clearly seen in a regime inaccessible to bulk systems but attainable in quantum dots and 2D heterostructures. If observed, this would be the first experimental realization of a system exhibiting Nagaoka ferromagnetism. We present extensive numerical results for small systems that demonstrate the occurrence of high-spin ground states in both periodic and positionally disordered 2D systems. We examine how properties of real doped semiconductors, such as positional disorder and electron-hole asymmetry, affect the ground state spin of small 2D systems, and use the results to infer properties at longer length scales. C1 [Nielsen, Erik; Bhatt, R. N.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Nielsen, Erik] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bhatt, R. N.] Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA. RP Nielsen, E (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. FU NSF-MRSEC [DMR-0213706, DMR-0819860]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by NSF-MRSEC, Grants No. DMR-0213706 and No. DMR-0819860. R.N.B. acknowledges the hospitality of the Aspen Center for Physics, where some of the work was written up. The writing of this work was partially supported by the Laboratory Directed Research and Development program at Sandia National Laboratories (E.N.). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 82 TC 4 Z9 4 U1 3 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 12 PY 2010 VL 82 IS 19 AR 195117 DI 10.1103/PhysRevB.82.195117 PG 17 WC Physics, Condensed Matter SC Physics GA 679EM UT WOS:000284143700003 ER PT J AU Tu, JJ Li, J Liu, W Punnoose, A Gong, Y Ren, YH Li, LJ Cao, GH Xu, ZA Homes, CC AF Tu, J. J. Li, J. Liu, W. Punnoose, A. Gong, Y. Ren, Y. H. Li, L. J. Cao, G. H. Xu, Z. A. Homes, C. C. TI Optical properties of the iron arsenic superconductor BaFe1.85Co0.15As2 SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; SUM-RULE; CONDUCTIVITY; METALS; MGB2; TRANSITION; PNICTIDES; SYSTEMS; ORDER; STATE AB The transport and complex optical properties of the electron-doped iron-arsenic superconductor BaFe1.85Co0.15As2 with T-c=25 K have been examined in the Fe-As planes above and below T-c. A Bloch-Gruneisen analysis of the resistivity yields a weak electron-phonon coupling constant lambda(ph)similar or equal to 0.2. The low-frequency optical response in the normal state appears to be dominated by the electron pocket and may be described by a weakly interacting Fermi liquid with a Drude plasma frequency of omega(p,D) similar or equal to 7840 cm(-1) (similar or equal to 0.972eV) and scattering rate 1/tau(D) similar or equal to 126 cm(-1) (similar or equal to 15 meV) just above T-c. The frequency-dependent scattering rate 1/tau(omega) has kinks at similar or equal to 12 and 55 meV that appear to be related to bosonic excitations. Below T-c the majority of the superconducting plasma frequency originates from the electron pocket and is estimated to be omega(p,S) similar or equal to 5200 cm(-1) (lambda(0) similar or equal to 3000 angstrom) for T << T-c, indicating that less than half the free carriers in the normal state have collapsed into the condensate, suggesting that this material is not in the clean limit. Supporting this finding is the observation that this material falls close to the universal scaling line for a Bardeen, Cooper, and Schrieffer dirty-limit superconductor in the weak-coupling limit. There are two energy scales for the superconductivity in the optical conductivity and photoinduced reflectivity at Delta(1)(0) similar or equal to 3.1 +/- 0.2 meV and Delta(2)(0) similar or equal to 7.4 +/- 0.3 meV. This corresponds to either the gapping of the electron and hole pockets, respectively, or an anisotropic s-wave gap on the electron pocket; both views are consistent with the s(+/-) model. C1 [Tu, J. J.; Li, J.; Liu, W.; Punnoose, A.] CUNY City Coll, Dept Phys, New York, NY 10031 USA. [Gong, Y.; Ren, Y. H.] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA. [Li, L. J.; Cao, G. H.; Xu, Z. A.] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China. [Homes, C. C.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Tu, JJ (reprint author), CUNY City Coll, Dept Phys, New York, NY 10031 USA. EM homes@bnl.gov RI Cao, Guanghan/C-4753-2008; Gong, Yu /I-9950-2014 OI Gong, Yu /0000-0002-9357-9503 FU National Science Foundation; National Science Foundation of China; Office of Science, U.S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank A. Akrap, J. L. Birman, G. L. Carr, A. V. Chubukov, K. Felix, D. H. Lee, I. Mazin, P. Richard, E. Schachinger, D. J. Singh, and H. Yang for helpful discussions and J. P. Carbotte for performing an inversion of the optical data. Work was supported by the National Science Foundation and the National Science Foundation of China. Work at Brookhaven National Laboratory was supported in part by the Office of Science, U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 113 TC 65 Z9 65 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 12 PY 2010 VL 82 IS 17 AR 174509 DI 10.1103/PhysRevB.82.174509 PG 10 WC Physics, Condensed Matter SC Physics GA 679ED UT WOS:000284142100006 ER PT J AU Shen, C Heinz, U Huovinen, P Song, HC AF Shen, Chun Heinz, Ulrich Huovinen, Pasi Song, Huichao TI Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au plus Au collisions at root s(NN)=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; QUARK-GLUON PLASMA; RELATIVISTIC NUCLEAR COLLISIONS; QCD PHASE-TRANSITION; THERMALIZATION; COLLABORATION; TEMPERATURE; DEPENDENCE; EVOLUTION; MODELS AB Using the (2 + 1)-dimensional viscous hydrodynamic code VISH2 + 1 [H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au + Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity eta/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assume a constant shear viscosity to entropy density ratio) prefer larger eta/s values, and the slope of the p(T) dependence of charged hadron elliptic flow, which prefers smaller values of eta/s. Changing other model parameters does not appear to permit dissolution of this tension. C1 [Shen, Chun; Heinz, Ulrich; Song, Huichao] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Huovinen, Pasi] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany. [Song, Huichao] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shen, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. EM shen@mps.ohio-state.edu; heinz@mps.ohio-state.edu; huovinen@th.physik.uni-frankfurt.de; HSong@LBL.gov FU US Department of Energy [DE-SC0004286, DE-AC02-05CH11231]; JET Collaboration [DE-SC0004104]; ExtreMe Matter Institute (EMMI) FX This work was supported by the US Department of Energy under contracts DE-SC0004286 and DE-AC02-05CH11231 and within the framework of the JET Collaboration under Grant No. DE-SC0004104. P.H.'s research was supported by the ExtreMe Matter Institute (EMMI). We thank Thomas Riley for helping us with the analytic parametrization of the EOS tables for s95p-PCE. NR 85 TC 94 Z9 96 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 12 PY 2010 VL 82 IS 5 AR 054904 DI 10.1103/PhysRevC.82.054904 PG 13 WC Physics, Nuclear SC Physics GA 679ET UT WOS:000284144600003 ER PT J AU Oliva, E Zeitoun, P Velarde, P Fajardo, M Cassou, K Ros, D Sebban, S Portillo, D le Pape, S AF Oliva, Eduardo Zeitoun, Philippe Velarde, Pedro Fajardo, Marta Cassou, Kevin Ros, David Sebban, Stephan Portillo, David le Pape, Sebastien TI Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: A transition in hydrodynamic behavior for plasma columns with widths ranging from 20 mu m to 2 mm SO PHYSICAL REVIEW E LA English DT Article ID NEON-LIKE SELENIUM; NM; RADIATION; COHERENT; OPTIMIZATION; OPERATION; TABLETOP; PULSE; BEAM; GAIN AB Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 mu J seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem. C1 [Oliva, Eduardo; Velarde, Pedro; Portillo, David] Univ Politecn Madrid, Inst Fus Nucl, E-28006 Madrid, Spain. [Oliva, Eduardo; Zeitoun, Philippe; Sebban, Stephan] Ecole Polytech, CNRS, ENSTA ParisTech, Lab Opt Apl,UMR 7639, F-91761 Palaiseau, France. [Fajardo, Marta] Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal. [Cassou, Kevin; Ros, David] Univ Paris 11, CNRS, Phys Gaz & Plasmas Lab, UMR 8578, F-91405 Orsay, France. [le Pape, Sebastien] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Oliva, E (reprint author), Univ Politecn Madrid, Inst Fus Nucl, E-28006 Madrid, Spain. EM eduardo.oliva@ensta-paristech.fr RI Oliva, Eduardo/P-4348-2014; Fajardo, Marta/A-4608-2012; Velarde, Pedro/M-8091-2015 OI Oliva, Eduardo/0000-0003-2284-0927; Fajardo, Marta/0000-0003-2133-2365; Velarde, Pedro/0000-0001-8615-4905 FU LASERLAB II [228334]; Spanish Ministerio de Educacion y Ciencia [ENE2009-09837/FTN] FX The authors would like to acknowledge the financial support provided by the LASERLAB II 228334 (SFINX) European Project and RTRA "Triangle de la Physique" project (SHYLAX) and the Spanish Ministerio de Educacion y Ciencia within the Program No. ENE2009-09837/FTN. NR 48 TC 14 Z9 14 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV 12 PY 2010 VL 82 IS 5 AR 056408 DI 10.1103/PhysRevE.82.056408 PN 2 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 679FN UT WOS:000284147100007 PM 21230603 ER PT J AU Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Alford, J Anderson, BD Anson, D Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Guertin, SM Gupta, A Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Jacobs, P Jacobs, WW Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Kizka, V Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, ZM Lin, G Lin, XY Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Lukashov, EV Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldag, EW Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Qiu, H Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Trainor, TA Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xie, W Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, JB Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Alford, J. Anderson, B. D. Anson, Daniel Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. de la Barca Sanchez, M. Calderon Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Guertin, S. M. Gupta, A. Guryn, W. Haag, B. Hamed, A. Han, L-X Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Jacobs, P. Jacobs, W. W. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Kizka, V. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lin, G. Lin, X. Y. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Lukashov, E. V. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldag, E. W. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Qiu, H. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Trainor, T. A. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xie, W. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. B. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Measurement of the Bottom Quark Contribution to Nonphotonic Electron Production in p plus p Collisions at root s=200 GeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOMOGRAPHY; MATTER AB The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T). C1 [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [de la Barca Sanchez, M. Calderon; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Hofman, D. J.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Kizka, V.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kumar, L.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Qiu, H.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Lukashov, E. V.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Anson, Daniel; Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Lee, C-H; Yoo, I-K] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Bhabha Atom Res Ctr, Ctr Variable Energy Cyclotron, Kolkata 700064, W Bengal, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.; Trainor, T. A.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z. M.; Lin, X. Y.; Liu, F.; Shi, S. S.; Wu, Y. F.; Zhang, J. B.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Aggarwal, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Mischke, Andre/D-3614-2011; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Yoo, In-Kwon/J-6222-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Xu, Wenqin/H-7553-2014; Barnby, Lee/G-2135-2010; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013 OI Yang, Yanyun/0000-0002-5982-1706; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Xu, Wenqin/0000-0002-5976-4991; Barnby, Lee/0000-0001-7357-9904; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900 FU RHIC Operations Group; RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP and HEP within the U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; DFG, Germany; CNRS/IN2P3; STFC; EPSRC of the United Kingdom; FAPESP; CNPq of Brazil; Ministry of Ed. and Sci. of the Russian Federation; NNSFC; CAS; MoST; MoE of China; GA; MSMT of the Czech Republic; FOM; NWO of the Netherlands; DAE; DST; CSIR of India; Polish Ministry of Sci. and Higher Ed.; Korea Research Foundation; Ministry of Sci., Ed. and Sports of the Rep. Of Croatia; Russian Ministry of Sci. and Tech; RosAtom of Russia FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe" of Germany, CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. Of Croatia, Russian Ministry of Sci. and Tech, and RosAtom of Russia. NR 20 TC 48 Z9 48 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 12 PY 2010 VL 105 IS 20 AR 202301 DI 10.1103/PhysRevLett.105.202301 PG 6 WC Physics, Multidisciplinary SC Physics GA 679FU UT WOS:000284147800003 PM 21231222 ER PT J AU Analytis, JG Chu, JH McDonald, RD Riggs, SC Fisher, IR AF Analytis, J. G. Chu, J-H McDonald, R. D. Riggs, S. C. Fisher, I. R. TI Enhanced Fermi-Surface Nesting in Superconducting BaFe2(As1-xPx)(2) Revealed by the de Haas-van Alphen Effect SO PHYSICAL REVIEW LETTERS LA English DT Article AB The three-dimensional Fermi-surface morphology of superconducting BaFe2(As0.37P0.63)(2) with T-c = 9 K is determined using the de Haas-van Alphen effect. The inner electron pocket has a similar area and k(z) interplane warping to the observed hole pocket, revealing that the Fermi surfaces are geometrically well nested in the (pi, pi) direction. These results are in stark contrast to the fermiology of the nonsuperconducting phosphides (x = 1), and therefore suggest an important role for nesting in pnictide superconductivity. C1 [Analytis, J. G.; Chu, J-H; Riggs, S. C.; Fisher, I. R.] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Analytis, J. G.; Chu, J-H; Riggs, S. C.; Fisher, I. R.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Analytis, J. G.; Chu, J-H; Riggs, S. C.; Fisher, I. R.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [McDonald, R. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Analytis, JG (reprint author), Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RI McDonald, Ross/H-3783-2013; OI McDonald, Ross/0000-0002-0188-1087; Mcdonald, Ross/0000-0002-5819-4739 FU BES; NSF Division of Materials Research [DMR-0654118]; State of Florida; U.S. DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The authors would like to thank Antony Carrington for useful comments and E. A. Yelland for access to computer software. R. D. M. acknowledges support from the BES "Science in 100 T" program. The NHMFL is supported by the NSF Division of Materials Research through DMR-0654118 and the State of Florida. J. G. A., J. H. C., and I. R. F. acknowledge support by the U.S. DOE, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 23 TC 40 Z9 40 U1 1 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 12 PY 2010 VL 105 IS 20 AR 207004 DI 10.1103/PhysRevLett.105.207004 PG 4 WC Physics, Multidisciplinary SC Physics GA 679FU UT WOS:000284147800011 PM 21231258 ER PT J AU Ovchinnikov, SY Sternberg, JB Macek, JH Lee, TG Schultz, DR AF Ovchinnikov, S. Yu Sternberg, J. B. Macek, J. H. Lee, Teck-Ghee Schultz, D. R. TI Creating and Manipulating Vortices in Atomic Wave Functions with Short Electric Field Pulses SO PHYSICAL REVIEW LETTERS LA English DT Article ID CYCLE ELECTROMAGNETIC PULSES; RYDBERG ATOMS; IONIZATION; SUBPICOSECOND; PACKETS AB We demonstrate the creation of vortices in the electronic probability density of an atom subject to short electric field pulses, how these vortices evolve and can be manipulated by varying the applied pulses, and that they persist to macroscopic distances in the spectrum of ejected electrons. This opens the possibility to use practical femtosecond or shorter laser pulses to create and manipulate these vortex quasiparticles at the atomic scale and observe them in the laboratory. Within a hydrodynamic interpretation we also show, since the Schrodinger equation is a particular instance of the Navier-Stokes equations, that for compressible fluids vortices can appear spontaneously and with a certain time delay, which is not expected to occur from the conventional point of view, illustrating applicability of the present study to vortex formation more broadly. C1 [Ovchinnikov, S. Yu; Sternberg, J. B.; Macek, J. H.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37496 USA. [Macek, J. H.; Schultz, D. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lee, Teck-Ghee] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Ovchinnikov, S. Yu] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Ovchinnikov, SY (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37496 USA. RI Lee, Teck Ghee/D-5037-2012; Ovchinnikov, Serguei/C-4994-2014 OI Lee, Teck Ghee/0000-0001-9472-3194; FU Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-02ER15283]; Oak Ridge National Laboratory [DE-AC05-00OR22725] FX This research is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, through grants to the University of Tennessee (DE-FG02-02ER15283) and the Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. Fruitful discussions with C. O. Reinhold are also gratefully acknowledged. NR 20 TC 7 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 12 PY 2010 VL 105 IS 20 AR 203005 DI 10.1103/PhysRevLett.105.203005 PG 4 WC Physics, Multidisciplinary SC Physics GA 679FU UT WOS:000284147800005 PM 21231229 ER PT J AU Turse, JE Marshall, MJ Fredrickson, JK Lipton, MS Callister, SJ AF Turse, Joshua E. Marshall, Matthew J. Fredrickson, James K. Lipton, Mary S. Callister, Stephen J. TI An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences SO PLOS ONE LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; OUTER-MEMBRANE CYTOCHROMES; MASS-SPECTROMETRY; PROTEIN IDENTIFICATION; PUTREFACIENS MR-1; REDUCTION; TANDEM; CONSERVATION; DIVERGENCE; METABOLISM AB Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. C1 [Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.] Pacific NW Natl Lab, Biol Sci & Computat Sci & Math Div, Richland, WA 99352 USA. RP Turse, JE (reprint author), Washington State Univ, Coll Vet Med, Pullman, WA 99164 USA. EM stephen.callister@pnl.gov OI /0000-0001-7041-1823; Marshall, Matthew J/0000-0002-2402-8003 FU Department of Energy Office of Biological and Environmental Research (DOE/BER) [ER63232-1018220-0007203]; National Institute of Allergy and Infectious Diseases (NIH/DHHS) [Y1-AI-4894-01]; NIH National Center for Research Resources [RR18522] FX Department of Energy Office of Biological and Environmental Research (DOE/BER; ER63232-1018220-0007203), the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01), and the NIH National Center for Research Resources (RR18522). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 66 TC 12 Z9 12 U1 0 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 12 PY 2010 VL 5 IS 11 AR e13968 DI 10.1371/journal.pone.0013968 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 679FT UT WOS:000284147700016 PM 21103051 ER PT J AU Agiral, A Boyadjian, C Seshan, K Lefferts, L Gardeniers, JGE AF Agiral, Anil Boyadjian, Cassia Seshan, K. Lefferts, Leon Gardeniers, J. G. E. (Han) TI Pathway Study on Dielectric Barrier Discharge Plasma Conversion of Hexane SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CROSS-SECTIONS; HYDROCARBONS; ELECTRONS; ACTIVATION; CHEMISTRY; CRACKING AB A plasma reactor based on dielectric barrier discharge has been developed for oxidative cracking of hexane to yield olefins at atmospheric pressure. Dissociation of hexane in the presence of oxygen with nonequilibrium plasma state represents complex chemistry, and both conversion and product selectivities differ significantly from the thermodynamic equilibrium state. In order to understand plasma chemistry initiated by electron impact processes, the Boltzmann equation is solved to determine the average electron energy and energy fractions in collision processes. Activation of oxygen in the plasma brings a new route with electron impact dissociation yielding atomic oxygen radicals and initiates oxidative cracking of hexane. Changes in certain features of the dissociation pattern of hexane to yield olefin products with varying parameters such as temperature, oxygen addition, and helium concentration are discussed. C1 [Agiral, Anil; Boyadjian, Cassia; Seshan, K.; Lefferts, Leon] Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, IMPACT, NL-7500 AE Enschede, Netherlands. [Agiral, Anil] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Agiral, A (reprint author), Univ Twente, Fac Sci & Technol, MESA Inst Nanotechnol, IMPACT, POB 217, NL-7500 AE Enschede, Netherlands. EM aagiral@lbl.gov RI Gardeniers, Johannes/B-6309-2013 OI Gardeniers, Johannes/0000-0003-0581-2668 FU Technology Foundation STW; Applied science division of NWO; Ministry or Economic Affairs, The Netherlands [06626] FX This research was supported by the Technology Foundation STW, applied science division of NWO and the technology programme of the Ministry or Economic Affairs, The Netherlands, Project Numbe 06626. The authors also acknowledge lug. B. Geerdink and K. Altena-Schildkamp for technical support. NR 32 TC 3 Z9 3 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 11 PY 2010 VL 114 IS 44 BP 18903 EP 18910 DI 10.1021/jp104697u PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 673ZU UT WOS:000283703500022 ER PT J AU Liao, JF Koch, V Bzdak, A AF Liao, Jinfeng Koch, Volker Bzdak, Adam TI Charge separation effect in relativistic heavy ion collisions SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; QCD; VIOLATION; MATTER; EVENT; HOT AB In this paper, we discuss alternative means of measuring the possible presence of local parity violation in relativistic heavy ion collisions. We focus on the phenomenon of charge separation and introduce the charged dipole vector (Q) over cap (c)(1), which will measure the charge separation on an event-by-event basis. Using Monte Carlo events, we demonstrate the method and its discriminating power. In particular we show that such an analysis will reveal the strength of the charge separation effect and its azimuthal correlation with the reaction plane. We further show that our proposed method may be able to distinguish between the actual charge separation effect and effects due to certain two-particle correlations. The connection to present measurements based on particle correlations is discussed. C1 [Liao, Jinfeng; Koch, Volker; Bzdak, Adam] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bzdak, Adam] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland. RP Liao, JF (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS70R0319,1 Cyclotron Rd, Berkeley, CA 94720 USA. FU Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, US Department of Energy [DE-AC02-05CH11231]; Polish Ministry of Science and Higher Education [N202 125437]; Foundation for Polish Science FX The authors are indebted to A. Poskanzer for very helpful discussions. The authors also thank D. Kharzeev, R. Lacey, L. McLerran, E. Shuryak, S. Voloshin, F. Wang, and N. Xu for discussions and communications. This work was supported in part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, US Department of Energy under Contract No. DE-AC02-05CH11231. A.B. is also supported by the Polish Ministry of Science and Higher Education, Grant No. N202 125437 and the Foundation for Polish Science (KOLUMB program). NR 49 TC 26 Z9 26 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 11 PY 2010 VL 82 IS 5 AR 054902 DI 10.1103/PhysRevC.82.054902 PG 11 WC Physics, Nuclear SC Physics GA 678QC UT WOS:000284093900004 ER PT J AU Lee, Y Seoung, DH Bai, JM Kao, CC Parise, JB Vogt, T AF Lee, Yongjae Seoung, Dong-Hoon Bai, Jianming Kao, Chi-Chang Parise, John B. Vogt, Thomas TI Chemical and Hydrostatic Pressure in Natrolites: Pressure-Induced Hydration of an Aluminogermanate Natrolite SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID ZEOLITES; PARANATROLITE; DIFFRACTION AB The ambient structure and pressure-induced structural changes of a synthetic sodium aluminogermanate with a natrolite (NAT) framework topology (Na-AlGe-NAT) were characterized by using Rietveld refinements of high-resolution synchrotron X-ray powder diffraction data at ambient and high pressures. Unlike a previously established model for Na8Al8Ge12O40 center dot 8H(2)O based on a single-crystal study, the ambient structure of the Na-AlGe-NAT is found to adopt a monoclinic space group Cc (or Fd) with a ca. 6% expanded unit cell. The refined ambient structure of Na8Al8Ge12O40 center dot 12H(2)O indicates an increased water content of 50%, compared to the single-crystal structure. The unit-cell volume and water-content relationships observed between the to the Na-AlGe-NAT structures at ambient conditions with 8 and 12 H2O respectively seem to mirror the ones found under hydrostatic pressure between the Na8Al8Si12O40 center dot 8H(2)O and the parantrolite phase Na8Al8Si12O40 center dot 12H(2)O. Under hydrostatic pressures mediated by a pore-penetrating alcohol and water mixture, the monoclinic Na-AlGe-NAT exhibits a gradual decrease of the unit-cell volume up to ca. 2.0 GPa, where the unit-cell volume then contracts abruptly by ca. 4.6%. This is in marked contrast to what is observed in the Na-AlSi-NAT and Na-GaSi-NAT systems, where one observes a pressure-induced hydration and volume expansion due to the auxetic nature of the frameworks. Above 2 GPa, the monoclinic phase of Na-AlGe-NAT transforms into a tetragonal structure with the unit-cell composition of Na8Al8Ge12O40 center dot 16H(2)O. revealing pressure-induced hydration and a unit cell volume contraction. Unlike in the Na-Al,Si-paranatrolite phase. however, the sodium cations in the Na-AlGe-NAT maintain a 6-fold coordination in the monoclinic structure and only become 7-fold coordinated at higher pressures in the tetragonal structure. When comparing, the pressure-induced hydration in the observed natrolite-type zeolites, Na-AlGe-NAT appears to have a nonauxetic framework and reveals the highest onset pressure for complete superhydration. C1 [Vogt, Thomas] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Lee, Yongjae; Seoung, Dong-Hoon] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea. [Bai, Jianming; Kao, Chi-Chang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. RP Vogt, T (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. EM tvogt@mailbox.sc.edu RI Vogt, Thomas /A-1562-2011; Bai, Jianming/O-5005-2015; Lee, Yongjae/K-6566-2016 OI Vogt, Thomas /0000-0002-4731-2787; FU Ministry of Education, Science and Technology (M EST) of the Korean Government; BK21 program; Ministry of Science and Technology (MOST) of the Korean Government; Pohang University of Science and Technology (POSTECH); U.S. Department of Energy, Office of Basic Energy Sciences FX This work was supported by the Global Research Lab Program of the Ministry of Education, Science and Technology (M EST) of the Korean Government. The authors thank Dr. Hyun-Hwi Lee for the operation of the 5A-HFMS beamline. D.H.S. thanks the support from the BK21 program to the Institute of Earth, Atmosphere, and Astronomy at Yonsei University. Experiments at PAL were supported in part by the Ministry of Science and Technology (MOST) of the Korean Government and Pohang University of Science and Technology (POSTECH). Research carried out in part at the NSLS at BNL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 30 TC 2 Z9 2 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 11 PY 2010 VL 114 IS 44 BP 18805 EP 18811 DI 10.1021/jp106964j PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 673ZU UT WOS:000283703500008 ER PT J AU Kerisit, S Rosso, KM Yang, ZG Liu, J AF Kerisit, Sebastien Rosso, Kevin M. Yang, Zhenguo Liu, Jun TI Computer Simulation of the Phase Stabilities of Lithiated TiO2 Polymorphs SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID NANOCRYSTALLINE RUTILE TIO2; LITHIUM-ION BATTERIES; AB-INITIO; TITANIUM-DIOXIDE; ANATASE TIO2; ATOMISTIC SIMULATION; POLYMER ELECTROLYTE; INSERTION REACTIONS; SOLID-SOLUTION; BROOKITE TIO2 AB The structure and phase stability of a series of titillated titania polymorphs were determined using energy minimizations of the periodic bulk crystal structures and both density functional theory (DFT) and it potential shell model. The DFT calculations were performed spin unrestricted following the linear combination of atomic orbital approach with the B3LYP exchange-correlation potential. For the potential shell model, a new set of force field parameters was derived, independently of the DFT calculations, to describe the lithium-lattice interactions. The eight polymorphs considered in this study are the rutile, anatase, brookite, TiO2-B, ramsdellite, hollandite, spinel, and hexagonal structures. The lithium to titanium ratio, x, of each Initiated titania polymorph was varied from 0.0 to 1.0 with 0.25 increments. The potential model predictions were found to he in good agreement with the structure and energetics of the lithiated titania polymorphs determined from DFT calculations, at all lithium contents. Both computational approaches indicate the following relationships. The naturally occurring titania polymorphs (i.e., rutile, anatase, brookite, and TiO2-B) were found to be the most stable of die eight phases in the absence of lithium. Anatase, brookite, and ramsdellite become energetically favored over ruble upon lithium insertion. The hexagonal and spinel polymorphs have stabilities approaching that of rutile with increasing lithium content and showed essentially equivalent total energies for x = 1.0. This prediction is consistent with numerous experimental studies, which have reported that ruffle electrodes, in particular those that consist of nanomaterials, can undergo phase transformations to the hexagonal or spinel structure upon lithium insertion. The calculations indicate that the main factors controlling the relative stability of the lithiated titania polymorphs are the lithium bonding environment, the arrangement of LiOx and TiO6 polyhedra, and the extent of lattice deformation upon lithiation. C1 [Kerisit, Sebastien; Rosso, Kevin M.; Yang, Zhenguo; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kerisit, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM sebastien.kerisit@pnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; U.S. Department of Energy's Office of Biological and Environmental Research FX This research was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. The computer simulations were performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). NR 118 TC 13 Z9 13 U1 3 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 11 PY 2010 VL 114 IS 44 BP 19096 EP 19107 DI 10.1021/jp103809s PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 673ZU UT WOS:000283703500046 ER PT J AU Yang, ZZ Xu, T Gao, SM Welp, U Kwok, WK AF Yang, Zhenzhen Xu, Tao Gao, Shanmin Welp, Ulrich Kwok, Wai-Kwong TI Enhanced Electron Collection in TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells by an Array of Metal Micropillars on a Planar Fluorinated Tin Oxide Anode SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POTENTIAL DISTRIBUTION; CONVERSION EFFICIENCY; CHARGE-COLLECTION; TRANSPORT; RECOMBINATION; IMPEDANCE; PERFORMANCE; LIGHT; FILMS AB Charge collection efficiency exhibits a strong influence on the overall efficiency of nanocrystalline dye-sensitized solar cells. It highly depends on the quality of the TiO2 nanoparticulate layer in the photoanode, and hence most efforts have been directed on the improvement and deliberate optimization of the quality the TiO2 nanocrystalline layer. In this work, we aim to reduce the electron collection distance between the place of origin in the TiO2 layer to the electron-collecting TCO anode as an alternative way to enhance the charge collection efficiency. We use an array of metal micropillars on fluorine-doped tin oxide (FTO) as the colleting anode. Under the same conditions, the Ni micropillar-on-FTO-based dye-sensitized solar cells (DSSCs) exhibit a remarkably enhanced current density, which is approximately 1.8 times greater compared with the bare FTO-based DSSCs. Electron transport was investigated using the electrochemical impedance spectroscopy technique. Our results reveal that the electron collection time in Ni micropillar-on-FTO-based DSSCs is much shorter than that of bare FTO-based DSSCs, indicating faster electron collection due to the Ni micropillars buried in TiO2 nanoparticulate layer that serve as electron transport shortcuts. As a result, the charge collection efficiency was enhanced by 15-20% with respect to that of the bare FTO-based DSSCs. Consequently, the overall energy conversion efficiency was found to increase from 2.6% in bare FTO-based DSSCs to 4.8% in Ni micropillar-on-FTO-based DSSCs for a 6 mu m-thick TiO2 NP film. C1 [Yang, Zhenzhen; Xu, Tao; Gao, Shanmin] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Yang, Zhenzhen; Xu, Tao; Welp, Ulrich; Kwok, Wai-Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Xu, T (reprint author), No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. EM txu@niu.edu RI Yang, Zhenzhen/A-5904-2012 FU U.S. Department of Energy [DE-AC02-06CH11357]; NIU through InSET FX We thank the U.S. Department of Energy for financial support under Contract No. DE-AC02-06CH11357 and the NIU-Argonne Graduate NanoScience Fellowship through InSET. We also acknowledge help from Dr. Ralu S. Divan at Center for Nanoscale Materials, Argonne National Laboratory. T.X. is grateful for the stimulating discussions with Dr. Alex B. F. Martinson at the Materials Science Division, Argonne National Laboratory.f NR 39 TC 26 Z9 26 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 11 PY 2010 VL 114 IS 44 BP 19151 EP 19156 DI 10.1021/jp108761k PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 673ZU UT WOS:000283703500052 ER PT J AU Ko, H Takei, K Kapadia, R Chuang, S Fang, H Leu, PW Ganapathi, K Plis, E Kim, HS Chen, SY Madsen, M Ford, AC Chueh, YL Krishna, S Salahuddin, S Javey, A AF Ko, Hyunhyub Takei, Kuniharu Kapadia, Rehan Chuang, Steven Fang, Hui Leu, Paul W. Ganapathi, Kartik Plis, Elena Kim, Ha Sul Chen, Szu-Ying Madsen, Morten Ford, Alexandra C. Chueh, Yu-Lun Krishna, Sanjay Salahuddin, Sayeef Javey, Ali TI Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors SO NATURE LA English DT Article ID CIRCUITS; DENSITY; DEVICES; INAS AB Over the past several years, the inherent scaling limitations of silicon (Si) electron devices have fuelled the exploration of alternative semiconductors, with high carrier mobility, to further enhance device performance(1-8). In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied(7,9,10): such devices combine the high mobility of III-V semiconductors and the well established, low-cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored(9,11-13)-but besides complexity, high defect densities and junction leakage currents present limitations in this approach. Motivated by this challenge, here we use an epitaxial transfer method for the integration of ultrathin layers of single-crystal InAs on Si/SiO(2) substrates. As a parallel with silicon-on-insulator (SOI) technology(14), we use 'XOI' to represent our compound semiconductoron-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high-quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsO(x) layer (similar to 1 nm thick). The fabricated field-effect transistors exhibit a peak transconductance of similar to 1.6 mS mu m(-1) at a drain-source voltage of 0.5 V, with an on/off current ratio of greater than 10,000. C1 [Ko, Hyunhyub; Takei, Kuniharu; Kapadia, Rehan; Chuang, Steven; Fang, Hui; Leu, Paul W.; Madsen, Morten; Ford, Alexandra C.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Ko, Hyunhyub; Takei, Kuniharu; Kapadia, Rehan; Chuang, Steven; Fang, Hui; Leu, Paul W.; Madsen, Morten; Ford, Alexandra C.; Javey, Ali] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chen, Szu-Ying; Chueh, Yu-Lun] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Plis, Elena; Kim, Ha Sul; Krishna, Sanjay] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA. [Plis, Elena; Kim, Ha Sul; Krishna, Sanjay] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Krishna, Sanjay /C-5766-2009; Ganapathi, Kartik/C-7631-2011; Madsen, Morten/K-8597-2012; Kapadia, Rehan/B-4100-2013; Fang, Hui/I-8973-2014; Leu, Paul/B-9989-2008; Javey, Ali/B-4818-2013; Ko, Hyunhyub/C-4848-2009; Chueh, Yu-Lun/E-2053-2013; OI Kapadia, Rehan/0000-0002-7611-0551; Fang, Hui/0000-0002-4651-9786; Leu, Paul/0000-0002-1599-7144; Chueh, Yu-Lun/0000-0002-0155-9987; Madsen, Morten/0000-0001-6503-0479 FU MARCO/MSD Focus Center; Intel Corporation; BSAC; LDRD from Lawrence Berkeley National Laboratory; Sloan research fellowship; NSF; Sunchon National University; Danish Research Council for Technology and Production Sciences; AFOSR [FA9550-10-1-0113]; National Science Council, Taiwan [NSC 98-2112-M-007-025-MY3] FX This work was funded by the MARCO/MSD Focus Center, Intel Corporation and BSAC. The materials characterization part of this work was partially supported by an LDRD from Lawrence Berkeley National Laboratory. A.J. acknowledges a Sloan research fellowship, an NSF CAREER award, and support from the World Class University programme at Sunchon National University. R.K. and M.M. acknowledge respectively an NSF graduate fellowship and a postdoctoral fellowship from the Danish Research Council for Technology and Production Sciences. S.K. acknowledges support from AFOSR contract FA9550-10-1-0113. Y.-L.C. acknowledges support from the National Science Council, Taiwan, through grant no. NSC 98-2112-M-007-025-MY3. NR 29 TC 203 Z9 203 U1 14 U2 117 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD NOV 11 PY 2010 VL 468 IS 7321 BP 286 EP 289 DI 10.1038/nature09541 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 678DG UT WOS:000284051000047 PM 21068839 ER PT J AU von Hellermanna, MG Barnsley, R Biel, W Delabie, E Hawkes, N Jaspers, R Johnson, D Klinkhamer, F Lischtschenko, O Marchuk, O Schunke, B Singh, MJ Snijders, B Summers, HP Thomas, D Tugarinov, S Vasu, P AF von Hellermanna, M. G. Barnsley, R. Biel, W. Delabie, E. Hawkes, N. Jaspers, R. Johnson, D. Klinkhamer, F. Lischtschenko, O. Marchuk, O. Schunke, B. Singh, M. J. Snijders, B. Summers, H. P. Thomas, D. Tugarinov, S. Vasu, P. TI Active beam spectroscopy for ITER SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 1st International Conference on Frontiers in Diagnostic Technologies CY NOV 25-29, 2009 CL Frascati, ITALY SP ENEA, INFN DE Spectroscopy; CXRS; MSE; ITER AB Since the first feasibility studies of active beam spectroscopy on ITER in 1995 the proposed diagnostic has developed into a well advanced and mature system. Substantial progress has been achieved on the physics side including comprehensive performance studies based on an advanced predictive code, which simulates active and passive features of the expected spectral ranges. The simulation has enabled detailed specifications for an optimized instrumentation and has helped to specify suitable diagnostic neutral beam parameters. Four ITER partners share presently the task of developing a suite of ITER active beam diagnostics. which make use of the two 0.5 MeV/amu 18 MW heating neutral beams and a dedicated 0.1 MeV/amu, 3.6 MW diagnostic neutral beam. The IN ITER team is responsible for the DNB development and also for beam physics related aspects of the diagnostic. The RF will be responsible for edge CXRS system covering the outer region of the plasma (1 > r/a > 0.4) using an equatorial observation port, and the EU will develop the core CXRS system for the very core (0 < r/a < 0.7) using a top observation port. Thus optimum radial resolution is ensured for each system with better than a/30 resolution. Finally, the US will develop a dedicated MSE system making use of the HNBs and two equatorial ports. With appropriate modification, these systems could also potentially provide information on alpha particle slowing-down features.. On the engineering side, comprehensive preparations were made involving the development of an observation periscope, a neutron labyrinth optical system and design studies for remote maintenance including the exchange of the first mirror assembly, a critical issue for the operation of the CXRS diagnostic in the harsh ITER environment. Additionally, an essential change of the orientation of the DNB injection angle and specification of suitable blanket aperture has been made to avoid trapped particle damage to the first wall. (C) 2010 Elsevier B.V. All rights reserved. C1 [von Hellermanna, M. G.; Delabie, E.; Jaspers, R.; Lischtschenko, O.] EURATOM, FOM Inst Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Barnsley, R.; Schunke, B.; Thomas, D.] ITER Org, F-13108 St Paul Les Durance, Cadarache, France. [Biel, W.; Marchuk, O.] Forschungszentrum Julich, EURATOM Assoc, Inst Energieforsch, D-52425 Julich, Germany. [Hawkes, N.; Summers, H. P.] EURATOM, Culham Ctr Fus Energy, Culham OX14 3DB, England. [Johnson, D.] Princeton Plasma Phys Lab, Princeton, NJ 08548 USA. [Klinkhamer, F.; Snijders, B.] TNO Sci & Ind, NL-2628 CK Delft, Netherlands. [Singh, M. J.; Vasu, P.] Inst Plasma Res, Gandhinagar 384828, Gujarat, India. [Tugarinov, S.] TRINITI Troitsk, Troitsk 142092, Moscow Region, Russia. RP von Hellermanna, MG (reprint author), EURATOM, FOM Inst Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. EM mgvh@jet.uk NR 10 TC 5 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2010 VL 623 IS 2 BP 720 EP 725 DI 10.1016/j.nima.2010.04.011 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 681TV UT WOS:000284343600019 ER PT J AU Sfeir, MY Misewich, JA Rosenblatt, S Wu, Y Voisin, C Yan, HG Berciaud, S Heinz, TF Chandra, B Caldwell, R Shan, YY Hone, J Carr, GL AF Sfeir, Matthew Y. Misewich, James A. Rosenblatt, Sami Wu, Yang Voisin, Christophe Yan, Hugen Berciaud, Stephane Heinz, Tony F. Chandra, Bhupesh Caldwell, Robert Shan, Yuyao Hone, James Carr, G. L. TI Infrared spectra of individual semiconducting single-walled carbon nanotubes: Testing the scaling of transition energies for large diameter nanotubes SO PHYSICAL REVIEW B LA English DT Article ID RAMAN-SCATTERING; EXCITATIONS; EXCITONS AB We have measured the low-energy excitonic transitions of chiral assigned individual large-diameter semiconducting single-walled nanotubes using a high-resolution Fourier transform photoconductivity technique. When photoconductivity is complemented by Rayleigh scattering spectroscopy, as many as five optical transitions can be identified on the same individual nanotube over an energy range of 0.3-2.7 eV. We find that well-established energy scaling relations developed for nanotubes of smaller diameter are not consistent with the measured low-energy transitions in large (1.8-2.3 nm) diameter nanotubes. C1 [Sfeir, Matthew Y.; Misewich, James A.; Carr, G. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Rosenblatt, Sami; Wu, Yang; Voisin, Christophe; Yan, Hugen; Berciaud, Stephane; Heinz, Tony F.] Columbia Univ, Dept Phys & Elect Engn, New York, NY 10027 USA. [Chandra, Bhupesh; Caldwell, Robert; Shan, Yuyao; Hone, James] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. RP Misewich, JA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM misewich@bnl.gov RI bartelsdoe, ludwig/F-8008-2011; Yan, Hugen/G-1642-2012; BERCIAUD, Stephane/B-5257-2015; Hone, James/E-1879-2011; Heinz, Tony/K-7797-2015; OI BERCIAUD, Stephane/0000-0002-5753-3671; Hone, James/0000-0002-8084-3301; Heinz, Tony/0000-0003-1365-9464; Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; DOE [DE-FG02-03ER15463]; Nanoscale Science and Engineering Initiative of the NSF [CHE-06-41523, ECS-05-07111]; Nanoelectronics Research Initiative (NRI) of the Semiconductor Research Corporation; New York State Office of Science, Technology, and Academic Research (NYSTAR); National Synchrotron Light Source; Center for Synchrotron Biosciences, Case Western Reserve University [P41-EB-01979]; National Institute for Biomedical Imaging and Bioengineering FX We thank Mark Hybertsen, Deborah Prezzi, and C. Kane for valuable discussion and R. Smith for technical assistance on the beamline. This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy (DOE). Research at Columbia University was supported by the DOE under Grant No. DE-FG02-03ER15463, the Nanoscale Science and Engineering Initiative of the NSF under Awards No. CHE-06-41523 and No. ECS-05-07111, by the Nanoelectronics Research Initiative (NRI) of the Semiconductor Research Corporation, and by the New York State Office of Science, Technology, and Academic Research (NYSTAR). The synchrotron studies were supported by the National Synchrotron Light Source and the Center for Synchrotron Biosciences, Case Western Reserve University, under Grant No. P41-EB-01979 with the National Institute for Biomedical Imaging and Bioengineering. NR 30 TC 7 Z9 7 U1 0 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2010 VL 82 IS 19 AR 195424 DI 10.1103/PhysRevB.82.195424 PG 5 WC Physics, Condensed Matter SC Physics GA 678PC UT WOS:000284090600007 ER PT J AU Stoitsov, M Kortelainen, M Bogner, SK Duguet, T Furnstahl, RJ Gebremariam, B Schunck, N AF Stoitsov, M. Kortelainen, M. Bogner, S. K. Duguet, T. Furnstahl, R. J. Gebremariam, B. Schunck, N. TI Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization SO PHYSICAL REVIEW C LA English DT Article ID LOW-MOMENTUM INTERACTIONS; HARTREE-FOCK CALCULATIONS; DYNAMICS; MATTER AB In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test chi(2) function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations. C1 [Stoitsov, M.; Kortelainen, M.; Schunck, N.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stoitsov, M.; Kortelainen, M.; Schunck, N.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Bogner, S. K.; Duguet, T.; Gebremariam, B.] Michigan State Univ, Natl Superconducting Cyclotron Lab, Cyclotron Lab 1, E Lansing, MI 48824 USA. [Bogner, S. K.; Duguet, T.; Gebremariam, B.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Duguet, T.] CEA, Ctr Saclay, IRFU Serv Phys Nucl, F-91191 Gif Sur Yvette, France. [Furnstahl, R. J.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Stoitsov, M (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM stoitsovmv@ornl.gov; kortelainene@ornl.gov; bogner@nscl.msu.edu; thomas.duguet@cea.fr; furnstahl.1@osu.edu; gebremar@nscl.msu.edu; schuncknf@ornl.gov OI Furnstahl, Richard/0000-0002-3483-333X; Schunck, Nicolas/0000-0002-9203-6849 FU Office of Nuclear Physics, US Department of Energy [DE-FC02-09ER41583, DE-FG02-96ER40963, DE-FC02-07ER41457, DE-FG02-07ER41529, DE-FG0587ER40361, DE-FC02-09ER41585]; National Science Foundation [PHY-0653312, PHY-0758125]; National Center for Computational Sciences (NCCS); National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory FX We thank W. Nazarewicz, T. Papenbrock, and T. Lesinski for useful discussions. This work was supported by the Office of Nuclear Physics, US Department of Energy, under Contracts No. DE-FC02-09ER41583 (UNEDF Sci-DAC Collaboration), No. DE-FG02-96ER40963, No. DE-FC02-07ER41457, No. DE-FG02-07ER41529 (University of Tennessee), No. DE-FG0587ER40361 (Joint Institute for Heavy Ion Research), and No. DE-FC02-09ER41585 (Michigan State University) and the National Science Foundation under Grants No. PHY-0653312 and No. PHY-0758125. Computational resources were provided through an INCITE grant "Computational Nuclear Structure" by the National Center for Computational Sciences (NCCS) and the National Institute for Computational Sciences (NICS) at Oak Ridge National Laboratory. NR 45 TC 51 Z9 51 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD NOV 11 PY 2010 VL 82 IS 5 AR 054307 DI 10.1103/PhysRevC.82.054307 PG 15 WC Physics, Nuclear SC Physics GA 678QC UT WOS:000284093900002 ER PT J AU Babich, R Brannick, J Brower, RC Clark, MA Manteuffel, TA McCormick, SF Osborn, JC Rebbi, C AF Babich, R. Brannick, J. Brower, R. C. Clark, M. A. Manteuffel, T. A. McCormick, S. F. Osborn, J. C. Rebbi, C. TI Adaptive Multigrid Algorithm for the Lattice Wilson-Dirac Operator SO PHYSICAL REVIEW LETTERS LA English DT Article AB We present an adaptive multigrid solver for application to the non-Hermitian Wilson-Dirac system of QCD. The key components leading to the success of our proposed algorithm are the use of an adaptive projection onto coarse grids that preserves the near null space of the system matrix together with a simplified form of the correction based on the so-called gamma(5)-Hermitian symmetry of the Dirac operator. We demonstrate that the algorithm nearly eliminates critical slowing down in the chiral limit and that it has weak dependence on the lattice volume. C1 [Babich, R.; Brower, R. C.; Rebbi, C.] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA. [Babich, R.; Brower, R. C.; Rebbi, C.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Brannick, J.] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Clark, M. A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Manteuffel, T. A.; McCormick, S. F.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Osborn, J. C.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. RP Babich, R (reprint author), Boston Univ, Ctr Computat Sci, 3 Cummington St, Boston, MA 02215 USA. FU DOE [DE-FG02-91ER40676, DE-FC02-06ER41440, DE-FG02-03ER25574, DE-FC02-06ER25784]; Lawrence Livermore National Laboratory [B568677, B574163, B568399]; NSF [PHY-0427646, OCI-0749202, OCI-0749317, OCI-0749300, DGE-0221680, DMS-0810982] FX This research was supported under DOE grants DE-FG02-91ER40676, DE-FC02-06ER41440, DE-FG02-03ER25574 and DE-FC02-06ER25784; Lawrence Livermore National Laboratory contracts B568677, B574163 and B568399; and NSF grants PHY-0427646, OCI-0749202, OCI-0749317, OCI-0749300, DGE-0221680 and DMS-0810982. NR 8 TC 23 Z9 23 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2010 VL 105 IS 20 AR 201602 DI 10.1103/PhysRevLett.105.201602 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RU UT WOS:000284098700001 PM 21231217 ER PT J AU Boer, D Kang, ZB Vogelsang, W Yuan, F AF Boer, Daniel Kang, Zhong-Bo Vogelsang, Werner Yuan, Feng TI Test of the Universality of Naive-Time-Reversal-Odd Fragmentation Functions SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; FINAL-STATE INTERACTIONS; SINGLE-SPIN ASYMMETRIES; PARTON DISTRIBUTIONS; HYPERON POLARIZATION; DRELL-YAN; ORDER 1/Q; LEPTOPRODUCTION; PROTONS; GAUGE AB We investigate the "spontaneous'' hyperon transverse polarization in e(+)e(-) annihilation and semi-inclusive deep inelastic scattering processes as a test of the universality of the naive-time-reversal-odd transverse momentum dependent fragmentation functions. We find that universality implies definite sign relations among various observables. This provides a unique opportunity to study initial or final state interaction effects in the fragmentation process and test the associated factorization. C1 [Boer, Daniel] Univ Groningen, Theory Grp, KVI, NL-9747 AA Groningen, Netherlands. [Kang, Zhong-Bo; Yuan, Feng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Vogelsang, Werner] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Yuan, Feng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Boer, D (reprint author), Univ Groningen, Theory Grp, KVI, Zernikelaan 25, NL-9747 AA Groningen, Netherlands. RI Yuan, Feng/N-4175-2013; Kang, Zhongbo/P-3645-2014; Boer, Daniel/B-3493-2015 OI Boer, Daniel/0000-0003-0985-4662 FU U.S. Department of Energy [DE-AC02-05CH11231, DE-AC02-98CH10886] FX This work was supported in part by the U.S. Department of Energy under Grant No. DE-AC02-05CH11231 (F. Y.) and Contract No. DE-AC02-98CH10886 (Z. K., F. Y. and W. V.). NR 41 TC 10 Z9 10 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2010 VL 105 IS 20 AR 202001 DI 10.1103/PhysRevLett.105.202001 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RU UT WOS:000284098700002 PM 21231221 ER PT J AU Dmowski, W Iwashita, T Chuang, CP Almer, J Egami, T AF Dmowski, W. Iwashita, T. Chuang, C-P Almer, J. Egami, T. TI Elastic Heterogeneity in Metallic Glasses SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEFORMATION; ANISOTROPY AB When a stress is applied on a metallic glass it deforms following Hook's law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about 3 4 in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter. C1 [Dmowski, W.; Chuang, C-P; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Iwashita, T.; Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Almer, J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Iwashita, Takuya/D-2724-2009 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy [DE-AC05-00OR-22725]; U.S. Department of Energy (DOE), Office of Science [DE-AC02-06CH11357] FX We acknowledge Professor P. K. Liaw for the use of his laboratory to prepare the samples. This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy, through Contract No. DE-AC05-00OR-22725. Use of the Advanced Photon Source is supported by the U.S. Department of Energy (DOE), Office of Science, under Contract No. DE-AC02-06CH11357. NR 20 TC 128 Z9 131 U1 9 U2 96 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2010 VL 105 IS 20 AR 205502 DI 10.1103/PhysRevLett.105.205502 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RU UT WOS:000284098700007 PM 21231246 ER PT J AU Grierson, BA Mauel, ME Worstell, MW Klassen, M AF Grierson, B. A. Mauel, M. E. Worstell, M. W. Klassen, M. TI Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTROSTATIC TURBULENCE; INSTABILITY; DIFFUSION AB Convective structures characterized by E x B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures. C1 [Grierson, B. A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mauel, M. E.; Worstell, M. W.; Klassen, M.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bgriers@pppl.gov OI Mauel, Michael/0000-0003-2490-7478 FU U.S. DOE [DE-FG02-00ER54585] FX This work was supported by U.S. DOE Grant No. DE-FG02-00ER54585. B. A. G. gratefully acknowledges useful discussions with R. Nazikian, K. H. Burrell, and the LDX team. NR 23 TC 4 Z9 4 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2010 VL 105 IS 20 AR 205004 DI 10.1103/PhysRevLett.105.205004 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RU UT WOS:000284098700005 PM 21231242 ER PT J AU Zhang, Y Vishwanath, A AF Zhang, Yi Vishwanath, Ashvin TI Anomalous Aharonov-Bohm Conductance Oscillations from Topological Insulator Surface States SO PHYSICAL REVIEW LETTERS LA English DT Article ID NORMAL-METAL RINGS; INTERFERENCE; PERIODICITY; H/E AB We study Aharonov-Bohm (AB) conductance oscillations arising from the surface states of a topological insulator nanowire, when a magnetic field is applied along its length. With strong surface disorder, these oscillations are predicted to have a component with anomalous period Phi(0) hc/e, twice the conventional period. The conductance maxima are achieved at odd multiples of 1/2 Phi(0), implying that a pi AB phase for electrons strengthens the metallic nature of surface states. This effect is special to topological insulators, and serves as a defining transport property. A key ingredient, the surface curvature induced Berry phase, is emphasized here. We discuss similarities and differences from recent experiments on Bi2Se3 nanoribbons, and optimal conditions for observing this effect. C1 [Zhang, Yi; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Zhang, Yi; Vishwanath, Ashvin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Zhang, Yi/I-3138-2013 FU DOE [DE-AC02-05CH11231] FX We acknowledge insightful discussions with H. Mathur, D. Carpentier, J. Moore, and G. Paulin, and DOE Grant No. DE-AC02-05CH11231 for support. In [17], broadly similar results are obtained using a 2D Dirac treatment, although, in contrast to our 3D model calculation, surface curvature Berry phase and finite T breaking at pi flux are not included in that approximation. NR 23 TC 66 Z9 67 U1 4 U2 46 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2010 VL 105 IS 20 AR 206601 DI 10.1103/PhysRevLett.105.206601 PG 4 WC Physics, Multidisciplinary SC Physics GA 678RU UT WOS:000284098700009 PM 21231253 ER PT J AU Zeitlin, C Boynton, W Mitrofanov, I Hassler, D Atwell, W Cleghorn, TF Cucinotta, FA Dayeh, M Desai, M Guetersloh, SB Kozarev, K Lee, KT Pinsky, L Saganti, P Schwadron, NA Turner, R AF Zeitlin, C. Boynton, W. Mitrofanov, I. Hassler, D. Atwell, W. Cleghorn, T. F. Cucinotta, F. A. Dayeh, M. Desai, M. Guetersloh, S. B. Kozarev, K. Lee, K. T. Pinsky, L. Saganti, P. Schwadron, N. A. Turner, R. TI Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002-2008 SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RADIATION ENVIRONMENT EXPERIMENT; SPECTRA; SPECTROMETER; MISSIONS; DEPOSITS; PROTON; IONS AB The instrument payload aboard the 2001 Mars Odyssey orbiter includes several instruments that are sensitive to energetic charged particles from the galactic cosmic rays (GCR) and solar particle events (SPE). The Martian Radiation Environment Experiment (MARIE) was a dedicated energetic charged particle spectrometer, but it ceased functioning during the large solar storm of October/November 2003. Data from two other Odyssey instruments are used here: the Gamma Ray Spectrometer and the scintillator component of the High Energy Neutron Detector. Though not primarily designed to measure energetic charged particles, both systems are sensitive to them, and several years of data are available from both. Using the MARIE data for calibration of the other systems, count rates can be normalized (with significant uncertainties) to absolute fluxes of both GCR and solar energetic particles (SEP). The data, which cover the time span from early 2002 through the end of 2007, clearly show the solar cycle-dependent modulation of the GCR starting in 2004. Many SPEs were recorded as well and are cataloged here. Threshold energies were relatively high, ranging from 16 MeV in the most sensitive channel to 42 MeV. These thresholds are not optimal for detailed studies of SEPs, but this is the range of interest for calculations of dose and dose equivalent, pertinent to human flight, and covering that range was the original motivation for MARIE. The data are available on request and are potentially of use for the Earth-Moon-Mars Radiation Environment Module collaboration and other heliospheric modeling projects. C1 [Zeitlin, C.; Hassler, D.] SW Res Inst, Boulder, CO USA. [Zeitlin, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Mitrofanov, I.] Space Res Inst, Moscow, Russia. [Atwell, W.] Boeing Co, Houston, TX USA. [Cleghorn, T. F.; Cucinotta, F. A.; Lee, K. T.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Dayeh, M.; Desai, M.] SW Res Inst, San Antonio, TX USA. [Guetersloh, S. B.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Kozarev, K.; Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Pinsky, L.] Univ Houston, Dept Phys, Houston, TX USA. [Saganti, P.] Prairie View A&M Univ, Dept Phys, Prairie View, TX USA. [Turner, R.] Analyt Serv Inc, Arlington, VA USA. RP Zeitlin, C (reprint author), SW Res Inst, Boulder, CO USA. FU NASA [NNH05AA471, NNX07AC12G] FX We express our profound thanks to the many people who supported this effort over many years, both on the individual instrument teams for MARIE, GRS, and HEND, and on the 2001 Mars Odyssey project. Odyssey has had a remarkably long and successful mission thanks in large part to the management team, which over the years has included Robert Gibbs, Robert Mase, Gaylon McSmith, Phillip Varghese, Steve Saunders, Jeffrey Plaut, and David Senske. And of course this work would not have been possible without the tireless efforts of the original MARIE Principal Investigator, the late Gautam Badhwar. He is greatly missed. This work was supported at LBNL by NASA grant NNH05AA471 and at Southwest Research Institute by NASA grant NNX07AC12G. NR 28 TC 6 Z9 6 U1 1 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD NOV 11 PY 2010 VL 8 AR S00E06 DI 10.1029/2009SW000563 PG 26 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA 680IY UT WOS:000284226800001 ER PT J AU Reifel, KM Swan, BK Ehrhardt, CJ Jones, BH AF Reifel, Kristen M. Swan, Brandon K. Ehrhardt, Christopher J. Jones, Burton H. TI Optical characterization of a precipitation event in a moderately hypersaline lake SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID DISSOLVED ORGANIC-MATTER; LIGHT-SCATTERING; SALTON-SEA; PARTICULATE; ABSORPTION; WATERS; COLOR; SHAPE AB The role of mineral precipitation events in creating large patches of bright green water in the Salton Sea was investigated by comparing in situ inherent optical properties (IOPs) and constituent concentrations within and outside a green water region. While absorption was similar in both regions, scatter and backscatter were similar to 2 and 3 times higher in green water, respectively. Ratios of scatter to absorption and backscatter to absorption had nearly identical spectral shapes but much higher magnitudes within green water. CIE chromaticity values were similar between stations, but luminance was 2.4 times greater in green water. Therefore, differences in observed water color were mostly due to increased brightness within green water. Further analyses of IOPs indicated that particles were small at both stations (average diameter similar to 0.3 mu m), but a larger proportion of particles present in green water were inorganic. Scanning electron microscopy analysis revealed the presence of small (up to 5 mu m) particles consistent with gypsum. Because precipitated minerals only increase backscatter and do not by themselves affect water color, simple reflectance ratios will not always detect these events. Therefore, the magnitude of reflectance must be incorporated into analyses of precipitation events. Citation: Reifel, K. M., B. K. Swan, C. J. Ehrhardt, and B. H. Jones (2010), Optical characterization of a precipitation event in a moderately hypersaline lake, Geophys. Res. Lett., 37, L21603, doi: 10.1029/2010GL044949. C1 [Reifel, Kristen M.; Jones, Burton H.] Univ So Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Ehrhardt, Christopher J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Swan, Brandon K.] Bigelow Lab Ocean Sci, Boothbay Harbor, ME 04575 USA. RP Reifel, KM (reprint author), Univ So Calif, Dept Biol Sci, 3616 Trousdale Pkwy, Los Angeles, CA 90089 USA. EM kmreifel@gmail.com RI Reifel, Kristen/J-7052-2014; OI Reifel, Kristen/0000-0002-2394-9185; Ehrhardt, Christopher/0000-0002-4909-0532 FU NSF [MCB-0604191]; CMIS California NASA; NASA ESS; Philip and Aida Siff Graduate Fellowship FX We thank B. Brinegar of Environmental Recovery Solutions for providing boat logistics, I. Cetinic for assisting with analysis of optical data, E. Boss for use of his BB9 and providing Matlab code, and K. Randolph for running Hydrolight models. We thank D. L. Valentine for providing partial financial support (NSF grant MCB-0604191). This project was funded in part by a CMIS California NASA Space Grant to B. K. S. Additional support was provided by a NASA ESS fellowship awarded to K. M. R. and a Philip and Aida Siff Graduate Fellowship awarded to B. K. S. Comments and suggestions by T.J. Swift, E. Boss, and an anonymous reviewer greatly improved this manuscript. NR 25 TC 0 Z9 0 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 10 PY 2010 VL 37 AR L21603 DI 10.1029/2010GL044949 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 680FK UT WOS:000284217600003 ER PT J AU Brodsky, SJ De Teramond, G Deur, A AF Brodsky, Stanley J. De Teramond, Guy Deur, Alexandre TI AdS/QCD, LIGHT-FRONT HOLOGRAPHY, AND THE NONPERTURBATIVE RUNNING COUPLING SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Workshop on Strong Coupling Gauge Theories in the LHC Era (SCGT 09) CY DEC 08-11, 2009 CL Nagoya Univ, Nagoya, JAPAN HO Nagoya Univ DE AdS/CFT correspondence; AdS/QCD; light-front QCD; light-front quantization; nonperturbative QCD coupling ID DEEP-INELASTIC SCATTERING; QUANTUM CHROMODYNAMICS; EFFECTIVE CHARGES; SPIN ASYMMETRIES; QCD; BARYONS; DISTRIBUTIONS; CONSTANT; NUCLEON; PROTON AB The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling alpha(AdS)(s) (Q(2)) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale similar to 1 GeV. The resulting beta-function appears to capture the essential characteristics of the full beta-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. C1 [Brodsky, Stanley J.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [De Teramond, Guy] Univ Costa Rica, San Jose, Costa Rica. [Deur, Alexandre] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Brodsky, SJ (reprint author), Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. EM sjbth@slac.stanford.edu; gdt@asterix.crnet.cr; deurpam@jlab.org NR 78 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2010 VL 25 IS 27-28 SI SI BP 5009 EP 5024 DI 10.1142/S0217751X10050822 PG 16 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 676SE UT WOS:000283937900001 ER PT J AU Graesser, ML Kitano, R Kurachi, M AF Graesser, Michael L. Kitano, Ryuichiro Kurachi, Masafumi TI HIGGSINOLESS SUPERSYMMETRY AND HIDDEN GRAVITY SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article; Proceedings Paper CT International Workshop on Strong Coupling Gauge Theories in the LHC Era (SCGT 09) CY DEC 08-11, 2009 CL Nagoya Univ, Nagoya, JAPAN HO Nagoya Univ ID ELECTROWEAK SYMMETRY-BREAKING; NON-LINEAR REALIZATIONS; LOCAL SYMMETRY; BROKEN SUPERSYMMETRY; GAUGE BOSON; DIMENSIONS; PHENOMENOLOGY; SUPERGRAVITY; LAGRANGIANS; MILLIMETER AB We present a simple formulation of non-linear supersymmetry where superfields and partnerless fields can coexist. Using this formalism, we propose a supersymmetric Standard Model without the Higgsino as an effective model for the TeV-scale supersymmetry breaking scenario. We also consider an application of the Hidden Local Symmetry in non-linear supersymmetry, where we can naturally incorporate a spin-two resonance into the theory in a manifestly supersymmetric way. Possible signatures at the LHC experiments are discussed. C1 [Graesser, Michael L.] Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. [Kitano, Ryuichiro; Kurachi, Masafumi] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. RP Graesser, ML (reprint author), Los Alamos Natl Lab, Theoret Div T2, Los Alamos, NM 87545 USA. NR 59 TC 0 Z9 0 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 10 PY 2010 VL 25 IS 27-28 SI SI BP 5183 EP 5195 DI 10.1142/S0217751X10050950 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 676SE UT WOS:000283937900014 ER PT J AU Zhang, AP Lu, FC Liu, CF Sun, RC AF Zhang, Aiping Lu, Fachuang Liu, Chuanfu Sun, Run-Cang TI Isolation and Characterization of Lignins from Eucalyptus tereticornis (12ABL) SO JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY LA English DT Article DE Eucalyptus; lignin; isolation; characterization; (31)P NMR; HSQC ID CELLULOLYTIC ENZYME LIGNIN; WHEAT-STRAW LIGNIN; MILLED WOOD LIGNIN; SOLUTION-STATE NMR; PLANT-CELL WALLS; QUANTITATIVE P-31; SPECTROSCOPY AB A three-step sequential extraction precipitation method was used to isolate lignin from Eucalyptus tereticornis. The ball-milled eucalyptus was extracted with 96% dioxane, 50% dioxane, and 80% dioxane containing 1% NaOH at boiling temperature, consecutively resulting in solubilization of lignin and hemicelluloses. By precipitating such solutions into 70% aqueous ethanol, the hemicelluloses were removed substantially although there were still some carbohydrates left over, especially for lignin fraction extracted by 50% dioxane. Lignins dissolved in the 70% ethanol solutions were recovered via concentration and precipitation into acidified water. About 37% of the original lignin was released following such procedure whereas only 13.5% can be isolated by traditional milled wood lignin (MWL) method. The obtained lignin fractions were analyzed by high performance anion exchange chromatography (HPAEC) following acid hydrolysis for sugar composition of the contaminating carbohydrates and characterized by quantitative (31)P NMR as well as two-dimensional heteronuclear single-quantum coherence ((13)C-(1)H) NMR. The results showed that 96% aqueous dioxane extraction of ball-milled wood under conditions used in this study resulted in lignin preparation with very similar structures and sugar composition as traditional MWL. Therefore extracting ball-milled wood with 96% aqueous dioxane produced lignin in 33.6% yield, which makes it very attractive as an alternative to the traditional MWL method. However further extraction with 50% aqueous dioxane or 80% aqueous dioxane containing 1% NaOH gave just a little more lignins with different carbohydrate compositions from those in MWL. The eucalyptus lignins obtained were syringyl and guaiacyl type units. Lignin fraction obtained from 96% dioxane extraction was found to have more phenolic hydroxyl and less aliphatic hydroxyl than the other two preparations. C1 [Lu, Fachuang] Univ Wisconsin, Dept Biochem, Madison, WI 53726 USA. [Lu, Fachuang] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. [Zhang, Aiping; Liu, Chuanfu; Sun, Run-Cang] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China. [Sun, Run-Cang] Beijing Forestry Univ, Coll Mat Sci & Technol, Beijing 100083, Peoples R China. [Zhang, Aiping] S China Agr Univ, Inst New Energy & New Mat, Guangzhou 510642, Guangdong, Peoples R China. RP Lu, FC (reprint author), Univ Wisconsin, Dept Biochem, 1710 Univ Ave, Madison, WI 53726 USA. EM fachuanglu@wisc.edu OI Liu, Chuan-Fu/0000-0002-3151-7956 FU National Natural Science Foundation of China [30871994, 30972325, 30710103906]; Fundamental Research Funds for the Central Universities [2009ZZ0024]; China Ministry of Education [111]; National Basic Research Program of China [2010CB732201]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494] FX The authors express their gratitude for the financial support from the National Natural Science Foundation of China (No. 30871994, 30972325 and 30710103906), the Fundamental Research Funds for the Central Universities (2009ZZ0024), China Ministry of Education (111) and National Basic Research Program of China (2010CB732201). This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 30 TC 14 Z9 15 U1 7 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-8561 J9 J AGR FOOD CHEM JI J. Agric. Food Chem. PD NOV 10 PY 2010 VL 58 IS 21 BP 11287 EP 11293 DI 10.1021/jf103354x PG 7 WC Agriculture, Multidisciplinary; Chemistry, Applied; Food Science & Technology SC Agriculture; Chemistry; Food Science & Technology GA 672ZT UT WOS:000283628000014 PM 20954709 ER PT J AU Abdo, AA Ackermann, M Ajello, M Allafort, A Atwood, WB Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Baughman, BM Bechtol, K Bellazzini, R Berenji, B Bhat, PN Blandford, RD Bloom, ED Bonamente, E Borgland, AW Bouvier, A Brandt, TJ Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Burnett, TH Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cavazzuti, E Cecchi, C Celik, O Charles, E Chekhtman, A Chen, AW Cheung, CC Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Costamante, L Dermer, CD de Angelis, A de Palma, F Digel, SW Dingus, BL Silva, EDE Drell, PS Dubois, R Favuzzi, C Fegan, SJ Finke, J Fortin, P Fukazawa, Y Funk, S Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Gilmore, RC Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guiriec, S Gustafsson, M Hadasch, D Hayashida, M Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, RP Johnson, WN Kamae, T Katagiri, H Kataoka, J Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lott, B Lovellette, MN Lubrano, P Makeev, A Mazziotta, N McConville, W McEnery, JE McGlynn, S Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Piron, F Porter, TA Primack, JR Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Reyes, LC Ripken, J Ritz, S Romani, RW Roth, M Sadrozinski, HFW Sanchez, D Sander, A Scargle, JD Schalk, TL Sgro, C Shaw, MS Siskind, EJ Smith, PD Spandre, G Spinelli, P Stecker, FW Strickman, MS Suson, DJ Tajima, H Takahashi, H Takahashi, T Tanaka, T Thayer, JB Thayer, JG Thompson, DJ Tibaldo, L Torres, DF Tosti, G Tramacere, A Uchiyama, Y Usher, TL Vandenbroucke, J Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Abdo, A. A. Ackermann, M. Ajello, M. Allafort, A. Atwood, W. B. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Baughman, B. M. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Blandford, R. D. Bloom, E. D. Bonamente, E. Borgland, A. W. Bouvier, A. Brandt, T. J. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Burnett, T. H. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cavazzuti, E. Cecchi, C. Celik, O. Charles, E. Chekhtman, A. Chen, A. W. Cheung, C. C. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Costamante, L. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. Dingus, B. L. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Finke, J. Fortin, P. Fukazawa, Y. Funk, S. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Gilmore, R. C. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guiriec, S. Gustafsson, M. Hadasch, D. Hayashida, M. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, R. P. Johnson, W. N. Kamae, T. Katagiri, H. Kataoka, J. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S-H Garde, M. Llena Longo, F. Loparco, F. Lott, B. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, N. McConville, W. McEnery, J. E. McGlynn, S. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Piron, F. Porter, T. A. Primack, J. R. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reyes, L. C. Ripken, J. Ritz, S. Romani, R. W. Roth, M. Sadrozinski, H. F. -W. Sanchez, D. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Shaw, M. S. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stecker, F. W. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Takahashi, T. Tanaka, T. Thayer, J. B. Thayer, J. G. Thompson, D. J. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uchiyama, Y. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE SO ASTROPHYSICAL JOURNAL LA English DT Article DE diffuse radiation; dust, extinction; gamma rays: general ID EXTRAGALACTIC BACKGROUND LIGHT; INTERGALACTIC MAGNETIC-FIELDS; ALL-SKY SURVEY; TEV BLAZARS; DETECTED BLAZARS; LIKELIHOOD RATIO; SPACE-TELESCOPE; GALAXY COUNTS; GEV EMISSION; UPPER LIMITS AB The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above similar to 10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of gamma-ray blazars with redshift up to z similar to 3, and GRBs with redshift up to z similar to 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence. C1 [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Costamante, L.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Funk, S.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S-H; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Romani, R. W.; Shaw, M. S.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Abdo, A. A.; Chekhtman, A.; Cheung, C. C.; Dermer, C. D.; Finke, J.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Abdo, A. A.; Cheung, C. C.; Finke, J.; Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Atwood, W. B.; Gilmore, R. C.; Johnson, R. P.; Primack, J. R.; Ritz, S.; Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.; Tibaldo, L.] Univ Paris Diderot, CEA Saclay, Lab AIM, CEA,IRFU,CNRS,Serv Astrophys, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Longo, F.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Gustafsson, M.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.; Rando, R.; Tibaldo, L.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Baughman, B. M.; Brandt, T. J.; Hughes, R. E.; Sander, A.; Smith, P. D.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astro Particle Phys, Columbus, OH 43210 USA. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brandt, T. J.; Knoedlseder, J.; Vilchez, N.] CNRS UPS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Fortin, P.; Horan, D.; Sanchez, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Burnett, T. H.; Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.; Chen, A. W.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Cavazzuti, E.; Gasparrini, D.; Giommi, P.] Sci Data Ctr, ASI, I-00044 Rome, Italy. [Celik, O.; Gehrels, N.; Hays, E.; McConville, W.; McEnery, J. E.; Moiseev, A. A.; Stecker, F. W.; Thompson, D. J.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, O.; Moiseev, A. A.; Vasileiou, V.] CRESST, Greenbelt, MD 20771 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, O.; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier 2, CNRS, IN2P3, Lab Phys Theor & Astroparticules, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, AlbaNova, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Yang, Z.; Ylinen, T.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Grp Coll Udine, Sez Trieste, I-33100 Udine, Italy. [Dingus, B. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Greiner, J.; Orlando, E.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Hadasch, D.; Torres, D. F.] ICREA, Barcelona, Spain. [Kataoka, J.; Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Lott, B.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Lott, B.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McConville, W.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ylinen, T.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.; Takahashi, T.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Yamazaki, R.] Aoyama Gakuin Univ, Dept Math & Phys, Kanagawa 2525258, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Bouvier, A (reprint author), Stanford Univ, Dept Phys, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. EM bouvier@stanford.edu; chen@iasf-milano.inaf.it; silvia.raino@ba.infn.it; md.razzaque.ctr.bg@nrl.navy.mil; anita.reimer@uibk.ac.at; lreyes@kicp.uchicago.edu RI Johnson, Neil/G-3309-2014; Funk, Stefan/B-7629-2015; Johannesson, Gudlaugur/O-8741-2015; Gargano, Fabio/O-8934-2015; Loparco, Francesco/O-8847-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; Thompson, David/D-2939-2012; Stecker, Floyd/D-3169-2012; Rando, Riccardo/M-7179-2013; Gehrels, Neil/D-2971-2012; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Hays, Elizabeth/D-3257-2012; Morselli, Aldo/G-6769-2011; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Ozaki, Masanobu/K-1165-2013; OI Funk, Stefan/0000-0002-2012-0080; Johannesson, Gudlaugur/0000-0003-1458-7036; Gargano, Fabio/0000-0002-5055-6395; Loparco, Francesco/0000-0002-1173-5673; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Torres, Diego/0000-0002-1522-9065; Dingus, Brenda/0000-0001-8451-7450; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Caraveo, Patrizia/0000-0003-2478-8018; Thompson, David/0000-0001-5217-9135; lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Berenji, Bijan/0000-0002-4551-772X FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Marie Curie IRG [248037] FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l'Energie Atomique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. The Fermi GBM collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. L.R.C. acknowledges support by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli. A. R. acknowledges support by Marie Curie IRG grant 248037 within the FP7 Program. Furthermore, helpful comments from the referee are acknowledged. NR 83 TC 76 Z9 77 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1082 EP 1096 DI 10.1088/0004-637X/723/2/1082 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700011 ER PT J AU Riebel, D Meixner, M Fraser, O Srinivasan, S Cook, K Vijh, U AF Riebel, David Meixner, Margaret Fraser, Oliver Srinivasan, Sundar Cook, Kem Vijh, Uma TI INFRARED PERIOD-LUMINOSITY RELATIONS OF EVOLVED VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD SO ASTROPHYSICAL JOURNAL LA English DT Article DE infrared: stars; Magellanic Clouds; stars: AGB and post-AGB; stars: carbon; stars: variables: general ID ASYMPTOTIC GIANT BRANCH; LONG SECONDARY PERIODS; YOUNG STELLAR OBJECTS; SPITZER SAGE SURVEY; AGB STARS; RED GIANTS; MASS-LOSS; MIRA VARIABLES; EVOLUTION; DUST AB We combine variability information from the MAssive Compact Halo Objects survey of the Large Magellanic Cloud with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution survey to create a data set of similar to 30,000 variable red sources. We photometrically classify these sources as being on the first ascent of the red giant branch, or as being in one of three stages along the asymptotic giant branch (AGB): oxygenrich, carbon-rich, or highly reddened with indeterminate chemistry ("extreme" AGB candidates). We present linear period-luminosity (P-L) relationships for these sources using eight separate infrared bands (J, H, K(s), 3.6, 4.5, 5.8, 8.0, and 24 mu m) as proxies for the luminosity. We find that the wavelength dependence of the slope of the P-L relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 +/- 0.04 when magnitude is measured in the 3.6 mu m band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 +/- 0.05. C1 [Riebel, David] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Meixner, Margaret] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Fraser, Oliver] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Srinivasan, Sundar] Inst Astrophys, F-75014 Paris, France. [Cook, Kem] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94550 USA. [Vijh, Uma] Univ Toledo, Ritter Astrophys Res Ctr, Toledo, OH 43606 USA. RP Riebel, D (reprint author), Johns Hopkins Univ, Dept Phys & Astron, 3400 N Charles St, Baltimore, MD 21218 USA. EM driebel@pha.jhu.edu FU NASA [NAG5-12595, 1275598]; U.S. Department of Energy through the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; National Science Foundation through the Center for Particle Astrophysics of the University of California [AST-8809616]; Mount Stromlo and Siding Spring Observatory; Australian National University FX The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.; This paper utilizes public domain data obtained by the MACHO Project, jointly funded by the U.S. Department of Energy through the University of California, Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48, by the National Science Foundation through the Center for Particle Astrophysics of the University of California under cooperative agreement AST-8809616, and by the Mount Stromlo and Siding Spring Observatory, part of the Australian National University. NR 39 TC 30 Z9 30 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1195 EP 1209 DI 10.1088/0004-637X/723/2/1195 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700020 ER PT J AU High, FW Stalder, B Song, J Ade, PAR Aird, KA Allam, SS Armstrong, R Barkhouse, WA Benson, BA Bertin, E Bhattacharya, S Bleem, LE Brodwin, M Buckley-Geer, EJ Carlstrom, JE Challis, P Chang, CL Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ George, EM Gladders, M Halverson, NW Hamuy, M Hansen, SM Holder, GP Holzapfel, WL Hrubes, JD Joy, M Keisler, R Lee, AT Leitch, EM Lin, H Lin, YT Loehr, A Lueker, M Marrone, D McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Morell, N Ngeow, CC Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Smith, RC Spieler, HG Staniszewski, Z Stark, AA Stubbs, CW Tucker, DL Vanderlinde, K Vieira, JD Williamson, R Wood-Vasey, WM Yang, Y Zahn, O Zenteno, A AF High, F. W. Stalder, B. Song, J. Ade, P. A. R. Aird, K. A. Allam, S. S. Armstrong, R. Barkhouse, W. A. Benson, B. A. Bertin, E. Bhattacharya, S. Bleem, L. E. Brodwin, M. Buckley-Geer, E. J. Carlstrom, J. E. Challis, P. Chang, C. L. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. George, E. M. Gladders, M. Halverson, N. W. Hamuy, M. Hansen, S. M. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Joy, M. Keisler, R. Lee, A. T. Leitch, E. M. Lin, H. Lin, Y. -T. Loehr, A. Lueker, M. Marrone, D. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Morell, N. Ngeow, C. -C. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Smith, R. C. Spieler, H. G. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Tucker, D. L. Vanderlinde, K. Vieira, J. D. Williamson, R. Wood-Vasey, W. M. Yang, Y. Zahn, O. Zenteno, A. TI OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID SEQUENCE LUMINOSITY FUNCTION; COLOR-MAGNITUDE RELATION; RED-SEQUENCE; CONSTRAINTS; COSMOLOGY; CATALOG; VELOCITIES; EVOLUTION; STELLAR; MODELS AB We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg(2) area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R(200) radii and M(200) masses from optical richness. The clusters span redshifts from 0.15 to greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z > 1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in sigma(z)/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M(200) cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis. C1 [High, F. W.; Stalder, B.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Song, J.; Ngeow, C. -C.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, Wales. [Aird, K. A.; Hrubes, J. D.; Marrone, D.] Univ Chicago, Chicago, IL 60637 USA. [Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D. L.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Armstrong, R.; Desai, S.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Barkhouse, W. A.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Benson, B. A.; George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Keisler, R.; Leitch, E. M.; Marrone, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bertin, E.] Inst Astrophys Paris, F-75014 Paris, France. [Bhattacharya, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Challis, P.; Foley, R. J.; Loehr, A.; Stark, A. A.; Stubbs, C. W.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hamuy, M.; Morell, N.] Univ Chile, Dept Astron, Santiago, Chile. [Hansen, S. M.] Univ Calif Santa Cruz, Univ Calif Observ, Santa Cruz, CA 95064 USA. [Hansen, S. M.] Univ Calif Santa Cruz, Dept Astron, Santa Cruz, CA 95064 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, VP62, Dept Space Sci, Huntsville, AL 35812 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Lin, Y. -T.] Univ Tokyo, Inst Phys & Math Univ, Kashiwa, Chiba 2778568, Japan. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Univ, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Smith, R. C.] Cerro Tololo Interamer Observ, La Serena, Chile. [Wood-Vasey, W. M.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. RP High, FW (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. EM high@physics.harvard.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Hamuy, Mario/G-7541-2016 OI Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Williamson, Ross/0000-0002-6945-2975; Reichardt, Christian/0000-0003-2226-9169; Tucker, Douglas/0000-0001-7211-5729; Stark, Antony/0000-0002-2718-9996; FU National Aeronautics and Space Administration; National Science Foundation [AST-0506752, AST-0607485, ANT-0638937, ANT-0130612, MRI-0723073]; DOE [DE-FG02-08ER41569, DE-AC02-05CH11231]; NIST [70NANB8H8007]; Harvard University; Brinson Foundation; Clay fellowship FX This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication has made use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.; This work is supported by the NSF (AST-0506752, AST-0607485, AST-0506752, ANT-0638937, ANT-0130612, MRI-0723073), the DOE (DE-FG02-08ER41569 and DE-AC02-05CH11231), NIST (70NANB8H8007), and Harvard University. B.S. and A.L. gratefully acknowledge support by the Brinson Foundation. R.J.F. acknowledges the generous support of a Clay fellowship. NR 64 TC 48 Z9 48 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2010 VL 723 IS 2 BP 1736 EP 1747 DI 10.1088/0004-637X/723/2/1736 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 678QA UT WOS:000284093700061 ER PT J AU Rodgers, AJ Petersson, NA Sjogreen, B AF Rodgers, Arthur J. Petersson, N. Anders Sjogreen, Bjorn TI Simulation of topographic effects on seismic waves from shallow explosions near the North Korean nuclear test site with emphasis on shear wave generation SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article ID 9 OCTOBER 2006; UNITED-STATES EARTHQUAKES; FINITE-DIFFERENCE METHOD; NEVADA TEST-SITE; NUMERICAL SIMULATIONS; GROUND-MOTION; LG-WAVES; S-WAVES; TELESEISMIC OBSERVATIONS; HETEROGENEOUS MEDIA AB We performed high-resolution (8 Hz) three-dimensional simulations of ground motions from shallow explosions in the presence of rough surface topography near the North Korean nuclear test site to study elastic propagation effects with emphasis on theoretical aspects of shear wave generation. Interaction with rough topography causes significant P-to-Rg scattering along the surface with amplification of high-frequency (2-8 Hz) shear waves relative to the flat Earth case. Shear waves of different polarizations are coupled by topographic scattering. Rg precursors composed of P-to-Rg conversions traveling as surface waves have the spectral amplitudes comparable to the P wave, while the Rg phase has the low-frequency (0.5-3 Hz) spectral shape of the Rg from the flat case plus the high-frequency (3-8 Hz) P wave spectra. Motions at near-vertical takeoff angles corresponding to teleseismic propagation are increased or decreased indicating that waves are focused or defocused by topographic features above the source. Topographic roughness has a dramatic effect as short-wavelength features (<2-5 km) are included. Higher frequencies are amplified by topography, including frequencies corresponding to wavelengths shorter than the shortest topographic scale length. Overall topography enhances energy propagating along the surface near the source, amplifies surface waves, and tends to balance SV- and SH-polarized motions, all of which impact shear wave observations used for nuclear explosion monitoring. Further simulation studies could elucidate how the wavefield emerging from a topographically rough area ultimately propagates to regional and/or teleseismic distances. C1 [Rodgers, Arthur J.] Lawrence Livermore Natl Lab, Geophys Monitoring Program, Livermore, CA 94551 USA. [Rodgers, Arthur J.] Univ Grenoble 1, Lab Geophys Interne & Tectonophys, Grenoble, France. [Petersson, N. Anders; Sjogreen, Bjorn] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Rodgers, AJ (reprint author), Lawrence Livermore Natl Lab, Geophys Monitoring Program, L-046, Livermore, CA 94551 USA. EM rodgers7@llnl.gov; andersp@llnl.gov; sjogreen2@llnl.gov RI Rodgers, Arthur/E-2443-2011 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX A.R. is grateful for support as a Fulbright Scholar from the Council for International Exchange of Scholars and the Commission franco-americaine d'echanges universitaires et culturel, to Michel Campillo for hosting him at the Laboratoire de Geophysique Interne et Tectonophysique, Universite Joseph Fourier, Grenoble, France, and to the Lawrence Livermore National Laboratory for granting Professional Research and Teaching leave. We thank Jeff Wagoner for assistance with topographic data from the Shuttle Radar Topography Mission project. We are grateful to LLNL Laboratory Directed Research and Development for support to develop the WPP code. The WPP code is open source and available with documentation from the LLNL Web site [Petersson, 2010]. Simulations were performed on parallel computers operated by Livermore Computing using a Grand Challenge Allocation. Figures were made with the Generic Mapping Tool (GMT) [Wessel and Smith, 1998]. Seismogram plots were made with pssac2, developed by Lupei Zhu and Brian Savage. We are grateful for discussions with Michel Bouchon, William Walter, Stephen Myers, and Michael Pasyanos and to two anonymous reviewers for critical comments on the original manuscript. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This is LLNL contribution LLNL-JRNL-433892. NR 95 TC 18 Z9 19 U1 2 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD NOV 10 PY 2010 VL 115 AR B11309 DI 10.1029/2010JB007707 PG 27 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 680HO UT WOS:000284223200003 ER PT J AU Grishaev, A Guo, LA Irving, T Bax, A AF Grishaev, Alexander Guo, Liang Irving, Thomas Bax, Ad TI Improved Fitting of Solution X-ray Scattering Data to Macromolecular Structures and Structural Ensembles by Explicit Water Modeling SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PROTEIN-STRUCTURE; BIOLOGICAL MACROMOLECULES; NMR; REFINEMENT; RESOLUTION; DYNAMICS; CRYSTALLOGRAPHY; LYSOZYME; ANGSTROM; COMPLEX AB A new procedure, AXES, is introduced for fitting small-angle X-ray scattering (SAXS) data to macromolecular structures and ensembles of structures. By using explicit water models to account for the effect of solvent, and by restricting the adjustable fitting parameters to those that dominate experimental uncertainties, including sample/buffer rescaling, detector dark current, and, within a narrow range, hydration layer density, superior fits between experimental high resolution structures and SAXS data are obtained. AXES results are found to be more discriminating than standard Crysol fitting of SAXS data when evaluating poorly or incorrectly modeled protein structures. AXES results for ensembles of structures previously generated for ubiquitin show improved fits over fitting of the individual members of these ensembles, indicating these ensembles capture the dynamic behavior of proteins in solution. C1 [Grishaev, Alexander; Bax, Ad] NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA. [Guo, Liang; Irving, Thomas] IIT, Biophys Collaborat Access Team, CSRRI, BCPS Dept, Chicago, IL 60616 USA. RP Grishaev, A (reprint author), NIDDK, Chem Phys Lab, NIH, Bethesda, MD 20892 USA. EM AlexanderG@intra.niddk.nih.gov; bax@nih.gov RI ID, BioCAT/D-2459-2012 FU NIDDK, NIH; Office of the Director, NIH; U.S. Department of Energy [W-31-109-ENG-38]; BioCAT Research Center; NIH [RR-08630]; NCI, NIH [PUP-77]; Argonne National Laboratory [PUP-77] FX We thank Gerhard Hummer for helpful discussions, Yang Shen for the Rosetta models of GB3, and Frank Delaglio for assistance with webserver implementation of AXES. This work was supported by the Intramural Research Program of the NIDDK, NIH, and by the Intramural Antiviral Target Program of the Office of the Director, NIH. We gratefully acknowledge use of the Advanced Photon Source, supported by the U.S. Department of Energy, Contract No. W-31-109-ENG-38, the BioCAT Research Center, supported by the NIH, RR-08630, and the shared scattering beamline resource allocated under the PUP-77 agreement between the NCI, NIH, and the Argonne National Laboratory. NR 25 TC 55 Z9 57 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 10 PY 2010 VL 132 IS 44 BP 15484 EP 15486 DI 10.1021/ja106173n PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 676YL UT WOS:000283955600009 PM 20958032 ER PT J AU Feng, PL Perry, JJ Nikodemski, S Jacobs, BW Meek, ST Allendorf, MD AF Feng, Patrick L. Perry, John J. Nikodemski, Stefan Jacobs, Benjamin W. Meek, Scott T. Allendorf, Mark D. TI Assessing the Purity of Metal-Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum Dots, and Framework Decomposition SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NANOPARTICLES; PRECURSORS; PARTICLES; BEHAVIOR; WATER AB Photoluminescence (PL) spectroscopy was used to characterize nanoscale ZnO impurities, amine-donor charge-transfer exciplexes, and framework decomposition in samples of MOF-5 prepared by various methods. The combined results cast doubt on previous reports describing MOF-5 as a semiconductor and demonstrate that PL as a tool for characterizing MOF purity possesses advantages such as simplicity, speed, and sensitivity over currently employed powder XRD MOF characterization methods. C1 [Feng, Patrick L.; Perry, John J.; Nikodemski, Stefan; Jacobs, Benjamin W.; Meek, Scott T.; Allendorf, Mark D.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Allendorf, MD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM mdallen@sandia.gov RI Perry IV, John/C-9155-2011 OI Perry IV, John/0000-0001-9393-5451 FU Defense Threat Reduction Agency [0743251-0]; U.S. Dept. of Energy; Lockheed Martin Corporation; National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was funded by the Defense Threat Reduction Agency under Contract 0743251-0 and by the U.S. Dept. of Energy Office of Proliferation Detection Programs. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 29 TC 67 Z9 69 U1 21 U2 127 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 10 PY 2010 VL 132 IS 44 BP 15487 EP 15489 DI 10.1021/ja1065625 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 676YL UT WOS:000283955600010 PM 20961048 ER PT J AU Greve, BK Martin, KL Lee, PL Chupas, PJ Chapman, KW Wilkinson, AP AF Greve, Benjamin K. Martin, Kenneth L. Lee, Peter L. Chupas, Peter J. Chapman, Karena W. Wilkinson, Angus P. TI Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF3 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; PHASE-TRANSITION; FERROELASTIC PROPERTIES; CRYSTAL; ALPHA-ALF3; MECHANISM; DYNAMICS; TIF3 AB Scandium trifluoride maintains a cubic ReO3 type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at similar to 300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, alpha(1) approximate to - 14 ppm K-1). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW2O8 and positive thermal expansion above similar to 1100 K. While the cubic ReO3 structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF3 is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE. C1 [Greve, Benjamin K.; Martin, Kenneth L.; Wilkinson, Angus P.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Lee, Peter L.; Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Wilkinson, AP (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. EM angus.wilkinson@chemistry.gatech.edu RI Wilkinson, Angus/C-3408-2008; Chapman, Karena/G-5424-2012 OI Wilkinson, Angus/0000-0003-2904-400X; FU National Science Foundation [DMR-0605671, DMR-0905842]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX A.P.W. is grateful for support from the National Science Foundation under Grants DMR-0605671 and DMR-0905842. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Part of this work was performed at Oak Ridge National Laboratory's High Flux Isotope Reactor, sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We are grateful for assistance from Vasile O. Garlea and the sample environment staff of HFIR. NR 36 TC 106 Z9 109 U1 10 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 10 PY 2010 VL 132 IS 44 BP 15496 EP 15498 DI 10.1021/ja106711v PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 676YL UT WOS:000283955600013 PM 20958035 ER PT J AU Woo, CH Beaujuge, PM Holcombe, TW Lee, OP Frechet, JMJ AF Woo, Claire H. Beaujuge, Pierre M. Holcombe, Thomas W. Lee, Olivia P. Frechet, Jean M. J. TI Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PHOTOVOLTAIC PROPERTIES; BULK HETEROJUNCTIONS; ALPHA-OLIGOFURANS; PERFORMANCE; COPOLYMERS; ACCEPTOR; POLY(3-HEXYLTHIOPHENE); POLYTHIOPHENES; THIOPHENE; ENERGY AB The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC(71)BM as the acceptor showed power conversion efficiencies reaching 5.0%. C1 [Woo, Claire H.; Beaujuge, Pierre M.; Frechet, Jean M. J.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Woo, Claire H.; Frechet, Jean M. J.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Frechet, JMJ (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM frechet@berkeley.edu OI Frechet, Jean /0000-0001-6419-0163 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Center for Advanced Molecular Photovoltaics [KUS-C1-015-21]; King Abdullah University of Science and Technology (KAUST); National Science Foundation FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the Center for Advanced Molecular Photovoltaics (Award No. KUS-C1-015-21), supported by King Abdullah University of Science and Technology (KAUST). C.H.W. and T.W.H. thank the National Science Foundation for graduate research fellowships. NR 43 TC 306 Z9 311 U1 7 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 10 PY 2010 VL 132 IS 44 BP 15547 EP 15549 DI 10.1021/ja108115y PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 676YL UT WOS:000283955600031 PM 20945901 ER PT J AU Cohen, ML AF Cohen, Marvin L. TI PREDICTING AND EXPLAINING T-c AND OTHER PROPERTIES OF BCS SUPERCONDUCTORS SO MODERN PHYSICS LETTERS B LA English DT Review DE Superconductivity; BCS theory; condensed matter physics; theoretical physics ID STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; CARBON NANOTUBES; PHONON; PSEUDOPOTENTIALS; PRESSURES; METALS; SYSTEM; MGB2; SI AB After providing some history and background material regarding the evolution of research on superconductivity, a description of the use of the BCS theory for the development of approaches for calculations and predictions of superconducting properties will be given. The emphasis is on estimates of T-c raising T-c, and predicting new superconductors. The basic analysis will be based on the BCS formalism with modern extensions. The focus here is on phonon mediated pairing of electrons as described in the original BCS paper augmented by current modifications and the use of modern calculational approaches C1 [Cohen, Marvin L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cohen, Marvin L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Cohen, ML (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM mlcohen@berkeley.edu FU NSF [DMR07-05941]; Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the NSF grant DMR07-05941 and Director, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. NR 57 TC 5 Z9 5 U1 1 U2 15 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-9849 J9 MOD PHYS LETT B JI Mod. Phys. Lett. B PD NOV 10 PY 2010 VL 24 IS 28 BP 2755 EP 2768 DI 10.1142/S0217984910025292 PG 14 WC Physics, Applied; Physics, Condensed Matter; Physics, Mathematical SC Physics GA 661UJ UT WOS:000282753300001 ER PT J AU Arenholz, E van der Laan, G McClure, A Idzerda, Y AF Arenholz, E. van der Laan, G. McClure, A. Idzerda, Y. TI Electronic and magnetic structure of GaxFe1-x thin films SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DICHROISM; MAGNETOCRYSTALLINE ANISOTROPY; FE-GA; MAGNETOELASTICITY; SPECTRA; ALLOYS AB The electronic as well as magnetic properties of GaxFe1-x films were studied by soft x-ray measurements. Using x-ray magnetic circular dichroism the Fe majority-spin band was found to be completely filled for x approximate to 0.3. With further enhanced Ga content, the Fe moment as well as the angular dependence of the x-ray magnetic linear dichroism decrease strongly, which we attribute to the formation of D0(3) precipitates. Moreover, the magnetocrystalline anisotropy drops significantly. C1 [Arenholz, E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [McClure, A.; Idzerda, Y.] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA. RP Arenholz, E (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RI van der Laan, Gerrit/Q-1662-2015 OI van der Laan, Gerrit/0000-0001-6852-2495 FU U.S. Department of Energy [DE-AC02-05CH11231]; Army Research Office [w911NF-08-1-0325] FX Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Grant No. w911NF-08-1-0325 from the Army Research Office. NR 23 TC 14 Z9 14 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 18 AR 180405 DI 10.1103/PhysRevB.82.180405 PG 4 WC Physics, Condensed Matter SC Physics GA 678CJ UT WOS:000284046300003 ER PT J AU Dimitrov, IK Manley, ME Shapiro, SM Yang, J Zhang, W Chen, LD Jie, Q Ehlers, G Podlesnyak, A Camacho, J Li, QA AF Dimitrov, I. K. Manley, M. E. Shapiro, S. M. Yang, J. Zhang, W. Chen, L. D. Jie, Q. Ehlers, G. Podlesnyak, A. Camacho, J. Li, Qiang TI Einstein modes in the phonon density of states of the single-filled skutterudite Yb0.2Co4Sb12 SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; VIBRATIONAL-MODES AB Measurements of the phonon density of states by inelastic neutron time-of-flight scattering and specific-heat measurements along with first-principles calculations, provide compelling evidence for the existence of an Einstein oscillator (rattler) at omega(E1) approximate to 5.0 meV in the filled skutterudite Yb0.2Co4Sb12. Multiple dispersionless modes in the measured density of states of Yb0.2Co4Sb12 at intermediate transfer energies (14 <= omega <= 20 meV) are exhibited in both the experimental and theoretical density of states of the Yb-filled specimen. A peak at 12.4 meV is shown to coincide with a second Einstein mode at omega(F.2) approximate to 12.8 meV obtained from heat-capacity data. The local modes at intermediate transfer energies are attributed to altered properties of the host CoSb3 cage as a result of Yb filling. It is suggested that these modes are owed to a complementary mechanism for the scattering of heat-carrying phonons in addition to the mode observed at omega(E1) approximate to 5.0 meV. Our observations offer a plausible explanation for the significantly higher dimensionless figures of merit of filled skutterudites, compared to their parent compounds. C1 [Dimitrov, I. K.; Shapiro, S. M.; Jie, Q.; Camacho, J.; Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Manley, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Yang, J.; Zhang, W.; Chen, L. D.] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China. [Ehlers, G.; Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Dimitrov, IK (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM idimitrov@bnl.gov; qiangli@bnl.gov RI Instrument, CNCS/B-4599-2012; Jie, Qing/H-3780-2011; Zhang, Wenqing/K-1236-2012; Podlesnyak, Andrey/A-5593-2013; Yang, Jiong/K-6330-2014; Ehlers, Georg/B-5412-2008; Manley, Michael/N-4334-2015; Jie, Qing/N-8673-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Yang, Jiong/0000-0002-5862-5981; Ehlers, Georg/0000-0003-3513-508X; FU National Laboratory was supported by the Office of Science, U.S. Department of Energy [DE-AC02-98CH10886]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Basic Research Program of China [2007CB607500]; National Natural Science Foundation of China [50821004]; National Science Foundation for Distinguished Young Scholars of China [1150825205]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-98CH10886. M.E.M.' s work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. This work was partly supported by National Basic Research Program of China (Contract No. 2007CB607500), National Natural Science Foundation of China (Contract No. 50821004), and National Science Foundation for Distinguished Young Scholars of China (Contract No. 1150825205). This Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. I. K. D. wishes to thank Vyacheslav Solovyov for stimulating discussions and critical reading of the manuscript. NR 25 TC 31 Z9 31 U1 2 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 17 AR 174301 DI 10.1103/PhysRevB.82.174301 PG 8 WC Physics, Condensed Matter SC Physics GA 678CE UT WOS:000284045600005 ER PT J AU French, M Mattsson, TR Redmer, R AF French, Martin Mattsson, Thomas R. Redmer, Ronald TI Diffusion and electrical conductivity in water at ultrahigh pressures SO PHYSICAL REVIEW B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; EQUATION-OF-STATE; MAGNETIC-FIELDS; MELTING CURVE; ICE-X; H2O; URANUS; DENSITY; METALS; TEMPERATURES AB We calculate the electrical conductivity of water for ultrahigh pressures up to 80 Mbar and temperatures up to 130 000 K as relevant for planetary physics by using ab initio molecular-dynamics simulations. The electron system is treated within density-functional theory and the electronic conductivity is obtained from an evaluation of the Kubo-Greenwood formula. The ionic conductivity is determined via diffusion coefficients. Our calculations reproduce most of the available experimental conductivity data within the error bars while the conductivity plateau measured by Mitchell and Nellis cannot be reproduced. At high densities a pressure-induced nonmetal-to-metal transition is predicted within the superionic phase. Furthermore, we study the influence of exchange and correlations on the electronic conductivity in more detail by applying a standard generalized gradient approximation and a hybrid functional as well that includes screened Fock exchange. The latter treatment yields a larger band gap and thus more reliable electrical conductivities, especially in the region of the nonmetal-to-metal transition. These results are relevant as input for future interior and dynamo models of giant, water-rich planets. C1 [French, Martin; Redmer, Ronald] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Mattsson, Thomas R.] Sandia Natl Labs, HEDP Theory, Albuquerque, NM 87185 USA. RP French, M (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. RI Mattsson, Thomas/B-6057-2009; Redmer, Ronald/F-3046-2013 NR 68 TC 29 Z9 29 U1 7 U2 93 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 17 AR 174108 DI 10.1103/PhysRevB.82.174108 PG 9 WC Physics, Condensed Matter SC Physics GA 678CE UT WOS:000284045600003 ER PT J AU Heidrich-Meisner, F Gonzalez, I Al-Hassanieh, KA Feiguin, AE Rozenberg, MJ Dagotto, E AF Heidrich-Meisner, F. Gonzalez, I. Al-Hassanieh, K. A. Feiguin, A. E. Rozenberg, M. J. Dagotto, E. TI Nonequilibrium electronic transport in a one-dimensional Mott insulator SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM RENORMALIZATION-GROUPS; CARBON NANOTUBES; SYSTEMS; BREAKDOWN; DYNAMICS; FIELDS AB We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state electronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy. C1 [Heidrich-Meisner, F.] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Heidrich-Meisner, F.] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany. [Gonzalez, I.] Ctr Supercomputac Galicia, E-15705 Santiago De Compostela, Spain. [Al-Hassanieh, K. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Feiguin, A. E.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Rozenberg, M. J.] Univ Paris 11, Phys Solides Lab, CNRS, UMR 8502, F-91405 Orsay, France. [Rozenberg, M. J.] Univ Buenos Aires, FCEN, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [Dagotto, E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dagotto, E.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Heidrich-Meisner, F (reprint author), Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. EM heidrich-meisner@lmu.de RI Heidrich-Meisner, Fabian/B-6228-2009; OI Gonzalez, Ivan/0000-0002-6451-6909 FU MICINN [FIS2009-13520]; NSF [DMR-0955707]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX We thank M. Daghofer, H. Onishi, G. Roux, and D. Schuricht for very useful discussions. I.G. acknowledges support from MICINN through Grant No. FIS2009-13520. A.E.F. thanks NSF for support through Grant No. DMR-0955707. E.D.'s research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 80 TC 44 Z9 44 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 20 AR 205110 DI 10.1103/PhysRevB.82.205110 PG 11 WC Physics, Condensed Matter SC Physics GA 678CS UT WOS:000284047800003 ER PT J AU Hering, EN Borges, HA Ramos, SM Fontes, MB Baggio-Saitovich, E Continentino, MA Bittar, EM Ferreira, LM Lora-Serrano, R Gandra, FCG Adriano, C Pagliuso, PG Moreno, NO Sarrao, JL Thompson, JD AF Hering, E. N. Borges, H. A. Ramos, S. M. Fontes, M. B. Baggio-Saitovich, E. Continentino, M. A. Bittar, E. M. Ferreira, L. Mendonca Lora-Serrano, R. Gandra, F. C. G. Adriano, C. Pagliuso, P. G. Moreno, N. O. Sarrao, J. L. Thompson, J. D. TI Residual superconducting phases in the disordered Ce2Rh1-xIrxIn8 alloys SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-FERMION MATERIALS; UNCONVENTIONAL SUPERCONDUCTIVITY; ANTIFERROMAGNETIC ORDER; PRESSURE; CERHIN5; MAGNETISM; CECOIN5 AB We report evidence of two superconducting phases in the Ce2Rh1-xIrxIn8 heavy fermion systems. One of these phases is pressure induced and occurs for a range of compositions situated near the Rh-rich extreme, consistent with the behavior observed for the pure Ce2RhIn8 compound. This superconducting region is expanded to higher critical temperatures and lower Rh concentrations with increasing pressure. It has a clear interplay with the established antiferromagnetic state, T-N similar to 2.8 K, suggesting that magnetic fluctuations are important for its realization. The second superconducting phase appears already at ambient pressure and it is characterized by a dome centered around x similar to 0.6 which, in sharp contrast with the first transition, is progressively eliminated by the application of pressure. These strikingly opposite behaviors under the same tuning parameter indicate the two transitions may have different natures. We compare these findings in the Ce2Rh1-xIrxIn8 alloys to its related CeRh1-xIrxIn5, arguing that the occurrence of the superconducting phases become unfavorable for the bilayers alloys due to higher dimensionality and stronger disorder. Further, we discuss whether the present results warrant similar claims with respect to the CeRh1-xIrxIn5 phase diagram and the possible nature of the superconducting phases. C1 [Hering, E. N.; Ramos, S. M.; Fontes, M. B.; Baggio-Saitovich, E.; Continentino, M. A.] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Borges, H. A.] Pontificia Univ Catolica Rio de Janeiro, Dept Fis, BR-22453900 Rio De Janeiro, Brazil. [Bittar, E. M.; Ferreira, L. Mendonca; Lora-Serrano, R.; Gandra, F. C. G.; Adriano, C.; Pagliuso, P. G.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Ferreira, L. Mendonca] Univ Fed Pelotas UFPel, Inst Fis & Matemat, BR-96010900 Pelotas, RS, Brazil. [Lora-Serrano, R.] Univ Fed Uberlandia, Inst Fis, BR-38400902 Uberlandia, MG, Brazil. [Moreno, N. O.] Univ Fed Sergipe, Dept Fis, BR-49100000 Sao Cristovao, SE, Brazil. [Sarrao, J. L.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hering, EN (reprint author), Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil. EM pagliuso@ifi.unicamp.br RI Ferreira, Leticie/C-4311-2012; Pagliuso, Pascoal/C-9169-2012; Moreno, Nelson/H-1708-2012; Continentino, Mucio/B-7271-2013; Bittar, Eduardo/B-6266-2008; Lora Serrano, Raimundo/L-6307-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Moreno, Nelson/0000-0002-1672-4340; Continentino, Mucio/0000-0003-0167-8529; Bittar, Eduardo/0000-0002-2762-1312; Lora Serrano, Raimundo/0000-0003-3777-2170; FU CNPq; FAPERJ; FAPESP; CAPES (Brazil); U.S. DOE FX We thank CNPq, FAPERJ, FAPESP, and CAPES (Brazil) and U.S. DOE for financial support. NR 38 TC 1 Z9 1 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 18 AR 184517 DI 10.1103/PhysRevB.82.184517 PG 7 WC Physics, Condensed Matter SC Physics GA 678CJ UT WOS:000284046300010 ER PT J AU Lane, NJ Vogel, SC Barsoum, MW AF Lane, Nina J. Vogel, Sven C. Barsoum, Michel W. TI High-temperature neutron diffraction and the temperature-dependent crystal structures of the MAX phases Ti3SiC2 and Ti3GeC2 SO PHYSICAL REVIEW B LA English DT Article ID TEXTURE ANALYSIS; MECHANICAL-PROPERTIES; TOF DIFFRACTOMETER; THERMAL-PROPERTIES; TENSILE CREEP; RANGE; HIPPO; CHEMISTRY; EXPANSION; CARBIDE AB Herein, we report on the crystal structures of the isostructural Ti3SiC2 and Ti3GeC2 phases determined by Rietveld analysis of neutron diffraction data in the 100 to 1100 degrees C temperature range. The results show that the Si and Ge atoms vibrate anisotropically with the highest amplitudes and within the basal planes. The equivalent isotropic thermal motion behavior does not differ significantly between the two phases; the anisotropic thermal motion, interatomic distances, and bond angles, however, show strikingly different behavior. Furthermore, while the Ti- Si bonds increase linearly with increasing temperature, the Ti- Ge bonds apparently do not. The anisotropic motion of the Ge atoms in the basal plane with the correlated motion between the Ti and the Ge atoms is invoked as a possible explanation. The volume expansions are 9.0(+/- 0.1) X 10(-6) K-1 and 8.7(+/- 0.1) X 10(-6) K-1 for Ti3SiC2 and Ti3GeC2, respectively; the expansions along the a and c axes are alpha(a) = 8.9 (+/- 0.1) X 10(-6) K-1 and alpha(c)= 9.4 (+/- 0.1) X 10(-6) K-1 for Ti3SiC2 and alpha(a) = 8.5(+/- 0.1) X 10(-6) K-1 and alpha(c) = 9.2(+/- 0.1) X 10(-6) K-1 for Ti3GeC2. A dramatic increase in error bars and a discontinuity in thermal motion parameters of the Ti-II atoms in Ti3GeC2 were also observed between 300 and 500 C during both heating and cooling. This discontinuity may in turn explain why the internal friction rises dramatically in that temperature range. C1 [Lane, Nina J.; Barsoum, Michel W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Vogel, Sven C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Lane, NJ (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RI Lujan Center, LANL/G-4896-2012; OI Vogel, Sven C./0000-0003-2049-0361 FU U.S. Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; Graduate Assistance in Areas of National Need for Drexel Research and Education in Advanced Materials (GAANN-DREAM) under the U. S. Department of Education [P200A060117]; Ceramics Division of the National Science Foundation [DMR 0503711]; Department of Energy's Office of Basic Energy Sciences under DOE [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the U.S. Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. This work was also partially funded by Graduate Assistance in Areas of National Need for Drexel Research and Education in Advanced Materials (GAANN-DREAM) under the U. S. Department of Education Grant No. P200A060117 and the Ceramics Division of the National Science Foundation (Grant No. DMR 0503711). M. W. B. would also like to acknowledge the financial support of the Wheatley Scholar of the Lujan Center at Los Alamos National Laboratory, which is funded by the Department of Energy's Office of Basic Energy Sciences under DOE Contract No. DE-AC52-06NA25396. NR 39 TC 16 Z9 16 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 17 AR 174109 DI 10.1103/PhysRevB.82.174109 PG 11 WC Physics, Condensed Matter SC Physics GA 678CE UT WOS:000284045600004 ER PT J AU Spataru, CD AF Spataru, Catalin D. TI Scaling properties of the Anderson model in the Kondo regime studied by sigma G sigma W formalism SO PHYSICAL REVIEW B LA English DT Article ID SINGLE-ELECTRON TRANSISTOR; QUANTUM DOTS; PERTURBATION EXPANSION; METALS; PHOTOEMISSION; ATOM AB The symmetric Anderson model for a single impurity coupled to two leads is studied at strong interaction using the GW approximation within the sigma G sigma W formalism. We find that the low-energy properties show universal scaling behavior in the asymptotic regime. While the GW scaling functions are similar in form to the scaling functions known from the numerically exact solution, they are characterized by a different parameter value indicating that GW fails to describe correctly spin correlations between the impurity and lead electrons. We also compare the GW and exact Kondo scales for a broad range of the interaction strength. In contrast to the exponential behavior shown by the exact solution, the GW Kondo scale depends algebraically on the interaction strength. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Spataru, CD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM cdspata@sandia.gov FU United States Department of Energy [DE-AC01-94-AL85000] FX I would like to thank Andrew Millis for useful suggestions and Silke Biermann for an instructive discussion of the material in Ref. 28. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC01-94-AL85000. NR 49 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 19 AR 195111 DI 10.1103/PhysRevB.82.195111 PG 9 WC Physics, Condensed Matter SC Physics GA 678CN UT WOS:000284047100001 ER PT J AU Zhang, YW Jiang, WL Wang, CM Namavar, F Edmondson, PD Zhu, ZH Gao, F Lian, J Weber, WJ AF Zhang, Yanwen Jiang, Weilin Wang, Chongmin Namavar, Fereydoon Edmondson, Philip D. Zhu, Zihua Gao, Fei Lian, Jie Weber, William J. TI Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation SO PHYSICAL REVIEW B LA English DT Article ID OXYGEN; EVOLUTION; DEFECTS AB Grain growth, oxygen stoichiometry, and phase stability of nanostructurally stabilized cubic zirconia (NSZ) are investigated under 2 MeV Au-ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with irradiation dose to similar to 30 nm at similar to 35 dpa. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that the grain growth is not thermally activated and irradiation-induced grain growth is the dominating mechanism. While the cubic structure is retained and no new phases are identified after the high-dose irradiations, oxygen reduction in the irradiated NSZ films is detected. The ratio of O to Zr decreases from similar to 2.0 for the as-deposited films to similar to 1.65 after irradiation to similar to 35 dpa. The loss of oxygen suggests a significant increase in oxygen vacancies in nanocrystalline zirconia under ion irradiation. The oxygen deficiency may be essential in stabilizing the cubic phase to larger grain sizes. C1 [Zhang, Yanwen; Weber, William J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Yanwen; Jiang, Weilin; Wang, Chongmin; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei] Pacific NW Natl Lab, Richland, WA 99352 USA. [Namavar, Fereydoon] Univ Nebraska, Med Ctr, Omaha, NE 68198 USA. [Lian, Jie] Rensselaer Polytech Inst, Troy, NY 12180 USA. [Weber, William J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Zhang, YW (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 4500S A148,MS 6138, Oak Ridge, TN 37831 USA. EM zhangy1@ornl.gov RI Weber, William/A-4177-2008; Edmondson, Philip/G-5371-2011; Gao, Fei/H-3045-2012; Zhu, Zihua/K-7652-2012; OI Weber, William/0000-0002-9017-7365; Jiang, Weilin/0000-0001-8302-8313; Edmondson, Philip/0000-0001-8990-0870 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Battelle; UT-Battelle, LLC; Department of Energy's Office of Biological and Environmental Research FX This research was supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy with Battelle and with UT-Battelle, LLC. Experimental work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. M. H. Engelhard's effort in XPS measurements is appreciated. Y.Z. is grateful for the discussion with S. J. Zinkle. NR 27 TC 53 Z9 53 U1 1 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2010 VL 82 IS 18 AR 184105 DI 10.1103/PhysRevB.82.184105 PG 7 WC Physics, Condensed Matter SC Physics GA 678CJ UT WOS:000284046300006 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Berry, E Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blocker, C Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Turini, N Ukegawa, F Uozumi, S Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Berry, E. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C-J Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W-M Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Updated search for the flavor-changing neutral-current decay D-0 -> mu(+)mu(-) in p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article AB We report on a search for the flavor-changing neutral-current decay D-0 -> mu(+)mu(-) in p (p) over bar collisions at root s = 1.96 TeV using 360 pb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D-0 candidates in the mu(+)mu(-), pi(+)pi(-), and K-pi(+) decay modes. We use the Cabibbo-favored D-0 -> K-pi(+) channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D-0 -> pi(+)pi(-) channel for normalization. We set an upper limit on the branching fraction B(D-0 -> mu(+)mu(-)) < 2.1 X 10(-7) (3.0 X 10(-7)) at the 90% (95%) confidence level. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Berry, E.; Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C-J; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W-M] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, UMR7585, LPNHE,IN2P3, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Naganoma, J.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Ruiz, Alberto/E-4473-2011; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; NR 21 TC 8 Z9 9 U1 2 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 10 PY 2010 VL 82 IS 9 AR 091105 DI 10.1103/PhysRevD.82.091105 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 678CY UT WOS:000284049300003 ER PT J AU Liao, JF Shuryak, E AF Liao, Jinfeng Shuryak, Edward TI Static (Q)over-barQ potentials and the magnetic component of QCD plasma near T-c SO PHYSICAL REVIEW D LA English DT Article ID QUARK-GLUON PLASMA; POLYAKOV LOOP; CONFINEMENT; PHYSICS AB Static quark-antiquark potential encodes important information on the chromodynamical interaction between color charges, and recent lattice results show its very nontrivial behavior near the deconfinement temperature T-c. In this paper we study such potential in the framework of the "magnetic scenario" for the near T-c QCD plasma, and particularly focus on the linear part ( as quantified by its slope, the tension) in the potential as well as the strong splitting between the free energy and internal energy. By using an analytic "ellipsoidal bag" model, we will quantitatively relate the free energy tension to the magnetic condensate density and relate the internal energy tension to the thermal monopole density. By converting the lattice results for static potential into density for thermal monopoles we find the density to be very large around T-c and indicate at quantum coherence, in good agreement with direct lattice calculation of such density. A few important consequences for heavy ion collisions phenomenology will also be discussed. C1 [Liao, Jinfeng] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Liao, Jinfeng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Shuryak, Edward] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Liao, JF (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM jliao@bnl.gov; shuryak@tonic.physics.sunysb.edu FU US Department of Energy under DOE [DE-AC02-98CH10886, DE-AC02-05CH11231]; US-DOE [DE-FG-88ER40388] FX The work of J. L. was partially supported by the US Department of Energy under DOE Contract No. DE-AC02-98CH10886 and No. DE-AC02-05CH11231. The work of E. S. was supported in parts by the US-DOE grant DE-FG-88ER40388. NR 65 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD NOV 10 PY 2010 VL 82 IS 9 AR 094007 DI 10.1103/PhysRevD.82.094007 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 678CY UT WOS:000284049300007 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, C Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Measurement of the absolute branching fractions for D-s(-) -> l(-) (nu)over-bar(l) and extraction of the decay constant f(Ds) SO PHYSICAL REVIEW D LA English DT Article ID PHYSICS AB The absolute branching fractions for the decays D-s(-) -> l(-) (nu) over bar (l) (l = e, mu, or tau) are measured using a data sample corresponding to an integrated luminosity of 521 fb(-1) collected at center-of-mass energies near 10.58 GeV with the BABAR detector at the PEP-II e(+)e(-) collider at SLAC. The number of D-s(-) mesons is determined by reconstructing the recoiling system DKX gamma in events of the type e(+)e(-) -> DKXDs*(-), where D-s*(-) -> D-s(-) gamma and X represents additional pions from fragmentation. The D-s(-) -> l(-) nu(l) events are detected by full or partial reconstruction of the recoiling system DKX gamma l. The branching fraction measurements are combined to determine the D-s(-) decay constant f(Ds) (258.6 +/- 6.4 +/- 7:5) MeV, where the first uncertainty is statistical and the second is systematic. C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74991 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Adametz, A.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74991 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014 OI Raven, Gerhard/0000-0002-2897-5323; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300 FU SLAC; DOE; NSF (USA); NSERC (Canada); CEA; CNRS (France) [CNRS-IN2P3]; BMBF; DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 23 TC 15 Z9 15 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 10 PY 2010 VL 82 IS 9 AR 091103 DI 10.1103/PhysRevD.82.091103 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 678CY UT WOS:000284049300001 ER PT J AU Nobre, GPA Dietrich, FS Escher, JE Thompson, IJ Dupuis, M Terasaki, J Engel, J AF Nobre, G. P. A. Dietrich, F. S. Escher, J. E. Thompson, I. J. Dupuis, M. Terasaki, J. Engel, J. TI Coupled-Channel Calculation of Nonelastic Cross Sections Using a Density-Functional Structure Model SO PHYSICAL REVIEW LETTERS LA English DT Article ID NUCLEAR-STRUCTURE APPROACH; OPTICAL-MODEL; INELASTIC-SCATTERING; PB-208; ENERGY; RANGE; CA-40 AB A microscopic calculation of reaction cross sections for nucleon-nucleus scattering was performed by coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for Ca-40,Ca-48, Ni-58, Zr-90, and Sm-144 were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agreed very well with experimental data and predictions of a fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV. C1 [Nobre, G. P. A.; Dietrich, F. S.; Escher, J. E.; Thompson, I. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Dupuis, M.] CEA, DAM, DIF, F-91297 Arpajon, France. [Terasaki, J.; Engel, J.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Nobre, GPA (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. RI Escher, Jutta/E-1965-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory under SciDAC [DE-AC52-07NA27344, DE-FC02-07ER41457] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and under SciDAC Contract No. DE-FC02-07ER41457. NR 32 TC 14 Z9 14 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 10 PY 2010 VL 105 IS 20 AR 202502 DI 10.1103/PhysRevLett.105.202502 PG 4 WC Physics, Multidisciplinary SC Physics GA 678DP UT WOS:000284052700005 PM 21231224 ER PT J AU Bettencourt, LMA Lobo, J Strumsky, D West, GB AF Bettencourt, Luis M. A. Lobo, Jose Strumsky, Deborah West, Geoffrey B. TI Urban Scaling and Its Deviations: Revealing the Structure of Wealth, Innovation and Crime across Cities SO PLOS ONE LA English DT Article ID INCREASING RETURNS; CITY SIZE; LIFE; PRODUCTIVITY; GROWTH AB With urban population increasing dramatically worldwide, cities are playing an increasingly critical role in human societies and the sustainability of the planet. An obstacle to effective policy is the lack of meaningful urban metrics based on a quantitative understanding of cities. Typically, linear per capita indicators are used to characterize and rank cities. However, these implicitly ignore the fundamental role of nonlinear agglomeration integral to the life history of cities. As such, per capita indicators conflate general nonlinear effects, common to all cities, with local dynamics, specific to each city, failing to provide direct measures of the impact of local events and policy. Agglomeration nonlinearities are explicitly manifested by the superlinear power law scaling of most urban socioeconomic indicators with population size, all with similar exponents (similar to 1.15). As a result larger cities are disproportionally the centers of innovation, wealth and crime, all to approximately the same degree. We use these general urban laws to develop new urban metrics that disentangle dynamics at different scales and provide true measures of local urban performance. New rankings of cities and a novel and simpler perspective on urban systems emerge. We find that local urban dynamics display long-term memory, so cities under or outperforming their size expectation maintain such (dis)advantage for decades. Spatiotemporal correlation analyses reveal a novel functional taxonomy of U. S. metropolitan areas that is generally not organized geographically but based instead on common local economic models, innovation strategies and patterns of crime. C1 [Bettencourt, Luis M. A.; West, Geoffrey B.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Bettencourt, Luis M. A.; West, Geoffrey B.] Los Alamos Natl Lab, CNLS, Los Alamos, NM USA. [Bettencourt, Luis M. A.; West, Geoffrey B.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Lobo, Jose] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ USA. [Lobo, Jose] Arizona State Univ, WP Carey Sch Business, Tempe, AZ USA. [Strumsky, Deborah] Univ N Carolina, Dept Geog & Earth Sci, Charlotte, NC 28223 USA. RP Bettencourt, LMA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. EM lmbett@lanl.gov RI Strumsky, Deborah /F-5795-2013 FU James S. McDonnell Foundation 21st Century Science Initiative; Rockefeller Foundation; National Science Foundation [CBET-0939958, PHY 0202180]; Los Alamos National Laboratory FX This work was partially supported by a James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Research Award (http://www.jsmf.org/programs/cs/), the Rockefeller Foundation (http://www.rockefellerfoundation.org/), the National Science Foundation grants CBET-0939958 and PHY 0202180, and the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) program (http://www.lanl.gov/science/ldrd/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 50 TC 80 Z9 81 U1 4 U2 65 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 10 PY 2010 VL 5 IS 11 AR e13541 DI 10.1371/journal.pone.0013541 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677ZN UT WOS:000284036800004 PM 21085659 ER PT J AU Gutfraind, A AF Gutfraind, Alexander TI Optimizing Topological Cascade Resilience Based on the Structure of Terrorist Networks SO PLOS ONE LA English DT Article ID COMPLEX NETWORKS AB Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades - to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas. C1 Los Alamos Natl Lab, Ctr Nonlinear Studies & T5 D6, Los Alamos, NM USA. RP Gutfraind, A (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies & T5 D6, Los Alamos, NM USA. EM agutfraind.research@gmail.com RI Gutfraind, Alexander/E-9641-2011; OI GUTFRAIND, ALEXANDER/0000-0002-3324-2220 FU Department of Energy at the Los Alamos National Laboratory [LA-UR 10-01563, DE-AC52-06NA25396]; Defense Threat Reduction Agency FX This work was supported by the Department of Energy at the Los Alamos National Laboratory (LA-UR 10-01563) under contract DE-AC52-06NA25396 through the Laboratory Directed Research and Development program, and by the Defense Threat Reduction Agency. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 39 TC 16 Z9 16 U1 4 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 10 PY 2010 VL 5 IS 11 AR e13448 DI 10.1371/journal.pone.0013448 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677ZN UT WOS:000284036800003 PM 21085710 ER PT J AU Chen, BY Sysoeva, TA Chowdhury, S Guo, LA De Carlo, S Hanson, JA Yang, H Nixon, BT AF Chen, Baoyu Sysoeva, Tatyana A. Chowdhury, Saikat Guo, Liang De Carlo, Sacha Hanson, Jeffrey A. Yang, Haw Nixon, B. Tracy TI Engagement of Arginine Finger to ATP Triggers Large Conformational Changes in NtrC1 AAA+ ATPase for Remodeling Bacterial RNA Polymerase SO STRUCTURE LA English DT Article ID ENHANCER-BINDING PROTEINS; TRANSCRIPTIONAL ACTIVATOR; ESCHERICHIA-COLI; RECEIVER DOMAINS; STRUCTURAL BASIS; AAA(+); LIKELIHOOD; SIGMA-54; MOTIONS; SYSTEM AB The NtrC-like AAA+ ATPases control virulence and other important bacterial activities through delivering mechanical work to sigma 54-RNA polymerase to activate transcription from sigma 54-dependent genes. We report the first crystal structure for such an ATPase, NtrC1 of Aquifex aeolicus, in which the catalytic arginine engages the gamma-phosphate of ATP. Comparing the new structure with those previously known for apo and ADP-bound states supports a rigid-body displacement model that is consistent with large-scale conformational changes observed by low-resolution methods. First, the arginine finger induces rigid-body roll, extending surface loops above the plane of the ATPase ring to bind sigma 54. Second, ATP hydrolysis permits Pi release and retraction of the arginine with a reversed roll, remodeling sigma 54-RNAP. This model provides a fresh perspective on how ATPase subunits interact within the ring-ensemble to promote transcription, directing attention to structural changes on the arginine-finger side of an ATP-bound interface. C1 [Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Nixon, B. Tracy] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. [Guo, Liang] IIT, BioCAT APS Argonne Natl Lab, Argonne, IL 60439 USA. [De Carlo, Sacha] CUNY, Dept Chem, New York, NY 10031 USA. [De Carlo, Sacha] CUNY, Inst MacroMol Assemblies, New York, NY 10031 USA. [Hanson, Jeffrey A.; Yang, Haw] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Hanson, Jeffrey A.; Yang, Haw] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. RP Nixon, BT (reprint author), Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA. EM btn1@psu.edu RI Sysoeva, Tatyana/B-2018-2013; Chen, Baoyu/A-7072-2011; ID, BioCAT/D-2459-2012 OI Chen, Baoyu/0000-0002-6366-159X; FU NIH [R01 GM069937-01A3, RR-08630]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-ENG-38, DE-AC02-05CH11231]; NIN-NCRR [1S10RR023439-01] FX We thank Borries Demeler for facilitating our use of ATSAS software to perform ab initio modeling and averaging of SAXS data on the BCF cluster at the University of Texas Health Science Center at San Antonio, Neela Yennawar and Hemant Yennawar of the X-ray core facility at the Huck Institutes of Life Sciences, Penn State for help growing crystals and collecting initial diffraction data, and David Wemmer and Joseph Bachelor for help collecting and processing data on beamline 8.3.1 at the Advanced Light Source. The work was funded by NIH grant R01 GM069937-01A3 to B.T.N., and Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-ENG-38, and the Advanced Light Source is similarly supported under contract no. DE-AC02-05CH11231. BioCAT is a National Institutes of Health-supported Research Center, grant no. RR-08630. The X-ray core facility at Penn State was partially supported by NIN-NCRR grant 1S10RR023439-01. The authors declare that they have no competing financial interests. NR 35 TC 28 Z9 28 U1 0 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 10 PY 2010 VL 18 IS 11 BP 1420 EP 1430 DI 10.1016/j.str.2010.08.018 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 682XA UT WOS:000284435100006 PM 21070941 ER PT J AU Hammel, M Yu, YP Fang, SJ Lees-Miller, SP Tainer, JA AF Hammel, Michal Yu, Yaping Fang, Shujuan Lees-Miller, Susan P. Tainer, John A. TI XLF Regulates Filament Architecture of the XRCC4.Ligase IV Complex SO STRUCTURE LA English DT Article ID DNA-LIGASE-IV; X-RAY-SCATTERING; REPAIR PROTEIN XRCC4; END-JOINING FACTOR; CRYSTAL-STRUCTURE; BREAK REPAIR; V(D)J RECOMBINATION; PHOSPHORYLATION SITES; STRUCTURAL-ANALYSES; INTERACTS AB DNA ligase IV (LigIV) is critical for non homologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length XRCC4, XRCC4 in complex with LigIV tandem BRCT domains and XLF, plus the XRCC4.XLF.BRCT2 complex. XRCC4 forms tetramers mediated through a head-to-head interface, and the XRCC4 C-terminal coiled-coil region folds back on itself to support this interaction. The interaction between XLF and XRCC4 is also mediated via head-to-head interactions. In the XLF.XRCC4.BRCT complex, alternating repeating units of XLF and XRCC4.BRCT place the BRCT domain on one side of the filament. Collective results identify XRCC4 and XLF filaments suitable to align DNA molecules and function to facilitate LigIV end joining required for DSB repair in vivo. C1 [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Yu, Yaping; Fang, Shujuan; Lees-Miller, Susan P.] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB T2N 4N1, Canada. [Yu, Yaping; Fang, Shujuan; Lees-Miller, Susan P.] Univ Calgary, So Alberta Canc Res Inst, Calgary, AB T2N 4N1, Canada. [Tainer, John A.] Scripps Res Inst, Dept Mol Biol, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Dept Mol Biol, Berkeley, CA 94720 USA. RP Hammel, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM mhammel@lbl.gov; leesmill@ucalgary.ca; jat@scripps.edu FU National Institutes of Health (NIH) [CA92584]; Canadian Institutes of Health Research [69139] FX We thank the Berkeley Lab Advanced Light Source and SIBYLS beamline staff at 12.3.1 for aiding solution scattering data collection and members of the Lees-Miller laboratory for comments. This work was supported by the National Institutes of Health (NIH) Structural Cell Biology of DNA Repair Machines P01 grant CA92584 (J.A.T./S.P.L.-M.) as well as operating grant 69139 from the Canadian Institutes of Health Research (S.P.L.-M.). NR 44 TC 55 Z9 57 U1 0 U2 7 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 10 PY 2010 VL 18 IS 11 BP 1431 EP 1442 DI 10.1016/j.str.2010.09.009 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 682XA UT WOS:000284435100007 PM 21070942 ER PT J AU Rinaldi, J Wu, JA Yang, J Ralston, CY Sankaran, B Moreno, S Taylor, SS AF Rinaldi, Jimena Wu, Jian Yang, Jie Ralston, Corie Y. Sankaran, Banumathi Moreno, Silvia Taylor, Susan S. TI Structure of Yeast Regulatory Subunit: A Glimpse into the Evolution of PKA Signaling SO STRUCTURE LA English DT Article ID DEPENDENT PROTEIN-KINASE; CAMP-BINDING DOMAINS; SACCHAROMYCES-CEREVISIAE; RI-ALPHA; CRYSTAL-STRUCTURE; ACTIVATION; MECHANISMS; DIVERSITY; CHANNELS; REVEALS AB The major cAMP receptors in eukaryotes are the regulatory (R) subunits of PKA, an allosteric enzyme conserved in fungi through mammals. While mammals have four R-subunit genes, Saccharomyces cerevisiae has only one, Bcy1. To achieve a molecular understanding of PKA activation in yeast and to explore the evolution of cyclic-nucleotide binding (CNB) domains, we solved the structure of cAMP-bound Bcy1(168-416). Surprisingly, the relative orientation of the two CNB domains in Bcy1 is very different from mammalian R-subunits. This quaternary structure is defined primarily by a fungi-specific sequence in the hinge between the alpha B/alpha C helices of the CNB-A domain. The unique interface between the two CNB domains in Bcyl defines the allosteric mechanism for cooperative activation of PKA by cAMP. Some interface motifs are isoform-specific while others, although conserved, play surprisingly different roles in each R-subunit. Phylogenetic analysis shows that structural differences in Bcyl are shared by fungi of the subphylum Saccharomycotina. C1 [Rinaldi, Jimena; Moreno, Silvia] Univ Buenos Aires, Dept Biol Chem, Fac Ciencias Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina. [Wu, Jian; Yang, Jie; Taylor, Susan S.] Univ Calif San Diego, Dept Chem Biochem & Pharmacol, Howard Hughes Med Inst, La Jolla, CA 92093 USA. [Ralston, Corie Y.; Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Moreno, S (reprint author), Univ Buenos Aires, Dept Biol Chem, Fac Ciencias Exactas & Nat, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina. EM smoreno@qb.fcen.uba.ar; staylor@ucsd.edu FU CONICET [PIP 0519]; NIH [GM34921]; ANPCYT [PICT 15-38212]; UBACYT [X-151] FX We specifically thank De-Bin Huang for assistance with the structure determination, Alexander Kornev for critical review and figure preparation, and Natarajan Kannan for helping with the CHAIN alignment. We also thank Nick Nyguen at the UCSD Chemistry X-ray source for assistance with data collection. J.R. held a doctoral fellowship from CONICET. This Investigation was supported by a NIH grant (GM34921) to S.S.T., and grants from ANPCYT (PICT 15-38212), UBACYT (X-151) and CONICET (PIP 0519) to S.M. NR 41 TC 6 Z9 7 U1 0 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 10 PY 2010 VL 18 IS 11 BP 1471 EP 1482 DI 10.1016/j.str.2010.08.013 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 682XA UT WOS:000284435100011 PM 21070946 ER PT J AU Wisedchaisri, G Dranow, DM Lie, TJ Bonanno, JB Patskovsky, Y Ozyurt, SA Sauder, JM Almo, SC Wasserman, SR Burley, SK Leigh, JA Gonen, T AF Wisedchaisri, Goragot Dranow, David M. Lie, Thomas J. Bonanno, Jeffrey B. Patskovsky, Yury Ozyurt, Sinem A. Sauder, J. Michael Almo, Steven C. Wasserman, Stephen R. Burley, Stephen K. Leigh, John A. Gonen, Tamir TI Structural Underpinnings of Nitrogen Regulation by the Prototypical Nitrogen-Responsive Transcriptional Factor NrpR SO STRUCTURE LA English DT Article ID METHANOCOCCUS-MARIPALUDIS; MYCOBACTERIUM-TUBERCULOSIS; AUTOMATED DOCKING; CRYSTAL-STRUCTURE; REPRESSOR NRPR; BINDING; PROTEIN; EXPRESSION; 2-OXOGLUTARATE; VISUALIZATION AB Plants and microorganisms reduce environmental inorganic nitrogen to ammonium, which then enters various metabolic pathways solely via conversion of 2-oxoglutarate (2OG) to glutamate and glutamine. Cellular 2OG concentrations increase during nitrogen starvation. We recently identified a family of 2OG-sensing proteins the nitrogen regulatory protein NrpR that bind DNA and repress transcription of nitrogen assimilation genes. We used X-ray crystallography to determine the structure of NrpR regulatory domain. We identified the NrpR 2OG-binding cleft and show that residues predicted to interact directly with 2OG are conserved among diverse classes of 2OG-binding proteins. We show that high levels of 2OG inhibit NrpRs ability to bind DNA. Electron microscopy analyses document that NrpR adopts different quaternary structures in its inhibited 2OG-bound state compared with its active apo state. Our results indicate that upon 2OG release, NrpR repositions its DNA-binding domains correctly for optimal interaction with DNA thereby enabling gene repression. C1 [Wisedchaisri, Goragot; Dranow, David M.; Gonen, Tamir] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Lie, Thomas J.; Leigh, John A.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Bonanno, Jeffrey B.; Patskovsky, Yury; Almo, Steven C.] Albert Einstein Coll Med, Dept Biochem, Bronx, NY 10461 USA. [Ozyurt, Sinem A.; Sauder, J. Michael; Burley, Stephen K.] Eli Lilly & Co, Lilly Biotechnol Ctr, San Diego, CA 92121 USA. [Wasserman, Stephen R.] Eli Lilly & Co, LRL CAT, Adv Photon Source, Argonne Natl Lab, Argonne, IL 60439 USA. [Gonen, Tamir] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA. RP Gonen, T (reprint author), Univ Washington, Dept Biochem, Seattle, WA 98195 USA. EM tgonen@u.washington.edu FU NIH [GM-55255, U54 GM074945]; Public Health Service, National Research Service Award, National Institute of General Medical Sciences [2T32 GM007270]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the Murdock Charitable Trust and the Washington Research Foundation for generous support of our electron cryomicroscopy laboratory. We thank Brian Moore and Abigail Lambert for purification of NrpR protein. We also thank Yifan Cheng (University of California, San Francisco) and Christophe Verlinde (University of Washington) for helpful discussions. This work was funded in part by NIH grant GM-55255 to J.A.L. D.M.D. is supported in part by Public Health Service, National Research Service Award 2T32 GM007270 from the National Institute of General Medical Sciences. The NYSGXRC is supported by NIH Grant U54 GM074945 (Principal Investigator: S.K. Burley). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly & Company, which operates the facility. We gratefully acknowledge the contributions of all NYSGXRC personnel. T.G. is a Howard Hughes Medical Institute Early Career Scientist. The authors declare no competing financial interests. NR 35 TC 6 Z9 6 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD NOV 10 PY 2010 VL 18 IS 11 BP 1512 EP 1521 DI 10.1016/j.str.2010.08.014 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 682XA UT WOS:000284435100015 PM 21070950 ER PT J AU Neerathilingam, M Volk, DE Sarkar, S Alam, TM Alam, MK Ansari, GAS Luxon, BA AF Neerathilingam, Muniasamy Volk, David E. Sarkar, Swapna Alam, Todd M. Alam, M. Kathleen Ansari, G. A. Shakeel Luxon, Bruce A. TI H-1 NMR-based metabonomic investigation of tributyl phosphate exposure in rats SO TOXICOLOGY LETTERS LA English DT Article DE Metabonomics; Tributyl phosphate (TBP); Dibutyl phosphate (DBP); Nuclear magnetic resonance (NMR); Urine; Rat ID RENAL DAMAGE; URINE; METABOLISM; DETOXIFICATION; METABOLOMICS; TOXICITY; RECOVERY; AGENTS; MOUSE; SERUM AB Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in many industrial applications, including significant usage in nuclear processing. The industrial application of this chemical is responsible for occupational exposure and environmental pollution. In this study,H-1 NMR-based metabonomics has been applied to investigate the metabolic response to TBP exposure. Male Sprague-Dawley rats were given a TBP-dose of 15 mg/kg body weight, followed by 24 h urine collection, as was previously demonstrated for finding most of the intermediates of TBP. High-resolution H-1 NMR spectroscopy of urine samples in conjunction with statistical pattern recognition and compound identification allowed for the metabolic changes associated with TBP treatment to be identified. Discerning NMR spectral regions corresponding to three TBP metabolites, dibutyl phosphate (DBP), N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, were identified in TBP-treated rats. In addition, the H-1 NMR spectra revealed TBP-induced variations of endogenous urinary metabolites including benzoate, urea, and trigonelline along with metabolites involved in the Krebs cycle including citrate, cis-aconitate, trans-aconitate, 2-oxoglutarate, succinate, and fumarate. These findings indicate that TBP induces a disturbance to the Krebs cycle energy metabolism and provides a biomarker signature of TBP exposure. We show that three metabolites of TBP, dibutylphosphate, N-acetyl-(S-3-hydroxybutyl)L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, which are not present in the control groups, are the most important factors in separating the TBP and control groups (p < 0.0023), while the endogenous compounds 2-oxoglutarate, benzoate, fumarate, trigonelline, and cis-aconetate were also important (p < 0.01). (C) 2010 Elsevier Ireland Ltd. All rights reserved. C1 [Neerathilingam, Muniasamy; Volk, David E.; Sarkar, Swapna; Ansari, G. A. Shakeel; Luxon, Bruce A.] Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. [Neerathilingam, Muniasamy; Luxon, Bruce A.] Univ Texas Med Branch, UTMB Bioinformat Program, Galveston, TX 77555 USA. [Alam, Todd M.] Sandia Natl Labs, Dept Elect & Nanostruct Mat, Albuquerque, NM 87185 USA. [Alam, M. Kathleen] Sandia Natl Labs, Energet Characterizat Dept, Albuquerque, NM 87185 USA. RP Luxon, BA (reprint author), Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. EM baluxon@utmb.edu RI Luxon, Bruce/C-9140-2012; OI Volk, David/0000-0002-4372-6915 FU United States Department of Energy's NNSA [DE-AC04-94AL85000]; NIEHS Center [ES06676] FX We thank the Synthetic Organic Chemistry Core of the UTMB NIEHS Center for Environmental Toxicology as well as support from the NIEHS Center (grant ES#06676) for synthesizing TBP metabolites. This work was largely funded by the Sandia LDRD program with additional support provided by the UTMB Bioinformatics Program and the Welch Foundation (H1296). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's NNSA under contract DE-AC04-94AL85000. NR 28 TC 12 Z9 14 U1 1 U2 23 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0378-4274 J9 TOXICOL LETT JI Toxicol. Lett. PD NOV 10 PY 2010 VL 199 IS 1 BP 10 EP 16 DI 10.1016/j.toxlet.2010.07.013 PG 7 WC Toxicology SC Toxicology GA 676KR UT WOS:000283910500003 PM 20688139 ER PT J AU Ramezanipour, F Greedan, JE Grosvenor, AP Britten, JF Cranswick, LMD Garlea, VO AF Ramezanipour, Farshid Greedan, John E. Grosvenor, Andrew P. Britten, James F. Cranswick, Lachlan M. D. Garlea, V. Ovidiu TI Intralayer Cation Ordering in a Brownmillerite Superstructure: Synthesis, Crystal, and Magnetic Structures of Ca2FeCoO5 SO CHEMISTRY OF MATERIALS LA English DT Article ID NEUTRON-DIFFRACTION; DOUBLE PEROVSKITES; TETRAHEDRAL CHAINS; MANGANESE OXIDE; TEMPERATURE; MAGNETORESISTANCE; SR2FE2O5; CA2FE2O5; TRANSITIONS; CA2CO2O5 AB The synthesis, crystal, and magnetic structures and the bulk magnetic properties of Ca2FeCoO5, a brownmillerite type oxide, are presented. The crystal structure, solved and refined from single crystal X-ray and powder neutron diffraction data, is described in Pbcm with cell parameters, a = 5.3652(3) angstrom, b = 11.0995(5) angstrom, c = 14.7982(7) angstrom. Thus, one axis, b in this setting, is doubled in comparison with the standard brownmillerite structure description giving rise to two sets of octahedral and tetrahedral sites. Aided by the strong scattering contrast between Fe and Co for neutrons, a nearly perfect intralayer cation site ordering, not observed for any brownmillerite before, is detected in the tetrahedral layers. There is a lesser degree of cation site ordering in the octahedral sites. Overall, the Fe/Co site ordering is of the NaCl type both within and between the tetrahedral and octahedral layers. There are also both intra- and interlayer ordering of tetrahedral chain orientations. The left-and right-handed orientations alternate within each tetrahedral layer as well as between the closest tetrahedral layers. The occurrence of the rare Pbcm space group in Ca2FeCoO5 is not consistent with a recently proposed structure-field map for brownmillerite oxides. The magnetic structure is G-type antiferromagnetic, with preferred orientation of magnetic moments parallel to the longest axis between 3.8 K to 100 K which switches to the shortest axis between 225 K and 550 K. The neutron diffraction data indicate different site specific ordering temperatures at about 450(5) K and 555(5) K. The refined ordered moments at 3.8 K are somewhat smaller than expected for Fe3+ and Co3+ (high spin) but are similar to those found in Sr2FeCoO5. There is evidence for spin canting from isothermal magnetization data that shows well pronounced hystereses and remnant magnetizations at 5 K and 200 K. C1 [Ramezanipour, Farshid; Greedan, John E.; Britten, James F.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M, Canada. [Ramezanipour, Farshid; Greedan, John E.; Britten, James F.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M, Canada. [Grosvenor, Andrew P.] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada. [Cranswick, Lachlan M. D.] AECL Res, Chalk River Labs, Natl Res Council, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Greedan, JE (reprint author), McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON L8S 4M1, Canada. EM greedan@mcmaster.ca RI Garlea, Vasile/A-4994-2016 OI Garlea, Vasile/0000-0002-5322-7271 FU Natural Sciences and Engineering Research Council (NSERC) of Canada; NSERC; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (U.S. DOE); U.S. DOE [DEAC05-00OR22725] FX J.E.G. acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada through a Discovery Grant. The Canadian Neutron Beam Centre is also supported by NSERC by a Major Facilities Access grant.; The work at the High Flux Isotope Reactor, Oak Ridge National Laboratory (ORNL), was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (U.S. DOE). ORNL is operated by UT Battelle, LLC for the U.S. DOE under Contract No. DEAC05-00OR22725. NR 48 TC 19 Z9 19 U1 5 U2 56 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 9 PY 2010 VL 22 IS 21 BP 6008 EP 6020 DI 10.1021/cm1023025 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 672YL UT WOS:000283623700028 ER PT J AU Agapov, A Sokolov, AP AF Agapov, A. Sokolov, A. P. TI Size of the Dynamic Bead in Polymers SO MACROMOLECULES LA English DT Article ID NEUTRON SPIN-ECHO; DILUTE-SOLUTION; AB-INITIO; VISCOSITY DEPENDENCE; INTERNAL VISCOSITY; CHAIN DYNAMICS; LOCAL DYNAMICS; POLYETHYLENE; POLYISOBUTYLENE; POLYSTYRENE AB Presented analysis of neutron, mechanical, and MD simulation data available in the literature demonstrates that the dynamic bead size (the smallest subchain that still exhibits the Rouse-like dynamics) in most of the polymers is significantly larger than the traditionally defined Kuhn segment. Moreover, our analysis emphasizes that even the static bead size (e.g., chain statistics) disagrees with the Kuhn segment length. We demonstrate that the deficiency of the Kuhn segment definition is based on the assumption of a chain being completely extended inside a single bead. The analysis suggests that representation of a real polymer chain by the bead-and-spring model with a single parameter C-infinity cannot be correct. One needs more parameters to reflect correctly details of the chain structure in the bead-and-spring model. C1 [Agapov, A.; Sokolov, A. P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Agapov, A.; Sokolov, A. P.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Agapov, A.; Sokolov, A. P.] ORNL, Div Chem Sci, Oak Ridge, TN 37830 USA. [Agapov, A.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. RP Sokolov, AP (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM sokolov@utk.edu FU NSF [DMR-0804571]; Division of Materials Sciences and Engineering, DOE's BES FX We thank the NSF Polymer program for the financial support (DMR-0804571). A.P.S. also acknowledges partial financial support by the Division of Materials Sciences and Engineering, DOE's BES. NR 44 TC 10 Z9 10 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 9 PY 2010 VL 43 IS 21 BP 9126 EP 9130 DI 10.1021/ma101222y PG 5 WC Polymer Science SC Polymer Science GA 673VY UT WOS:000283693500057 ER PT J AU Golec-Biernat, K Lewandowska, E Stasto, AM AF Golec-Biernat, Krzysztof Lewandowska, Emilia Stasto, Anna M. TI Drell-Yan process at forward rapidity at the LHC SO PHYSICAL REVIEW D LA English DT Article ID CROSS-SECTIONS; FACTORIZATION; SCATTERING; MODEL; SOFT; QCD AB We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q(s)(2)/M(2) where Q(s) is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist description is sufficient down to masses of 6 GeV. Below that value the higher twist terms give a significant contribution. C1 [Golec-Biernat, Krzysztof] Univ Rzeszow, Inst Phys, Rzeszow, Poland. [Golec-Biernat, Krzysztof; Lewandowska, Emilia; Stasto, Anna M.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Stasto, Anna M.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Stasto, Anna M.] Brookhaven Natl Lab, RIKEN Ctr, Upton, NY 11973 USA. RP Golec-Biernat, K (reprint author), Univ Rzeszow, Inst Phys, Rzeszow, Poland. EM golec@ifj.edu.pl; emilia.lewandowska@ifj.edu.pl; astasto@phys.psu.edu FU MNiSW [N202 249235]; HEPTOOLS [MRTN-CT-2006-035505]; Sloan Foundation; DOE OJI [DE-SC0002145] FX This work is partially supported by the grants of MNiSW No. N202 249235 and the grant HEPTOOLS, MRTN-CT-2006-035505. A. M. S. is supported by the Sloan Foundation and the DOE OJI Grant No. DE-SC0002145. NR 27 TC 13 Z9 13 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 9 PY 2010 VL 82 IS 9 AR 094010 DI 10.1103/PhysRevD.82.094010 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 677MO UT WOS:000283996700004 ER PT J AU Sun, YG AF Sun, Yugang TI Metal Nanoplates on Semiconductor Substrates SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; LARGE-SCALE SYNTHESIS; ENHANCED RAMAN-SCATTERING; INDUCED CHARGE SEPARATION; REPLACEMENT REACTION; PLATINUM NANOPARTICLES; ELECTROLESS DEPOSITION; PLASMONIC PROPERTIES; SILVER NANOCRYSTALS; GOLD NANOPARTICLES AB Growth of anisotropic metal nanostructures with well-defined shapes on large-area semiconductor substrates represents a challenge to synthesize hybrid materials with complex functionalities. This Feature Article highlights the approach recently developed in our group for growing nanoplates made of noble metals (e.g., Ag, Pd, Au/Ag alloy) on semiconductor wafers (e. g., GaAs and Si), which are widely used in the semiconductor industry. In the typical syntheses, only the semiconductor wafers and pure aqueous solutions of metal precursors are involved in the reaction. The absence of surfactant molecules, organic solvents, catalysts, etc. in the syntheses makes this strategy suitable for the formation of metal/semiconductor hybrid materials with clean metal/semiconductor interfaces. The mechanism for the selective growth of metal nanoplates on semiconductor substrates is extensively discussed. The as-grown metal nanoplates protrude out of the substrates to expose most of their surface areas to the surrounding environment, leading to be favorable for some applications, such as catalysis and surface-enhanced Raman scattering. C1 Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Sun, YG (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ygsun@anl.gov RI Sun, Yugang /A-3683-2010 OI Sun, Yugang /0000-0001-6351-6977 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy [DEFG02-91-ER45439] FX Use of the Center for Nanoscale Materials, the Electron Microscopy Center for Materials Research, and the Advanced Photon Source at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. Characterizations were also carried out by partially using the Center for Microanalysis of Materials Facilities in Frederick Seitz Materials Research Laboratory, University of Illinois, which is partially supported by the U.S. Department of Energy under Grant No. DEFG02-91-ER45439. Y.S. thanks Dr. D. Gosztola for reading through the manuscript. This article is part of a Special Issue on Nanomaterials Research by Chinese Scientists. NR 83 TC 29 Z9 30 U1 8 U2 74 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 9 PY 2010 VL 20 IS 21 BP 3646 EP 3657 DI 10.1002/adfm.201001336 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677NU UT WOS:000283999900004 ER PT J AU Kao, YH Tang, M Meethong, N Bai, JM Carter, WC Chiang, YM AF Kao, Yu-Hua Tang, Ming Meethong, Nonglak Bai, Jianming Carter, W. Craig Chiang, Yet-Ming TI Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes SO CHEMISTRY OF MATERIALS LA English DT Article ID NANOSCALE OLIVINES; ION BATTERIES; CATHODES; STORAGE; MODEL; SIZE; MN; FE AB An objective in battery development for higher storage energy density is the design of compounds that can accommodate maximum changes in ion concentration over useful electrochemical windows. Not surprisingly, many storage compounds undergo phase transitions in situ, including production of metastable phases. Unique to this environment is the frequent application of electrical over- and underpotentials, which are the electrical analogs to undercooling and superheating. Surprisingly, overpotential effects on phase stability and transformation mechanisms have not been studied in detail. Here we use synchrotron X-ray diffraction performed in situ during potentiostatic and galvanostatic cycling, combined with phase-field modeling, to reveal a remarkable dependence of phase transition pathway on overp(o)tential in the model olivine Lit-x FePO4. For a sample of particle size similar to 113 nm, at both low (e.g., < 20 mV) and high ( > 75 mV) overpotentials a crystal-to-crystal olivine transformation dominates, whereas at intermediate overpotentials a crystalline-to-amorphous phase transition is preferred. As particle sizes decrease to the nanoscale, amorphization is further emphasized. Implications for battery use and design are considered. C1 [Kao, Yu-Hua; Carter, W. Craig; Chiang, Yet-Ming] MIT, Cambridge, MA 02139 USA. [Tang, Ming] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Meethong, Nonglak] Khon Kaen Univ, Khon Kaen, Thailand. [Bai, Jianming] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chiang, YM (reprint author), MIT, 77 Massachusetts Ave,Bldg 13,Room 13-4086, Cambridge, MA 02139 USA. EM ychiang@mit.edu RI Carter, W/K-2406-2012; Bai, Jianming/O-5005-2015 FU DOE [DE-SC0002626]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy through the Oak Ridge National Laboratory's High Temperature Materials Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Taiwan Merit Scholarship [TMS-94-2A-019]; Lawrence Livermore National Laboratory; Thailand Center of Excellence in Physics FX This work was supported by DOE project number DE-SC0002626. Research at the National Synchrotron Light Source X14A beamline was partially sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program and by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Y.-H.K. acknowledges support by Taiwan Merit Scholarship TMS-94-2A-019, M.T. acknowledges financial support from the Lawrence Postdoctoral Fellowship provided by the Lawrence Livermore National Laboratory, and N.M. acknowledges support by the Thailand Center of Excellence in Physics. NR 24 TC 62 Z9 62 U1 2 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD NOV 9 PY 2010 VL 22 IS 21 BP 5845 EP 5855 DI 10.1021/cm101698b PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 672YL UT WOS:000283623700008 ER PT J AU Wang, SA Alekseev, EV Stritzinger, JT Liu, GK Depmeier, W Albrecht-Schmitt, TE AF Wang, Shuao Alekseev, Evgeny V. Stritzinger, Jared T. Liu, Guokui Depmeier, Wulf Albrecht-Schmitt, Thomas E. TI Structure-Property Relationships in Lithium, Silver, and Cesium Uranyl Borates SO CHEMISTRY OF MATERIALS LA English DT Article ID FUNDAMENTAL BUILDING-BLOCKS; NONLINEAR-OPTICAL MATERIALS; TRANSITION-METAL-COMPLEXES; OPEN-FRAMEWORK; VANADIUM BOROPHOSPHATE; CRYSTAL-CHEMISTRY; NUCLEAR-WASTE; BORIC-ACID; BOROGERMANATE; CHANNELS AB Four new uranyl borates, Li[UO2B5O9]center dot H2O (LiUBO-1), Ag[(UO2)B5O8(OH)(2)] (AgUBO-1), alpha-Cs[(UO2)(2))B11O16(OH)(6)] (CsUBO-1), and beta-Cs[(UO2)(2)B11O16(OH)(6)] (CsUBO-2) were synthesized via the reaction of uranyl nitrate with a large excess of molten boric acid in the presence of lithium, silver, or cesium nitrate. These compounds share a common structural motif consisting of a linear uranyl, UO22+, cation surrounded by BO3 triangles and BO4 tetrahedra to create an UO8 hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO3 triangles extend from the polyborate layers, and are directed approximately perpendicular to the sheets. In Li[(UO2)B5O9]center dot H2O, the additional BO3 triangles connect these sheets together to form a three-dimensional framework structure. Li[(UO2)B5O9]center dot H2O and beta-Cs[(UO2)(2)B11O16(OH)(6)] adopt noncentrosymmetric structures, while Ag[(UO2)B5O8(OH)(2)] and alpha-Cs[(UO2)(2))B11O16(OH)(6)]are centrosymmetric. Li[(UO2)B5O9]center dot H2O, which can be obtained as pure phase, displays second-harmonic generation of 532 nm light from 1064 mu light. Topological relationships of all actinyl borates are developed. C1 [Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Alekseev, Evgeny V.; Depmeier, Wulf] Univ Kiel, Inst Geowissensch, D-24118 Kiel, Germany. [Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Alekseev, EV (reprint author), Univ Notre Dame, Dept Civil Engn & Geol Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA. EM talbrec1@nd.edu RI Wang, Shuao/H-7373-2012; OI Alekseev, Evgeny/0000-0002-4919-5211 FU Deutsche Forschungsgemeinschaft [DE 412/30-2]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; National Science Foundation; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-01ER16026, DE-SC0002215] FX We are grateful for support provided by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, Heavy Elements Program, U.S. Department of Energy, under Grant DE-FG02-01ER16026 and DE-SC0002215, and by Deutsche Forschungsgemeinschaft for support within the DE 412/30-2 research project. This material is based upon work supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089. The National Science Foundation also supported a portion of this work through the REV program in solid-state and materials chemistry (DMR). NR 67 TC 30 Z9 31 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 9 PY 2010 VL 22 IS 21 BP 5983 EP 5991 DI 10.1021/cm1022135 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 672YL UT WOS:000283623700025 ER PT J AU Dalle-Ferrier, C Niss, K Sokolov, AP Frick, B Serrano, J Alba-Simionesco, C AF Dalle-Ferrier, Cecile Niss, Kristine Sokolov, Alexei P. Frick, Bernhard Serrano, Jorge Alba-Simionesco, Christiane TI The Role of Chain Length in Nonergodicity Factor and Fragility of Polymers SO MACROMOLECULES LA English DT Article ID MOLECULAR-WEIGHT DEPENDENCE; GLASS-FORMING LIQUIDS; TEMPERATURE-DEPENDENCE; SEGMENTAL RELAXATION; PRESSURE-DEPENDENCE; TRANSITION; DYNAMICS; POLYISOBUTYLENE; POLYSTYRENE; EQUATION AB The mechanism that leads to different fragility values upon approaching the glass transition remains a topic of active discussion. Many researchers are trying to find an answer in the properties of the frozen glassy state. Following this approach, we focus here on a previously proposed relationship between the fragility of glass-formers and their nonergodicity factor, determined by inelastic X-ray scattering (IXS) in the glass. We extend this molecular liquid study to two model polymers-polystyrene (PS) and polyisobutylene (PIB)-for which we change the molecular weight. Polymers offer the opportunity to change the fragility without altering the chemical structure, just by changing the chain length. Thus, we specifically chose PS and PIB because they exhibit opposite dependences of fragility with molecular weight. Our analysis for these two polymers reveals no unique correlation between the fragility and the nonergodicity parameter. Even after a recently suggested correction for a possible contribution of the beta relaxation, the correlation is not restored. We discuss possible causes for the failure of the "fragility-nonergodicity factor" correlation, emphasizing the features that are specific to polymers. We speculate that polymers might have specific contributions to fragility related to the chain connectivity that are absent in nonpolymeric systems. C1 [Dalle-Ferrier, Cecile; Niss, Kristine] Univ Paris 11, Chim Phys Lab, F-91405 Orsay, France. [Sokolov, Alexei P.] ORNL, Div Chem Sci, Oak Ridge, TN USA. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Frick, Bernhard] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Serrano, Jorge] Univ Politecn Cataluna, ICREA Dept Fis Aplicada, EPSC, Castelldefels 08860, Spain. RP Alba-Simionesco, C (reprint author), CEA CNRS, Lab Leon Brillouin, Saclay, France. EM christiane.alba-simionesco@cea.fr RI Frick, Bernhard/C-2756-2011; christiane, alba-simionesco/D-2678-2012; OI Niss, Kristine/0000-0002-9391-0366 FU NSF [DMR-0804571]; CNRS; CEA (France) FX A. Sokolov acknowledges financial support by the NSF Polymer program (Grant DMR-0804571). This work was supported by the CNRS and CEA (France). The authors thank the ESRF for the beam time. NR 56 TC 12 Z9 12 U1 1 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD NOV 9 PY 2010 VL 43 IS 21 BP 8977 EP 8984 DI 10.1021/ma101622f PG 8 WC Polymer Science SC Polymer Science GA 673VY UT WOS:000283693500038 ER PT J AU Abes, M Atkinson, D Tanner, BK Charlton, TR Langridge, S Hase, TPA Ali, M Marrows, CH Hickey, BJ Neudert, A Hicken, RJ Arena, D Wilkins, SB Mirone, A Lebegue, S AF Abes, M. Atkinson, D. Tanner, B. K. Charlton, T. R. Langridge, Sean Hase, T. P. A. Ali, M. Marrows, C. H. Hickey, B. J. Neudert, A. Hicken, R. J. Arena, D. Wilkins, S. B. Mirone, A. Lebegue, S. TI Spin polarization and exchange coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced by a Co layer SO PHYSICAL REVIEW B LA English DT Article ID RESONANT MAGNETIC SCATTERING; AUGMENTED-WAVE METHOD; X-RAY-SCATTERING; ELECTRONIC-STRUCTURE; CIRCULAR-DICHROISM; CO/CU MULTILAYERS; SURFACE ALLOY; FILMS; MAGNETORESISTANCE; OSCILLATIONS AB Using the surface, interface, and element specificity of x-ray resonant magnetic scattering in combination with x-ray magnetic circular dichroism, we have spatially resolved the magnetic spin polarization, and the associated interface proximity effect, in a Mn-based high-susceptibility material close to a ferromagnetic Co layer. We have measured the magnetic polarization of Mn and Cu 3d electrons in paramagnetic CuMn alloy layers in [Co/Cu(x)/CuMn/Cu(x)](20) multilayer samples with varying copper layer thicknesses from x=0 to 25 angstrom. The size of the Mn and Cu L-2,L-3 edge dichroism shows a decrease in the Mn-induced polarization for increasing copper thickness indicating the dominant interfacial nature of the Cu and Mn spin polarization. The Mn polarization is much higher than that of Cu. Evidently, the Mn moment is a useful probe of the local spin density. Mn atoms appear to be coupled antiferromagnetically with the Co layer below x=10 angstrom and ferromagnetically coupled above. In contrast, the interfacial Cu atoms remain ferromagnetically aligned to the Co layer for all thicknesses studied. C1 [Abes, M.; Atkinson, D.; Tanner, B. K.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Charlton, T. R.; Langridge, Sean] Rutherford Appleton Lab, ISIS, Didcot OX11 0QX, Oxon, England. [Hase, T. P. A.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Ali, M.; Marrows, C. H.; Hickey, B. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Neudert, A.; Hicken, R. J.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Arena, D.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Wilkins, S. B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Mirone, A.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Lebegue, S.] Nancy Univ, Lab Cristallog Resonance Magnet & Modelisat, Inst Jean Barriol, CNRS,CRM2,UMR 7036, F-54506 Vandoeuvre Les Nancy, France. RP Abes, M (reprint author), Univ Kiel, Dept Phys, D-24098 Kiel, Germany. EM abes@physik.uni-kiel.de RI Lebegue, sebastien/A-7851-2010; Marrows, Christopher/D-7980-2011; Neudert, Andreas/H-1798-2012; Hickey, B J/B-3333-2016; OI Hickey, B J/0000-0001-8289-5618; Marrows, Christopher/0000-0003-4812-6393; Langridge, Sean/0000-0003-1104-0772 FU U.K. EPSRC through the Spin@RT consortium; ANR PNANO [ANR-06-NANO-053-02]; ANR [ANR-07-BLAN-0272] FX This work was supported by the U.K. EPSRC through the Spin@RT consortium. We are grateful to Brookhaven National Laboratory and the Science and Technology Facilities Council for the provision of beamtime at the NSLS and Daresbury SRS, respectively. S. Lebegue acknowledges financial support from ANR PNANO under Grant No. ANR-06-NANO-053-02 and ANR under Grant No. ANR-07-BLAN-0272. NR 56 TC 6 Z9 6 U1 2 U2 12 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 18 AR 184412 DI 10.1103/PhysRevB.82.184412 PG 11 WC Physics, Condensed Matter SC Physics GA 677MB UT WOS:000283995400005 ER PT J AU Hsiung, LL Fluss, MJ Tumey, SJ Choi, BW Serruys, Y Willaime, F Kimura, A AF Hsiung, Luke L. Fluss, Michael J. Tumey, Scott J. Choi, B. William Serruys, Yves Willaime, Francois Kimura, Akihiko TI Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance SO PHYSICAL REVIEW B LA English DT Article ID STRENGTHENED FERRITIC STEELS; FBR CORE APPLICATION; STRUCTURAL-MATERIALS; OXIDE PARTICLES; ION IRRADIATION; FUSION-REACTOR; DISPERSION; HELIUM; ALLOYS; POWDER AB Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y(2)O(3) (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y(2)O(3) (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to understand the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y(2)O(3) in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y(4)Al(2)O(9), a few oxide particles of YAlO(3) are also observed occasionally. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than similar to 2 nm and amorphous or disordered cluster domains smaller than similar to 2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves solid-state amorphization and recrystallization. The role of nanoparticles in suppressing radiation-induced swelling is revealed through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ionirradiated K3-ODS are presented. C1 [Hsiung, Luke L.; Fluss, Michael J.; Tumey, Scott J.; Choi, B. William] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Serruys, Yves; Willaime, Francois] CEA, Serv Rech Met Phys, F-91191 Gif Sur Yvette, France. [Kimura, Akihiko] Kyoto Univ, Inst Adv Energy, Kyoto 6110011, Japan. RP Hsiung, LL (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM hsiung1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL [09-SI-003] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Work at LLNL was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 09-SI-003. The author gratefully acknowledges B. El-dasher for supplying Fe-20Cr (MA 956) ODS steel, M. A. Wall for particle-size distribution analyses, and N. E. Teslich and R. J. Gross for TEM sample preparations, R. L. Krueger for the design of sample holder for irradiation. NR 35 TC 74 Z9 75 U1 11 U2 86 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 18 AR 184103 DI 10.1103/PhysRevB.82.184103 PG 13 WC Physics, Condensed Matter SC Physics GA 677MB UT WOS:000283995400001 ER PT J AU Kang, W Hybertsen, MS AF Kang, Wei Hybertsen, Mark S. TI Enhanced static approximation to the electron self-energy operator for efficient calculation of quasiparticle energies SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-FUNCTIONAL THEORY; BAND-GAPS; ABSORPTION-SPECTRA; GREENS-FUNCTION; CONSISTENT GW; SEMICONDUCTORS; INSULATORS; GAS; CLUSTERS; PSEUDOPOTENTIALS AB An enhanced static approximation for the electron self-energy operator is proposed for efficient calculation of quasiparticle energies. Analysis of the static Coulomb-hole screened-exchange (COHSEX) approximation originally proposed by Hedin shows that most of the error derives from the short-wavelength contributions of the assumed adiabatic accumulation of the Coulomb hole. A wave-vector-dependent correction factor can be incorporated as the basis for a new static approximation. This factor can be approximated by a single scaling function, determined from the homogeneous electron-gas model. The local field effect in real materials is captured by a simple ansatz based on symmetry consideration. As inherited from the COHSEX approximation, the new approximation presents a Hermitian self-energy operator and the summation over empty states is eliminated from the evaluation of the self-energy operator. Tests were conducted comparing the new approximation to GW calculations for diverse materials ranging from crystals, molecules, atoms and a carbon nanotube. The accuracy for the minimum gap is about 10% or better. Like in the COHSEX approximation, the occupied bandwidth is overestimated. C1 [Kang, Wei; Hybertsen, Mark S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Kang, W (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RI Kang, Wei/A-9784-2012; OI Kang, Wei/0000-0001-9989-0485; Hybertsen, Mark S/0000-0003-3596-9754 FU U.S. Department of Energy [DEAC02-98CH1-886, DE-AC02-98CH10886]; State of New York FX Work performed under the auspices of the U.S. Department of Energy under Contract No. DEAC02-98CH1-886. This research utilized resources at the New York Center for Computational Sciences at Stony Brook University/Brookhaven National Laboratory which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and by the State of New York. NR 60 TC 21 Z9 21 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 19 AR 195108 DI 10.1103/PhysRevB.82.195108 PG 8 WC Physics, Condensed Matter SC Physics GA 677MD UT WOS:000283995600005 ER PT J AU Lin, J AF Lin, Jie TI Lifshitz transition in two-dimensional spin-density wave models SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC TOPOLOGICAL TRANSITIONS; SUPERCONDUCTIVITY; INSULATOR; METALS AB We argue that both pocket-disappearing and neck-disrupting types of Lifshitz transitions can be realized in two-dimensional spin-density wave models for underdoped cuprates, and study both types of transitions with impurity scattering treated in the self-consistent Born approximation. We first solve for the electron self-energy from the self-consistent equation, and then study the low-temperature electrical conductivity and thermopower. Close to the Lifshitz transition, the thermopower is strongly enhanced. For the pocket-disappearing type, it has a sharp peak while for the neck-disrupting type, it changes sign at the transition, with its absolute value peaked on both sides of the transition. We discuss possible applications to underdoped cuprates. C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lin, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. DOE, Office of Science [DE-AC02-06CH11357, DE-AC0298CH1088] FX The author thanks Alex Levchenko for discussions, and A. J. Millis and M. R. Norman for advice and reading of the manuscript. This work was supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357 and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, under Award No. DE-AC0298CH1088. NR 38 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 19 AR 195110 DI 10.1103/PhysRevB.82.195110 PG 8 WC Physics, Condensed Matter SC Physics GA 677MD UT WOS:000283995600007 ER PT J AU Noakes, TCQ Bailey, P McConville, CF Draxler, M Walker, M Brown, MG Hentz, A Woodruff, DP Lograsso, TA Ross, AR Smerdon, JA Leung, L McGrath, R AF Noakes, T. C. Q. Bailey, P. McConville, C. F. Draxler, M. Walker, M. Brown, M. G. Hentz, A. Woodruff, D. P. Lograsso, T. A. Ross, A. R. Smerdon, J. A. Leung, L. McGrath, R. TI Two- and three-dimensional growth of Bi on i-Al-Pd-Mn studied using medium-energy ion scattering SO PHYSICAL REVIEW B LA English DT Article ID 5-FOLD SURFACE; QUASI-CRYSTAL; FILM GROWTH; AU AB Recent work on the growth of thin metal films on quasicrystalline substrates has indicated the formation of so-called "magic height" islands with multiples of 4 atomic layers (AL) arising as a result of quantum size effects, which lead to enhanced stability. Here the results of a study are reported of Bi deposition on i-Al-Pd-Mn using medium-energy ion scattering to characterize the island thickness and the structural arrangement of Bi atoms within the islands. In addition, data were taken from annealed surfaces after Bi cluster desorption to leave a single aperiodic monolayer of Bi at the surface. Scattered-ion energy spectra from the Bi islands are consistent with a single Bi monolayer covered with mainly 4 AL islands for both 1.8 and 3.2 monolayer equivalent coverages but with some occupation of 2 and 8 Al islands as well. The angular dependence of the scattered-ion intensity ("blocking curve") from Bi has been compared with simulations for various models of both rhombohedral Bi and a distorted "black-phosphorus"-like structure. The data demonstrate bilayer formation within the Bi islands. In the case of the aperiodic Bi monolayer, the blocking curves from substrate scattering are found to be inconsistent with two high-symmetry sites on the quasicrystalline surface that theory indicates are energetically favorable but do not exclude the formation of pentagonal arrangements of Bi atoms as seen in other recent experimental work. C1 [Noakes, T. C. Q.; Bailey, P.] STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. [McConville, C. F.; Draxler, M.; Walker, M.; Brown, M. G.; Hentz, A.; Woodruff, D. P.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Lograsso, T. A.; Ross, A. R.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Smerdon, J. A.; Leung, L.; McGrath, R.] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. RP Noakes, TCQ (reprint author), STFC Daresbury Lab, Warrington WA4 4AD, Cheshire, England. EM tim.noakes@stfc.ac.uk RI McGrath, Ronan/A-1568-2009; Walker, Marc/A-5503-2013 OI McGrath, Ronan/0000-0002-9880-5741; Walker, Marc/0000-0002-5522-0516 FU EPSRC [GR/S19080/01]; [GR/R88809/01] FX The authors would like to thank EPSRC for funding this work under Grant No. GR/S19080/01 and for direct access to the MEIS facility under Grant No, GR/R88809/01. The FOM institute, Amsterdam is thanked for providing the VEGAS code and Paul Quinn of DLS Ltd. for providing the energy simulation software. Marian Krajci is thanked for providing the 2/1 approximant structural model used in the simulations. NR 25 TC 4 Z9 4 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 19 AR 195418 DI 10.1103/PhysRevB.82.195418 PG 9 WC Physics, Condensed Matter SC Physics GA 677MD UT WOS:000283995600011 ER PT J AU Yang, YF Held, K AF Yang, Y. -F. Held, K. TI Dynamical mean field theory for manganites SO PHYSICAL REVIEW B LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; TO-POLARON CROSSOVER; CHARGE-ORDERED STATE; DOUBLE-EXCHANGE; COLOSSAL-MAGNETORESISTANCE; CORRELATED SYSTEMS; MAGNETIC-FIELD; GIANT MAGNETORESISTANCE; PRINCIPLES CALCULATIONS; PEROVSKITE MANGANITES AB Doped and undoped manganites are modeled by the coupling between itinerant e(g) electrons and static t(2g) spins, the Jahn-Teller and breathing phonon modes, and the Coulomb interaction. We provide for a careful estimate of all parameters and solve the corresponding Hamiltonian by dynamical mean field theory. Our results for the one-electron spectrum, the optical conductivity, the dynamic and static lattice distortion, as well as the Curie temperature show the importance of all of the above ingredients for a realistic calculation as well as for describing the unusual dynamical properties of manganites including the insulating parent compound and the insulatinglike paramagnetic state of doped manganites. C1 [Yang, Y. -F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Yang, Y. -F.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Held, K.] Vienna Univ Technol, Inst Solid State Phys, A-1040 Vienna, Austria. RP Yang, YF (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Held, Karsten/O-4178-2015 OI Held, Karsten/0000-0001-5984-8549 FU EU; FWF through SFB [ViCom F41]; U. S. Department of Energy FX This work has been supported by the EU-Indian cooperative FP-7 network MONAMI and the FWF through SFB ViCom F41 and Research Unit FOR 1346; work at Los Alamos was performed under the auspices of the U. S. Department of Energy. We thank A. Pimenov for discussions concerning the experimental uncertainty in the resistivity. NR 72 TC 2 Z9 2 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2010 VL 82 IS 19 AR 195109 DI 10.1103/PhysRevB.82.195109 PG 12 WC Physics, Condensed Matter SC Physics GA 677MD UT WOS:000283995600006 ER PT J AU Aubert, B Karyotakis, Y Lees, JP Poireau, V Prencipe, E Prudent, X Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tackmann, K Tanabe, T Hawkes, CM Soni, N Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Barrett, M Khan, A Randle-Conde, A Blinov, VE Bukin, AD Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Bondioli, M Curry, S Eschrich, I Kirkby, D Lankford, AJ Lund, P Mandelkern, M Martin, EC Stoker, DP Buchanan, C Hartfiel, BL Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Yasin, Z Sharma, V Campagnari, C Hong, TM Kovalskyi, D Mazur, MA Richman, JD Beck, TW Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Fang, F Hitlin, DG Narsky, I Ongmongkolkul, P Piatenko, T Porter, FC Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Mishra, K Sokoloff, MD Bloom, PC Ford, WT Gaz, A Hirschauer, JF Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Feltresi, E Hauke, A Jasper, H Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Latour, E Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Santoro, V Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Charles, MJ Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Eyges, V Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lepeltier, V Lutz, AM Malaescu, B Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Burke, JP Chavez, CA Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Clarke, CK Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Yi, JI Anderson, J Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Henderson, SW Sciolla, G Spitznagel, M Yamamoto, RK Zhao, M Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Zhao, HW Nguyen, X Simard, M Taras, P Nicholson, H De Nardo, G Lista, L Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kagan, H Kass, R Morris, JP Rahimi, AM Sekula, SJ Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Lu, M Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Voci, C Sanchez, PD Ben-Haim, E Bonneaud, GR Briand, H Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Perez, A Prendki, J Sitt, S Gladney, L Biasini, M Manoni, E Angelini, C Batignani, G Bettarini, S Calderini, G Carpinelli, M Cervelli, A Forti, F Giorgi, MA Lusiani, A Morganti, M Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Jackson, PD Gioi, LL Mazzoni, MA Morganti, S Piredda, G Renga, F Voena, C Ebert, M Hartmann, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S Esteve, L de Monchenault, GH Kozanecki, W Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cenci, R Coleman, JP Convery, MR Dingfelder, JC Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kaminski, J Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Messner, R Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Ratcliff, BN Roodman, A Salnikov, AA Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Suzuki, K Swain, SK Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Liu, H Park, W Purohit, MV White, RM Wilson, JR Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Soffer, A Spanier, SM Wogsland, BJ Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Drummond, BW Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Bosisio, L Cartaro, C Della Ricca, G Lanceri, L Vitale, L Azzolini, V Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Bhuyan, B Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Ilic, J Latham, TE Mohanty, GB Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Aubert, B. Karyotakis, Y. Lees, J. P. Poireau, V. Prencipe, E. Prudent, X. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tackmann, K. Tanabe, T. Hawkes, C. M. Soni, N. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Barrett, M. Khan, A. Randle-Conde, A. Blinov, V. E. Bukin, A. D. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Bondioli, M. Curry, S. Eschrich, I. Kirkby, D. Lankford, A. J. Lund, P. Mandelkern, M. Martin, E. C. Stoker, D. P. Buchanan, C. Hartfiel, B. L. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Yasin, Z. Sharma, V. Campagnari, C. Hong, T. M. Kovalskyi, D. Mazur, M. A. Richman, J. D. Beck, T. W. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Fang, F. Hitlin, D. G. Narsky, I. Ongmongkolkul, P. Piatenko, T. Porter, F. C. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Mishra, K. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Hirschauer, J. F. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Feltresi, E. Hauke, A. Jasper, H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Latour, E. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Santoro, V. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Charles, M. J. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Eyges, V. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lepeltier, V. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Burke, J. P. Chavez, C. A. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Clarke, C. K. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Yi, J. I. Anderson, J. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Henderson, S. W. Sciolla, G. Spitznagel, M. Yamamoto, R. K. Zhao, M. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Zhao, H. W. Nguyen, X. Simard, M. Taras, P. Nicholson, H. De Nardo, G. Lista, L. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kagan, H. Kass, R. Morris, J. P. Rahimi, A. M. Sekula, S. J. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Lu, M. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Voci, C. Sanchez, P. del Amo Ben-Haim, E. Bonneaud, G. R. Briand, H. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Perez, A. Prendki, J. Sitt, S. Gladney, L. Biasini, M. Manoni, E. Angelini, C. Batignani, G. Bettarini, S. Calderini, G. Carpinelli, M. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Morganti, M. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Jackson, P. D. Gioi, L. Li Mazzoni, M. A. Morganti, S. Piredda, G. Renga, F. Voena, C. Ebert, M. Hartmann, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. Esteve, L. de Monchenault, G. Hamel Kozanecki, W. Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cenci, R. Coleman, J. P. Convery, M. R. Dingfelder, J. C. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kaminski, J. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Messner, R. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Suzuki, K. Swain, S. K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Liu, H. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Soffer, A. Spanier, S. M. Wogsland, B. J. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Drummond, B. W. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Bosisio, L. Cartaro, C. Della Ricca, G. Lanceri, L. Vitale, L. Azzolini, V. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Bhuyan, B. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Ilic, J. Latham, T. E. Mohanty, G. B. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BABAR Collaboration TI Correlated leading baryon-antibaryon production in e(+)e(-) -> c(c)over-bar -> Lambda(+)(c)(Lambda)over-bar(c)(-)X SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC Z(0) DECAYS; LAMBDA(LAMBDA)OVER-BAR CORRELATIONS; LAMBDA; ANNIHILATION; PAIRS AB We present a study of 649 +/- 35 e(+)e(-) -> c (c) over bar events produced at root s approximate to 10.6 GeV containing both Lambda(+)(c) baryon and a (Lambda) over bar (-)(c) antibaryon. The number observed is roughly 4 times that expected if the leading charmed hadron types are uncorrelated, confirming an observation by the CLEO Collaboration. We find a 2-jet topology in these events but very few additional baryons, demonstrating that the primary c and (c) over bar are predominantly contained in a correlated baryon-antibaryon system. In addition to the charmed baryons we observe on average 2.6 +/- 0.2 charged intermediate mesons, predominantly pions, carrying 65% of the remaining energy. C1 [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tackmann, K.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Hawkes, C. M.; Soni, N.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Barrett, M.; Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Buchanan, C.; Hartfiel, B. L.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Yasin, Z.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Mazur, M. A.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Beck, T. W.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Ongmongkolkul, P.; Piatenko, T.; Porter, F. C.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Hirschauer, J. F.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Feltresi, E.; Hauke, A.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Latour, E.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Bettoni, D.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Santoro, V.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Charles, M. J.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Clarke, C. K.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Yi, J. I.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Henderson, S. W.; Sciolla, G.; Spitznagel, M.; Yamamoto, R. K.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Zhao, H. W.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [Nicholson, H.] Mt Holyoke Coll, S Hadley, MA 01075 USA. [De Nardo, G.; Lista, L.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Sekula, S. J.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.; Voci, C.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 06, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Sanchez, P. del Amo; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Perez, A.; Prendki, J.; Sitt, S.; Calderini, G.] Univ Paris 07, CNRS, IN2P3, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Gladney, L.] Univ Penn, Philadelphia, PA 19104 USA. [Biasini, M.; Manoni, E.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Calderini, G.; Carpinelli, M.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Gioi, L. Li; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Renga, F.; Voena, C.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Ebert, M.; Hartmann, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Esteve, L.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yeche, Ch.; Zito, M.] Ctr Saclay, SPP, CEA, F-91191 Gif Sur Yvette, France. [Cervelli, A.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cenci, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.; Wogsland, B. J.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Drummond, B. W.; Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Bosisio, L.; Cartaro, C.; Della Ricca, G.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Bhuyan, B.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Aubert, B (reprint author), Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France. RI Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Della Ricca, Giuseppe/B-6826-2013; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Martinez Vidal, F*/L-7563-2014; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; Calabrese, Roberto/G-4405-2015; OI Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Della Ricca, Giuseppe/0000-0003-2831-6982; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Martinez Vidal, F*/0000-0001-6841-6035; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; Calabrese, Roberto/0000-0002-1354-5400; Raven, Gerhard/0000-0002-2897-5323 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MEC (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation. NR 23 TC 2 Z9 2 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 9 PY 2010 VL 82 IS 9 AR 091102 DI 10.1103/PhysRevD.82.091102 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 677MO UT WOS:000283996700001 ER PT J AU Kaiser, S Dressel, M Sun, Y Greco, A Schlueter, JA Gard, GL Drichko, N AF Kaiser, S. Dressel, M. Sun, Y. Greco, A. Schlueter, J. A. Gard, G. L. Drichko, N. TI Bandwidth Tuning Triggers Interplay of Charge Order and Superconductivity in Two-Dimensional Organic Materials SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELECTRONIC BAND-STRUCTURE; BEDT-TTF; STRUCTURAL GENEALOGY; OPTICAL-PROPERTIES; FERMI-SURFACE; CONDUCTORS; BIS(ETHYLENEDITHIO)TETRATHIAFULVALENE; BETA''-(BEDT-TTF)(2)SF5CH2CF2SO3; CONDUCTIVITY; SPECTROSCOPY AB We observe charge-order fluctuations in the quasi-two-dimensional organic superconductor beta '' - (BEDT - TTF)(2)SF(5)CH(2)CF(2)SO(3), both by means of vibrational spectroscopy, locally probing the fluctuating charge order, and by investigating the in-plane dynamical response by infrared reflectance spectroscopy. The decrease of the effective electronic interaction in an isostructural metal suppresses both charge-order fluctuations and superconductivity, pointing to their interplay. We compare the results of our experiments with calculations on the extended Hubbard model. C1 [Kaiser, S.; Dressel, M.; Sun, Y.; Drichko, N.] Univ Stuttgart, Inst Phys, D-70550 Stuttgart, Germany. [Greco, A.] UNR CONICET, Fac Ciencias Exactas Ingn & Agrimensura, Rosario, Santa Fe, Argentina. [Greco, A.] UNR CONICET, Inst Fis Rosario, Rosario, Santa Fe, Argentina. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Gard, G. L.] Portland State Univ, Dept Chem, Portland, OR USA. [Drichko, N.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. RP Drichko, N (reprint author), Univ Stuttgart, Inst Phys, Pfaffenwaldring 57, D-70550 Stuttgart, Germany. EM drichko@pi1.physik.uni-stuttgart.de RI Dressel, Martin/D-3244-2012; Kaiser, Stefan/B-7788-2008 OI Kaiser, Stefan/0000-0001-9862-2788 FU DFG; Margarethe von Wrangell program; U.S. DOE [DE-AC02-06CH11357]; NSF [Che-9904316] FX We thank S. Yasin, A. Dengl, and M. Herbik for performing measurements and J. Merino, M. Dumm, Ch. Hotta, U. Nagel, T. Room, and N. P. Armitage for valuable discussions. The work was supported by the DFG. N. D. acknowledges support from the Margarethe von Wrangell program. Work at Argonne National Laboratory is sponsored by U.S. DOE Contract No. DE-AC02-06CH11357. Work at Portland State was supported by the NSF (Che-9904316). NR 47 TC 19 Z9 19 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 9 PY 2010 VL 105 IS 20 AR 206402 DI 10.1103/PhysRevLett.105.206402 PG 4 WC Physics, Multidisciplinary SC Physics GA 677NR UT WOS:000283999600007 PM 21231250 ER PT J AU Jensen, HM Albers, AE Malley, KR Londer, YY Cohen, BE Helms, BA Weigele, P Groves, JT Ajo-Franklin, CM AF Jensen, Heather M. Albers, Aaron E. Malley, Konstantin R. Londer, Yuri Y. Cohen, Bruce E. Helms, Brett A. Weigele, Peter Groves, Jay T. Ajo-Franklin, Caroline M. TI Engineering of a synthetic electron conduit in living cells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cytochrome c; nanobioelectronics; synthetic biology; iron reduction; living-nonliving interfaces ID SHEWANELLA-ONEIDENSIS MR-1; OUTER-MEMBRANE CYTOCHROMES; DISSIMILATORY IRON REDUCTION; ESCHERICHIA-COLI; PUTREFACIENS MR-1; FUEL-CELL; OMCA; EXPRESSION; MTRC; GEOBACTER AB Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides similar to 8x and similar to 4x faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors. C1 [Jensen, Heather M.; Groves, Jay T.; Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Albers, Aaron E.; Malley, Konstantin R.; Cohen, Bruce E.; Helms, Brett A.; Groves, Jay T.; Ajo-Franklin, Caroline M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Londer, Yuri Y.; Weigele, Peter] New England Biolabs Inc, Ipswich, MA 01938 USA. [Jensen, Heather M.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. RP Ajo-Franklin, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM cajo-franklin@lbl.gov RI Jensen, Henrik /F-8407-2011 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Steven W. Singer (Lawrence Berkeley National Lab, Berkeley, CA) for providing the ccm plasmid pEC86 and Prof. Daad Saffarini (University of Wisconsin-Milwaukee, Milwaukee, WI) for a generous gift of the anti-MtrB antibody. This work, carried out at the Molecular Foundry, and H.M.J. were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 53 TC 64 Z9 66 U1 2 U2 70 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19213 EP 19218 DI 10.1073/pnas.1009645107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800019 PM 20956333 ER PT J AU Norby, RJ Warren, JM Iversen, CM Medlyn, BE McMurtrie, RE AF Norby, Richard J. Warren, Jeffrey M. Iversen, Colleen M. Medlyn, Belinda E. McMurtrie, Ross E. TI CO2 enhancement of forest productivity constrained by limited nitrogen availability SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE CO2 fertilization; free air CO2 enrichment; global carbon cycle; sweetgum; coupled climate-carbon cycle models ID ATMOSPHERIC CARBON-DIOXIDE; ELEVATED CO2; CLIMATE-CHANGE; SWEETGUM PLANTATION; DECIDUOUS FOREST; FACE EXPERIMENTS; SOIL-NITROGEN; RESPONSES; LIMITATION; ENRICHMENT AB Stimulation of terrestrial plant production by rising CO2 concentration is projected to reduce the airborne fraction of anthropogenic CO2 emissions. Coupled climate-carbon cycle models are sensitive to this negative feedback on atmospheric CO2, but model projections are uncertain because of the expectation that feedbacks through the nitrogen (N) cycle will reduce this so-called CO2 fertilization effect. We assessed whether N limitation caused a reduced stimulation of net primary productivity (NPP) by elevated atmospheric CO2 concentration over 11 y in a free-air CO2 enrichment (FACE) experiment in a deciduous Liquidambar styraciflua (sweetgum) forest stand in Tennessee. During the first 6 y of the experiment, NPP was significantly enhanced in forest plots exposed to 550 ppm CO2 compared with NPP in plots in current ambient CO2, and this was a consistent and sustained response. However, the enhancement of NPP under elevated CO2 declined from 24% in 2001-2003 to 9% in 2008. Global analyses that assume a sustained CO2 fertilization effect are no longer supported by this FACE experiment. N budget analysis supports the premise that N availability was limiting to tree growth and declining over time -an expected consequence of stand development, which was exacerbated by elevated CO2. Leaf-and stand-level observations provide mechanistic evidence that declining N availability constrained the tree response to elevated CO2; these observations are consistent with stand-level model projections. This FACE experiment provides strong rationale and process understanding for incorporating N limitation and N feedback effects in ecosystem and global models used in climate change assessments. C1 [Norby, Richard J.; Warren, Jeffrey M.; Iversen, Colleen M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Medlyn, Belinda E.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [McMurtrie, Ross E.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. RP Norby, RJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. EM rjn@ornl.gov RI Warren, Jeffrey/B-9375-2012; Norby, Richard/C-1773-2012; Iversen, Colleen/B-8983-2012; OI Warren, Jeffrey/0000-0002-0680-4697; Norby, Richard/0000-0002-0238-9828; Medlyn, Belinda/0000-0001-5728-9827 FU US Department of Energy, Office of Science, Biological and Environmental Research FX We thank J. Childs, J. Riggs, and D. Sluss for sustained assistance with operation of the experimental facility; S. Jawdy, C. Sheehan, C. DeVan, K. Sides, E. Felker-Quinn, G. Jimenez, C. Campany, and C. Bruno for assistance with data collection and sample processing; and M. L. Tharp for data management. Funding was provided by the US Department of Energy, Office of Science, Biological and Environmental Research Program. NR 41 TC 313 Z9 325 U1 24 U2 288 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 9 PY 2010 VL 107 IS 45 BP 19368 EP 19373 DI 10.1073/pnas.1006463107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 677MZ UT WOS:000283997800045 PM 20974944 ER PT J AU Chiam, SY Singh, R Zhang, WL Bettiol, AA AF Chiam, Sher-Yi Singh, Ranjan Zhang, Weili Bettiol, Andrew A. TI Controlling metamaterial resonances via dielectric and aspect ratio effects SO APPLIED PHYSICS LETTERS LA English DT Article ID PLANAR TERAHERTZ METAMATERIALS; TIME-DOMAIN SPECTROSCOPY; FREQUENCY AB We study ways to enhance the sensitivity and dynamic tuning range of the fundamental inductor-capacitor (LC) resonance in split ring resonators (SRRs) by controlling the aspect ratio of the SRRs and their substrate thickness. We conclude that both factors can significantly affect the LC resonance. We show that metafilms consisting of low height SRRs on a thin substrate are most sensitive to changes in their dielectric environment and thus show excellent potential for sensing applications. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514248] C1 [Chiam, Sher-Yi; Bettiol, Andrew A.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Chiam, Sher-Yi] Natl Univ Singapore, High Sch Math & Sci, Singapore 129957, Singapore. [Singh, Ranjan; Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Chiam, SY (reprint author), Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. EM phybaa@nus.edu.sg RI Singh, Ranjan/B-4091-2010; Bettiol, Andrew/D-5699-2011; Zhang, Weili/C-5416-2011 OI Singh, Ranjan/0000-0001-8068-7428; Bettiol, Andrew/0000-0001-5242-3644; Zhang, Weili/0000-0002-8591-0200 FU National University of Singapore [NUS R144 000 204 646]; U.S. National Science Foundation [ECCS-0725764] FX The work was funded partially by the National University of Singapore Grant No. NUS R144 000 204 646 and the U.S. National Science Foundation Grant No. ECCS-0725764 NR 19 TC 36 Z9 36 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 191906 DI 10.1063/1.3514248 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900022 ER PT J AU Di, ZF Huang, MQ Wang, YQ Nastasi, M AF Di, Z. F. Huang, M. Q. Wang, Y. Q. Nastasi, M. TI Dynamic annealing versus thermal annealing effects on the formation of hydrogen-induced defects in silicon SO APPLIED PHYSICS LETTERS LA English DT Article ID SINGLE-CRYSTAL SILICON; INDUCED PLATELETS; IMPLANTATION; SI; TEMPERATURE; EXFOLIATION; COMPLEXES; FLUENCE; CUT AB The influence of dynamic and thermal annealing on hydrogen platelet formation in silicon have been studied. For cryogenic and room temperature implantations, where dynamic annealing is suppressed, hydrogen platelets form upon subsequent thermal annealing on primarily (100) planes. However, under high temperature implantation (dynamic annealing), a high density hydrogen platelet network consisting of both (111) platelets and (100) platelets is observed. Our findings demonstrate that hydrogen implantation under dynamic annealing conditions leads to a modification of the implantation-induced stress, which eventually guide the nucleation and growth of hydrogen-induced platelets. (C) 2010 American Institute of Physics. [doi:10.1063/1.3513352] C1 [Di, Z. F.] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Huang, M. Q.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Di, Z. F.; Wang, Y. Q.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Di, ZF (reprint author), Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. EM dizengfeng@hotmail.com NR 23 TC 11 Z9 11 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 194101 DI 10.1063/1.3513352 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900086 ER PT J AU Dyer, GC Vinh, NQ Allen, SJ Aizin, GR Mikalopas, J Reno, JL Shaner, EA AF Dyer, G. C. Vinh, N. Q. Allen, S. J. Aizin, G. R. Mikalopas, J. Reno, J. L. Shaner, E. A. TI A terahertz plasmon cavity detector SO APPLIED PHYSICS LETTERS LA English DT Article ID 2-DIMENSIONAL ELECTRON CHANNEL; FIELD-EFFECT TRANSISTOR; INVERSION-LAYERS; SLOT DIODE; MODES; OSCILLATIONS; RADIATION AB Sensitivity of a plasmonic detector is enhanced by integrating a broadband log-periodic antenna with a two-dimensional plasma cavity that is defined by source, drain, and multiple gates of a GaAs/AlGaAs high electron mobility transistor. Both narrow-band terahertz detection and a rich harmonic spectrum are evident. With a bolometric sensor in the channel, we report responsivity, on resonance at 235-240 GHz and at 20 K, of up to 7 kV/W and a noise equivalent power of 5 x 10(-10) W/Hz(1/2). (C) 2010 American Institute of Physics. [doi:10.1063/1.3513339] C1 [Dyer, G. C.; Vinh, N. Q.; Allen, S. J.] Univ Calif Santa Barbara, Inst Terahertz Sci & Technol, Santa Barbara, CA 93106 USA. [Aizin, G. R.; Mikalopas, J.] CUNY, Kingsborough Coll, Brooklyn, NY 11235 USA. [Reno, J. L.; Shaner, E. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dyer, GC (reprint author), Univ Calif Santa Barbara, Inst Terahertz Sci & Technol, Santa Barbara, CA 93106 USA. EM gdyer@physics.ucsb.edu FU University of Buffalo NSF-NIRT THz Collaboratory [ECS0609146]; U.S. Department of Energy [DE-AC04-94AL85000]; U.S. Air Force Office of Scientific Research, Arlington, VA [FA9550-09-C-0168]; Physical Sciences Inc. Andover, MA [FI011090528] FX The authors would like to thank Dave Enyeart and Gerry Ramian for their assistance, maintenance and operation of the UCSB FEL facility. This work is supported by the University of Buffalo NSF-NIRT THz Collaboratory, Grant No. ECS0609146. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. This material is based upon work supported by the U.S. Air Force Office of Scientific Research, Arlington, VA under Contract No. FA9550-09-C-0168 and Physical Sciences Inc. Andover, MA under Agreement No. FI011090528. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. AFOSR or Physical Sciences Inc. NR 22 TC 22 Z9 22 U1 4 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 193507 DI 10.1063/1.3513339 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900080 ER PT J AU Fong, DD Eastman, JA Kim, SK Fister, TT Highland, MJ Baldo, PM Fuoss, PH AF Fong, D. D. Eastman, J. A. Kim, S. K. Fister, T. T. Highland, M. J. Baldo, P. M. Fuoss, P. H. TI In situ synchrotron x-ray characterization of ZnO atomic layer deposition SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSPARENT CONDUCTIVE OXIDE; SURFACE-CHEMISTRY; INTERRUPTED FLOW; GROWTH MODE; THIN-FILMS; H2O AB The utility of in situ synchrotron x-ray scattering and fluorescence in gaining insight into the early stages of the atomic layer deposition process is demonstrated in this study of ZnO growth on Si. ZnO films are found to initially grow as islands, with the onset of coalescence occurring during the fourth growth cycle. The start of coalescence is accompanied by a small increase in surface roughness. After ten cycles of growth, the growth rate decreases from 4.2 to 3.0 angstrom per cycle, with the growth following expected self-limiting behavior. The overall growth process is consistent with the model of Puurunen and Vandervorts for substrate-inhibited growth [R. L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004)]. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514254] C1 [Fong, D. D.; Eastman, J. A.; Kim, S. K.; Fister, T. T.; Highland, M. J.; Baldo, P. M.; Fuoss, P. H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Fong, DD (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fong@anl.gov RI Eastman, Jeffrey/E-4380-2011; Kim, Seong Keun/D-3809-2011; OI Kim, Seong Keun/0000-0001-8712-7167; Eastman, Jeff/0000-0002-0847-4265 FU U.S. Department of Energy (DOE), Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Jeff Elam for discussions. This work and use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 14 Z9 15 U1 0 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 191904 DI 10.1063/1.3514254 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900020 ER PT J AU Ihlefeld, JF Ginn, JC Shelton, DJ Matias, V Rodriguez, MA Kotula, PG Carroll, JF Boreman, GD Clem, PG Sinclair, MB AF Ihlefeld, J. F. Ginn, J. C. Shelton, D. J. Matias, V. Rodriguez, M. A. Kotula, P. G. Carroll, J. F., III Boreman, G. D. Clem, P. G. Sinclair, M. B. TI Crystal coherence length effects on the infrared optical response of MgO thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID MAGNESIUM OXIDE; REFLECTANCE; SPECTROSCOPY; DISPERSION; SCATTERING; SPECTRA AB The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3515901] C1 [Ihlefeld, J. F.; Ginn, J. C.; Rodriguez, M. A.; Kotula, P. G.; Carroll, J. F., III; Clem, P. G.; Sinclair, M. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Shelton, D. J.; Boreman, G. D.] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA. [Matias, V.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ihlefeld, JF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jihlefe@sandia.gov RI Ihlefeld, Jon/B-3117-2009; Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU Laboratory Directed Research and Development Program at Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000]; U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability FX The authors wish to acknowledge experimental advice and critical review from M. Lee, P. Rakich, and G. L. Brennecka. This research was supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U. S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. A portion of this work (LANL) was supported by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability. NR 21 TC 4 Z9 4 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 191913 DI 10.1063/1.3515901 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900029 ER PT J AU Soliman, YM Su, MF Leseman, ZC Reinke, CM El-Kady, I Olsson, RH AF Soliman, Y. M. Su, M. F. Leseman, Z. C. Reinke, C. M. El-Kady, I. Olsson, R. H., III TI Phononic crystals operating in the gigahertz range with extremely wide band gaps SO APPLIED PHYSICS LETTERS LA English DT Article AB Phononic crystals have numerous potential applications including use as filters and oscillators in communications systems and as acoustic isolators for resonant sensors such as gyroscopes. These applications are based on the ability of phononic crystals to exhibit elastic band gaps, frequency bands where the propagation of acoustic waves is forbidden. Here, we focus on solid-solid phononic crystals (solid inclusions in a solid matrix), since they typically exhibit wider band gaps than those observed with air-solid phononic crystals (air inclusions in a solid matrix). We present a micromachined solid-solid phononic crystal operating at 1.4 GHz center frequency with an ultrawide 800 MHz band gap. (C) 2010 American Institute of Physics. [doi:10.1063/1.3504701] C1 [Olsson, R. H., III] Sandia Natl Labs, Dept Adv MEMS, Albuquerque, NM 87185 USA. [Soliman, Y. M.; Su, M. F.] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Leseman, Z. C.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Reinke, C. M.; El-Kady, I.] Sandia Natl Labs, Dept Photon Microsyst Technol, Albuquerque, NM 87185 USA. RP Olsson, RH (reprint author), Sandia Natl Labs, Dept Adv MEMS, POB 5800, Albuquerque, NM 87185 USA. EM rholsso@sandia.gov RI El-Kady, Ihab/D-2886-2013 OI El-Kady, Ihab/0000-0001-7417-9814 FU Laboratory Directed Research and Development program at Sandia National Laboratories; Sandia Corporation, Lock-heed Martin Co., for the United States Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by the Sandia Corporation, Lock-heed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 7 TC 28 Z9 30 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 193502 DI 10.1063/1.3504701 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900075 ER PT J AU Tracy, LA Nordberg, EP Young, RW Pinilla, CB Stalford, HL Ten Eyck, GA Eng, K Childs, KD Wendt, JR Grubbs, RK Stevens, J Lilly, MP Eriksson, MA Carroll, MS AF Tracy, L. A. Nordberg, E. P. Young, R. W. Pinilla, C. Borras Stalford, H. L. Ten Eyck, G. A. Eng, K. Childs, K. D. Wendt, J. R. Grubbs, R. K. Stevens, J. Lilly, M. P. Eriksson, M. A. Carroll, M. S. TI Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry SO APPLIED PHYSICS LETTERS LA English DT Article ID COULOMB-BLOCKADE AB We present transport measurements of a tunable silicon metal-oxide semiconductor double quantum dot device with lateral geometry. The experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. A comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3518058] C1 [Tracy, L. A.; Lilly, M. P.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Nordberg, E. P.; Eriksson, M. A.] Univ Wisconsin, Madison, WI 53706 USA. [Pinilla, C. Borras; Stalford, H. L.] Univ Oklahoma, Norman, OK 73019 USA. [Pinilla, C. Borras] Univ Ind Santander Colombia, Bucaramanga, Colombia. RP Tracy, LA (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM latracy@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility, and was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary Lockheed-Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 16 TC 17 Z9 17 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 8 PY 2010 VL 97 IS 19 AR 192110 DI 10.1063/1.3518058 PG 3 WC Physics, Applied SC Physics GA 679OE UT WOS:000284169900041 ER PT J AU Allen, MS Mayes, RL Bergman, EJ AF Allen, Matthew S. Mayes, Randall L. Bergman, Elizabeth J. TI Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections SO JOURNAL OF SOUND AND VIBRATION LA English DT Article ID STRUCTURAL MODIFICATION; SYSTEM-IDENTIFICATION; NATURAL FREQUENCIES; EXPANSION AB Modal substructuring or component mode synthesis (CMS) has been standard practice for many decades in the analytical realm, yet a number of significant difficulties have been encountered when attempting to combine experimentally derived modal models with analytical ones or when predicting the effect of structural modifications using experimental measurements. This work presents a new method that removes the effects of a flexible fixture from an experimentally obtained modal model. It can be viewed as an extension to the approach where rigid masses are removed from a structure. The approach presented here improves the modal basis of the substructure, so that it can be used to more accurately estimate the modal parameters of the built-up system. New types of constraints are also presented, which constrain the modal degrees of freedom of the substructures, avoiding the need to estimate the connection point displacements and rotations. These constraints together with the use of a flexible fixture enable a new approach for joining structures, especially those with statically indeterminate multi-point connections, such as two circular flanges that are joined by many more bolts than required to enforce compatibility if the substructures were rigid. Fixture design is discussed, one objective of which is to achieve a mass-loaded boundary condition that exercises the substructure at the connection point as it is in the built up system. The proposed approach is demonstrated with two examples using experimental measurements from laboratory systems. The first is a simple problem of joining two beams of differing lengths, while the second consists of a three-dimensional structure comprising a circular plate that is bolted at eight locations to a flange on a cylindrical structure. In both cases frequency response functions predicted by the substructuring methods agree well with those of the actual coupled structures over a significant range of frequencies. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Allen, Matthew S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Mayes, Randall L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Bergman, Elizabeth J.] Madison Area Tech Coll, Madison, WI 53704 USA. RP Allen, MS (reprint author), Univ Wisconsin, Dept Engn Phys, 535 Engn Res Bldg,1500 Engn Dr, Madison, WI 53706 USA. EM msallen@engr.wisc.edu RI Allen, Matthew/H-4068-2011 FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by, and some of this work was performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors also wish to thank the reviewers of the preliminary version of this article for their thorough reviews and the insights that they shared. NR 40 TC 29 Z9 29 U1 1 U2 18 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-460X J9 J SOUND VIB JI J. Sound Vibr. PD NOV 8 PY 2010 VL 329 IS 23 BP 4891 EP 4906 DI 10.1016/j.jsv.2010.06.007 PG 16 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA 638LK UT WOS:000280896200005 ER PT J AU Liu, HL Carr, GL Worsley, KA Itkis, ME Haddon, RC Caruso, AN Tung, LC Wang, YJ AF Liu, H. L. Carr, G. L. Worsley, K. A. Itkis, M. E. Haddon, R. C. Caruso, A. N. Tung, L-C Wang, Y. J. TI Exploring the charge dynamics in graphite nanoplatelets by THz and infrared spectroscopy SO NEW JOURNAL OF PHYSICS LA English DT Article ID CYCLOTRON-RESONANCE; LANDAU-LEVELS; BERRYS PHASE; GRAPHENE; FILMS; LAYER AB We present the results of THz, infrared and magneto-optical measurements performed on graphite nanoplatelet films as a function of temperature (4.2-300 K) and magnetic field (0-17.5 T). An effective medium analysis of the low-energy spectral response indicates that the nanoplatelet material is well described by a Drude function plus two infrared absorption bands. Interestingly, the Drude plasma frequency (similar to 1675 cm(-1)) decreases slowly with temperature, whereas the carrier scattering rate (similar to 175 cm(-1)) is temperature independent. Furthermore, measurements in an applied magnetic field at 4.2K show that a large portion of the Drude spectral weight is transferred to finite frequency features corresponding to various Landau-level transitions. Some of these transition energies scale as root B, as expected for Dirac-like quasi-particles in graphene and observed in other graphene-like materials. Thus, our results are consistent with recent theoretical calculations indicating that the spectrum of multilayer graphene can be decomposed into subsystems effectively identical to monolayer or bilayer graphene. C1 [Liu, H. L.] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. [Carr, G. L.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Worsley, K. A.; Itkis, M. E.; Haddon, R. C.] Univ Calif Riverside, Dept Chem & Chem & Environm Engn, Ctr Nanoscale Sci & Engn, Riverside, CA 92521 USA. [Caruso, A. N.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Tung, L-C; Wang, Y. J.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. RP Liu, HL (reprint author), Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. EM hliu@phy.ntnu.edu.tw RI Haddon, Robert/A-2528-2008 OI Haddon, Robert/0000-0002-7903-5139 FU National Science Council of Republic of China [NSC 98-2112-M-003-004-MY3]; Department of Energy at NSLS [DE-AC02-98CH10886]; State of Florida (NHMFL) FX We thank D B Tanner, T Timusk, E J Nichol, J P Carbotte, Igor F Herbut and E Vescovo for useful discussions and R Smith for help at the U4IR beamline. We acknowledge financial support from the National Science Council of Republic of China under grant number NSC 98-2112-M-003-004-MY3, from the Department of Energy under contract DE-AC02-98CH10886 at NSLS and from the state of Florida (NHMFL). NR 36 TC 2 Z9 2 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 8 PY 2010 VL 12 AR 113012 DI 10.1088/1367-2630/12/11/113012 PG 11 WC Physics, Multidisciplinary SC Physics GA 687IW UT WOS:000284773200003 ER PT J AU Zortman, WA Trotter, DC Watts, MR AF Zortman, William A. Trotter, Douglas C. Watts, Michael R. TI Silicon photonics manufacturing SO OPTICS EXPRESS LA English DT Article ID ELECTROOPTIC MODULATOR; FILMS AB Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 mu m process controls microdisk resonant frequencies for the TE fundamental resonances to within 1THz across a wafer and 105GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 mu W. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology. (C) 2010 Optical Society of America C1 [Zortman, William A.; Trotter, Douglas C.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zortman, William A.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Watts, Michael R.] MIT, Elect Res Lab, Cambridge, MA 02139 USA. RP Zortman, WA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wzortm@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 86 Z9 86 U1 1 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 8 PY 2010 VL 18 IS 23 BP 23598 EP 23607 DI 10.1364/OE.18.023598 PG 10 WC Optics SC Optics GA 676TG UT WOS:000283940900029 PM 21164704 ER PT J AU Wu, XH Gray, SK Pelton, M AF Wu, Xiaohua Gray, Stephen K. Pelton, Matthew TI Quantum-dot-induced transparency in a nanoscale plasmonic resonator SO OPTICS EXPRESS LA English DT Article ID ELECTROMAGNETICALLY INDUCED TRANSPARENCY; CDSE; MOLECULES; METALS; ANALOG AB We investigate the near-field optical coupling between a single semiconductor nanocrystal (quantum dot) and a nanometer-scale plasmonic metal resonator using rigorous electrodynamic simulations. Our calculations show that the quantum dot produces a dip in both the extinction and scattering spectra of the surface-plasmon resonator, with a particularly strong change for the scattering spectrum. A phenomenological coupled-oscillator model is used to fit the calculation results and provide physical insight, revealing the roles of Fano interference and hybridization. The results indicate that it is possible to achieve nearly complete transparency as well as enter the strong-coupling regime for a single quantum dot in the near field of a metal nanostructure. (C) 2010 Optical Society of America C1 [Wu, Xiaohua; Gray, Stephen K.; Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Wu, XH (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pelton@anl.gov RI Pelton, Matthew/H-7482-2013 OI Pelton, Matthew/0000-0002-6370-8765 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Work at the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Jason M. Montgomery, Tae-Woo Lee, and Lina Cao for help with FDTD programming. NR 34 TC 51 Z9 51 U1 1 U2 28 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 8 PY 2010 VL 18 IS 23 BP 23633 EP 23645 DI 10.1364/OE.18.023633 PG 13 WC Optics SC Optics GA 676TG UT WOS:000283940900033 PM 21164708 ER PT J AU Lee, TW Gray, SK AF Lee, Tae-Woo Gray, Stephen K. TI Remote grating-assisted excitation of narrow-band surface plasmons SO OPTICS EXPRESS LA English DT Article ID THIN METAL-FILMS; ARRAYS; SPECTROSCOPY; TRANSMISSION; ENHANCEMENT; GENERATION; SERS AB We show, based on theoretical analysis and realistic simulations, how a grating embedded in a dielectric substrate can excite surface plasmon polaritons (SPPs) on the top side of a flat metal film far removed from the grating. This remote SPP excitation is characterized by a narrow spectral bandwidth and a high near-field intensity relative to the standard approach for exciting SPPs. The simplicity of the structure and the fact that it requires only normally incident light should make it relevant to the many applications that benefit from high quality SPPs on a flat metal film. (C) 2010 Optical Society of America C1 [Lee, Tae-Woo] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA. [Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Lee, TW (reprint author), Louisiana State Univ, Ctr Computat & Technol, 216 Johnston Hall, Baton Rouge, LA 70803 USA. EM twlee@cct.lsu.edu FU National Institutes of Health (NIH) under ARRA [2R01EB004761-06]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX T.-W. Lee was supported by the National Institutes of Health (NIH) program under ARRA, grant No. 2R01EB004761-06. Computing resources were provided by Louisiana Optical Initiative Network, or LONI. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 5 Z9 5 U1 0 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 8 PY 2010 VL 18 IS 23 BP 23857 EP 23864 DI 10.1364/OE.18.023857 PG 8 WC Optics SC Optics GA 676TG UT WOS:000283940900055 PM 21164730 ER PT J AU Hau-Riege, SP London, RA Graf, A Baker, SL Soufli, R Sobierajski, R Burian, T Chalupsky, J Juha, L Gaudin, J Krzywinski, J Moeller, S Messerschmidt, M Bozek, J Bostedt, C AF Hau-Riege, S. P. London, R. A. Graf, A. Baker, S. L. Soufli, R. Sobierajski, R. Burian, T. Chalupsky, J. Juha, L. Gaudin, J. Krzywinski, J. Moeller, S. Messerschmidt, M. Bozek, J. Bostedt, C. TI Interaction of short x-ray pulses with low-Z x-ray optics materials at the LCLS free-electron laser SO OPTICS EXPRESS LA English DT Article AB Materials used for hard x-ray-free-electron laser (XFEL) optics must withstand high-intensity x-ray pulses. The advent of the Linac Coherent Light Source has enabled us to expose candidate optical materials, such as bulk B4C and SiC films, to 0.83 keV XFEL pulses with pulse energies between 1 mu J and 2 mJ to determine short-pulse hard x-ray damage thresholds. The fluence required for the onset of damage for single pulses is around the melt fluence and slightly lower for multiple pulses. We observed strong mechanical cracking in the materials, which may be due to the larger penetration depths of the hard x-rays. (C) 2010 Optical Society of America C1 [Hau-Riege, S. P.; London, R. A.; Graf, A.; Baker, S. L.; Soufli, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Sobierajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Sobierajski, R.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Burian, T.; Chalupsky, J.; Juha, L.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Chalupsky, J.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague 1, Czech Republic. [Gaudin, J.] European XFEL GmbH, D-22761 Hamburg, Germany. [Krzywinski, J.; Moeller, S.; Messerschmidt, M.; Bozek, J.; Bostedt, C.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Hau-Riege, SP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hauriege1@llnl.gov RI Messerschmidt, Marc/F-3796-2010; Bozek, John/E-9260-2010; Sobierajski, Ryszard/E-7619-2012; Chalupsky, Jaromir/H-2079-2014; Burian, Tomas/H-3236-2014 OI Messerschmidt, Marc/0000-0002-8641-3302; Bozek, John/0000-0001-7486-7238; Burian, Tomas/0000-0003-3982-9978 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel Onderzoek der Materie, FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO); Ministry of Science and Higher Education of Poland [DESY/68/2007]; Czech Ministry of Education [LC510, LC528, LA08024, ME10046]; Academy of Sciences of the Czech Republic [Z10100523, IAA400100701, IAAX00100903, KAN300100702] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. It has been partially supported by the Foundation for Fundamental Research on Matter (Stichting voor Fundamenteel Onderzoek der Materie, FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the Ministry of Science and Higher Education of Poland, SPB nr. DESY/68/2007. This work was also partially funded by the Czech Ministry of Education (Grant Nos LC510, LC528, LA08024, and ME10046), and Academy of Sciences of the Czech Republic (Grant Nos Z10100523, IAA400100701, IAAX00100903, and KAN300100702). Portions of this research were carried out at the Linac Coherent Light Source, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. NR 17 TC 20 Z9 20 U1 1 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 8 PY 2010 VL 18 IS 23 BP 23933 EP 23938 DI 10.1364/OE.18.023933 PG 6 WC Optics SC Optics GA 676TG UT WOS:000283940900064 PM 21164739 ER PT J AU Meinzer, N Ruther, M Linden, S Soukoulis, CM Khitrova, G Hendrickson, J Olitzky, JD Gibbs, HM Wegener, M AF Meinzer, Nina Ruther, Matthias Linden, Stefan Soukoulis, Costas M. Khitrova, Galina Hendrickson, Joshua Olitzky, Joshua D. Gibbs, Hyatt M. Wegener, Martin TI Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain SO OPTICS EXPRESS LA English DT Article ID NEGATIVE-INDEX METAMATERIALS; LASING SPASER AB We study arrays of silver split-ring resonators operating at around 1.5-mu m wavelength coupled to an MBE-grown single 12.7-nm thin InGaAs quantum well separated only 4.8 nm from the wafer surface. The samples are held at liquid-helium temperature and are pumped by intense femtosecond optical pulses at 0.81-mu m center wavelength in a pump-probe geometry. We observe much larger relative transmittance changes (up to about 8%) on the split-ring-resonator arrays as compared to the bare quantum well (not more than 1-2%). We also observe a much more rapid temporal decay component of the differential transmittance signal of 15 ps for the case of split-ring resonators coupled to the quantum well compared to the case of the bare quantum well, where we find about 0.7 ns. These observations are ascribed to the evanescent coupling of the split-ring resonators to the quantum-well gain. All experimental results are compared with a recently introduced analytical toy model that accounts for this evanescent coupling, leading to excellent overall qualitative agreement. (C) 2010 Optical Society of America C1 [Meinzer, Nina; Ruther, Matthias; Linden, Stefan; Wegener, Martin] KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany. [Meinzer, Nina; Ruther, Matthias; Linden, Stefan; Wegener, Martin] KIT, Inst Angew Phys, D-76128 Karlsruhe, Germany. [Meinzer, Nina; Ruther, Matthias; Linden, Stefan; Wegener, Martin] KIT, DFG Ctr Funct Nanostruct CFN, D-76128 Karlsruhe, Germany. [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] Res Ctr Crete, Iraklion 71110, Crete, Greece. [Soukoulis, Costas M.] Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Khitrova, Galina; Hendrickson, Joshua; Olitzky, Joshua D.; Gibbs, Hyatt M.] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. RP Meinzer, N (reprint author), KIT, Inst Nanotechnol, Postfach 3640, D-76021 Karlsruhe, Germany. EM Nina.Meinzer@kit.edu RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016; OI Meinzer, Nina/0000-0001-7418-8710 FU Deutsche Forschungsgemeinschaft (DFG); State of Baden-Wurttemberg through the DFG-Center for Functional Nanostructures (CFN) [A1.5]; European Commission [213390]; Bundesministerium fur Bildung und Forschung (BMBF); Dept. of Energy (Basic Energy Sciences) [DE-AC02-07CH11358] FX We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Wurttemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A1.5. The project PHOME acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 213390. The project METAMAT is supported by the Bundesministerium fur Bildung und Forschung (BMBF). The PhD education of N.M. and M.R. is embedded in the Karlsruhe School of Optics & Photonics (KSOP). Work at Ames Lab was supported by Dept. of Energy (Basic Energy Sciences), contract No. DE-AC02-07CH11358. The Tucson group thanks AFOSR, NSF AMOP, and NSF ERC CIAN for support. H.M.G. and J.H. thank the Alexander von Humboldt Foundation for a Renewed Research Stay and Junior Scientist Award, respectively. NR 18 TC 71 Z9 71 U1 0 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 8 PY 2010 VL 18 IS 23 BP 24140 EP 24151 DI 10.1364/OE.18.024140 PG 12 WC Optics SC Optics GA 676TG UT WOS:000283940900085 PM 21164760 ER PT J AU Gordon, JC Kubas, GJ AF Gordon, John C. Kubas, Gregory J. TI Perspectives on How Nature Employs the Principles of Organometallic Chemistry in Dihydrogen Activation in Hydrogenases SO ORGANOMETALLICS LA English DT Review ID FE-ONLY HYDROGENASE; TRANSITION-METAL-COMPLEXES; CARBON-MONOXIDE BINDING; STRONG-FIELD LIGAND; H-OX STATE; HETEROLYTIC H-2 ACTIVATION; NICKEL-IRON HYDROGENASE; ACTIVE-SITE MODELS; NIFE-HYDROGENASE; CRYSTAL-STRUCTURE AB Relatively recent developments in metalloenzyme and organometallic chemistry have targeted a growing link between these outwardly incongruous fields, giving birth to a merger now popularly termed "bio-organometallic" chemistry. The astonishing discovery of CO and CN ligands bound to dinuclear iron sites in billion-year-old hydrogenase enzymes has led to a new paradigm and triggered an explosion of research on bioinspired chemistry. The article will focus on the impressive array of organometallic chemistry principles that work in concert in the structure and function of H(2)ases. Molecular H(2) is at the forefront of bioinspired energy, and its production and storage are critical for renewable energy systems. Biomimetic inorganic chemistry and photochemistry involving water splitting for H(2) production has erupted in the past decade and will also be reflected upon here. C1 [Gordon, John C.; Kubas, Gregory J.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Gordon, JC (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kubas@lanl.gov FU U.S. Department of Energy, Division of Chemical Sciences; Los Alamos National Laboratory FX We thank the U.S. Department of Energy, Division of Chemical Sciences, and Los Alamos National Laboratory's Laboratory Directed Research and Development program for funding. We also thank Dan DuBois for helpful comments. NR 287 TC 71 Z9 71 U1 2 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD NOV 8 PY 2010 VL 29 IS 21 BP 4682 EP 4701 DI 10.1021/om100436c PG 20 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 672GX UT WOS:000283572100003 ER PT J AU Werkema, EL Yahia, A Maron, L Eisenstein, O Andersen, RA AF Werkema, Evan L. Yahia, Ahmed Maron, Laurent Eisenstein, Odile Andersen, Richard A. TI Bridging Silyl Groups in sigma-Bond Metathesis and [1,2]-Shifts. Experimental and Computational Study of the Reaction between Cerium Metallocenes and MeOSiMe3 SO ORGANOMETALLICS LA English DT Article ID ENERGY-ADJUSTED PSEUDOPOTENTIALS; ANIONIC REARRANGEMENTS; FLUORINE EXCHANGE; TRANSITION-METALS; VALENCE-BOND; ACTIVATION; HYDROGEN; DFT; SC; ELEMENTS AB The reaction of Cp'(2)Cell (Cp' = 1,2,4-(Me3C)(3)C5H2) with MeOSiMe3 gives Cp'2CeOMe and HSiMe3, and the reaction of the metallacycle Cp'[(Me3C)(2)C5H2C(Me)(2)CH2]Ce with MeOSiMe3 yields Cp'2CeOCH2SiMe3, formed from the hypothetical Cp'2CeCH2OSiMe3 by a [1,2]-shift also known as a silyl-Wittig rearrangement. Although both cerium products are alkoxides, they are formed by different pathways. DFT calculations on the reaction of the model metallocene Cp2CeH and MeOSiMe3 show that the lowest energy pathway is H for OMe exchange at Cc that occurs by way of a sigma-bond metathesis transition state as SiMe3 exchanges partners. The formation of Cp2CeOCH2-SiMe3 occurs by way of a low activation barrier [1,2]-shift of the SiMe3 group in Cp2CeCH2OSiMe3. Calculations on a model metallacycle, Cp[C5H4C(Me)(2)CH2]Ce, show that the metallacycle favors CH bond activation over sigma-bond metathesis involving the transfer of the SiMe3 group in good agreement with experiment. The sigma-bond metathesis involving the transfer of SiMe3 and the [1,2]-shift of SiMe3 reactions have in common a pentacoordinate silicon at the transition states. A molecular orbital analysis illustrates the connection between these two Si-O bond cleavage reactions and traces the reason why they occur for a silyl but not for an alkyl group to the difference in energy required to form a pentacoordinate silicon or carbon atom in the transition state. This difference clearly distinguishes a silyl from an alkyl group as shown in the study of "pyrolysis of tetramethylsilane yielding free d-orbitals" by Seyferth and Pudvin (CHEMTECH 1981, 11, 230-233). C1 [Eisenstein, Odile] Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, F-34095 Montpellier, France. [Werkema, Evan L.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem, Berkeley, CA 94720 USA. [Werkema, Evan L.; Andersen, Richard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Yahia, Ahmed; Maron, Laurent] Univ Toulouse, LPCNO, INSA, UPS, F-31077 Toulouse, France. [Yahia, Ahmed; Maron, Laurent] CNRS, LPCNO, F-31077 Toulouse, France. [Yahia, Ahmed] CEA CNRS UM2, ICSM UM5257, F-30207 Bagnols Sur Ceze, France. RP Eisenstein, O (reprint author), Univ Montpellier 2, Inst Charles Gerhardt, CNRS 5253, Cc 1501,Pl E Bataillon, F-34095 Montpellier, France. RI Eisenstein, Odile/I-1704-2016 OI Eisenstein, Odile/0000-0001-5056-0311 FU Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; CNRS; Minister of High Education and Research; CEA FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. We thank F. J. Hollander and A. C. DiPasquale at CHEX-RAY, the UC Berkeley X-ray diffraction Facility, for help with the crystallography. A. V. thanks the Computer Center, CCRT oldie CEA, the CINES, and the CALMIP for a generous donation of computation time. L.M. is also a junior member of the Institut Universitaire de France. L.M. and O.E. thank the CNRS and Minister of High Education and Research for funding, and A.Y. thanks the CEA for a Ph.D. fellowship. NR 47 TC 13 Z9 13 U1 0 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 J9 ORGANOMETALLICS JI Organometallics PD NOV 8 PY 2010 VL 29 IS 21 BP 5103 EP 5110 DI 10.1021/om1003286 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 672GX UT WOS:000283572100054 ER PT J AU Wiedner, ES Yang, JY Dougherty, WG Kassel, WS Bullock, RM DuBois, MR DuBois, DL AF Wiedner, Eric S. Yang, Jenny Y. Dougherty, William G. Kassel, W. Scott Bullock, R. Morris DuBois, M. Rakowski DuBois, Daniel L. TI Comparison of Cobalt and Nickel Complexes with Sterically Demanding Cyclic Diphosphine Ligands: Electrocatalytic H-2 Production by [Co((P2N2Ph)-N-tBu)(CH3CN)(3)](BF4)(2) SO ORGANOMETALLICS LA English DT Article ID NUCLEAR MAGNETIC RESONANCE; FE-ONLY HYDROGENASE; ACTIVE-SITE; MOLECULAR CATALYSTS; LOW OVERPOTENTIALS; PROTON RELAYS; OXIDATION; COORDINATION; EVOLUTION; IRON AB The cyclic diphosphine ligands (P2N2ph)-N-tBu and (P2N2Bz)-N-tBu have been synthesized and used to prepare new complexes of Co(II) and Ni(II) with the formula [M((P2N2R)-N-tBu)(CH3CNn](BF4)(2) (n = 2,3). The products have been characterized by variable-temperature NM R data, X-ray diffraction studies, and cyclic voltammetry, and properties of the new complexes have been compared with those of previously studied complexes containing (P2N2R)-N-ph ligands. The variation of either phosphorus or nitrogen substituents in these ligands can result in significant differences in the structure, electrochemistry, and reactivity of the metal complexes. [Co((P2N2Ph)-N-tBu)(CH3CN](3)](BF4)(2) is found to be an effective electrocatalyst for the formation of hydrogen using bromoanilinium tetrafluoroborate as the acid, with a turnover frequency of 160 s(-1) an overpotential of 160 mV. These cobalt derivatives are a promising class of catalysts for further study and optimization. C1 [Wiedner, Eric S.; Yang, Jenny Y.; Bullock, R. Morris; DuBois, M. Rakowski; DuBois, Daniel L.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Dougherty, William G.; Kassel, W. Scott] Villanova Univ, Dept Chem, Villanova, PA 19085 USA. RP DuBois, DL (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,K2-57, Richland, WA 99352 USA. RI Bullock, R. Morris/L-6802-2016; OI Bullock, R. Morris/0000-0001-6306-4851; Wiedner, Eric/0000-0002-7202-9676 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, for support of the cobalt chemistry reported here. The nickel chemistry was supported as part of the Center for Molecular Eleetrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 58 TC 68 Z9 68 U1 0 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0276-7333 EI 1520-6041 J9 ORGANOMETALLICS JI Organometallics PD NOV 8 PY 2010 VL 29 IS 21 BP 5390 EP 5401 DI 10.1021/om100395r PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Organic SC Chemistry GA 672GX UT WOS:000283572100089 ER PT J AU Bazhirov, T Noffsinger, J Cohen, ML AF Bazhirov, Timur Noffsinger, Jesse Cohen, Marvin L. TI Superconductivity and electron-phonon coupling in lithium at high pressures SO PHYSICAL REVIEW B LA English DT Article ID PSEUDOPOTENTIAL MU-ASTERISK; TRANSITION-TEMPERATURE; WANNIER FUNCTIONS; DENSE LITHIUM; PHASE; ENERGY; STATE; GPA AB Using a first-principles pseudopotential approach we study the origin of superconductivity in lithium under pressure. A recently developed Wannier interpolation based technique that allows for ultradense sampling of electron-phonon parameters throughout the Brillouin zone was employed. The electron-phonon coupling strength as a function of pressure was calculated, precisely resolving many of the fine features of its distribution. The contributions to coupling arising from the Fermi surface topology, phonon dispersions, and electron-phonon matrix elements were separately analyzed. It is found that of the constituent components, the electron-phonon matrix elements are the most sensitive to pressure changes, and a particular phonon is responsible for high values of coupling. Additionally, the distribution of matrix elements over the Fermi surface is seen to be non-uniform and possesses a two-peak structure. Analysis of the Eliashberg spectral function alpha F-2(omega) shows a considerable increase in spectral weight in the low-frequency region with the application of pressure. We estimate the superconducting transition temperature and find that the obtained values are in good accord with experiment. C1 [Bazhirov, Timur] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Bazhirov, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. FU National Science Foundation [DMR07-05941]; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Science Foundation under Grant No. DMR07-05941 and by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by the Lawrence Berkeley National Laboratory. Calculations were performed using the QUANTUM-ESPRESSO (Ref. 37), the WAN-NIER90 (Ref. 38), and the EPW packages (Ref. 39). T. B. thanks Jeffrey Neaton and James Schilling for useful discussions. NR 38 TC 13 Z9 13 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 8 PY 2010 VL 82 IS 18 AR 184509 DI 10.1103/PhysRevB.82.184509 PG 6 WC Physics, Condensed Matter SC Physics GA 676PB UT WOS:000283923400003 ER PT J AU Boyd, RN Brune, CR Fuller, GM Smith, CJ AF Boyd, Richard N. Brune, Carl R. Fuller, George M. Smith, Christel J. TI New nuclear physics for big bang nucleosynthesis SO PHYSICAL REVIEW D LA English DT Article ID PROBE WMAP OBSERVATIONS; PRIMORDIAL NUCLEOSYNTHESIS; CROSS-SECTIONS; PRECISION COSMOLOGY; LI-6 PRODUCTION; REACTION-RATES; HALO-STARS; ABUNDANCE; DEUTERIUM; HYDROGEN AB We discuss nuclear reactions which could play a role in big bang nucleosynthesis. Most of these reactions involve lithium and beryllium isotopes and the rates for some of these have not previously been included in BBN calculations. Few of these reactions are well studied in the laboratory. We also discuss novel effects in these reactions, including thermal population of nuclear target states, resonant enhancement, and nonthermal neutron reaction products. We perform sensitivity studies which show that even given considerable nuclear physics uncertainties, most of these nuclear reactions have minimal leverage on the standard BBN abundance yields of Li-6 and Li-7. Although a few have the potential to alter the yields significantly, we argue that this is unlikely. C1 [Boyd, Richard N.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Brune, Carl R.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Fuller, George M.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Smith, Christel J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. RP Boyd, RN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. FU Lawrence Livermore National Security, LLC, (LLNS) [DE-AC52-07NA27344]; DOE [DE-FG02-88ER40387, DE-FG52-09NA29455]; LLNL LDRD [ER-066]; NSF at UCSD [PHY-06-53626]; ASU FX The authors acknowledge early contributions to this project by T. Luu and insightful discussions with Wick Haxton and Janilee Benitez. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344, and DOE Grants No. DE-FG02-88ER40387 and No. DE-FG52-09NA29455. C. R. B. acknowledges support from LLNL LDRD Grant No. ER-066. G. M. F. acknowledges support from NSF Grant No. PHY-06-53626 at UCSD and C. J. S. would like to thank ASU for support. This paper is number LLNL-JRNL-446832. NR 67 TC 31 Z9 31 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 8 PY 2010 VL 82 IS 10 AR 105005 DI 10.1103/PhysRevD.82.105005 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 676PR UT WOS:000283925300010 ER PT J AU Algora, A Jordan, D Tain, JL Rubio, B Agramunt, J Perez-Cerdan, AB Molina, F Caballero, L Nacher, E Krasznahorkay, A Hunyadi, MD Gulyas, J Vitez, A Csatlos, M Csige, L Aysto, JA Penttila, H Moore, ID Eronen, T Jokinen, A Nieminen, A Hakala, J Karvonen, P Kankainen, A Saastamoinen, A Rissanen, J Kessler, T Weber, C Ronkainen, J Rahaman, S Elomaa, V Rinta-Antila, S Hager, U Sonoda, T Burkard, K Huller, W Batist, L Gelletly, W Nichols, AL Yoshida, T Sonzogni, AA Perajarvi, K AF Algora, A. Jordan, D. Tain, J. L. Rubio, B. Agramunt, J. Perez-Cerdan, A. B. Molina, F. Caballero, L. Nacher, E. Krasznahorkay, A. Hunyadi, M. D. Gulyas, J. Vitez, A. Csatlos, M. Csige, L. Aysto, J. A. Penttila, H. Moore, I. D. Eronen, T. Jokinen, A. Nieminen, A. Hakala, J. Karvonen, P. Kankainen, A. Saastamoinen, A. Rissanen, J. Kessler, T. Weber, C. Ronkainen, J. Rahaman, S. Elomaa, V. Rinta-Antila, S. Hager, U. Sonoda, T. Burkard, K. Hueller, W. Batist, L. Gelletly, W. Nichols, A. L. Yoshida, T. Sonzogni, A. A. Perajarvi, K. TI Reactor Decay Heat in Pu-239: Solving the gamma Discrepancy in the 4-3000-s Cooling Period SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL ABSORPTION-SPECTRA; BETA-DECAY AB The beta feeding probability of Tc-102,Tc- 104,Tc- 105,Tc- 106,Tc- 107, Mo-105, and Nb-101 nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the gamma component of the decay heat for Pu-239 in the 4-3000 s range. C1 [Algora, A.; Jordan, D.; Tain, J. L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A. B.; Molina, F.; Caballero, L.; Nacher, E.] Univ Valencia, IFIC, CSIC, Valencia, Spain. [Algora, A.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyas, J.; Vitez, A.; Csatlos, M.; Csige, L.] Inst Nucl Res, H-4001 Debrecen, Hungary. [Aysto, J. A.; Penttila, H.; Moore, I. D.; Eronen, T.; Jokinen, A.; Nieminen, A.; Hakala, J.; Karvonen, P.; Kankainen, A.; Saastamoinen, A.; Rissanen, J.; Kessler, T.; Weber, C.; Ronkainen, J.; Rahaman, S.; Elomaa, V.; Rinta-Antila, S.; Hager, U.; Sonoda, T.] Univ Jyvaskyla, Jyvaskyla, Finland. [Burkard, K.; Hueller, W.] GSI Darmstadt, D-6100 Darmstadt, Germany. [Batist, L.] PNPI, Gatchina, Russia. [Gelletly, W.; Nichols, A. L.] Univ Surrey, Guildford GU2 5XH, Surrey, England. [Yoshida, T.] Tokyo City Univ, Setagaya Ku, Tokyo, Japan. [Sonzogni, A. A.] Brookhaven Natl Lab, NNDC, Upton, NY 11973 USA. [Perajarvi, K.] STUK, Helsinki, Finland. RP Algora, A (reprint author), Univ Valencia, IFIC, CSIC, Valencia, Spain. EM algora@ific.uv.es RI Penttila, Heikki/A-4420-2013; Hager, Ulrike/O-1738-2016; Molina, Francisco/D-5319-2014; Jokinen, Ari/C-2477-2017; Moore, Iain/D-7255-2014; Tain, Jose L./K-2492-2014; Kankainen, Anu/K-3448-2014; Nacher, Enrique/G-2257-2010; Rubio, Berta/M-1060-2014; Algora, Alejandro/E-2960-2015; Caballero, Luis/M-1304-2015 OI Molina, Francisco/0000-0002-9459-1336; Jokinen, Ari/0000-0002-0451-125X; Moore, Iain/0000-0003-0934-8727; Kankainen, Anu/0000-0003-1082-7602; Rubio, Berta/0000-0002-9149-4151; Algora, Alejandro/0000-0002-5199-1794; Caballero, Luis/0000-0002-1635-5282 FU Spanish FPA [2005-03993, FPA2008-06419-C02-01]; Hungarian OTKA [K72566]; EC [MERG-CT-2004-506849]; Finnish Center of Excellence Programme; EU [506065]; Hungarian-Spanish collaboration program FX This work was supported by the following projects: Spanish FPA 2005-03993 and FPA2008-06419-C02-01; Hungarian OTKA K72566; the EC Contract No. MERG-CT-2004-506849; the Finnish Center of Excellence Programme 2006-2011, the EU 6th Framework Programme (Contract No. 506065 (EURONS), and the Hungarian-Spanish collaboration program. NR 21 TC 52 Z9 52 U1 4 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 8 PY 2010 VL 105 IS 20 AR 202501 DI 10.1103/PhysRevLett.105.202501 PG 4 WC Physics, Multidisciplinary SC Physics GA 676QG UT WOS:000283927700004 PM 21231223 ER PT J AU Herng, TS Qi, DC Berlijn, T Yi, JB Yang, KS Dai, Y Feng, YP Santoso, I Sanchez-Hanke, C Gao, XY Wee, ATS Ku, W Ding, J Rusydi, A AF Herng, T. S. Qi, D. -C. Berlijn, T. Yi, J. B. Yang, K. S. Dai, Y. Feng, Y. P. Santoso, I. Sanchez-Hanke, C. Gao, X. Y. Wee, Andrew T. S. Ku, W. Ding, J. Rusydi, A. TI Room-Temperature Ferromagnetism of Cu-Doped ZnO Films Probed by Soft X-Ray Magnetic Circular Dichroism SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEMICONDUCTORS; SPECTRA; ORIGIN AB We report direct evidence of room-temperature ferromagnetic ordering in O-deficient ZnO:Cu films by using soft x-ray magnetic circular dichroism and x-ray absorption. Our measurements have revealed unambiguously two distinct features of Cu atoms associated with (i) magnetically ordered Cu ions present only in the oxygen-deficient samples and (ii) magnetically disordered regular Cu2+ ions present in all the samples. We find that a sufficient amount of both oxygen vacancies (V-O) and Cu impurities is essential to the observed ferromagnetism, and a non-negligible portion of Cu impurities is uninvolved in the magnetic order. Based on first-principles calculations, we propose a microscopic "indirect double-exchange" model, in which alignments of localized large moments of Cu in the vicinity of the VO are mediated by the large-sized vacancy orbitals. C1 [Herng, T. S.; Yi, J. B.; Ding, J.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore. [Qi, D. -C.; Santoso, I.; Ding, J.; Rusydi, A.] Natl Univ Singapore, Singapore 117576, Singapore. [Qi, D. -C.; Yang, K. S.; Feng, Y. P.; Gao, X. Y.; Wee, Andrew T. S.; Rusydi, A.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Berlijn, T.; Ku, W.] Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. [Berlijn, T.; Ku, W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Yang, K. S.; Dai, Y.] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China. [Santoso, I.] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore. [Sanchez-Hanke, C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Rusydi, A.] Natl Univ Singapore, Singapore Synchrotron Light Source, Singapore 117603, Singapore. RP Herng, TS (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, 7 Engn Dr 1, Singapore 117574, Singapore. EM msedingj@nus.edu.sg; phyandri@nus.edu.sg RI gao, xingyu/C-4732-2008; Yi, Jiabao/A-1867-2011; Ding, Jun/C-5172-2011; Qi, Dongchen/A-7052-2008; Wee, Andrew/B-6624-2009; Feng, Yuan Ping /A-4507-2012; Santoso, Iman/J-2770-2015; Yang, Kesong/A-8568-2012; Berlijn, Tom/A-3859-2016; Rusydi, Andrivo/I-1849-2016 OI Yi, Jiabao/0000-0001-5299-9897; Qi, Dongchen/0000-0001-8466-0257; Wee, Andrew/0000-0002-5828-4312; Feng, Yuan Ping /0000-0003-2190-2284; Santoso, Iman/0000-0003-2695-8965; Yang, Kesong/0000-0002-9691-0636; Berlijn, Tom/0000-0002-1001-2238; FU NRF-CRP [NRF-G-CRP 2007-05, NRF2008NRF-CRP002-024]; NUS YIA; NUS Cross Faculty; FRC; DOE [DE-AC02-98CH10886]; CMSN and NNSFC [10774091]; NUS [C-380-003-003-001, A*STAR/MOE RP 3979908M, A*STAR 12 105 0038] FX This work was supported by NRF-CRP Grants No. NRF-G-CRP 2007-05 and No. NRF2008NRF-CRP002-024, NUS YIA, NUS Cross Faculty, FRC, DOE Grant No. DE-AC02-98CH10886, and CMSN and NNSFC Grant No. 10774091. This work was partly performed at SSLS under NUS Core Support Grants No. C-380-003-003-001, No. A*STAR/MOE RP 3979908M, and No. A*STAR 12 105 0038. NR 25 TC 128 Z9 129 U1 2 U2 73 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 8 PY 2010 VL 105 IS 20 AR 207201 DI 10.1103/PhysRevLett.105.207201 PG 5 WC Physics, Multidisciplinary SC Physics GA 676QG UT WOS:000283927700008 PM 21231259 ER PT J AU Morley, SK AF Morley, Steven K. TI Geospace effects of high-speed solar wind streams INTRODUCTION SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Editorial Material C1 Los Alamos Natl Lab, Los Alamos, NM USA. RP Morley, SK (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM smorley@lanl.gov RI Morley, Steven/A-8321-2008 OI Morley, Steven/0000-0001-8520-0199 NR 10 TC 2 Z9 2 U1 0 U2 1 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3275 EP 3277 DI 10.1098/rspa.2010.0371 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900009 ER PT J AU Ilie, R Liemohn, MW Kozyra, JU Borovsky, JE AF Ilie, R. Liemohn, M. W. Kozyra, J. U. Borovsky, J. E. TI An investigation of the magnetosphere-ionosphere response to real and idealized co-rotating interaction region events through global magnetohydrodynamic simulations SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE ring current; magnetic storms; co-rotating interaction region; high-speed stream ID SOLAR-WIND; INTERPLANETARY; SPACE; ORIGIN; SCHEME; STORMS; AE AB This study investigates the role of interplanetary magnetic field (IMF) B(z) fluctuations periodicity in the transfer of solar wind mass and energy to the magnetosphere during the co-rotating interaction region/high-speed stream event of 10 November 2003 through global modelling simulations using the space weather modelling framework. To do so, we used both solar wind observations and a variety of idealized inputs as upstream boundary conditions, describing different solar wind configurations for which relative contribution of the peak-to-noise ratio in the input B(z) power spectrum to the periodicity transfer is examined. Fast Fourier transforms of both input to and the response of the magnetosphere reveal that the transfer of IMF B(z) periodicity to the magnetosphere is unaltered by other solar wind parameters, although the size of the peak-to-noise ratio of the input signal is the controlling factor that determines this transfer. The global magnetosphere simulation suggests that a threshold amount of power (peak-to-noise ratio) of approximately 10 in the input signal is needed for the magnetosphere to react to the periodicity in the input B(z), while for the cross-polar cap potential, the threshold amount is significantly smaller. C1 [Ilie, R.; Liemohn, M. W.; Kozyra, J. U.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Borovsky, J. E.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Ilie, R (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM rilie@umich.edu RI Liemohn, Michael/H-8703-2012; Ilie, Raluca/A-9291-2013 OI Liemohn, Michael/0000-0002-7039-2631; FU Los Alamos National Security [33673-001-06]; National Science Foundation [ATM-0802705]; NASA [NAG05GM48G, NIX08AW15G, NIX07AL88G] FX Funding for this study was provided by Los Alamos National Security subcontract 33673-001-06, National Science Foundation grant ATM-0802705 and NASA grants NAG05GM48G, NIX08AW15G and NIX07AL88G. The authors would like to thank the National Space Science Data Center for providing the ACE data used in this study. Geomagnetic indices were obtained from WDC in Kyoto, Japan. We would also like to thank the entire SWMF software development team for the availability of the code. NR 39 TC 15 Z9 17 U1 0 U2 5 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3279 EP 3303 DI 10.1098/rspa.2010.0074 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900010 ER PT J AU Liemohn, MW Jazowski, M Kozyra, JU Ganushkina, N Thomsen, MF Borovsky, JE AF Liemohn, Michael W. Jazowski, Matt Kozyra, Janet U. Ganushkina, Natalia Thomsen, Michelle F. Borovsky, Joseph E. TI CIR versus CME drivers of the ring current during intense magnetic storms SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE magnetosphere; magnetic storms; ring current; numerical modelling ID ACTIVITY HILDCAA EVENTS; HIGH-SPEED STREAMS; GEOSYNCHRONOUS ORBIT; INTERACTION REGIONS; ELECTRIC-FIELDS; CURRENT SYSTEMS; CURRENT IONS; ENERGY; DST; GEOEFFECTIVENESS AB Ninety intense magnetic storms (minimum Dst value of less than -100 nT) from solar cycle 23 (1996-2005) were simulated using the hot electron and ion drift integrator (HEIDI) model. All 90 storm intervals were run with several electric fields and nightside plasma boundary conditions (five run sets). Storms were classified according to their solar wind driver, including corotating interaction regions (CIRs) and interplanetary coronal mass ejections (ICMEs). Data-model comparisons were made against the observed Dst index (specifically, Dst*) and dayside hot-ion measurements from geosynchronous orbiting spacecraft. It is found that the data-model goodness-of-fit values are different for CIR-driven storms relative to ICME-driven storms. The results are also different for the same storm category for different boundary conditions. None of the CIR-driven events was overpredicted by HEIDI, while the dayside comparisons were comparable for the different drivers. The results imply that the outer magnetosphere is responding differently to the two kinds of solar wind drivers, even though the resulting storm size might be similar. That is, for ICME-driven events, magnetospheric currents inside of geosynchronous orbit dominate the Dst perturbation, while for CIR-driven events, currents outside of this boundary have a systematically larger contribution. C1 [Liemohn, Michael W.; Jazowski, Matt; Kozyra, Janet U.; Ganushkina, Natalia] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ganushkina, Natalia] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. [Thomsen, Michelle F.; Borovsky, Joseph E.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87545 USA. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI Liemohn, Michael/H-8703-2012; Ganushkina, Natalia/K-6314-2013 OI Liemohn, Michael/0000-0002-7039-2631; FU US government; NASA; NSF FX The authors would like to thank the US government for sponsoring this research, in particular NASA and NSF, through various research grants. The authors would also like to thank the Kyoto World Data Center and NASA's CDAWeb for providing access to the Dst and solar wind data. NR 67 TC 16 Z9 16 U1 0 U2 6 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3305 EP 3328 DI 10.1098/rspa.2010.0075 PG 24 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900011 ER PT J AU Morley, SK Friedel, RHW Spanswick, EL Reeves, GD Steinberg, JT Koller, J Cayton, T Noveroske, E AF Morley, Steven K. Friedel, Reiner H. W. Spanswick, Emma L. Reeves, Geoffrey D. Steinberg, John T. Koller, Josef Cayton, Thomas Noveroske, Evan TI Dropouts of the outer electron radiation belt in response to solar wind stream interfaces: global positioning system observations SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE radiation belt; relativistic electrons; global positioning system; solar wind ID ION-CYCLOTRON WAVES; PITCH-ANGLE SCATTERING; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; MAGNETIC STORMS; ACCELERATION; CHORUS; MAGNETOSPHERE; PRECIPITATION; LOSSES AB We present a statistical study of relativistic electron counts in the electron radiation belt across a range of drift shells (L* > 4) combining data from nine combined X-ray dosimeters (CXD) on the global positioning system (GPS) constellation. The response of the electron counts as functions of time, energy and drift shell are examined statistically for 67 solar wind stream interfaces (SIs); two-dimensional superposed epoch analysis is performed with the CXD data. For these epochs we study the radiation belt dropouts and concurrent variations in key geophysical parameters. At higher L* we observe a tendency for a gradual drop in the electron counts over the day preceding the SI, consistent with outward diffusion and magnetopause shadowing. At all L*, dropouts occur with a median time scale of similar or equal to 7 h and median counts fall by 0.4-1.8 orders of magnitude. The central tendencies of radiation belt dropout and recovery depend on both L* and energy. For similar or equal to 70 per cent of epochs Sym-H more than -30 nT, yet only three of 67 SIs did not have an associated dropout in the electron data. Statistical maps of electron precipitation suggest that chorus-driven relativistic electron microbursts might be major contributors to radiation belt losses under high-speed stream driving. C1 [Morley, Steven K.; Friedel, Reiner H. W.; Spanswick, Emma L.; Reeves, Geoffrey D.; Steinberg, John T.; Koller, Josef; Cayton, Thomas; Noveroske, Evan] Los Alamos Natl Lab, Los Alamos, NM USA. [Spanswick, Emma L.] Univ Calgary, Dept Phys & Astron, Calgary, AB T2N 1N4, Canada. RP Morley, SK (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM smorley@lanl.gov RI Morley, Steven/A-8321-2008; Friedel, Reiner/D-1410-2012; Koller, Josef/C-5591-2009; Reeves, Geoffrey/E-8101-2011 OI Morley, Steven/0000-0001-8520-0199; Friedel, Reiner/0000-0002-5228-0281; Koller, Josef/0000-0002-6770-4980; Reeves, Geoffrey/0000-0002-7985-8098 FU US Department of Energy FX This work was performed under the auspices of the US Department of Energy. The authors thank Sodankyla Geophysical Observatory for the provision of SGO riometer data and the CGSM for providing riometer data. We also thank Joe King and Natalia Papitashvili at GSFC/SPDF for the provision of the OMNI solar wind and geophysical data. SKM also wishes to thank Joe Borovsky (LANL), Mike Henderson (LANL) and Mick Denton (Lancaster) for helpful discussions. NR 59 TC 43 Z9 43 U1 0 U2 7 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3329 EP 3350 DI 10.1098/rspa.2010.0078 PG 22 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900012 ER PT J AU MacDonald, EA Blum, LW Gary, SP Thomsen, MF Denton, MH AF MacDonald, Elizabeth A. Blum, Lauren W. Gary, S. Peter Thomsen, Michelle F. Denton, Michael H. TI High-speed stream driven inferences of global wave distributions at geosynchronous orbit: relevance to radiation-belt dynamics SO PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE magnetosphere; radiation belts; high-speed streams; wave-particle interactions ID SUPERPOSED EPOCH ANALYSIS; ELECTRON ACCELERATION; MAGNETOSPHERE; PLASMA; INSTABILITY; STORMS; CHORUS; ENERGIES AB Three superposed epoch analyses of plasma data from geosynchronous orbit are compared to infer relative distributions of electromagnetic ion cyclotron (EMIC)- and whistler-mode wave instabilities. Both local-time and storm-time behaviours are studied with respect to dynamics of relativistic electrons. Using LANL-GEO particle data and a quasi-linear approximation for the wave growth allows us to estimate the instability of the two wave modes. This simple technique can allow powerful insights into wave-particle interactions at geosynchronous orbit. Whistler-wave activity peaks on the dayside during the early recovery phase and can continue to be above normal levels for several days. The main phase of all storms exhibits the most EMIC-wave activity, whereas in the recovery phase of the most radiation-belt-effective storms, a significantly suppressed level of EMIC activity is inferred. These key results indicate new dynamics relating to plasma delivery, source and response, but support generally accepted views of whistlers as a source process and EMIC-mode waves as a major loss contributor at geosynchronous orbit. C1 [MacDonald, Elizabeth A.; Gary, S. Peter; Thomsen, Michelle F.] Los Alamos Natl Lab, ISR 1, Los Alamos, NM 87544 USA. [Blum, Lauren W.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Denton, Michael H.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. RP MacDonald, EA (reprint author), Los Alamos Natl Lab, ISR 1, POB 1663,MS D466, Los Alamos, NM 87544 USA. EM macdonald@lanl.gov OI Blum, Lauren/0000-0002-4797-5476; Denton, Michael/0000-0002-1748-3710 NR 42 TC 16 Z9 16 U1 0 U2 3 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-5021 EI 1471-2946 J9 P ROY SOC A-MATH PHY JI Proc. R. Soc. A-Math. Phys. Eng. Sci. PD NOV 8 PY 2010 VL 466 IS 2123 BP 3351 EP 3362 DI 10.1098/rspa.2010.0076 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 654BK UT WOS:000282142900013 ER PT J AU Elenius, M Oppelstrup, T Dzugutov, M AF Elenius, Mans Oppelstrup, Tomas Dzugutov, Mikhail TI Evidence for a simple monatomic ideal glass former: The thermodynamic glass transition from a stable liquid phase SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SUPERCOOLED LIQUIDS; CRYSTAL NUCLEATION; TEMPERATURE; POTENTIALS; INSIGHTS; SYSTEMS; WATER; ORDER AB Under cooling, a liquid can undergo a transition to the glassy state either as a result of a continuous slowing down or by a first-order polyamorphous phase transition. The second scenario has so far always been observed in a metastable liquid domain below the melting point where crystalline nucleation interfered with the glass formation. We report the first observation of the liquid-glass transition by a first-order polyamorphous phase transition from the equilibrium stable liquid phase. The observation was made in a molecular dynamics simulation of a one-component system with a model metallic pair potential. In this way, the model, demonstrating the thermodynamic glass transition from a stable liquid phase, may be regarded as a candidate for a simple monatomic ideal glass former. This observation is of conceptual importance in the context of continuing attempts to resolve the long-standing Kauzmann paradox. The possibility of a thermodynamic glass transition from an equilibrium melt in a metallic system also indicates a new strategy for the development of bulk metallic glass-forming alloys. (C) 2010 American Institute of Physics. [doi:10.1063/1.3493456] C1 [Elenius, Mans; Oppelstrup, Tomas] Royal Inst Technol, Dept Numer Anal, S-10044 Stockholm, Sweden. [Oppelstrup, Tomas] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Dzugutov, Mikhail] Royal Inst Technol, Dept Mat Sci & Engn, S-10044 Stockholm, Sweden. RP Oppelstrup, T (reprint author), Royal Inst Technol, Dept Numer Anal, S-10044 Stockholm, Sweden. EM tomaso@nada.kth.se NR 39 TC 9 Z9 9 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174502 DI 10.1063/1.3493456 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200048 PM 21054046 ER PT J AU Babikov, D Kendrick, BK AF Babikov, Dmitri Kendrick, Brian K. TI The infrared spectrum of cyclic-N-3: Theoretical prediction SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID POTENTIAL-ENERGY SURFACE; GEOMETRIC PHASE; CONICAL INTERSECTION; CHLORINE AZIDE; PHOTOLYTIC PRODUCTION; GROUND-STATE; SCATTERING; DISSOCIATION; DYNAMICS AB We have carried out the first calculations of the infrared absorption spectrum of cyclic-N-3. Accurate vibrational energies and wave functions computed with incorporation of the geometric phase effect (via gauge theory) and using an ab initio potential energy surface were employed in this work. A sophisticated fully dimensional dipole moment function was constructed using accurate ab initio calculations and a three-dimensional-spline interpolation. Transformation of the dipole moment vector function from the reference frame associated with instantaneous principal axes of inertia to the laboratory-fixed reference frame was carried out using hyperspherical coordinates. We found that the permanent dipole moment of cyclic-N-3 in the ground vibrational state is relatively small (170 mD). The excited vibrational states show permanent dipole moments in the 10-25 mD range. The most intense part of the infrared absorption spectrum is observed in the deep infrared part of spectrum, 75-275 cm(-1), where five lines exhibit absolute absorption intensities in the range between 0.5 and 1.2 km/mol. These transitions correspond to excitation of the pseudorotational progression of states. Several unique spectroscopic features discussed in the paper should help to identify cyclic-N-3 in the laboratory. (C) 2010 American Institute of Physics. [doi:10.1063/1.3495952] C1 [Babikov, Dmitri] Marquette Univ, Dept Chem, Milwaukee, WI 53201 USA. [Kendrick, Brian K.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Babikov, D (reprint author), Marquette Univ, Dept Chem, POB 1881, Milwaukee, WI 53201 USA. EM dmitri.babikov@mu.edu FU Air Force Office of Scientific Research [FA9550-09-1-0604]; U.S. Department of Energy at Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Air Force Office of Scientific Research (Grant No. FA9550-09-1-0604). Scott Reid at Marquette University is acknowledged for many fruitful discussions. Peng Zhang and Keiji Morokuma at Emory University are acknowledged for their contribution to calculations of the dipole moment function. Part of this work was done under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. This research used resources of the National Energy Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 11 Z9 11 U1 3 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174310 DI 10.1063/1.3495952 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200037 PM 21054035 ER PT J AU Matthiesen, J Smith, RS Kay, BD AF Matthiesen, Jesper Smith, R. Scott Kay, Bruce D. TI Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. II. Diffusion of Ar, Kr, Xe, and CH4 through Methanol SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AMORPHOUS SOLID WATER; GLASS-TRANSITION; MOLECULAR-BEAMS; DEPOSITION; DYNAMICS; SURFACES AB We present an experimental technique to measure the diffusivity of supercooled liquids at temperatures near their T-g. The approach uses the permeation of inert gases through supercooled liquid overlayers as a measure of the diffusivity of the supercooled liquid itself. The desorption spectra of the probe gas are used to extract the low temperature supercooled liquid diffusivities. In the preceding companion paper, we derived equations using ideal model simulations from which the diffusivity could be extracted using the desorption peak times for isothermal or peak temperatures for temperature programmed desorption experiments. Here, we discuss the experimental conditions for which these equations are valid and demonstrate their utility using amorphous methanol with Ar, Kr, Xe, and CH4 as probe gases. The approach offers a new method by which the diffusivities of supercooled liquids can be measured in the experimentally challenging temperature regime near the glass transition temperature. (C) 2010 American Institute of Physics. [doi:10.1063/1.3497648] C1 [Matthiesen, Jesper; Smith, R. Scott; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM zorro@pnl.gov; Bruce.Kay@pnl.gov RI Matthiesen, Jesper/N-2477-2014; Smith, Scott/G-2310-2015 OI Matthiesen, Jesper/0000-0003-1040-1919; Smith, Scott/0000-0002-7145-1963 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE's Office of Biological and Environmental Research [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle under Contract No. DE-AC05-76RL01830. NR 26 TC 12 Z9 12 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174505 DI 10.1063/1.3497648 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200051 PM 21054049 ER PT J AU Smith, RS Matthiesen, J Kay, BD AF Smith, R. Scott Matthiesen, Jesper Kay, Bruce D. TI Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID AMORPHOUS SOLID WATER; GLASSY WATER; CARBON AB We describe in detail a diffusion model used to simulate inert gas transport through supercooled liquid overlayers. In recent work, the transport of the inert gas has been shown to be an effective probe of the diffusivity of supercooled liquid methanol in the experimentally challenging regime near the glass transition temperature. The model simulations accurately and quantitatively describe the inert gas permeation desorption spectra. The simulation results are used to validate universal scaling relationships between the diffusivity, overlayer thickness, and the temperature ramp rate for isothermal and temperature programmed desorption. From these scaling relationships we derive simple equations from which the diffusivity can be obtained using the peak desorption time or temperature for an isothermal or set of TPD experiments, respectively, without numerical simulation. The results presented here demonstrate that the permeation of gases through amorphous overlayers has the potential to be a powerful technique to obtain diffusivity data in deeply supercooled liquids. (C) 2010 American Institute of Physics. [doi:10.1063/1.3497654] C1 [Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Smith, RS (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999,Mail Stop K8-88, Richland, WA 99352 USA. EM zorro@pnl.gov; Bruce.Kay@pnl.gov RI Matthiesen, Jesper/N-2477-2014; Smith, Scott/G-2310-2015 OI Matthiesen, Jesper/0000-0003-1040-1919; Smith, Scott/0000-0002-7145-1963 FU U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences; DOE Office of Biological and Environmental Research [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The research was performed using EMSL, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, which is operated for DOE by Battelle under Contract No. DE-AC05-76RL01830. NR 25 TC 12 Z9 12 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2010 VL 133 IS 17 AR 174504 DI 10.1063/1.3497654 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 676RV UT WOS:000283936200050 PM 21054048 ER PT J AU Ching, J Riemer, N Dunn, M Miller, M AF Ching, J. Riemer, N. Dunn, M. Miller, M. TI In-cloud turbulence structure of marine stratocumulus SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BOUNDARY-LAYER; RADIATIVE-TRANSFER; CONTINENTAL STRATOCUMULUS; AIRCRAFT OBSERVATIONS; RADAR; MODEL; BUDGETS; ASTEX AB This study quantifies the level of turbulence inside the marine stratocumulus cloud deck over Pt. Reyes, CA, during the Marine Stratus Radiation, Aerosol, and Drizzle Experiment (MASRAD) in July 2005, and identifies the dominant sources of turbulent kinetic energy. We used vertical velocity data from a 3 mm wavelength (94-GHz) vertically pointing Doppler radar in combination with collocated radiosonde data. The results show that the stratocumulus observed at Pt. Reyes behaves differently from that expected on the basis of previous studies due to the modified marine environment that exists there. In particular, we found a decrease of turbulence levels with height within the cloud both during day and during night. The analysis highlights that for the conditions of our study longwave radiative cooling at cloud top was compensated by a number of mechanisms, resulting in the observed profiles. The production of turbulent kinetic energy is dominantly driven by wind shear. Citation: Ching, J., N. Riemer, M. Dunn, and M. Miller (2010), In-cloud turbulence structure of marine stratocumulus, Geophys. Res. Lett., 37, L21808, doi:10.1029/2010GL045033. C1 [Ching, J.; Riemer, N.] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. [Dunn, M.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Miller, M.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. RP Ching, J (reprint author), Univ Illinois, Dept Atmospher Sci, 105 S Gregory St, Urbana, IL 61801 USA. EM ching@illinois.edu; nriemer@illinois.edu; mdunn@bnl.gov; m.miller@envsci.rutgers.edu FU Office of Biological and Environmental Research of the U.S. Department of Energy FX This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program. NR 20 TC 0 Z9 0 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 6 PY 2010 VL 37 AR L21808 DI 10.1029/2010GL045033 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 676TV UT WOS:000283942400003 ER PT J AU Ozak, N Schultz, DR Cravens, TE Kharchenko, V Hui, YW AF Ozak, N. Schultz, D. R. Cravens, T. E. Kharchenko, V. Hui, Y. -W. TI Auroral X-ray emission at Jupiter: Depth effects SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID FULLY STRIPPED IONS; UPPER-ATMOSPHERE; ELECTRON-CAPTURE; CHARGE-TRANSFER; INTERMEDIATE ENERGIES; MOLECULAR-HYDROGEN; THERMAL STRUCTURE; ENERGETIC OXYGEN; ATOMIC-HYDROGEN; CROSS-SECTIONS AB Auroral X-ray emissions from Jupiter with a total power of about 1 GW have been observed by the Einstein Observatory, Roentgen satellite, Chandra X-ray Observatory, and XMM-Newton. Previous theoretical studies have shown that precipitating energetic sulfur and oxygen ions can produce the observed X-rays. This study presents the results of a hybrid Monte Carlo (MC) model for sulfur and oxygen ion precipitation at high latitudes, looks at differences with the continuous slow-down model, and compares the results to synthetic spectra fitted to observations. We concentrate on the effects of altitude on the observed spectrum. The opacity of the atmosphere to the outgoing X-ray photons is found to be important for incident ion energies greater than about 1.2 MeV per nucleon for both sulfur and oxygen. Model spectra are calculated for intensities with and without any opacity effects. These synthetic spectra were compared with the results shown by Hui et al. (2010) which fit Chandra X-ray Observatory observations for the north and south Jovian auroral emissions. Quenching of long-lived excited states of the oxygen ions is found to be important. Opacity considerably diminishes the outgoing X-ray intensity calculated, particularly when the viewing geometry is not favorable. C1 [Ozak, N.; Cravens, T. E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Schultz, D. R.; Hui, Y. -W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kharchenko, V.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. RP Ozak, N (reprint author), Univ Kansas, Dept Phys & Astron, 1082 Malott,1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. EM nojager@ku.edu FU NASA at the University of Kansas [NNX07AF47G-Phase II, NNX10AB86G]; NASA at Oak Ridge National Laboratory [NNH08AF12I] FX This work has been supported at the University of Kansas by NASA Planetary Atmospheres Grants NNX07AF47G-Phase II and NNX10AB86G and at Oak Ridge National Laboratory by NASA Grant NNH08AF12I. NR 53 TC 11 Z9 11 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV 6 PY 2010 VL 115 AR A11306 DI 10.1029/2010JA015635 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 676WX UT WOS:000283950500002 ER PT J AU Strait, J Mokhov, NV Striganov, SI AF Strait, J. Mokhov, N. V. Striganov, S. I. TI Towards the optimal energy of the proton driver for a neutrino factory and muon collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Cross section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross section data are corrected for the beam-energy dependent amplification due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4 < T(beam) < 11 GeV, and within 20% of the maximum for T(beam) as low as 2 GeV. This result is insensitive to which of the two HARP groups' results are used, and to which pion generator is used to compute the thick target effects. C1 [Strait, J.; Mokhov, N. V.; Striganov, S. I.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Strait, J (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy FX We would like to thank Roland Garoby for suggesting this analysis to us, and Igor Boyko, Jaap Panman, Gersende Prior, and Jorg Wotschalk for useful discussions that helped us understand how to use the HARP data. This work was supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 17 TC 8 Z9 8 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV 6 PY 2010 VL 13 IS 11 AR 111001 DI 10.1103/PhysRevSTAB.13.111001 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 676QK UT WOS:000283928500001 ER PT J AU Schwartz, CP Fatehi, S Saykally, RJ Prendergast, D AF Schwartz, Craig P. Fatehi, Shervin Saykally, Richard J. Prendergast, David TI Importance of Electronic Relaxation for Inter-Coulombic Decay in Aqueous Systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID GOLD NANOPARTICLES; WATER AB Inspired by recent photoelectron spectroscopy experiments on hydroxide solutions, we have examined the conditions necessary for enhanced (and, in the case of solutions, detectable) inter-Coulombic decay (ICD)-Auger emission from an atomic site other than that originally excited. We present general guidelines, based on energetic and spatial overlap of molecular orbitals, for this enhancement of inter-Coulombic decay-based energy transfer in solutions. These guidelines indicate that this decay process should be exhibited by broad classes of biomolecules and suggest a design criterion for targeted radiooncology protocols. Our findings show that photoelectron spectroscopy cannot resolve the current hydroxide coordination controversy. C1 [Schwartz, Craig P.; Fatehi, Shervin; Saykally, Richard J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schwartz, Craig P.; Fatehi, Shervin; Saykally, Richard J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Fatehi, Shervin] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Prendergast, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Schwartz, CP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dgprendergast@lbl.gov OI Fatehi, Shervin/0000-0002-9922-923X FU Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy through the LBNL Chemical Sciences Division [DE-AC02-05CH11231]; Molecular Foundry; National Science Foundation FX This work was supported by the Director, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the LBNL Chemical Sciences Division and the Molecular Foundry, and by the National Science Foundation. Computational resources were provided by NERSC, a DOE Advanced Scientific Computing Research User Facility. We thank Professor Mark Tuckerman for the solution snapshots and Dr. Keith Lawler for helpful discussions. NR 21 TC 15 Z9 15 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2010 VL 105 IS 19 AR 198102 DI 10.1103/PhysRevLett.105.198102 PG 4 WC Physics, Multidisciplinary SC Physics GA 675RT UT WOS:000283849300019 PM 21231199 ER PT J AU Park, YD Panepinto, J Shin, S Larsen, P Giles, S Williamson, PR AF Park, Yoon-Dong Panepinto, John Shin, Soowan Larsen, Peter Giles, Steven Williamson, Peter R. TI Mating Pheromone in Cryptococcus neoformans Is Regulated by a Transcriptional/Degradative "Futile" Cycle SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID FUNGAL PATHOGEN CRYPTOCOCCUS; MESSENGER-RNA; PROTEIN-KINASE; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; SEXUAL REPRODUCTION; STRESS-RESPONSE; VIRULENCE; DIFFERENTIATION; HELICASE AB Sexual reproduction in fungi requires induction of signaling pheromones within environments that are conducive to mating. The fungus Cryptococcus neoformans is currently the fourth greatest cause of infectious death in regions of Africa and undergoes mating in phytonutrient-rich environments to create spores with infectious potential. Here we show that under conditions where sexual development is inhibited, a similar to 17-fold excess of MF alpha pheromone transcript is synthesized and then degraded by a DEAD box protein, Vad1, resulting in low steady state transcript levels. Transfer to mating medium or deletion of the VAD1 gene resulted in high level accumulation of MF alpha transcripts and enhanced mating, acting in concert with the mating-related HOG1 pathway. We then investigated whether the high metabolic cost of this apparently futile transcriptional cycle could be justified by a more rapid induction of mating. Maintenance of Vad1 activity on inductive mating medium by constitutive expression resulted in repressed levels of MF alpha that did not prevent but rather prolonged the time to successful mating from 5-6 h to 15 h (p < 0.0001). In sum, these data suggest that VAD1 negatively regulates the sexual cell cycle via degradation of constitutive high levels of MF alpha transcripts in a synthetic/degradative cycle, providing a mechanism of mRNA induction for time-critical cellular events, such as mating induction. C1 NIAID, Lab Clin Infect Dis, NIH, Bethesda, MD 20892 USA. [Panepinto, John] SUNY Buffalo, Dept Microbiol & Immunol, Witebsky Ctr Microbial Pathogenesis & Immunol, Buffalo, NY 14214 USA. [Shin, Soowan; Williamson, Peter R.] Univ Illinois, Infect Dis Sect, Dept Med, Chicago, IL 60612 USA. [Larsen, Peter] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Giles, Steven] Univ Wisconsin, Dept Bacteriol, Madison, WI 53701 USA. RP Williamson, PR (reprint author), 9000 Rockville Pike,Bldg 10,Rm 11N234,MSC 1888, Bethesda, MD 20892 USA. EM williamsonpr@mail.nih.gov FU National Institutes of Health [AI45995, AI49371]; National Institutes of Health, NIAID; American Heart Association [0725736Z] FX This work was supported, in whole or in part, by National Institutes of Health Grants AI45995 and AI49371 and by the Intramural Research Program of the National Institutes of Health, NIAID. This work was also supported by American Heart Association Grant 0725736Z. NR 59 TC 8 Z9 8 U1 0 U2 1 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 5 PY 2010 VL 285 IS 45 BP 34746 EP 34756 DI 10.1074/jbc.M110.136812 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 673KL UT WOS:000283659100050 PM 20801870 ER PT J AU Curtright, TL Zachos, CK AF Curtright, Thomas L. Zachos, Cosmas K. TI Chaotic maps, Hamiltonian flows and holographic methods SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article AB Holographic functional methods are introduced as probes of discrete time-stepped maps that lead to chaotic behavior. The methods provide continuous time interpolation between the time steps, thereby revealing the maps to be quasi-Hamiltonian systems underlain by novel potentials that govern the motion of a perceived point particle. Between turning points, the particle is strictly driven by Hamiltonian dynamics, but at each encounter with a turning point the potential changes abruptly, loosely analogous to the switchbacks on a mountain road. A sequence of successively deepening switchback potentials explains, in physical terms, the frequency cascade and trajectory folding that occur on the particular route to chaos revealed by the logistic map. C1 [Curtright, Thomas L.] Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. [Zachos, Cosmas K.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Curtright, TL (reprint author), Univ Miami, Dept Phys, Coral Gables, FL 33124 USA. EM curtright@miami.edu RI zachos, cosmas/C-4366-2014; Curtright, Thomas/B-6840-2015; OI zachos, cosmas/0000-0003-4379-3875; Curtright, Thomas/0000-0001-7031-5604 FU NSF [0855386]; US Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357] FX We thank D Callaway for incisive questions and encouragement, D Sinclair for his emphasis on an appropriate title and an anonymous reviewer for suggestions to improve our presentation of the material. This work was supported in part by NSF Award 0855386, and in part by the US Department of Energy, Division of High Energy Physics, under contract DE-AC02-06CH11357. NR 11 TC 7 Z9 7 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD NOV 5 PY 2010 VL 43 IS 44 AR 445101 DI 10.1088/1751-8113/43/44/445101 PG 15 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 668VS UT WOS:000283300800007 ER PT J AU Peroz, C Dhuey, S Volger, M Wu, Y Olynick, D Cabrini, S AF Peroz, C. Dhuey, S. Volger, M. Wu, Y. Olynick, D. Cabrini, S. TI Step and repeat UV nanoimprint lithography on pre-spin coated resist film: a promising route for fabricating nanodevices SO NANOTECHNOLOGY LA English DT Article ID HYDROGEN SILSESQUIOXANE; IMPRINT LITHOGRAPHY AB A step and repeat UV nanoimprint lithography process on pre-spin coated resist film is demonstrated for patterning a large area with features sizes down to sub-15 nm. The high fidelity between the template and imprinted structures is verified with a difference in their line edge roughness of less than 0.5 nm (3 sigma deviation value). The imprinted pattern's residual layer is well controlled to allow direct pattern transfer from the resist into functional materials with very high resolution. The process is suitable for fabricating numerous nanodevices. C1 [Peroz, C.] aBeam Technol, Castro Valley, CA 94546 USA. [Dhuey, S.; Olynick, D.; Cabrini, S.] LBNL, Mol Foundry, Berkeley, CA 94702 USA. [Volger, M.] MicroResist Technol, D-12555 Berlin, Germany. [Wu, Y.] Oxford Instruments, Concord, MA 01742 USA. RP Peroz, C (reprint author), aBeam Technol, 5286 Dunnigan Court, Castro Valley, CA 94546 USA. EM cp@abeamtech.com FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX We would like to thank B Harteneck and E Wood for their technical support and S Babin for providing myCD software analysis. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. NR 20 TC 26 Z9 26 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 5 PY 2010 VL 21 IS 44 AR 445301 DI 10.1088/0957-4484/21/44/445301 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 660XL UT WOS:000282679800006 PM 20921594 ER PT J AU Wang, CH Christianson, AD Lawrence, JM Bauer, ED Goremychkin, EA Kolesnikov, AI Trouw, F Ronning, F Thompson, JD Lumsden, MD Ni, N Mun, ED Jia, S Canfield, PC Qiu, Y Copley, JRD AF Wang, C. H. Christianson, A. D. Lawrence, J. M. Bauer, E. D. Goremychkin, E. A. Kolesnikov, A. I. Trouw, F. Ronning, F. Thompson, J. D. Lumsden, M. D. Ni, N. Mun, E. D. Jia, S. Canfield, P. C. Qiu, Y. Copley, J. R. D. TI Neutron scattering and scaling behavior in URu2Zn20 and YbFe2Zn20 SO PHYSICAL REVIEW B LA English DT Article ID INTERMETALLIC COMPOUND; FLUCTUATIONS; EXCITATIONS; URANIUM; UPT3; RH; IR; CO AB The dynamic susceptibility chi '' (Delta E), measured by inelastic neutron-scattering measurements, shows a broad peak centered at E-max=15 meV for the cubic actinide compound URu2Zn20 and 7 meV at zone center and at the (1/2, 1/2, 1/2) zone boundary for the rare-earth counterpart compound YbFe2Zn20. For URu2Zn20, the low-temperature susceptibility and magnetic specific-heat coefficient gamma = C-mag/T take the values chi = 0.011 emu/mole and gamma = 190 mJ/mole K-2 at T=2 K. These values are roughly three times smaller, and E-max is three times larger, than recently reported for the related compound UCo2Zn20, so that chi and gamma scale inversely with the characteristic energy for spin fluctuations, T-sf = E-max/k(B). While chi(T) , C-mag(T), and E-max of the 4f compound YbFe2Zn20 are very well described by the Kondo impurity model, we show that the model works poorly for URu2Zn20 and UCo2Zn20, suggesting that the scaling behavior of the actinide compounds arises from spin fluctuations of itinerant 5f electrons. C1 [Wang, C. H.; Lawrence, J. M.] Univ Calif Irvine, Irvine, CA 92697 USA. [Wang, C. H.; Bauer, E. D.; Trouw, F.; Ronning, F.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christianson, A. D.; Kolesnikov, A. I.; Lumsden, M. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Goremychkin, E. A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ni, N.; Mun, E. D.; Jia, S.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Qiu, Y.; Copley, J. R. D.] NIST, Gaithersburg, MD 20899 USA. [Qiu, Y.] Univ Maryland, College Pk, MD 20742 USA. RP Wang, CH (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. RI Bauer, Eric/D-7212-2011; Lujan Center, LANL/G-4896-2012; Canfield, Paul/H-2698-2014; Kolesnikov, Alexander/I-9015-2012; christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012; OI Kolesnikov, Alexander/0000-0003-1940-4649; christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660; Ronning, Filip/0000-0002-2679-7957; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46036]; Scientific User Facilities Division Office of Basic Energy Sciences (BES), DOE; DOE-BES [DE-AC02-06CH11357, DE-AC02-07CH11358]; National Science Foundation [DMR-0454672] FX Research at UC Irvine was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46036. Work at ORNL was supported by the Scientific User Facilities Division Office of Basic Energy Sciences (BES), DOE. Work at ANL was supported by DOE-BES under Contract No. DE-AC02-06CH11357. Work at the Ames Laboratory was supported by the DOE-BES under Contract No. DE-AC02-07CH11358. Work at Los Alamos, including work performed at the Los Alamos Neutron Science Center, was also supported by the DOE-BES. Work at NIST utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. NR 27 TC 11 Z9 11 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 5 PY 2010 VL 82 IS 18 AR 184407 DI 10.1103/PhysRevB.82.184407 PG 6 WC Physics, Condensed Matter SC Physics GA 675OW UT WOS:000283841000003 ER PT J AU Bratt, JD Edwards, RG Engelhardt, M Hagler, P Lin, HW Lin, MF Meyer, HB Musch, B Negele, JW Orginos, K Pochinsky, AV Procura, M Richards, DG Schroers, W Syritsyn, SN AF Bratt, J. D. Edwards, R. G. Engelhardt, M. Haegler, Ph. Lin, H. W. Lin, M. F. Meyer, H. B. Musch, B. Negele, J. W. Orginos, K. Pochinsky, A. V. Procura, M. Richards, D. G. Schroers, W. Syritsyn, S. N. TI Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL PERTURBATION-THEORY; GENERALIZED PARTON DISTRIBUTIONS; ELECTROMAGNETIC FORM-FACTORS; LATTICE QCD; HADRON STRUCTURE; SCATTERING; SPIN; MASS; SIMULATIONS; OBSERVABLES AB We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2 + 1 flavors of asqtad sea and domain-wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin. C1 [Bratt, J. D.; Lin, M. F.; Meyer, H. B.; Negele, J. W.; Pochinsky, A. V.; Procura, M.; Syritsyn, S. N.] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Edwards, R. G.; Lin, H. W.; Musch, B.; Richards, D. G.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Engelhardt, M.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Haegler, Ph.; Musch, B.; Procura, M.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Lin, H. W.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Lin, M. F.] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Meyer, H. B.] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [Orginos, K.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Schroers, W.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. RP Bratt, JD (reprint author), MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. FU U.S. DOE [DE-AC05-06OR23177, DE-FG03-97ER4014]; DOE Office of Nuclear Physics [DE-FG02-94ER40818, DE-FG02-04ER41302, DE-FG02-96ER40965, DE-FG02-05ER25681, DE-AC02-06CH11357]; EU [RII3-CT-2004-506078]; DOE [DE-AC05-06OR23177]; Southeastern Universities Research Association, Inc. [DE-AC05-84ER40150]; Emmy-Noether program; DFG; National Science Council of Taiwan [NSC96-2112-M002-020-MY3, NSC96-2811-M002-026]; NuAS in Germany; Institute of Physics at Academia Sinica; Jeffress Memorial Trust [J-813]; Alexander von Humboldt-foundation FX The authors wish to thank George T. Fleming, Dru B. Renner, and Andre P. Walker-Loud for their contributions to this project and to the LHPC Collaboration for valuable discussions of the physics and presentation of this work. This work was supported in part by U.S. DOE Contracts No. DE-AC05-06OR23177 and No. DE-FG03-97ER4014, by the DOE Office of Nuclear Physics under Grants No. DE-FG02-94ER40818, No. DE-FG02-04ER41302, No. DE-FG02-96ER40965, No. DE-FG02-05ER25681, and No. DE-AC02-06CH11357, and the EU (I3HP) under Contract No. RII3-CT-2004-506078. This work was supported by DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory, and by DOE Contract No. DE-AC05-84ER40150 of the Southeastern Universities Research Association, Inc. Ph. H. and B. M. acknowledge support by the Emmy-Noether program and the cluster of excellence "Origin and Structure of the Universe'' of the DFG. W.S. acknowledges support by the National Science Council of Taiwan under Grants No. NSC96-2112-M002-020-MY3 and No. NSC96-2811-M002-026 and by NuAS in Germany, and wishes to thank the Institute of Physics at Academia Sinica for their kind hospitality and support. W.S. particularly thanks Jiunn-Wei Chen at National Taiwan University and Hai-Yang Cheng and Hsiang-nan Li at Academia Sinica for their hospitality and for valuable physics discussions and suggestions. K. O. acknowledges support from the Jeffress Memorial Trust Grant No. J-813, and Ph. H., M.P., and W.S. acknowledge support by the Alexander von Humboldt-foundation through the Feodor-Lynen program. It is a pleasure to acknowledge the use of resources provided by the New Mexico Computing Applications Center (NMCAC) on Encanto, and of computer resources provided by the DOE through the USQCD project at Jefferson Lab and through its support of the MIT Blue Gene/L. These calculations were performed using the Chroma software suite [118]. We are indebted to members of the MILC Collaboration for providing the dynamical quark configurations that made our full QCD calculations possible. NR 118 TC 120 Z9 120 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 5 PY 2010 VL 82 IS 9 AR 094502 DI 10.1103/PhysRevD.82.094502 PG 57 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 675QA UT WOS:000283844300005 ER PT J AU Aaltonen, T Adelman, J Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, J Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Attal, A Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauer, G Beauchemin, PH Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blocker, C Blumenfeld, B Bocci, A Bodek, A Boisvert, V Bortoletto, D Boudreau, J Boveia, A Brau, B Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Byrum, KL Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, K Chung, WH Chung, YS Chwalek, T Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Cully, JC Dagenhart, D d'Ascenzo, N Datta, M Davies, T de Barbaro, P De Cecco, S Deisher, A De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Dube, S Ebina, K Elagin, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerdes, D Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC Grundler, U da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Han, BY Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hartz, M Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Heuser, J Hewamanage, S Hidas, D Hill, CS Hirschbuehl, D Hocker, A Hou, S Houlden, M Hsu, SC Hughes, RE Hurwitz, M Husemann, U Hussein, M Huston, J Incandela, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Junk, TR Kamon, T Kar, D Karchin, PE Kato, Y Kephart, R Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirsch, L Klimenko, S Ko, BR Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, T Lockyer, NS Loginov, A Lovas, L Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R MacQueen, D Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malde, S Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mulmenstadt, J Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakamura, K Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Neubauer, S Nielsen, J Nodulman, L Norman, M Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Osterberg, K Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Papaikonomou, A Paramanov, AA Parks, B Pashapour, S Patrick, J Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pinera, L Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rademacker, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Renz, M Rescigno, M Richter, S Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Roy, P Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shon, Y Shreyber, I Simonenko, A Sinervo, P Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Snider, FD Snihur, R Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Taffard, A Takashima, R Takeuchi, Y Tanaka, R Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tu, Y Turini, N Ukegawa, F Uozumi, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Weinelt, J Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, C Wolfe, H Wright, T Wu, X Wurthwein, F Yagil, A Yamamoto, K Yamaoka, J Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zhang, X Zheng, Y Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Attal, A. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauer, G. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Boisvert, V. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Dagenhart, D. d'Ascenzo, N. Datta, M. Davies, T. de Barbaro, P. De Cecco, S. Deisher, A. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Dube, S. Ebina, K. Elagin, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerdes, D. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. Grundler, U. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Han, B. -Y. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hartz, M. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Heuser, J. Hewamanage, S. Hidas, D. Hill, C. S. Hirschbuehl, D. Hocker, A. Hou, S. Houlden, M. Hsu, S. -C. Hughes, R. E. Hurwitz, M. Husemann, U. Hussein, M. Huston, J. Incandela, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Kamon, T. Kar, D. Karchin, P. E. Kato, Y. Kephart, R. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirsch, L. Klimenko, S. Ko, B. R. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Lockyer, N. S. Loginov, A. Lovas, L. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. MacQueen, D. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malde, S. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Muelmenstaedt, J. Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakamura, K. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Nielsen, J. Nodulman, L. Norman, M. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Osterberg, K. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parks, B. Pashapour, S. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pinera, L. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rademacker, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Renz, M. Rescigno, M. Richter, S. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Roy, P. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shon, Y. Shreyber, I. Simonenko, A. Sinervo, P. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Snider, F. D. Snihur, R. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Taffard, A. Takashima, R. Takeuchi, Y. Tanaka, R. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Weinelt, J. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, C. Wolfe, H. Wright, T. Wu, X. Wuerthwein, F. Yagil, A. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, Y. C. Yao, W. M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zhang, X. Zheng, Y. Zucchelli, S. CA CDF Collaboration TI Search for R-Parity Violating Decays of Sneutrinos to e mu, mu tau, and e tau Pairs in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERSYMMETRY; PHYSICS AB We present a search for supersymmetric neutrino (nu) over tilde production using the Tevatron p (p) over bar collision data collected with the CDF II detector and corresponding to an integrated luminosity of 1 fb(-1). We focus on the scenarios predicted by the R-parity violating (RPV) supersymmetric models in which sneutrinos decay to two charged leptons of different flavor. With the data consistent with the standard model expectations, we set upper limits on sigma(p (p) over bar -> (nu) over tilde) BR((nu) over tilde -> e mu, mu tau, e tau) and use these results to constrain the RPV couplings as a function of the sneutrino mass. C1 [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Martin, V.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Ko, B. R.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Chung, K.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; James, E.; Jindariani, S.; Junk, T. R.; Kephart, R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Rutherford, B.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Yang, Y. C.] Coll London, Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Pashapour, S.; Roy, P.; Sinervo, P.; Snihur, R.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Miller, R.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Lucchesi, D.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Dube, S.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Kamon, T.; Khotilovich, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Shon, Y.] Univ Wisconsin, Madison, WI 53706 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Ruiz, Alberto/E-4473-2011; Punzi, Giovanni/J-4947-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Annovi, Alberto/G-6028-2012; Zeng, Yu/C-1438-2013; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012 OI Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Ivanov, Andrew/0000-0002-9270-5643; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 30 TC 13 Z9 13 U1 3 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2010 VL 105 IS 19 AR 191801 DI 10.1103/PhysRevLett.105.191801 PG 7 WC Physics, Multidisciplinary SC Physics GA 675RT UT WOS:000283849300004 ER PT J AU Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Alexeev, GD Alkhazov, G Alton, A Alverson, G Alves, GA Ancu, LS Aoki, M Arnoud, Y Arov, M Askew, A Asman, B Atramentov, O Avila, C BackusMayes, J Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Barreto, J Bartlett, JF Bassler, U Beale, S Bean, A Begalli, M Begel, M Belanger-Champagne, C Bellantoni, L Benitez, JA Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Bolton, TA Boos, EE Borissov, G Bose, T Brandt, A Brandt, O Brock, R Brooijmans, G Bross, A Brown, D Brown, J Bu, XB Buchholz, D Buehler, M Buescher, V Bunichev, V Burdin, S Burnett, TH Buszello, CP Calpas, B Calvet, S Camacho-Perez, E Carrasco-Lizarraga, MA Carrera, E Casey, BCK Castilla-Valdez, H Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chen, G Chevalier-Thery, S Cho, DK Cho, SW Choi, S Choudhary, B Christoudias, T Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Croc, A Cutts, D Cwiok, M Das, A Davies, G De, K de Jong, SJ De La Cruz-Burelo, E Deliot, F Demarteau, M Demina, R Denisov, D Denisov, SP Desai, S DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dorland, T Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Eno, S Evans, H Evdokimov, A Evdokimov, VN Facini, G Ferapontov, AV Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Fuess, S Gadfort, T Garcia-Bellido, A Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gershtein, Y Ginther, G Golovanov, G Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Hagopian, S Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hohlfeld, M Hossain, S Hubacek, Z Huske, N Hynek, V Iashvili, I Illingworth, R Ito, AS Jabeen, S Jaffre, M Jain, S Jamin, D Jesik, R Johns, K Johnson, M Johnston, D Jonckheere, A Jonsson, P Joshi, J Juste, A Kaadze, K Kajfasz, E Karmanov, D Kasper, PA Katsanos, I Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Kirby, MH Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Kvita, J Lammers, S Landsberg, G Lebrun, P Lee, HS Lee, SW Lee, WM Lellouch, J Li, L Li, QZ Lietti, SM Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, YLZ Liu, Z Lobodenko, A Lokajicek, M Love, P Lubatti, HJ Luna-Garcia, R Lyon, AL Maciel, AKA Mackin, D Madar, R Magana-Villalba, R Malik, S Malyshev, VL Maravin, Y Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Mondal, NK Muanza, GS Mulhearn, M Nagy, E Naimuddin, M Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nilsen, H Novaes, SF Nunnemann, T Obrant, G Onoprienko, D Orduna, J Osman, N Osta, J Garzon, GJOY Owen, M Padilla, M Pangilinan, M Parashar, N Parihar, V Park, SK Parsons, J Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Piegaia, R Piper, J Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Popov, AV Prewitt, M Price, D Protopopescu, S Qian, J Quadt, A Quinn, B Rangel, MS Ranjan, K Ratoff, PN Razumov, I Renkel, P Rich, P Rijssenbeek, M Ripp-Baudot, I Rizatdinova, F Rominsky, M Royon, C Rubinov, P Ruchti, R Safronov, G Sajot, G Sanchez-Hernandez, A Sanders, MP Sanghi, B Santos, AS Savage, G Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schliephake, T Schlobohm, S Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shchukin, AA Shivpuri, RK Simak, V Sirotenko, V Skubic, P Slattery, P Smirnov, D Smith, KJ Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Sopczak, A Sosebee, M Soustruznik, K Spurlock, B Stark, J Stolin, V Stoyanova, DA Strauss, E Strauss, M Strom, D Stutte, L Svoisky, P Takahashi, M Tanasijczuk, A Taylor, W Titov, M Tokmenin, VV Tsybychev, D Tuchming, B Tully, C Tuts, PM Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vint, P Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weber, M Wetstein, M White, A Wicke, D Williams, MRJ Wilson, GW Wimpenny, SJ Wobisch, M Wood, DR Wyatt, TR Xie, Y Xu, C Yacoob, S Yamada, R Yang, WC Yasuda, T Yatsunenko, YA Ye, Z Yin, H Yip, K Yoo, HD Youn, SW Yu, J Zelitch, S Zhao, T Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Alexeev, G. D. Alkhazov, G. Alton, A. Alverson, G. Alves, G. A. Ancu, L. S. Aoki, M. Arnoud, Y. Arov, M. Askew, A. Asman, B. Atramentov, O. Avila, C. BackusMayes, J. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Barreto, J. Bartlett, J. F. Bassler, U. Beale, S. Bean, A. Begalli, M. Begel, M. Belanger-Champagne, C. Bellantoni, L. Benitez, J. A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bose, T. Brandt, A. Brandt, O. Brock, R. Brooijmans, G. Bross, A. Brown, D. Brown, J. Bu, X. B. Buchholz, D. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burnett, T. H. Buszello, C. P. Calpas, B. Calvet, S. Camacho-Perez, E. Carrasco-Lizarraga, M. A. Carrera, E. Casey, B. C. K. Castilla-Valdez, H. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chen, G. Chevalier-Thery, S. Cho, D. K. Cho, S. W. Choi, S. Choudhary, B. Christoudias, T. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Croc, A. Cutts, D. Cwiok, M. Das, A. Davies, G. De, K. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demarteau, M. Demina, R. Denisov, D. Denisov, S. P. Desai, S. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dorland, T. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Ferapontov, A. V. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Fuess, S. Gadfort, T. Garcia-Bellido, A. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gershtein, Y. Ginther, G. Golovanov, G. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Gruenewald, M. W. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Hagopian, S. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hohlfeld, M. Hossain, S. Hubacek, Z. Huske, N. Hynek, V. Iashvili, I. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jain, S. Jamin, D. Jesik, R. Johns, K. Johnson, M. Johnston, D. Jonckheere, A. Jonsson, P. Joshi, J. Juste, A. Kaadze, K. Kajfasz, E. Karmanov, D. Kasper, P. A. Katsanos, I. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Kirby, M. H. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Kvita, J. Lammers, S. Landsberg, G. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lellouch, J. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, Y. Liu, Z. Lobodenko, A. Lokajicek, M. Love, P. Lubatti, H. J. Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Mackin, D. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Maravin, Y. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Mondal, N. K. Muanza, G. S. Mulhearn, M. Nagy, E. Naimuddin, M. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nilsen, H. Novaes, S. F. Nunnemann, T. Obrant, G. Onoprienko, D. Orduna, J. Osman, N. Osta, J. Otero y Garzon, G. J. Owen, M. Padilla, M. Pangilinan, M. Parashar, N. Parihar, V. Park, S. K. Parsons, J. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Piegaia, R. Piper, J. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Popov, A. V. Prewitt, M. Price, D. Protopopescu, S. Qian, J. Quadt, A. Quinn, B. Rangel, M. S. Ranjan, K. Ratoff, P. N. Razumov, I. Renkel, P. Rich, P. Rijssenbeek, M. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Royon, C. Rubinov, P. Ruchti, R. Safronov, G. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santos, A. S. Savage, G. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schliephake, T. Schlobohm, S. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shchukin, A. A. Shivpuri, R. K. Simak, V. Sirotenko, V. Skubic, P. Slattery, P. Smirnov, D. Smith, K. J. Snow, G. R. Snow, J. Snyder, S. Soeldner-Rembold, S. Sonnenschein, L. Sopczak, A. Sosebee, M. Soustruznik, K. Spurlock, B. Stark, J. Stolin, V. Stoyanova, D. A. Strauss, E. Strauss, M. Strom, D. Stutte, L. Svoisky, P. Takahashi, M. Tanasijczuk, A. Taylor, W. Titov, M. Tokmenin, V. V. Tsybychev, D. Tuchming, B. Tully, C. Tuts, P. M. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vint, P. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weber, M. Wetstein, M. White, A. Wicke, D. Williams, M. R. J. Wilson, G. W. Wimpenny, S. J. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yamada, R. Yang, W. -C. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yin, H. Yip, K. Yoo, H. D. Youn, S. W. Yu, J. Zelitch, S. Zhao, T. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Search for Sneutrino Production in e mu Final States in 5.3 fb(-1) of p(p)over-bar Collisions at root s = 1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERSYMMETRY AB We report the results of a search for R parity violating (RPV) interactions leading to the production of supersymmetric sneutrinos decaying into e mu final states using 5.3 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. Having observed no evidence for production of e mu resonances, we set direct bounds on the RPV couplings lambda'(311) and lambda(312) as a function of sneutrino mass. C1 [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Otero y Garzon, G. J.; Piegaia, R.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Russia. [Lietti, S. M.; Novaes, S. F.; Santos, A. S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beale, S.; Liu, Z.; Taylor, W.] Simon Fraser Univ, Vancouver, BC, Canada. [Beale, S.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Ding, P. F.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Kvita, J.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, LPC, CNRS, IN2P3, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, CNRS, LPSC, Inst Natl Polytech Grenoble,IN2P3, Grenoble, France. [Calpas, B.; Cousinou, M. -C.; Duperrin, A.; Geng, W.; Jamin, D.; Kajfasz, E.; Kermiche, S.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 06, CNRS, LPNHE, IN2P3, Paris, France. [Bernardi, G.; Brown, D.; Brown, J.; Enari, Y.; Huske, N.; Lellouch, J.] Univ Paris 07, CNRS, LPNHE, IN2P3, Paris, France. [Bassler, U.; Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, SPP, Saclay, France. [Geist, W.; Greder, S.; Ripp-Baudot, I.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon 1, CNRS, IPNL, IN2P3, F-69622 Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.; Verdier, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Hensel, C.; Meyer, J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Joshi, J.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Cho, S. W.; Choi, S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [van Leeuwen, W. M.] FOM Inst NIKHEF, Amsterdam, Netherlands. [van Leeuwen, W. M.] Univ Amsterdam NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen NIKHEF, Nijmegen, Netherlands. [Gavrilov, V.; Polozov, P.; Safronov, G.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Ding, P. F.; Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Aoki, M.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Ginther, G.; Greenlee, H.; Gruenendahl, S.; Gutierrez, G.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Juste, A.; Kasper, P. A.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Sanghi, B.; Savage, G.; Sirotenko, V.; Stutte, L.; Verzocchi, M.; Weber, M.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Buchholz, D.; Kirby, M. H.; Schellman, H.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Herner, K.; Neal, H. A.; Qian, J.; Xu, C.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Edmunds, D.; Fisher, W.; Geng, W.; Kraus, J.; Linnemann, J.; Piper, J.; Schwienhorst, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Duggan, D.; Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Smith, K. J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Patwa, A.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. [Kehoe, R.; Renkel, P.] So Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Mackin, D.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Buehler, M.; Hirosky, R.; Mulhearn, M.; Zelitch, S.] Univ Virginia, Charlottesville, VA 22901 USA. [BackusMayes, J.; Burnett, T. H.; Dorland, T.; Goussiou, A.; Lubatti, H. J.; Schlobohm, S.; Shchukin, A. A.; Watts, G.; Zhao, T.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Inst Nucl Res, Dubna, Russia. RI Li, Liang/O-1107-2015; Boos, Eduard/D-9748-2012; Mercadante, Pedro/K-1918-2012; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Kozelov, Alexander/J-3812-2014; Christoudias, Theodoros/E-7305-2015; Guo, Jun/O-5202-2015; Bolton, Tim/A-7951-2012; Gerbaudo, Davide/J-4536-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012; Gutierrez, Phillip/C-1161-2011; Perfilov, Maxim/E-1064-2012; Yip, Kin/D-6860-2013; Wimpenny, Stephen/K-8848-2013; Santos, Angelo/K-5552-2012; Dudko, Lev/D-7127-2012; Fisher, Wade/N-4491-2013; De, Kaushik/N-1953-2013; Novaes, Sergio/D-3532-2012; Ancu, Lucian Stefan/F-1812-2010 OI Li, Liang/0000-0001-6411-6107; Sharyy, Viatcheslav/0000-0002-7161-2616; Christoudias, Theodoros/0000-0001-9050-3880; Guo, Jun/0000-0001-8125-9433; Gerbaudo, Davide/0000-0002-4463-0878; Yip, Kin/0000-0002-8576-4311; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; De, Kaushik/0000-0002-5647-4489; Novaes, Sergio/0000-0003-0471-8549; Ancu, Lucian Stefan/0000-0001-5068-6723 FU DOE; NSF (USA); CEA; CNRS/IN2P3 (France); FASI, Rosatom; RFBR (Russia); CNPq; FAPERJ; FAPESP; FUNDUNESP (Brazil); DAE (India); DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); KOSEF (Korea); CONICET; UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); Royal Society (United Kingdom); MSMT; GACR (Czech Republic); CRC; NSERC (Canada); BMBF (Germany); DFG (Germany); SFI (Ireland); Swedish Research Council (Sweden); CAS; CNSF (China) FX We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China). NR 20 TC 14 Z9 14 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2010 VL 105 IS 19 AR 191802 DI 10.1103/PhysRevLett.105.191802 PG 7 WC Physics, Multidisciplinary SC Physics GA 675RT UT WOS:000283849300005 ER PT J AU Seidel, J Maksymovych, P Batra, Y Katan, A Yang, SY He, Q Baddorf, AP Kalinin, SV Yang, CH Yang, JC Chu, YH Salje, EKH Wormeester, H Salmeron, M Ramesh, R AF Seidel, J. Maksymovych, P. Batra, Y. Katan, A. Yang, S. -Y. He, Q. Baddorf, A. P. Kalinin, S. V. Yang, C. -H. Yang, J. -C. Chu, Y. -H. Salje, E. K. H. Wormeester, H. Salmeron, M. Ramesh, R. TI Domain Wall Conductivity in La-Doped BiFeO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRIC-FILMS; BULK AB The transport physics of domain wall conductivity in La-doped bismuth ferrite (BiFeO3) has been probed using variable temperature conducting atomic force microscopy and piezoresponse force microscopy in samples with arrays of domain walls in the as-grown state. Nanoscale current measurements are investigated as a function of bias and temperature and are shown to be consistent with distinct electronic properties at the domain walls leading to changes in the observed local conductivity. Our observation is well described within a band picture of the observed electronic conduction. Finally, we demonstrate an additional degree of control of the wall conductivity through chemical doping with oxygen vacancies, thus influencing the local conductive state. C1 [Seidel, J.; He, Q.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Seidel, J.; Katan, A.; Salmeron, M.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Maksymovych, P.; Baddorf, A. P.; Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Batra, Y.; Wormeester, H.] Univ Twente, MESA Res Inst, NL-7500 AE Enschede, Netherlands. [Yang, S. -Y.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, C. -H.] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Yang, J. -C.; Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan. [Salje, E. K. H.] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England. [Salje, E. K. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Seidel, J (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; Katan, Allard/B-9670-2008; YANG, CHAN-HO/C-2079-2011; Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Salje, Ekhard/M-2931-2013; Maksymovych, Petro/C-3922-2016; Baddorf, Arthur/I-1308-2016 OI Ying-Hao, Chu/0000-0002-3435-9084; Katan, Allard/0000-0002-7185-6274; Kalinin, Sergei/0000-0001-5354-6152; Salje, Ekhard/0000-0002-8781-6154; Maksymovych, Petro/0000-0003-0822-8459; Baddorf, Arthur/0000-0001-7023-2382 FU U.S. Department of Energy, Office of Science [DE-AC02-05CH1123]; Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy; Alexander von Humboldt Foundation FX This research is supported by the U.S. Department of Energy, Office of Science, under contract No. DE-AC02-05CH1123. A portion of this research was conducted at the Center for Nanophase Materials Sciences, sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. J. S. acknowledges support from the Alexander von Humboldt Foundation. NR 22 TC 159 Z9 161 U1 19 U2 160 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2010 VL 105 IS 19 AR 197603 DI 10.1103/PhysRevLett.105.197603 PG 3 WC Physics, Multidisciplinary SC Physics GA 675RT UT WOS:000283849300017 PM 21231197 ER PT J AU Zhu, JY Liu, F Stringfellow, GB Wei, SH AF Zhu, Junyi Liu, Feng Stringfellow, G. B. Wei, Su-Huai TI Strain-Enhanced Doping in Semiconductors: Effects of Dopant Size and Charge State SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUGMENTED-WAVE METHOD; SOLUBILITY; SIGE; SET AB When a semiconductor host is doped by a foreign element, it is inevitable that a volume change will occur in the doped system. This volume change depends on both the size and charge state difference between the dopant and the host element. Unlike the "common expectation'' that if the host is deformed to the same size as the dopant, then the formation energy of the dopant would reach a minimum, our first-principles calculations discovered that when an external hydrostatic strain is applied, the change of the impurity formation energy is monotonic: it decreases if the external hydrostatic strain is applied in the same direction as the volume change. This effect also exists when a biaxial strain is applied. A simple strain model is proposed to explain this unusual behavior, and we suggest that strain could be used to significantly improve the doping solubility in semiconductor systems. C1 [Zhu, Junyi; Liu, Feng; Stringfellow, G. B.] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Zhu, Junyi; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Zhu, JY (reprint author), Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. FU DOE/OS/BES [DE-FG0204ER46148, DE-AC02-05CH11231, DE-AC36-08GO28308] FX The authors thank Zheng Liu for useful discussions. The work at University of Utah was supported by DOE/OS/BES under Grant No. DE-FG0204ER46148. The calculations were performed on clusters at the CHPC, University of Utah and at National Energy Research Scientific Computing Center supported by the DOE/OS/BES under Grant No. DE-AC02-05CH11231. The work at NREL was supported by the DOE/OS/BES under Grant No. DE-AC36-08GO28308. NR 19 TC 46 Z9 46 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 5 PY 2010 VL 105 IS 19 AR 195503 DI 10.1103/PhysRevLett.105.195503 PG 4 WC Physics, Multidisciplinary SC Physics GA 675RT UT WOS:000283849300012 PM 21231183 ER PT J AU Mason, OU Nakagawa, T Rosner, M Van Nostrand, JD Zhou, JZ Maruyama, A Fisk, MR Giovannoni, SJ AF Mason, Olivia U. Nakagawa, Tatsunori Rosner, Martin Van Nostrand, Joy D. Zhou, Jizhong Maruyama, Akihiko Fisk, Martin R. Giovannoni, Stephen J. TI First Investigation of the Microbiology of the Deepest Layer of Ocean Crust SO PLOS ONE LA English DT Article ID 16S RIBOSOMAL-RNA; MID-ATLANTIC RIDGE; CITY HYDROTHERMAL FIELD; GRADIENT GEL-ELECTROPHORESIS; RALSTONIA-PICKETTII PKO1; SEA-FLOOR BASALT; SP-NOV; METHYLOCOCCUS-CAPSULATUS; ALKANE HYDROXYLASE; SEQUENCE-ANALYSIS AB The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 degrees N, 42 degrees W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere. C1 [Mason, Olivia U.; Fisk, Martin R.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Nakagawa, Tatsunori] Tohoku Univ, Dept Earth Sci, Sendai, Miyagi 980, Japan. [Rosner, Martin] Univ Bremen, Bremen, Germany. [Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Maruyama, Akihiko] Natl Inst Adv Ind Sci & Technol, Res Inst Biol Resources, Tsukuba, Japan. [Giovannoni, Stephen J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. RP Mason, OU (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM steve.giovannoni@oregonstate.edu RI Rosner, Martin/B-9264-2009; Van Nostrand, Joy/F-1740-2016 OI Van Nostrand, Joy/0000-0001-9548-6450 FU Joint Oceanographic Institutions award; Gordon and Betty Moore Foundation; National Science Foundation IGERT; United States Department of Energy under Virtual Institute of Microbial Stress and Survival of the Office of Biological and Environmental Research, Office of Science FX Funding: This work was supported by a Joint Oceanographic Institutions award to M. R. Fisk, a Marine Microbiology Initiative Investigator Award from the Gordon and Betty Moore Foundation to S. J. Giovannoni, and a National Science Foundation IGERT Subsurface Biosphere Fellowship to O. U. Mason. The GeoChip microarray analysis was supported in part by the United States Department of Energy under the Genomics: GTL Program to J. Z. Zhou through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov) of the Office of Biological and Environmental Research, Office of Science. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 72 TC 51 Z9 51 U1 2 U2 50 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 5 PY 2010 VL 5 IS 11 AR e15399 DI 10.1371/journal.pone.0015399 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675OD UT WOS:000283839100021 PM 21079766 ER PT J AU Reed, JP Uchoa, B Joe, YI Gan, Y Casa, D Fradkin, E Abbamonte, P AF Reed, James P. Uchoa, Bruno Joe, Young Il Gan, Yu Casa, Diego Fradkin, Eduardo Abbamonte, Peter TI The Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite SO SCIENCE LA English DT Article ID DYNAMICS AB Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, alpha*(g) (k, omega), the value of which approaches 0.14 +/- 0.092 similar to 1/7 at low energy and large distances. This value is substantially smaller than the nominal alpha(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed. C1 [Reed, James P.; Uchoa, Bruno; Joe, Young Il; Gan, Yu; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Reed, James P.; Uchoa, Bruno; Joe, Young Il; Gan, Yu; Fradkin, Eduardo; Abbamonte, Peter] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Casa, Diego] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Abbamonte, P (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM abbamonte@mrl.uiuc.edu RI Fradkin, Eduardo/B-5612-2013; Casa, Diego/F-9060-2016; OI Fradkin, Eduardo/0000-0001-6837-463X FU U.S. Department of Energy through the Frederick Seitz Materials Research Laboratory [DE-FG02-07ER46459, DE-FG02-07ER46453, DEAC02-06CH11357] FX We gratefully acknowledge helpful discussions with A. H. MacDonald, D. Maslov, P. Guinea, L. Levitov, and A. J. Millis, and Y. Cai for supplying graphite crystals. This work was supported by the U.S. Department of Energy under grants DE-FG02-07ER46459 and DE-FG02-07ER46453 through the Frederick Seitz Materials Research Laboratory, with use of the Advanced Photon Source supported by DEAC02-06CH11357. NR 28 TC 64 Z9 64 U1 2 U2 56 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD NOV 5 PY 2010 VL 330 IS 6005 BP 805 EP 808 DI 10.1126/science.1190920 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 675SY UT WOS:000283855700038 PM 21051634 ER PT J AU Vescovo, E Mentes, TO Sadowski, JT Ablett, JM Nino, MA Locatelli, A AF Vescovo, E. Mentes, T. O. Sadowski, J. T. Ablett, J. M. Nino, M. A. Locatelli, A. TI Domain faceting in an in-plane magnetic reorientation transition SO PHYSICAL REVIEW B LA English DT Article ID BORON-DOPED SILICON; 001 SURFACE; FE(110) FILMS; ANISOTROPIES AB The microscopic structure of the 90 degrees in-plane magnetic reorientation transition in Fe(110) films is examined using photoemission x-ray microscopy. At the nanoscale, sharp magnetic boundaries are detected. They are indicative of a first-order transition and are consistent with Fe magnetic anisotropy constants. At the micron scale, the magnetic boundary breaks up into triangular patterns whose characteristic angular dependence is revealed by experiments on conical microwedges. This effect, fully accounted by micromagnetic simulations, opens the possibility to control the sharpness of the transition at the microscopic scale. C1 [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Mentes, T. O.; Nino, M. A.; Locatelli, A.] Sincrotrone Trieste SCpA, I-34149 Trieste, Italy. [Mentes, T. O.; Nino, M. A.; Locatelli, A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ablett, J. M.] Synchrotron Soleil, F-91192 Gif Sur Yvette, France. RP Vescovo, E (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RI Nino Orti, Miguel Angel/M-2571-2014 OI Sadowski, Jerzy/0000-0002-4365-7796; Mentes, Tevfik Onur/0000-0003-0413-9272; Locatelli, Andrea/0000-0002-8072-7343; Nino Orti, Miguel Angel/0000-0003-3692-147X FU U.S. Department of Energy [DE-AC02-76CH00016] FX NSLS is supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH00016. NR 22 TC 3 Z9 3 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 4 PY 2010 VL 82 IS 18 AR 184405 DI 10.1103/PhysRevB.82.184405 PG 4 WC Physics, Condensed Matter SC Physics GA 675OE UT WOS:000283839200004 ER PT J AU Raskovic, M Upadhyay, J Vuskovic, L Popovic, S Valente-Feliciano, AM Phillips, L AF Raskovic, M. Upadhyay, J. Vuskovic, L. Popovic, S. Valente-Feliciano, A-M. Phillips, L. TI Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF) cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb) presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7 mu m/min using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance. C1 [Raskovic, M.; Upadhyay, J.; Vuskovic, L.; Popovic, S.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Valente-Feliciano, A-M.; Phillips, L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Raskovic, M (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. EM vuskovic@odu.edu FU NSF/DOE through the Office of High Energy Physics, Office of Science, Department of Energy [DE-FG02-05ER41396]; Accelerator Division, Thomas Jefferson National Accelerator Facility; Jefferson Science Associates, LLC under U.S. DOE [DE-AC05-06OR23177] FX This work is supported by the NSF/DOE collaborative effort through the Office of High Energy Physics, Office of Science, Department of Energy under Grant No. DE-FG02-05ER41396. M. Raskovic and J. Upadhyay acknowledge the financial support from the Accelerator Division, Thomas Jefferson National Accelerator Facility. We thank the Surface Characterization Lab, College of William and Mary Applied Research Center, and the ODU Applied Research Center for the use of various diagnostics equipments. This paper was authored by the Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 8 TC 7 Z9 7 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD NOV 4 PY 2010 VL 13 IS 11 AR 112001 DI 10.1103/PhysRevSTAB.13.112001 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 675RY UT WOS:000283850000001 ER PT J AU Teschendorff, AE Gomez, S Arenas, A El-Ashry, D Schmidt, M Gehrmann, M Caldas, C AF Teschendorff, Andrew E. Gomez, Sergio Arenas, Alex El-Ashry, Dorraya Schmidt, Marcus Gehrmann, Mathias Caldas, Carlos TI Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules SO BMC CANCER LA English DT Article ID GENE-EXPRESSION PROFILES; MOLECULAR SUBTYPES; METASTASIS; SIGNATURE; IDENTIFICATION; CARCINOMAS; NETWORKS; SURVIVAL; TARGETS; PROTEIN AB Background: Elucidating the activation pattern of molecular pathways across a given tumour type is a key challenge necessary for understanding the heterogeneity in clinical response and for developing novel more effective therapies. Gene expression signatures of molecular pathway activation derived from perturbation experiments in model systems as well as structural models of molecular interactions ("model signatures") constitute an important resource for estimating corresponding activation levels in tumours. However, relatively few strategies for estimating pathway activity from such model signatures exist and only few studies have used activation patterns of pathways to refine molecular classifications of cancer. Methods: Here we propose a novel network-based method for estimating pathway activation in tumours from model signatures. We find that although the pathway networks inferred from cancer expression data are highly consistent with the prior information contained in the model signatures, that they also exhibit a highly modular structure and that estimation of pathway activity is dependent on this modular structure. We apply our methodology to a panel of 438 estrogen receptor negative (ER-) and 785 estrogen receptor positive (ER+) breast cancers to infer activation patterns of important cancer related molecular pathways. Results: We show that in ER negative basal and HER2+ breast cancer, gene expression modules reflecting T-cell helper-1 (Th1) and T-cell helper-2 (Th2) mediated immune responses play antagonistic roles as major risk factors for distant metastasis. Using Boolean interaction Cox-regression models to identify non-linear pathway combinations associated with clinical outcome, we show that simultaneous high activation of Th1 and low activation of a TGF-beta pathway module defines a subtype of particularly good prognosis and that this classification provides a better prognostic model than those based on the individual pathways. In ER+ breast cancer, we find that simultaneous high MYC and RAS activity confers significantly worse prognosis than either high MYC or high RAS activity alone. We further validate these novel prognostic classifications in independent sets of 173 ER-and 567 ER + breast cancers. Conclusion: We have proposed a novel method for pathway activity estimation in tumours and have shown that pathway modules antagonize or synergize to delineate novel prognostic subtypes. Specifically, our results suggest that simultaneous modulation of T-helper differentiation and TGF-beta pathways may improve clinical outcome of hormone insensitive breast cancers over treatments that target only one of these pathways. C1 [Teschendorff, Andrew E.; Caldas, Carlos] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Breast Canc Funct Genom Lab, Cambridge CB2 0RE, England. [Teschendorff, Andrew E.; Caldas, Carlos] Univ Cambridge, Li Ka Shing Ctr, Dept Oncol, Cambridge CB2 0RE, England. [Gomez, Sergio; Arenas, Alex] Univ Rovira & Virgili, Dept Enginyeria Informat & Matemat, Tarragona 43007, Spain. [Arenas, Alex] Univ Zaragoza, Inst Biocomputat & Phys Complex Syst BIFI, E-50009 Zaragoza, Spain. [Arenas, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [El-Ashry, Dorraya] Univ Miami, Miller Sch Med, Sylvester Comprehens Canc Ctr, Miami, FL 33136 USA. [El-Ashry, Dorraya] Univ Miami, Miller Sch Med, Braman Family Breast Canc Inst, Miami, FL 33136 USA. [Schmidt, Marcus] Johannes Gutenberg Univ Mainz, Sch Med, Dept Obstet & Gynecol, D-55131 Mainz, Germany. [Gehrmann, Mathias] Siemens Med Solut Diagnost GmbH, D-50829 Cologne, Germany. [Teschendorff, Andrew E.] UCL, UCL Canc Inst, Med Genom Grp, London WC1E 6BT, England. RP Teschendorff, AE (reprint author), Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Breast Canc Funct Genom Lab, Robinson Way, Cambridge CB2 0RE, England. EM a.teschendorff@ucl.ac.uk RI Gomez, Sergio/B-2113-2010; Caldas, Carlos/A-7543-2008; Arenas, Alex/A-5216-2009; Schmidt, Marcus/H-3383-2013 OI Gomez, Sergio/0000-0003-1820-0062; Arenas, Alex/0000-0003-0937-0334; Schmidt, Marcus/0000-0003-1365-2414 FU Cancer Research UK; Heller Research Fellowship; Spanish Ministry of Science and Technology [FIS2006-13321-C02-02] FX This research was supported by a grant from Cancer Research UK (AET & CC) and the Heller Research Fellowship (AET). SG and AA acknowledge support by Spanish Ministry of Science and Technology Grant FIS2006-13321-C02-02. We wish to thank Chad Creighton for making data available to us, Martin Widschwendter and Florian Markowetz for discussions. We also wish to thank Bin Liu and Mark Calleja for managing the Oncology cluster and CamGrid, which were used for some of the computations in the present paper. NR 60 TC 44 Z9 46 U1 0 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2407 J9 BMC CANCER JI BMC Cancer PD NOV 4 PY 2010 VL 10 AR 604 DI 10.1186/1471-2407-10-604 PG 20 WC Oncology SC Oncology GA 684UF UT WOS:000284575500001 PM 21050467 ER PT J AU Dang, NC Dreger, ZA Gupta, YM Hooks, DE AF Dang, Nhan C. Dreger, Zbigniew A. Gupta, Yogendra M. Hooks, Daniel E. TI Time-Resolved Spectroscopic Measurements of Shock-Wave Induced Decomposition in Cyclotrimethylene Trinitramine (RDX) Crystals: Anisotropic Response SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID TETRANITRATE SINGLE-CRYSTALS; PENTAERYTHRITOL TETRANITRATE; INITIATION; SENSITIVITY; ORIENTATION; CHEMISTRY AB Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar. C1 [Dang, Nhan C.; Dreger, Zbigniew A.; Gupta, Yogendra M.] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Dang, Nhan C.; Dreger, Zbigniew A.; Gupta, Yogendra M.] Washington State Univ, Dept Phys, Pullman, WA 99164 USA. [Hooks, Daniel E.] Los Alamos Natl Lab, Dynam & Energet Mat Div, Los Alamos, NM 87545 USA. RP Dreger, ZA (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. EM dreger@wsu.edu FU ONR MURI [N00014-06-1-0459]; DOE [DEFG0397SF21388] FX We thank Dr. J. M. Willey for useful discussions and for helpful comments regarding the manuscript. K. Zimmerman, K. Perkins, and C. Bakeman are thanked for their assistance in performing the shock experiments. This work was supported by ONR MURI Grant N00014-06-1-0459 and DOE Grant DEFG0397SF21388. NR 23 TC 19 Z9 19 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 4 PY 2010 VL 114 IS 43 BP 11560 EP 11566 DI 10.1021/jp106892c PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 671AO UT WOS:000283471900024 PM 20929273 ER PT J AU Teague, CM Dai, S Jiang, DE AF Teague, Craig M. Dai, Sheng Jiang, De-en TI Computational Investigation of Reactive to Nonreactive Capture of Carbon Dioxide by Oxygen-Containing Lewis Bases SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID IONIC LIQUIDS; BASIS-SETS; POPULATION ANALYSIS; CORRELATION-ENERGY; CO2 ABSORPTION; DENSITY; APPROXIMATION; PERFORMANCE; SOLUBILITY; SIMULATION AB Recent work has shown that room temperature ionic liquid systems reactively absorb CO(2) and offer distinct advantages over current CO(2) capture technologies. Here we computationally evaluated CO(2) interaction energies with a series of oxygen-containing Lewis base anions (including cyclohexanolate and phenolate and their respective derivatives). Our results show that the interaction energy can be tuned across a range from reactive to nonreactive (or physical) interactions. We evaluated different levels of theory as well as possible corrections to the interaction energy, and we explained our calculated trends on the basis of properties of the individual anions. We found that the interaction energy between CO(2) and the Lewis bases examined here correlates most strongly with the atomic charge on the oxygen atom. This insight provides a useful handle to tune the anion-CO(2) interaction energy for future experimental and computational studies of novel CO(2) capture systems. C1 [Teague, Craig M.] Cornell Coll, Dept Chem, Mt Vernon, IA 52314 USA. [Teague, Craig M.; Dai, Sheng; Jiang, De-en] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. RP Teague, CM (reprint author), Cornell Coll, Dept Chem, Mt Vernon, IA 52314 USA. EM cteague@cornellcollege.edu; jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Cornell College FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. C.M.T. gratefully acknowledges a Campbell R. McConnell Sabbatical Fellowship from Cornell College and the assistance of both the Oak Ridge Science Semester administered by Denison University and the U.S. Department of Energy Higher Education Research Experiences for Faculty at Oak Ridge National Laboratory administered by the Oak Ridge Institute for Science and Education. We thank Ms. Fengyu Li for assistance with one of the figures. NR 45 TC 29 Z9 29 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 4 PY 2010 VL 114 IS 43 BP 11761 EP 11767 DI 10.1021/jp1056072 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 671AO UT WOS:000283471900047 PM 20942501 ER PT J AU Xie, HB Zhou, YZ Zhang, YK Johnson, JK AF Xie, Hong-Bin Zhou, Yanzi Zhang, Yingkai Johnson, J. Karl TI Reaction Mechanism of Monoethanolamine with CO2 in Aqueous Solution from Molecular Modeling SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIMETHYL-SULFOXIDE SOLUTIONS; POLARIZABLE CONTINUUM MODEL; HISTOGRAM ANALYSIS METHOD; VAPOR-LIQUID-EQUILIBRIUM; FREE-ENERGY CALCULATIONS; AB-INITIO; DYNAMICS SIMULATIONS; CARBON-DIOXIDE; CARBAMATE FORMATION; CHEMICAL-REACTIONS AB We present a theoretical study of the reaction mechanism of monoethanolamine (MEA) with CO, in an aqueous solution. We have used molecular orbital reaction pathway calculations to compute reaction free energy landscapes for the reaction steps involved in the formation of carbamic acids and carbamates. We have used the conductor-like polarizable continuum model to calculate reactant, product, and transition state geometries and vibrational frequencies within density functional theory (DFT). We have also computed single point energies for all stationary structures using a coupled cluster approach with singles, doubles, and perturbational triple excitations using the DFT geometries. Our calculations indicate that a two-step reaction mechanism that proceeds via a zwitterion intermediate to form carbamate is the most favorable reaction channel. The first step, leading to formation of the zwitterion, is found to be rate-determining, and the activation free energies are 12.0 (10.2) and 11.3 (9.6) kcal/mol using Pauling (Bondi) radii within the CPCM model at the CCSD(T)/6-311++G(d,p) and CCSD(T)/6-311++G(2df,2p) levels of theory, respectively, using geometries and vibrational frequencies obtained at the B3LYP/6-311++G(d,p) level of theory. These results are in reasonable agreement with the experimental value of about 12 kcal/mol. The second step is an acid base reaction between a zwitterion and MEA. We have developed a microkinetic model to estimate the effective reaction order at intermediate concentrations. Our model predicts an equilibrium concentration for the zwitterion on the order of 10(-11) mol/L, which explains why the existence of the zwitterion intermediate has never been detected experimentally. The effective reaction order from our model is close to unity, also in agreement with experiments. Complementary ab initio QM/MM molecular dynamics simulations with umbrella sampling have been carried out to determine the free energy profiles of zwitterion formation and proton transfer in solution; the results confirm that the formation of the zwitterion is rate-determining. C1 [Zhou, Yanzi; Zhang, Yingkai] NYU, Dept Chem, New York, NY 10003 USA. [Xie, Hong-Bin; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Xie, Hong-Bin; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Zhang, YK (reprint author), NYU, Dept Chem, New York, NY 10003 USA. EM yingkai.zhang@nyu.edu; karlj@pitt.edu RI Zhang, Yingkai/A-3173-2008; Johnson, Karl/E-9733-2013; Xie, Hong-Bin /N-9886-2016 OI Zhang, Yingkai/0000-0002-4984-3354; Johnson, Karl/0000-0002-3608-8003; FU Department of Energy, National Energy Technology Laboratory [DE-NT0005310]; National Energy Technology Laboratory [DE-AC26-04NT41817]; NSF [CHE-CAREER-0448156]; agency of the United States Government FX This material is based upon work supported by the Department of Energy, National Energy Technology Laboratory under Award Number DE-NT0005310. Most of the calculations were performed at the University of Pittsburgh's Center for Simulation and Modeling. This work was performed in support of the National Energy Technology Laboratory's ongoing research in the area of carbon management under the RDS contract DE-AC26-04NT41817. Y.Z. would like to acknowledge the support by NSF (CHE-CAREER-0448156, and TeraGrid computing resources) and NYU-ITS (computing resources). This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 58 TC 54 Z9 57 U1 1 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 4 PY 2010 VL 114 IS 43 BP 11844 EP 11852 DI 10.1021/jp107516k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 671AO UT WOS:000283471900058 PM 20939618 ER PT J AU Devanathan, R Venkatnathan, A Rousseau, R Dupuis, M Frigato, T Gu, W Helms, V AF Devanathan, Ram Venkatnathan, Arun Rousseau, Roger Dupuis, Michel Frigato, Tomaso Gu, Wei Helms, Volkhard TI Atomistic Simulation of Water Percolation and Proton Hopping in Nation Fuel Cell Membrane SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; POLYMER ELECTROLYTE MEMBRANES; EXCHANGE MEMBRANES; TRANSPORT-PROPERTIES; NAFION MEMBRANES; FORCE-FIELD; ACETIC-ACID; AB-INITIO; STATE; HYDRATION AB We have performed a detailed analysis of water clustering and percolation in hydrated Nafion configurations generated by classical molecular dynamics simulations. Our results show that at low hydration levels H(2)O molecules are isolated and a continuous hydrogen-bonded network forms as the hydration level is increased. Our quantitative analysis has established a hydration level (lambda) between 5 and 6 H(2)O/SO(3)(-) as the percolation threshold of Nation. We have also examined the effect of such a network on proton transport by studying the structural diffusion of protons using the quantum hopping molecular dynamics method. The mean residence time of the proton on a water molecule decreases by 2 orders of magnitude when the lambda value is increased from 5 to 15. The proton diffusion coefficient in Nation at a lambda value of 15 is about 1.1 x 10(-5) cm(2)/s in agreement with experiment. The results provide quantitative atomic-level evidence of water network percolation in Nafion and its effect on proton conductivity. C1 [Devanathan, Ram; Rousseau, Roger; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Venkatnathan, Arun] Indian Inst Sci Educ & Res, Dept Chem, Pune 411021, Maharashtra, India. [Frigato, Tomaso] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany. [Gu, Wei; Helms, Volkhard] Univ Saarland, Ctr Bioinformat, D-66041 Saarbrucken, Germany. RP Devanathan, R (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, MS K2-01, Richland, WA 99352 USA. EM ram.devanathan@pnl.gov RI Gu, Wei/G-4003-2010; Devanathan, Ram/C-7247-2008; Rousseau, Roger/C-3703-2014 OI Gu, Wei/0000-0003-3951-6680; Devanathan, Ram/0000-0001-8125-4237; FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division [DE-AC05-76RL01830]; Office of Science of DOE [DE-AC02-05CH1123]; DFG FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, under Contract DE-AC05-76RL01830. It was performed in part using the Molecular Science Computing Facility (MSCF) in the EMSL, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE. This work benefited from resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of DOE under Contract No. DE-AC02-05CH1123. This work also used computing resources provided by the Chemical & Materials Sciences Division at PNNL. VH and WG thank DFG for funding the development of the Q-HOP method. NR 59 TC 64 Z9 64 U1 4 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 4 PY 2010 VL 114 IS 43 BP 13681 EP 13690 DI 10.1021/jp103398b PG 10 WC Chemistry, Physical SC Chemistry GA 671PQ UT WOS:000283519600009 PM 20860379 ER PT J AU Heller, WT O'Neill, HM Zhang, Q Baker, GA AF Heller, William T. O'Neill, Hugh M. Zhang, Qiu Baker, Gary A. TI Characterization of the Influence of the Ionic Liquid 1-Butyl-3-methylimidazolium Chloride on the Structure and Thermal Stability of Green Fluorescent Protein SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ANGLE NEUTRON-SCATTERING; D,L-P-HYDROXYPHENYLGLYCINE METHYL-ESTER; X-RAY-SCATTERING; HORSERADISH-PEROXIDASE; ALPHA-CHYMOTRYPSIN; AQUEOUS-SOLUTIONS; CYTOCHROME-C; ENHANCED ENANTIOSELECTIVITY; BIODIESEL PRODUCTION; WATER ACTIVITY AB Ionic liquids (ILs) are finding a vast array of applications as novel solvents for a wide variety of processes that include enzymatic chemistry, particularly as more biocompatible ILs are designed and discovered. While it is assumed that a native or near-native structure is required for enzymatic activity, there is some evidence that ILs alter protein structure and oligomerization states in a manner than can negatively impact function. The IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, is a well-studied, water-miscible member of the popular 1-alkyl-3-methylimidazolium IL family. To improve our understanding of the impact of water-miscible ILs on proteins, we have characterized the structure and oligomerization state of green fluorescent protein (GFP) in aqueous solutions containing 25 and 50 vol % [bmim]Cl using a combination of optical spectroscopy and small-angle neutron scattering (SANS). Measurements were also performed as a function of temperature to provide insight into the effect of the IL on the thermal stability of GFP. While GFP exists as a dimer in water, the presence of 25 vol % [bmim]Cl causes GIP to transition to a monomeric state. The SANS data indicate that GFP is a great deal less compact in 50 vol % [bmim]Cl than in neat water, indicative of unfolding from the native structure. The oligomerization state of the protein in IL-containing aqueous solution changes from a dimer to a monomer in response to the IL, but does not change as a function of temperature in the IL-containing solution. The SANS and spectroscopic results also demonstrate that the addition of [bmim]Cl to the solution decreases the thermal stability of GFP, allowing the protein to unfold at lower temperatures than in aqueous solution. C1 [Heller, William T.; O'Neill, Hugh M.; Zhang, Qiu; Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Heller, William T.; O'Neill, Hugh M.; Zhang, Qiu] Oak Ridge Natl Lab, Ctr Struct Mol Biol, Oak Ridge, TN 37831 USA. RP Heller, WT (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM hellerwt@ornl.gov RI Zhang, Qiu/D-1501-2016; Baker, Gary/H-9444-2016; OI Zhang, Qiu/0000-0002-5506-4955; Baker, Gary/0000-0002-3052-7730; O'Neill, Hugh/0000-0003-2966-5527 FU Office of Biological and Environmental Research [ERKP291]; U.S. Department of Energy [DE-AC05-00OR22725]; Presidential Early Career Award for Scientists and Engineers (PECASE) FX This research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (Project ERKP291) was supported by the Office of Biological and Environmental Research, using facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract No. DE-AC05-00OR22725. G.A.B. acknowledges a Presidential Early Career Award for Scientists and Engineers (PECASE) for partial support of this work. NR 85 TC 43 Z9 43 U1 2 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 4 PY 2010 VL 114 IS 43 BP 13866 EP 13871 DI 10.1021/jp105611b PG 6 WC Chemistry, Physical SC Chemistry GA 671PQ UT WOS:000283519600030 PM 20919721 ER PT J AU Baker, L Holsclaw, B Baber, AE Tierney, HL Sykes, ECH Gellman, AJ AF Baker, Layton Holsclaw, Brian Baber, Ashleigh E. Tierney, Heather L. Sykes, E. Charles H. Gellman, Andrew J. TI Adsorption Site Distributions on Cu(111), Cu(221), and Cu(643) as Determined by Xe Adsorption SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SCANNING TUNNELING MICROSCOPE; CHIRAL PLATINUM SURFACES; ADSORBED XENON PAX; METAL-SURFACES; ENANTIOSPECIFIC DESORPTION; PHOTOEMISSION; STEP; CU(643)(R-AND-S); REACTIVITY; DYNAMICS AB Xe has been used to probe the distributions of adsorption sites across three different Cu single-crystal surfaces: Cu(111), Cu(221), and Cu(643). These expose terrace, step, and kink sites, respectively. The study couples the use of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and photo-emission of adsorbed Xe (PAX) to assess their use as methods for determining adsorption site distributions on Cu surfaces. STM shows that the Xe adsorption sites in order of energetic preference are kink, step edge, and terrace, but indicates that the binding energy differences between the three are likely very small. This is borne out by Xe TPD studies that show distinct differences in the desorption kinetics on the three surfaces but unresolvable differences in the desorption temperatures and binding energies at the terrace, step, and kink sites. PAX spectra reveal observable features that can be associated with Xe adsorption at terrace, step, and kink sites. These features can be analyzed semiquantitatively to give insight into the distributions of sites on these surfaces. C1 [Baker, Layton; Holsclaw, Brian; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Baber, Ashleigh E.; Tierney, Heather L.; Sykes, E. Charles H.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. [Gellman, Andrew J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM gellman@emu.edu RI Gellman, Andrew/M-2487-2014; OI Gellman, Andrew/0000-0001-6618-7427; Holsclaw, Brian/0000-0002-7501-8411 FU NSF [CHE0717978, CHE 1012307]; American Chemical Society [45256-G5]; GAANN FX All of the authors thank the NSF (CHE0717978 and CHE 1012307) for support of this research. A.E.B., and E.C.H.S. thank the donors of the American Chemical Society Petroleum Research Fund for additional support (Grant 45256-G5). A.E.B. thanks GAANN for the sponsorship of a one-year fellowship. We also thank Prof. K. Wandelt for a very helpful discussion. NR 51 TC 3 Z9 3 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 4 PY 2010 VL 114 IS 43 BP 18566 EP 18575 DI 10.1021/jp106489f PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 671PP UT WOS:000283519400038 ER PT J AU Crumlin, EJ Mutoro, E Ahn, SJ la O', GJ Leonard, DN Borisevich, A Biegalski, MD Christen, HM Shao-Horn, Y AF Crumlin, Ethan J. Mutoro, Eva Ahn, Sung-Jin la O', Gerardo Jose Leonard, Donovan N. Borisevich, Albina Biegalski, Michael D. Christen, Hans M. Shao-Horn, Yang TI Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DOPED LAMNO3 MICROELECTRODES; THIN-FILM MICROELECTRODES; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; GEOMETRY DEPENDENCE; IONIC-CONDUCTIVITY; POLARIZATION; EXCHANGE; CATHODE; TRANSPORT; (LA,SR)COO3/(LA,SR)(2)COO4 AB Heterostructured interfaces of oxides which can exhibit transport and reactivity characteristics remarkably different from those of bulk oxides, are interesting systems to explore in search of highly active cathodes for the oxygen reduction reaction (ORR). Here we show that the ORR of similar to 85 nm thick La0.8Sr0.2-CoO3-delta (LSC113) films prepared by pulsed laser deposition on (001)-oriented yttria-stabilized zirconia (YSZ) substrates is dramatically enhanced (similar to 3-4 orders of magnitude above bulk LSC113) by surface decorations of (La0.5Sr0.5)(2)CoO4 +/-delta (LSC214) with coverage in the range from similar to 0.1 to similar to 15 nm. Their surface and atomic structures were characterized by atomic force scanning electron and scanning transmission electron microscopy and the ORR kinetics were determined by electrochemical impedance spectroscopy. Although the mechanism for ORR enhancement is not yet fully understood our results to date show that the observed ORR enhancement can be attributed to highly active interfacial LSC113/LSC214 regions, which were shown to be atomically sharp. C1 [Crumlin, Ethan J.; Mutoro, Eva; Ahn, Sung-Jin; la O', Gerardo Jose; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Leonard, Donovan N.; Borisevich, Albina] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Christen, Hans/H-6551-2013; Borisevich, Albina/B-1624-2009 OI Christen, Hans/0000-0001-8187-7469; Borisevich, Albina/0000-0002-3953-8460 FU NSF [CBET 08-44526]; DOE [SISGR DE-SC0002633]; King Abdullah University of Science and Technology; German Research Foundation; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; Materials Sciences and Engineering Division, Office of Basic Energy Sciences of the U.S. DOE FX This work was supported in part by the NSF (CBET 08-44526), DOE (SISGR DE-SC0002633), and King Abdullah University of Science and Technology. E.M. is grateful for financial support from the German Research Foundation (research scholarship). The portion of research performed at the Center for Nanophase Materials Sciences as well as FIB instrument access via ORNL's ShaRE user facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The STEM work was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences of the U.S. DOE. NR 39 TC 79 Z9 79 U1 6 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 4 PY 2010 VL 1 IS 21 BP 3149 EP 3155 DI 10.1021/jz101217d PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 676FT UT WOS:000283897100001 ER PT J AU Wishart, JF AF Wishart, James F. TI Ionic Liquids and Ionizing Radiation: Reactivity of Highly Energetic Species SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID PULSE-RADIOLYSIS; METHYLTRIBUTYLAMMONIUM BIS(TRIFLUOROMETHYLSULFONYL)IMIDE; REACTION-KINETICS; GAMMA-IRRADIATION; REDOX REACTIONS; SOLVENTS; ELECTRON; DIFFUSION; BR-2(CENTER-DOT-); STABILITY AB Due to their unique properties, ionic liquids present many opportunities for basic research on the interactions of radiation with materials under conditions not previously available. At the same time, there are practical applied reasons for characterizing, understanding, and being able to predict how ionic-liquid-based devices and industrial-scale systems will perform under conditions of extreme reactivity, including radiation. This perspective discusses current issues in ionic liquid physical chemistry, provides a brief introduction to radiation chemistry draws attention to some key findings in ionic liquid radiation chemistry and identifies some current hot topics and new opportunities. C1 Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wishart, JF (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM wishart@bnl.gov RI Wishart, James/L-6303-2013 OI Wishart, James/0000-0002-0488-7636 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-98CH10886] FX The author thanks Edward W. Castner, Jr., Andrew R. Cook, Ilya A. Shkrob, and Tomasz Szreder for helpful comments. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract # DE-AC02-98CH10886. NR 51 TC 38 Z9 38 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 4 PY 2010 VL 1 IS 21 BP 3225 EP 3231 DI 10.1021/jz101096b PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 676FT UT WOS:000283897100014 ER PT J AU Xing, YC Cai, Y Vukmirovic, MB Zhou, WP Karan, H Wang, JX Adzic, RR AF Xing, Yangchuan Cai, Yun Vukmirovic, Miomir B. Zhou, Wei-Ping Karan, Hiroko Wang, Jia X. Adzic, Radoslav R. TI Enhancing Oxygen Reduction Reaction Activity via Pd-Au Alloy Sublayer Mediation of Pt Monolayer Electrocatalysts SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID METAL-SURFACES; O-2 REDUCTION; PLATINUM; PT(111); CO; CATALYSIS; KINETICS; GOLD; STABILIZATION; NANOPARTICLES AB New Pt monolayer electrocatalysts were prepared using galvanic displacement of a copper monolayer deposited at underpotentials on a Pd core. By performing underpotential deposition twice, two monolayers were deposited forming a core-shell structure with double shells. The double shells consist of an outermost shell of Pt monolayer and a sublayer shell of Pd-Au alloy. It was found that by adjusting the compositions of the alloy sublayer, it is possible to mediate the oxygen reduction reaction (ORR) activity of the Pt catalysts. An alloy with 10% (atomic) Au was found to be the most active among the catalysts tested. Furthermore the catalysts showed good cycling stability that may be due to stabilizing effect of Au. Since different alloys can be used as the sublayer for mediation, this work may open up various opportunities to tailor electrocatalysts for best ORR activity. C1 [Xing, Yangchuan; Cai, Yun; Vukmirovic, Miomir B.; Zhou, Wei-Ping; Karan, Hiroko; Wang, Jia X.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Xing, YC (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM xingy@mst.edu; adzic@bnl.gov RI zhou, weiping/C-6832-2012; Wang, Jia/B-6346-2011; cai, yun/G-2689-2013; OI zhou, weiping/0000-0002-8058-7280; Xing, Yangchuan/0000-0002-5985-3222 FU U.S. Department of Energy (DOE), Divisions of Chemical and Material Sciences [DE-AC02-98CH10886] FX This work is supported by the U.S. Department of Energy (DOE), Divisions of Chemical and Material Sciences, under Contract No. DE-AC02-98CH10886. NR 37 TC 90 Z9 93 U1 9 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 4 PY 2010 VL 1 IS 21 BP 3238 EP 3242 DI 10.1021/jz101297r PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 676FT UT WOS:000283897100016 ER PT J AU Glazkov, VN Smirnov, AI Zheludev, A Sales, BC AF Glazkov, V. N. Smirnov, A. I. Zheludev, A. Sales, B. C. TI Modes of magnetic resonance of the S=1 dimer chain compound NTENP SO PHYSICAL REVIEW B LA English DT Article ID BOSE-EINSTEIN CONDENSATION; ALTERNATING CHAIN; FIELD; ANTIFERROMAGNET; TLCUCL3 AB The spin dynamics of a quasi-one-dimensional S = 1 bond alternating spin-gap antiferromagnet Ni(C9H24N4)NO2(ClO4) (abbreviated as NTENP) is studied by means of electron-spin-resonance (ESR) technique. Five modes of ESR transitions are observed and identified: transitions between singlet ground state and excited triplet states, three modes of transitions between spin sublevels of collective triplet states and antiferromagnetic resonance absorption in the field-induced antiferromagnetically ordered phase. Singlet-triplet and intratriplet modes demonstrate a doublet structure which is due to two maxima in the density of magnon states in the low-frequency range. A joint analysis of the observed spectra and other experimental results allows to test the applicability of the fermionic and bosonic models. We conclude that the fermionic approach is more appropriate for the particular case of NTENP. C1 [Glazkov, V. N.; Smirnov, A. I.] Kapitza Inst Phys Problems, Moscow 119334, Russia. [Smirnov, A. I.] Russia & Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia. [Zheludev, A.] ETH, Festkorperphys Lab, CH-8093 Zurich, Switzerland. [Sales, B. C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Glazkov, VN (reprint author), Kapitza Inst Phys Problems, Kosygin Str 2, Moscow 119334, Russia. EM glazkov@kapitza.ras.ru RI Glazkov, Vasiliy/L-9645-2015; Smirnov, Alexander/S-2974-2016 FU Russian Foundation for Basic Research [09-02-12341, 09-02-00736-a]; Material Sciences and Engineering Division, Office of Basic Energy Sciences, U. S. Department of Energy; [MK-4569.2008.2] FX The work was supported by grants of Russian Foundation for Basic Research (Projects No. 09-02-12341 and No. 09-02-00736-a). One of the authors (V.N.G.) was supported by Presidential Grant for Young Scientists under Grant No. MK-4569.2008.2. Research at Oak Ridge sponsored by the Material Sciences and Engineering Division, Office of Basic Energy Sciences, U. S. Department of Energy. Authors thank M. Zhitomirsky, I. Zaliznyak, and O. Petrenko for their interest to the work and useful discussions. NR 23 TC 6 Z9 6 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 4 PY 2010 VL 82 IS 18 AR 184406 DI 10.1103/PhysRevB.82.184406 PG 10 WC Physics, Condensed Matter SC Physics GA 675OE UT WOS:000283839200005 ER PT J AU Thiele, R Sperling, P Chen, M Bornath, T Faustlin, RR Fortmann, C Glenzer, SH Kraeft, WD Pukhov, A Toleikis, S Tschentscher, T Redmer, R AF Thiele, R. Sperling, P. Chen, M. Bornath, Th Faeustlin, R. R. Fortmann, C. Glenzer, S. H. Kraeft, W. -D. Pukhov, A. Toleikis, S. Tschentscher, Th Redmer, R. TI Thomson scattering on inhomogeneous targets SO PHYSICAL REVIEW E LA English DT Article ID X-RAY-SCATTERING; DENSE MATTER; PLASMAS; LASER; RELAXATION; IONIZATION; TRANSPORT; CODE AB The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources. C1 [Thiele, R.; Sperling, P.; Bornath, Th; Kraeft, W. -D.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Chen, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Chen, M.; Pukhov, A.] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany. [Faeustlin, R. R.; Toleikis, S.] DESY, D-22607 Hamburg, Germany. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fortmann, C.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Tschentscher, Th] European XFEL GmbH, D-22761 Hamburg, Germany. RP Thiele, R (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. EM robert.thiele@uni-rostock.de RI Chen, Min/A-9955-2010; Redmer, Ronald/F-3046-2013; pukhov, alexander/C-8082-2016; OI Chen, Min/0000-0002-4290-9330; Thiele, Robert/0000-0001-8350-9942 FU Federal Ministry for Education and Science (BMBF) [FSP 301-FLASH, 05KS7HRA]; Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Alexander von Humboldt-Foundation; DFG [SFB 652]; [GrK 1355] FX We thank E. Forster, G. Gregori, H. Reinholz, G. Ropke, and U. Zastrau for helpful discussions. This work was supported by the DFG within the SFB 652 "Strong correlations and collective effects in radiation fields: Coulomb systems, clusters, and particles" and the Federal Ministry for Education and Science (BMBF) under Grant No. FSP 301-FLASH and Project No. 05KS7HRA. The work by S.H.G. was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. M.C. and C.F. acknowledge support by the Alexander von Humboldt-Foundation. R.R.F. acknowledges support by GrK 1355. NR 47 TC 18 Z9 18 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD NOV 4 PY 2010 VL 82 IS 5 AR 056404 DI 10.1103/PhysRevE.82.056404 PN 2 PG 7 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 675QR UT WOS:000283846000003 PM 21230599 ER PT J AU Chisholm, MF Luo, WD Oxley, MP Pantelides, ST Lee, HN AF Chisholm, Matthew F. Luo, Weidong Oxley, Mark P. Pantelides, Sokrates T. Lee, Ho Nyung TI Atomic-Scale Compensation Phenomena at Polar Interfaces SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROELECTRIC-FILMS; THIN-FILMS; POLARIZATION; ENHANCEMENT; NANOSCALE; LAYER AB The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density-functional theory to show how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by an interfacial charge generated, for example, by oxygen vacancies. C1 [Chisholm, Matthew F.; Luo, Weidong; Oxley, Mark P.; Pantelides, Sokrates T.; Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Luo, Weidong; Oxley, Mark P.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. RP Chisholm, MF (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM chisholmmf@ornl.gov RI Lee, Ho Nyung/K-2820-2012; Luo, Weidong/A-8418-2009 OI Lee, Ho Nyung/0000-0002-2180-3975; Luo, Weidong/0000-0003-3829-1547 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725, DE-FG02-09ER46554]; McMinn Endowment at Vanderbilt University; ORNL FX We thank J. T. Luck and A. R. Lupini for important contributions. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy through Contracts No. DE-AC05-00OR22725 (M. F. C., H. N. L.) and No. DE-FG02-09ER46554 (W. L., M. O., S. T. P.), by the McMinn Endowment at Vanderbilt University (S. T. P.), and by the ORNL Laboratory Directed Research and Development Program (M. F. C., H. N. L.). NR 39 TC 52 Z9 52 U1 13 U2 73 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 4 PY 2010 VL 105 IS 19 AR 197602 DI 10.1103/PhysRevLett.105.197602 PG 4 WC Physics, Multidisciplinary SC Physics GA 675RO UT WOS:000283848800011 PM 21231196 ER PT J AU Gobbin, M Spizzo, G Marrelli, L White, RB AF Gobbin, M. Spizzo, G. Marrelli, L. White, R. B. TI Neoclassical Transport in the Helical Reversed-Field Pinch SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ORGANIZATION; STELLARATORS; OPTIMIZATION; CONFINEMENT; PLASMAS; RFX AB Test particle evaluation of the diffusion coefficient in a fusion plasma in the reversed-field pinch (RFP) configuration shows distinct similarities with stellarators when the plasma spontaneously evolves towards a helical shape. The almost total absence of superbanana particles at the levels of helical deformation seen in experiment (B(h)/B = 10%) causes transport to be proportional to collision frequency (at low collisions). This fact excludes the possibility that the minimum conceivable transport could be inversely proportional to collision frequency, which is typical of unoptimized stellarators. This result strengthens the perspectives of the helical RFP as a fusion configuration. C1 [Gobbin, M.; Spizzo, G.; Marrelli, L.] Euratom ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy. [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gobbin, M (reprint author), Euratom ENEA Assoc, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM marco.gobbin@igi.cnr.it; gianluca.spizzo@igi.cnr.it RI Marrelli, Lionello/G-4451-2013; White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009 OI Marrelli, Lionello/0000-0001-5370-080X; White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168 NR 23 TC 10 Z9 10 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 4 PY 2010 VL 105 IS 19 AR 195006 DI 10.1103/PhysRevLett.105.195006 PG 4 WC Physics, Multidisciplinary SC Physics GA 675RO UT WOS:000283848800010 PM 21231177 ER PT J AU Tanner, K Boudreau, A Bissell, MJ Kumar, S AF Tanner, Kandice Boudreau, Aaron Bissell, Mina J. Kumar, Sanjay TI Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery SO BIOPHYSICAL JOURNAL LA English DT Article ID FOCAL ADHESIONS; RHO-KINASE; EXTRACELLULAR-MATRIX; SIGNAL-TRANSDUCTION; ACTIN; ORGANIZATION; FORCES; FIBROBLASTS; MORPHOGENESIS; MIGRATION AB The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape. C1 [Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J.; Kumar, Sanjay] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kumar, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM skumar@berkeley.edu FU National Science Foundation [CMMI0727420]; NIH Physical Science-Oncology Center [IU54CA143836]; Arnold and Mabel Beckman Young Investigator Award; NIH [IDP2OD004213]; U.S. Department of Defense Breast Cancer [W81XWH-09-1-0666]; California Breast Cancer Research Program [14GB-0007]; U.S. Department of Energy, Office of Biological and Environmental Research; Low Dose Radiation Program [DE-AC02-05CH1123]; National Cancer Institute [R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, NCI U54CA143836-Bay]; U.S. Department of Defense [W81XWH0810736] FX S.K. received grants from the National Science Foundation (CMMI0727420) and the NIH Physical Science-Oncology Center (IU54CA143836), an Arnold and Mabel Beckman Young Investigator Award, and an NIH Director's New Innovator Award (IDP2OD004213), a part of the NIH Roadmap for Medical Research. K.T. received a postdoctoral fellowship from the U.S. Department of Defense Breast Cancer Research Program (W81XWH-09-1-0666). A.B. received a dissertation award from the California Breast Cancer Research Program (14GB-0007). The work from M.J.B.'s laboratory is supported by grants from the U.S. Department of Energy, Office of Biological and Environmental Research, a Distinguished Fellow Award to M.J.B.. and Low Dose Radiation Program (contract No. DE-AC02-05CH1123); by the National Cancer Institute (awards R37CA064786, U54CA126552, R01CA057621, U54CA112970, U01CA143233, and NCI U54CA143836-Bay Area Physical Sciences-Oncology Center, University of California, Berkeley, CA); and by the U.S. Department of Defense (W81XWH0810736). NR 33 TC 47 Z9 47 U1 1 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD NOV 3 PY 2010 VL 99 IS 9 BP 2775 EP 2783 DI 10.1016/j.bpj.2010.08.071 PG 9 WC Biophysics SC Biophysics GA 676LJ UT WOS:000283912600011 PM 21044574 ER PT J AU Mei, DH Du, JC Neurock, M AF Mei, Donghai Du, Jincheng Neurock, Matthew TI First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Reduction over Platinum Nanoparticles under Lean-Burn Conditions SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT 21st International Symposium on Chemical Reaction Engineering (ISCRE 21) CY JUN 13-16, 2010 CL Philadelphia, PA ID SELECTIVE REDUCTION; CATALYST PARTICLES; NO ADSORPTION; ETHYLENE HYDROGENATION; LATERAL INTERACTIONS; PT/AL2O3 CATALYSTS; EXCESS OXYGEN; DECOMPOSITION; OXIDATION; SURFACES AB The kinetics for NO reduction over supported platinum under lean condition were investigated by first-principles-based kinetic Monte Carlo simulation over three-dimensional Pt nanoparticles. Model platinum nanoparticles with diameters ranging from 2.3 to 4.6 nm were constructed using a truncated octahedral cluster consisting of a two (100) facets and eight (111) facets. First-principles density functional theory (DFT) calculations were used to calculate the intrinsic kinetic parameters including the binding energies for all of the surface intermediates as well as the activation barriers and reaction energies that comprise the reaction mechanism over the (100) and (111) facets, as well as the (111)/(100) edge sites on the three-dimensional nanoparticle. Both intra- and inter-facet diffusion of adsorbates were included to model surface diffusion effects over the particle surface. The simulation results show that under lean conditions where there is excess oxygen, NO reduction to N(2) occurs solely on the (100) facets. The oxidation of NO to NO(2), while much more favored on the (111) facets, can occur on both (100) and (111) facets. Only small amounts of N(2)O form over the (100) facets. The simulated apparent activation energies for N(2) and NO(2) formation over the entire particle are 45 and 42 kJ/mol, respectively. The latter is in agreement with experimentally measured value of 39 kJ/mol [Mulla, S. S., et al., Catal. Lett. 2005, 100, 267]. The effects of particle size on the activities of NO reduction to N(2) and NO oxidation to NO(2) depend upon the ratios of exposed surface sites. For the three-dimensional model Pt nanoparticles examined here, the fractions of the (100) terrace sites are similar while the fraction of the (111) terrace sites increases with increasing particle size. As a result, the activity for NO reduction is somewhat insensitive to the particle size which symmetrically increases the numbers of (111) and (100) facets as the size increases. NO reduction, however, increases much more dramatically when the number of the (100) sites increases over the (111) sites. NO oxidation activity, on the other hand, appears to increase with increasing particle size regardless of the symmetry or shape of the particle as the reaction occurs predominantly over the (111) sites but can also take place on the (100) terrace sites. The structure insensitivity for NO oxidation is consistent with experimental results. C1 [Mei, Donghai; Du, Jincheng; Neurock, Matthew] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Mei, Donghai] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. [Neurock, Matthew] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. RP Neurock, M (reprint author), Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. EM mn4n@virginia.edu RI Du, Jincheng/A-8052-2011; Mei, Donghai/D-3251-2011; Mei, Donghai/A-2115-2012 OI Mei, Donghai/0000-0002-0286-4182 NR 53 TC 16 Z9 16 U1 6 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 3 PY 2010 VL 49 IS 21 BP 10364 EP 10373 DI 10.1021/ie100999e PG 10 WC Engineering, Chemical SC Engineering GA 670XO UT WOS:000283463600025 ER PT J AU Zheng, XL Veith, GM Redekop, E Lo, CS Yablonsky, GS Gleaves, JT AF Zheng, Xiaolin Veith, Gabriel M. Redekop, Evgeniy Lo, Cynthia S. Yablonsky, Gregory S. Gleaves, John T. TI Oxygen and CO Adsorption on Au/SiO2 Catalysts Prepared by Magnetron Sputtering: The Role of Oxygen Storage SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT 21st International Symposium on Chemical Reaction Engineering (ISCRE 21) CY JUN 13-16, 2010 CL Philadelphia, PA ID SUPPORTED GOLD CATALYSTS; CARBON-MONOXIDE OXIDATION; ZONE TAP-REACTOR; TEMPERATURE OXIDATION; SUBSURFACE OXYGEN; AU NANOPARTICLES; ACTIVE-SITES; TRANSIENT; PRETREATMENT; EPOXIDATION AB Temporal Analysis of Products (TAP) reactor system was used to investigate CO oxidation behavior on Au/SiO2 catalysts prepared via the physical vapor deposition method of magnetron sputtering. Au/SiO2 catalysts are a valuable model system for studying the reactivity of Au nanoparticles, as the SiO2 support plays little role in the reaction. The adsorption of CO on the catalyst was studied at different temperatures under TAP vacuum conditions. The heat of CO adsorption estimated from TAP results by moment analysis is -24.39 +/- 3.70 kJ/mol. Multipulse TAP experiments showed the important dependency between the oxygen pretreatment pressure (UHV to 33.66 psia) and catalytic activity for CO oxidation. The observed kinetic behavior indicates that oxygen consumed by CO can be replenished by oxygen stored in a reservoir, which is filled during pretreatment. The oxygen pretreatment pressure determines the amount of oxygen stored in the reservoir. The kinetic behavior indicates that oxygen is stored in the gold subsurface or at the Au/SiO2 interface, and that the active oxygen species is atomically adsorbed oxygen. C1 [Zheng, Xiaolin; Redekop, Evgeniy; Lo, Cynthia S.; Yablonsky, Gregory S.; Gleaves, John T.] Washington Univ St Louis, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yablonsky, Gregory S.] St Louis Univ, Parks Coll Engn, St Louis, MO 63103 USA. RP Gleaves, JT (reprint author), Washington Univ St Louis, Dept Energy Environm & Chem Engn, 1 Brookings Dr, St Louis, MO 63130 USA. EM jgleaves@seas.wustl.edu RI Lo, Cynthia/B-5441-2008; Redekop, Evgeniy/H-9112-2016 OI Lo, Cynthia/0000-0003-2873-4869; Redekop, Evgeniy/0000-0001-6430-8811 NR 47 TC 11 Z9 11 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 3 PY 2010 VL 49 IS 21 BP 10428 EP 10437 DI 10.1021/ie100547f PG 10 WC Engineering, Chemical SC Engineering GA 670XO UT WOS:000283463600031 ER PT J AU Benyahia, S Galvin, JE AF Benyahia, Sofiane Galvin, Janine E. TI Estimation of Numerical Errors Related to Some Basic Assumptions in Discrete Particle Methods SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT 21st International Symposium on Chemical Reaction Engineering (ISCRE 21) CY JUN 13-16, 2010 CL Philadelphia, PA ID IN-CELL MODEL; GRANULAR-MATERIALS; PARTICULATE FLOWS; FLUIDIZED-BEDS; SIMULATION; FLIP AB Discrete particle methods that track the motion of individual particles and their collisions are computationally very expensive. To accelerate these numerical simulations, some basic assumptions have been introduced and reported in the literature. This study investigates two of these common assumptions: (1) the use of computational parcels, or clouds, wherein many particles are lumped together so that only parcels and their collisions are tracked, and (2) the multiphase particle-in-cell, or MP-PIC, wherein the collision forces are replaced by a solids pressure term with the main purpose to avoid exceeding the maximum packing of the granular assembly. Using several cases relevant to the fluidization community, errors associated with these assumptions are computed. For these cases the magnitude of error in the time-averaged flow variables indicates that further research on the validity of these assumptions is warranted. C1 [Benyahia, Sofiane; Galvin, Janine E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Benyahia, S (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM sofiane.benyahia@netl.doe.gov NR 40 TC 20 Z9 21 U1 2 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 3 PY 2010 VL 49 IS 21 BP 10588 EP 10605 DI 10.1021/ie100662z PG 18 WC Engineering, Chemical SC Engineering GA 670XO UT WOS:000283463600049 ER PT J AU Li, TW Gel, A Syamlal, M Guenther, C Pannala, S AF Li, Tingwen Gel, Aytekin Syamlal, Madhava Guenther, Chris Pannala, Sreekanth TI High-Resolution Simulations of Coal Injection in A Gasifier SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT 21st International Symposium on Chemical Reaction Engineering (ISCRE 21) CY JUN 13-16, 2010 CL Philadelphia, PA ID FLUIDIZED-BED; NUMERICAL-SIMULATION; GASIFICATION; DEVOLATILIZATION; REACTOR AB This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units. C1 [Li, Tingwen; Gel, Aytekin; Syamlal, Madhava; Guenther, Chris] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Gel, Aytekin] ALPEMI Consulting LLC, Phoenix, AZ 85044 USA. [Pannala, Sreekanth] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Syamlal, M (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM madhava.syamlal@netl.doe.gov RI Pannala, Sreekanth/F-9507-2010; Li, Tingwen/D-2173-2012; OI Li, Tingwen/0000-0002-1900-308X; GEL, Aytekin/0000-0002-1661-2859 NR 42 TC 7 Z9 7 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 3 PY 2010 VL 49 IS 21 BP 10767 EP 10779 DI 10.1021/ie100519s PG 13 WC Engineering, Chemical SC Engineering GA 670XO UT WOS:000283463600067 ER PT J AU Solunke, RD Veser, G AF Solunke, Rahul D. Veser, Goetz TI Hydrogen Production via Chemical Looping Steam Reforming in a Periodically Operated Fixed-Bed Reactor SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article; Proceedings Paper CT 21st International Symposium on Chemical Reaction Engineering (ISCRE 21) CY JUN 13-16, 2010 CL Philadelphia, PA ID REVERSE-FLOW REACTOR; CATALYTIC COMBUSTION; OXYGEN CARRIERS; REDOX; OXIDE; SUPPORTS; METHANE AB Chemical-looping steam reforming (CLSR) is a chemical-looping combustion (CLC) derived technology in which air is replaced by steam as oxidant. CLSR combines the inherent CO(2) capture of CLC with the production of PEMFC-ready hydrogen streams without further purification steps. CLSR thus results in strong process intensification in hydrogen production. Here, we present results from a proof-of-concept study of CLSR of synthesis gas which combines thermodynamic screening for carrier selection, with synthesis and reactive test of highly active and high-temperature stable nanostructured oxygen carriers, and a reactor modeling study in order to demonstrate the feasibility of CLSR in a periodically operated fixed-bed reactor. C1 [Veser, Goetz] US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Veser, G (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013 NR 21 TC 46 Z9 49 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 3 PY 2010 VL 49 IS 21 BP 11037 EP 11044 DI 10.1021/ie100432j PG 8 WC Engineering, Chemical SC Engineering GA 670XO UT WOS:000283463600096 ER PT J AU Smerdon, JA AF Smerdon, J. A. TI The various modes of growth of metals on quasicrystals SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Review ID AL-PD-MN; EPITAXIAL FILM GROWTH; SURFACE-STRUCTURE; TENFOLD SYMMETRY; FCC COBALT; PHASE; AU; ADSORPTION; NUCLEATION; INTERFACES AB Quasicrystals are fascinating intermetallic compounds composed of two or more elements. They differ from conventional crystals in that they possess long-range order, but no translational symmetry-that is, they are aperiodic. Much effort has been expended on identifying routes towards exploiting and exploring the properties of such systems due to their aperiodic nature. One such route is concerned with the deposition of thin films, particularly of metals, to investigate how their growth progresses in this inherently frustrated scenario. This topical review will examine the various epitaxial relationships observed in quasicrystal research with particular emphasis on single-element metallic films deposited under ultrahigh-vacuum conditions. C1 [Smerdon, J. A.] Univ Liverpool, Surface Sci Res Ctr, Liverpool L69 3BX, Merseyside, England. RP Smerdon, JA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jsmerdon@anl.gov NR 53 TC 4 Z9 4 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 3 PY 2010 VL 22 IS 43 AR 433002 DI 10.1088/0953-8984/22/43/433002 PG 11 WC Physics, Condensed Matter SC Physics GA 661SW UT WOS:000282749400002 PM 21403322 ER PT J AU Jin, Z Sun, ZZ Simpson, LJ O'Neill, KJ Parilla, PA Li, Y Stadie, NP Ahn, CC Kittrell, C Tour, JM AF Jin, Zhong Sun, Zhengzong Simpson, Lin J. O'Neill, Kevin J. Parilla, Philip A. Li, Yan Stadie, Nicholas P. Ahn, Channing C. Kittrell, Carter Tour, James M. TI Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ACTIVATED CARBONS; ADSORPTION; NANOTUBES; TEMPERATURE; CAPACITY; EQUATION; HEAT; BC3 AB This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3-5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron similar to 7.3%, phosphorus similar to 8.1%, and nitrogen similar to 28.1%) had surface areas as high as 900 m(2) g(-1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol(-1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively. C1 [Stadie, Nicholas P.; Ahn, Channing C.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Jin, Zhong; Sun, Zhengzong; Kittrell, Carter; Tour, James M.] Rice Univ, Dept Chem, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Jin, Zhong; Sun, Zhengzong; Kittrell, Carter; Tour, James M.] Rice Univ, Richard E Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA. [Simpson, Lin J.; O'Neill, Kevin J.; Parilla, Philip A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Li, Yan] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. RP Ahn, CC (reprint author), CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. EM cca@caltech.edu; kittrell@rice.edu; tour@rice.edu RI Li, Yan/D-5497-2009; Stadie, Nicholas/F-3535-2012; Sun, Zhengzong/C-5292-2014; Stadie, Nick/F-8831-2013; Jin, Zhong/D-1742-2012; OI Li, Yan/0000-0002-3828-8340; Jin, Zhong/0000-0001-8860-8579; Tour, James/0000-0002-8479-9328; Stadie, Nicholas/0000-0002-1139-7846 FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy within the Hydrogen Sorption Center of Excellence at the National Renewable Energy Laboratory [DEFC-36-050015073] FX Financial support was provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy within the Hydrogen Sorption Center of Excellence at the National Renewable Energy Laboratory (DEFC-36-050015073). NR 32 TC 26 Z9 26 U1 7 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 3 PY 2010 VL 132 IS 43 BP 15246 EP 15251 DI 10.1021/ja105428d PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 672XT UT WOS:000283621700037 PM 20929219 ER PT J AU Ballesteros, B Faust, TB Lee, CF Leigh, DA Muryn, CA Pritchard, RG Schultz, D Teat, SJ Timco, GA Winpenny, REP AF Ballesteros, Beatriz Faust, Thomas B. Lee, Chin-Fa Leigh, David A. Muryn, Christopher A. Pritchard, Robin G. Schultz, David Teat, Simon J. Timco, Grigore A. Winpenny, Richard E. P. TI Synthesis, Structure, and Dynamic Properties of Hybrid Organic-Inorganic Rotaxanes SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MOLECULAR SHUTTLES; TEMPLATE SYNTHESIS; WHEELS; ASSEMBLIES; CATENANES; CLUSTER; RINGS AB The synthesis and characterization of a series of hybrid organic inorganic [2]rotaxanes is described. The ring components are heterometallic octa- ([Cr(7)MF(8)(O(2)C(t)Bu)(16)]; M = Co, Ni, Fe, Mn, Cu, Zn, and Cd) nuclear cages in which the metal centers are bridged by fluoride and pivalate ((t)BuCO(2)(-)) anions; the thread components feature dialkylammonium units that template the formation of the heterometallic rings about the axle to form the interlocked structures in up to 92% yield in conventional macrocyclization or one-pot 'stoppering-plus-macrocyclization' strategies. The presence in the reaction mixture of additives (secondary or tertiary amines or quaternary ammonium salts), and the nature of the stoppering groups (3,5-(t)Bu(2)C(6)H(3)CO(2) or (t)BuCONH-), can have a significant effect on the rotaxane yield. The X-ray crystal structures of 11 different [2]rotaxanes, a pseudorotaxane, and a two-station molecular shuttle show two distinct types of intercomponent hydrogen bond motifs between the ammonium groups of the organic thread and the fluoride groups of the inorganic ring. The different hydrogen bonding motifs account for the very different rates of dynamics observed for the heterometallic ring on the thread (shuttling slow; rotation fast). C1 [Ballesteros, Beatriz; Lee, Chin-Fa; Leigh, David A.; Schultz, David] Univ Edinburgh, Sch Chem, Edinburgh EH9 3JJ, Midlothian, Scotland. [Faust, Thomas B.; Muryn, Christopher A.; Pritchard, Robin G.; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Faust, Thomas B.; Muryn, Christopher A.; Pritchard, Robin G.; Timco, Grigore A.; Winpenny, Richard E. P.] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England. [Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Leigh, DA (reprint author), Univ Edinburgh, Sch Chem, Kings Bldg,W Mains Rd, Edinburgh EH9 3JJ, Midlothian, Scotland. EM david.leigh@ed.ac.uk; richard.winpenny@man.ac.uk RI Faust, Thomas/C-7096-2011; Leigh, David/K-5965-2015 OI Faust, Thomas/0000-0003-0715-4419; Leigh, David/0000-0002-1202-4507 FU European Commission; EPSRC; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Swiss National Science Foundation; Ministerio de Ciencia e Innovacion; Royal Society-Wolfson FX We thank Juraj Bella for the EXSY NMR experiments and the EPSRC National Mass Spectrometry Service Centre (Swansea, U.K.) for high resolution mass spectrometry. This research was funded by the European Commission (through the NoE 'MAGMANet') and the EPSRC. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to the Swiss National Science Foundation for a postdoctoral fellowship to D.S. and the Ministerio de Ciencia e Innovacion for a postdoctoral fellowship to B.B. D.A.L. is an EPSRC Senior Research Fellow. R.E.P.W. and D.A.L. hold Royal Society-Wolfson Research Merit Awards. NR 38 TC 32 Z9 32 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 3 PY 2010 VL 132 IS 43 BP 15435 EP 15444 DI 10.1021/ja1074773 PG 10 WC Chemistry, Multidisciplinary SC Chemistry GA 672XT UT WOS:000283621700059 PM 20929228 ER PT J AU Das, A AF Das, Arnab TI Exotic freezing of response in a quantum many-body system SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITION; COSMOLOGICAL EXPERIMENTS; FIELD; MODEL; HYSTERESIS; DYNAMICS AB We show that when a quantum many-body system is subjected to coherent periodic driving, the response may exhibit exotic freezing behavior in high driving frequency (omega) regime. In a periodically driven classical thermodynamic system, freezing at high omega occurs when 1/omega is much smaller than the characteristic relaxation time of the system and hence the freezing always increases there as omega is increased. Here, in the contrary, we see surprising nonmonotonic freezing behavior of the response with omega, showing curious peak-valley structure. Quite interestingly, the entire system tends to freeze almost absolutely (the freezing peaks) when driven with a certain combination of driving parameters values (amplitude and omega) due to coherent suppression of dynamics of the quantum many-body modes, which has no classical analog. We demonstrate this new freezing phenomenon analytically (supported by large-scale numerics) for a general class of integrable quantum spin systems. C1 [Das, Arnab] Abdus Salam Int Ctr Theoret Phys ICTP, I-34151 Trieste, Italy. [Das, Arnab] LANL, Theoret Div T4, Los Alamos, NM 87545 USA. RP Das, A (reprint author), Abdus Salam Int Ctr Theoret Phys ICTP, I-34151 Trieste, Italy. NR 41 TC 42 Z9 42 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2010 VL 82 IS 17 AR 172402 DI 10.1103/PhysRevB.82.172402 PG 4 WC Physics, Condensed Matter SC Physics GA 674SO UT WOS:000283770300001 ER PT J AU Oppeneer, PM Rusz, J Elgazzar, S Suzuki, MT Durakiewicz, T Mydosh, JA AF Oppeneer, P. M. Rusz, J. Elgazzar, S. Suzuki, M. -T. Durakiewicz, T. Mydosh, J. A. TI Electronic structure theory of the hidden-order material URu2Si2 SO PHYSICAL REVIEW B LA English DT Article ID POINT-CONTACT SPECTROSCOPY; FERMION SYSTEM URU2SI2; TEMPERATURE PHASE-DIAGRAM; VAN-ALPHEN OSCILLATION; HIGH MAGNETIC-FIELDS; SUPERCONDUCTOR URU2SI2; ANTIFERROMAGNETIC STATE; QUANTUM OSCILLATIONS; COMPOUND URU2SI2; BAND-STRUCTURE AB We report a comprehensive electronic structure investigation of the paramagnetic (PM), the large moment antiferromagnetic (LMAF), and the hidden order (HO) phases of URu2Si2. We have performed relativistic full-potential calculations on the basis of the density-functional theory, employing different exchange-correlation functionals to treat electron correlations within the open 5f shell of uranium. Specifically, we investigate-through a comparison between calculated and low-temperature experimental properties-whether the 5f electrons are localized or delocalized in URu2Si2. The local spin-density approximation (LSDA) and generalized gradient approximation (GGA) are adopted to explore itinerant 5f behavior, the GGA plus additional strong Coulomb interaction (GGA+U approach) is used to approximate moderately localized 5f states, and the 5f-core approximation is applied to probe potential properties of completely localized uranium 5f states. We also performed local-density approximation plus dynamical mean-field theory calculations (DMFT) to investigate the temperature evolution of the quasiparticle states at 100 K and above, unveiling a progressive opening of a quasiparticle gap at the chemical potential when temperature is reduced. A detailed comparison of calculated properties with known experimental data demonstrates that the LSDA and GGA approaches, in which the uranium 5f electrons are treated as itinerant, provide an excellent explanation of the available low-temperature experimental data of the PM and LMAF phases. We show furthermore that due to a material-specific Fermi-surface instability a large, but partial, Fermi-surface gapping of up to 750 K occurs upon antiferromagnetic symmetry breaking. The occurrence of the HO phase is explained through dynamical symmetry breaking induced by a mode of long-lived antiferromagnetic spin fluctuations. This dynamical symmetry breaking model explains why the Fermi-surface gapping in the HO phase is similar but smaller than that in the LMAF phase and it also explains why the HO and LMAF phases have the same Fermi surfaces yet different order parameters. A suitable order parameter for the HO is proposed to be the Fermi-surface gap, and the dynamic spin-spin correlation function is further suggested as a secondary order parameter. C1 [Oppeneer, P. M.; Rusz, J.; Elgazzar, S.; Suzuki, M. -T.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Durakiewicz, T.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. [Mydosh, J. A.] Leiden Univ, Kamerlingh Onnes Lab, NL-2300 RA Leiden, Netherlands. RP Oppeneer, PM (reprint author), Uppsala Univ, Dept Phys & Astron, POB 516, S-75120 Uppsala, Sweden. RI Rusz, Jan/A-3324-2008; Suzuki, Michi-To/G-6298-2013; OI Rusz, Jan/0000-0002-0074-1349; Durakiewicz, Tomasz/0000-0002-1980-1874 FU Swedish Research Council; STINT; EU-JRC ITU; Swedish National Infrastructure for Computing (SNIC) FX During the course of this work we have benefited from discussions with J. W. Allen, H. Amitsuka, A. Balatsky, N. Bernhoeft, M. Biasini, F. Bourdarot, W. J. L. Buyers, R. Caciuffo, P. Chandra, P. Coleman, N. J. Curro, J. D. Denlinger, J. Flouquet, M. Graf, H. Harima, V. Janis, J. R. Jeffries, G. H. Lander, N. Magnani, M. B. Maple, Y. Matsuda, K. McEwen, Y. Onuki, R. Osborn, A. Santander-Syro, and J. Schoenes. We also gratefully acknowledge a discussion on Fermi-surface orbits with E. Hassinger and G. Knebel. This work has been support through the Swedish Research Council (VR), STINT, EU-JRC ITU, and the Swedish National Infrastructure for Computing (SNIC). NR 155 TC 66 Z9 66 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 3 PY 2010 VL 82 IS 20 AR 205103 DI 10.1103/PhysRevB.82.205103 PG 21 WC Physics, Condensed Matter SC Physics GA 674TD UT WOS:000283771900001 ER PT J AU Asner, DM Cunningham, M Dejong, S Randrianarivony, K Santamarina, C Schram, M AF Asner, D. M. Cunningham, M. Dejong, S. Randrianarivony, K. Santamarina, C. Schram, M. TI Prospects for observing the standard model Higgs boson decaying into b(b)over-bar final states produced in weak boson fusion with an associated photon at the LHC SO PHYSICAL REVIEW D LA English DT Article ID MASSLESS PARTICLES; BROKEN SYMMETRIES; GAUGE; PHYSICS AB One of the primary goals of the Large Hadron Collider is to understand the electroweak symmetry breaking mechanism. In the standard model, electroweak symmetry breaking is described by the Higgs mechanism which includes a scalar Higgs boson. Electroweak measurements constrain the standard model Higgs boson mass to be in the 114.4 to 157 GeV/c(2) range. For m(h) < 135 GeV/c(2), the Higgs predominantly decays into two b-quarks. As such, we investigate the prospect of observing the standard model Higgs decaying to b<(b)over bar> produced in weak-boson-fusion with an associated central photon. An isolated, high p(T), central photon trigger is expected to be available at the ATLAS and CMS experiments. In this study, we investigated the effects originating from showering, hadronization, the underlying event model, and jet performance including b-jet calibration on the sensitivity of this channel. We found that the choice of Monte Carlo simulation and its tune has a large effect on the efficacy of the central jet veto and consequently the signal significance. A signal significance of 1.6(-0.3)(+0.5) can be achieved for m(h) = 115 GeV/c(2) with 100 fb(-1) of integrated luminosity which correspond to 1 yr at design luminosity at 14 TeV pp collisions. C1 [Asner, D. M.; Cunningham, M.; Dejong, S.; Randrianarivony, K.] Carleton Univ, Ottawa, ON K1S 5B6, Canada. [Asner, D. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Santamarina, C.; Schram, M.] McGill Univ, Montreal, PQ H3A 2TS, Canada. RP Asner, DM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI lebert, thomas/H-4032-2011; Santamarina Rios, Cibran/K-4686-2014 OI Santamarina Rios, Cibran/0000-0002-9810-1816 FU Natural Sciences and Engineering Research Council of Canada; Fonds de recherche sur la nature et les technologies; Canada Research Chairs FX We wish to thank Aleandro Nisati, Barbara Mele and Fulvio Piccinini for the discussions which initiated this analysis. Additionally, we wish to thank Michelangelo Mangano (ALPGEN) and Torbjorn Sjostrand (PYTHIA) for providing us guidance, advice, and support regarding the use of their Monte Carlo generators. This research was funded by Natural Sciences and Engineering Research Council of Canada, Fonds de recherche sur la nature et les technologies, and Canada Research Chairs. NR 27 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 3 PY 2010 VL 82 IS 9 AR 093002 DI 10.1103/PhysRevD.82.093002 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674TS UT WOS:000283773400004 ER PT J AU Kayser, B Kopp, J Robertson, RGH Vogel, P AF Kayser, Boris Kopp, Joachim Robertson, R. G. Hamish Vogel, Petr TI Theory of neutrino oscillations with entanglement SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM-MECHANICS AB We show that, despite appearances, a theoretical approach to neutrino oscillation in which the neutrino and its interaction partners are entangled yields the standard result for the neutrino oscillation wavelength. We also shed some light on the question of why plane-wave approaches to the neutrino oscillation problem can yield the correct oscillation wavelength even though they do not explicitly account for the localization of the neutrino source and the detector. C1 [Kayser, Boris; Kopp, Joachim] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Robertson, R. G. Hamish] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Robertson, R. G. Hamish] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Vogel, Petr] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Vogel, Petr] CALTECH, Dept Phys, Pasadena, CA 91125 USA. RP Kayser, B (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM boris@fnal.gov; jkopp@fnal.gov; rghr@uw.edu; pxv@caltech.edu RI Kopp, Joachim/B-5866-2013 FU U.S. Department of Energy [DE-FG02-88ER40397, DE-FG02-97ER41020, DE-AC02-07CH11359] FX We would like to thank S. Parke for organizing a very fruitful discussion session about entanglement in neutrino oscillations at Fermilab. We are also indebted to E. Akhmedov, J. Conrad, G. Garvey, T. Goldman, M. Goodman, B. Keister, J. Lowe, M. Messier, M. Shaevitz, A. Smirnov, R. Volkas, W. Winter, and L. Wolfenstein for inspiring and useful discussions. The work of P. V. was partially supported by the U.S. Department of Energy under Contract No. DE-FG02-88ER40397. The work of R. G. H. R. was supported by the U.S. Department of Energy under Contract No. DE-FG02-97ER41020. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 27 TC 9 Z9 9 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 3 PY 2010 VL 82 IS 9 AR 093003 DI 10.1103/PhysRevD.82.093003 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674TS UT WOS:000283773400005 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Prasad, V Lee, CL Morii, M Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Sanchez, P. del Amo Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBaR Collaboration TI Search for B+ meson decay to a(1)(+)(1260)K*(0)(892) SO PHYSICAL REVIEW D LA English DT Article ID POLARIZATION AB We present a search for the decay B+ -> a(1)(+)(1260)K*(0)(892). The data, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represent 465 X 10(6)B (B) over bar pairs produced in e(+)e(-) annihilation at the energy of the gamma(4S). We find no significant signal and set an upper limit at 90% confidence level on the product of branching fractions B(B+ -> a(1)(+) (1260)K*(0)(892)) X B(a(1)(+)(1260) -> pi(+) pi(-) pi(+)) of 1.8 X 10(-6). C1 [Sanchez, P. del Amo; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Ist Nazl Fis Nucl, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Brown, D. N.; Davis, C. L.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, CNRS, IN2P3, Lab Annecy le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI dong, liaoyuan/A-5093-2015; Rizzo, Giuliana/A-8516-2015; Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015 OI dong, liaoyuan/0000-0002-4773-5050; Pacetti, Simone/0000-0002-6385-3508; Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Strube, Jan/0000-0001-7470-9301; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Martinelli, Maurizio/0000-0003-4792-9178; Carpinelli, Massimo/0000-0002-8205-930X; Lanceri, Livio/0000-0001-8220-3095; Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Corwin, Luke/0000-0001-7143-3821; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Lafferty, George/0000-0003-0658-4919; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900 FU SLAC; U.S. Department of Energy; National Science Foundation; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 37 TC 1 Z9 1 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD NOV 3 PY 2010 VL 82 IS 9 AR 091101 DI 10.1103/PhysRevD.82.091101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674TS UT WOS:000283773400001 ER PT J AU Desilets, D Zreda, M Ferre, TPA AF Desilets, Darin Zreda, Marek Ferre, Ty P. A. TI Nature's neutron probe: Land surface hydrology at an elusive scale with cosmic rays SO WATER RESOURCES RESEARCH LA English DT Article ID SOIL-MOISTURE; SNOW AB [1] Fast neutrons are generated naturally at the land surface by energetic cosmic rays. These "background" neutrons respond strongly to the presence of water at or near the land surface and represent a hitherto elusive intermediate spatial scale of observation that is ideal for land surface studies and modeling. Soil moisture, snow, and biomass each have a distinct influence on the spectrum, height profile, and directional intensity of neutron fluxes above the ground, suggesting that different sources of water at the land surface can be distinguished with neutron data alone. Measurements can be taken at fixed sites for long-term monitoring or in a moving vehicle for mapping over large areas. We anticipate applications in many previously problematic contexts, including saline environments, wetlands and peat bogs, rocky soils, the active layer of permafrost, and water and snow intercepted by vegetation, as well as calibration and validation of data from spaceborne sensors. C1 [Desilets, Darin] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Zreda, Marek; Ferre, Ty P. A.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA. RP Desilets, D (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM ddesile@sandia.gov FU National Science Foundation [AGS-0838491, EAR-0126241, EAR-0636110, EAR-0345440, ATM-0339527]; Army Research Office [43857-EV]; David and Lucile Packard Foundation [951832]; Laboratory Directed Research and Development; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work at the University of Arizona was supported by the COSMOS project (National Science Foundation grant AGS-0838491); NSF grants EAR-0126241, EAR-0636110, and EAR-0345440, Army Research Office grant 43857-EV; and the David and Lucile Packard Foundation (Fellowship for Science and Engineering 951832). Work at Sandia National Laboratories was supported by a Laboratory Directed Research and Development grant. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Climax neutron monitor was supported by the National Science Foundation grant ATM-0339527 to the University of Chicago. NR 22 TC 55 Z9 57 U1 3 U2 24 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 3 PY 2010 VL 46 AR W11505 DI 10.1029/2009WR008726 PG 7 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 676XH UT WOS:000283951500004 ER PT J AU Roubinet, D Liu, HH de Dreuzy, JR AF Roubinet, Delphine Liu, Hui-Hai de Dreuzy, Jean-Raynald TI A new particle-tracking approach to simulating transport in heterogeneous fractured porous media SO WATER RESOURCES RESEARCH LA English DT Article ID MATRIX DIFFUSION-COEFFICIENT; CONTAMINANT TRANSPORT; FLOW; ROCK AB [1] Particle-tracking methods are often used to model contaminant transport in fractured porous media because they are straightforward to implement for fracture networks and are able to take into account the matrix effect without mesh generation. While classical methods assume infinite matrix or regularly spaced fractures, we have developed a stochastic method adapted to solute transport in complex fracture networks associated with irregular matrix blocks. Diffusion times in the matrix blocks are truncated by the finite size of the blocks. High ratios of matrix diffusion to fracture advection, small fracture apertures, and small blocks favor the transfer of particles to nearby fractures through matrix diffusion. Because diffusion occurs on both sides of the originating fracture before particles reach one of the neighboring fractures, transfer times to both neighboring fractures are strongly affected by the network configurations on both sides of the fracture. This new particle-tracking method is able to deal with complex fracture networks by considering heterogeneous configurations on both sides of the fracture. We finally show on simple Sierpinski lattice structures that neglecting the finite size of the matrix blocks may lead to orders of magnitude overestimations of the transfer times. C1 [Roubinet, Delphine; de Dreuzy, Jean-Raynald] Univ Rennes 1, CNRS, UMR 6118, F-35042 Rennes, France. [Liu, Hui-Hai] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Roubinet, D (reprint author), Univ Rennes 1, CNRS, UMR 6118, F-35042 Rennes, France. EM delphine.roubinet@univ-rennes1.fr RI de Dreuzy, Jean-Raynald/B-1417-2012; Experiences, Modelisation/A-2664-2013; Roubinet, Delphine/O-5303-2016 OI Roubinet, Delphine/0000-0002-1757-9173 FU French National Research Agency ANR [ANR-07-CIS7-004]; The Brittany council FX This project has been funded by the French National Research Agency ANR through the MICAS project (ANR-07-CIS7-004). The Brittany council is acknowledged for its financial contribution through a mobility grant. NR 24 TC 17 Z9 17 U1 3 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV 3 PY 2010 VL 46 AR W11507 DI 10.1029/2010WR009371 PG 6 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 676XH UT WOS:000283951500006 ER PT J AU Mun, E Bud'ko, SL Canfield, PC AF Mun, Eundeok Bud'ko, Sergey L. Canfield, Paul C. TI Thermoelectric power investigations of YbAgGe across the quantum critical point SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; HEAVY-FERMION COMPOUNDS; ZERO-TEMPERATURE LIMIT; PHASE-TRANSITION; LIQUID BEHAVIOR; COMPOUND YBAGGE; THERMOPOWER; METALS; FIELD; YBRH2SI2 AB The magnetic field and temperature dependences of the thermoelectric power (TEP) of the antiferromagnetically ordered heavy fermion compound YbAgGe are measured across the field-induced quantum critical point. These TEP measurements reproduce the earlier H-T phase diagram and identify an additional domelike phase between similar to 45 and similar to 70 kOe. On the low-field side of this region, H > H(c) similar to 45 kOe, the sign of the TEP changes from negative to positive; on the high-field side of this region, H approximate to 70 kOe, a non-Fermi-liquid state is evidenced as the logarithmic temperature dependence of S(T)/T, in agreement with previous specific heat results C(T)/T alpha-log(T). For higher fields, H > 70 kOe, the observed large value of alpha, S(T) = alpha T, is indicative of the heavy fermion state and shows a correlation with C(T)/T. C1 [Mun, Eundeok] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Mun, E (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014 FU Basic Energy Sciences, U.S. Department of Energy [DE-AC02-07CH11358] FX We would like to acknowledge G. M. Schmiedeshoff for useful discussions. We also acknowledge our former group members, Y. Janssen and E. Morosan, for previous sample growths. Work at Ames Laboratory was supported by the Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-07CH11358. NR 44 TC 8 Z9 8 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 2 PY 2010 VL 82 IS 17 AR 174403 DI 10.1103/PhysRevB.82.174403 PG 10 WC Physics, Condensed Matter SC Physics GA 674BN UT WOS:000283708600003 ER PT J AU Torrey, JD Vasko, SE Kapetanovic, A Zhu, ZH Scholl, A Rolandi, M AF Torrey, Jessica D. Vasko, Stephanie E. Kapetanovic, Adnan Zhu, Zihua Scholl, Andreas Rolandi, Marco TI Scanning Probe Direct-Write of Germanium Nanostructures SO ADVANCED MATERIALS LA English DT Article ID DIP-PEN NANOLITHOGRAPHY; TUNNELING MICROSCOPE; LITHOGRAPHY; RESIST; NANOFABRICATION; OXIDATION; DECOMPOSITION; FABRICATION; DEPOSITION; MONOLAYER AB Atomic force microscope direct-write of carbon-free germanium nanostructures is easily accomplished via high-field reaction of liquid diphenylgermane precursor. Sub-30 nm features are written in arbitrary patterns at velocities as high as 100 mu m s(-1). C1 [Torrey, Jessica D.; Vasko, Stephanie E.; Kapetanovic, Adnan; Rolandi, Marco] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Vasko, Stephanie E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Zhu, Zihua] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Scholl, Andreas] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Rolandi, M (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM rolandi@u.washington.edu RI Zhu, Zihua/K-7652-2012; Scholl, Andreas/K-4876-2012 FU University of Washington; University of Washington Center for Nanotechnology; NSF- IGERT [DGE-050457]; Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory FX Financial support by the University of Washington New Faculty Seed Funds, the University of Washington Center for Nanotechnology (S.E.V.) NSF- IGERT(# DGE-050457), the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 (Advanced Light Source) is gratefully acknowledged. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The authors also thank Peter Morse for assistance with some of the preliminary experiments, Scott Dunham for insightful discussions, and Minnie Bredouw for TOC design revisions. NR 42 TC 22 Z9 22 U1 1 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD NOV 2 PY 2010 VL 22 IS 41 BP 4639 EP 4642 DI 10.1002/adma.201001987 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 677OV UT WOS:000284002600013 PM 20872407 ER PT J AU Tan, W Madduri, R Nenadic, A Soiland-Reyes, S Sulakhe, D Foster, I Goble, CA AF Tan, Wei Madduri, Ravi Nenadic, Alexandra Soiland-Reyes, Stian Sulakhe, Dinanath Foster, Ian Goble, Carole A. TI CaGrid Workflow Toolkit: A taverna based workflow tool for cancer grid SO BMC BIOINFORMATICS LA English DT Article ID SERVICE; ENVIRONMENT; SYSTEMS; SCIENCE; DESIGN AB Background: In biological and medical domain, the use of web services made the data and computation functionality accessible in a unified manner, which helped automate the data pipeline that was previously performed manually. Workflow technology is widely used in the orchestration of multiple services to facilitate in-silico research. Cancer Biomedical Informatics Grid (caBIG) is an information network enabling the sharing of cancer research related resources and caGrid is its underlying service-based computation infrastructure. CaBIG requires that services are composed and orchestrated in a given sequence to realize data pipelines, which are often called scientific workflows. Results: CaGrid selected Taverna as its workflow execution system of choice due to its integration with web service technology and support for a wide range of web services, plug-in architecture to cater for easy integration of third party extensions, etc. The caGrid Workflow Toolkit (or the toolkit for short), an extension to the Taverna workflow system, is designed and implemented to ease building and running caGrid workflows. It provides users with support for various phases in using workflows: service discovery, composition and orchestration, data access, and secure service invocation, which have been identified by the caGrid community as challenging in a multi-institutional and cross-discipline domain. Conclusions: By extending the Taverna Workbench, caGrid Workflow Toolkit provided a comprehensive solution to compose and coordinate services in caGrid, which would otherwise remain isolated and disconnected from each other. Using it users can access more than 140 services and are offered with a rich set of features including discovery of data and analytical services, query and transfer of data, security protections for service invocations, state management in service interactions, and sharing of workflows, experiences and best practices. The proposed solution is general enough to be applicable and reusable within other service-computing infrastructures that leverage similar technology stack. C1 [Tan, Wei; Madduri, Ravi; Sulakhe, Dinanath; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Tan, Wei; Madduri, Ravi; Sulakhe, Dinanath; Foster, Ian] Argonne Natl Lab, Chicago, IL USA. [Madduri, Ravi; Foster, Ian] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Nenadic, Alexandra; Soiland-Reyes, Stian; Goble, Carole A.] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England. RP Tan, W (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wtan@mcs.anl.gov RI Tan, Wei/A-8144-2009; Soiland-Reyes, Stian/I-3743-2013; OI Soiland-Reyes, Stian/0000-0001-9842-9718; Goble, Carole/0000-0003-1219-2137 FU Google Summer of Code program; National Cancer Institute, National Institutes of Health [N01-CO-12400] FX We thank caBIG community for their help in various use cases, the caArray team from the National Cancer Institute for the help in using caArray Grid service, and the genePattern team from the Broad Institute of MIT and Harvard for the help in using genePattern Grid services. We also thank Ms. Monika Machunik's contribution to cql-builder, and the Google Summer of Code program for the sponsorship. This project has been funded in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. N01-CO-12400. NR 28 TC 12 Z9 13 U1 0 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD NOV 2 PY 2010 VL 11 AR 542 DI 10.1186/1471-2105-11-542 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 682JX UT WOS:000284399900001 PM 21044328 ER PT J AU Somorjai, GA Aliaga, C AF Somorjai, Gabor A. Aliaga, Cesar TI Molecular Studies of Model Surfaces of Metals from Single Crystals to Nanoparticles under Catalytic Reaction Conditions. Evolution from Prenatal and Postmortem Studies of Catalysts SO LANGMUIR LA English DT Article ID SUM-FREQUENCY GENERATION; SCANNING-TUNNELING-MICROSCOPY; ENERGY ELECTRON-DIFFRACTION; SILICA-SUPPORTED MONODISPERSE; BLODGETT MONOLAYER FORMATION; MESOPOROUS SBA-15 SILICA; VIBRATIONAL SPECTROSCOPY; PLATINUM NANOPARTICLES; HIGH-PRESSURE; STRUCTURE SENSITIVITY AB Molecular level studies of metal crystal and nanoparticle surfaces under catalytic reaction conditions at ambient pressures during turnover were made possible by the use of instruments developed at the University of California at Berkeley. Sum frequency generation vibrational spectroscopy (SFGVS), owing to its surface specificity and sensitivity, is able to identify the vibrational features of adsorbed monolayers of molecules. We identified reaction intermediates, different from reactants and products, under reaction conditions and for multipath reactions on metal single crystals and nanoparticles of varying size and shape. The high-pressure scanning tunneling microscope (HP-STM) revealed the dynamics of a catalytically active metallic surface by detecting the mobility of the adsorbed species during catalytic turnover. It also demonstrated the reversible and adsorbate-driven surface restructuring of platinum when exposed to molecules such as CO and ethylene. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) detected the reversible changes of surface composition in rhodium-palladium, platinum-palladium, and other bimetallic nanoparticles as the reactant atmosphere changed from oxidizing to reducing. It was found that metal nanoparticles of less than 2 nm in size are present in higher oxidation states, which alters and enhances their catalytic activity. The catalytic nanodiode (CND) confirmed that a catalytic reaction-induced current flow exists at oxide-metal interfaces, which correlates well with the reaction turnover. C1 [Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 105 TC 31 Z9 31 U1 2 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16190 EP 16203 DI 10.1021/la101884s PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300002 PM 20860409 ER PT J AU Barnette, AL Asay, DB Ohlhausen, JA Dugger, MT Kim, SH AF Barnette, Anna L. Asay, David B. Ohlhausen, James A. Dugger, Michael T. Kim, Seong H. TI Tribochemical Polymerization of Adsorbed n-Pentanol on SiO2 during Rubbing: When Does It Occur and Is It Responsible for Effective Vapor Phase Lubrication? SO LANGMUIR LA English DT Article ID ION MASS-SPECTROMETRY; SILICON-NITRIDE; INFRARED-SPECTROSCOPY; ADSORPTION-ISOTHERM; AMBIENT CONDITIONS; WEAR; CERAMICS; SURFACES; POLYMERS; CONTACTS AB The origin and role of tribochemical reaction products formed while sliding silicon oxide surfaces in the presence of adsorbed alcohol molecules in equilibrium with the vapor phase were studied. Wear and friction coefficient studies with varying contact loads and n-pentanol vapor environments were used to determine under what operating conditions the tribochemical reaction species was produced. Imaging time-of-flight secondary ion mass spectrometry and microinfrared spectroscopy found that hydrocarbon species with a molecular weight higher than the starting vapor molecules are produced when there is wear of the SiO2 surface. When the n-pentanol vapor lubrication is effective and the silicon oxide surface does not wear, then the tribochemical polymerization products are negligible. These results imply that the tribochemical polymerization is associated with the substrate wear process occurring due to insufficient adsorbate supply or high mechanical load. The tribochemical reactions do not seem to be the primary lubrication mechanism for vapor phase lubrication of SiO2 surfaces with alcohol, although they may lubricate the substrate momentarily upon failure of the alcohol vapor delivery to the sliding contact. C1 [Barnette, Anna L.; Asay, David B.; Kim, Seong H.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Ohlhausen, James A.; Dugger, Michael T.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Kim, SH (reprint author), Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. EM shkim@engr.psu.edu FU National Science Foundation [CMMI-0625493]; Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the National Science Foundation (Grant No. CMMI-0625493) and by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 49 TC 27 Z9 27 U1 2 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16299 EP 16304 DI 10.1021/la101481c PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300018 PM 20735117 ER PT J AU Grass, ME Park, M Aksoy, F Zhang, YW Kunz, M Liu, Z Mon, BS AF Grass, Michael E. Park, Mita Aksoy, Fonda Zhang, Yawen Kunz, Martin Liu, Zhi Mon, Bongjin S. TI Effect of O-2, CO, and NO on Surface Segregation in a Rh0.5Pd0.5 Bulk Crystal and Comparison to Rh0.5Pd0.5 Nanoparticles SO LANGMUIR LA English DT Article ID RH-PD; OXIDATION; CATALYSTS; ADSORPTION; ALLOYS; SIZE AB We present an in situ study of the interaction of a bimetallic Rh0.5Pd0.5 bulk crystal with O-2, CO, and NO using ambient pressure X-ray photoelectron spectroscopy (APXPS) and compare it to results for 15 nm nanoparticles with the same overall composition. The bulk crystal surface has less Rh present under both oxidizing and reducing conditions than the surface of nanoparticles under identical conditions. Segregation and oxidation/reduction proceeds faster and at lower temperature for nanoparticles than for the bulk crystal. The near surface of the Rh0.5Pd0.5 bulk crystal after high temperature vacuum annealing is ca. 9% Rh measured by APXPS. Heating in 0.1 Torr O-2 to 350 degrees C increases the Rh surface composition to ca. 40%. The surface can then be reduced by heating in H-2 at 150 degrees C, leading to a chemically reduced surface with 30% Rh. Titration of CO by gas-phase O-2 from this Rh-rich surface proceeds at a much lower pressure than that on the Rh-deficient starting surface. C1 [Grass, Michael E.; Aksoy, Fonda; Kunz, Martin; Liu, Zhi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Grass, Michael E.; Park, Mita; Mon, Bongjin S.] Hanyang Univ, ERICA, Dept Appl Phys, Seoul 426791, South Korea. [Aksoy, Fonda] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. RP Liu, Z (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM zliu2@lbl.gov; bsmun@hanyang.ac.kr RI Kunz, Martin/K-4491-2012; Liu, Zhi/B-3642-2009 OI Kunz, Martin/0000-0001-9769-9900; Liu, Zhi/0000-0002-8973-6561 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Korea government (MEST) [2009-0068720]; ALS Postdoctoral Fellowship program; Peking University Education Foundation of China FX Microdiffraction was performed at beamline 12.3.2 and APXPS at beamline 9.3.2 of the Advanced Light Source. SEM and XRD were performed at the Molecular Foundry. The Advanced Light Source and the Molecular Foundry are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. B.S.M. is thankful for the support by the Korea Research Foundation (KRF) grant funded by the Korea government (MEST) (No. 2009-0068720). M.E.G. is thankful for the support of the ALS Postdoctoral Fellowship program. Y.W. Z. appreciates the financial aid of the Huaxin Distinguished Scholar Award from Peking University Education Foundation of China. NR 24 TC 21 Z9 22 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16362 EP 16367 DI 10.1021/la101690y PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300026 PM 20575545 ER PT J AU Lobo-Lapidus, RJ Gates, BC AF Lobo-Lapidus, Rodrigo J. Gates, Bruce C. TI Supported Rhenium Complexes: Almost Uniform Rhenium Tricarbonyls Synthesized from CH3Re(CO)(5) and HY Zeolite SO LANGMUIR LA English DT Article ID DEALUMINATED Y-ZEOLITE; ABSORPTION-SPECTROSCOPY; RHODIUM DICARBONYL; MONONUCLEAR; SURFACE; CATALYSTS; TEMPERATURE; EXAFS; ADSORPTION; CONVERSION AB Supported rhenium complexes were prepared from CH3Re(CO)(5) and dealuminated HY zeolite or NaY zeolite, each with a Si/Al atomic ratio of 30. The samples were characterized with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. EXAFS data characterizing the sample formed by the reaction of CH3Re(CO)(5) with dealuminated HY zeolite show that the rhenium complexes were bonded to the zeolite frame, incorporating, on average, three carbonyl ligands per Re atom (as shown by Re-C and multiple-scattering Re-O EXAFS contributions). The I R spectra, consistent with this result, show that the supported rhenium carbonyls were bonded near aluminum sites of the zeolite, as shown by the decrease in intensity of the I R bands characterizing the acidic silanol groups resulting from the reaction of the rhenium carbonyl with the zeolite. This supported metal complex was characterized by narrow peaks in the nu(CO) region of the I R spectrum, indicating highly uniform species. In contrast, the species formed from CH3Re(CO)(5) on NaY zeolite lost fewer carbonyl ligands than those formed on HY zeolite and were significantly less uniform, as indicated by the greater breadth of the nu(CO) bands in the I R spectra. The results show the importance of zeolite H+ sites for the formation of uniform supported rhenium carbonyls from CH3Re(CO)(5); the formation of such uniform complexes did not occur on the NaY zeolite. C1 [Lobo-Lapidus, Rodrigo J.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Lobo-Lapidus, Rodrigo J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM bcgates@ucdavis.edu FU U.S. Department of Energy, Office of Energy Research, Basic Energy Sciences [FG02-87ER15600]; Argonne National Laboratory; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357, DE-AC02-98CH10886]; NSLS, through the Divisions of Materials and Chemical Sciences of the DOE; Synchrotron Catalysis Consortium [DE-FG02-05ER15688] FX This research was supported by the U.S. Department of Energy, Office of Energy Research, Basic Energy Sciences, Contract FG02-87ER15600, and the LDRD program at Argonne National Laboratory. We thank A. Kulkarni and S. Khabuanchalad for help with the experimentation. The research at the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357; the NSLS is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Beamline X18-B at the NSLS is supported by the NSLS, through the Divisions of Materials and Chemical Sciences of the DOE, and the Synchrotron Catalysis Consortium (DE-FG02-05ER15688). We thank the beamline staffs for their assistance. NR 40 TC 2 Z9 2 U1 0 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16368 EP 16374 DI 10.1021/la101344t PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300027 PM 20560580 ER PT J AU Cheong, WY Huang, Y Dangaria, N Gellman, AJ AF Cheong, Wai Yeng Huang, Ye Dangaria, Nikunj Gellman, Andrew J. TI Probing Enantioselectivity on Chirally Modified Cu(110), Cu(100), and Cu(111) Surfaces SO LANGMUIR LA English DT Article ID RACEMIC ALANINE ADLAYERS; SINGLE-CRYSTAL SURFACES; ENANTIOPURE ALANINE; ULTRAHIGH-VACUUM; PROPYLENE-OXIDE; METAL-SURFACES; ACETIC-ACID; R-ALANINE; S-ALANINE; L-LYSINE AB Temperature programmed desorption methods have been used to probe the enantioselectivity of achiral Cu(100), Cu(110), and Cu(111) single crystal surfaces modified by chiral organic molecules including amino acids, alcohols, alkoxides, and amino-alcohols. The following combinations of chiral probes and chiral modifiers on Cu surfaces were included in this study: propylene oxide (PO) on L-alanine modified Cu(110), PO on L-alaninol modified Cu(111), PO on 2-butanol modified Cu(111), PO on 2-butoxide modified Cu(100). PO on 2-butoxide modified Cu(111), R-3-methylcyclohexanone (R-3-MCHO) on 2-butoxide modified Cu(100), and R-3-MCHO on 2-butoxide modified Cu(111). In contrast with the fact that these and other chiral probe/modifier systems have exhibited enantioselectivity on Pd(111) and Pt(111) surfaces, none of these probe/modifier/Cu systems exhibit enantioselectivity at either low or high modifier coverages. The nature of the underlying substrate plays a significant role in the mechanism of hydrogen-bonding interactions and could be critical to observing enantioselectivity. While hydrogen-bonding interactions between modifier and probe molecule are believed to induce enantioselectivity on Pd surfaces (Gao, F.; Wang, Y.; Burkholder, L.; Tysoe, W. T. J. Am. Chem. Soc. 2007, 129, 15240-15249), such critical interactions may be missing on Cu surfaces where hydrogen-bonding interactions are believed to occur between adjacent modifier molecules, enabling them to form clusters or islands. C1 [Cheong, Wai Yeng; Huang, Ye; Dangaria, Nikunj; Gellman, Andrew J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Gellman, Andrew J.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014 OI Gellman, Andrew/0000-0001-6618-7427 FU U.S. Department of Energy FX This work has been supported by the U.S. Department of Energy. NR 35 TC 12 Z9 12 U1 1 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16412 EP 16423 DI 10.1021/la102074a PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300033 PM 20973584 ER PT J AU Zhang, YW Grass, ME Huang, WY Somorjai, GA AF Zhang, Yawen Grass, Michael E. Huang, Wenyu Somorjai, Gabor A. TI Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111)- and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes SO LANGMUIR LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; BLODGETT MONOLAYER FORMATION; PLATINUM NANOCRYSTALS; SELECTIVE SYNTHESIS; METAL NANOCRYSTALS; CATALYTIC-ACTIVITY; GOLD NANOCRYSTALS; NANOPARTICLES; HYDROGENATION; PALLADIUM AB Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac)(2)](2) as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twinned hexagons (in 2D projection) were obtained; whereas, when employing RhCl(3) as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {100} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br(-) ions from alkylammonium bromides, which led to (100)-oriented nanocubes. Monolayer films of the (111)-oriented Rh nanopolyhedra and (100)-oriented Rh nanocubes were deposited on silicon wafers in a Langmuir-Blodgett trough to make model 2D nanoarray catalysts. These nanocatalysts were active for CO oxidation by O(2), and the turnover frequency was independent of nanoparticle shape, consistent with that previously observed for Rh(111) and Rh(100) single crystals. C1 [Zhang, Yawen] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China. [Zhang, Yawen] Peking Univ, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Che, Beijing 100871, Peoples R China. [Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. [Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, YW (reprint author), Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China. EM ywzhang@pku.edu.cn; somorjai@berkeley.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231]; Peking University Education Foundation of China FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank the Berkeley Electron Microscopy Lab and National Center for Electron Microscopy for the use of their TEM and HRTEM facilities, and also thank Prof. A. Paul Alivisatos for the use of the powder X-ray diffractometer. Y.W.Z. appreciates the financial aid of Huaxin Distinguished Scholar Award from Peking University Education Foundation of China. NR 43 TC 22 Z9 22 U1 4 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16463 EP 16468 DI 10.1021/la101213q PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300039 PM 20443537 ER PT J AU Lu, JL Stair, PC AF Lu, Junling Stair, Peter C. TI Nano/Subnanometer Pd Nanoparticles on Oxide Supports Synthesized by AB-type and Low-Temperature ABC-type Atomic Layer Deposition: Growth and Morphology SO LANGMUIR LA English DT Article ID CATALYSTS; PALLADIUM; SURFACE; SIZE; CLUSTERS; SCIENCE; FILMS AB The synthesis of uniformly dispersed nano/subnanometer Pd nanoparticles on oxide supports with atomic layer deposition (ALD) has been studied in terms of growth and morphology. In situ quartz crystal microbalance (QCM) measurements showed that AB-type Pd ALD grew more favorably on TiO(2) than on Al(2)O(3) at 200 degrees C by the sequential exposure of Pd(II) hexafluoroacetylacetonate (Pd(hfac)(2)) and formalin. The growth rate of AB-type Pd ALD decreased on the Al(2)O(3) surface at a lower deposition temperature, and there was negligible growth at 110 degrees C. However, a new ABC-type Pd ALD, which we developed recently, operates at significantly lower temperature by growing both protected Pd nanoparticles and the support simultaneously. Additionally, these two types of Pd ALD demonstrated very different growth behaviors. Scanning transmission electron microscopy (STEM) studies showed that the size of the Pd nanoparticles could be well controlled by varying AB-type Pd ALD cycles at 200 degrees C, and low-temperature ABC-type Pd ALD provides a novel way to synthesize highly uniform, ultrafine, supported Pd nanoparticles directly on high-surface-area supports, regardless of loading. Both types of Pd ALD indicate that ALD is a promising technique for synthesizing advanced catalysts with precise control. C1 [Lu, Junling; Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lu, Junling; Stair, Peter C.] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu RI Lu, Junling/F-3791-2010 OI Lu, Junling/0000-0002-7371-8414 FU Dow Chemical Company; DOE [DE-FG02-03ER15457]; AFOSR [MURI F49620-02-1-0381, DURIP FA-9550-07-1-0526]; DTRA JSTO [FA9550-06-1-0558] FX This work was financially supported by Dow Chemical Company under the Dow methane challenge project. The ALD system construction was funded by DOE (DE-FG02-03ER15457), AFOSR (MURI F49620-02-1-0381 and DURIP FA-9550-07-1-0526), and DTRA JSTO FA9550-06-1-0558. We thank Jeffrey W. Elam, Jeffrey T. Miller, Neng Guo, and Kathryn M. Kosuda for technical assistance and David D. Graf and Lin Luo for constructive discussions. NR 29 TC 41 Z9 41 U1 7 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16486 EP 16495 DI 10.1021/la101378s PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300043 PM 20550163 ER PT J AU Qi, YB Liu, XS Hendriksen, BLM Navarro, V Park, JY Ratera, I Klopp, JM Edder, C Himpsel, FJ Frechet, JMJ Haller, EE Salmeron, M AF Qi, Yabing Liu, Xiaosong Hendriksen, B. L. M. Navarro, V. Park, Jeong Y. Ratera, Imma Klopp, J. M. Edder, C. Himpsel, Franz J. Frechet, J. M. J. Haller, Eugene E. Salmeron, Miquel TI Influence of Molecular Ordering on Electrical and Friction Properties of omega-(trans-4-Stilbene)Alkylthiol Self-Assembled Monolayers on Au (111) SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CHARGE-TRANSPORT PROPERTIES; FINE-STRUCTURE SPECTROSCOPY; CHAIN-LENGTH DEPENDENCE; ALKANETHIOL MONOLAYERS; STRUCTURAL-CHARACTERIZATION; ORGANIC MONOLAYERS; AU(111); JUNCTIONS; SURFACE AB The electrical and friction properties of omega-(trans-4-stilbene)alkylthiol self-assembled monolayers (SAMs) on Au(111) were investigated using atomic force microscopy (AFM) and near edge X-ray absorption One structure spectroscopy (NEXAFS). The sample surface was uniformly covered with a molecular film consisting of very small grains. Well-ordered and flat monolayer islands were formed after the sample was heated in nitrogen at 120 degrees C for 1 h. While lattice resolved A FM images revealed a crystalline phase in the islands, the area between islands showed no order. The islands exhibit substantial reduction (50%) in friction, supporting the existence of good ordering. NEXAFS measurements revealed an average upright molecular orientation in the film, both before and after heating, with a narrower tilt-angle distribution for the heated fim. Conductance-A FM measurements revealed a 2 orders of magnitude higher conductivity on the ordered islands than on the disordered phase. We propose that the conductance enhancement is a result of a better pi-pi stacking between the trans-stilbene molecular units as a result of improved ordering in islands. C1 [Qi, Yabing; Hendriksen, B. L. M.; Navarro, V.; Park, Jeong Y.; Ratera, Imma; Haller, Eugene E.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Qi, Yabing] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Liu, Xiaosong; Himpsel, Franz J.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Klopp, J. M.; Edder, C.; Frechet, J. M. J.; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Frechet, J. M. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Haller, Eugene E.; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RI Liu, Xiaosong/D-7564-2011; Qi, Yabing/A-9243-2010; Park, Jeong Young/A-2999-2008; Hendriksen, Bas/B-8427-2013; Ratera, Imma/E-2353-2014; Qi, Yabing/O-7807-2014 OI Ratera, Imma/0000-0002-1464-9789; Qi, Yabing/0000-0002-4876-8049 FU Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0520527]; Berkeley Advanced Light Source FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. X. L. and F.J.H. were supported by MRSEC at the University of Wisconsin Madison funded by NSF under DMR-0520527. X.L. is thankful for the support of a Doctoral Fellowship from the Berkeley Advanced Light Source. NR 60 TC 13 Z9 14 U1 0 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16522 EP 16528 DI 10.1021/la100837g PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300048 PM 20415505 ER PT J AU Yung, MM Kuhn, JN AF Yung, Matthew M. Kuhn, John N. TI Deactivation Mechanisms of Ni-Based Tar Reforming Catalysts As Monitored by X-ray Absorption Spectroscopy SO LANGMUIR LA English DT Article ID BIOMASS GASIFICATION PROCESSES; NICKEL PHOSPHIDE CATALYSTS; OLIVINE CATALYSTS; FINE-STRUCTURE; STEAM; EXAFS; ELIMINATION; STABILITY; HYDROGEN; REMOVAL AB Deactivation mechanisms of alumina-supported, Ni-based catalysts for tar reforming in biomass-derived syngas were evaluated using extended X-ray absorption One structure (EXAFS) spectroscopy. Catalysts were characterized before and after catalytic reaction cycles and regeneration procedures, which included oxidation by a mixture of steam and air, and reduction in hydrogen. Qualitative analysis of the EXAFS spectra revealed that oxidation of a portion of the Ni in the catalysts to form an oxide phase and/or it sulfide phase were likely scenarios that led to catalyst deactivation with time-on-stream and with increased reaction cycles, Deactivation through carbon deposition, phosphorus poisoning, or changes in particle size were deemed as unlikely causes. Quantitative analysis of the EXAFS spectra indicated sulfur poisoning occurred with time-on-stream, and the contaminating species could not be completely removed during the regeneration protocols. The results also verified that Ni-containing oxide phases (most likely a spinel also containing Mg and Al) formed and contributed to the deactivation. This study validates the need for developing catalyst systems that will protect Ni from sulfur poisoning and oxide formation at elevated reaction and regeneration temperatures. C1 [Yung, Matthew M.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Kuhn, John N.] Univ S Florida, Dept Chem & Biomed Engn, Tampa, FL 33620 USA. RP Yung, MM (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM mattew_yung@nrel.gov; jnkuhn@usf.edu FU U.S. Department of Energy [DE-AC36-99-GO-10337]; University of South Florida; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Gabor A. Somorjai for his guidance and leadership in many areas including surface science and catalysis. Funding for this work, provided by the U.S. Department of Energy's Biomass Program Contract DE-AC36-99-GO-10337 and from the University of South Florida, is gratefully acknowledged. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by El. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract Number DE-AC02-06CH11357. Assistance from the DND-CAT beamline scientists, especially Qing Ma, is greatly appreciated. NR 32 TC 14 Z9 14 U1 4 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16589 EP 16594 DI 10.1021/la1016593 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300056 PM 20586431 ER PT J AU Wu, ZL Li, MJ Howe, J Meyer, HM Overbury, SH AF Wu, Zili Li, Meijun Howe, Jane Meyer, Harry M., III Overbury, Steven H. TI Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O-2 Adsorption SO LANGMUIR LA English DT Article ID OXYGEN STORAGE CAPACITY; LOW-INDEX SURFACES; CERIUM OXIDE; ELECTRONIC-STRUCTURE; MIXED OXIDES; CEO2(111) SURFACES; CO OXIDATION; X-RAY; REDUCTION; NANORODS AB Defect sites play an essential role in ceria catalysis. In this study, ceria nanocrystals with well-defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O-2 adsorption. Ceria nanorods ({110} + {100}), nanocubcs ({100}), and nano-octahedra ({111}) are employed to analyze the quantity and quality of defect sites on different ceria surfaces. On oxidized surfaces, nanorods have the most abundant intrinsic defect sites, followed by nanocubcs and nano-octahedra. When reduced, the induced defect sites are more clustered on nanorods than on nanocubes, although similar amounts (based on surface area) of such defect sites are produced on the two surfaces. Very few defect sites can be generated on the nano-octahedra due to the least reducibility. These differences can be rationalized by the crystallographic surface terminations of the ceria nanocrystals. The different defect sites on these nanocrystals lead to the adsorption of different surface dioxygen species. Superoxide on one-electron defect sites and peroxide on two-electron defect sites with different clustering degree are identified on the ceria nanocrystals depending on their morphology, Furthermore, the stability and reactivity of these oxygen species are also found to be surface-dependent, which is of significance for ceria-catalyzed oxidation reactions. C1 [Wu, Zili; Li, Meijun; Overbury, Steven H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Wu, Zili; Overbury, Steven H.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Howe, Jane; Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Wu, ZL (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM wuzl@ornl.gov; overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Howe, Jane/G-2890-2011; Overbury, Steven/C-5108-2016 OI Wu, Zili/0000-0002-4468-3240; Overbury, Steven/0000-0002-5137-3961 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Division of Scientific User Facilities, U.S. Department of Energy FX Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Raman and part of the TEM measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory, by the Division of Scientific User Facilities, U.S. Department of Energy. XIS and HRTEM measurements were conducted using the SHaRE facilities, which is sponsored at Oak Ridge National Laboratory, by the Division of Scientific User Facilities, U.S. Department of Energy. The research was supported in part by the appointment for M.J.L. to the ORNL Postdoctoral Research Associates Program, administered jointly by ORNL and the Oak Ridge Associated Universities. NR 53 TC 240 Z9 243 U1 45 U2 253 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 2 PY 2010 VL 26 IS 21 BP 16595 EP 16606 DI 10.1021/la101723w PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 671PO UT WOS:000283519300057 PM 20617854 ER PT J AU Singh, DJ AF Singh, David J. TI Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional SO PHYSICAL REVIEW B LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; SWITCHABLE OPTICAL-PROPERTIES; QUASI-PARTICLE; BAND-STRUCTURE; METAL; PHOTOEMISSION; YH3; SUPERCONDUCTORS; STATE; GD AB We report a series of calculations testing the predictions of the Tran-Blaha functional for the electronic structure and magnetic properties of condensed systems. We find a general improvement in the properties of semiconducting and insulating systems, relative to calculations with standard generalized gradient approximations, although this is not always by the same mechanism as other approaches such as the quasiparticle GW method. In ZnO the valence bands are narrowed and the band gap is increased to a value in much better agreement with experiment. The Zn d states do not move to higher binding energy as they do in local-density approximation+U calculations. The functional is effective for systems with hydride anions, where correcting self-interaction errors in the 1s state is important. Similarly, it correctly opens semiconducting gaps in the alkaline-earth hexaborides. It correctly stabilizes an antiferromagnetic insulating ground state for the undoped cuprate parent CaCuO2, but seriously degrades the agreement with experiment for ferromagnetic Gd relative to the standard local-spin-density approximation and generalized gradient approximations. This is due to positioning of the minority-spin 4f states at too low an energy. Conversely, the position of the La 4f conduction bands of La2O3 is in reasonable accord with experiment as it is with standard functionals. The functional narrows the Fe d bands of the parent compound LaFeAsO of the iron high-temperature superconductors while maintaining the high Fe spectral weight near the Fermi energy. C1 Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Singh, DJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU Department of Energy, ORNL; Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX Work at ORNL was supported by the Department of Energy, ORNL LDRD Program (insulators) and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division (metals). NR 69 TC 155 Z9 157 U1 6 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 2 PY 2010 VL 82 IS 20 AR 205102 DI 10.1103/PhysRevB.82.205102 PG 10 WC Physics, Condensed Matter SC Physics GA 674BT UT WOS:000283709200001 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blocker, C Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Cabrera, S Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Klimenko, S Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stanitzki, M St Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Turini, N Ukegawa, F Uozumi, S Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blocker, C. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Cabrera, S. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Turini, N. Ukegawa, F. Uozumi, S. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. TI Search for the supersymmetric partner of the top quark in p(p)over-bar collisions at root s = 1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID SCALAR TOP; ROOT-S=1.96 TEV; PARTICLE PHYSICS; HADRON COLLIDERS; 2 LEPTONS; EVENTS AB We present a search for the lightest supersymmetric partner of the top quark in proton-antiproton collisions at a center-of-mass energy root s = 1: 96 TeV. This search was conducted within the framework of the R parity conserving minimal supersymmetric extension of the standard model, assuming the stop decays dominantly to a lepton, a sneutrino, and a bottom quark. We searched for events with two oppositely-charged leptons, at least one jet, and missing transverse energy in a data sample corresponding to an integrated luminosity of 1 fb(-1) collected by the Collider Detector at Fermilab experiment. No significant evidence of a stop quark signal was found. Exclusion limits at 95% confidence level in the stop quark versus sneutrino mass plane are set. Stop quark masses up to 180 GeV/c(2) are excluded for sneutrino masses around 45 GeV/c(2), and sneutrino masses up to 116 GeV/c(2) are excluded for stop quark masses around 150 GeV/c(2). C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Carrillo, S.; Chen, Y. C.; Field, R.; Furic, I.; Goldschmidt, N.; Hou, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitra, A.; Oksuzian, I.; Sukhanov, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Benjamin, D.; Bocci, A.; Boveia, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Chen, Y. C.; Field, R.; Furic, I.; Goldschmidt, N.; Hou, S.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitra, A.; Oksuzian, I.; Sukhanov, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] CIEMAT, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, CNRS, UMR7585,IN2P3, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Naganoma, J.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Nett, J.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Lysak, Roman/H-2995-2014; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Ruiz, Alberto/0000-0002-3639-0368; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland. NR 38 TC 14 Z9 14 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2010 VL 82 IS 9 AR 092001 DI 10.1103/PhysRevD.82.092001 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674BY UT WOS:000283709700001 ER PT J AU Cumberbatch, DT Guzik, JA Silk, J Watson, LS West, SM AF Cumberbatch, Daniel T. Guzik, Joyce. A. Silk, Joseph Watson, L. Scott West, Stephen M. TI Light WIMPs in the Sun: Constraints from helioseismology SO PHYSICAL REVIEW D LA English DT Article ID SUPERSYMMETRIC DARK-MATTER; SOLAR-NEUTRINO FLUX; DEGREE P-MODES; MASSIVE PARTICLES; CHEMICAL-COMPOSITION; ELEMENT DIFFUSION; SEPARATION RATIOS; STELLAR EVOLUTION; ENERGY-TRANSPORT; MAIN SEQUENCE AB We calculate solar models including dark matter (DM) weakly interacting massive particles (WIMPs) of mass 5-50 GeV and test these models against helioseismic constraints on sound speed, convection-zone depth, convection-zone helium abundance, and small separations of low-degree p-modes. Our main conclusion is that both direct detection experiments and particle accelerators may be complemented by using the Sun as a probe for WIMP DM particles in the 5-50 GeV mass range. The DM most sensitive to this probe has suppressed annihilations and a large spin-dependent elastic scattering cross section. For the WIMP cross section parameters explored here, the lightest WIMP masses <10 GeV are ruled out by constraints on core sound speed and low-degree frequency spacings. For WIMP masses 30-50 GeV, the changes to the solar structure are confined to the inner 4% of the solar radius and so do not significantly affect the solar p-modes. Future helioseismology observations, most notably involving g-modes, and future solar neutrino experiments may be able to constrain the allowable DM parameter space in a mass range that is of current interest for direct detection. C1 [Cumberbatch, Daniel T.] Univ Sheffield, Dept Phys & Astron, Astroparticle Theory & Cosmol Grp, Sheffield S3 7RH, S Yorkshire, England. [Guzik, Joyce. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Silk, Joseph] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Watson, L. Scott] Sandia Natl Labs, Albuquerque, NM 87185 USA. [West, Stephen M.] Univ London, Egham TW20 0EX, Surrey, England. [West, Stephen M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Cumberbatch, DT (reprint author), Univ Sheffield, Dept Phys & Astron, Astroparticle Theory & Cosmol Grp, Hicks Bldg,Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England. EM D.Cumberbatch@sheffield.ac.uk; joy@lanl.gov; j.silk1@physics.ox.ac.uk; LSWATSO@SANDIA.GOV.USA; stephen.west@rhul.ac.uk OI West, Stephen/0000-0002-1666-9417; silk, joe/0000-0002-1566-8148 FU Science and Technology Facilities Council; Higher Education Funding Council for England under the SEPNet Initiative; Science and Technology Facilities Council under the SEPNet Initiative FX D. T. C. is supported by the Science and Technology Facilities Council. S. M. W. thanks the Oxford Physics Department for hospitality, and the Higher Education Funding Council for England and the Science and Technology Facilities Council for financial support under the SEPNet Initiative. NR 81 TC 40 Z9 40 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2010 VL 82 IS 10 AR 103503 DI 10.1103/PhysRevD.82.103503 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674CA UT WOS:000283709900004 ER PT J AU Holsclaw, T Alam, U Sanso, B Lee, H Heitmann, K Habib, S Higdon, D AF Holsclaw, Tracy Alam, Ujjaini Sanso, Bruno Lee, Herbert Heitmann, Katrin Habib, Salman Higdon, David TI Nonparametric reconstruction of the dark energy equation of state SO PHYSICAL REVIEW D LA English DT Article ID MATTER POWER SPECTRUM; DIGITAL SKY SURVEY; IA SUPERNOVA DATA; COSMOLOGICAL CONSTANT; ACCELERATING UNIVERSE; LIGHT CURVES; CONSTRAINTS; REDSHIFT; QUINTESSENCE; EXPANSION AB A basic aim of ongoing and upcoming cosmological surveys is to unravel the mystery of dark energy. In the absence of a compelling theory to test, a natural approach is to better characterize the properties of dark energy in search of clues that can lead to a more fundamental understanding. One way to view this characterization is the improved determination of the redshift-dependence of the dark energy equation of state parameter, w(z). To do this requires a robust and bias-free method for reconstructing w(z) from data that does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new nonparametric reconstruction method that solves for w(z) as a statistical inverse problem, based on a Gaussian process representation. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demonstrate the power of the method on different sets of simulated supernova data; the approach can be easily extended to include diverse cosmological probes. C1 [Holsclaw, Tracy; Sanso, Bruno; Lee, Herbert] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. [Alam, Ujjaini; Heitmann, Katrin; Habib, Salman; Higdon, David] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Holsclaw, T (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. FU Los Alamos National Laboratory (LANL) Institute for Scalable Scientific Data Management; DOE [W-7405-ENG-36]; Los Alamos National Laboratory; NASA FX The authors acknowledge support from the Los Alamos National Laboratory (LANL) Institute for Scalable Scientific Data Management. Part of this research was supported by the DOE under Contract No. W-7405-ENG-36. U. A., S. H., K. H., and D. H. acknowledge support from the Laboratory Directed Research and Development (LDRD) program at the Los Alamos National Laboratory. K. H. acknowledges support from NASA. S. H. and K. H. acknowledge the hospitality of the Aspen Center for Physics, where part of this work was carried out. We are indebted to Andreas Albrecht, Eric Linder, Adrian Pope, Martin White, and Michael Wood-Vasey for several useful discussions. NR 54 TC 32 Z9 32 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2010 VL 82 IS 10 AR 103502 DI 10.1103/PhysRevD.82.103502 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 674CA UT WOS:000283709900003 ER PT J AU Lindemuth, IR Siemon, RE Bauer, BS Angelova, MA Atchison, WL AF Lindemuth, Irvin R. Siemon, Richard E. Bauer, Bruno S. Angelova, Milena A. Atchison, Walter L. TI Computational Interpretation of Megagauss-Magnetic-Field-Induced Metallic Surface Plasma Initiation and Evolution SO PHYSICAL REVIEW LETTERS LA English DT Article AB Numerical simulations of experiments in which plasma is formed on an aluminum surface by megagauss magnetic fields provide the first computational demonstration of a magnetic-field threshold that must be reached for aluminum plasma to begin to form. The computed times of plasma initiation agree reasonably well with the observations across the full range of rod diameters, leading to the conclusion that plasma formation is a thermal process. Computationally, plasma forms first in low-density material that is resistive enough to expand across the magnetic field and yet conductive enough that Ohmic heating exceeds expansion cooling. C1 [Lindemuth, Irvin R.; Siemon, Richard E.; Bauer, Bruno S.; Angelova, Milena A.] Univ Nevada, Reno, NV 89557 USA. [Atchison, Walter L.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Lindemuth, IR (reprint author), Univ Nevada, Reno, NV 89557 USA. FU DOE [DE-FG02-04ER54752, DE-FG02-06ER54892, DE-FC52-01NV14050] FX We acknowledge informative discussions and/or communications with T. Awe, S. Fuelling, S. Garanin, R. Reinovsky, V. Makhin, M. Frese, S. Kuznetsov, S. Rosenthal, and J. Chittenden. This research was supported by DOE Grants No. DE-FG02-04ER54752, No. DE-FG02-06ER54892, and No. DE-FC52-01NV14050. NR 10 TC 5 Z9 6 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 2 PY 2010 VL 105 IS 19 AR 195004 DI 10.1103/PhysRevLett.105.195004 PG 4 WC Physics, Multidisciplinary SC Physics GA 674CJ UT WOS:000283711000004 PM 21231175 ER PT J AU Angel, TE Luft, BJ Yang, XH Nicora, CD Camp, DG Jacobs, JM Smith, RD AF Angel, Thomas E. Luft, Benjamin J. Yang, Xiaohua Nicora, Carrie D. Camp, David G., II Jacobs, Jon M. Smith, Richard D. TI Proteome Analysis of Borrelia burgdorferi Response to Environmental Change SO PLOS ONE LA English DT Article ID LYME-DISEASE SPIROCHETE; OUTER SURFACE PROTEIN; HOST-SPECIFIC SIGNALS; GENE-EXPRESSION; MAMMALIAN HOST; INFECTIOUS CYCLE; FACTOR-H; BINDING; TRANSCRIPTOME; REGULATOR AB We examined global changes in protein expression in the B31 strain of Borrelia burgdorferi, in response to two environmental cues (pH and temperature) chosen for their reported similarity to those encountered at different stages of the organism's life cycle. Multidimensional nano-liquid chromatographic separations coupled with tandem mass spectrometry were used to examine the array of proteins (i.e., the proteome) of B. burgdorferi for different pH and temperature culture conditions. Changes in pH and temperature elicited in vitro adaptations of this spirochete known to cause Lyme disease and led to alterations in protein expression that are associated with increased microbial pathogenesis. We identified 1,031 proteins that represent 59% of the annotated genome of B. burgdorferi and elucidated a core proteome of 414 proteins that were present in all environmental conditions investigated. Observed changes in protein abundances indicated varied replicon usage, as well as proteome functional distributions between the in vitro cell culture conditions. Surprisingly, the pH and temperature conditions that mimicked B. burgdorferi residing in the gut of a fed tick showed a marked reduction in protein diversity. Additionally, the results provide us with leading candidates for exploring how B. burgdorferi adapts to and is able to survive in a wide variety of environmental conditions and lay a foundation for planned in situ studies of B. burgdorferi isolated from the tick midgut and infected animals. C1 [Angel, Thomas E.; Nicora, Carrie D.; Camp, David G., II; Jacobs, Jon M.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Luft, Benjamin J.; Yang, Xiaohua] SUNY Stony Brook, Sch Med, Div Infect Dis, Stony Brook, NY 11794 USA. RP Angel, TE (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Luft, Benjamin/0000-0001-9008-7004 FU National Institutes of Health (NIH) [U01-AI56480]; National Center for Research Resources [RR18522] FX Portions of this research were supported by National Institutes of Health (NIH) grant U01-AI56480 (to BJL) and the National Center for Research Resources (RR18522 to RDS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 38 TC 18 Z9 18 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 2 PY 2010 VL 5 IS 11 AR e13800 DI 10.1371/journal.pone.0013800 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 674VY UT WOS:000283779700012 PM 21072190 ER PT J AU Nakajo, K Ulbrich, MH Kubo, Y Isacoff, EY AF Nakajo, Koichi Ulbrich, Maximilian H. Kubo, Yoshihiro Isacoff, Ehud Y. TI Stoichiometry of the KCNQ1-KCNE1 ion channel complex SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE GFP; single molecule fluorescence; potassium channel; subunit counting; gating ID KCNQ1 POTASSIUM CHANNEL; DEPENDENT K+ CHANNEL; VOLTAGE SENSOR; CRYSTAL-STRUCTURE; MEMBRANE-PROTEIN; MOLECULAR-BASIS; KCNE1; SUBUNIT; MODULATION; TRAFFICKING AB The KCNQ1 voltage-gated potassium channel and its auxiliary subunit KCNE1 play a crucial role in the regulation of the heartbeat. The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 4: 2 stoichiometry), while others have suggested that the stoichiometry may not be fixed. We applied a single molecule fluorescence bleaching method to count subunits in many individual complexes and found that the stoichiometry of the KCNQ1 - KCNE1 complex is flexible, with up to four KCNE1 subunits associating with the four KCNQ1 subunits of the channel (a 4: 4 stoichiometry). The proportion of the various stoichiometries was found to depend on the relative expression densities of KCNQ1 and KCNE1. Strikingly, both the voltage-dependence and kinetics of gating were found to depend on the relative densities of KCNQ1 and KCNE1, suggesting the heart rhythm may be regulated by the relative expression of the auxiliary subunit and the resulting stoichiometry of the channel complex. C1 [Nakajo, Koichi; Ulbrich, Maximilian H.; Isacoff, Ehud Y.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Nakajo, Koichi; Kubo, Yoshihiro] Natl Inst Physiol Sci, Div Biophys & Neurobiol, Okazaki, Aichi 4448585, Japan. [Nakajo, Koichi; Kubo, Yoshihiro] Grad Univ Adv Studies SOKENDAI, Dept Physiol Sci, Kanagawa 2400193, Japan. [Isacoff, Ehud Y.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Isacoff, Ehud Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Isacoff, EY (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM ehud@berkeley.edu RI Nakajo, Koichi/H-4104-2011 FU Ministry of Education, Culture, Sports, Science, and Technology of Japan [20790184]; National Institutes of Health [R01 NS35549] FX We thank S. Wiese and Y. Asai for valuable technical assistance. We thank T. Takumi (Hiroshima University) for the cDNA of rat KCNE1 and T. Hoshi (University of Pennsylvania) for the cDNA of human KCNQ1 channel. This work was supported by research grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (20790184 to K.N.) and the National Institutes of Health (R01 NS35549 to E.Y.I). NR 44 TC 78 Z9 80 U1 1 U2 19 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 2 PY 2010 VL 107 IS 44 BP 18862 EP 18867 DI 10.1073/pnas.1010354107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 674MJ UT WOS:000283749000026 PM 20962273 ER PT J AU Miller, MB Luebke, DR Enick, RM AF Miller, Matthew B. Luebke, David R. Enick, Robert M. TI CO2-philic Oligomers as Novel Solvents for CO2 Absorption SO ENERGY & FUELS LA English DT Article ID SUPERCRITICAL CARBON-DIOXIDE; HIGH-PRESSURE CO2; PHASE-BEHAVIOR; SOLUBILITY; MIXTURES; POLYMERS; RHEOLOGY; GLYCOL); WATER AB Desirable properties for an oligomenc CO2-capture solvent in an integrated gasification combined cycle (IGCC) plant include high selectivity for CO2 over H-2 and water, low viscosity, low vapor pressure low cost, and minimal environmental, health, and safety Impacts The neat solvent viscosity and solubility of CO2, measured via bubble point loci and presented on a pressure-composition diagram (weight basis), and water miscibility in CO2-philic solvents have been determined and compared to results obtained with Selexol, a commercial oligomenc CO2 solvent The solvents tested include polyethyleneglycol dimethyl ether (PEGDME), polypropyleneglycol dimethylether (PPGDME), polypropyleneglycol diacetate (PPG DAc), polybutyleneglycol diacetate (PBGDAc), polytetramethyleneetherglycol chacetate (PTMEGDAc), glyceryl tnacetate (GTA), polychmethyl siloxane (PDMS), and perfluorpolyether (PFPE) that has a perfluonnated propyleneglycol monomer unit Overall, PDMS and PPGDME are the best oligomenc solvents tested and exhibit properties that make them very promising alternatives for the selective absorption of CO2 from a mixed gas stream, especially if the absorption of water is undesirable C1 [Miller, Matthew B.; Luebke, David R.; Enick, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Miller, Matthew B.; Enick, Robert M.] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. RP Miller, MB (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. FU National Energy Technology Laboratory [DE AC26 04NT41817] FX The authors thank Bayer Material Science and GE Global for assistance with synthesis work assisted by them and Huntsman International LLC for supplying samples of PBG used as a starting material This work was performed in support of the ongoing research in the area of carbon management by the National Energy Technology Laboratory under the RDS contract DE AC26 04NT41817 NR 29 TC 26 Z9 26 U1 2 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2010 VL 24 BP 6214 EP 6219 DI 10.1021/ef101123e PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 694AE UT WOS:000285265800048 ER PT J AU Wilson, AG Anderson-Cook, CM AF Wilson, Alyson G. Anderson-Cook, Christine M. TI Reliability Growth Management Metrics and Statistical Methods for Discrete-Use Systems Comment SO TECHNOMETRICS LA English DT Editorial Material ID RESOURCE-ALLOCATION C1 [Wilson, Alyson G.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Wilson, AG (reprint author), Iowa State Univ, Dept Stat, Ames, IA 50011 USA. EM agw@iastate.edu; c-and-cook@lanl.gov OI Wilson, Alyson/0000-0003-1461-6212 NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2010 VL 52 IS 4 BP 397 EP 400 DI 10.1198/TECH.2010.09178 PG 4 WC Statistics & Probability SC Mathematics GA 698BB UT WOS:000285565400007 ER PT J AU Weyens, N Schellingen, K Dupae, J Croes, S van der Lelie, D Vangronsveld, J AF Weyens, N. Schellingen, K. Dupae, J. Croes, S. van der Lelie, D. Vangronsveld, J. TI Can bacteria associated with willow explain differences in Cd-accumulation capacity between different cultivars? SO JOURNAL OF BIOTECHNOLOGY LA English DT Meeting Abstract CT 14th International Biotechnology Symposium and Exhibition (IBS-2008) CY SEP 14-18, 2010 CL Rimini, ITALY DE phytoremediation; Cadmium; willow; plant-associated bacteria C1 [Weyens, N.; Schellingen, K.; Dupae, J.; Croes, S.; Vangronsveld, J.] Hasselt Univ, Hasselt, Belgium. [van der Lelie, D.] Brookhaven Natl Labs, Upton, NY USA. NR 0 TC 0 Z9 0 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD NOV PY 2010 VL 150 SU 1 BP S291 EP S292 DI 10.1016/j.jbiotec.2010.09.237 PG 2 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 741OQ UT WOS:000288873401415 ER PT J AU Weyens, N Dupae, J van der Lelie, D Newman, L Taghavi, S Vangronsveld, J AF Weyens, N. Dupae, J. van der Lelie, D. Newman, L. Taghavi, S. Vangronsveld, J. TI Endophytic bacteria strongly reduce TCE evapotranspiration during phytoremediation in the field SO JOURNAL OF BIOTECHNOLOGY LA English DT Meeting Abstract CT 14th International Biotechnology Symposium and Exhibition (IBS-2008) CY SEP 14-18, 2010 CL Rimini, ITALY DE Phytoremediation; TCE; Poplar; Endophytes C1 [Weyens, N.; Dupae, J.; Vangronsveld, J.] Hasselt Univ, Hasselt, Belgium. [van der Lelie, D.; Newman, L.; Taghavi, S.] Brookhaven Natl Labs, Upton, NY USA. NR 0 TC 1 Z9 1 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1656 J9 J BIOTECHNOL JI J. Biotechnol. PD NOV PY 2010 VL 150 SU 1 BP S51 EP S51 DI 10.1016/j.jbiotec.2010.08.136 PG 1 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 741OQ UT WOS:000288873400120 ER PT J AU Widder, S AF Widder, Sarah TI Benefits and concerns of a closed nuclear fuel cycle SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article ID ENERGY AB Nuclear power can play an important role in our energy future, helping to meet increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. The 1982 Nuclear Waste Policy Act establishes the U. S. Department of Energy as responsible for disposing of spent nuclear fuel (SNF) generated by commercial nuclear power plants operating in a "once-through" fuel cycle in a deep geologic repository located at Yucca Mountain, NV. However, unyielding political opposition to the Yucca Mountain site has hindered the commissioning process to the extent that the current administration has recently declared the site unsuitable. In light of this, the DOE is exploring other options, including closing the fuel cycle through reprocessing and recycling of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste package by separating and isolating the most long-lived components, as well as recovering additional energy value from the original fuel. Reprocessing and recycling of SNF can decrease the volume of waste stored by a factor of 4 and reduce the timeframe of storage from hundreds of thousands of years to thousands of years. Reprocessing and recycling technologies are, however, still very controversial because of the increased cost and proliferation risk reprocessing can present. Estimates of increases in the levelized cost of electricity with reprocessing range from about 10% to 50% due to large uncertainties in the financing, construction, and licensing of a new plant. Ultimately, the U. S. will need to compare each of these fuel cycle options with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security to define the future of nuclear power. c 2010 American Institute of Physics. [doi:10.1063/1.3506839] C1 Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Widder, S (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd,POB 999,MSIN K6-05, Richland, WA 99354 USA. NR 31 TC 3 Z9 3 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD NOV 1 PY 2010 VL 2 IS 6 AR 062801 DI 10.1063/1.3506839 PG 10 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 729CW UT WOS:000287926900001 ER PT J AU Szabo, P Girovsky, J Pribulova, Z Samuely, T Bud'ko, SL Canfield, PC Samuely, P AF Szabo, P. Girovsky, J. Pribulova, Z. Samuely, T. Bud'ko, S. L. Canfield, P. C. Samuely, P. TI Point Contact Spectroscopy Measurements of Ba(Fe-0 Co-96(0) (04))(2)As-2 Single Crystals SO ACTA PHYSICA POLONICA A LA English DT Article; Proceedings Paper CT 14th Czech and Slovak Conference on Magnetism CY JUN 06-09, 2010 CL Kosice, SLOVAKIA SP Safarik Univ, Fac Sci, Inst Phys, Slovak Acad Sci, Slovak Phys Soc AB Point contact spectroscopy results are presented on the electron underdoped Ba(Fe-0 Co-96(0) (04))(2)As-2 single crystals Two superconducting energy gaps with coupling values 2 Delta(1) similar to kT(c) approximate to 2 55 and 2 Delta(2) similar to kT(c) approximate to 11 at T-c = 15 5 K have been observed in the point contact spectra The temperature dependence of the normal state background of the point contact spectra observed between T-c and T-N indicates antiferromagnetic origin of the V-shaped minimum at zero bias C1 [Szabo, P.; Girovsky, J.; Pribulova, Z.; Samuely, T.; Samuely, P.] IEP Slovak Acad Sci, Ctr Low Temp Phys, SK-04353 Kosice, Slovakia. [Szabo, P.; Girovsky, J.; Pribulova, Z.; Samuely, T.; Samuely, P.] Safarik Univ, SK-04353 Kosice, Slovakia. [Bud'ko, S. L.; Canfield, P. C.] Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames, IA 50011 USA. RP Szabo, P (reprint author), IEP Slovak Acad Sci, Ctr Low Temp Phys, Watsonova 47, SK-04353 Kosice, Slovakia. RI Canfield, Paul/H-2698-2014; Samuely, Tomas/R-8563-2016 OI Samuely, Tomas/0000-0001-5618-6965 NR 8 TC 0 Z9 0 U1 0 U2 1 PU POLISH ACAD SCIENCES INST PHYSICS PI WARSAW PA AL LOTNIKOW 32-46, PL-02-668 WARSAW, POLAND SN 0587-4246 J9 ACTA PHYS POL A JI Acta Phys. Pol. A PD NOV PY 2010 VL 118 IS 5 BP 1045 EP 1046 PG 2 WC Physics, Multidisciplinary SC Physics GA 701EM UT WOS:000285797100137 ER PT J AU Findeisen, F Minor, DL AF Findeisen, Felix Minor, Daniel L., Jr. TI Progress in the structural understanding of voltage-gated calcium channel (Ca-V) function and modulation SO CHANNELS LA English DT Article DE voltage-gated calcium channel; X-ray crystallography; calcium-dependent inactivation; calcium-dependent facilitation; voltage-dependent inactivation; calmodulin; CaBP1; RGK proteins ID MUSCLE DIHYDROPYRIDINE RECEPTOR; VISININ-LIKE PROTEIN-2; AUDITORY HAIR-CELLS; BETA-SUBUNIT; DEPENDENT INACTIVATION; CRYSTAL-STRUCTURE; CA(V)2.1 CHANNELS; CA2+-DEPENDENT INACTIVATION; ELECTRON CRYOMICROSCOPY; 3-DIMENSIONAL STRUCTURE AB Voltage-gated calcium channels (Ca(V)s) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of Ca-V components from different isoforms and Ca-V modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls Ca-V action. These descriptions of Ca-V molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts. C1 [Findeisen, Felix; Minor, Daniel L., Jr.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA. [Minor, Daniel L., Jr.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. EM Daniel.Minor@ucsf.edu FU NIH [HL080050, NS065448]; American Heart Association [0740019N] FX We thank A. Tolia for comments on the manuscript. This work was supported by grants to Daniel L. Minor from NIH (HL080050, NS065448) and the American Heart Association (0740019N). Daniel L. Minor is an AHA Established Investigator. NR 145 TC 12 Z9 12 U1 3 U2 6 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1933-6950 J9 CHANNELS JI Channels PD NOV-DEC PY 2010 VL 4 IS 6 BP 459 EP 474 DI 10.4161/chan.4.6.12867 PG 16 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 725QO UT WOS:000287661000006 PM 21139419 ER PT J AU Aydin, A Berryman, JG AF Aydin, Atilla Berryman, James G. TI Analysis of the growth of strike-slip faults using effective medium theory SO JOURNAL OF STRUCTURAL GEOLOGY LA English DT Article DE Fault growth; Fault scaling; Fault linkage and coalescence; Fault damage zone; Cataclastic deformation; Effective moduli; Effective medium model ID SHEAR FRACTURE PROPAGATION; MOUNT ABBOT QUADRANGLE; EN-ECHELON FAULTS; MECHANICAL INTERACTION; EARTHQUAKE RUPTURES; ELASTIC-CONSTANTS; SEGMENT LINKAGE; SIERRA-NEVADA; DAMAGE ZONES; RELAY RAMPS AB Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Aydin, Atilla] Stanford Univ, Dept Geol & Environm Sci, Rock Fracture Project, Stanford, CA 94305 USA. [Berryman, James G.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Aydin, A (reprint author), Stanford Univ, Dept Geol & Environm Sci, Rock Fracture Project, Stanford, CA 94305 USA. EM aydin@stanford.edu FU US DOE Basic Energy Science, Division of Chemical Sciences, Geosciences and BioSciences [DE-FG03-94ER14462]; US DOE by the University of California Lawrence Berkeley National Laboratory [DE-ACO2-05CH11231]; Valley of Fire State Park personnel FX The works at the Valley of Fire State Park by many former graduate students and postdocs who studied with A. Aydin at Stanford University formed the foundation for establishing the conceptual models in this paper. Among these, Ghislain de Joussineau's work has been heavily relied upon. A partial list of other students and postdocs includes R. Myers, E. Flodin, N. Davatzes, and P. Eichhubl. A. Aydin is supported by the US DOE Basic Energy Science, Division of Chemical Sciences, Geosciences and BioSciences, Grant no. DE-FG03-94ER14462. Work of J.G. Berryman performed under auspices of the US DOE by the University of California Lawrence Berkeley National Laboratory under contract no. DE-ACO2-05CH11231. A. Aydin is grateful to the Valley of Fire State Park personnel for their support of the field campaigns through many years. Comments by Christopher Wibberley, Roy Schliche, Zoe Shipton, and Roger Soliva improved the manuscript. NR 89 TC 13 Z9 13 U1 3 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0191-8141 J9 J STRUCT GEOL JI J. Struct. Geol. PD NOV PY 2010 VL 32 IS 11 SI SI BP 1629 EP 1642 DI 10.1016/j.jsg.2009.11.007 PG 14 WC Geosciences, Multidisciplinary SC Geology GA 707KJ UT WOS:000286284900007 ER PT J AU Caster, AG Kowarik, S Schwartzberg, AM Leone, SR Tivanski, A Gilles, MK AF Caster, Allison G. Kowarik, Stefan Schwartzberg, Adam M. Leone, Stephen R. Tivanski, Alexei Gilles, Mary K. TI Quantifying reaction spread and x-ray exposure sensitivity in hydrogen silsesquioxane latent resist patterns with x-ray spectromicroscopy SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ELECTRON-BEAM LITHOGRAPHY; ABSORPTION FINE-STRUCTURE; ADVANCED LIGHT-SOURCE; MEAN FREE PATHS; ZONE PLATES; STRUCTURE NEXAFS; POROUS SILICON; FABRICATION; HSQ; CONTRAST AB Direct-write soft x-ray lithography with an similar to 50 nm diameter beam is used to pattern features in hydrogen silsesquioxane (HSQ) thin films. Scanning transmission x-ray microscopy of the undeveloped patterns (latent patterns) at the oxygen K-edge reveals a two-stage cross-linking mechanism. Oxygen and silicon near edge x-ray absorption fine structure spectra of latent patterns show an increase in oxygen content and no change in silicon content within exposed regions. A dose and thickness dependent spatial spread of the cross-linking reaction beyond the exposure boundaries is observed and quantified in detail. Strong area-dependent exposure sensitivity (attributed to cross-linking beyond the exposed region) is observed in latent patterns. A lateral spread in the cross-linking of >70 nm (full width at half maximum) is observed on both sides of the lines created with 580 eV x-rays (lambda=2.14 nm) in 330 +/- 50 nm thick HSQ films at low dose (0.6 +/- 0.3 MGy, 27 +/- 12 mJ/cm(2)) (1 MGy=10(6) J/kg absorbed energy). At a higher dose (111 +/- 29 MGy, 5143 +/- 1027 mJ/cm(2)), this spread increased to 150 nm. Preliminary results indicate that latent line widths increased with increasing delay between film spin-coating and exposure. Sharper lines are observed after room temperature development of the latent HSQ patterns in NaOH/NaCl solution (onset dose of 3.9 +/- 1.0 MGy, 181 +/- 36 mJ/cm(2)) due to the removal of material below a critical degree of cross-linking. Given the short range of low energy secondary electrons in condensed media (<10 nm at <= 580 eV), the observed spread is likely due to the propagation of reactive ions or radicals beyond the exposed regions. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3514124] C1 [Caster, Allison G.; Kowarik, Stefan; Schwartzberg, Adam M.; Leone, Stephen R.; Tivanski, Alexei; Gilles, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Caster, Allison G.; Kowarik, Stefan; Schwartzberg, Adam M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Caster, Allison G.; Kowarik, Stefan; Schwartzberg, Adam M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Caster, AG (reprint author), Univ Colorado Denver, Dept Bioengn, Aurora, CO 80045 USA. EM srl@berkeley.edu RI Kowarik, Stefan/P-5059-2014; Kowarik, Stefan/C-7676-2014 FU Chemical Sciences Division; Laboratory Directed Research and Development; Material Sciences Division of Lawrence Berkeley National Laboratory; Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; NSF ERC [EEC-0310717)]; Alexander von Humboldt Foundation FX The authors sincerely thank Deirdre L. Olynick, Monika Fleischer, Adam Leontowich, Adam P. Hitchcock, and T. Don Tilley for the discussion of HSQ lithography and mechanisms. They also thank A. L. David Kilcoyne for many hours of support in designing the STXM experiments, Chris J. Hahn for SEM measurements, and Stefan Pastine for the discussion of mechanisms and chemicals for inhibitor experiments. Salary support was provided by the Chemical Sciences Division (M.K.G. and S.R.L.), Laboratory Directed Research and Development (A.G.C.), and the Material Sciences Division (A.G.C. and A.V.T.) of Lawrence Berkeley National Laboratory. These divisions, as well as the Advanced Light Source, were supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. X-ray materials research and S.K.'s salary were supported by the NSF ERC for Extreme Ultraviolet Science and Technology (Contract No. EEC-0310717) and the Alexander von Humboldt Foundation. NR 65 TC 5 Z9 5 U1 0 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP 1304 EP 1313 DI 10.1116/1.3514124 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200167 ER PT J AU Burckel, DB Washburn, CM Koleske, DD Polsky, R AF Burckel, D. B. Washburn, C. M. Koleske, D. D. Polsky, R. TI Pyrolysis of two-dimensional and three-dimensional interferometrically patterned resist structures SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID CARBON; FABRICATION AB Interferometric lithography was used to create a wide variety of two-dimensional and three-dimensional patterns in standard photoresist. The patterns were then converted to amorphous carbon structures through pyrolysis in a reducing atmosphere. The structures maintain their fundamental in-plane morphology despite undergoing significant shrinkage. As an indication of their functionality, the authors highlight their use in two diverse applications: (1) as a defect reduction mask in metal-organic chemical vapor deposition growth of gallium nitride (GaN) on sapphire and (2) as a nanoparticle decorated electrode for catalytic oxidation of methanol. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3495756] C1 [Burckel, D. B.; Washburn, C. M.; Koleske, D. D.; Polsky, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Burckel, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dbburck@sandia.gov; rpolsky@sandia.gov NR 8 TC 0 Z9 0 U1 1 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6P14 EP C6P17 DI 10.1116/1.3495756 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200106 ER PT J AU George, SA Baclea-an, LM Naulleau, PP Chen, RJ Liang, T AF George, Simi A. Baclea-an, Lorie Mae Naulleau, Patrick P. Chen, Robert J. Liang, Ted TI Extreme ultraviolet mask surface cleaning effects on lithography process performance SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB Extreme UV (EUV) masks are expected to undergo cleaning processes in order to maintain the lifetimes necessary for high volume manufacturing. For this study, the impact of repetitive cleaning of EUV masks on imaging performance is evaluated. Two high quality industry standard EUV masks are used, with one of the masks undergoing repeated cleaning and the other one kept as a reference. Lithographic performance, in terms of process window analysis and line edge roughness, was monitored after every two cleans and was compared to the reference mask performance. Surface analysis by atomic force microscopy did not show changes in the midspatial frequency roughness measured after each clean. After a total of eight cleans, minimal degradation is observed in the lithographic performance of the mask. From these observations, the authors conclude that the cleaning cycles completed thus far did not damage the mask multilayer or the absorber structures. The cleaning cycles will be continued until significant loss in imaging fidelity is found. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3501344] C1 [George, Simi A.; Baclea-an, Lorie Mae; Naulleau, Patrick P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Chen, Robert J.; Liang, Ted] Intel Corp, Santa Clara, CA 95052 USA. RP George, SA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sageorge@lbl.gov NR 15 TC 2 Z9 2 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6E31 EP C6E35 DI 10.1116/1.3501344 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200028 ER PT J AU George, SA Naulleau, PP Mochi, I Salmassi, F Gullikson, EM Goldberg, KA Anderson, EH AF George, Simi A. Naulleau, Patrick P. Mochi, Iacopo Salmassi, Farhad Gullikson, Eric M. Goldberg, Kenneth A. Anderson, Erik H. TI Extreme ultraviolet mask substrate surface roughness effects on lithographic patterning SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID LINE-EDGE ROUGHNESS; DEFECTS; SCATTERING; SYSTEM AB In extreme ultraviolet lithography exposure systems, mask substrate roughness-induced scatter contributes to line edge roughness (LER) at the image plane. In this article, the impact of mask substrate roughness on image plane speckle is explicitly evaluated. A programed roughness mask was used to study the correlation between mask roughness metrics and wafer plane aerial image inspection. The authors find that the roughness measurements by the top surface topography profile do not provide complete information on the scatter related speckle that leads to LER at the image plane. They suggest at-wavelength characterization by imaging and/or scatter measurements into different frequencies as an alternative for a more comprehensive metrology of the mask substrate/multilayer roughness effects. (C) 2010 American Vacuum Society. [DOI:10.1116/1.3502436] C1 [George, Simi A.; Naulleau, Patrick P.; Mochi, Iacopo; Salmassi, Farhad; Gullikson, Eric M.; Goldberg, Kenneth A.; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP George, SA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sageorge@lbl.gov; pnaulleau@lbl.gov NR 24 TC 5 Z9 5 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6E23 EP C6E30 DI 10.1116/1.3502436 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200027 ER PT J AU Goldberg, KA Mochi, I AF Goldberg, K. A. Mochi, I. TI Wavelength-specific reflections: A decade of extreme ultraviolet actinic mask inspection research SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY JUN 01-04, 2010 CL Anchorage, AK ID PHOTOEMISSION ELECTRON-MICROSCOPY; MULTILAYER DEFECTS; NATIVE DEFECTS; BLANK DEFECTS; LITHOGRAPHY; LIGHT; LASER; NM; TOOLS AB Mask inspection is essential for the success of any pattern transfer lithography technology, and extreme ultraviolet lithography (EUVL), in particular, faces unique challenges. EUV masks' resonant-reflective multilayer coatings have a narrow, wavelength-specific response that dramatically affects the way that defects appear, or disappear, at various illuminating wavelengths. Furthermore, the ever-shrinking size of "critical" defects limits the potential effectiveness of deep ultraviolet inspection techniques over time. Researchers pursuing numerous ways of finding and characterizing defects on extreme ultraviolet (EUV) masks and have met with varying degrees of success. Their lessons inform the current, urgent exploration to select the most effective techniques for high-volume manufacturing. Ranging from basic research and demonstration experiments to commercial inspection tool prototypes, the authors survey the recent history of work in this area, including sixteen projects in Europe, Asia, and America. Solutions range from scanning beams to microscopy, darkfield imaging to pattern transfer. (c) 2010 American Vacuum Society. [DOI: 10.1116/1.3498757] C1 [Goldberg, K. A.; Mochi, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Goldberg, KA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Cyclotron Rd, Berkeley, CA 94720 USA. EM KAGoldberg@lbl.gov NR 68 TC 6 Z9 6 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6E1 EP C6E10 DI 10.1116/1.3498757 PG 10 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200024 ER PT J AU Makarova, O Divan, R Moldovan, N Rosenmann, D Tang, CM AF Makarova, Olga Divan, Ralu Moldovan, Nicolaie Rosenmann, Daniel Tang, Cha-Mei TI Nanoporous ultrananocrystalline diamond membranes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY JUN 01-04, 2010 CL Anchorage, AK ID THIN-FILMS; HIGH-DENSITY; LITHOGRAPHY; FABRICATION AB Micro- and nanoporous membranes have a wide range of applications in many fields, including medical diagnostics, drug delivery, and hemodialysis. Ultrananocrystalline diamond coatings are becoming more and more significant in medical applications because of the highest degree of biocompatibility, unmatched by other materials. The pores ranging in diameter from 100 to 2000 nm have been fabricated in a 1-mu m-thick ultrananocrystalline diamond film on silicon wafers using e-beam and optical lithography, reactive ion etching, and laser writing. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3501345] C1 [Makarova, Olga; Tang, Cha-Mei] Creatv MicroTech Inc, Chicago, IL 60612 USA. [Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Moldovan, Nicolaie] Adv Diamond Technol Inc, Romeoville, IL 60446 USA. RP Makarova, O (reprint author), Creatv MicroTech Inc, 2242 W Harrison St, Chicago, IL 60612 USA. EM olga@creatvmicrotech.com NR 21 TC 2 Z9 2 U1 0 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6P42 EP C6P47 DI 10.1116/1.3501345 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200111 ER PT J AU Mochi, I Goldberg, KA Huh, S AF Mochi, Iacopo Goldberg, Kenneth A. Huh, Sungmin TI Actinic imaging and evaluation of phase structures on extreme ultraviolet lithography masks SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ALGORITHMS; INSPECTION; RETRIEVAL AB The authors describe the implementation of a phase-retrieval algorithm to reconstruct the phase and complex amplitude of structures on extreme ultraviolet (EUV) lithography masks. Many native defects commonly found on EUV reticles are difficult to detect and review accurately because they have a strong phase component. Understanding the complex amplitude of mask features is essential for predictive modeling of defect printability and defect repair. Besides printing in a stepper, the most accurate way to characterize such defects is with actinic inspection, performed at the design, EUV wavelength. Phase defect and phase structures show a distinct through-focus behavior that enables qualitative evaluation of the object phase from two or more high-resolution intensity measurements. For the first time, the phase of structures and defects on EUV masks were quantitatively reconstructed based on aerial image measurements, using a modified version of a phase-retrieval algorithm developed to test optical phase shifting reticles. (c) 2010 American Vacuum Society. [DOI: 10.1116/1.3498756] C1 [Mochi, Iacopo; Goldberg, Kenneth A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Huh, Sungmin] Samsung Elect Co Ltd, Ban Wol, Hwasung 445701, Kyunggi, South Korea. RP Mochi, I (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM imochi@lbl.gov NR 12 TC 5 Z9 5 U1 0 U2 0 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6E11 EP C6E16 DI 10.1116/1.3498756 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200025 ER PT J AU Palacios, E Ocola, LE Joshi-Imre, A Bauerdick, S Berse, M Peto, L AF Palacios, E. Ocola, L. E. Joshi-Imre, A. Bauerdick, S. Berse, M. Peto, L. TI Three-dimensional microfluidic mixers using ion beam lithography and micromachining SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID MICROMIXERS AB In this article, the authors present microfluidic mixers containing three-dimensional (3D) geometries used to decrease mixing lengths in passive microfluidic systems. In order to create these 3D geometries, the authors use ion beam lithography and micromachining and address charging, redeposition, and stitching error effects that follow this type of fabrication. Prior to mixer fabrication, simulations were run and results were compared between a common straight mixer and two other mixers designed by the authors. The simulation results have shown that 3D geometries can generate lateral velocities and lower mixing lengths down to approximately 70 mu m. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3505128] C1 [Palacios, E.] IIT, Dept Phys, BCPS, Chicago, IL 60616 USA. [Palacios, E.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Ocola, L. E.; Joshi-Imre, A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Bauerdick, S.; Berse, M.; Peto, L.] Raith GmbH, D-44263 Dortmund, Germany. RP Palacios, E (reprint author), IIT, Dept Phys, BCPS, Chicago, IL 60616 USA. EM ocola@anl.gov RI Joshi-Imre, Alexandra/A-2912-2010 OI Joshi-Imre, Alexandra/0000-0002-4271-1623 NR 11 TC 4 Z9 4 U1 3 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6I1 EP C6I6 DI 10.1116/1.3505128 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200045 ER PT J AU Shroff, YA Leeson, M Yan, PY Gullikson, E Salmassi, F AF Shroff, Yashesh A. Leeson, Michael Yan, Pei-Yang Gullikson, Eric Salmassi, Farhad TI High transmission pellicles for extreme ultraviolet lithography reticle protection SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID MASKS AB The authors present the results of a full-field extreme ultraviolet (EUV) pellicle for reticle protection and defect mitigation. Based on novel microelectromechanical systems based fabrication, it comprises a 50 nm Si membrane attached to a wire-grid. Two types of pellicle fabrication techniques are described. The authors present the first actinic results of extreme ultraviolet lithography reticle with pellicle exposed on IMEC Advanced Demo Tool. The impact of different pellicle types on imaging is evaluated as a function of pellicle standoff distance and mesh geometry. A new prototype pellicle has been developed with a measured transmission of 82% in EUV. Actinic exposures are complemented with aerial image modeling, thermal analysis, vacuum cycling, resist outgas tests, and > 5 g repeated scan cycle robustness tests. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3505126] C1 [Shroff, Yashesh A.; Leeson, Michael; Yan, Pei-Yang] Intel Corp, Santa Clara, CA 95054 USA. [Gullikson, Eric; Salmassi, Farhad] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shroff, YA (reprint author), Intel Corp, Santa Clara, CA 95054 USA. EM yashesh.a.shroff@intel.com NR 6 TC 13 Z9 13 U1 1 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6E36 EP C6E41 DI 10.1116/1.3505126 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200029 ER PT J AU Smolev, S Ku, ZY Brueck, SRJ Brener, I Sinclair, MB Ten Eyck, GA Langston, WL Basilio, LI AF Smolev, Svyatoslav Ku, Zahyun Brueck, S. R. J. Brener, Igal Sinclair, Michael B. Ten Eyck, Gregory A. Langston, W. L. Basilio, Lorena I. TI Resonant coupling to a dipole absorber inside a metamaterial: Anticrossing of the negative index response SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB The authors experimentally demonstrate a resonant hybridization between the magnetic dipole structural resonance in the permeability of a fishnet metamaterial and an electric dipole material resonance in the permittivity of the dielectric spacer layer. The hybrid resonances in the permeability and the negative index response exhibit an anticrossing behavior. A simple analytic model and numerical simulations using a rigorous coupled-wave analysis are in excellent qualitative agreement with the experiment. (C) 2010 American Vacuum Society. [DOI:10.1116/1.3503898] C1 [Smolev, Svyatoslav; Ku, Zahyun; Brueck, S. R. J.] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Brener, Igal; Sinclair, Michael B.; Ten Eyck, Gregory A.; Langston, W. L.; Basilio, Lorena I.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Smolev, S (reprint author), Univ New Mexico, Ctr High Technol Mat, 1313 Goddard, Albuquerque, NM 87106 USA. EM smolev@chtm.unm.edu RI Brener, Igal/G-1070-2010; Brueck, Steven/A-6383-2013; OI Brener, Igal/0000-0002-2139-5182; Brueck, Steven/0000-0001-8754-5633 NR 11 TC 0 Z9 0 U1 1 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6O16 EP C6O20 DI 10.1116/1.3503898 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200093 ER PT J AU Srijanto, BR Retterer, ST Fowlkes, JD Doktycz, MJ AF Srijanto, Bernadeta R. Retterer, Scott T. Fowlkes, Jason D. Doktycz, Mitchel J. TI Nanostructured silicon membranes for control of molecular transport SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3518911] C1 [Srijanto, Bernadeta R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. RP Srijanto, BR (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. EM srijantobr@ornl.gov RI Retterer, Scott/A-5256-2011; Srijanto, Bernadeta/D-4213-2016; Doktycz, Mitchel/A-7499-2011 OI Retterer, Scott/0000-0001-8534-1979; Srijanto, Bernadeta/0000-0002-1188-1267; Doktycz, Mitchel/0000-0003-4856-8343 FU NIBIB NIH HHS [R01 EB000657] NR 20 TC 2 Z9 2 U1 0 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6P48 EP C6P52 DI 10.1116/1.3518911 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200112 PM 24932436 ER PT J AU Wendt, JR Burckel, DB Ten Eyck, GA Ellis, AR Brener, I Sinclair, MB AF Wendt, J. R. Burckel, D. B. Ten Eyck, G. A. Ellis, A. R. Brener, I. Sinclair, M. B. TI Fabrication techniques for three-dimensional metamaterials in the midinfrared SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID NEGATIVE REFRACTIVE-INDEX; PHOTONIC METAMATERIALS; RESONATORS; LITHOGRAPHY; FREQUENCIES; RESONANCES AB The authors have developed two versions of a flexible fabrication technique known as membrane projection lithography that can produce nearly arbitrary patterns in "21/2 D" and fully three-dimensional (3D) structures. The authors have applied this new technique to the fabrication of split ring resonator-based metamaterials in the midinfrared. The technique utilizes electron beam lithography for resolution, pattern design flexibility, and alignment. The resulting structures are nearly three orders of magnitude smaller than equivalent microwave structures that were first used to demonstrate a negative index material. The fully 3D structures are highly isotropic and exhibit both electrically and magnetically excited resonances for incident transverse electromagnetic waves. (C) 2010 American Vacuum Society. [DOI:10.1116/1.3504586] C1 [Wendt, J. R.; Burckel, D. B.; Ten Eyck, G. A.; Ellis, A. R.; Brener, I.; Sinclair, M. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wendt, JR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jrwendt@sandia.gov RI Brener, Igal/G-1070-2010 OI Brener, Igal/0000-0002-2139-5182 NR 15 TC 0 Z9 0 U1 2 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6O30 EP C6O33 DI 10.1116/1.3504586 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200096 ER PT J AU Wojcik, MJ Joshi, V Sumant, AV Divan, R Ocola, LE Lu, M Mancini, DC AF Wojcik, Michael J. Joshi, Vishwanath Sumant, Anirudha V. Divan, Ralu Ocola, Leonidas E. Lu, Ming Mancini, Derrick C. TI Nanofabrication of x-ray zone plates using ultrananocrystalline diamond molds and electroforming SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY JUN 01-04, 2010 CL Anchorage, AK ID E-BEAM LITHOGRAPHY; THIN-FILMS; NUCLEATION; DEVICES AB X-ray zone plates are diffractive focusing optics composed of concentric rings of phase-shifting material with a changing period along their radii. Hard x-ray zone plates operate primarily in a range of photon energies from 3 to 30 keV. In order to achieve needed resolution and efficiency, high-aspect-ratio structures are typically patterned and fabricated by gold electroforming into a dielectric mold. Ideally, the molds would be mechanically stable and radiation resistant. Ultrananocrystalline diamond offers a solution with a set of physical properties that suggests that the material can be fabricated to desired requirements. The authors present here the first results for the fabrication of hard x-ray zone plates using an ultrananocrystalline diamond mold for electroforming gold and discuss future developments for creating an optimized focusing optic. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3501357] C1 [Wojcik, Michael J.] IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. [Joshi, Vishwanath; Sumant, Anirudha V.; Divan, Ralu; Ocola, Leonidas E.; Mancini, Derrick C.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Mancini, Derrick C.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lu, Ming] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wojcik, MJ (reprint author), IIT, Dept Biol Chem & Phys Sci, Chicago, IL 60616 USA. EM mancini@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 NR 16 TC 1 Z9 1 U1 2 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6P30 EP C6P35 DI 10.1116/1.3501357 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200109 ER PT J AU Yang, EL Liu, CC Yang, CYP Steinhaus, CA Nealey, PF Skinner, JL AF Yang, E. L. Liu, C. C. Yang, C. Y. P. Steinhaus, C. A. Nealey, P. F. Skinner, J. L. TI Nanofabrication of surface-enhanced Raman scattering device by an integrated block-copolymer and nanoimprint lithography method SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication CY JUN 01-04, 2010 CL Anchorage, AK AB The integration of block-copolymers (BCPs) and nanoimprint lithography (NIL) presents a novel and cost-effective approach to achieving nanoscale patterning capabilities. The authors demonstrate the fabrication of a surface-enhanced Raman scattering device using templates created by the BCP-NIL integrated method. The method utilizes a poly(styrene-block-methyl methacrylate) cylindrical-forming diblock-copolymer as a masking material to create a Si template, which is then used to perform a thermal imprint of a poly(methyl methacrylate) (PMMA) layer on a Si substrate. Au with a Cr adhesion layer was evaporated onto the patterned PMMA and the subsequent lift-off resulted in an array of nanodots. Raman spectra collected for samples of R6G on Si substrates with and without patterned nanodots showed enhancement of peak intensities due to the presence of the nanodot array. The demonstrated BCP-NIL fabrication method shows promise for cost-effective nanoscale fabrication of plasmonic and nanoelectronic devices. (C) 2010 American Vacuum Society. [DOI:10.1116/1.3501341] C1 [Yang, E. L.; Yang, C. Y. P.; Steinhaus, C. A.; Skinner, J. L.] Sandia Natl Labs, Livermore, CA 94550 USA. [Liu, C. C.; Nealey, P. F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Yang, EL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM elai@sandia.gov NR 26 TC 3 Z9 3 U1 0 U2 13 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2010 VL 28 IS 6 BP C6M93 EP C6M97 DI 10.1116/1.3501341 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 690OX UT WOS:000285015200085 ER PT J AU Rieken, JR Anderson, IE Kramer, MJ AF Rieken, Joel R. Anderson, Iver E. Kramer, Matthew J. TI MICROSTRUCTURE EVOLUTION OF GAS-ATOMIZED IRON-BASE ODS ALLOYS SO INTERNATIONAL JOURNAL OF POWDER METALLURGY LA English DT Article ID FERRITIC ALLOYS; STABILITY; STEELS; TI AB In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior-particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior-particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD). C1 [Rieken, Joel R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Anderson, Iver E.; Kramer, Matthew J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. RP Rieken, JR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM jrieken@iastate.edu FU Department of Energy, Office of Fossil Energy through the Ames Laboratory [DE-AC02-07CH11358]; Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX Support from the Department of Energy, Office of Fossil Energy (ARM program) through the Ames Laboratory (contract no. DE-AC02-07CH11358) is gratefully acknowledged. The high-energy X-ray work at beamline 11-BM of the APS was supported by the Department of Energy, Office of Science, Basic Energy Sciences (contract no. DE-AC02-06CH11357). The authors also thank Danny Shechtman, James Anderegg, David Byrd, and Hal Sailsbury for their individual contributions to this paper. NR 33 TC 8 Z9 8 U1 1 U2 12 PU AMER POWDER METALLURGY INST PI PRINCETON PA 105 COLLEGE ROAD EAST, PRINCETON, NJ 08540 USA SN 0888-7462 J9 INT J POWDER METALL JI Int. J. Powder Metall. PD NOV-DEC PY 2010 VL 46 IS 6 BP 17 EP 31 PG 15 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 696GO UT WOS:000285430100006 ER PT J AU Kaita, R Berzak, L Boyle, D Gray, T Granstedt, E Hammett, G Jacobson, CM Jones, A Kozub, T Kugel, H Leblanc, B Logan, N Lucia, M Lundberg, D Majeski, R Mansfield, D Menard, J Spaleta, J Strickler, T Timberlake, J Yoo, J Zakharov, L Maingi, R Soukhanovskii, V Tritz, K Gershman, S AF Kaita, Robert Berzak, Laura Boyle, Dennis Gray, Timothy Granstedt, Erik Hammett, Gregory Jacobson, Craig M. Jones, Andrew Kozub, Thomas Kugel, Henry Leblanc, Benoit Logan, Nicholas Lucia, Matthew Lundberg, Daniel Majeski, Richard Mansfield, Dennis Menard, Jonathan Spaleta, Jeffrey Strickler, Trevor Timberlake, John Yoo, Jongsoo Zakharov, L. Maingi, Rajesh Soukhanovskii, Vlad Tritz, Kevin Gershman, Sophia TI Experiments with liquid metal walls: Status of the lithium tokamak experiment SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Low-aspect ratio tokamaks; Lithium plasma-facing components; Low-recycling plasmas; Fusion reactor first walls; Plasma fueling AB Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kaita, Robert; Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John; Yoo, Jongsoo; Zakharov, L.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, Rajesh] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Soukhanovskii, Vlad] Lawrence Livermore Natl Lab, Livermore, CA USA. [Tritz, Kevin] Johns Hopkins Univ, Baltimore, MD USA. [Gershman, Sophia] Watchung Hills Reg High Sch, Warren, NJ USA. RP Kaita, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM kaita@pppl.gov RI Hammett, Gregory/D-1365-2011; Boyle, Dennis/B-8676-2011; OI Hammett, Gregory/0000-0003-1495-6647; Boyle, Dennis/0000-0001-8091-8169; Jacobson, Craig/0000-0001-7852-6932; Yoo, Jongsoo/0000-0003-3881-1995; Menard, Jonathan/0000-0003-1292-3286 FU US Department of Energy [DE-AC02-09CH11466, DE-AC04-94AL85000, DE-AC52-07NA27344, DE-AC05-00OR22725] FX Work supported by US Department of Energy Contracts DE-AC02-09CH11466, DE-AC04-94AL85000, DE-AC52-07NA27344, and DE-AC05-00OR22725. NR 16 TC 12 Z9 13 U1 1 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2010 VL 85 IS 6 BP 874 EP 881 DI 10.1016/j.fusengdes.2010.04.005 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 704UJ UT WOS:000286080800008 ER PT J AU Binley, A Kruschwitz, S Lesmes, D Kettridge, N AF Binley, Andrew Kruschwitz, Sabine Lesmes, David Kettridge, Nicholas TI Exploiting the temperature effects on low frequency electrical spectra of sandstone: A comparison of effective diffusion path lengths SO GEOPHYSICS LA English DT Article ID INDUCED POLARIZATION; POROUS-MEDIA; CONDUCTIVITY; TIME AB A number of recent investigations have highlighted the potential value of using relaxation times derived from electrical spectra to infer key physical properties of permeable rocks. To date, most studies have assumed a grain size or pore throat as a measure of the length scale of the ionic diffusive process, although this has been challenged in recent experimental investigations. We compare the electrical spectra of three sandstones, adopting a new approach in which the temperature of the rock samples is perturbed and the relaxation time measured as a function of temperature. Our results suggest that, for the sandstones tested here, the effective diffusion coefficient should be considered as a function of the electrical tortuosity. These findings may help explain the apparent long relaxation times observed in low-permeability rocks in recent experimental studies. We also highlight the need to account for temperature in related studies of electrical spectra. C1 [Binley, Andrew; Kettridge, Nicholas] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. [Kruschwitz, Sabine] Fed Inst Mat Res & Testing, Berlin, Germany. [Lesmes, David] US DOE, Washington, DC USA. RP Binley, A (reprint author), Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. EM a.binley@lancaster.ac.uk; s.kruschwitz@gmx.de; david.lesmes@science.doe.gov; n.kettridge@lancaster.ac.uk RI Kettridge, Nicholas/G-5686-2015; Binley, Andrew/C-2487-2013 OI Kettridge, Nicholas/0000-0003-3995-0305; Binley, Andrew/0000-0002-0938-9070 NR 15 TC 15 Z9 15 U1 0 U2 5 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2010 VL 75 IS 6 BP A43 EP A46 DI 10.1190/1.3483815 PG 4 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700TT UT WOS:000285767900001 ER PT J AU Doll, WE Gamey, TJ Holladay, JS Sheehan, JR Norton, J Beard, LP Lee, JLC Hanson, AE Lahti, RM AF Doll, William E. Gamey, T. Jeffrey Holladay, J. Scott Sheehan, Jacob R. Norton, Jeannemarie Beard, Les P. Lee, James L. C. Hanson, Andri E. Lahti, Raye M. TI Results of a high-resolution airborne TEM system demonstration for unexploded ordnance detection SO GEOPHYSICS LA English DT Article AB Airborne geophysical sensor systems using boom-mounted configurations now play an important role in characterizing ordnance-contaminated defense sites. Most of the systems developed to date have been magnetometer systems. These have proven ineffective at sites where basalt or other magnetic geologic units or soils have caused unacceptable noise in the data. Electromagnetic (EM) systems have been developed as an alternative to magnetometer systems for such sites. Recent evaluation of New Mexico field results from the new TEM-8 time-domain EM system has shown successful detection of emplaced blind-seeded ordnance items. Overall, 109 of 110 items were detected, some as small as 81-mm mortars at an area with moderately magnetic geology. The TEM-8 system was also effective in mapping ordnance at a bombing target with severe geologic interference due to basalt, where a previous airborne magnetometer survey proved ineffective. Data and performance metrics for both survey areas are presented and evaluated. C1 [Doll, William E.; Gamey, T. Jeffrey; Sheehan, Jacob R.; Norton, Jeannemarie; Beard, Les P.] Battelle Oak Ridge Operat, Oak Ridge, TN USA. [Hanson, Andri E.; Lahti, Raye M.] AMEC Earth & Environm, Minneapolis, MN USA. RP Doll, WE (reprint author), Battelle Oak Ridge Operat, Oak Ridge, TN USA. EM dollw@battelle.org; gameytj@battelle.org; scott.holladay@geosensors.com; jacob.sheehan@zonge.us; nortonj@battelle.org; lpbeard@comcast.net; jlc.lee@sympatico.ca; andri.hanson@amec.com; raye.lahti@amec.com NR 12 TC 4 Z9 4 U1 1 U2 2 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2010 VL 75 IS 6 BP B211 EP B220 DI 10.1190/1.3505817 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 700TT UT WOS:000285767900005 ER PT J AU Boozer, AH Pomphrey, N AF Boozer, Allen H. Pomphrey, Neil TI Current density and plasma displacement near perturbed rational surfaces SO PHYSICS OF PLASMAS LA English DT Article AB The current density in the vicinity of a rational surface of a force-free magnetic field subjected to an ideal perturbation is shown to be the sum of both a smooth and a delta-function distribution, which give comparable currents The maximum perturbation to the smooth current density is comparable to a typical equilibrium current density and the width of the layer in which the current flows is shown to be proportional to the perturbation amplitude In the standard linearized theory, the plasma displacement has an unphysical jump across the rational surface, but the full theory gives a continuous displacement A resolution of the paradox of a jump in the displacement is required for interpreting perturbed tokamak equilibria (C) 2010 American Institute of Physics [doi 10 1063/1 3507307] C1 [Boozer, Allen H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Pomphrey, Neil] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Boozer, AH (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. FU U S Department of Energy [DE-FG02-03ER54696] FX The authors would like to thank Francois Waelbroeck for pointing out an oversight in the singular current in an earlier version of this manuscript and Allan Reiman and Donald Monticello for useful discussions The work was supported in part by the U S Department of Energy through Grant No DE-FG02-03ER54696 to Columbia University NR 9 TC 10 Z9 10 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 110707 DI 10.1063/1.3507307 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500007 ER PT J AU Edens, AD Adams, RG Rambo, P Ruggles, L Smith, IC Porter, JL Ditmire, T AF Edens, A. D. Adams, R. G. Rambo, P. Ruggles, L. Smith, I. C. Porter, J. L. Ditmire, T. TI Study of high Mach number laser driven blast waves in gases SO PHYSICS OF PLASMAS LA English DT Article ID RADIATIVE SHOCK; INSTABILITIES; HYDRODYNAMICS; ASTROPHYSICS; GROWTH; MODELS; PLASMA AB A senes of experiments were performed examining the evolution of blast waves produced by laser irradiation of a target immersed in gas Blast waves were produced by illumination of wires by 1 kJ, 1 ns laser pulses from the Z-Beamlet laser at Sandia National Laboratories The blast waves were imaged by probe laser pulses at various times to examine the trajectory, radiative precursor, and induced perturbations on the blast wave front Well defined perturbations were induced on the blast wave front with arrays of wires placed in the gas and the results of the experiments are compared to the theoretical predictions for the Vishniac overstabtlity It is found that the experimental results are in general agreement with these theoretical predictions on thin blast wave shells and are in quantitative agreement in the simplest case (C) 2010 American Institute of Physics [doi 101063/1 3491411] C1 [Edens, A. D.; Adams, R. G.; Rambo, P.; Ruggles, L.; Smith, I. C.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Ditmire, T.] Univ Texas Austin, Dept Phys, Texas Ctr High Intens Laser Sci, Austin, TX 78712 USA. RP Edens, AD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Sandia National Laboratory; National Nuclear Security Administration [DE-FC52-03NA00156] FX We would like to acknowledge useful conversations with Paul Drake and Bruce Remington This work was supported by a grant from Sandia National Laboratory and by the National Nuclear Security Administration under Cooperative Agreement No DE-FC52-03NA00156 NR 33 TC 7 Z9 7 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112104 DI 10.1063/1.3491411 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500012 ER PT J AU Foster, JM Rosen, PA Wilde, BH Hartigan, P Perry, TS AF Foster, J. M. Rosen, P. A. Wilde, B. H. Hartigan, P. Perry, T. S. TI Mach reflection in a warm dense plasma SO PHYSICS OF PLASMAS LA English DT Article ID SHOCK-WAVE REFLECTIONS; SUPERSONIC JETS; SIMULATION; GAS; INSTABILITY; BOUNDARIES; DYNAMICS; TARGETS; DOMAINS AB The phenomenon of irregular shock-wave reflection is of importance in high-temperature gas dynamics, astrophysics, inertial-confinement fusion, and related fields of high-energy-density science However, most experimental studies of irregular reflection have used supersonic wind tunnels or shock tubes, and few or no data are available for Mach reflection phenomena in the plasma regime Similarly, analytic studies have often been confined to calorically perfect gases We report the first direct observation, and numerical modeling, of Mach stem formation for a warm, dense plasma Two ablatively driven aluminum disks launch oppositely directed, near-spherical shock waves into a cylindrical plastic block The interaction of these shocks results in the formation of a Mach-ring shock that is diagnosed by x-ray backlighting The data are modeled using radiation hydrocodes developed by AWE and LANL The experiments were carried out at the University of Rochester's Omega laser [J M Soures, R L McCrory, C P Verdon et al, Phys Plasmas 3, 2108 (1996)] and were inspired by modeling [A M Khokhlov, P A Hoflich, E S Oran et al, Astrophys J 524, L107 (1999)] of core-collapse supernovae that suggest that in asymmetric supernova explosion significant mass may be ejected in a Mach-ring formation launched by bipolar jets [doi:10.1063/1.3499690] C1 [Foster, J. M.; Rosen, P. A.] Atom Weap Estab, Reading RG7 4PR, Berks, England. [Wilde, B. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hartigan, P.] Rice Univ, Dept Phys & Astron, Houston, TX 77521 USA. [Perry, T. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Foster, JM (reprint author), Atom Weap Estab, Reading RG7 4PR, Berks, England. RI Perry, Theodore/K-3333-2014 OI Perry, Theodore/0000-0002-8832-2033 FU United States Department of Energy [DE-AC52-06NA25396] FX It is a pleasure to acknowledge the guidance provided by Paul Drake and Alexei Khokhlov in the design and interpretation of this experiment The authors also gratefully acknowledge the technical expertise and assistance of Vern Rikow and Sharon Alvarez, the staff and operations team of the Omega laser facility, and the LLNL and AWE target-fabrication groups This work was supported by the Los Alamos National Laboratory under the auspices of the United States Department of Energy under Contract No DE-AC52-06NA25396 NR 42 TC 6 Z9 7 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112704 DI 10.1063/1.3499690 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500065 ER PT J AU Griswold, ME Fisch, NJ Wurtele, JS AF Griswold, M. E. Fisch, N. J. Wurtele, J. S. TI An upper bound to time-averaged space-charge limited diode currents SO PHYSICS OF PLASMAS LA English DT Article ID ONE-DIMENSIONAL DIODE; CHILD-LANGMUIR LAW; VACUUM; FLOW AB The Child-Langmuir law limits the steady-state current density across a one-dimensional planar diode While it is known that the peak current density can surpass this limit when the boundary conditions vary in time, it remains an open question of whether the average current can violate the Child-Langmuir limit under time-dependent conditions For the case where the applied voltage is constant but the electric field at the cathode is allowed to vary in time, one-dimensional particle-in-cell simulations suggest that such a violation is impossible Although a formal proof is not given, an upper bound on the time-averaged current density is offered (C) 2010 American Institute of Physics [doi 10 1063/1 3503661] C1 [Griswold, M. E.; Fisch, N. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Wurtele, J. S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Griswold, ME (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI wurtele, Jonathan/J-6278-2016 OI wurtele, Jonathan/0000-0001-8401-0297 FU Oak Ridge Institute for Science and Education; U S Department of Energy; Oak Ridge Associated Universities; U S DOE [DE-AC02-76-CH03073, DE-FG02-04ER41289] FX The research was performed under appointment to the Fusion Energy Sciences Fellowship Program administered by Oak Ridge Institute for Science and Education under a contract between the U S Department of Energy and the Oak Ridge Associated Universities This work was also supported by the U S DOE under Contract Nos DE-AC02-76-CH03073 and DE-FG02-04ER41289 NR 13 TC 18 Z9 18 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 114503 DI 10.1063/1.3503661 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500121 ER PT J AU Hudson, SR AF Hudson, S. R. TI A regularized approach for solving magnetic differential equations and a revised iterative equilibrium algorithm SO PHYSICS OF PLASMAS LA English DT Article ID DESTRUCTION; TRANSPORT; SURFACES; ISLANDS AB A method for approximately solving magnetic differential equations is described The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted The extra term allows a "source-correction" term to be defined, which is generally required in order to satisfy the solvability conditions The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria (C) 2010 American Institute of Physics [doi 10 1063/1 3506821] C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hudson, SR (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 NR 20 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 114501 DI 10.1063/1.3506821 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500119 ER PT J AU Krasheninnikova, NS AF Krasheninnikova, Natalia S. TI Analysis of particle penetration length into the wall crevices SO PHYSICS OF PLASMAS LA English DT Article ID TILTED MAGNETIC-FIELD; PLASMA CONVECTION; DIVERTOR PLATE; TILE GAPS; SHEATH; SURFACE; DRIFTS AB The present work investigates the effects of the surface roughness on the plasma-wall interactions via kinetic simulations of an initial value problem using the particle-in-cell code VPIC [K J Bowers et al, Phys Plasmas 15, 055703 (2008)] Collision less plasma immersed in parallel to the wall magnetic field is self-consistently interacting with a nonflat surface, whose roughness is varied relative to the thermal ion gyroradius The analysis of the numerical results and analytical estimates yields a scaling of the penetration length that can be described by an analytical formula (C) 2010 American Institute of Physics [doi 10 1063/1 3505306] C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Krasheninnikova, NS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U S DOE/NNSA [DE-AC52-06NA25396] FX This research was supported by U S DOE/NNSA, performed at LANL, operated by LANS LLC under Contract No DE-AC52-06NA25396 The author is indebted to Mark Schmitt of LANL for the support The author is extremely grateful to Kevin Bowers, Brian Albright, and the rest of the VPIC team for making their code available for this work The author also would like to express her gratitude to the Institutional Computing team at LANL Special thanks go to Vadim S Roytershteyn of LANL for the useful discussions and help with using VPIC The author is also thankful to Xianzhu Tang of LANL for the valuable input NR 20 TC 0 Z9 0 U1 1 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 114504 DI 10.1063/1.3505306 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500122 ER PT J AU Pino, J Li, H Mahajan, S AF Pino, Jesse Li, Hui Mahajan, Swadesh TI Relaxed states in relativistic multifluid plasmas SO PHYSICS OF PLASMAS LA English DT Article ID WINDS AB The evolution equations for a plasma comprising multiple species of charged fluids with relativistic bulk and thermal motion are derived It is shown that a minimal fluid coupling model allows a natural casting of the evolution equations in terms of generalized vorticity, which treats the fluid motion and electromagnetic fields equally Equilibria can be found using a variational principle based on minimizing the total enstrophy subject to energy and helicity constraints A subset of these equilibria corresponds to minimum energy The equations for these states are presented with example solutions showing the structure of the relaxed states (C) 2010 American Institute of Physics [doi 10 1063/1 3505326] C1 [Pino, Jesse; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mahajan, Swadesh] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. RP Pino, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Pino, Jesse/C-9183-2014 NR 23 TC 12 Z9 12 U1 0 U2 2 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112112 DI 10.1063/1.3505326 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500020 ER PT J AU Poli, FM Ethier, S Wang, W Hahm, TS Mazzucato, E Smith, DR AF Poli, F. M. Ethier, S. Wang, W. Hahm, T. S. Mazzucato, E. Smith, D. R. TI A synthetic diagnostic for validation of electron gyroradius scale turbulence simulations against coherent scattering measurements SO PHYSICS OF PLASMAS LA English DT Article ID BEAM EMISSION-SPECTROSCOPY; DIII-D; EDGE TURBULENCE; PLASMAS; TOKAMAK; MODES; FLUCTUATIONS; PROPAGATION; SYSTEM; WAVES AB Comparison between spectra of short-scale density fluctuations measured with coherent electromagnetic scattering experiments and those extracted from space-resolved numerical simulations is affected by a number of systematic errors These include the locality of scattering measurements, the different domain covered (space-resolved simulations versus wavenumber resolved measurements), and the stationanty of simulated nonlinear spectra To bridge the gap between theory-simulations and experiments, a synthetic diagnostic for high-k scattering measurements has been developed This synthetic scattering predicts the propagation of the beam in an anisotropic, inhomogeneous plasma and accounts for the spatial variation of the instrumental transfer function The latter, in particular, is proven to provide an important calibration factor not only for the simulated spectra, but also for the measured ones, allowing the use of the synthetic diagnostic in predictive mode Results from a case study for National Spherical Torus Experiment plasmas using high-k tangential scattering system [Smith et al, Rev Sci Instrum 75, 3840 (2004)] and the gyrokinetic tokamak simulation code [Wang et at, Phys Plasmas 13, 092505 (2006)] are presented (C) 2010 American Institute of Physics [doi:10.1063/1.3492715] C1 [Poli, F. M.] Univ Warwick, Coventry CV4 7AL, W Midlands, England. [Ethier, S.; Wang, W.; Hahm, T. S.; Mazzucato, E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Smith, D. R.] Univ Wisconsin, Dept Engn Phys, Madison, WI USA. RP Poli, FM (reprint author), Univ Warwick, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. RI poli, francesca/C-2226-2008 OI poli, francesca/0000-0003-3959-4371 FU U S DOE [DE-AC02-09-CH11466]; SciDAC GPS-TTBP project; Office of Science of the U S Department of Energy [DE-AC05-00OR22725]; UK EPSRC FX S Nowak is acknowledged for help on the computation of the complex eikonal H Park and Y Ren are acknowledged for fruitful discussion on the high-k scattering diagnostic This work is supported by U S DOE under Contract No DE-AC02-09-CH11466 and by the SciDAC GPS-TTBP project This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U S Department of Energy under Contract No DE-AC05-00OR22725 The computer time was granted as part of the DOE Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program F M Poli is supported by the UK EPSRC NR 40 TC 2 Z9 2 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112514 DI 10.1063/1.3492715 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500061 ER PT J AU Porter, GD Petrie, TW Rognlien, TD Rensink, ME AF Porter, G. D. Petrie, T. W. Rognlien, T. D. Rensink, M. E. TI UEDGE simulation of edge plasmas in DIII-D double null configurations SO PHYSICS OF PLASMAS LA English DT Article ID DIVERTOR MAGNETIC BALANCE; SCRAPE-OFF LAYER; REDUCTION; TRANSPORT; TOKAMAKS; CODE AB Analysis of plasma flow in the edge of double null hybrid mode DIII-D plasmas is reported The two dimension fluid plasma code UEDGE [T Rognlien et al, J Nucl Mater 196-198,347 (1992)] is used for the analysis The effect of impurity radiation from intrinsic carbon sputtered from plasma facing surfaces is included as is the effect of plasma drifts Two discharges in which the flux surfaces through the poloidal field nulls (X-points) are separated by 1 cm at the outer midplane are analyzed The discharges differ only in the direction of the ion del B drift It is shown that the flow of both primary ions and intrinsic impurities is dominated by the effect of plasma drifts Variations in the recycling of deuterium ions, as seen in D(alpha) emission profiles, are qualitatively consistent with experiment and are driven by the effect of E X B drifts associated with radial gradients of the electron temperature at the secondary separatrix Trace argon impurity is introduced to simulate the transport of argon used in the experiment to enhance divertor radiation power Penetration of the trace argon to the closed field lines depends on the direction of the ion del B drift, consistent with experiment The analysis described here includes the effect of a deuterium gas puff to establish the "puff and pump" configuration The poloidal flow of impurities is a balance between the projection of the parallel flow and poloidal drifts, primarily from E X B It is shown that the effect of the gas puff is primarily to alter the electron temperature profile and thus affects impurity flow via alteration of E X B drifts, not via entrainment in deuterium ion parallel flow (C) 2010 American Institute of Physics [doi 10 1063/1 3499666] C1 [Porter, G. D.; Rognlien, T. D.; Rensink, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Petrie, T. W.] Gen Atom Co, San Diego, CA 92186 USA. RP Porter, GD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 21 TC 4 Z9 4 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2010 VL 17 IS 11 AR 112501 DI 10.1063/1.3499666 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 697BB UT WOS:000285486500048 ER PT J AU Kelley, R AF Kelley, Robert TI Burma nuclear program highlights the need for a standing UN technical body SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE Burma; IAEA; OPCW; structure; technical body; UN; weapons of mass destruction; WMD AB The author highlights Burma and recent events surrounding its nuclear program to present a case for the development of a UN technical body to investigate countries suspected of having weapons of mass destruction (WMD). International verification organizations such as the International Atomic Energy Agency (IAEA) and the Organization for the Prevention of Chemical Weapons (OPCW) have no expertise in evaluating technologies outside their core missions, which, he writes, means no international organization can assess the technology of missile delivery systems. Using Burma as a backdrop, the author makes the case for an international technical body, which he outlines in structure, function, and scope. C1 [Kelley, Robert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 10 TC 0 Z9 0 U1 0 U2 2 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0096-3402 J9 B ATOM SCI JI Bull. Atom. Scient. PD NOV-DEC PY 2010 VL 66 IS 6 BP 67 EP 76 DI 10.1177/0096340210387045 PG 10 WC International Relations; Social Issues SC International Relations; Social Issues GA 697VZ UT WOS:000285549200007 ER EF