FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Zhu, DL Guizar-Sicairos, M Wu, B Scherz, A Acremann, Y Tyliszczak, T Fischer, P Friedenberger, N Ollefs, K Farle, M Fienup, JR Stohr, J AF Zhu, Diling Guizar-Sicairos, Manuel Wu, Benny Scherz, Andreas Acremann, Yves Tyliszczak, Tolek Fischer, Peter Friedenberger, Nina Ollefs, Katharina Farle, Michael Fienup, James R. Stoehr, Joachim TI High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHASE RETRIEVAL; NM RESOLUTION; RECONSTRUCTION; MICROSCOPY; NANOPARTICLES; ALGORITHMS AB We demonstrate in the soft x-ray regime a novel technique for high-resolution lensless imaging based on differential holographic encoding. We have achieved superior resolution over x-ray Fourier transform holography while maintaining the signal-to-noise ratio and algorithmic simplicity. We obtain a resolution of 16 nm by synthesizing images in the Fourier domain from a single diffraction pattern, which allows resolution improvement beyond the reference fabrication limit. Direct comparisons with iterative phase retrieval and images from state-of-the-art zone-plate microscopes are presented. C1 [Acremann, Yves] SLAC Natl Accelerator Lab, PULSE Ctr Energy Sci, Menlo Pk, CA USA. [Zhu, Diling; Wu, Benny] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Zhu, Diling; Wu, Benny; Scherz, Andreas] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA USA. [Guizar-Sicairos, Manuel; Fienup, James R.] Univ Rochester, Inst Opt, Rochester, NY 14627 USA. [Tyliszczak, Tolek] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Div Chem Sci, Berkeley, CA 94720 USA. [Fischer, Peter] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Friedenberger, Nina; Ollefs, Katharina; Farle, Michael] Univ Duisburg Essen, Dept Phys, Duisburg, Germany. [Friedenberger, Nina; Ollefs, Katharina; Farle, Michael] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CeNIDE, Duisburg, Germany. [Stoehr, Joachim] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA. RP Acremann, Y (reprint author), SLAC Natl Accelerator Lab, PULSE Ctr Energy Sci, Menlo Pk, CA USA. EM dlzhu@stanford.edu RI MSD, Nanomag/F-6438-2012; Fischer, Peter/A-3020-2010; Guizar-Sicairos, Manuel/I-4899-2013; Zhu, Diling/D-1302-2013; Fienup, James/B-2715-2016; Ollefs, Katharina/F-5677-2016; OI Fischer, Peter/0000-0002-9824-9343; Fienup, James/0000-0001-5147-9435; Ollefs, Katharina/0000-0002-2301-4670; Farle, Michael/0000-0002-1864-3261 FU DOE, Office of Science, Basic Energy Sciences; DFG [SFB445]; DAAD FX The authors acknowledge support by the DOE, Office of Science, Basic Energy Sciences. Financial support by the DFG (SFB445) and the DAAD is also acknowledged. Fe nanocubes were synthesized by A. Shavel. NR 32 TC 47 Z9 47 U1 0 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 20 PY 2010 VL 105 IS 4 AR 043901 DI 10.1103/PhysRevLett.105.043901 PG 4 WC Physics, Multidisciplinary SC Physics GA 628MW UT WOS:000280125300003 PM 20867843 ER PT J AU Zhang, WQ Zhou, Y Wu, GR Lu, YP Pan, HL Fu, BN Shuai, QA Liu, L Liu, S Zhang, LL Jiang, B Dai, DX Lee, SY Xie, Z Braams, BJ Bowman, JM Collins, MA Zhang, DH Yang, XM AF Zhang, Weiqing Zhou, Yong Wu, Guorong Lu, Yunpeng Pan, Huilin Fu, Bina Shuai, Quan Liu, Lan Liu, Shu Zhang, Liling Jiang, Bo Dai, Dongxu Lee, Soo-Ying Xie, Zeng Braams, Bastiaan J. Bowman, Joel M. Collins, Michael A. Zhang, Dong H. Yang, Xueming TI Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE chemical reaction dynamics; cross section; potential energy surface; quantum scattering; crossed molecular beam equipment ID ABSTRACTION REACTION DYNAMICS; TO-STATE DYNAMICS; 1ST-PRINCIPLES THEORY; CHEMICAL-REACTIONS; SIMPLEST REACTION; RATE CONSTANTS; CARBON-ATOM; QUANTUM; EXCITATION; KINETICS AB Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD4 -> HD + CD3 reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD4 cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height. C1 [Zhang, Weiqing; Zhou, Yong; Wu, Guorong; Pan, Huilin; Fu, Bina; Shuai, Quan; Liu, Lan; Liu, Shu; Jiang, Bo; Dai, Dongxu; Zhang, Dong H.; Yang, Xueming] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China. [Lu, Yunpeng; Zhang, Liling; Lee, Soo-Ying] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 637616, Singapore. [Xie, Zeng] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Braams, Bastiaan J.] IAEA, Div Phys & Chem Sci, A-1400 Vienna, Austria. [Bowman, Joel M.] Emory Univ, Dept Chem, Atlanta, GA 30322 USA. [Bowman, Joel M.] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA. [Collins, Michael A.] Australian Natl Univ, Res Sch Chem, Canberra, ACT 0200, Australia. RP Zhang, DH (reprint author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China. EM zhangdh@dicp.ac.cn; xmyang@dicp.ac.cn RI Zhang, Weiqing/A-4824-2010; Braams, Bastiaan/E-7687-2011; Yang, Xueming/C-8764-2013; Zhou, Yong/K-2388-2012; Xie, Zhen/A-5087-2009; LU, YUNPENG/D-1994-2015 OI Braams, Bastiaan/0000-0003-4086-9969; LU, YUNPENG/0000-0003-2493-7853 FU Chinese Academy of Sciences; National Natural Science Foundation of China; Ministry of Science and Technology; Ministry of Education, Singapore; National Science Foundation; Australian Research Council FX Supported mainly by the Chinese Academy of Sciences, the National Natural Science Foundation of China, and the Ministry of Science and Technology. We also acknowledge the support of the Ministry of Education, Singapore (S.Y.L.), the National Science Foundation (J.M.B.), and the Australian Research Council (M. A. C.). NR 32 TC 63 Z9 64 U1 1 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12782 EP 12785 DI 10.1073/pnas.1006910107 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500016 PM 20615988 ER PT J AU Lim, H Iwerks, J Glimm, J Sharp, DH AF Lim, Hyunkyung Iwerks, Justin Glimm, James Sharp, David H. TI Nonideal Rayleigh-Taylor mixing SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE large eddy simulations; subgrid scale models; turbulence ID EULER EQUATIONS; INSTABILITY; TRANSPORT; NONUNIQUENESS; SIMULATIONS; DEPENDENCE; MODEL; TIME AB Rayleigh-Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh-Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. C1 [Lim, Hyunkyung; Iwerks, Justin; Glimm, James] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Glimm, James] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11793 USA. [Sharp, David H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Glimm, J (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. EM glimm@ams.sunysb.edu FU U.S. Department of Energy [DE-FC02-06-ER25779, DE-FG52-06NA26205]; Department of Energy (National Nuclear Security Administration) [NA28614] FX This work was supported in part by the U.S. Department of Energy, including Grants DE-FC02-06-ER25779, and DE-FG52-06NA26205. This material is based upon work supported by the Department of Energy (National Nuclear Security Administration) under Award NA28614. The simulations reported here were performed in part on the Galaxy Linux cluster in the Department of Applied Mathematics and Statistics, Stony Brook University, and in part on New York Blue, the BG/L computer operated jointly by Stony Brook University and BNL. This manuscript has been coauthored by Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH1-886 with the U.S. Department of Energy. This work has a Los Alamos Laboratory preprint number LA-UR 09-06333 and a Stony Brook University preprint number SUNYSB-AMS-09-05. NR 38 TC 14 Z9 14 U1 1 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12786 EP 12792 DI 10.1073/pnas.1002410107 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500017 PM 20615983 ER PT J AU Morales, MA Pierleoni, C Schwegler, E Ceperley, DM AF Morales, Miguel A. Pierleoni, Carlo Schwegler, Eric Ceperley, D. M. TI Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE phase transition; quantum Monte Carlo; density functional theory; plasma phase transition; melting ID EQUATION-OF-STATE; PHASE-TRANSITION; SOLID HYDROGEN; MOLECULAR-HYDROGEN; METALLIC HYDROGEN; MEGABAR PRESSURES; DENSE HYDROGEN; MONTE-CARLO; FLUID; DEUTERIUM AB Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics. C1 [Morales, Miguel A.; Ceperley, D. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Pierleoni, Carlo; Ceperley, D. M.] Univ Illinois, Inst Condensed Matter Theory, Urbana, IL 61801 USA. [Pierleoni, Carlo] Univ Aquila, CNISM, I-67100 Laquila, Italy. [Pierleoni, Carlo] Univ Aquila, Dept Phys, I-67100 Laquila, Italy. [Schwegler, Eric] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ceperley, D. M.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. RP Ceperley, DM (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM ceperley@uiuc.edu RI Schwegler, Eric/F-7294-2010; Schwegler, Eric/A-2436-2016; Pierleoni, Carlo/D-5519-2016 OI Schwegler, Eric/0000-0003-3635-7418; Pierleoni, Carlo/0000-0001-9188-3846 FU National Nuclear Security Administration through US Department of Energy (DOE) [DE-FG52-06NA26170]; Lawrence Livermore National Laboratory [DE-AC5207NA27344]; Stockpile Stewardship Graduate Fellowship; Ministero dell'Universita e della Ricerca, Italy [PRIN2007] FX This research was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through US Department of Energy (DOE) Grant DE-FG52-06NA26170 and the Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344. M. A. M. acknowledges support of a Stockpile Stewardship Graduate Fellowship; and C. P. thanks the Institute of Condensed Matter Theory at the University of Illinois at Urbana-Champaign for a short term visit, and acknowledges financial support from Ministero dell'Universita e della Ricerca, Italy (Grant PRIN2007). Computer time was made available from the US DOE INCITE program, the National Center for Supercomputer Applications, Lawrence Livermore National Laboratory, and CASPUR (Italy) in the framework of Competitive HPC Grants 2009. NR 57 TC 104 Z9 106 U1 0 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 20 PY 2010 VL 107 IS 29 BP 12799 EP 12803 DI 10.1073/pnas.1007309107 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 628TJ UT WOS:000280144500019 PM 20566888 ER PT J AU Braiman, A Thundat, T Rudakov, F AF Braiman, Avital Thundat, Thomas Rudakov, Fedor TI DNA separation on surfaces SO APPLIED PHYSICS LETTERS LA English DT Article DE DNA; electrophoresis; friction; molecular biophysics ID STICK-SLIP MOTION; CAPILLARY-ELECTROPHORESIS; MICROLITHOGRAPHIC ARRAYS; FLAT SURFACE; MACROMOLECULES; MOLECULES; FRICTION; POLYELECTROLYTES; OSCILLATORS; DYNAMICS AB Recent experimental work on DNA separation on surfaces reveals a power law behavior of the mobility with size. We employed a simple model that elucidates the observed power law trend. When the external electric field is barely larger than the critical value required for initiating translational motion, the mobility is approximately inversely proportional to the DNA size. At larger fields, mobility scales as N(-alpha) with 0 10 cd/m(2)), and low roll-off in these devices. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464969] C1 [Chopra, Neetu; Swensen, James S.; Polikarpov, Evgueni; Cosimbescu, Lelia; Padmaperuma, Asanga B.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Chopra, Neetu; So, Franky] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. RP Chopra, N (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM fso@mse.ufl.edu; asanga.padmaperuma@pnl.gov RI Chopra, Neetu/F-3307-2012 OI Chopra, Neetu/0000-0002-0114-532X FU U.S. Department of Energy [M68004043, DE-AC06-76RLO 1830] FX This project was funded by the Solid Sate Lighting Program of the U.S. Department of Energy, within the Building Technologies Program (BT), Award No. M68004043 and managed by the National Energy Technology Laboratory (NETL). Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the U.S. Department of Energy (DOE) under Contract No. DE-AC06-76RLO 1830. NR 30 TC 63 Z9 64 U1 2 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 033304 DI 10.1063/1.3464969 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800086 ER PT J AU Hsu, PC Chu, Y Yi, JM Wang, CL Wu, SR Hwu, Y Margaritondo, G AF Hsu, Pei-Cheng Chu, Yong Yi, Jae-Mock Wang, Cheng-Liang Wu, Syue-Ren Hwu, Y. Margaritondo, G. TI Dynamical growth behavior of copper clusters during electrodeposition SO APPLIED PHYSICS LETTERS LA English DT Article DE copper; electrodeposition; metal clusters; particle size; surface morphology; X-ray microscopy ID SCANNING-TUNNELING-MICROSCOPY; ELECTROCHEMICAL NUCLEATION; BARRIER LAYERS; CU; DEPOSITION; GOLD; ELECTROLYTES; AU(111); AU(100); FILMS AB Ultrahigh resolution full-field transmission x-ray microscopy enabled us to observe detailed phenomena during the potentiostatic copper electrodeposition on polycrystalline gold. We detected two coexisting cluster populations with different sizes. Their growth behaviors are different, with a shape transitions only occurring for large clusters. These differences influence the micromorphology and general properties of the overlayer. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464550] C1 [Hsu, Pei-Cheng; Wang, Cheng-Liang; Wu, Syue-Ren; Hwu, Y.] Acad Sinica, Inst Phys, Taipei 115, Taiwan. [Chu, Yong; Yi, Jae-Mock] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wu, Syue-Ren; Hwu, Y.] Natl Tsing Hua Univ, Dept Engn Sci & Syst, Hsinchu 300, Taiwan. [Hwu, Y.] Natl Ocean Univ, Inst Optoelect Sci, Chilung 202, Taiwan. [Margaritondo, G.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. RP Hwu, Y (reprint author), Acad Sinica, Inst Phys, Taipei 115, Taiwan. EM phhwu@sinica.edu.tw RI Centre d'imagerie Biomedicale, CIBM/B-5740-2012 FU National Science Council; Academia Sinica; National Science and Technology Program for Nanoscience and Nanotechnology (Taiwan); Swiss Fonds National de la Research Scientifique; EPFL Center for Biomedical Imaging (CIBM); U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences [DE-AC0206CH111357] FX This work was supported by the National Science Council, by the Academia Sinica, by the National Science and Technology Program for Nanoscience and Nanotechnology (Taiwan), by the Swiss Fonds National de la Research Scientifique, and by the EPFL Center for Biomedical Imaging (CIBM). The use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences, under Contract No. DE-AC0206CH111357. NR 26 TC 9 Z9 9 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 033101 DI 10.1063/1.3464550 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800067 ER PT J AU Nemes, NM Visani, C Leon, C Garcia-Hernandez, M Simon, F Feher, T Velthuis, SGET Hoffmann, A Santamaria, J AF Nemes, N. M. Visani, C. Leon, C. Garcia-Hernandez, M. Simon, F. Feher, T. Velthuis, S. G. E. te Hoffmann, A. Santamaria, J. TI Magnetic memory based on La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 ferromagnet/superconductor hybrid structures SO APPLIED PHYSICS LETTERS LA English DT Article DE barium compounds; calcium compounds; ferromagnetic materials; high-temperature superconductors; lanthanum compounds; magnetic anisotropy; magnetic storage; magnetoresistance; spin valves; superconducting junction devices; thin films; yttrium compounds ID ENHANCEMENT AB We report a memory concept utilizing ferromagnet/superconductor/ferromagnet La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 thin film hybrid structures. The orientation of the magnetic field with respect to the ferromagnetic easy axis has a strong effect on superconductivity as indicated by a strong variation in the magnetoresistance (MR). MR can be controlled by rotating a small magnetic field applied in the plane of the film in a way that is determined by the in-plane biaxial magnetic anisotropy. The proposed memory device has the advantages of superconducting detection elements (fast response and low dissipation), small (100-150 Oe) writing fields, and resistance read-out without need for applied field. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464960] C1 [Nemes, N. M.; Visani, C.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. [Garcia-Hernandez, M.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, Canto Blanco 28049, Spain. [Simon, F.; Feher, T.] Budapest Univ Technol & Econ, Dept Phys, H-1521 Budapest, Hungary. [Simon, F.; Feher, T.] Hungarian Acad Sci, Condensed Matter Phys Res Grp, H-1521 Budapest, Hungary. [Velthuis, S. G. E. te; Hoffmann, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Nemes, NM (reprint author), Univ Complutense Madrid, Dpto Fis Aplicada 3, GFMC, Campus Moncloa, E-28040 Madrid, Spain. EM jacsan@fis.ucm.es RI te Velthuis, Suzanne/I-6735-2013; Leon, Carlos/A-5587-2008; Garcia-Hernandez, Mar/J-9520-2014; Santamaria, Jacobo/N-8783-2016; Simon, Ferenc/G-7580-2011; Nemes, Norbert Marcel/B-6275-2009; Hoffmann, Axel/A-8152-2009 OI te Velthuis, Suzanne/0000-0002-1023-8384; Leon, Carlos/0000-0002-3262-1843; Garcia-Hernandez, Mar/0000-0002-5987-0647; Santamaria, Jacobo/0000-0003-4594-2686; Simon, Ferenc/0000-0001-9822-4309; Nemes, Norbert Marcel/0000-0002-7856-3642; Hoffmann, Axel/0000-0002-1808-2767 FU U.S.-Spain NSF Materials World Network [709584]; U.S. Department of Energy, Basic Energy Science [DE-AC02-06CH11357, DE-AC02NA25396]; Spanish MICINN [MAT2008-06517, CSD2009-00013]; CAM [S2009/Mat-1756]; OTKA [K68807, PF63954]; Hungarian Academy of Sciences FX We thank A. Goldman for fruitful discussions within the framework of the joint U.S.-Spain NSF Materials World Network Grant No. 709584. Work was supported by the U.S. Department of Energy, Basic Energy Science under Contract Nos. DE-AC02-06CH11357 and DE-AC02NA25396, by Spanish MICINN under Contracts "Ramon y Cajal," Grant Nos. MAT2008-06517 and CONSOLIDER INGENIO 2010 CSD2009-00013 (IMAGINE), by CAM under PHAMA Grant No. S2009/Mat-1756, and by OTKA Grant Nos. K68807 and PF63954 and the "Bolyai" program of the Hungarian Academy of Sciences. NR 19 TC 10 Z9 12 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032501 DI 10.1063/1.3464960 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800057 ER PT J AU Okba, F Cherkashin, N Di, Z Nastasi, M Rossi, F Merabet, A Claverie, A AF Okba, F. Cherkashin, N. Di, Z. Nastasi, M. Rossi, F. Merabet, A. Claverie, A. TI Controlled drive-in and precipitation of hydrogen during plasma hydrogenation of silicon using a thin compressively strained SiGe layer SO APPLIED PHYSICS LETTERS LA English DT Article DE Ge-Si alloys; hydrogenation; microcracks; plasma materials processing; silicon; transmission electron microscopy ID NUCLEATION; PLATELETS; DEFECTS; GROWTH AB We have quantitatively studied by transmission electron microscopy the growth kinetics of platelets formed during the continuous hydrogenation of a Si substrate/SiGe/Si heterostructure. We have evidenced and explained the massive transfer of hydrogen from a population of platelets initially generated in the upper Si layer by plasma hydrogenation towards a population of larger platelets located in the SiGe layer. We demonstrate that this type of process can be used not only to precisely localize the micro-cracks, then the fracture line at a given depth but also to "clean" the top layer from pre-existing defects. (C) 2010 American Institute of Physics. [doi:10.1063/1.3467455] C1 [Okba, F.; Cherkashin, N.; Claverie, A.] CNRS, CEMES, F-31055 Toulouse, France. [Okba, F.; Cherkashin, N.; Claverie, A.] Univ Toulouse, Grp nMat, F-31055 Toulouse, France. [Okba, F.; Merabet, A.] Univ Ferhat Abbas, Fac Sci Ingenieur, Dept Opt & Mecan Precis, Setif 19000, Algeria. [Di, Z.; Nastasi, M.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Rossi, F.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Va, Italy. RP Okba, F (reprint author), CNRS, CEMES, 29 Rue J Marvig, F-31055 Toulouse, France. EM nikolay.cherkashin@cemes.fr OI Rossi, Francois/0000-0003-3090-1398; Cherkashin, Nikolay/0000-0002-0322-0864 FU Department of Energy, Office of Basic Energy Science FX The work at LANL was supported by the Department of Energy, Office of Basic Energy Science. NR 14 TC 8 Z9 8 U1 3 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 031917 DI 10.1063/1.3467455 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800037 ER PT J AU Solis, KJ Martin, JE AF Solis, Kyle J. Martin, James E. TI Isothermal Magnetic Advection: Creating functional fluid flows for heat and mass transfer SO APPLIED PHYSICS LETTERS LA English DT Article DE cooling; magnetic fluids; magnetohydrodynamics; mass transfer; natural convection; suspensions ID FERROFLUIDS AB Natural convection has been of interest for over a century due to its rich nonlinear dynamics and applications to heat transfer. However, convection occurs only when both gravity and a destabilizing thermal gradient exist. We have discovered a unique class of vigorous, emergent fluid flows that have the full functionality of natural convection but can be stimulated regardless of gravity or thermal gradients, simply by subjecting a platelet suspension to certain time-dependent biaxial magnetic fields of modest strength. This enigmatic phenomenon may facilitate cooling in microgravity environments and in other circumstances where convection fails. (C) 2010 American Institute of Physics. [doi:10.1063/1.3462310] C1 [Solis, Kyle J.; Martin, James E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Solis, KJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jmartin@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000]; Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE) FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was supported by the Division of Materials Science, Office of Basic Energy Sciences, U. S. Department of Energy (DOE). The authors wish to thank Vladimir Raksha, Paul Coombs, Tom Markantes, Bill Kittler, and Kees-Jan Delst at JDSU for supplying the magnetic platelets. NR 10 TC 19 Z9 19 U1 0 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 034101 DI 10.1063/1.3462310 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800105 ER PT J AU Taheri, ML McGowan, S Nikolova, L Evans, JE Teslich, N Lu, JP LaGrange, T Rosei, F Siwick, BJ Browning, ND AF Taheri, M. L. McGowan, S. Nikolova, L. Evans, J. E. Teslich, N. Lu, J. P. LaGrange, T. Rosei, F. Siwick, B. J. Browning, N. D. TI In situ laser crystallization of amorphous silicon: Controlled nanosecond studies in the dynamic transmission electron microscope SO APPLIED PHYSICS LETTERS LA English DT Article DE amorphous semiconductors; crystallisation; elemental semiconductors; grain size; nucleation; silicon; transmission electron microscopes ID THIN-FILMS AB We describe an in situ method for studying the influence of deposited laser energy on microstructural evolution during nanosecond laser driven crystallization of amorphous Si. By monitoring microstructural evolution as a function of deposited energy in a dynamic transmission electron microscope (DTEM), information on grain size and defect concentration can be correlated directly with processing conditions. This work demonstrates that DTEM studies are a promising approach for obtaining fundamental information on nucleation and growth processes that have technological importance for the development of thin film transistors. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3422473] C1 [Taheri, M. L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [McGowan, S.; Siwick, B. J.] McGill Univ, Ctr Phys Mat, Dept Phys, Montreal, PQ H3A 2T8, Canada. [McGowan, S.; Siwick, B. J.] McGill Univ, Ctr Phys Mat, Dept Chem, Montreal, PQ H3A 2T8, Canada. [Nikolova, L.; Rosei, F.] Inst Natl Rech Sci Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada. [Evans, J. E.; Teslich, N.; LaGrange, T.; Browning, N. D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Evans, J. E.; Browning, N. D.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Lu, J. P.] Palo Alto Res Ctr, Palo Alto, CA 94394 USA. [Browning, N. D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu RI Nikolova, Liliya/F-3932-2012; Taheri, Mitra/F-1321-2011; OI Browning, Nigel/0000-0003-0491-251X FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC52-07NA27344]; U.S. Department of Energy; NSERC; Canada Research Chairs; NSERC (Canada); FQRNT; MDEIE (Quebec) FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. The authors thank PARC for generous provision of wafers, and Rick Gross of LLNL for help with pre-FIB sample preparation. L. N. acknowledges a personal fellowship (CGS-D) from NSERC. F. R. and B.J.S. are grateful to the Canada Research Chairs program for partial salary support, and are funded by NSERC (Canada), FQRNT, and MDEIE (Quebec). NR 14 TC 15 Z9 16 U1 2 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032102 DI 10.1063/1.3422473 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800041 ER PT J AU Zhang, Y Kramer, MJ Rong, CB Liu, JP AF Zhang, Ying Kramer, M. J. Rong, Chuanbing Liu, J. Ping TI Microstructure and intergranular diffusion in exchange-coupled Sm-Co/Fe nanocomposites SO APPLIED PHYSICS LETTERS LA English DT Article DE annealing; cobalt alloys; diffusion; electron energy loss spectra; exchange interactions (electron); iron alloys; nanocomposites; nanomagnetics; samarium alloys; transmission electron microscopy ID PERMANENT-MAGNETS; ENERGY PRODUCT; CO AB We demonstrate homogenous distribution of bcc FeCo soft phase with grain size of 20-30 nm in the annealed Sm-Co/Fe bulk samples by energy filtered transmission electron microscopy (EFTEM). Quantitative Co/Fe interdiffusion measured using both energy dispersive spectroscopy (EDS) and parallel electron energy loss spectroscopy (PEELS) shows Fe60 +/- 5%Co40 +/- 5% for the magnetically soft bcc phase and Sm-2(Co0.82Fe0.18)(7) and Sm(Co0.80Fe0.20)(5) respectively for the magnetically hard phases in these two alloy systems after optimal annealing. The graded interface develops in both samples due to the Co/Fe interchange between the hard and soft phases and the bcc soft phase was determined. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3467202] C1 [Zhang, Ying; Kramer, M. J.] US DOE, Ames Lab, Mat Sci & Engn, Ames, IA 50011 USA. [Zhang, Ying; Rong, Chuanbing; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. RP Zhang, Y (reprint author), US DOE, Ames Lab, Mat Sci & Engn, Ames, IA 50011 USA. EM mjkramer@ameslab.gov FU ONR/MURI [N00014-05-1-0497]; DARPA/ARO [W911NF-08-1-0249]; U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-07CH11358] FX This work was supported by ONR/MURI Project under Grant No. N00014-05-1-0497 and DARPA/ARO NMP program under Grant No. W911NF-08-1-0249. Work at the Ames laboratory was supported by the U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-07CH11358. NR 16 TC 19 Z9 20 U1 5 U2 27 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 19 PY 2010 VL 97 IS 3 AR 032506 DI 10.1063/1.3467202 PG 3 WC Physics, Applied SC Physics GA 630EO UT WOS:000280255800062 ER PT J AU Goff, GS Cisneros, MR Kluk, C Williamson, K Scott, B Reilly, S Runde, W AF Goff, George S. Cisneros, Michael R. Kluk, Chandra Williamson, Kevin Scott, Brian Reilly, Sean Runde, Wolfgang TI Synthesis and Structural Characterization of Molecular Dy(III) and Er(III) Tetra-Carbonates SO INORGANIC CHEMISTRY LA English DT Article ID RARE-EARTH CARBONATES; CRYSTAL-STRUCTURE; LANTHANIDE TRIHYDROXIDES; AQUEOUS-SOLUTIONS; COMPLEXES; ELEMENTS; SPECTRA; THORIUM; SODIUM; CERIUM AB Single crystal structures of lanthanide carbonate and hydroxy-carbonate compounds have been previously reported in the literature, with the majority of these compounds being extended one- to three-dimensional compounds. Very few lanthanide compounds have been isolated that contain molecular moieties, and none have been reported for either erbium or dysprosium. Single crystals of the tetra-carbonate complexes, [C(NH(2))(3)](5)[Er(CO(3))(4)] center dot 11H(2)O (I) and [C(NH(2))(3)](4)[DY(CO(3))(4)(H(2)O)](H(3)O) center dot 13H(2)O (II), were isolated from concentrated guanidinium carbonate solutions and characterized by single crystal X-ray diffraction studies. Compounds I and II are the first reported molecular carbonate structures for Er and Dy to be characterized via single crystal X-ray diffraction studies. Crystallographic data for I: monoclinic, space group P21/n, a= 8.816.0(6) angstrom, b= 21.0121(14) angstrom, c= 19.6496(14) angstrom, Z = 4. Data for II: tetragonal, space group P4/n, a = b = 15.3199(11) angstrom, c = 7.5129(11) angstrom, Z= 2. C1 [Goff, George S.; Cisneros, Michael R.; Kluk, Chandra; Williamson, Kevin; Reilly, Sean] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Scott, Brian] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Runde, Wolfgang] Los Alamos Natl Lab, Sci Program Off, Los Alamos, NM 87545 USA. RP Goff, GS (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM georgeg@lanl.gov; runde@lanl.gov RI Scott, Brian/D-8995-2017 OI Scott, Brian/0000-0003-0468-5396 FU Los Alamos Laboratory Directed Research and Development Program; U.S. Department of Energy; G. T. Seaborg Institute for Transactinium Science at Los Alamos National Laboratory FX We would like to thank Dr. F. Caporuscio for many helpful discussions. This research was funded by the Los Alamos Laboratory Directed Research and Development Program, the U.S. Department of Energy Fuel Cycle R&D Program, and the G. T. Seaborg Institute for Transactinium Science at Los Alamos National Laboratory. NR 52 TC 10 Z9 10 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6558 EP 6564 DI 10.1021/ic1004598 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200042 PM 20568745 ER PT J AU Poineau, F Forster, PM Todorova, TK Gagliardi, L Sattelberger, AP Czerwinski, KR AF Poineau, Frederic Forster, Paul M. Todorova, Tanya K. Gagliardi, Laura Sattelberger, Alfred P. Czerwinski, Kenneth R. TI Structural, Spectroscopic, and Multiconfigurational Quantum Chemical Investigations of the Electron-Rich Metal Metal Triple-Bonded Tc2X4(PMe3)(4) (X = Cl, Br) Complexes SO INORGANIC CHEMISTRY LA English DT Article ID 2ND-ORDER PERTURBATION-THEORY; TERTIARY PHOSPHINES; TRIMETHYLPHOSPHINE COMPLEXES; CRYSTAL-STRUCTURES; TRANSITION-METALS; DIRHENIUM CORE; LIGANDS; PHOSPHORUS; TECHNETIUM; CHEMISTRY AB The compounds Tc2Cl4(PMe3)(4) and Tc2Br4(PMe3)(4) were formed from the reaction between (n-Bu4N)(2)Tc2X8 (X = Cl, Br) and trimethylphosphine. The Tc(II) dinuclear species were characterized by single-crystal XRD, UV-visible spectroscopy, and cyclic voltammetry techniques, and the results are compared to those obtained from density functional theory and multiconfigurational (CASSCF/CASPT2) quantum chemical studies. The compound Tc2Cl4-(PMe3)(4) crystallizes in the monoclinic space group C2/c [a = 17.9995(9) angstrom, b = 9.1821(5) angstrom, c = 17.0090(9) angstrom, beta = 115.4530(10)degrees] and is isostructural to M2Cl4(PMe3)(4) (M = Re, Mo, W) and to Tc2Br4(PMe3)(4). The metal-metal distance (2.1318(2) angstrom) is similar to the one found in Tc2Br4(PMe3)(4) (2.1316(5) angstrom). The calculated molecular structures of the ground states are in excellent agreement with the structures determined experimentally. Calculations of effective bond orders for Tc2X82- and Tc2X4(PMe3)(4) (X = Cl, Br) indicate stronger pi bonds in the Tc-2(4+) core than in Tc-2(6+) core. The electronic spectra were recorded in benzene and show a series of low intensity bands in the range 10 000-26 000 cm(-1). Assignment of the bands as well as computing their excitation energies and intensities were performed at both TD-DFT and CASSCF/CASPT2 levels of theory. Calculations predict that the lowest energy band corresponds to the delta* -> sigma* transition, the difference between calculated and experimental values being 228 cm(-1) for X = Cl and 866 cm(-1) for X = Br. The next bands are attributed to delta* -> pi*, delta -> sigma*, and delta -> pi* transitions. The cyclic voltammograms exhibit two reversible waves and indicate that Tc2Br4(PMe3)(4) exhibits more positive oxidation potentials than Tc2Cl4(PMe3)(4). This phenomenon is discussed and ascribed to stronger metal (d) to halide (d) back bonding in the bromo complex. Further analysis indicates that Tc(II) dinuclear species containing pi-acidic phosphines are more difficult to oxidize, and a correlation between oxidation potential and phosphine acidity was established. C1 [Poineau, Frederic; Forster, Paul M.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Todorova, Tanya K.; Gagliardi, Laura] Univ Geneva, Dept Phys Chem, CH-1211 Geneva, Switzerland. [Gagliardi, Laura] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Gagliardi, Laura] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Energy Engn & Syst Anal Directorate, Argonne, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu; asattelberger@anl.gov RI Todorova, Tanya/M-1849-2013; OI Todorova, Tanya/0000-0002-7731-6498; Forster, Paul/0000-0003-3319-4238 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001798, DE-AC02-06CH11357]; U.S. Department of Energy, Office of Nuclear Energy [DE-FC07-061D141781]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC002183] FX The authors thank Mr. Tom O'Dou for outstanding health physics support and Dr. Gordon Jarvinen (Los Alamos) for a generous loan of ammonium pertechnetate. Funding for this research was provided by a subcontract through the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0001798, and U.S. Department of Energy, Office of Nuclear Energy, under Contract No. DE-FC07-061D141781. Use of the Advanced Photon Source at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Funding for the computation part was provided by the Director, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-SC002183. NR 47 TC 16 Z9 16 U1 1 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6646 EP 6654 DI 10.1021/ic100641j PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200051 PM 20557033 ER PT J AU Szigethy, G Raymond, KN AF Szigethy, Geza Raymond, Kenneth N. TI Influence of Linker Geometry on Uranyl Complexation by Rigidly Linked Bis(3-hydroxy-N-methyl-pyridin-2-one) SO INORGANIC CHEMISTRY LA English DT Article ID STEREOGNOSTIC COORDINATION CHEMISTRY; CATION-CATION COMPLEXES; CRYSTAL-STRUCTURE; LIGANDS; DESIGN; ION; CHELATORS; NITRATE AB A series of bis(3-hydroxy-N-methyl-pyridin-2-one) ligands was synthesized, and their respective uranyl complexes were characterized by single crystal X-ray diffraction analyses. These structures were inspected for high-energy conformations and evaluated using a series of metrics to measure co-planarity of chelating moieties with each other and the uranyl coordination plane, as well as to measure coordinative crowding about the uranyl dication. Both very short (ethyl, 3,4thiophene and o-phenylene) and very long (alpha,alpha'-m-xylene and 1,8-fluorene) linkers provide optimal ligand geometries about the uranyl cation, resulting in planar, unstrained molecular arrangements. The planarity of the rigid linkers also suggests there is a degree of pre-organization for a planar coordination mode that is ideal for uranyl-selective ligand design. Comparison of intramolecular N(amide)-O(phenolate) distances and (1)H NMR chemical shifts of amide protons supports eadier results that short linkers provide the optimal geometry for intramolecular hydrogen bonding. C1 [Raymond, Kenneth N.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Glenn T Seaborg Ctr, Berkeley, CA 94720 USA. RP Raymond, KN (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU Office of Science, Office of Basic Energy Sciences (OBES), and the OBES Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CE111231] FX We would like to thank Dr. Fred Hollander at the University of California, Berkeley, and Dr. Simon Teat at the Advanced Light Source, Station 11.3.1 at Lawrence Berkeley National Laboratory for assistance with crystal structure collection and refinement. We also thank Dr. David Shuh at LBNL for assistance with handling radioactive materials. This research and the ALS are supported by the Director, Office of Science, Office of Basic Energy Sciences (OBES), and the OBES Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CE111231. NR 32 TC 17 Z9 17 U1 5 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 J9 INORG CHEM JI Inorg. Chem. PD JUL 19 PY 2010 VL 49 IS 14 BP 6755 EP 6765 DI 10.1021/ic1007878 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 621XW UT WOS:000279621200063 PM 20575583 ER PT J AU Jensen, O Hagen, G Papenbrock, T Dean, DJ Vaagen, JS AF Jensen, O. Hagen, G. Papenbrock, T. Dean, D. J. Vaagen, J. S. TI Computation of spectroscopic factors with the coupled-cluster method SO PHYSICAL REVIEW C LA English DT Article ID NUCLEON KNOCK-OUT; LIGHT-NUCLEI; SYSTEMS; O-16; MODEL AB We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of the doubly magic nucleus with mass number A and the odd-mass neighbor with mass A - 1. As a proof-of-principle calculation, we consider O-16 as well as the odd neighbors O-15 and N-15 and compute the spectroscopic factor for nucleon removal from O-16. We employ a renormalized low-momentum interaction of the Vlow-k type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study the sensitivity of our results by variation of the momentum cutoff and then discuss the treatment of the center of mass. C1 [Jensen, O.; Vaagen, J. S.] Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. [Hagen, G.; Papenbrock, T.; Dean, D. J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Jensen, O (reprint author), Univ Bergen, Dept Phys & Technol, N-5007 Bergen, Norway. EM oyvind.jensen@uib.no RI Hagen, Gaute/I-6146-2012; OI Hagen, Gaute/0000-0001-6019-1687; Dean, David/0000-0002-5688-703X; Papenbrock, Thomas/0000-0001-8733-2849 FU Norwegian Research Council [NFR 171247/V30]; US Department of Energy (University of Tennessee) [DE-FC02-96ER40963] FX We acknowledge discussions with C. Barbieri, E. Bergli, R. J. Furnstahl, and M. Hjorth-Jensen. O.J. thanks the University of Oslo and Oak Ridge National Laboratory (ORNL) for hospitality. This research was partly funded by Norwegian Research Council Project NFR 171247/V30 and by the US Department of Energy under Grant Nos. DE-FC02-96ER40963 (University of Tennessee) and DE-FC02-07ER41457 (SciDAC UNEDF). This research used resources of the National Center for Computational Sciences at ORNL. NR 48 TC 17 Z9 17 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JUL 19 PY 2010 VL 82 IS 1 AR 014310 DI 10.1103/PhysRevC.82.014310 PG 8 WC Physics, Nuclear SC Physics GA 627UA UT WOS:000280067200002 ER PT J AU Lavelle, CM Liu, CY Fox, W Manus, G McChesney, PM Salvat, DJ Shin, Y Makela, M Morris, C Saunders, A Couture, A Young, AR AF Lavelle, C. M. Liu, C. -Y. Fox, W. Manus, G. McChesney, P. M. Salvat, D. J. Shin, Y. Makela, M. Morris, C. Saunders, A. Couture, A. Young, A. R. TI Ultracold-neutron production in a pulsed-neutron beam line SO PHYSICAL REVIEW C LA English DT Article ID SOLID-DEUTERIUM SOURCE; COLD NEUTRONS; OXYGEN; MODERATOR; EXTRACTION; SCATTERING; DYNAMICS AB We present the results of an ultracold neutron (UCN) production experiment in a pulsed-neutron beam line at the Los Alamos Neutron Scattering Center. The experimental apparatus allows for a comprehensive set of measurements of UCN production as a function of target temperature, incident neutron energy, target volume, and applied magnetic field. However, the low counting statistics of the UCN signal can be overwhelmed by the large background associated with the scattering of the primary cold-neutron flux that is required for UCN production. We have developed a background subtraction technique that takes advantage of the very different time-of-flight profiles between the UCN and the cold neutrons, in the pulsed beam. Using the unique timing structure, we can reliably extract the UCN signal. Solid ortho-(2)H(2) is used to calibrate UCN transmission through the apparatus, which is designed primarily for studies of UCN production in solid O(2). In addition to setting the overall detection efficiency in the apparatus, UCN production data using solid (2)H(2) suggest that the UCN upscattering cross section is smaller than previous estimates, indicating the deficiency of the incoherent approximation widely used to estimate inelastic cross sections in the thermal and cold regimes. C1 [Lavelle, C. M.; Liu, C. -Y.; Fox, W.; Manus, G.; McChesney, P. M.; Salvat, D. J.; Shin, Y.] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. [Young, A. R.] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Couture, A.] Los Alamos Natl Lab, LANSCE Div, Los Alamos, NM 87544 USA. [Makela, M.; Morris, C.; Saunders, A.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87544 USA. RP Lavelle, CM (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47408 USA. EM CL21@indiana.edu OI Lavelle, Christopher/0000-0001-8802-4434; Makela, Mark/0000-0003-0592-3683; Morris, Christopher/0000-0003-2141-0255 FU NSF [0457219, 0758018] FX We thank Phil Childress, Jim Bowers, Darren Nevitt, and Todd Sampson in the Indiana University physics shop for their rapid, high-quality fabrication of equipment used in this experiment. We thank Bill Lozowski for his effort in preparing the nickel-coated guides. We are also grateful for the assistance provided by the Lujan Center and LANSCE. We acknowledge Shah Vallilopy for performance of the VITESS simulation of guide divergence. This work was supported by NSF Grants 0457219 and 0758018. NR 45 TC 3 Z9 3 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 19 PY 2010 VL 82 IS 1 AR 015502 DI 10.1103/PhysRevC.82.015502 PG 14 WC Physics, Nuclear SC Physics GA 627UA UT WOS:000280067200006 ER PT J AU Agashe, K Kim, D Toharia, M Walker, DGE AF Agashe, Kaustubh Kim, Doojin Toharia, Manuel Walker, Devin G. E. TI Distinguishing dark matter stabilization symmetries using multiple kinematic edges and cusps SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; MEASURING MASSES; PARTICLE AB We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the commonly used parity (Z(2)) symmetry. We therefore examine the potential of the colliders to distinguish models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We often take the latter to be a Z(3) symmetry for illustration. We focus on signatures where a single particle, charged under the DM stabilization symmetry decays into the DM and standard model (SM) particles. Such a Z(3)-charged mother particle can decay into one or two DM particles along with the same SM particles. This can be contrasted with the decay of a Z(2)-charged mother particle, where only one DM particle appears. Thus, if the intermediate particles in these decay chains are off-shell, then the reconstructed invariant mass of the SM particles exhibits two kinematic edges for the Z(3) case but only one for the Z(2) case. For the case of on-shell intermediate particles, distinguishing the two symmetries requires more than the kinematic edges. In this case, we note that certain decay chain topologies of the mother particle which are present for the Z(3) case (but absent for the Z(2) case) generate a cusp in the invariant mass distribution of the SM particles. We demonstrate that this cusp is generally invariant of the various spin configurations. We further apply these techniques within the context of explicit models. C1 [Agashe, Kaustubh; Kim, Doojin; Toharia, Manuel] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Walker, Devin G. E.] Harvard Univ, Ctr Fundamental Laws Nat, Jefferson Phys Lab, Cambridge, MA 02138 USA. RP Agashe, K (reprint author), Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. FU NSF [PHY-0652363] FX We would like to thank I. Hinchliffe, A. Katz, G. Servant, M. D. Shapiro, R. Sundrum and B. Tweedie for valuable discussions. K. A. was supported in part by NSF Grant No. PHY-0652363. NR 43 TC 34 Z9 34 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 19 PY 2010 VL 82 IS 1 AR 015007 DI 10.1103/PhysRevD.82.015007 PG 23 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 627UD UT WOS:000280067500003 ER PT J AU Hao, Y Ptitsyn, V AF Hao, Y. Ptitsyn, V. TI Effect of electron disruption in the energy recovery linac based electron ion collider SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB Beam-beam effects present one of the major factors limiting the luminosity of colliders. In the energy recovery linac (ERL) based eRHIC design, the electron beam, accelerated in a superconducting ERL, collides with the proton beam circulating in the RHIC ring. During such collisions the electron beam undergoes a very strong beam-beam interaction with the protons, which warrants careful examination. We evaluated transverse disruption and linear mismatch effects in the electron beam caused by collisions and considered several countermeasures to mitigate the emittance growth from these interactions. The minimum required aperture of transport lines is calculated that should allow the transport of the electron beam during the deceleration process. C1 [Hao, Y.; Ptitsyn, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Hao, Y (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Hao, Yue/D-7153-2013 OI Hao, Yue/0000-0001-8131-7509 FU U.S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank Vladimir Litvinenko, Eduard Pozdeyev, and Yun Luo for their help in this work and constructive suggestions. This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 6 TC 3 Z9 3 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 19 PY 2010 VL 13 IS 7 AR 071003 DI 10.1103/PhysRevSTAB.13.071003 PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 627UP UT WOS:000280068800001 ER PT J AU McGann, M Hudson, SR Dewar, RL von Nessi, G AF McGann, M. Hudson, S. R. Dewar, R. L. von Nessi, G. TI Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity SO PHYSICS LETTERS A LA English DT Article DE Hamiltonian dynamics; Invariant tori; Pressure discontinuities; Plasma ID RESIDUE CRITERION; EQUILIBRIA; MAPS; PRINCIPLES; EXISTENCE AB The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational. (C) 2010 Elsevier B.V. All rights reserved. C1 [McGann, M.; Dewar, R. L.; von Nessi, G.] Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, Canberra, ACT 0200, Australia. [Hudson, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP McGann, M (reprint author), Australian Natl Univ, Plasma Res Lab, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia. EM mathew.mcgann@anu.edu.au RI Hudson, Stuart/H-7186-2013; Dewar, Robert/B-1300-2008 OI Hudson, Stuart/0000-0003-1530-2733; Dewar, Robert/0000-0002-9518-7087 FU Australian Research Council; US Department of Energy [DE-AC02-76CH03073, DE-FG02-99ER54546] FX This study was based on work done during a visit to the Princeton Plasma Physics Laboratory (PPPL), so M.M. and S.R.H. would like to thank the Australian National University (ANU) and PPPL for supporting the visit. This work was supported by the Australian Research Council and the US Department of Energy Contract No. DE-AC02-76CH03073 and Grant No. DE-FG02-99ER54546. The authors thank Robert MacKay for bringing the Birkhoff theorem to their attention. NR 25 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 19 PY 2010 VL 374 IS 33 BP 3308 EP 3314 DI 10.1016/j.physleta.2010.06.014 PG 7 WC Physics, Multidisciplinary SC Physics GA 630HC UT WOS:000280262800008 ER PT J AU Cao, QH Low, I Shaughnessy, G AF Cao, Qing-Hong Low, Ian Shaughnessy, Gabe TI From PAMELA to CDMS and back SO PHYSICS LETTERS B LA English DT Article DE Dark matter ID DARK-MATTER; ELECTRONS; ENERGIES AB We study implications of the recent results from the CDMS Collaboration on astrophysical probes of dark matter. By crossing symmetry an elastic scattering cross section with the nucleon implies annihilation of dark matter into hadrons inside the halo, resulting in an anti-proton flux that could be constrained by data from the PAMELA Collaboration if one includes a large boost factor necessary to explain the PAMELA excess in the positron fraction. As an illustration, we present a model-independent analysis for a fermionic dark matter and study the upper bound on the boost factor using the PAMELA anti-proton flux. Published by Elsevier B.V. C1 [Cao, Qing-Hong] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cao, Qing-Hong; Low, Ian; Shaughnessy, Gabe] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Low, Ian; Shaughnessy, Gabe] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Cao, QH (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM caoq@hep.anl.gov RI Cao, Qing-Hong/D-5631-2009 FU US Department of Energy [DE-AC02-06CH11357, DE-FG02-91ER40684, DE-FG02-90ER40560]; Argonne National Laboratory; University of Chicago Joint Theory Institute (JTI) [03921-07-137] FX This work was supported in part by the US Department of Energy under grant numbers DE-AC02-06CH11357, and DE-FG02-91ER40684. Q.H.C. is supported in part by the Argonne National Laboratory and University of Chicago Joint Theory Institute (JTI) Grant 03921-07-137, and by the US Department of Energy under Grants Nos. DE-AC02-06CH11357 and DE-FG02-90ER40560. We thank H. Zhang for collaboration in the early stages of this work. We also wish to thank the organizers and the participants at the Chicagoland Theory Hobnob for a lively atmosphere where this work was initiated. NR 37 TC 19 Z9 19 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 19 PY 2010 VL 691 IS 2 BP 73 EP 76 DI 10.1016/j.physletb.2010.06.023 PG 4 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 627VD UT WOS:000280070800001 ER PT J AU Fischer, NO Blanchette, CD Segelke, BW Corzett, M Chromy, BA Kuhn, EA Bench, G Hoeprich, PD AF Fischer, Nicholas O. Blanchette, Craig D. Segelke, Brent W. Corzett, Michele Chromy, Brett A. Kuhn, Edward A. Bench, Graham Hoeprich, Paul D. TI Isolation, Characterization, and Stability of Discretely-Sized Nanolipoprotein Particles Assembled with Apolipophorin-III SO PLOS ONE LA English DT Article ID APOLIPOPROTEIN-A-I; HIGH-DENSITY-LIPOPROTEINS; PHOSPHOLIPID-BILAYER NANODISCS; MEMBRANE-PROTEINS; MOLECULAR-DYNAMICS; LIPID-BILAYERS; AMPHOTERICIN-B; BOMBYX-MORI; BINDING; MORPHOLOGY AB Background: Nanolipoprotein particles (NLPs) are discoidal, nanometer-sized particles comprised of self-assembled phospholipid membranes and apolipoproteins. NLPs assembled with human apolipoproteins have been used for myriad biotechnology applications, including membrane protein solubilization, drug delivery, and diagnostic imaging. To expand the repertoire of lipoproteins for these applications, insect apolipophorin-III (apoLp-III) was evaluated for the ability to form discretely-sized, homogeneous, and stable NLPs. Methodology: Four NLP populations distinct with regards to particle diameters (ranging in size from 10 nm to >25 nm) and lipid-to-apoLp-III ratios were readily isolated to high purity by size exclusion chromatography. Remodeling of the purified NLP species over time at 4 degrees C was monitored by native gel electrophoresis, size exclusion chromatography, and atomic force microscopy. Purified 20 nm NLPs displayed no remodeling and remained stable for over 1 year. Purified NLPs with 10 nm and 15 nm diameters ultimately remodeled into 20 nm NLPs over a period of months. Intra-particle chemical cross-linking of apoLp-III stabilized NLPs of all sizes. Conclusions: ApoLp-III-based NLPs can be readily prepared, purified, characterized, and stabilized, suggesting their utility for biotechnological applications. C1 [Fischer, Nicholas O.; Blanchette, Craig D.; Segelke, Brent W.; Corzett, Michele; Chromy, Brett A.; Kuhn, Edward A.; Bench, Graham; Hoeprich, Paul D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Fischer, NO (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM hoeprich2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [LLNL-JRNL-427664, DE-AC52-07NA27344, LLNL-JRNL-420683]; Lawrence Livermore National Laboratory [06-SI-003, 09-LW-077] FX The authors thank Dr. Robert Ryan for providing reagents. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL-JRNL-427664) under Contract DE-AC52-07NA27344.; This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL-JRNL-420683) under Contract DE-AC52-07NA27344 with support from Lawrence Livermore National Laboratory (LDRD, 06-SI-003 and 09-LW-077). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 8 Z9 8 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 19 PY 2010 VL 5 IS 7 AR e11643 DI 10.1371/journal.pone.0011643 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 627TK UT WOS:000280065600009 PM 20657844 ER PT J AU Chiu, JC Huang, CH Marshak, A Slutsker, I Giles, DM Holben, BN Knyazikhin, Y Wiscombe, WJ AF Chiu, J. Christine Huang, Chiung-Huei Marshak, Alexander Slutsker, Ilya Giles, David M. Holben, Brent N. Knyazikhin, Yuri Wiscombe, Warren J. TI Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID SOLAR RADIOMETRIC MEASUREMENTS; LIQUID WATER PATH; RADIATIVE-TRANSFER; LAND PRODUCTS; VEGETATION; REMOTE; ALGORITHM; THICKNESS; ALBEDOS; SNOW AB Cloud optical depth is one of the most poorly observed climate variables. The new "cloud mode" capability in the Aerosol Robotic Network (AERONET) will inexpensively yet dramatically increase cloud optical depth observations in both number and accuracy. Cloud mode optical depth retrievals from AERONET were evaluated at the Atmospheric Radiation Measurement program's Oklahoma site in sky conditions ranging from broken clouds to overcast. For overcast cases, the 1.5 min average AERONET cloud mode optical depths agreed to within 15% of those from a standard ground-based flux method. For broken cloud cases, AERONET retrievals also captured rapid variations detected by the microwave radiometer. For 3 year climatology derived from all nonprecipitating clouds, AERONET monthly mean cloud optical depths are generally larger than cloud radar retrievals because of the current cloud mode observation strategy that is biased toward measurements of optically thick clouds. This study has demonstrated a new way to enhance the existing AERONET infrastructure to observe cloud optical properties on a global scale. C1 [Chiu, J. Christine] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Huang, Chiung-Huei] Sci Syst & Applicat Inc, Lanham, MD 20706 USA. [Marshak, Alexander; Holben, Brent N.; Wiscombe, Warren J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20770 USA. [Slutsker, Ilya; Giles, David M.] Sigma Space Corp, Lanham, MD USA. [Knyazikhin, Yuri] Boston Univ, Boston, MA 02215 USA. [Wiscombe, Warren J.] Brookhaven Natl Lab, New York, NY USA. RP Chiu, JC (reprint author), Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. EM christine.chiu@nasa.gov RI Wiscombe, Warren/D-4665-2012; Chiu, Christine/E-5649-2013; Marshak, Alexander/D-5671-2012 OI Wiscombe, Warren/0000-0001-6844-9849; Chiu, Christine/0000-0002-8951-6913; FU Office of Science (BER, US Department of Energy, Interagency agreement) [DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564] FX This research was supported by the Office of Science (BER, US Department of Energy, Interagency agreement DE-AI02-08ER64562, DE-FG02-08ER64563, DE-FG02-08ER54564) as part of the ARM program. We also thank the AERONET team for providing instrument calibration, deployment, and data processing. NR 38 TC 21 Z9 21 U1 0 U2 13 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD JUL 17 PY 2010 VL 115 AR D14202 DI 10.1029/2009JD013121 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 627NU UT WOS:000280047300003 ER PT J AU Friedrich, A Winkler, B Bayarjargal, L Arellano, EAJ Morgenroth, W Biehler, J Schroder, F Yan, JY Clark, SM AF Friedrich, Alexandra Winkler, Bjoern Bayarjargal, Lkhamsuren Juarez Arellano, Erick A. Morgenroth, Wolfgang Biehler, Jasmin Schroeder, Florian Yan, Jinyuan Clark, Simon M. TI In situ observation of the reaction of tantalum with nitrogen in a laser heated diamond anvil cell SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Tantalum nitride; Laser heating; Diamond anvil cell; High pressure; High temperature; Compressibility ID CRYSTAL-STRUCTURE; HIGH-PRESSURE; NITRIDE; STATE; TEMPERATURE; STABILITY; EQUATION; CASTEP; TA3N5 AB Tantalum nitrides were formed by reaction of the elements at pressures between 9(1) and 12.7(5) GPa and temperatures >1600-2000K in the laser-heated diamond anvil cell. The incorporation of small amount of nitrogen in the tantalum structure was identified as the first reaction product on weak laser irradiation. Subsequent laser heating led to the formation of hexagonal beta-Ta(2)N and orthorhombic eta-Ta(2)N(3), which was the stable phase at pressures up to 27 GPa and high temperatures. No evidence was found for the presence of epsilon-TaN, upsilon-TaN, delta-TaN, Ta(3)N(5)-I or Ta(3)N(5)-II, which was predicted to be the stable phase at P>17 GPa and T = 2800 K, at the P, T-conditions of this experiment. The bulk modulus of eta-Ta(2)N(3) was determined to be B(0) = 319(6) GPa from a 2nd order Birch-Murnaghan equation of state fit to the experimental data, while quantum mechanical calculations using the density functional theory gave a bulk modulus of B(0) = 348.0(9) GPa for a 2nd-order fit or B(0) = 339(1) GPa and B' = 4.67(9) for a 3rd-order fit. The values show the large incompressibility of this high-pressure phase. From the DFT data the structural compression mechanism could be determined. (C) 2010 Elsevier B.V. All rights reserved. C1 [Friedrich, Alexandra; Winkler, Bjoern; Bayarjargal, Lkhamsuren; Morgenroth, Wolfgang; Biehler, Jasmin; Schroeder, Florian] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Juarez Arellano, Erick A.] Univ Papaloapan, Tuxtepec 68301, Mexico. [Yan, Jinyuan; Clark, Simon M.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Friedrich, A (reprint author), Goethe Univ Frankfurt, Inst Geowissensch, Altenhoferallee 1, D-60438 Frankfurt, Germany. EM friedrich@kristall.uni-frankfurt.de RI Schroder, Florian/D-5872-2012; Clark, Simon/B-2041-2013; OI Juarez-Arellano, Erick/0000-0003-4844-8317; Clark, Simon/0000-0002-7488-3438; Morgenroth, Wolfgang/0000-0001-8921-0052 FU Deutsche Forschungsgemeinschaft [WI-1232/25-1, WI-1232/26-1, FR2491/2-1, DFG-SPP 1236]; BMBF [05KS7RF1]; CNV-foundation; Goethe-university; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; COMPRES; Consortium for Materials Properties Research in Earth Sciences under NSF [EAR 06-49658]; Vereinigung der Freunde und Forderer der Goethe-Universitat FX This research was supported by Deutsche Forschungsgemeinschaft (projects WI-1232/25-1, WI-1232/26-1, FR2491/2-1) in the framework of the DFG-SPP 1236, and by the BMBF (project 05KS7RF1). AF thanks the CNV-foundation and the FOKUS program of the Goethe-university for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research was partially supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 06-49658, by the Goethe-university Frankfurt, and by the Vereinigung der Freunde und Forderer der Goethe-Universitat. NR 50 TC 23 Z9 23 U1 3 U2 28 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 J9 J ALLOY COMPD JI J. Alloy. Compd. PD JUL 16 PY 2010 VL 502 IS 1 BP 5 EP 12 DI 10.1016/j.jallcom.2010.04.113 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA 627TT UT WOS:000280066500006 ER PT J AU Porubsky, PR Battaile, KP Scott, EE AF Porubsky, Patrick R. Battaile, Kevin P. Scott, Emily E. TI Human Cytochrome P450 2E1 Structures with Fatty Acid Analogs Reveal a Previously Unobserved Binding Mode SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID CHLORZOXAZONE HYDROXYLATION; MACROMOLECULAR STRUCTURES; OMEGA-HYDROXYLATION; P450 2E1; PROTEIN; SUBSTRATE; INHIBITORS; MECHANISM; CAVITIES; INSIGHTS AB Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9-C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with omega-imidazolyl-octanoic fatty acid, omega-imidazolyl-decanoic fatty acid, and omega-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the omega-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe(298) side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B' helices at successive distances from the active site. C1 [Porubsky, Patrick R.; Scott, Emily E.] Univ Kansas, Dept Med Chem, Lawrence, KS 66045 USA. [Battaile, Kevin P.] Argonne Natl Lab, Adv Photon Source, Ind Macromol Crystallog Assoc Collaborat Access T, Argonne, IL 60439 USA. RP Scott, EE (reprint author), 1251 Wescoe Hall Dr, Lawrence, KS 66045 USA. EM eescott@ku.edu OI Battaile, Kevin/0000-0003-0833-3259 FU National Institutes of Health [GM076343, RR017708]; Department of Energy Office of Biological and Environmental Research; National Institutes of Health National Center for Research Resources Biomedical Technology Program; National Institute of General Medical Sciences; Center for Advanced Radiation Sources at the University of Chicago; Office of Basic Energy Sciences of the United States Department of Energy Office of Science [W-31-109-Eng-38] FX This work was supported, in whole or in part, by National Institutes of Health Grant GM076343 (to E.E.S.).; Thanks are due to Jennifer Laurence for critical suggestions regarding protein stabilization, to Robert Hanzlik who provided initial samples of the imidazole ligands, and to group members Melanie Blevins and Andria Skinner who attempted to make the unstable CYP2E1 mutant proteins. Crystals were grown using the facilities of the Protein Structure Laboratory core facility at the University of Kansas (supported by National Institutes of Health Grant RR017708). Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the United States Department of Energy Office of Basic Energy Sciences. The Stanford Synchrotron Radiation Lightsource Structural Molecular Biology Program is supported by the Department of Energy Office of Biological and Environmental Research, the National Institutes of Health National Center for Research Resources Biomedical Technology Program, and the National Institute of General Medical Sciences. Use of the Industrial Macromolecular Crystallography Association Collaborative Access Team Beamline 17-BM at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Center for Advanced Radiation Sources at the University of Chicago. Use of the Advanced Photon Source was supported by the Office of Basic Energy Sciences of the United States Department of Energy Office of Science under Contract W-31-109-Eng-38. NR 31 TC 46 Z9 47 U1 4 U2 12 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 16 PY 2010 VL 285 IS 29 BP 22282 EP 22290 DI 10.1074/jbc.M110.109017 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 622YF UT WOS:000279702200041 PM 20463018 ER PT J AU Martin, F Baskaran, P Ma, XL Dunten, PW Schaefer, M Stasch, JP Beuve, A van den Akker, F AF Martin, Faye Baskaran, Padmamalini Ma, Xiaolei Dunten, Pete W. Schaefer, Martina Stasch, Johannes-Peter Beuve, Annie van den Akker, Focco TI Structure of Cinaciguat (BAY 58-2667) Bound to Nostoc H-NOX Domain Reveals Insights into Heme-mimetic Activation of the Soluble Guanylyl Cyclase SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID NITRIC-OXIDE; DRUG DEVELOPMENT; BINDING; IDENTIFICATION; DISCOVERY; MOIETY; SENSOR AB Heme is a vital molecule for all life forms with heme being capable of assisting in catalysis, binding ligands, and undergoing redox changes. Heme-related dysfunction can lead to cardiovascular diseases with the oxidation of the heme of soluble guanylyl cyclase (sGC) critically implicated in some of these cardiovascular diseases. sGC, the main nitric oxide (NO) receptor, stimulates second messenger cGMP production, whereas reactive oxygen species are known to scavenge NO and oxidize/inactivate the heme leading to sGC degradation. This vulnerability of NO-heme signaling to oxidative stress led to the discovery of an NO-independent activator of sGC, cinaciguat (BAY 58-2667), which is a candidate drug in clinical trials to treat acute decompensated heart failure. Here, we present crystallographic and mutagenesis data that reveal the mode of action of BAY 58-2667. The 2.3-angstrom resolution structure of BAY 58-2667 bound to a heme NO and oxygen binding domain (H-NOX) from Nostoc homologous to that of sGC reveals that the trifurcated BAY 58-2667 molecule has displaced the heme and acts as a heme mimetic. Carboxylate groups of BAY 58-2667 make interactions similar to the heme-propionate groups, whereas its hydrophobic phenyl ring linker folds up within the heme cavity in a planar-like fashion. BAY 58-2667 binding causes a rotation of the alpha F helix away from the heme pocket, as this helix is normally held in place via the inhibitory His(105)-heme covalent bond. The structure provides insights into how BAY 58-2667 binds and activates sGC to rescue heme-NO dysfunction in cardiovascular diseases. C1 [Martin, Faye; van den Akker, Focco] Case Western Reserve Univ, Dept Biochem RT500, Cleveland, OH 44120 USA. [Baskaran, Padmamalini; Beuve, Annie] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA. [Ma, Xiaolei] Genentech Inc, Dept Prot Engn, San Francisco, CA 94080 USA. [Dunten, Pete W.] Stanford Univ, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. [Stasch, Johannes-Peter] Bayer Schering Pharma AG, Cardiovasc Res, D-42096 Wuppertal, Germany. RP van den Akker, F (reprint author), Case Western Reserve Univ, Dept Biochem RT500, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM focco.vandenakker@case.edu RI Ma, Xiaolei/G-2058-2010; Martin, Faye/I-1759-2012 FU National Institutes of Health [R01 HL075329, R01 GM067640]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology; NIGMS, National Institutes of Health; National Center for Research Resources (NCRR), National Institutes of Health [5 P41 RR001209] FX This work was financially supported, in whole or in part, by National Institutes of Health Grants R01 HL075329 (to F. v. d. A.) and R01 GM067640 (to A. B.). The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program and the NIGMS, National Institutes of Health. The projects described were partially supported by Grant 5 P41 RR001209 from the National Center for Research Resources (NCRR), National Institutes of Health. NR 29 TC 53 Z9 54 U1 0 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 16 PY 2010 VL 285 IS 29 BP 22651 EP 22657 DI 10.1074/jbc.M110.111559 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 622YF UT WOS:000279702200075 PM 20463019 ER PT J AU Sulc, P Zdeborova, L AF Sulc, Petr Zdeborova, Lenka TI Belief propagation for graph partitioning SO JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL LA English DT Article ID SPIN-GLASS MODEL; FINITE CONNECTIVITY; REGULAR GRAPHS; BISECTION; OPTIMIZATION; VALENCE; BOUNDS AB We study the belief-propagation algorithm for the graph bi-partitioning problem, i.e. the ground state of the ferromagnetic Ising model at a fixed magnetization. Application of a message passing scheme to a model with a fixed global parameter is not banal and we show that the magnetization can in fact be fixed in a local way within the belief-propagation equations. Our method provides the full phase diagram of the bi-partitioning problem on random graphs, as well as an efficient heuristic solver that we anticipate to be useful in a wide range of application of the partitioning problem. C1 [Sulc, Petr; Zdeborova, Lenka] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sulc, Petr; Zdeborova, Lenka] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Sulc, Petr] New Mexico Consortium, Los Alamos, NM 87544 USA. [Sulc, Petr] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CZ-11519 Prague, Czech Republic. RP Sulc, P (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sulcpetr@gmail.com; lenka.zdeborova@gmail.com RI Zdeborova, Lenka/B-9999-2014 FU New Mexico Consortium via NSF [CCF-0829945] FX We thank Stefan Boettcher for sharing with us his data from the extremal optimization algorithm that we used for comparison in figures 1 and 3. We thank Cris Moore for pointing to us the meaning of the first-order phase transition at zero magnetization and the existence of the spinodal lines illustrated in figure 2. We also thank Florent Krzakala, Mark Newman, Allon Percus and Federico Ricci-Tersenghi for various very useful discussions about this work. PS acknowledges partial support of New Mexico Consortium via NSF collaborative grant CCF-0829945 on 'Harnessing Statistical Physics for Computing and Communications' NR 41 TC 6 Z9 8 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1751-8113 J9 J PHYS A-MATH THEOR JI J. Phys. A-Math. Theor. PD JUL 16 PY 2010 VL 43 IS 28 AR 285003 DI 10.1088/1751-8113/43/28/285003 PG 17 WC Physics, Multidisciplinary; Physics, Mathematical SC Physics GA 613TG UT WOS:000279003200003 ER PT J AU Bi, ZX Anderoglu, O Zhang, XH MacManus-Driscoll, JL Yang, H Jia, QX Wang, HY AF Bi, Zhenxing Anderoglu, Osman Zhang, Xinghang MacManus-Driscoll, Judith L. Yang, Hao Jia, Quanxi Wang, Haiyan TI Nanoporous thin films with controllable nanopores processed from vertically aligned nanocomposites SO NANOTECHNOLOGY LA English DT Article ID OXIDE FUEL-CELL; ANODIC ALUMINA FILMS; POROUS SILICON; ION BATTERY; PHASE; NANOSTRUCTURES; GROWTH; SENSOR; AL; ELECTROLYTE AB Porous thin films with ordered nanopores have been processed by thermal treatment on vertically aligned nanocomposites (VAN), e. g., (BiFeO3)(0.5):(Sm2O3)(0.5) VAN thin films. Uniformly distributed nanopores with an average diameter of 60 nm and 150 nm were formed at the bottom and top of the nanoporous films, respectively. Controllable porosity can be achieved by adjusting the microstructure of VAN (BiFeO3):(Sm2O3) thin films and the annealing parameters. In situ heating experiments within a transmission electron microscope (TEM) column at temperatures from 25 to 850 degrees C, provides significant insights into the phase transformation, evaporation and structure reconstruction during the annealing. The in situ experiments also demonstrate the possibility of processing vertically aligned nanopores (VANP) with one phase stable in a columnar structure. These nanoporous thin films with controllable pore size and density could be promising candidates for thin film membranes and catalysis for fuel cell and gas sensor applications. C1 [Bi, Zhenxing; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Anderoglu, Osman; Zhang, Xinghang] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [MacManus-Driscoll, Judith L.] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England. [Yang, Hao; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Bi, ZX (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM wangh@ece.tamu.edu RI Jia, Q. X./C-5194-2008; Wang, Haiyan/P-3550-2014 OI Wang, Haiyan/0000-0002-7397-1209 FU US National Science Foundation [NSF-0709831, 1007969] FX This work is supported by the US National Science Foundation (Ceramic Program, NSF-0709831 and 1007969). NR 34 TC 7 Z9 7 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 16 PY 2010 VL 21 IS 28 AR 285606 DI 10.1088/0957-4484/21/28/285606 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 617CT UT WOS:000279259100028 PM 20585164 ER PT J AU Datta, A Kong, K Matchev, KT AF Datta, AseshKrishna Kong, Kyoungchul Matchev, Konstantin T. TI Minimal universal extra dimensions in CalcHEP/CompHEP SO NEW JOURNAL OF PHYSICS LA English DT Article ID KLEIN DARK-MATTER; GAUGE COUPLING UNIFICATION; MAGNETIC-MOMENT; HIERARCHY; COLLIDER; IMPACT; MODEL; MUON AB We present an implementation of the model of minimal universal extra dimensions (MUED) in CalcHEP/CompHEP. We include all level-1 and level-2 Kaluza-Klein (KK) particles outside the Higgs sector. The mass spectrum is automatically calculated at one loop in terms of the two input parameters in MUED: the inverse radius R-1 of the extra dimension and the cut-off scale of the model 3. We implement both the KK number conserving and the KK number violating interactions of the KK particles. We also account for the proper running of the gauge coupling constants above the electroweak scale. The implementation has been extensively cross-checked against known analytical results in the literature and numerical results from other programs. Our files are publicly available and can be used to perform various automated calculations within the MUED model. C1 [Kong, Kyoungchul] SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. [Datta, AseshKrishna] Harish Chandra Res Inst, RECAPP, Allahabad 211019, Uttar Pradesh, India. [Matchev, Konstantin T.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Kong, K (reprint author), SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. EM asesh@hri.res.in; kckong@slac.stanford.edu; matchev@phys.ufl.edu FU Department of Atomic Energy, Government of India; US Department of Energy (DOE) [DE-AC02-76SF00515, DE-FG02-97ER41029] FX We are grateful to Priscila de Aquino, Neil Christensen and Claude Duhr for independent extensive testing of our model files against the results from FeynRules, in the process of which a typo in the original version of our MUED model files was uncovered. AD is partially supported by funding available from the Department of Atomic Energy, Government of India, for the Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute. KK is partially supported by the US Department of Energy (DOE) under contract number DE-AC02-76SF00515. KM is partially supported by the US DOE under grant number DE-FG02-97ER41029. NR 103 TC 25 Z9 25 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 16 PY 2010 VL 12 AR 075017 DI 10.1088/1367-2630/12/7/075017 PG 28 WC Physics, Multidisciplinary SC Physics GA 642QU UT WOS:000281231900007 ER PT J AU Davoudiasi, H Gopalakrishna, S Ponton, E Santiago, J AF Davoudiasi, Hooman Gopalakrishna, Shrihari Ponton, Eduardo Santiago, Jose TI Warped five-dimensional models: phenomenological status and experimental prospects SO NEW JOURNAL OF PHYSICS LA English DT Article ID COSMOLOGICAL CONSTANT; EXTRA DIMENSION AB Warped five-dimensional models, based on the original Randall-Sundrum geometry, have been extended beyond their initial purpose of resolving the gauge hierarchy problem. Over the past decade, various ingredients have been added to their basic structure in order to provide natural and predictive models of flavor and also to address existing constraints from precision data. In this paper, we examine the theoretical and experimental status of realistic models that accommodate current data, while addressing the hierarchy and flavor puzzles of the Standard Model. We also discuss the prospects for future discovery of the TeV-scale Kaluza-Klein states that are predicted to emerge in these models, and outline some of the challenges that the detection of such particles pose for experiments at the Large Hadron Collider. C1 [Ponton, Eduardo] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Davoudiasi, Hooman; Gopalakrishna, Shrihari] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Santiago, Jose] ETH, Inst Theoret Phys, CH-8093 Zurich, Switzerland. [Gopalakrishna, Shrihari] Inst Math Sci, Madras 600113, Tamil Nadu, India. [Santiago, Jose] Univ Granada, CAFPE, E-18071 Granada, Spain. [Santiago, Jose] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain. RP Ponton, E (reprint author), Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. EM hooman@bnl.gov; shri@quark.phy.bnl.gov; eponton@phys.columbia.edu; jsantiago@ugr.es RI Ponton, Eduardo/I-4125-2013; Santiago, Jose/D-9109-2016 OI Ponton, Eduardo/0000-0003-3138-1136; Santiago, Jose/0000-0003-3585-5626 FU European Commission under the European Union [MRTN-CT-2006-035863]; Spanish Consolider-Ingenio 2010 Programme CPAN [CSD2007-00042]; CICYT, Spain [FPA 2008-01430]; Spanish Ministry of Education FX This work was supported in part by the European Commission under the European Union through the Marie Curie Research and Training Network 'UniverseNet' (MRTN-CT-2006-035863); by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042); and by CICYT, Spain, under contract FPA 2008-01430. GG thanks IFAE for hospitality during part of this project. The work of JAC is supported by the Spanish Ministry of Education through a FPU grant. NR 30 TC 45 Z9 45 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 16 PY 2010 VL 12 AR 075011 DI 10.1088/1367-2630/12/7/075011 PG 67 WC Physics, Multidisciplinary SC Physics GA 642QU UT WOS:000281231900002 ER PT J AU Du, MH Singh, DJ AF Du, Mao-Hua Singh, David J. TI Enhanced Born charges in III-VII, IV-VII2, and V-VII3 compounds SO PHYSICAL REVIEW B LA English DT Article ID GAMMA-RAY DETECTORS; INI SINGLE-CRYSTALS; IODIDE X-RAY; INDIUM IODIDE; PEROVSKITE OXIDES; PERFORMANCE; BROMIDE; INBR; FABRICATION; SPECTRA AB We report electronic-structure and lattice dynamics calculations on selected III-VII, IV-VII2, and V-VII3 compounds. The common characteristic of these largely ionic compounds is that their outmost cation-s states are fully occupied and thus the conduction-band states are derived from the more spatially extended cation-p states, resulting in significant cross-band-gap hybridization, which enhances Born effective charges substantially. The large Born charges cause large splitting between longitudinal and transverse optic phonon modes and large static dielectric constants resulting mostly from the lattice contribution. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and recombination centers and may therefore have positive effects on the carrier transport properties in radiation detectors based on these soft-lattice halides. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Radiat Detect Mat & Syst, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010; Singh, David/I-2416-2012 OI Du, Mao-Hua/0000-0001-8796-167X; FU U.S. DOE Office of Nonproliferation Research and Development [NA22] FX This work was supported by the U.S. DOE Office of Nonproliferation Research and Development NA22. NR 40 TC 23 Z9 23 U1 0 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 4 AR 045203 DI 10.1103/PhysRevB.82.045203 PG 5 WC Physics, Condensed Matter SC Physics GA 626UU UT WOS:000279993500005 ER PT J AU Fernandes, RM Schmalian, J AF Fernandes, Rafael M. Schmalian, Joerg TI Competing order and nature of the pairing state in the iron pnictides SO PHYSICAL REVIEW B LA English DT Article ID SPIN-DENSITY WAVES; MAGNETIC ORDER; SUPERCONDUCTIVITY; ANTIFERROMAGNETISM; SYMMETRY; COEXISTENCE; SMFEASO1-XFX; POINTS; NMR AB We show that the competition between magnetism and superconductivity can be used to determine the pairing state in the iron arsenides. To this end we demonstrate that the itinerant antiferromagnetic (AFM) phase and the unconventional s(+-) sign-changing superconducting (SC) state are near the borderline of microscopic coexistence and macroscopic phase separation, explaining the experimentally observed competition of both ordered states. In contrast, conventional s(++) pairing is not able to coexist with magnetism. Expanding the microscopic free energy of the system with competing orders around the multicritical point, we find that static magnetism plays the role of an intrinsic interband Josephson coupling, making the phase diagram sensitive to the symmetry of the Cooper-pair wave function. We relate this result to the quasiparticle excitation spectrum and to the emergent SO(5) symmetry of systems with particle-hole symmetry. Our results rely on the assumption that the same electrons that form the ordered moment contribute to the superconducting condensate and that the system is close to particle-hole symmetry. We also compare the suppression of SC in different regions of the FeAs phase diagram, showing that while in the underdoped side it is due to the competition with AFM, in the overdoped side it is related to the disappearance of pockets from the Fermi surface. C1 [Fernandes, Rafael M.] Iowa State Univ, Ames Lab, Ames, IA 50010 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. RP Fernandes, RM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50010 USA. EM rafaelmf@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010 FU U.S. DOE, Office of BES, DMSE; U.S. DOE [DE-AC02-07CH11358] FX We thank S. Bud'ko, P. Canfield, P. Chandra, A. Chubukov, A. Goldman, D. Johnston, A. Kaminski, A. Kreyssig, R. McQueeney, D. Pratt, R. Prozorov, S. Sachdev, and M. Vavilov for fruitful discussions. This work was supported by the U.S. DOE, Office of BES, DMSE. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 92 TC 138 Z9 138 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014521 DI 10.1103/PhysRevB.82.014521 PG 22 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600013 ER PT J AU Fernandes, RM Schmalian, J AF Fernandes, Rafael M. Schmalian, Joerg TI Transfer of optical spectral weight in magnetically ordered superconductors SO PHYSICAL REVIEW B LA English DT Article ID SUM-RULE AB We show that, in antiferromagnetic superconductors, the optical spectral weight transferred to low frequencies below the superconducting transition temperature originates from energies that can be much larger than twice the superconducting gap Delta. This contrasts to nonmagnetic superconductors, where the optical spectrum is suppressed only for frequencies below 2 Delta. In particular, we demonstrate that the superfluid condensate of the magnetically ordered superconductor is not only due to states of the magnetically reconstructed Fermi surface but is enhanced by transfer of spectral weight from the mid- infrared peak generated by the spin- density wave gap. We apply our results to the iron arsenide superconductors, addressing the decrease in the zero- temperature superfluid density in the doping regime where magnetism coexists with unconventional superconductivity. C1 [Fernandes, Rafael M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Fernandes, RM (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM rafaelmf@ameslab.gov RI Schmalian, Joerg/H-2313-2011; Fernandes, Rafael/E-9273-2010 FU Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358] FX We are grateful to R. Gordon and R. Prozorov for helpful discussions and for sharing their penetration depth data prior to publication. This research was supported by the Ames Laboratory, operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 38 TC 32 Z9 32 U1 0 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014520 DI 10.1103/PhysRevB.82.014520 PG 9 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600012 ER PT J AU Inoglu, N Kitchin, JR AF Inoglu, Nilay Kitchin, John R. TI Simple model explaining and predicting coverage-dependent atomic adsorption energies on transition metal surfaces SO PHYSICAL REVIEW B LA English DT Article ID REACTIVITY; PSEUDOPOTENTIALS; CATALYSIS; ALLOYS AB The adsorption energies of simple atomic adsorbates are coverage dependent. We use density-functional theory to show that the coverage dependence is due to an adsorbate-induced modification of the surface d-band structure. We developed a simple model for predicting the d-band widths of clean and adsorbate-covered metallic surfaces using a tight-binding formalism. The new model can be used in conjunction with the d-band adsorption model to estimate adsorption energies as a function of coverage. C1 [Inoglu, Nilay; Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Kitchin, John R.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Kitchin, JR (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM jkitchin@andrew.cmu.edu RI Kitchin, John/A-2363-2010 OI Kitchin, John/0000-0003-2625-9232 FU Office of Basic Energy Science of the U.S. Department of Energy [DOE-BES DEFG0207ER15919] FX J.R.K. gratefully acknowledges partial support of this work by the Office of Basic Energy Science of the U.S. Department of Energy (Grant No. DOE-BES DEFG0207ER15919). NR 17 TC 29 Z9 29 U1 4 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 4 AR 045414 DI 10.1103/PhysRevB.82.045414 PG 5 WC Physics, Condensed Matter SC Physics GA 626UU UT WOS:000279993500007 ER PT J AU Malone, L Taylor, OJ Schlueter, JA Carrington, A AF Malone, L. Taylor, O. J. Schlueter, J. A. Carrington, A. TI Location of gap nodes in the organic superconductors kappa-(ET)(2)Cu(NCS)(2) and kappa-(ET)(2)Cu[N(CN)(2)]Br determined by magnetocalorimetry SO PHYSICAL REVIEW B LA English DT Article ID D-WAVE SUPERCONDUCTORS; TEMPERATURE; STATE; HEAT; KAPPA-(BEDT-TTF)(2)CU(NCS)(2); CALORIMETRY; FIELD AB We report specific-heat measurements of the organic superconductors kappa-(ET)(2)Cu(NCS)(2) and kappa-(ET)(2)Cu[N(CN)(2)]Br. When the magnetic field is rotated in the highly conducting planes at low temperature (T similar or equal to 0.4 K), we observe clear oscillations of specific heat which have a strong fourfold component. The observed strong field and temperature dependence of this fourfold component identifies it as originating from nodes in the superconducting energy gap which point along the in-plane crystal axes (d(xy) symmetry). C1 [Malone, L.; Taylor, O. J.; Carrington, A.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Schlueter, J. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Malone, L (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. FU EPSRC (U.K.); Argonne, U.S. Department of Energy, Office of Science laboratory [DE-AC02-06CH11357] FX We thank M. Haddow for help with x-ray diffraction and I. Vekhter for helpful comments. This work was supported by EPSRC (U.K.) and Argonne, a U.S. Department of Energy, Office of Science laboratory, operated under Contract No. DE-AC02-06CH11357. NR 31 TC 16 Z9 16 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 1 AR 014522 DI 10.1103/PhysRevB.82.014522 PG 5 WC Physics, Condensed Matter SC Physics GA 626UM UT WOS:000279992600014 ER PT J AU McMahon, JM Gray, SK Schatz, GC AF McMahon, Jeffrey M. Gray, Stephen K. Schatz, George C. TI Calculating nonlocal optical properties of structures with arbitrary shape SO PHYSICAL REVIEW B LA English DT Article ID LONGITUDINAL PLASMONS; SINGLE-MOLECULE; METALLIC-FILMS; NANOPARTICLES; MEDIA; SCATTERING; RESONANCE; SPHERES AB In a recent Letter [J. M. McMahon, S. K. Gray, and G. C. Schatz, Phys. Rev. Lett. 103, 097403 (2009)], we outlined a computational method to calculate the optical properties of structures with a spatially nonlocal dielectric function. In this paper, we detail the full method and verify it against analytical results for cylindrical nanowires. Then, as examples of our method, we calculate the optical properties of Au nanostructures in one, two, and three dimensions. We first calculate the transmission, reflection, and absorption spectra of thin films. Because of their simplicity, these systems demonstrate clearly the longitudinal (or volume) plasmons characteristic of nonlocal effects, which result in anomalous absorption and plasmon blueshifting. We then study the optical properties of spherical nanoparticles, which also exhibit such nonlocal effects. Finally, we compare the maximum and average electric field enhancements around nanowires of various shapes to local theory predictions. We demonstrate that when nonlocal effects are included, significant decreases in such properties can occur. C1 [McMahon, Jeffrey M.; Schatz, George C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [McMahon, Jeffrey M.; Gray, Stephen K.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP McMahon, JM (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM jeffrey-mcmahon@northwestern.edu FU AFOSR/DARPA [FA9550-08-1-0221]; NSF MRSEC at the Materials Research Center of Northwestern University [DMR-0520513]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX J.M.M. and G. C. S. were supported by AFOSR/DARPA Project BAA07-61 (Grant No. FA9550-08-1-0221) and the NSF MRSEC (Grant No. DMR-0520513) at the Materials Research Center of Northwestern University. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 41 TC 51 Z9 51 U1 4 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 3 AR 035423 DI 10.1103/PhysRevB.82.035423 PG 12 WC Physics, Condensed Matter SC Physics GA 626UQ UT WOS:000279993100007 ER PT J AU Soderlind, P Gonis, A AF Soederlind, Per Gonis, A. TI Assessing a solids-biased density-gradient functional for actinide metals SO PHYSICAL REVIEW B LA English DT Article ID CRYSTAL-STRUCTURES; APPROXIMATION; IRON; MAGNETISM; EXCHANGE; CERIUM; GAS; PU AB Recent developments of new electron exchange and correlation functionals within density-functional theory include a solids-biased modification of the popular Perdew-Burke-Ernzerhof (PBE) functional and is referred to as PBEsol. The latter is claimed to remove a bias toward free-atom energies in the former and is therefore better suited for equilibrium properties of densely packed solids and surfaces. We show that PBEsol drastically worsens the equilibrium properties of the actinide metals compared to PBE and produces results closer to that of the local density approximation. The PBEsol atomic volume of delta-Pu is 12% and 14% smaller than PBE and experimental values, respectively. Also, iron is predicted to have the incorrect ground-state phase within PBEsol. These results illustrate the difficulties and limitations in improving the gradient approximations of the electron exchange and correlation functional in a general fashion even when the application is restricted to solids. We comment on the possibility of formulating a unique functional without these limitations that is applicable to solids as well as to finite-sized systems such as atoms and molecules. C1 [Soederlind, Per; Gonis, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Soderlind, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 33 TC 12 Z9 12 U1 1 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 16 PY 2010 VL 82 IS 3 AR 033102 DI 10.1103/PhysRevB.82.033102 PG 4 WC Physics, Condensed Matter SC Physics GA 626UQ UT WOS:000279993100001 ER PT J AU Broccoli, AJ Klein, SA AF Broccoli, Anthony J. Klein, Stephen A. TI Comment on "Observational and Model Evidence for Positive Low-Level Cloud Feedback" SO SCIENCE LA English DT Editorial Material ID COUPLED CLIMATE MODELS; PART I AB Clement et al. (Reports, 24 July 2009, p. 460) provided observational evidence for systematic relationships between variations in marine low cloudiness and other climatic variables and found that most current-generation climate models were deficient in reproducing such relationships. Our analysis of one of these models (GFDL CM2.1), using more complete model output, indicates better agreement with observations, suggesting that more detailed analysis of climate model simulations is necessary. C1 [Broccoli, Anthony J.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08901 USA. [Klein, Stephen A.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. RP Broccoli, AJ (reprint author), Rutgers State Univ, Dept Environm Sci, 14 Coll Farm Rd, New Brunswick, NJ 08901 USA. EM broccoli@envsci.rutgers.edu RI Broccoli, Anthony/D-9186-2014; Klein, Stephen/H-4337-2016 OI Broccoli, Anthony/0000-0003-2619-1434; Klein, Stephen/0000-0002-5476-858X NR 6 TC 9 Z9 9 U1 1 U2 6 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 16 PY 2010 VL 329 IS 5989 DI 10.1126/science.1186796 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 625VW UT WOS:000279925900020 PM 20647450 ER PT J AU Sekhar, PK Brosha, EL Mukundan, R Nelson, MA Toracco, D Garzon, FH AF Sekhar, Praveen K. Brosha, Eric L. Mukundan, Rangachary Nelson, Mark A. Toracco, Dennis Garzon, Fernando H. TI Effect of yttria-stabilized zirconia sintering temperature on mixed potential sensor performance SO SOLID STATE IONICS LA English DT Article DE YSZ; Sintering; Mixed potential; Sensor; Tortuosity ID OXIDE ELECTRODES; GAS SENSORS; NOX SENSORS; ELECTROCHEMICAL SENSORS; SENSING PERFORMANCES; ELECTROLYTES AB In this article, the influence of yttria-stabilized zirconia (YSZ) sintering temperature on a Pt/YSZ/La(0.8)Sr(0.2)CrO(3) mixed potential sensor performance is reported. The sintering temperature of YSZ was varied from 1000 to 1200 degrees C. Mercury porosity measurements were performed to estimate the porosity and tortuosity of the YSZ sample as a function of sintering temperature. Further, the surface area of YSZ was computed by the BET method. After YSZ characterization, the unbiased and biased sensor response was recorded. The 1000 degrees C sintered YSZ sample was taken as the reference for comparison purposes. Experimental results indicated a 30% reduction in porosity for the 1200 degrees C sintered YSZ sample, resulting in a 14-fold increase in the sensor response rise time. In addition, for the same sample, a 13-fold increase in sensitivity was observed upon exposure to propylene (100 ppm), associated with a 76% reduction in surface area. The slow response time of the sensor with YSZ sintered at higher temperatures has been attributed to higher tortuosity (delay in gas permeation to the three-phase interface). Whereas, reduced heterogeneous catalysis induced by lower surface area accounts for the rise in sensitivity levels. The optimum YSZ sintering temperature was found to lie between 1100 and 1150 degrees C. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Brosha, Eric L.; Mukundan, Rangachary; Nelson, Mark A.; Toracco, Dennis; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), Los Alamos Natl Lab, MS D429, Los Alamos, NM 87544 USA. EM psekhar@lanl.gov OI Mukundan, Rangachary/0000-0002-5679-3930 FU DOE Office of Vehicle Technologies; DOE; LANL FX The authors wish to thank Roland Gravel of the DOE Office of Vehicle Technologies for providing the funds to enable prototyping of LANL mixed potential sensors. Recent sensor work also supported by funding obtained from DOE Hydrogen Fuel Cell and Infrastructure Programs, Hydrogen Safety Codes and Standards. Also, we wish to recognize sources of sensor R&D funding over the past decade: USCAR, DOE - Freedom Car and Vehicle Technologies, DOE - Advanced Reciprocating Engine Systems, LANL - Technology Maturation Fund and LANL - Royalty Income. NR 31 TC 14 Z9 15 U1 3 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 J9 SOLID STATE IONICS JI Solid State Ion. PD JUL 16 PY 2010 VL 181 IS 19-20 BP 947 EP 953 DI 10.1016/j.ssi.2010.05.029 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 633YC UT WOS:000280542200016 ER PT J AU Williams, PT AF Williams, Paul T. TI Usefulness of Cardiorespiratory Fitness to Predict Coronary Heart Disease Risk Independent of Physical Activity SO AMERICAN JOURNAL OF CARDIOLOGY LA English DT Article ID LOW AEROBIC CAPACITY; ARTIFICIAL SELECTION; RUNNING CAPACITY; EXERCISE; INTENSITY; VO2MAX; OXYGEN; DETERMINANTS; ASSOCIATION; PERFORMANCE AB Cardiorespiratory fitness has often been interpreted as a surrogate measurement of physical activity rather than an independent coronary heart disease (CHD) risk factor per se. Fitness is also known to be highly heritable, however, and rats bred selectively for treadmill endurance have low CHD risk phenotypes even in the absence of physical activity. Therefore, I assessed whether cardiorespiratory fitness predicted CHD independent of physical activity in 29,721 men followed prospectively for 7.7 years as part of the National Runners' Health Study. Specifically, CHD deaths and incident participant-reported physician-diagnosed myocardial infarction, revascularization procedures (coronary artery bypass grafting and percutaneous coronary intervention), and angina pectoris during follow-up were compared to baseline cardiorespiratory fitness (10-km footrace performance, meters/second). Nonfatal end points for the 80% of these men who provided follow-up questionnaires included 121 nonfatal myocardial infarctions, 317 revascularization procedures, and 81 angina pectora. The National Death Index identified 44 CHD deaths. Per meter/second increment in baseline fitness, men's risks decreased 54% for nonfatal myocardial infarction (p <0.0001), 44% for combined CHD deaths and nonfatal myocardial infarction (p = 0.0003), 53% for angina pectoris (p = 0.001), and 32% for revascularizations (p = 0.002). Adjustment for physical activity (kilometer/day run) had little effect on the per meter/second risk decreases for nonfatal myocardial infarction (from 64% to 63%), combined CHD deaths and nonfatal myocardial infarction (from 34% to 33%), angina pectoris (from 53% to 47%) or revascularizations (from 32% to 26%). In conclusion, the results suggest that cardiorespiratory fitness is a CHD risk factor, largely independent of physical activity, which warrants clinical screening. (C) 2010 Published by Elsevier Inc. (Am J Cardiol 2010;106:210-215) C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Williams, PT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Donner Lab, Div Life Sci, Berkeley, CA 94720 USA. EM ptwilliams@lbl.gov FU Institute of Aging [AG032004]; National Heart, Lung, and Blood Institute [HL094717]; Department of Energy [DE-AC03-76SF00098] FX This research was supported in part by grants from the Institute of Aging (AG032004) and the National Heart, Lung, and Blood Institute (HL094717), and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California (Department of Energy Grant DE-AC03-76SF00098 to the University of California). NR 30 TC 9 Z9 9 U1 0 U2 8 PU EXCERPTA MEDICA INC-ELSEVIER SCIENCE INC PI BRIDGEWATER PA 685 ROUTE 202-206 STE 3, BRIDGEWATER, NJ 08807 USA SN 0002-9149 J9 AM J CARDIOL JI Am. J. Cardiol. PD JUL 15 PY 2010 VL 106 IS 2 BP 210 EP 215 DI 10.1016/j.amjcard.2010.03.017 PG 6 WC Cardiac & Cardiovascular Systems SC Cardiovascular System & Cardiology GA 628OY UT WOS:000280131100012 PM 20599005 ER PT J AU Kertesz, V Van Berkel, GJ AF Kertesz, Vilmos Van Berkel, Gary J. TI Liquid Microjunction Surface Sampling Coupled with High-Pressure Liquid Chromatography-Electrospray Ionization-Mass Spectrometry for Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections SO ANALYTICAL CHEMISTRY LA English DT Letter ID AUTORADIOGRAPHY; PROBE AB In this work, a commercially available autosampler was adapted to perform direct liquid microjunction (LMJ) surface sampling followed by a high-pressure liquid chromatography (HPLC) separation of the extract components and detection with electrospray ionization mass spectrometry (ESI-MS). To illustrate the utility of coupling a separation with this direct liquid extraction based surface sampling approach, four different organs (brain, lung, kidney, and liver) from whole-body thin tissue sections of propranolol dosed and control mice were examined. The parent drug was observed in the chromatograms of the surface sampling extracts from all the organs of the dosed mouse examined. In addition, two isomeric phase II metabolites of propranolol (an aliphatic and an aromatic hydroxypropranolol glucuronide) were observed in the chromatograms of the extracts from lung, kidney, and liver. Confirming the presence of one or the other or both of these glucuronides in the extract from the various organs was not possible without the separation. These drug and metabolite data obtained using the LMJ surface sampling/HPLC-MS method and the results achieved by analyzing similar samples by conventional extraction of the tissues and subsequent HPLC-MS analysis were consistent. The ability to directly and efficiently sample from thin tissue sections via a liquid extraction and then perform a subsequent liquid phase separation increases the utility of this liquid extraction surface sampling approach. C1 [Kertesz, Vilmos; Van Berkel, Gary J.] Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. RP Kertesz, V (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Organ & Biol Mass Spectrometry Grp, Oak Ridge, TN 37831 USA. EM kerteszv@ornl.gov; vanberkelgj@ornl.gov RI Kertesz, Vilmos/M-8357-2016 OI Kertesz, Vilmos/0000-0003-0186-5797 NR 18 TC 46 Z9 47 U1 2 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 5917 EP 5921 DI 10.1021/ac100954p PG 5 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800001 PM 20560529 ER PT J AU Colburn, HA Wunschel, DS Kreuzer, HW Moran, JJ Antolick, KC Melville, AM AF Colburn, Heather A. Wunschel, David S. Kreuzer, Helen W. Moran, James J. Antolick, Kathryn C. Melville, Angela M. TI Analysis of Carbohydrate and Fatty Acid Marker Abundance in Ricin Toxin Preparations for Forensic Information SO ANALYTICAL CHEMISTRY LA English DT Article ID MASS-SPECTROMETRY; IDENTIFICATION AB One challenge in the forensic analysis of ricin samples is determining the method and extent of sample preparation. Ricin purification from the source castor seeds is essentially a protein purification through removal of the nonprotein fractions of the seed. Two major, nonprotein constituents in the seed are the castor oil and carbohydrates. We used derivatization of carbohydrate and fatty acid markers followed by identification and quantification using gas chromatography/mass spectrometry (GC/MS) to assess compositional changes in ricin samples purified by different methods. The loss of ricinoleic acid indicated steps for oil removal had occurred, and a large decrease of ricinoleic acid was observed between unextracted mash and solvent extracted and protein precipitate preparations. Changes to the carbohydrate content of the sample were also observed following protein precipitation. The differential loss of arabinose relative to mannose was observed indicating the removal of the major carbohydrate fraction of the seed and enrichment of the protein content. When the data is combined and multivariate principle component analysis is applied, these changes in fatty acid and carbohydrate abundance are discriminating enough to be indicative of the preparation method used for each sample. C1 [Colburn, Heather A.; Wunschel, David S.; Kreuzer, Helen W.; Moran, James J.; Antolick, Kathryn C.; Melville, Angela M.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Colburn, HA (reprint author), Pacific NW Natl Lab, Natl Secur Directorate, POB 999,MSIN P7-50, Richland, WA 99352 USA. EM Heather.Colburn@pnl.gov RI Wunschel, David/F-3820-2010; OI Moran, James/0000-0001-9081-9017 FU Department of Homeland Security, Science and Technology Directorate. Pacific Northwest National Laboratory [AGRHSHQDC07X00207, AGRHSHQDC08X00571/B1]; Battelle Memorial Institute for the United States Department of Energy [DE-AC06-76RL0] FX Funding for this research was provided through Contracts AGRHSHQDC07X00207 and AGRHSHQDC08X00571/B1 to Pacific Northwest National Laboratory by the Department of Homeland Security, Science and Technology Directorate. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under Contract DE-AC06-76RL0. NR 29 TC 6 Z9 6 U1 2 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 6040 EP 6047 DI 10.1021/ac1006206 PG 8 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800018 PM 20568718 ER PT J AU Rupp, EC Granite, EJ Stanko, DC AF Rupp, Erik C. Granite, Evan J. Stanko, Dennis C. TI Method for Detection of Trace Metal and Metalloid Contaminants in Coal-Generated Fuel Gas Using Gas Chromatography/Ion Trap Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID ACTIVATED CARBON; MERCURY REMOVAL; SULFUR-OXIDES; FLUE-GAS; GASIFICATION; COMBUSTION; SORBENTS; CAPTURE; IMPACT AB There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH(3)), phosphine (PH(3)), and hydrogen selenide (H(2)Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed. C1 [Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Granite, EJ (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM Evan.Granite@NETL.DOE.GOV FU National Energy Technology Laboratory; DOE FX E.C.R. thanks the National Energy Technology Laboratory for financial support through a postdoctoral fellowship administered by the Oak Ridge Institute for Science and Education (ORISE). Funding support from the DOE Gasification Program is greatly appreciated. The authors also thank Rick Bailey and Rob Tapper from the Varian Corporation for helpful advice. References in this paper to any specific commercial product, process, or service is to facilitate understanding and does not necessarily imply its endorsement by the U.S. Department of Energy. NR 19 TC 7 Z9 7 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 15 PY 2010 VL 82 IS 14 BP 6315 EP 6317 DI 10.1021/ac1012249 PG 3 WC Chemistry, Analytical SC Chemistry GA 623GU UT WOS:000279727800055 PM 20583767 ER PT J AU Salomao, M Chen, K Villalobos, J Mohandas, N An, XL Chasis, JA AF Salomao, Marcela Chen, Ke Villalobos, Jonathan Mohandas, Narla An, Xiuli Chasis, Joel Anne TI Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation SO BLOOD LA English DT Article ID RED-BLOOD-CELLS; MEMBRANE-SKELETON; COMPLETE DEFICIENCY; HEMOLYTIC-ANEMIA; NB/NB MICE; ANKYRIN; MUTATION; BAND-3; GENE AB During erythroblast enucleation, membrane proteins distribute between extruded nuclei and reticulocytes. In hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), deficiencies of membrane proteins, in addition to those encoded by the mutant gene, occur. Elliptocytes, resulting from protein 4.1R gene mutations, lack not only 4.1R but also glycophorin C, which links the cytoskeleton and bilayer. In HS resulting from ankyrin-1 mutations, band 3, Rh-associated antigen, and glycophorin A are deficient. The current study was undertaken to explore whether aberrant protein sorting, during enucleation, creates these membrane-spanning protein deficiencies. We found that although glycophorin C sorts to reticulocytes normally, it distributes to nuclei in 4.1R-deficient HE cells. Further, glycophorin A and Rh-associated antigen, which normally partition predominantly to reticulocytes, distribute to both nuclei and reticulocytes in an ankyrin-1-deficient murine model of HS. We conclude that aberrant protein sorting is one mechanistic basis for protein deficiencies in HE and HS. (Blood. 2010; 116(2): 267-269) C1 [Villalobos, Jonathan; Chasis, Joel Anne] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Salomao, Marcela; Chen, Ke; Mohandas, Narla; An, Xiuli] New York Blood Ctr, Red Cell Physiol Lab, New York, NY USA. RP Chasis, JA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Bldg 84,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jachasis@lbl.gov FU National Institutes of Health [DK26263, DK56267, DK32094, HL31579]; Office of Health and Environment Research Division, US Department of Energy [DE-AC03-76SF00098] FX This work was supported by National Institutes of Health grants DK26263, DK56267, DK32094, and HL31579 and by the Director, Office of Health and Environment Research Division, US Department of Energy, under contract DE-AC03-76SF00098. NR 16 TC 27 Z9 29 U1 0 U2 2 PU AMER SOC HEMATOLOGY PI WASHINGTON PA 1900 M STREET. NW SUITE 200, WASHINGTON, DC 20036 USA SN 0006-4971 J9 BLOOD JI Blood PD JUL 15 PY 2010 VL 116 IS 2 BP 267 EP 269 DI 10.1182/blood-2010-02-264127 PG 3 WC Hematology SC Hematology GA 626HA UT WOS:000279955800017 PM 20339087 ER PT J AU Yaswen, P AF Yaswen, Paul TI HDAC inhibitors conquer Polycomb proteins SO CELL CYCLE LA English DT News Item ID HISTONE DEACETYLASE INHIBITORS; HEMATOPOIETIC STEM-CELLS; SELF-RENEWAL; INDUCED APOPTOSIS; BMI-1; CANCER; MYC; PROLIFERATION; TUMORIGENESIS; MAINTENANCE C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Yaswen, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM P_Yaswen@lbl.gov NR 13 TC 3 Z9 4 U1 1 U2 1 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD JUL 15 PY 2010 VL 9 IS 14 BP 2705 EP 2705 PG 1 WC Cell Biology SC Cell Biology GA 642IY UT WOS:000281205500009 PM 20676029 ER PT J AU Rahal, EA Henricksen, LA Li, YL Williams, RS Tainer, JA Dixon, K AF Rahal, Elias A. Henricksen, Leigh A. Li, Yuling Williams, R. Scott Tainer, John A. Dixon, Kathleen TI ATM regulates Mre11-dependent DNA end-degradation and microhomology-mediated end joining SO CELL CYCLE LA English DT Article DE ATM; Mre11; MRN complex; DNA degradation; double-strand break repair; microhomology-mediated end joining; PI-3-kinase-like kinases ID STRAND-BREAK REPAIR; MRE11-RAD50-NBS1 COMPLEX; ATAXIA-TELANGIECTASIA; KU80-DEFICIENT CELLS; MAMMALIAN-CELLS; DAMAGE RESPONSE; MRN COMPLEX; MRE11; PHOSPHORYLATION; ACTIVATION AB The human disorder ataxia telangiectasia (AT), which is characterized by genetic instability and neurodegeneration, results from mutation of the ataxia telangiectasia mutated (ATM) kinase. The loss of ATM leads to cell cycle checkpoint deficiencies and other DNA damage signaling defects that do not fully explain all pathologies associated with A-T including neuronal loss. In addressing this enigma, we find here that ATM suppresses DNA double-strand break (DSB) repair by microhomology-mediated end joining (MMEJ). We show that ATM repression of DNA end-degradation is dependent on its kinase activities and that Mre11 is the major nuclease behind increased DNA end-degradation and MMEJ repair in A-T. Assessment of MMEJ by an in vivo reporter assay system reveals decreased levels of MMEJ repair in Mre11-knockdown cells and in cells treated with Mre11-nuclease inhibitor mirin. Structure-based modeling of Mre11 dimer engaging DNA ends suggests the 5' ends of a bridged DSB are juxtaposed such that DNA unwinding and 3'-5' exonuclease activities may collaborate to facilitate simultaneous pairing of extended 5' termini and exonucleolytic degradation of the 3' ends in MMEJ. Together our results provide an integrated understanding of ATM and Mre11 in MMEJ: ATM has a critical regulatory function in controlling DNA end-stability and error-prone DSB repair and Mre11 nuclease plays a major role in initiating MMEJ in mammalian cells. These functions of ATM and Mre11 could be particularly important in neuronal cells, which are post-mitotic and therefore depend on mechanisms other than homologous recombination between sister chromatids to repair DSBs. C1 [Rahal, Elias A.; Henricksen, Leigh A.; Dixon, Kathleen] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [Li, Yuling] Univ Cincinnati, Coll Med, Dept Environm Hlth, Cincinnati, OH 45267 USA. [Williams, R. Scott; Tainer, John A.] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Biol, Div Life Sci, Berkeley, CA 94720 USA. [Dixon, Kathleen] Univ Arizona, Arizona Canc Ctr, Tucson, AZ USA. RP Dixon, K (reprint author), Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. EM jat@scripps.edu; dixonk@email.arizona.edu RI Williams, Robert/A-6059-2015 FU NIH [R01-NS34782, P01 CA92584] FX We thank the members of the Genomics Maintenance Group at the University of Arizona for helpful discussions and Eric G. Thompson, Hope Jones and Helen F. Smith for critical review of the manuscript. This work was supported by NIH grant R01-NS34782 to Kathleen Dixon and P01 CA92584 to John Tainer. NR 47 TC 37 Z9 38 U1 0 U2 11 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1538-4101 J9 CELL CYCLE JI Cell Cycle PD JUL 15 PY 2010 VL 9 IS 14 BP 2866 EP 2877 DI 10.4161/cc.9.14.12408 PG 12 WC Cell Biology SC Cell Biology GA 642IY UT WOS:000281205500036 PM 20647759 ER PT J AU Yang, L Steefel, CI Marcus, MA Bargar, JR AF Yang, Li Steefel, Carl I. Marcus, Matthew A. Bargar, John R. TI Kinetics of Fe(II)-Catalyzed Transformation of 6-line Ferrihydrite under Anaerobic Flow Conditions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REDUCTIVE DISSOLUTION; ELECTRON-TRANSFER; FERRIC HYDROXIDE; AQUEOUS FE(II); RUST LAYERS; IRON; INTERFACES; GOETHITE; THERMODYNAMICS; OXYHYDROXIDES AB The readsorption of ferrous ions produced by the abiotic and microbially mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 degrees C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 and 150 h of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggests that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed. C1 [Yang, Li; Steefel, Carl I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Yang, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM LYang@lbl.gov RI YANG, LI/F-9392-2010; Steefel, Carl/B-7758-2010 FU U.S. Department of Energy; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231, DE-AC03-76SF00098] FX This research was funded by the U.S. Department of Energy's Environmental Remediation Science Program through a joint NSF-DOE Environmental Molecular Science Institute at Pennsylvania State University. We thank Xiangyun Song at EETD of LBNL and Sam Webb at SSRL for their help on TEM and synchrotron XRD analysis. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under contract DE-AC02-05CH11231. SSRL is a national user facility operated by Stanford University on behalf of the U.S. DOE Office of Basic Energy Sciences. The National Center for Electron Microscopy at LBNL is supported by the Office of Basic Energy Sciences, Material Sciences Division, of the U.S. DOE under contract DE-AC03-76SF00098. NR 40 TC 50 Z9 51 U1 4 U2 64 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5469 EP 5475 DI 10.1021/es1007565 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100028 PM 20553044 ER PT J AU Chandler, DP Kukhtin, A Mokhiber, R Knickerbocker, C Ogles, D Rudy, G Golova, J Long, P Peacock, A AF Chandler, Darrell P. Kukhtin, Alexander Mokhiber, Rebecca Knickerbocker, Christopher Ogles, Dora Rudy, George Golova, Julia Long, Phil Peacock, Aaron TI Monitoring Microbial Community Structure and Dynamics during in situ U(VI) Bioremediation with a Field-Portable Microarray Analysis System SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; BACTERIUM GEOBACTER-METALLIREDUCENS; OLIGONUCLEOTIDE MICROARRAYS; URANIUM BIOREMEDIATION; CONTAMINATED AQUIFER; REDUCTION; DIVERSITY; NITRATE; SOIL; MICROORGANISMS AB The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84 Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site. C1 [Chandler, Darrell P.; Kukhtin, Alexander; Mokhiber, Rebecca; Knickerbocker, Christopher; Rudy, George; Golova, Julia] Akonni Biosyst Inc, Frederick, MD 21701 USA. [Ogles, Dora] Microbial Insights Inc, Rockford, TN 37853 USA. [Long, Phil] Pacific NW Natl Lab, Richland, WA 99354 USA. [Peacock, Aaron] Haley & Aldrich, Oak Ridge, TN 37830 USA. RP Chandler, DP (reprint author), Akonni Biosyst Inc, 400 Sagner Ave,Suite 300, Frederick, MD 21701 USA. EM dchandler@akonni.com FU U.S. Department of Energy (DOE) [200-2006-19011, DE-AC06-76RL01830]; Office of Science, DOE [51882] FX We are indebted to Dr. Ken Williams, Richard Dayvault, and the entire Rifle IFC project for field support and sample acquisition. This work was supported by Phase II SBIR grant 200-2006-19011 from the U.S. Department of Energy (DOE), and project 51882 from the Environmental Research Sciences Program, Office of Science, DOE. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under contract DE-AC06-76RL01830. NR 30 TC 21 Z9 22 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5516 EP 5522 DI 10.1021/es1006498 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100035 PM 20560650 ER PT J AU Rollins, AW Smith, JD Wilson, KR Cohen, RC AF Rollins, Andrew W. Smith, Jared D. Wilson, Kevin R. Cohen, Ronald C. TI Real Time In Situ Detection of Organic Nitrates in Atmospheric Aerosols SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ALKYL NITRATES; MASS-SPECTROMETRY; SOA FORMATION; ALPHA-PINENE; N-ALKANES; SIZE DISTRIBUTIONS; OH RADICALS; PHOTOOXIDATION; NOX; CHEMISTRY AB A novel instrument is described that quantifies total particle-phase organic nitrates in real time with a detection limit of 0.11 mu g m(-3) min(-1), 45 ppt min(-1) (-ONO(2)). Aerosol nitrates are separated from gas-phase nitrates with a short residence time activated carbon denuder. Detection of organic molecules containing -ONO(2) subunits is accomplished using thermal dissociation coupled to laser induced fluorescence detection of NO(2). This instrument is capable of high time resolution (seconds) measurements of particle-phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in secondary organic aerosol generated from high-NO(x) photooxidation of limonene, a-pinene, Delta-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15% of the total SOA mass. C1 [Rollins, Andrew W.; Cohen, Ronald C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Smith, Jared D.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Cohen, Ronald C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Cohen, RC (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rccohen@berkeley.edu RI Rollins, Andrew/G-7214-2012; Cohen, Ronald/A-8842-2011 OI Cohen, Ronald/0000-0001-6617-7691 FU NSF [ATM-0639847]; Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX The Berkeley authors were supported by NSF ATM-0639847. Part of this work utilized equipment at the Chemical Dynamics Beamline, which is supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contracts DE-AC02-05CH11231. NR 48 TC 33 Z9 33 U1 3 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 15 PY 2010 VL 44 IS 14 BP 5540 EP 5545 DI 10.1021/es100926x PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 623NF UT WOS:000279747100039 PM 20575535 ER PT J AU Armstrong, MR Crowhurst, JC Bastea, S Zaug, JM AF Armstrong, Michael R. Crowhurst, Jonathan C. Bastea, Sorin Zaug, Joseph M. TI Ultrafast observation of shocked states in a precompressed material SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SPECTRAL INTERFEROMETRY; HIGH-PRESSURES; WAVE; ARGON; METALLIZATION; COMPRESSION; ELASTICITY; HYDROGEN; MANTLE; PULSES AB We apply ultrafast single shot interferometry to determine the pressure and density of argon shocked from up to 7.8 GPa static initial pressure in a diamond anvil cell. This method enables the observation of thermodynamic states distinct from those observed in either single shock or isothermal compression experiments. In particular, this method enables access to high density, relatively low temperature states of light materials, such as isentropically compressed states of giant planets. Further, since excitation by a shock wave is intrinsically ultrafast and this method has picoseconds time resolution, it has the potential to observe the collective dynamics of materials undergoing shock induced phase transitions and chemistry on ultrafast time scales. We also present a straightforward method for interpreting ultrafast shock wave data which determines the index of refraction at the shock front, and the particle and shock velocities for shock waves in transparent materials. Based on these methods, we observe shocked thermodynamic states between the room temperature isotherm of argon and the shock adiabat of cryogenic argon at final shock pressures up to 28 GPa. (C) 2010 American Institute of Physics. [doi:10.1063/1.3460801] C1 [Armstrong, Michael R.; Crowhurst, Jonathan C.; Bastea, Sorin; Zaug, Joseph M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Armstrong, MR (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM armstrong30@llnl.gov RI Armstrong, Michael/I-9454-2012 FU U.S. Department of Energy [DE-AC52-07NA27344]; DTRA FX We acknowledge useful discussions with L. Fried, E. Glascoe, C. Grant, E. Reed, H. Lorenzana, C. Bolme, S. Mcgrane, and J. Forbes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded in part by the DTRA Advanced Energetics program. NR 37 TC 24 Z9 25 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023511 DI 10.1063/1.3460801 PG 9 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900023 ER PT J AU Lucas, MS Munoz, JA Mauger, L Li, CW Sheets, AO Turgut, Z Horwath, J Abernathy, DL Stone, MB Delaire, O Xiao, YM Fultz, B AF Lucas, M. S. Munoz, J. A. Mauger, L. Li, Chen W. Sheets, A. O. Turgut, Z. Horwath, J. Abernathy, D. L. Stone, M. B. Delaire, O. Xiao, Yuming Fultz, B. TI Effects of chemical composition and B2 order on phonons in bcc Fe-Co alloys SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NUCLEAR RESONANT SCATTERING; KINETIC PATHS; PARAMETERS; IRON AB The phonon density of states (DOS) gives insight into interatomic forces and provides the vibrational entropy, making it a key thermodynamic function for understanding alloy phase transformations. Nuclear resonant inelastic x-ray scattering and inelastic neutron scattering were used to measure the chemical dependence of the DOS of bcc Fe-Co alloys. For the equiatomic alloy, the A2 -> B2 (chemically disordered -> chemically ordered) phase transformation caused measurable changes in the phonon spectrum. The measured change in vibrational entropy upon ordering was -0.02 +/- 0.02 k(B)/atom, suggesting that vibrational entropy results in a reduction in the order-disorder transition temperature by 60 +/- 60 K. The Connolly-Williams cluster inversion method was used to obtain interaction DOS (IDOS) curves that show how point and pair variables altered the phonon DOS of disordered bcc Fe-Co alloys. These IDOS curves accurately captured the change in the phonon DOS and vibrational entropy of the B2 ordering transition. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3456500] C1 [Lucas, M. S.; Sheets, A. O.; Turgut, Z.; Horwath, J.] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Lucas, M. S.] UTC Inc, Dayton, OH 45432 USA. [Munoz, J. A.; Mauger, L.; Li, Chen W.; Fultz, B.] CALTECH, WM Keck Lab, Pasadena, CA 91125 USA. [Abernathy, D. L.; Stone, M. B.; Delaire, O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Xiao, Yuming] Carnegie Inst Washington, Geophys Lab, HPCAT, Argonne, IL 60439 USA. RP Lucas, MS (reprint author), USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. EM matthew.steven.lucas@gmail.com RI Li, Chen/D-1542-2010; Munoz, Jorge/C-8427-2011; Stone, Matthew/G-3275-2011; Abernathy, Douglas/A-3038-2012; BL18, ARCS/A-3000-2012 OI Li, Chen/0000-0002-0758-5334; Stone, Matthew/0000-0001-7884-9715; Abernathy, Douglas/0000-0002-3533-003X; FU Scientific User Facilities Division; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE; Department of Energy through the Basic Energy Sciences [DE-FG02-03ER46055, W-31-109-ENG-38]; DOE-BES [DE-AC02-06CH11357]; DOE-NNSA; NSF [DMR-0520547]; DOD-TACOM; W. M. Keck Foundation FX The portions of this work conducted at Oak Ridge National Laboratory were supported by the Scientific User Facilities Division and by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, DOE. This work was supported by the Department of Energy through the Basic Energy Sciences Grant Nos. DE-FG02-03ER46055 and BES-MS, W-31-109-ENG-38. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. Use of the HPCAT facility was supported by DOE-BES, DOE-NNSA (CDAC), NSF, DOD-TACOM, and the W. M. Keck Foundation. Use of the APS was supported by DOE-BES under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF Grant No. DMR-0520547. NR 30 TC 10 Z9 10 U1 2 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023519 DI 10.1063/1.3456500 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900031 ER PT J AU Manjeri, RM Qiu, S Mara, N Misra, A Vaidyanathan, R AF Manjeri, R. M. Qiu, S. Mara, N. Misra, A. Vaidyanathan, R. TI Superelastic response of [111] and [101] oriented NiTi micropillars SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TENSION-COMPRESSION ASYMMETRY; SHAPE-MEMORY; SINGLE-CRYSTALS; MARTENSITIC TRANSFORMATIONS; POLYCRYSTALLINE NITI; NEUTRON-DIFFRACTION; ELASTIC-CONSTANTS; PSEUDOELASTICITY; TEMPERATURES; DEFORMATION AB A combination of microcompression experiments on single crystal micron-scaled pillars of NiTi of known orientations and in situ neutron diffraction during loading of the same NiTi but in bulk, polycrystalline form are carried out to understand the stress-induced transformation associated with superelasticity at reduced length scales. At the length scales investigated, there is evidence through this work of a fully reversible stress-induced transformation from B2 to B19' NiTi that does not involve additional dislocation activity or irrecoverable strains. The orientation dependence of the elastic deformation of the 82 phase, the onset of its transformation to the B19' phase, the gradient and the hysteresis in the stress-strain response during transformation, the elastic modulus of the stress-induced B19' phase and the onset of plasticity are quantified and analyzed in these experiments by examining the crystallography of the B2 to B19' transformation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3445262] C1 [Manjeri, R. M.; Qiu, S.; Vaidyanathan, R.] Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. [Mara, N.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Manjeri, RM (reprint author), Univ Cent Florida, AMPAC, Orlando, FL 32816 USA. EM raj@mail.ucf.edu RI Wagner, Martin/A-6880-2008; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 FU NASA [NNX08AB51A]; NSF [CAREER DMR-0239512]; DOE Center for Integrated Nanotechnologies (CINT); Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA25396] FX This work was supported by NASA Fundamental Aeronautics Program, Supersonics Project (Grant No. NNX08AB51A), NSF (Grant No. CAREER DMR-0239512), and the DOE Center for Integrated Nanotechnologies (CINT). The authors are grateful to H. Li, P. Prakash, B. Clausen, D. W. Brown, and T. Sisneros for valuable experimental assistance. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (DOE). LANL is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 36 TC 10 Z9 10 U1 2 U2 26 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 023501 DI 10.1063/1.3445262 PG 7 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900013 ER PT J AU Pookpanratana, S France, R Blum, M Bell, A Bar, M Weinhardt, L Zhang, Y Hofmann, T Fuchs, O Yang, W Denlinger, JD Mulcahy, S Moustakas, TD Heske, C AF Pookpanratana, S. France, R. Blum, M. Bell, A. Baer, M. Weinhardt, L. Zhang, Y. Hofmann, T. Fuchs, O. Yang, W. Denlinger, J. D. Mulcahy, S. Moustakas, T. D. Heske, C. TI Chemical structure of vanadium-based contact formation on n-AlN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID NEGATIVE ELECTRON-AFFINITY; NITRIDE; GAN; EMISSION; ALUMINUM; SPECTRA; ALLOYS; DIODES; METAL; BLUE AB We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456060] C1 [Pookpanratana, S.; Blum, M.; Baer, M.; Zhang, Y.; Hofmann, T.; Heske, C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [France, R.; Moustakas, T. D.] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA. [Bell, A.; Mulcahy, S.] Univ Nevada, Dept Geosci, Las Vegas, NV 89154 USA. [Baer, M.] Helmholtz Zentrum Berlin Mat & Energie GmbH, Solar Energy Res, D-14109 Berlin, Germany. [Weinhardt, L.; Fuchs, O.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Yang, W.; Denlinger, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Pookpanratana, S (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM pookpanr@unlv.nevada.edu; tdm@bu.edu; heske@unlv.nevada.edu RI Mulcahy, Sean/C-2622-2011; Weinhardt, Lothar/G-1689-2013; Yang, Wanli/D-7183-2011; Moustakas, Theodore/D-9249-2016 OI Bell, Alexis/0000-0002-5738-4645; Mulcahy, Sean/0000-0002-8506-178X; Yang, Wanli/0000-0003-0666-8063; Moustakas, Theodore/0000-0001-8556-884X FU U.S. Department of Energy (DOE) [DE-FG36-05GO85032]; Nevada System of Higher Education under SFFA [NSHE 07-101 and 08-03]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We gratefully acknowledge support from the U.S. Department of Energy (DOE) under Contract No. DE-FG36-05GO85032 and the Nevada System of Higher Education under SFFA Grant Nos. NSHE 07-101 and 08-03. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 29 TC 6 Z9 6 U1 1 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024906 DI 10.1063/1.3456060 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900107 ER PT J AU Salvadori, MC Cattani, M Oliveira, MRS Teixeira, FS Brown, IG AF Salvadori, M. C. Cattani, M. Oliveira, M. R. S. Teixeira, F. S. Brown, I. G. TI Design and fabrication of microcavity-array superhydrophobic surfaces SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID LOTUS LEAF; WETTABILITY; WATER AB We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979] C1 [Salvadori, M. C.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Oliveira, M. R. S.; Teixeira, F. S.] Univ Sao Paulo, Polytech Sch, BR-05508900 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salvadori, MC (reprint author), Univ Sao Paulo, Inst Phys, CP 66318, BR-05315970 Sao Paulo, Brazil. EM mcsalva@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Oliveira, Marcio/H-2699-2012; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 OI Oliveira, Marcio/0000-0002-2042-0673; FU Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil FX This work was supported by the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil. NR 20 TC 12 Z9 13 U1 1 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024908 DI 10.1063/1.3466979 PG 6 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900109 ER PT J AU Tanaka, T Yu, KM Stone, PR Beeman, JW Dubon, OD Reichertz, LA Kao, VM Nishio, M Walukiewicz, W AF Tanaka, Tooru Yu, Kin M. Stone, Peter R. Beeman, Jeffrey W. Dubon, Oscar D. Reichertz, Lothar A. Kao, Vincent M. Nishio, Mitsuhiro Walukiewicz, Wladek TI Demonstration of homojunction ZnTe solar cells SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID MOLECULAR-BEAM EPITAXY; LIGHT-EMITTING-DIODES; N-TYPE ZNTE; GROWTH; LAYERS AB We report on the proof of photovoltaic activity of homojunction ZnTe solar cells in which n-ZnTe layers are fabricated by thermal diffusion of Al into p-ZnTe at several diffusion times to control the junction depth. An open circuit voltage of approximately 0.9 V was obtained under 1 X sun AM 1.5G condition in all solar cells, independent of diffusion times, while a short circuit current dropped down with increasing the diffusion time due to an increased light absorption in heavily defective Al-diffused layer. These fundamental results provide a basis for future development of intermediate band solar cells based on ZnTe materials. (C) 2010 American Institute of Physics. [doi:10.1063/1.3463421] C1 [Tanaka, Tooru; Yu, Kin M.; Stone, Peter R.; Beeman, Jeffrey W.; Dubon, Oscar D.; Reichertz, Lothar A.; Kao, Vincent M.; Walukiewicz, Wladek] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tanaka, Tooru; Nishio, Mitsuhiro] Saga Univ, Dept Elect & Elect Engn, Saga 8408502, Japan. [Stone, Peter R.; Dubon, Oscar D.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Reichertz, Lothar A.] RoseSt Labs Energy, Phoenix, AZ 85034 USA. RP Tanaka, T (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ttanaka@cc.saga-u.ac.jp RI Tanaka, Tooru/A-7294-2010; Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Tanaka, Tooru/0000-0001-5747-1717 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science; Kyushu Industrial Technology Center FX Work performed at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. One of the authors (T.T.) is grateful to Japan Society for the Promotion of Science for financial support under Excellent Young Researchers Overseas Visit Program. This work is partially supported by the grant-in-aid of Kyushu Industrial Technology Center. NR 16 TC 21 Z9 24 U1 0 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 024502 DI 10.1063/1.3463421 PG 3 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900091 ER PT J AU Tanto, B Ten Eyck, G Lu, TM AF Tanto, B. Ten Eyck, G. Lu, T. -M. TI A model for column angle evolution during oblique angle deposition SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FILMS AB We present a semiempirical model based on the shadowing effect to describe quantitatively the aggregation of columnar structure during physical vapor condensation onto a surface with an array of line seeds and a flat surface. Specifically, we predict the relationship between the column angle and the incident flux angle and how this relationship changes with processing conditions and materials. The model uses one input parameter, the fan angle generated at normal incident flux. The model describes well our experimental data on the Ge column angle evolution as a function of a wide range of incident flux angles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3465296] C1 [Tanto, B.; Lu, T. -M.] Rensselaer Polytech Inst, Dept Phys, Ctr Integrated Elect Appl Phys & Astron, Troy, NY 12180 USA. [Ten Eyck, G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tanto, B (reprint author), Rensselaer Polytech Inst, Dept Phys, Ctr Integrated Elect Appl Phys & Astron, Troy, NY 12180 USA. EM tantob@rpi.edu FU NSF [0506738]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We would like to thank NSF-NIRT Award No. 0506738 for support. We thank Dr. Pei-I Wang for sharing the Polyset nanoimprinting technique and Dr. G.-C. Wang for reading the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 9 TC 19 Z9 19 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL 15 PY 2010 VL 108 IS 2 AR 026107 DI 10.1063/1.3465296 PG 3 WC Physics, Applied SC Physics GA 638QL UT WOS:000280909900119 ER PT J AU Muller, RP Mattsson, AE Janssen, CL AF Muller, Richard P. Mattsson, Ann E. Janssen, Curtis L. TI Calculation of Chemical Reaction Energies Using the AM05 Density Functional SO JOURNAL OF COMPUTATIONAL CHEMISTRY LA English DT Article DE quantum chemistry; dft; AM05 ID EXCHANGE; THERMOCHEMISTRY; APPROXIMATION; GAUSSIAN-2 AB We present results that compare the accuracy of the AMOS density functional (Armiento and Mattsson, Phys Rev B 2005, 72, 085108; Mattsson et al.. J Chem Phys 2008, 128, 084714) to a set of chemical reaction energies. The reactions were generated from the singlet species in the well-known G2 test suite (Curtiss et al., J Chem Phys 1991; Curtiss et al., J Chem Phys 1997; 106, 1063). Our results show that, in general, the AMOS functional performs nearly as well as the other "pure" density functionals, but none of these perform as well as the hybrid B3LYP functional. These results are nonetheless encouraging because the AMOS functional arises from very simple assumptions, and does not require the calculation of the Hartree-Fock exchange integrals. (c) 2010 Wiley Periodicals, Inc. J Comput Chem 31: 1860-1863, 2010 C1 [Muller, Richard P.; Mattsson, Ann E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Janssen, Curtis L.] Sandia Natl Labs, Livermore, CA USA. RP Muller, RP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmuller@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 17 TC 3 Z9 3 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0192-8651 EI 1096-987X J9 J COMPUT CHEM JI J. Comput. Chem. PD JUL 15 PY 2010 VL 31 IS 9 BP 1860 EP 1863 DI 10.1002/jcc.21472 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 602TJ UT WOS:000278161400008 PM 20087901 ER PT J AU Chen, LJ Thorne, RM Jordanova, VK Wang, CP Gkioulidou, M Lyons, L Horne, RB AF Chen, Lunjin Thorne, Richard M. Jordanova, Vania K. Wang, Chih-Ping Gkioulidou, Matina Lyons, Larry Horne, Richard B. TI Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID ION-CYCLOTRON WAVES; PITCH-ANGLE SCATTERING; GEOMAGNETIC STORMS; PLASMA; INSTABILITIES; FREQUENCY; RADIATION; MAGNETOSPHERE; PRECIPITATION; GENERATION AB The global distribution and spectral properties of electromagnetic ion cyclotron (EMIC) waves in the He+ band are simulated for the 21 April 2001 storm using a combination of three different codes: the Rice Convection Model, the Ring current-Atmospheric interactions Model, and the HOTRAY ray tracing code (incorporated with growth rate solver). During the storm main phase, injected ions exhibit a non-Maxwellian distribution with pronounced phase space density minima at energies around a few keV. Ring current H+-injected from the plasma sheet provides the source of free energy for EMIC excitation during the storm. Significant wave gain is confined to a limited spatial region inside the storm time plume and maximizes at the eastward edge of the plume in the dusk and premidnight sector. The excited waves are also able to resonate and scatter relativistic electrons, but the minimum electron resonant energy is generally above 3 MeV. C1 [Chen, Lunjin; Thorne, Richard M.; Wang, Chih-Ping; Gkioulidou, Matina; Lyons, Larry] Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. [Jordanova, Vania K.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Horne, Richard B.] British Antarctic Survey, NERC, Cambridge CB3 0ET, England. RP Chen, LJ (reprint author), Univ Calif Los Angeles, Dept Atmospher Sci, Los Angeles, CA 90024 USA. EM clj@atmos.ucla.edu RI Chen, Lunjin/L-1250-2013; Gkioulidou, Matina/G-9009-2015; OI Chen, Lunjin/0000-0003-2489-3571; Gkioulidou, Matina/0000-0001-9979-2164; Horne, Richard/0000-0002-0412-6407; Jordanova, Vania/0000-0003-0475-8743 FU NASA [NNH08AJ01I, NNG08EK60I, NNX07AF66G, NNX07AG42G, NNX08A135G, NNX09AQ41H]; NSF [ATM-0819864] FX This research was supported by NASA grants NNX08A135G, NNH08AJ01I, NNG08EK60I, and NNH08AJ01I. The work by C.-P. Wang, M. Gkioulidou, and L. R. Lyons has been supported by NASA grants NNX07AF66G, NNX07AG42G, NNX08A135G, and NNX09AQ41H, and NSF grant ATM-0819864. We thank Richard Wolf at Rice University, who has generously provided us the RCM code, and Robert Spiro at Rice University for helping us get the RCM running at UCLA. NR 48 TC 63 Z9 63 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 15 PY 2010 VL 115 AR A07209 DI 10.1029/2009JA015075 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627PD UT WOS:000280051200009 ER PT J AU Zhang, Y Gable, CW Sheets, B AF Zhang, Ye Gable, Carl W. Sheets, Ben TI Equivalent hydraulic conductivity of three-dimensional heterogeneous porous media: An upscaling study based on an experimental stratigraphy SO JOURNAL OF HYDROLOGY LA English DT Article DE Hydraulic conductivity; Heterogeneity; Experimental stratigraphy; Equivalent conductivity; Effective conductivity; Connectivity ID RESERVOIR SIMULATION; PERMEABILITY TENSORS; STOCHASTIC-ANALYSIS; FLOW; CONNECTIVITY; AQUIFERS; BASIN; ARCHITECTURE; TRANSPORT; MODELS AB A critical issue facing large scale numerical simulation models is the estimation of representative hydraulic conductivity to account for the unresolved sub-grid-scale heterogeneity. In this study, two experiment-based hydraulic conductivity models offer a test case to evaluate this parameter. Each model contains a different heterogeneity pattern with connectivity characteristics that cannot be captured by univariate and bivariate statistics. A three-dimensional numerical upscaling method was developed to compute an equivalent conductivity full tensor for each model. The equivalent conductivities were compared to direct averages of local conductivities and to an effective conductivity predicted by several analytical methods. For each model, InK variances up to 16 were evaluated. The impact of variance on both upscaled conductivity and three fluid flow connectivity factors was assessed. Results suggest: (1) the upscaling method gave reliable results comparable to an established method which only gives the diagonal components, (2) for both aquifer models, when InK variances are low (less than 1.0), all analytical methods evaluated are nearly equally accurate; however, when variance becomes higher, the analytical methods of Desbarats (1992) and Noetinger and Haas (1996) were found to provide robust estimates of equivalent conductivities, despite possible violation of the multiGaussian assumption, (3) fluid flow characteristics in each model were significantly impacted by increasing variance, which can result in flow channeling in the lateral direction and increasing global anisotropy ratios of the equivalent conductivity, and (4) geometric connectivity, as analyzed by a percolation cluster analysis, indicates the importance of such features in focusing flow, in addition to the effects of high variance. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Ye] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Gable, Carl W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sheets, Ben] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. RP Zhang, Y (reprint author), Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. EM yzhang9@uwyo.edu RI Gable, Carl/B-4689-2011; OI Gable, Carl/0000-0001-7063-0815 FU NSF [EAR-9725989, OCE-0082483, EAR-0838250]; NSF through the Office of Naval Research [N00014-99-1-0603]; St. Anthony Falls Industrial Consortium (ExxonMobil, ConocoPhillips, JOGMEC and Chevron) FX We are grateful to Jim Mullin and Chris Ellis for the indispensable technical assistance with the sediment transport experiment. Funding for the experiment was provided by NSF Grants EAR-9725989 and OCE-0082483, through the Office of Naval Research under Grant N00014-99-1-0603, and by the St. Anthony Falls Industrial Consortium (ExxonMobil, ConocoPhillips, JOGMEC and Chevron). Funding for the numerical study was provided in part by a NSF grant EAR-0838250 awarded to Ye Zhang. The manuscript has benefited from the detailed and insightful comments made by Dr. Alexandre Desbarats of the Geological Survey of Canada and two anonymous reviewers. NR 53 TC 8 Z9 8 U1 0 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD JUL 15 PY 2010 VL 388 IS 3-4 BP 304 EP 320 DI 10.1016/j.hydrol.2010.05.009 PG 17 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 627FK UT WOS:000280024700012 ER PT J AU Sorenson, SG Payzant, EA Noble, RD Falconer, JL AF Sorenson, Stephanie G. Payzant, E. Andrew Noble, Richard D. Falconer, John L. TI Influence of crystal expansion/contraction on zeolite membrane permeation SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE B-ZSM-5 zeolite; Zeolite expansion and contraction; X-ray diffraction; Unit cell dimensions; SAPO-34 zeolite ID NEGATIVE THERMAL-EXPANSION; MAXWELL-STEFAN DIFFUSIVITY; X-RAY-DIFFRACTION; MFI ZEOLITE; CO2/CH4 SEPARATIONS; LOADING DEPENDENCE; SAPO-34 MEMBRANES; SORBED MOLECULES; HZSM-5 ZEOLITE; SILICALITE AB X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5 and SAPO-34 zeolite powders as a function of adsorbate loading at 300 K. and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 300 K: n-hexane and SF(6) in B-ZSM-5 and methanol and CO(2) in SAPO-34 zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defect sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF(6) adsorbed. In contrast, i-butane adsorption at 300 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loadings because the defect size increased at low loadings and decreased at high loadings. At 398 and 473 K, n-hexane expanded the B-ZSM-5 unit cell more than at 300 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 300 K, indicating boron substitution had little effect on volume expansion. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sorenson, Stephanie G.; Noble, Richard D.; Falconer, John L.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Falconer, JL (reprint author), Univ Colorado, Dept Chem & Biol Engn, 424 UCB, Boulder, CO 80309 USA. EM john.falconer@colorado.edu RI Payzant, Edward/B-5449-2009; Wettstein, Stephanie/D-2286-2012 OI Payzant, Edward/0000-0002-3447-2060; FU NSF [CBET 0730047]; Department of Education; Division of Scientific User Facilities, U.S. Department of Energy FX We gratefully acknowledge support by NSF grant CBET 0730047 and a Department of Education GAANN fellowship to SGS. A portion of this research was conducted at the Center for Nanophase Material Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. We thank Dr. Yanfeng Zhang for preparing the zeolite powders. NR 39 TC 15 Z9 15 U1 4 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD JUL 15 PY 2010 VL 357 IS 1-2 BP 98 EP 104 DI 10.1016/j.memsci.2010.04.020 PG 7 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 612ND UT WOS:000278905100010 ER PT J AU Stevens, MJ Hoh, JH AF Stevens, Mark J. Hoh, Jan H. TI Conformational Dynamics of Neurofilament Side-Arms SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID TANDEM MASS-SPECTROMETRY; INTERMEDIATE-FILAMENTS; UNSTRUCTURED PROTEINS; PHOSPHORYLATION SITES; MOLECULAR-DYNAMICS; ARCHITECTURE; BRUSH; SIMULATIONS; DOMAINS; CHAINS AB The side-arms of neurofilaments (NFs) have been proposed to be highly disordered, leading to entropic repulsion that modulates interfilament spacing. To gain further insight into the dynamics and organization of the side-arms, we performed molecular dynamics simulations of neurofilament brushes using a coarse-grained model. The density profiles for three NF proteins, NF-L, NF-M, and phosphorylated NF-H (NF-HP), grafted to planar surfaces were calculated and examined as a function of component (salt, residues) and as a function of charge. Analysis of these profiles reveals that the NF with the shortest side arm, NF-L, is disproportionately long compared to the other NFs. The reason for difference is that NF-L is effectively a strong polyelectrolyte, while NF-M and NF-HP are effectively weaker polyelectrolytes. Further, we find cross-correlations between neurofilament side-arms within the brush, even for the NF-L polymers. These correlations occur because of strong attractions between the long sequence repeats of negative residues and the long postive residue repeats and impart a time average structure of the neurofilament brush that deviates from an ideal polymer in a 0 solvent. C1 [Stevens, Mark J.] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Hoh, Jan H.] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA. RP Stevens, MJ (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM msteve@sandia.gov; jhoh@jhmi.edu OI Hoh, Jan/0000-0003-3842-9454 FU United States Department of Energy [DE-AC04-94AL85000]; US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory [DE-AC52-06NA25396] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94AL85000. This work was performed in part at the US Department of Energy, Center for Integrated Nanotechnologies, at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories. NR 25 TC 8 Z9 8 U1 0 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 15 PY 2010 VL 114 IS 27 BP 8879 EP 8886 DI 10.1021/jp102128u PG 8 WC Chemistry, Physical SC Chemistry GA 620NY UT WOS:000279507800006 PM 20557103 ER PT J AU Assary, RS Redfern, PC Hammond, JR Greeley, J Curtiss, LA AF Assary, Rajeev S. Redfern, Paul C. Hammond, Jeff R. Greeley, Jeffrey Curtiss, Larry A. TI Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ALPHA-D-GLUCOPYRANOSE; BETA-D-GLUCOPYRANOSE; GENERALIZED GRADIENT APPROXIMATION; ZERO-POINT ENERGIES; B3LYP/6-311++G-ASTERISK-ASTERISK LEVEL; AQUEOUS-SOLUTION; BASIS-SETS; BIOMASS; MOLECULES; DECOMPOSITION AB The thermochemistry of the conversion of glucose to levulinic acid through fructofuranosyl intermediates is investigated using the high-level ab initio methods G4 and G4MP2. The calculated gas phase reaction enthalpies indicate that the first two steps involving water molecule elimination are highly endothermic, while the other steps, including additional water elimination and rehydration to form levulinic acid, are exothermic. The calculated gas phase free energies indicate that inclusion of entropic effects makes the dehydration steps more favorable, although the elimination of the first water is still endothermic. Elevated temperatures and aqueous reaction environments are also predicted to make the dehydration reaction steps thermodynamically more favorable. On the basis of these enthalpy and free energy calculations, the first dehydration step in conversion of glucose to levulinic acid is likely a key step in controlling the overall progress of the reaction. An assessment of density functional theories and other theoretical methods for the calculation of the dehydration and hydration reactions in the decomposition of glucose is also presented. C1 [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Redfern, Paul C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Greeley, Jeffrey; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Hammond, Jeff R.] Argonne Natl Lab, Argonne Leadership Comp Facil, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Evanston, IL 60208 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM curtiss@anl.gov RI Surendran Assary, Rajeev/E-6833-2012; Hammond, Jeff/G-8607-2013 OI Surendran Assary, Rajeev/0000-0002-9571-3307; Hammond, Jeff/0000-0003-3181-8190 FU U.S. Department of Energy [DE-AC0206CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357. This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. We gratefully acknowledge grants of computer time from EMSL, a national scientific user facility located at Pacific Northwest National Laboratory, the ANL Laboratory Computing Resource Center (LCRC), and the ANL Center of Nanoscale Materials. We acknowledge helpful discussions with Prof. J. A. Dumesic. NR 41 TC 55 Z9 55 U1 4 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JUL 15 PY 2010 VL 114 IS 27 BP 9002 EP 9009 DI 10.1021/jp101418f PG 8 WC Chemistry, Physical SC Chemistry GA 620NY UT WOS:000279507800023 PM 20572641 ER PT J AU Chempath, S Boncella, JM Pratt, LR Henson, N Pivovar, BS AF Chempath, Shaji Boncella, James M. Pratt, Lawrence R. Henson, Neil Pivovar, Bryan S. TI Density Functional Theory Study of Degradation of Tetraalkylammonium Hydroxides SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID STEVENS REARRANGEMENT; FUEL-CELL; AMMONIUM YLIDES; MECHANISM; DECOMPOSITION; MEMBRANES; HYDRATION; SALTS AB We report density functional theory (DFT) studies of the degradation mechanism of tetraalkylammonium cations which are of interest for anion exchange membrane fuel cells. Three mechanisms of attack by hydroxide anions are explored: an S(N)2 pathway leading to alcohol formation, an ylide pathway that gives rise to unstable intermediates, and Hofmann elimination. Tetramethylammonium, ethyltrimethylammonium, and benzyltrimethylammonium are the model cations studied here. S(N)2 attack on tetramethylammonium was found to have a free energy barrier of 17.0 kcal/mol at 298 K. In the case of ethyltrimethylammonium, the overall barrier for the S(N)2 pathway was found to be 23.0 kcal/mol while Hofmann elimination was 12.8 kcal/mol. The ylide and S(N)2 attacks on benzyltrimethylammonium show similar energy changes as in the case of tetramethylammonium. In the case of benzyltrimethylammonium, additional side reactions starting from the ylide intermediate are also shown to be feasible. We also discuss the influence of the immediate solvation shell on the reaction mechanism. A refined model in which the immediate solvation shell of hydroxide is modeled explicitly is found to have better experimental agreement than a model in which solvation is modeled implicitly. C1 [Chempath, Shaji; Henson, Neil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pivovar, Bryan S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. RP Pivovar, BS (reprint author), 1617 Cole Blvd, Golden, CO 80401 USA. EM bryan_pivovar@nrel.gov RI Pratt, Lawrence/H-7955-2012; OI Pratt, Lawrence/0000-0003-2351-7451; Henson, Neil/0000-0002-1842-7884; Boncella, James/0000-0001-8393-392X FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX This project was funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. NR 35 TC 97 Z9 99 U1 6 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 15 PY 2010 VL 114 IS 27 BP 11977 EP 11983 DI 10.1021/jp9122198 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 620NZ UT WOS:000279507900043 ER PT J AU Parameswaran, R Widawsky, JR Vazquez, H Park, YS Boardman, BM Nuckolls, C Steigerwald, ML Hybertsen, MS Venkataraman, L AF Parameswaran, R. Widawsky, J. R. Vazquez, H. Park, Y. S. Boardman, B. M. Nuckolls, C. Steigerwald, M. L. Hybertsen, M. S. Venkataraman, L. TI Reliable Formation of Single Molecule Junctions with Air-Stable Diphenylphosphine Linkers SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CONDUCTANCE; TRANSPORT; ALKANEDITHIOLS; CONFORMATION; ELECTRONICS; PHOSPHINES; RESISTANCE; CONTACTS AB We measure the conductance of single Au-molecule-Au junctions with a series of air-stable diphenylphosphone-terminated molecules using the scanning tunneling microscope-based break junction technique. Thousands of conductance versus displacement traces collected for each molecule are used to statistically analyze junction conductance and evolution upon elongation. Measured conductances for a series of alkane-based molecules exhibit an exponential decrease with increasing length as expected for saturated molecules, with a tunneling decay constant of 0.98 +/- 0.04. Measurements of junction elongation indicate strong metal-molecule binding, with a length that increases with the number of methylene groups in the backbone. Measured conductance histograms for four molecules with short, unsaturated backbones (e.g., benzene) are much broader with less well-defined peaks. These measurements are supported by density function theory calculations. The phosphine binds selectively to under-coordinated gold atoms through a donor-acceptor bond with a binding energy of about 1 eV. The calculated tunnel coupling correlates very well with experiment. C1 [Hybertsen, M. S.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Parameswaran, R.] Columbia Univ Barnard Coll, Dept Chem & Phys, New York, NY 10027 USA. [Widawsky, J. R.; Venkataraman, L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Vazquez, H.; Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.] Columbia Univ, Ctr Elect Transport Mol Nanostruct, New York, NY 10027 USA. [Park, Y. S.; Boardman, B. M.; Nuckolls, C.; Steigerwald, M. L.] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Hybertsen, MS (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mhyberts@bnl.gov; lv2117@columbia.edu RI Vazquez, Hector/G-5788-2014; OI Vazquez, Hector/0000-0002-3865-9922; Hybertsen, Mark S/0000-0003-3596-9754; Venkataraman, Latha/0000-0002-6957-6089 FU New York State Office of Science, Technology, and Academic Research (NYSTAR); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; ACS; NSF [CHE-0641523, CHE-07-44185] FX This work was supported in part by the Nanoscale Science and Engineering Initiative of the NSF (Award CHE-0641523), the New York State Office of Science, Technology, and Academic Research (NYSTAR), and NSF Career Award CHE-07-44185 (R.P. and L.V.). L.V. thanks ACS for PRF grant. This work was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract Number DE-AC02-98CH10886 (M.S.H.). NR 27 TC 27 Z9 28 U1 1 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2114 EP 2119 DI 10.1021/jz100656s PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000012 ER PT J AU Liu, J Kunz, M Chen, K Tamura, N Richardson, TJ AF Liu, Jun Kunz, Martin Chen, Kai Tamura, Nobumichi Richardson, Thomas J. TI Visualization of Charge Distribution in a Lithium Battery Electrode SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID POLYMER BATTERY; SPECTROSCOPY; CELLS AB We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode. C1 [Liu, Jun; Richardson, Thomas J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kunz, Martin; Chen, Kai; Tamura, Nobumichi] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Richardson, TJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM tjrichardson@lbl.gov RI Kunz, Martin/K-4491-2012; Chen, Kai/O-5662-2014 OI Kunz, Martin/0000-0001-9769-9900; Chen, Kai/0000-0002-4917-4445 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [0416243] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy under contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The microdiffraction program at the ALS on beamline 12.3.2 was made possible by NSF grant no. 0416243. NR 17 TC 68 Z9 69 U1 3 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2120 EP 2123 DI 10.1021/jz100634n PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000013 ER PT J AU Hoffmann, FM Yang, YX Paul, J White, MG Hrbek, J AF Hoffmann, Friedrich M. Yang, Yixiong Paul, Jan White, Michael G. Hrbek, Jan TI Hydrogenation of Carbon Dioxide by Water: Alkali-Promoted Synthesis of Formate SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID COMPOUND FORMATION; METHANOL SYNTHESIS; SURFACE-CHEMISTRY; FORMIC-ACID; FT-IRAS; CO2; POTASSIUM; ACTIVATION; RU(001); OXALATE AB Conversion of carbon,dioxide utilizing protons from water decomposition is likely to provide a sustainable source of fuels and chemicals in the future. We present here a time-evolved infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD) study of the reaction of CO(2) + H(2)O in thin potassium layers. Reaction at temperatures below 200 K results in the hydrogenation of carbon dioxide to potassium formate. Thermal stability of the formate, together with its sequential transformation to oxalate and to carbonate, is monitored and discussed. The data of this model study suggest a dual promoter mechanism of the potassium: the activation of CO(2) and the dissociation of water. Reaction at temperatures above 200 K, in contrast, is characterized by the absence of formate and the direct reaction of CO(2) to oxalate, due to a drastic reduction of the sticking coefficient of water at higher temperatures. C1 [Yang, Yixiong; White, Michael G.; Hrbek, Jan] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Hoffmann, Friedrich M.] BMCC CUNY, Dept Sci, New York, NY 10007 USA. [Yang, Yixiong; White, Michael G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Paul, Jan] Lulea Univ Technol, Div Phys, S-97187 Lulea, Sweden. RP Hrbek, J (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM hrbek@bnl.gov RI Hrbek, Jan/I-1020-2013 FU U.S. Department of Energy [E-AC02-98CH10886] FX This work was carried out in the Brookhaven National Laboratory. We thank the U.S. Department of Energy (Chemical Sciences Division, DE-AC02-98CH10886) for financial support. NR 37 TC 6 Z9 6 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 15 PY 2010 VL 1 IS 14 BP 2130 EP 2134 DI 10.1021/jz1007356 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 627EC UT WOS:000280021000015 ER PT J AU Zhou, AG Brown, D Vogel, S Yeheskel, O Barsoum, MW AF Zhou, A. G. Brown, D. Vogel, S. Yeheskel, O. Barsoum, M. W. TI On the kinking nonlinear elastic deformation of cobalt SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Mechanical characterization; Neutron diffraction; Cobalt; Dislocation ID FATIGUE-CRACK GROWTH; SINGLE CRYSTALS; TEMPERATURE DEPENDENCE; NEUTRON-DIFFRACTION; FRACTURE PROPERTIES; MAGNESIUM ALLOY; TI3SIC2; PLASTICITY; STRAIN; BANDS AB Recently cobalt was classified as a kinking nonlinear elastic, KNE, solid. Fully reversible incipient kink bands, IKBs, were invoked to explain both its microyielding and hysteretic stress-strain curves. Herein we present further evidence and insights in the KNE nature of cobalt by measuring its mechanical hysteresis as a function of grain size, pre-strain and testing temperature. Unlike previous work, in coarse-grained cobalt, something other than grain boundaries determine the domain size. The hysteresis loops were only obtained at temperatures where cobalt was hexagonal-close packed. In situ neutron diffraction strains could only account for approximate to 1/3 of the total strain measured and ruled out dislocation pileups as the source of the remaining strain suggesting that it is due to IKBs. The totality of our results can be successfully explained and quantified by our microscale IKB-based model, based on which we estimate the critical resolved shear stress of basal plane dislocations to be 13 +/- 3 MPa and the reversible dislocation density to be 1.5-6 x 10(13) m(-2) in the approximate to 200-400MPa stress range. (C) 2010 Elsevier BM. All rights reserved. C1 [Zhou, A. G.; Yeheskel, O.; Barsoum, M. W.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Brown, D.; Vogel, S.] Los Alamos Natl Lab, LANSCE LC, Los Alamos, NM 87545 USA. RP Zhou, AG (reprint author), Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454100, Henan, Peoples R China. EM zhouag@hpu.edu.cn RI Zhou, Aiguo/B-3560-2008; Lujan Center, LANL/G-4896-2012; OI Zhou, Aiguo/0000-0002-0029-9060; Vogel, Sven C./0000-0003-2049-0361 FU Metals Division of NSF [SGER 0736218]; ARO [DAAD19-03-1-0213] FX This work was supported by the Metals Division of NSF (SGER 0736218) and ARO (DAAD19-03-1-0213). NR 42 TC 12 Z9 12 U1 1 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD JUL 15 PY 2010 VL 527 IS 18-19 BP 4664 EP 4673 DI 10.1016/j.msea.2010.04.048 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 617SG UT WOS:000279300900020 ER PT J AU Lawler, MJ Fujita, K Lee, J Schmidt, AR Kohsaka, Y Kim, CK Eisaki, H Uchida, S Davis, JC Sethna, JP Kim, EA AF Lawler, M. J. Fujita, K. Lee, Jhinhwan Schmidt, A. R. Kohsaka, Y. Kim, Chung Koo Eisaki, H. Uchida, S. Davis, J. C. Sethna, J. P. Kim, Eun-Ah TI Intra-unit-cell electronic nematicity of the high-T-c copper-oxide pseudogap states SO NATURE LA English DT Article ID CUPRATE SUPERCONDUCTORS; FLUCTUATING STRIPES; MAGNETIC ORDER; MOTT INSULATOR; PHASE; BI2SR2CACU2O8+DELTA; SYMMETRY; BREAKING AB In the high-transition-temperature (high-T-c) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced(1). Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within each CuO2 unit cell. We analyse spectroscopic-imaging scanning tunnelling microscope images of the intra-unit-cell states in underdoped Bi2Sr2CaCu2O8 + delta and, using two independent evaluation techniques, find evidence for electronic nematicity of the states close to the pseudogap energy. Moreover, we demonstrate directly that these phenomena arise from electronic differences at the two oxygen sites within each unit cell. If the characteristics of the pseudogap seen here and by other techniques all have the same microscopic origin, this phase involves weak magnetic states at the O sites that break 90 degrees-rotational symmetry within every CuO2 unit cell. C1 [Lawler, M. J.; Fujita, K.; Lee, Jhinhwan; Schmidt, A. R.; Kim, Chung Koo; Davis, J. C.; Sethna, J. P.; Kim, Eun-Ah] Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. [Lawler, M. J.] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA. [Fujita, K.; Lee, Jhinhwan; Schmidt, A. R.; Kim, Chung Koo; Davis, J. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Fujita, K.; Uchida, S.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Lee, Jhinhwan] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Kohsaka, Y.] RIKEN, Magnet Mat Lab, Wako, Saitama 3510198, Japan. [Eisaki, H.] Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. [Davis, J. C.] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. RP Kim, EA (reprint author), Cornell Univ, Dept Phys, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA. EM eun-ah.kim@cornell.edu RI Lee, Jhinhwan/C-2074-2011; Lee, Jhinhwan/I-3727-2012; Kim, Eun-Ah/K-6711-2012; Lawler, Michael/K-6770-2012; OI Lee, Jhinhwan/0000-0001-7159-6305; Kim, Eun-Ah/0000-0002-9554-4443; Lawler, Michael/0000-0002-2319-2274; KIM, CHUNG KOO/0000-0002-2463-197X FU NSF [DMR-0520404]; Center for Emergent Superconductivity; Energy Frontier Research Center; US Department of Energy [DE-2009-BNL-PM015]; Ministry of Science and Education (Japan); Japan Society for the Promotion of Science; US Army Research Office; Physics and Astronomy Department at the University of British Columbia, Vancouver, Canada FX We are grateful to P. Abbamonte, D. Bonn, J.C. Campuzano, D.M. Eigler, E. Fradkin, T. Hanaguri, W. Hardy, J. E. Hoffman, S. Kivelson, A.P. Mackenzie, M. Norman, B. Ramshaw, S. Sachdev, G. Sawatzky, H. Takagi, J. Tranquada and J. Zaanen, for discussions and communications. Theoretical studies were supported by NSF DMR-0520404 to the Cornell Center for Materials Research. Experimental studies are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by the US Department of Energy, under DE-2009-BNL-PM015, as well as by a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the Global Centers of Excellence Program for Japan Society for the Promotion of Science. A.R.S. acknowledges support from the US Army Research Office. M.J.L., J.C.D. and E.-A.K. thank KITP for its hospitality. J.C.D. acknowledges gratefully the hospitality and support of the Physics and Astronomy Department at the University of British Columbia, Vancouver, Canada. NR 30 TC 234 Z9 235 U1 7 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD JUL 15 PY 2010 VL 466 IS 7304 BP 347 EP 351 DI 10.1038/nature09169 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 625BP UT WOS:000279867100044 PM 20631795 ER PT J AU Shverdin, MY Albert, F Anderson, SG Betts, SM Gibson, DJ Messerly, MJ Hartemann, FV Siders, CW Barty, CPJ AF Shverdin, M. Y. Albert, F. Anderson, S. G. Betts, S. M. Gibson, D. J. Messerly, M. J. Hartemann, F. V. Siders, C. W. Barty, C. P. J. TI Chirped-pulse amplification with narrowband pulses SO OPTICS LETTERS LA English DT Article ID SINGLE-SHOT MEASUREMENT; COMPRESSION; DISPERSION; INTENSITY; PHASE AB We demonstrate a compact hyperdispersion stretcher and compressor pair that permit chirped-pulse amplification in Nd:YAG. We generate 750 mJ, 0.2 nm FWHM, 10 Hz pulses recompressed to an 8 ps near-transform-limited duration. The dispersion-matched pulse compressor and stretcher impart a chirp of 7300 ps/nm, in a 3 m x 1 m footprint. (C) 2010 Optical Society of America C1 [Shverdin, M. Y.; Albert, F.; Anderson, S. G.; Betts, S. M.; Gibson, D. J.; Messerly, M. J.; Hartemann, F. V.; Siders, C. W.; Barty, C. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Shverdin, MY (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM shverdin2@llnl.gov RI Albert, Felicie/G-2645-2013 NR 13 TC 10 Z9 10 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD JUL 15 PY 2010 VL 35 IS 14 BP 2478 EP 2480 PG 3 WC Optics SC Optics GA 626VC UT WOS:000279994400055 PM 20634869 ER PT J AU Kafesaki, M Soukoulis, CM AF Kafesaki, Maria Soukoulis, Costas M. TI Proceedings of the Eighth International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media Preface SO PHYSICA B-CONDENSED MATTER LA English DT Editorial Material C1 [Kafesaki, Maria; Soukoulis, Costas M.] Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, Iraklion 71110, Crete, Greece. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kafesaki, M (reprint author), Fdn Res & Technol Hellas FORTH, Inst Elect Struct & Laser IESL, POB 1385, Iraklion 71110, Crete, Greece. EM kafesaki@iesl.forth.gr; soukoulis@ameslab.gov RI Kafesaki, Maria/E-6843-2012 OI Kafesaki, Maria/0000-0002-9524-2576 NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JUL 15 PY 2010 VL 405 IS 14 BP 2907 EP 2907 DI 10.1016/j.physb.2010.01.001 PG 1 WC Physics, Condensed Matter SC Physics GA 620IE UT WOS:000279491900001 ER PT J AU Diem, M Koschny, T Soukoulis, CM AF Diem, Marcus Koschny, Thomas Soukoulis, C. M. TI Transmission in the vicinity of the Dirac point in hexagonal photonic crystals SO PHYSICA B-CONDENSED MATTER LA English DT Article; Proceedings Paper CT 8th International Conference on Electrical Transport and Optical Properties of Inhomogeneous Media CY JUN 07-12, 2009 CL Rethymnon, GREECE SP Univ Crete, Greek Minist Educ & Religious Affairs, European Off Aerosp Res & Dev, Off Naval Res Global, METAMORPHOSE Virtual Inst DE Dirac point; Transmittance; Scaling; Photonic crystals ID BAND-GAP; GRAPHITE STRUCTURE; GRAPHENE; DIFFRACTION; LATTICE AB We use a scattering matrix approach to simulate the transmission through a hexagonal photonic crystal in the vicinity of the Dirac point. If the crystal is oriented so that the propagation direction perpendicular to the surface corresponds to the Gamma K direction, no oblique transmission is possible for a very long (infinite) structure. For a finite structure with width, W, and length, L, the length dependence of the transmission is given by T(total) = Gamma(0)W/L. For T(total) all waves with a wavevector parallel to the surface, k(parallel to) = n2 pi/W, described by a channel number, n, must be considered. We show the transmission at the Dirac point follows the given scaling law and this scaling law is related to the behavior of the individual channels. This leads to the establishment of a criterion for the maximum length for this scaling behavior when the total transmission reaches a constant value. We also compare this scaling behavior to the results in other frequency regions. (C) 2010 Elsevier B.V. All rights reserved. C1 [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Diem, Marcus; Koschny, Thomas; Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Koschny, Thomas; Soukoulis, C. M.] FORTH, IESL, Iraklion 71110, Crete, Greece. [Soukoulis, C. M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. RP Diem, M (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM diem@ameslab.gov RI Soukoulis, Costas/A-5295-2008 NR 36 TC 28 Z9 29 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD JUL 15 PY 2010 VL 405 IS 14 BP 2990 EP 2995 DI 10.1016/j.physb.2010.01.020 PG 6 WC Physics, Condensed Matter SC Physics GA 620IE UT WOS:000279491900020 ER PT J AU Larkin, J Goldburg, W Bandi, MM AF Larkin, Jason Goldburg, Walter Bandi, M. M. TI Time evolution of a fractal distribution: Particle concentrations in free-surface turbulence SO PHYSICA D-NONLINEAR PHENOMENA LA English DT Article; Proceedings Paper CT International Symposium on Fluid Science and Turbulence CY MAY 30-31, 2008 CL Johns Hopkins Univ, Homewood Campus, Baltimore, MD HO Johns Hopkins Univ, Homewood Campus DE Turbulent flow; Dynamical system approaches; Chaos in fluid dynamics ID DIMENSIONS; NUMBER; FLUID; FLOW; WAVE AB Steady-state turbulence is generated in a tank of water and the trajectories of particles forming a compressible system on the surface are tracked in time. The initial uniformly distributed floating particles coagulate and form a fractal structure, a rare manifestation of a strange attractor observable in real space. The surface pattern reaches a steady state in approximately 1 s. Measurements are made of the fractal dimensions D-q(t) (q = 1 to 6) of the floating particles starting with the uniform distribution D-q(0) = 2 for Taylor Microscale Reynolds number Re-lambda similar or equal to 160. Focus is on the time evolution of the correlation dimension D-2(t) as the steady state is approached. This steady state is reached in several large eddy turnover times and does so at an exponential rate. (C) 2009 Elsevier B.V. All rights reserved. C1 [Larkin, Jason] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. [Goldburg, Walter] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Bandi, M. M.] Los Alamos Natl Lab, Ctr Nonlinear Studies T CNLS, Los Alamos, NM 87545 USA. [Bandi, M. M.] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp MPA 10, Los Alamos, NM 87545 USA. RP Larkin, J (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. EM jm137@pitt.edu NR 25 TC 9 Z9 9 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2789 EI 1872-8022 J9 PHYSICA D JI Physica D PD JUL 15 PY 2010 VL 239 IS 14 BP 1264 EP 1268 DI 10.1016/j.physd.2009.11.005 PG 5 WC Mathematics, Applied; Physics, Multidisciplinary; Physics, Mathematical SC Mathematics; Physics GA 627IJ UT WOS:000280032400009 ER PT J AU Chabot-Couture, G Hancock, JN Mang, PK Casa, DM Gog, T Greven, M AF Chabot-Couture, G. Hancock, J. N. Mang, P. K. Casa, D. M. Gog, T. Greven, M. TI Polarization dependence and symmetry analysis in indirect K-edge RIXS SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-SCATTERING; SELF-ABSORPTION CORRECTION; CUPRATE SUPERCONDUCTORS; MOMENTUM DEPENDENCE; COPPER OXIDES; EXCITATIONS; SPECTRUM; CU; SPECTROSCOPY; SR2CUO2CL2 AB We present a study of the charge-transfer excitations in undoped Nd2CuO4 using resonant inelastic x-ray scattering (RIXS) at the Cu K-edge. At the Brillouin zone center, azimuthal scans that rotate the incident-photon polarization within the CuO2 planes reveal weak fourfold oscillations. A comparison of spectra taken in different Brillouin zones reveals a spectral weight decrease at high-energy loss from forward-to back-scattering. We show that these are scattered-photon polarization effects related to the properties of the observed electronic excitations. Each of the two effects constitutes about 10% of the inelastic signal while the "4p-as-spectator" approximation describes the remaining 80%. Raman selection rules can accurately model our data, and we conclude that the observed polarization-dependent RIXS features correspond to E-g and B-1g charge-transfer excitations to non-bonding oxygen 2p bands, above 2.5 eV energy-loss, and to an E-g d -> d excitation at 1.65 eV. C1 [Chabot-Couture, G.; Mang, P. K.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Hancock, J. N.] Univ Geneva, Dept Phys Mat Condensee, CH-1211 Geneva, Switzerland. [Casa, D. M.; Gog, T.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Greven, M.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. RP Chabot-Couture, G (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RI Hancock, Jason/F-4694-2010; Casa, Diego/F-9060-2016 FU DOE [DE-AC02-76SF00515]; NSF [DMR-0705086] FX We would like to acknowledge valuable conversations with J. van den Brink, T. P. Devereaux, and K. Ishii. This work was supported by the DOE under Contract No. DE-AC02-76SF00515 and by the NSF under Grant No. DMR-0705086. NR 53 TC 9 Z9 9 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 3 AR 035113 DI 10.1103/PhysRevB.82.035113 PG 11 WC Physics, Condensed Matter SC Physics GA 626AH UT WOS:000279937500003 ER PT J AU Chan, JA Liu, JZ Zunger, A AF Chan, J. A. Liu, J. Z. Zunger, Alex TI Bridging the gap between atomic microstructure and electronic properties of alloys: The case of (In,Ga)N SO PHYSICAL REVIEW B LA English DT Article ID SHORT-RANGE-ORDER; QUANTUM DOTS; INGAN ALLOYS; SEMICONDUCTOR ALLOYS; PHASE-DIAGRAMS; ENERGY; LOCALIZATION; SYSTEMS; ORIGIN; STRAIN AB The atomic microstructure of alloys is rarely perfectly random, instead exhibiting differently shaped precipitates, clusters, zigzag chains, etc. While it is expected that such microstructural features will affect the electronic structures (carrier localization and band gaps), theoretical studies have, until now, been restricted to investigate either perfectly random or artificial "guessed" microstructural features. In this paper, we simulate the alloy microstructures in thermodynamic equilibrium using the static Monte Carlo method and study their electronic structures explicitly using a pseudopotential supercell approach. In this way, we can bridge atomic microstructures with their electronic properties. We derive the atomic microstructures of InGaN using (i) density-functional theory total energies of similar to 50 ordered structures to construct a (ii) multibody cluster expansion, including strain effects to which we have applied (iii) static Monte Carlo simulations of systems consisting of over 27000 atoms to determine the equilibrium atomic microstructures. We study two types of alloy thermodynamic behavior: (a) under lattice incoherent conditions, the formation enthalpies are positive and thus the alloy system phase-separates below the miscibility-gap temperature T-MG, (b) under lattice coherent conditions, the formation enthalpies can be negative and thus the alloy system exhibits ordering tendency. The microstructure is analyzed in terms of structural motifs (e. g., zigzag chains and InnGa4-nN tetrahedral clusters). The corresponding electronic structure, calculated with the empirical pseudopotentials method, is analyzed in terms of band-edge energies and wave-function localization. We find that the disordered alloys have no electronic localization but significant hole localization, while below the miscibility gap under the incoherent conditions, In-rich precipitates lead to strong electron and hole localization and a reduction in the band gap. C1 [Chan, J. A.; Liu, J. Z.; Zunger, Alex] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chan, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM alex.zunger@nrel.gov RI Liu, Jefferson zhe/B-5916-2008; Zunger, Alex/A-6733-2013 OI Liu, Jefferson zhe/0000-0002-5282-7945; FU U.S. Department of Energy, Office of Science under NREL [DE-AC36-08GO28308] FX We gratefully acknowledge Voicu Popescu and Mayeul d'Avezac for discussions on the electronic structure and cluster expansion of InGaN. This work was funded by the U.S. Department of Energy, Office of Science under NREL Contract No. DE-AC36-08GO28308. NR 47 TC 25 Z9 25 U1 1 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 045112 DI 10.1103/PhysRevB.82.045112 PG 11 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800008 ER PT J AU Kang, TD Standard, E Ahn, KH Sirenko, AA Carr, GL Park, S Choi, YJ Ramazanoglu, M Kiryukhin, V Cheong, SW AF Kang, T. D. Standard, E. Ahn, K. H. Sirenko, A. A. Carr, G. L. Park, S. Choi, Y. J. Ramazanoglu, M. Kiryukhin, V. Cheong, S. -W. TI Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet SO PHYSICAL REVIEW B LA English DT Article ID EARTH IRON GARNETS; SPECTRA AB The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single crystals have been studied in the range between 15 and 100 cm(-1), in magnetic fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some of the observed infrared-active excitations to electric dipole transitions between ligand-field split states of Tb3+ ions. Anticrossing between the magnetic exchange excitation and the ligand-field transition occurs at the temperature between 60 and 80 K. The corresponding coupling energy for this interaction is 6 cm(-1). Temperature-induced softening of the hybrid IR excitation correlates with the increase in the static dielectric constant. We discuss the possibility for hybrid excitations of magnons and ligand-field states and their possible connection to the magnetoelectric effect in Tb3Fe5O12. C1 [Kang, T. D.; Standard, E.; Ahn, K. H.; Sirenko, A. A.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. [Carr, G. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Park, S.; Choi, Y. J.; Ramazanoglu, M.; Kiryukhin, V.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. [Park, S.; Choi, Y. J.; Ramazanoglu, M.; Kiryukhin, V.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. RP Kang, TD (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07102 USA. EM sirenko@njit.edu FU NSF [DMR-0546985]; DOE [DE-FG02-07ER46382]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors are thankful to S. M. O'Malley, L. Mihaly, and T. Zhou for valuable discussions and to R. Smith for help at U4IR and U12IR beamlines. T.D.K. and E.S. at NJIT were supported by the NSF under Grant No. DMR-0546985. V.K. and S.-W.C. at Rutgers were supported by DOE DE-FG02-07ER46382. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 21 TC 13 Z9 13 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 1 AR 014414 DI 10.1103/PhysRevB.82.014414 PG 7 WC Physics, Condensed Matter SC Physics GA 626AC UT WOS:000279937000001 ER PT J AU Shivamoggi, V Refael, G Moore, JE AF Shivamoggi, V. Refael, G. Moore, J. E. TI Majorana fermion chain at the quantum spin Hall edge SO PHYSICAL REVIEW B LA English DT Article ID INSULATOR; WELLS; PHASE AB We study a realization of a 1D chain of Majorana bound states at the interfaces between alternating ferromagnetic and superconducting regions at a quantum spin Hall insulator edge. In the limit of well-separated Majoranas, the system can be mapped to the transverse field Ising model. The disordered critical point can be reached by tuning the relative magnitude or phases of the ferromagnetic and superconducting order parameters. We compute the voltage dependence of the tunneling current from a metallic tip into the Majorana chain as a direct probe of the random critical state. C1 [Shivamoggi, V.; Moore, J. E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Refael, G.] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Moore, J. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Shivamoggi, V (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413]; Packard Foundation; Sloan Foundation; Research Corporation; DARPA FX The authors thank L. Fu, C. L. Kane, and L. Molenkamp for useful conversations and acknowledge support from NSF under Grant No. DMR-0804413 (V. S. and J.E.M.) and from the Packard Foundation, The Sloan Foundation, the Research Corporation, and DARPA (G.R.). NR 27 TC 36 Z9 36 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 041405 DI 10.1103/PhysRevB.82.041405 PG 4 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800005 ER PT J AU Troparevsky, MC Zhao, K Xiao, D Eguiluz, AG Zhang, ZY AF Troparevsky, M. Claudia Zhao, Ke Xiao, Di Eguiluz, Adolfo G. Zhang, Zhenyu TI Molecular orbital view of the electronic coupling between two metal nanoparticles SO PHYSICAL REVIEW B LA English DT Article ID ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON RESONANCE; QUANTUM DOTS; NANOCRYSTALS; SPECTROSCOPY; JUNCTIONS; NANOSTRUCTURES; MULTIFERROICS; CONDUCTANCE; FILMS AB The electronic coupling between metal nanoparticles is responsible for intriguing new phenomena observed when the particles are near touching contact, which is exemplified by recent investigations of nanoparticle dimers. However, little is known about the role of the molecular orbitals of the nanoparticle dimers. The expectation is that the physics and chemistry of the system must be reflected in the orbitals that control the bonding at touching contact. This expectation is borne out in the present investigation in which we present a comprehensive theoretical study based on density-functional theory of the electronic coupling between two silver nanoparticles. We explain our findings by studying the molecular orbitals of the dimers as a function of the separation and relative orientation between the nanoparticles. We show that as the nanoparticles approach each other a bond-forming step takes place, and that the strength of the hybridization is a key element to determine various properties of the system. We find that the relative orientation between the nanoparticles plays an important role in determining the strength of the coupling which can be visualized by the spatial distribution of the highest occupied molecular orbitals. Moreover, the strength of the coupling will in turn determine the ease of their transition to the nonlinear dielectric-response regime. This effect allows for the tunability of the electronic coupling and magnetic moment of the dimer. Our findings are essential for understanding and tailoring desired physical and chemical properties of closely aggregated nanoparticles relevant for applications such as surface-enhanced Raman scattering and quantum transport in molecular devices. C1 [Troparevsky, M. Claudia; Zhao, Ke; Eguiluz, Adolfo G.; Zhang, Zhenyu] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Troparevsky, M. Claudia; Zhao, Ke; Xiao, Di; Eguiluz, Adolfo G.; Zhang, Zhenyu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhao, Ke] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Zhang, Zhenyu] Univ Sci & Technol China, ICQD, Hefei 230026, Anhui, Peoples R China. RP Troparevsky, MC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Xiao, Di/B-1830-2008 OI Xiao, Di/0000-0003-0165-6848 FU NSF [DMR-0906025, OCI-0904972]; DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN); Robert Welch Foundation [C-1590] FX This work was supported in part by NSF (Grant Nos. DMR-0906025 and OCI-0904972), and by DOE (the Division of Material Sciences and Engineering, Office of Basic Sciences, and BES-CMSN). K.Z. at Rice University was supported by the Robert Welch Foundation (C-1590). The calculations were performed at NERSC. NR 45 TC 3 Z9 3 U1 1 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 4 AR 045413 DI 10.1103/PhysRevB.82.045413 PG 8 WC Physics, Condensed Matter SC Physics GA 626AK UT WOS:000279937800010 ER PT J AU Weber, F Pintschovius, L AF Weber, F. Pintschovius, L. TI Superconductivity-induced distortions of phonon lineshapes in niobium SO PHYSICAL REVIEW B LA English DT Article ID INELASTIC NEUTRON-SCATTERING; ANOMALIES; GAP AB Superconductivity-induced changes in phonon lineshapes in niobium have been reinvestigated by high-resolution inelastic neutron scattering. We show that the changes go beyond a simple change in lifetime and frequency when the phonon frequency is close to the superconducting energy gap 2 Delta. The observed lineshapes in elemental niobium are qualitatively similar to those found previously in borocarbide superconductors and agree very well with those predicted by the theory of Allen et al. [Phys. Rev. B 56, 5552 (1997)]. Our results indicate that the peculiar phonon lineshapes in the superconducting state predicted by the theory of Allen et al. [Phys. Rev. B 56, 5552 (1997)] are a general phenomenon and not restricted to a particular class of compounds. C1 [Weber, F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Pintschovius, L.] Karlsruher Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. RP Weber, F (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM frank.weber@kit.edu FU U.S. Department of Energy, Basic Energy Sciences-Materials Sciences [DE-AC02-06CH11357] FX Work at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences-Materials Sciences, under Contract No. DE-AC02-06CH11357. NR 15 TC 8 Z9 8 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 15 PY 2010 VL 82 IS 2 AR 024509 DI 10.1103/PhysRevB.82.024509 PG 5 WC Physics, Condensed Matter SC Physics GA 626AF UT WOS:000279937300005 ER PT J AU Fujii, K Mosconi, M Mengoni, A Domingo-Pardo, C Kappeler, F Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Bisterzo, S Calviani, M Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Massimi, C Mastinu, P Milazzo, PM Moreau, C Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Fujii, K. Mosconi, M. Mengoni, A. Domingo-Pardo, C. Kaeppeler, F. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Bisterzo, S. Calviani, M. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Massimi, C. Mastinu, P. Milazzo, P. M. Moreau, C. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n, gamma) cross sections of Os-186,Os-187,Os-188 SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; METAL-POOR; RE-187-OS-187 SYSTEMATICS; CHEMICAL EVOLUTION; STATISTICAL-MODEL; OSMIUM ISOTOPES; CAPTURE; NUCLEOSYNTHESIS; AGE; COSMOCHRONOLOGY AB Neutron resonance analyses have been performed for the capture cross sections of Os-186, Os-187, and Os-188 measured at the n_TOF facility at CERN. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the SAMMY code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the Os-187 abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed. C1 [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy. [Mosconi, M.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany. [Mengoni, A.; Capote, R.; Frais-Koelbl, H.; Griesmayer, E.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. [Alvarez-Pol, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela 15782, Spain. [Alvarez-Velarde, F.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambient & Technol, E-28040 Madrid, Spain. [Andrzejewski, J.] Univ Lodz, PL-90142 Lodz, Poland. [Assimakopoulos, P.; Karamanis, D.; Karadimos, D.; Lamboudis, C.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.] Vienna Univ Technol, Atominst Osterreich Univ, A-1020 Vienna, Austria. [Baumann, P.; Kerveno, M.; Rudolf, G.] CNRS IN2P3, IReS, F-67037 Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, CZ-25241 Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10149 Turin, Italy. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Calvino, F.; Cortes, G.; Pretel, C.] Univ Politecn Cataluna, E-08034 Barcelona, Spain. [Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, E-41004 Seville, Spain. [de Albornoz, A. Carrillo; Marques, L.] ITN, P-2686953 Lisbon, Portugal. [Mengoni, A.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, CH-1211 Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP, P-3004531 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3004531 Coimbra, Portugal. [Colonna, N.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] CNRS IN2P3, IPN, F-91406 Orsay, France. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Eleftheriadis, C.; Konovalov, V.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54124 Thessaloniki, Greece. [Furman, W.; Ketlerov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, RUS-141980 Dubna, Russia. [Goverdovski, A.] Inst Phys & Power Engn, RUS-249020 Obninsk, Russia. [Haas, B.] CENBG, CNRS IN2P3, F-33175 Gradignan, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, GR-15310 Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, I-40126 Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 3191184, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. [Rosetti, M.; Ventura, A.] ENEA, I-40129 Bologna, Italy. RP Fujii, K (reprint author), Ist Nazl Fis Nucl, I-34149 Trieste, Italy. EM Kaori.Fujii@ts.infn.it RI Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Lindote, Alexandre/H-4437-2013; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Quesada Molina, Jose Manuel/K-5267-2014; Gramegna, Fabiana/B-1377-2012; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012 OI Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Lindote, Alexandre/0000-0002-7965-807X; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Gramegna, Fabiana/0000-0001-6112-0602; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; FU EC [FIKW-CT-2000-00107] FX This work was supported by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participating institutes. NR 46 TC 18 Z9 18 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015804 DI 10.1103/PhysRevC.82.015804 PG 18 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200009 ER PT J AU Mosconi, M Fujii, K Mengoni, A Domingo-Pardo, C Kappeler, F Abbondanno, U Aerts, G Alvarez-Pol, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Bisterzo, S Calviani, M Calvino, F Cano-Ott, D Capote, R de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Cox, J Dahlfors, M David, S Dillmann, I Dolfini, R Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrant, L Ferrari, A Ferreira-Marques, R Fitzpatrick, L Frais-Koelbl, H Furman, W Gallino, R Goncalves, I Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kadi, Y Karamanis, D Karadimos, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Massimi, C Mastinu, P Milazzo, PM Moreau, C Neves, F Oberhummer, H Oshima, M O'Brien, S Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Mosconi, M. Fujii, K. Mengoni, A. Domingo-Pardo, C. Kaeppeler, F. Abbondanno, U. Aerts, G. Alvarez-Pol, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Bisterzo, S. Calviani, M. Calvino, F. Cano-Ott, D. Capote, R. de Albornoz, A. Carrillo Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Dillmann, I. Dolfini, R. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Fitzpatrick, L. Frais-Koelbl, H. Furman, W. Gallino, R. Goncalves, I. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kadi, Y. Karamanis, D. Karadimos, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Massimi, C. Mastinu, P. Milazzo, P. M. Moreau, C. Neves, F. Oberhummer, H. Oshima, M. O'Brien, S. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. TI Neutron physics of the Re/Os clock. I. Measurement of the (n, gamma) cross sections of Os-186,Os-187,Os-188 at the CERN n_TOF facility SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; METAL-POOR; S-PROCESS; STELLAR NUCLEOSYNTHESIS; INELASTIC-SCATTERING; CAPTURE; ISOTOPES; OS-187; W-185; AGE AB The precise determination of the neutron capture cross sections of Os-186 and Os-187 is important to define the s-process abundance of Os-187 at the formation of the solar system. This quantity can be used to evaluate the radiogenic component of the abundance of Os-187 due to the decay of the unstable Re-187 (t(1/2) = 41.2 Gyr) and from this to infer the time duration of the nucleosynthesis in our galaxy (Re/Os cosmochronometer). The neutron capture cross sections of Os-186, Os-187, and Os-188 have been measured at the CERN n_TOF facility from 1 eV to 1 MeV, covering the entire energy range of astrophysical interest. The measurement has been performed by time-of-flight technique using isotopically enriched samples and two C6D6 scintillation detectors for recording the prompt. rays emitted in the capture events. Maxwellian averaged capture cross sections have been determined for thermal energies between kT = 5 and 100 keV corresponding to all possible s-process scenarios. The estimated uncertainties for the values at 30 keV are 4.1, 3.3, and 4.7% for Os-186, Os-187, and Os-188, respectively. C1 [Mosconi, M.; Domingo-Pardo, C.; Kaeppeler, F.; Audouin, L.; Bisterzo, S.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Kernphys, D-76021 Karlsruhe, Germany. [Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, I-34149 Trieste, Italy. [Mengoni, A.; Capote, R.; Frais-Koelbl, H.; Griesmayer, E.] IAEA, NAPC Nucl Data Sect, A-1400 Vienna, Austria. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Perrot, L.; Plukis, A.] CEA Saclay, DSM, F-91191 Gif Sur Yvette, France. [Alvarez-Pol, H.; Duran, I.] Univ Santiago de Compostela, Santiago De Compostela 15782, Spain. [Alvarez-Velarde, F.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, E-28040 Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90142 Lodz, Poland. [Assimakopoulos, P.; Karamanis, D.; Karadimos, D.; Lamboudis, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.] Vienna Univ Technol, Atominst Osterreich Univ, A-1020 Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS IN2P3, IReS, F-67037 Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, CZ-25241 Prague, Czech Republic. [Bisterzo, S.; Gallino, R.] Univ Turin, Dipartimento Fis Gen, I-10149 Turin, Italy. [Calviani, M.; Gramegna, F.; Mastinu, P.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Padua, Italy. [Calvino, F.; Cortes, G.; Pretel, C.] Univ Politecn Cataluna, E-08034 Barcelona, Spain. [Capote, R.; Lozano, M.; Praena, J.; Quesada, J.] Univ Seville, E-41004 Seville, Spain. [de Albornoz, A. Carrillo; Marques, L.; Salgado, J.; Tavora, L.; Vaz, P.] ITN, P-2686953 Lisbon, Portugal. [Mengoni, A.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Fitzpatrick, L.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Wendler, H.] CERN, CH-1211 Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lopes, I.; Neves, F.] Univ Coimbra, LIP, P-3004531 Coimbra, Portugal. [Chepel, V.; Goncalves, I.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3004531 Coimbra, Portugal. [Colonna, N.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Couture, A.; Cox, J.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] CNRS IN2P3, IPN, F-91406 Orsay, France. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Eleftheriadis, C.; Konovalov, V.; Savvidis, I.] Aristotle Univ Thessaloniki, GR-54124 Thessaloniki, Greece. [Furman, W.; Ketlerov, V.] Joint Inst Nucl Res, Frank Lab Neutron Phys, RUS-141980 Dubna, Russia. [Goverdovski, A.] Inst Phys & Power Engn, RUS-249020 Obninsk, Russia. [Haas, B.] CEN Bordeaux Gradignan, CNRS IN2P3, F-33175 Gradignan, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR Demokritos, GR-15310 Athens, Greece. [Massimi, C.] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy. [Massimi, C.] Sez INFN Bologna, I-40126 Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Ibaraki 3191184, Japan. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Polo Univ Leonard da Vinci, F-92916 Paris, France. [Plompen, A.] CEC JRC IRMM, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, CH-4003 Basel, Switzerland. [Ventura, A.] ENEA, I-40129 Bologna, Italy. RP Mosconi, M (reprint author), KIT, Inst Kernphys, Campus Nord, D-76021 Karlsruhe, Germany. EM Marita.Mosconi@ptb.de RI Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Jericha, Erwin/A-4094-2011; Rauscher, Thomas/D-2086-2009; Becvar, Frantisek/D-3824-2012; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Lindote, Alexandre/H-4437-2013; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Quesada Molina, Jose Manuel/K-5267-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012 OI Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Paradela Dobarro, Carlos/0000-0003-0175-8334; Chepel, Vitaly/0000-0003-0675-4586; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Cano Ott, Daniel/0000-0002-9568-7508; Jericha, Erwin/0000-0002-8663-0526; Rauscher, Thomas/0000-0002-1266-0642; Ventura, Alberto/0000-0001-6748-7931; Lindote, Alexandre/0000-0002-7965-807X; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Gramegna, Fabiana/0000-0001-6112-0602 FU EC [FIKW-CT-2000-00107]; KIT; Graduiertenkolleg "High Energy Physics and Particle Astrophysics" FX This work was supported partly by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participant institutes. It is part of the Ph.D. thesis of M. M. who acknowledges support from the state of Baden-Wurttemberg, from KIT, and from the Graduiertenkolleg "High Energy Physics and Particle Astrophysics." NR 48 TC 21 Z9 21 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015802 DI 10.1103/PhysRevC.82.015802 PG 10 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200007 ER PT J AU Riek, F Rapp, R Oh, Y Lee, TSH AF Riek, F. Rapp, R. Oh, Yongseok Lee, T. -S. H. TI Medium modifications of the rho meson in nuclear photoproduction SO PHYSICAL REVIEW C LA English DT Article ID QCD SUM-RULES; VECTOR-MESONS; OMEGA-MESON; MATTER; RESTORATION; SCATTERING; COLLISIONS; DILEPTONS; PROTON; PAIRS AB We extend our recent study of dilepton invariant-mass spectra from the decays of rho mesons produced by photon reactions off nuclei. We specifically focus on experimental spectra as recently measured by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility using carbon and iron nuclei. Building on our earlier work, we broaden our description to a larger set of observables to identify sensitivities to the medium effects predicted by microscopic calculations of the rho spectral function. We compute mass spectra for several target nuclei and study the spectral shape as a function of the three-momentum of the outgoing lepton pair. We also compute the so-called nuclear transparency ratio, which provides an alternative means (and thus consistency check) of estimating the rho width in the cold nuclear medium. C1 [Riek, F.; Rapp, R.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Riek, F.; Rapp, R.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Oh, Yongseok] Kyungpook Natl Univ, Sch Phys & Energy Sci, Taegu 702701, South Korea. [Lee, T. -S. H.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Riek, F (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM friek@comp.tamu.edu; rapp@comp.tamu.edu; yohphy@knu.ac.kr; lee@phy.anl.gov RI Oh, Yongseok/A-2504-2008 OI Oh, Yongseok/0000-0001-9822-8975 FU US National Science Foundation [PHY-0449489]; US Department of Energy, Office of Nuclear Physics Division [DE-AC02-06CH11357] FX We are grateful to C. Djalali for fruitful discussions. F. R. and R. R. were supported by the US National Science Foundation through CAREER Grant No. PHY-0449489. T.-S.H.L. was supported by the US Department of Energy, Office of Nuclear Physics Division, under Contract No. DE-AC02-06CH11357. NR 40 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 15 PY 2010 VL 82 IS 1 AR 015202 DI 10.1103/PhysRevC.82.015202 PG 10 WC Physics, Nuclear SC Physics GA 626BH UT WOS:000279940200005 ER PT J AU Aaltonen, T Abazov, VM Abbott, B Abolins, M Acharya, BS Adams, M Adams, T Adelman, J Aguilo, E Alexeev, GD Alkhazov, G Alton, A Gonzalez, BA Alverson, G Alves, GA Amerio, S Amidei, D Anastassov, A Ancu, LS Annovi, A Antos, J Aoki, M Apollinari, G Appel, J Apresyan, A Arisawa, T Arnoud, Y Arov, M Artikov, A Asaadi, J Ashmanskas, W Askew, A Asman, B Atramentov, O Attal, A Aurisano, A Avila, C Azfar, F BackusMayes, J Badaud, F Badgett, W Bagby, L Baldin, B Bandurin, DV Banerjee, S Barbaro-Galtieri, A Barberis, E Barfuss, AF Baringer, P Barnes, VE Barnett, BA Barreto, J Barria, P Bartlett, JF Bartos, P Bassler, U Bauer, G Beale, S Bean, A Beauchemin, PH Bedeschi, F Beecher, D Begalli, M Begel, M Behari, S Belanger-Champagne, C Bellantoni, L Bellettini, G Bellinger, J Benitez, JA Benjamin, D Beretvas, A Beri, SB Bernardi, G Bernhard, R Bertram, I Besancon, M Beuselinck, R Bezzubov, VA Bhat, PC Bhatnagar, V Bhatti, A Binkley, M Bisello, D Bizjak, I Blair, RE Blazey, G Blessing, S Blocker, C Bloom, K Blumenfeld, B Bocci, A Bodek, A Boehnlein, A Boisvert, V Boline, D Bolton, TA Boos, EE Borissov, G Bortoletto, D Bose, T Boudreau, J Boveia, A Brandt, A Brau, B Bridgeman, A Brigliadori, L Brock, R Bromberg, C Brooijmans, G Bross, A Brown, D Brubaker, E Bu, XB Buchholz, D Budagov, J Budd, HS Budd, S Buehler, M Buescher, V Bunichev, V Burdin, S Burkett, K Burnett, TH Busetto, G Bussey, P Buszello, CP Buzatu, A Byrum, KL Cabrera, S Calancha, C Calfayan, P Calpas, B Calvet, S Camacho-Perez, E Camarda, S Cammin, J Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrasco-Lizarraga, MA Carrera, E Carrillo, S Carron, S Casal, B Casarsa, M Casey, BCK Castilla-Valdez, H Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chakrabarti, S Chakraborty, D Chan, KM Chandra, A Chang, SH Chen, G Chen, YC Chertok, M Chevalier-Thery, S Chiarelli, G Chlachidze, G Chlebana, F Cho, DK Cho, K Cho, SW Choi, S Chokheli, D Chou, JP Choudhary, B Christoudias, T Chung, K Chung, WH Chung, YS Chwalek, T Cihangir, S Ciobanu, CI Ciocci, MA Claes, D Clark, A Clark, D Clutter, J Compostella, G Convery, ME Conway, J Cooke, M Cooper, WE Corbo, M Corcoran, M Cordelli, M Couderc, F Cousinou, MC Cox, CA Cox, DJ Crescioli, F Croc, A Almenar, CC Cuevas, J Culbertson, R Cully, JC Cutts, D Cwiok, M Dagenhart, D d'Ascenzo, N Das, A Datta, M Davies, G Davies, T De, K de Barbaro, P De Cecco, S Deisher, A de Jong, SJ De la Cruz-Burelo, E Deliot, F Dell'Orso, M De Lorenzo, G Deluca, C Demarteau, M Demina, R Demortier, L Deng, J Deninno, M Denisov, D Denisov, SP d'Errico, M Desai, S DeVaughan, K Di Canto, A Diehl, HT Diesburg, M Di Ruzza, B Dittmann, JR Dominguez, A Donati, S Dong, P D'Onofrio, M Dorigo, T Dorland, T Dube, S Dubey, A Dudko, LV Duggan, D Duperrin, A Dutt, S Dyshkant, A Eads, M Ebina, K Edmunds, D Elagin, A Ellison, J Elvira, VD Enari, Y Eno, S Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Evans, H Evdokimov, A Evdokimov, VN Facini, G Fang, HC Farrington, S Fedorko, WT Feild, RG Feindt, M Ferapontov, AV Ferbel, T Fernandez, JP Ferrazza, C Fiedler, F Field, R Filthaut, F Fisher, W Fisk, HE Flanagan, G Forrest, R Fortner, M Fox, H Frank, MJ Franklin, M Freeman, JC Fuess, S Furic, I Gadfort, T Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garcia-Bellido, A Garfinkel, AF Garosi, P Gavrilov, V Gay, P Geist, W Geng, W Gerbaudo, D Gerber, CE Gerberich, H Gerdes, D Gershtein, Y Gessler, A Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Gillberg, D Gimmell, JL Ginsburg, CM Ginther, G Giokaris, N Giordani, M Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldschmidt, N Golossanov, A Golovanov, G Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Goussiou, A Grannis, PD Greder, S Greenlee, H Greenwood, ZD Gregores, EM Grenier, G Gresele, A Grinstein, S Gris, P Grivaz, JF Grohsjean, A Grosso-Pilcher, C Group, RC Grundler, U Grunendahl, S Grunewald, MW da Costa, JG Gunay-Unalan, Z Guo, F Guo, J Gutierrez, G Gutierrez, P Haas, A Haber, C Haefner, P Hagopian, S Hahn, SR Haley, J Halkiadakis, E Hall, I Han, BY Han, JY Han, L Happacher, F Hara, K Harder, K Hare, D Hare, M Harel, A Harr, RF Hartz, M Hatakeyama, K Hauptman, JM Hays, C Hays, J Hebbeker, T Heck, M Hedin, D Heinrich, J Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herndon, M Herner, K Hesketh, G Heuser, J Hewamanage, S Hidas, D Hildreth, MD Hill, CS Hirosky, R Hirschbuehl, D Hoang, T Hobbs, JD Hocker, A Hoeneisen, B Hohlfeld, M Hossain, S Houben, P Hou, S Houlden, M Hsu, SC Hu, Y Hubacek, Z Hughes, RE Hurwitz, M Husemann, U Huske, N Hussein, M Huston, J Hynek, V Iashvili, I Illingworth, R Incandela, J Introzzi, G Iori, M Ito, AS Ivanov, A Jabeen, S Jaffre, M Jain, S James, E Jamin, D Jang, D Jayatilaka, B Jeon, EJ Jesik, R Jha, MK Jindariani, S Johns, K Johnson, C Johnson, M Johnson, W Johnston, D Jonckheere, A Jones, M Jonsson, P Joo, KK Jun, SY Jung, JE Junk, TR Juste, A Kaadze, K Kajfasz, E Kamon, T Kar, D Karchin, PE Karmanov, D Kasper, PA Kato, Y Katsanos, I Kehoe, R Kephart, R Kermiche, S Ketchum, W Keung, J Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Khatidze, D Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, MH Kirsch, L Kirsch, M Klimenko, S Kohli, JM Kondo, K Kong, DJ Konigsberg, J Korytov, A Kotwal, AV Kozelov, AV Kraus, J Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kulkarni, NP Kumar, A Kupco, A Kurata, M Kurca, T Kuzmin, VA Kvita, J Kwang, S Laasanen, AT Lami, S Lammel, S Lammers, S Lancaster, M Lander, RL Landsberg, G Lannon, K Lath, A Latino, G Lazzizzera, I Lebrun, P LeCompte, T Lee, E Lee, HS Lee, HS Lee, JS Lee, SW Lee, WM Lellouch, J Leone, S Lewis, JD Li, L Li, QZ Lietti, SM Lim, JK Linacre, J Lincoln, D Lin, CJ Lindgren, M Linnemann, J Lipaev, VV Lipeles, E Lipton, R Lister, A Litvintsev, DO Liu, C Liu, T Liu, Y Liu, Z Lobodenko, A Lockyer, NS Loginov, A Lokajicek, M Lovas, L Love, P Lubatti, HJ Lucchesi, D Lueck, J Lujan, P Lukens, P Luna-Garcia, R Lungu, G Lyon, AL Lysak, R Lys, J Maciel, AKA Mackin, D MacQueen, D Madar, R Madrak, R Maeshima, K Magana-Villalba, R Makhoul, K Maksimovic, P Mal, PK Malde, S Malik, S Malik, S Malyshev, VL Manca, G Manousakis-Katsikakis, A Maravin, Y Margaroli, F Marino, C Marino, CP Martin, A Martin, V Martinez, M Martinez-Ballarin, R Martinez-Ortega, J Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McCarthy, R McFarland, KS McGivern, CL McIntyre, P McNulty, R Mehta, A Mehtala, P Meijer, MM Melnitchouk, A Menezes, D Menzione, A Mercadante, PG Merkin, M Mesropian, C Meyer, A Meyer, J Miao, T Mietlicki, D Miladinovic, N Miller, R Mills, C Milnik, M Mitra, A Mitselmakher, G Miyake, H Moed, S Moggi, N Mondal, NK Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Moulik, T Fernandez, PM Muanza, GS Mukherjee, A Mulhearn, M Muller, T Mulmenstadt, J Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nagy, E Naimuddin, M Nakamura, K Nakano, I Napier, A Narain, M Nayyar, R Neal, HA Negret, JP Nett, J Neu, C Neubauer, MS Neubauer, S Neustroev, P Nielsen, J Nilsen, H Nodulman, L Norman, M Norniella, O Novaes, SF Nunnemann, T Nurse, E Oakes, L Obrant, G Oh, SH Oh, YD Oksuzian, I Okusawa, T Onoprienko, D Orava, R Orduna, J Osman, N Osta, J Osterberg, K Garzon, GJOY Owen, M Padilla, M Griso, SP Pagliarone, C Palencia, E Pangilinan, M Papadimitriou, V Papaikonomou, A Paramanov, AA Parashar, N Parihar, V Park, SJ Park, SK Parks, B Parsons, J Partridge, R Parua, N Pashapour, S Patrick, J Patwa, A Pauletta, G Paulini, M Paus, C Peiffer, T Pellett, DE Penning, B Penzo, A Perfilov, M Peters, K Peters, Y Petrillo, G Petroff, P Phillips, TJ Piacentino, G Pianori, E Piegaia, R Pinera, L Piper, J Pitts, K Plager, C Pleier, MA Podesta-Lerma, PLM Podstavkov, VM Pol, ME Polozov, P Pondrom, L Popov, AV Potamianos, K Poukhov, O Prewitt, M Price, D Prokoshin, F Pronko, A Protopopescu, S Ptohos, F Pueschel, E Punzi, G Pursley, J Qian, J Quadt, A Quinn, B Rademacker, J Rahaman, A Ramakrishnan, V Rangel, MS Ranjan, K Ranjan, N Ratoff, PN Razumov, I Redondo, I Renkel, P Renton, P Renz, M Rescigno, M Rich, P Richter, S Rijssenbeek, M Rimondi, F Ripp-Baudot, I Ristori, L Rizatdinova, F Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Rominsky, M Roser, R Rossi, M Rossin, R Roy, P Royon, C Rubinov, P Ruchti, R Ruiz, A Russ, J Rusu, V Rutherford, B Saarikko, H Safonov, A Safronov, G Sajot, G Sakumoto, WK Sanchez-Hernandez, A Sanders, MP Sanghi, B Santi, L Sartori, L Sato, K Savage, G Saveliev, V Savoy-Navarro, A Sawyer, L Scanlon, T Schaile, D Schamberger, RD Scheglov, Y Schellman, H Schlabach, P Schliephake, T Schlobohm, S Schmidt, A Schmidt, EE Schmidt, MA Schmidt, MP Schmitt, M Schwanenberger, C Schwarz, T Schwienhorst, R Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Sekaric, J Semenov, A Severini, H Sexton-Kennedy, L Sforza, F Sfyrla, A Shabalina, E Shalhout, SZ Shary, V Shchukin, AA Shears, T Shepard, PF Shimojima, M Shiraishi, S Shivpuri, RK Shochet, M Shon, Y Shreyber, I Simak, V Simonenko, A Sinervo, P Sirotenko, V Sisakyan, A Skubic, P Slattery, P Slaughter, AJ Slaunwhite, J Sliwa, K Smirnov, D Smith, JR Snider, FD Snihur, R Snow, GR Snow, J Snyder, S Soha, A Soldner-Rembold, S Somalwar, S Sonnenschein, L Sopczak, A Sorin, V Sosebee, M Soustruznik, K Spurlock, B Squillacioti, P Stanitzki, M Stark, J St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Stolin, V Stoyanova, DA Strang, MA Strauss, E Strauss, M Strohmer, R Strologas, J Strom, D Strycker, GL Stutte, L Suh, JS Sukhanov, A Suslov, I Svoisky, P Taffard, A Takahashi, M Takashima, R Takeuchi, Y Tanaka, R Tanasijczuk, A Tang, J Taylor, W Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tiller, B Tipton, P Titov, M Tkaczyk, S Toback, D Tokar, S Tokmenin, VV Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tsai, SY Tsybychev, D Ttito-Guzman, P Tuchming, B Tu, Y Tully, C Turini, N Tuts, PM Ukegawa, F Unalan, R Uozumi, S Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM van Remortel, N Varelas, N Varganov, A Varnes, EW Vasilyev, IA Vataga, E Vazquez, F Velev, G Vellidis, C Verdier, P Vertogradov, LS Verzocchi, M Vesterinen, M Vidal, M Vila, I Vilanova, D Vilar, R Vint, P Vogel, M Vokac, P Volobouev, I Volpi, G Wagner, P Wagner, RG Wagner, RL Wagner, W Wagner-Kuhr, J Wahl, HD Wakisaka, T Wallny, R Wang, MHLS Wang, SM Warburton, A Warchol, J Waters, D Watts, G Wayne, M Weber, G Weber, M Weinberger, M Weinelt, J Wester, WC Wetstein, M White, A Whitehouse, B Whiteson, D Wicke, D Wicklund, AB Wicklund, E Wilbur, S Williams, G Williams, HH Williams, MRJ Wilson, GW Wilson, P Wimpenny, SJ Winer, BL Wittich, P Wobisch, M Wolbers, S Wolfe, C Wolfe, H Wood, DR Wright, T Wu, X Wurthwein, F Wyatt, TR Xie, Y Xu, C Yacoob, S Yagil, A Yamada, R Yamamoto, K Yamaoka, J Yang, UK Yang, WC Yang, YC Yao, WM Yasuda, T Yatsunenko, YA Ye, Z Yeh, GP Yi, K Yin, H Yip, K Yoh, J Yoo, HD Yorita, K Yoshida, T Youn, SW Yu, GB Yu, I Yu, J Yu, SS Yun, JC Zanetti, A Zelitch, S Zeng, Y Zhang, X Zhao, T Zheng, Y Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L Zucchelli, S AF Aaltonen, T. Abazov, V. M. Abbott, B. Abolins, M. Acharya, B. S. Adams, M. Adams, T. Adelman, J. Aguilo, E. Alexeev, G. D. Alkhazov, G. Alton, A. Alvarez Gonzalez, B. Alverson, G. Alves, G. A. Amerio, S. Amidei, D. Anastassov, A. Ancu, L. S. Annovi, A. Antos, J. Aoki, M. Apollinari, G. Appel, J. Apresyan, A. Arisawa, T. Arnoud, Y. Arov, M. Artikov, A. Asaadi, J. Ashmanskas, W. Askew, A. Asman, B. Atramentov, O. Attal, A. Aurisano, A. Avila, C. Azfar, F. BackusMayes, J. Badaud, F. Badgett, W. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barbaro-Galtieri, A. Barberis, E. Barfuss, A. -F. Baringer, P. Barnes, V. E. Barnett, B. A. Barreto, J. Barria, P. Bartlett, J. F. Bartos, P. Bassler, U. Bauer, G. Beale, S. Bean, A. Beauchemin, P. -H. Bedeschi, F. Beecher, D. Begalli, M. Begel, M. Behari, S. Belanger-Champagne, C. Bellantoni, L. Bellettini, G. Bellinger, J. Benitez, J. A. Benjamin, D. Beretvas, A. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besancon, M. Beuselinck, R. Bezzubov, V. A. Bhat, P. C. Bhatnagar, V. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Blair, R. E. Blazey, G. Blessing, S. Blocker, C. Bloom, K. Blumenfeld, B. Bocci, A. Bodek, A. Boehnlein, A. Boisvert, V. Boline, D. Bolton, T. A. Boos, E. E. Borissov, G. Bortoletto, D. Bose, T. Boudreau, J. Boveia, A. Brandt, A. Brau, B. Bridgeman, A. Brigliadori, L. Brock, R. Bromberg, C. Brooijmans, G. Bross, A. Brown, D. Brubaker, E. Bu, X. B. Buchholz, D. Budagov, J. Budd, H. S. Budd, S. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Burkett, K. Burnett, T. H. Busetto, G. Bussey, P. Buszello, C. P. Buzatu, A. Byrum, K. L. Cabrera, S. Calancha, C. Calfayan, P. Calpas, B. Calvet, S. Camacho-Perez, E. Camarda, S. Cammin, J. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrasco-Lizarraga, M. A. Carrera, E. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Casey, B. C. K. Castilla-Valdez, H. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chakrabarti, S. Chakraborty, D. Chan, K. M. Chandra, A. Chang, S. H. Chen, G. Chen, Y. C. Chertok, M. Chevalier-Thery, S. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, D. K. Cho, K. Cho, S. W. Choi, S. Chokheli, D. Chou, J. P. Choudhary, B. Christoudias, T. Chung, K. Chung, W. H. Chung, Y. S. Chwalek, T. Cihangir, S. Ciobanu, C. I. Ciocci, M. A. Claes, D. Clark, A. Clark, D. Clutter, J. Compostella, G. Convery, M. E. Conway, J. Cooke, M. Cooper, W. E. Corbo, M. Corcoran, M. Cordelli, M. Couderc, F. Cousinou, M. -C. Cox, C. A. Cox, D. J. Crescioli, F. Croc, A. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Cully, J. C. Cutts, D. Cwiok, M. Dagenhart, D. d'Ascenzo, N. Das, A. Datta, M. Davies, G. Davies, T. De, K. de Barbaro, P. De Cecco, S. Deisher, A. de Jong, S. J. De la Cruz-Burelo, E. Deliot, F. Dell'Orso, M. De Lorenzo, G. Deluca, C. Demarteau, M. Demina, R. Demortier, L. Deng, J. Deninno, M. Denisov, D. Denisov, S. P. d'Errico, M. Desai, S. DeVaughan, K. Di Canto, A. Diehl, H. T. Diesburg, M. Di Ruzza, B. Dittmann, J. R. Dominguez, A. Donati, S. Dong, P. D'Onofrio, M. Dorigo, T. Dorland, T. Dube, S. Dubey, A. Dudko, L. V. Duggan, D. Duperrin, A. Dutt, S. Dyshkant, A. Eads, M. Ebina, K. Edmunds, D. Elagin, A. Ellison, J. Elvira, V. D. Enari, Y. Eno, S. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Evans, H. Evdokimov, A. Evdokimov, V. N. Facini, G. Fang, H. C. Farrington, S. Fedorko, W. T. Feild, R. G. Feindt, M. Ferapontov, A. V. Ferbel, T. Fernandez, J. P. Ferrazza, C. Fiedler, F. Field, R. Filthaut, F. Fisher, W. Fisk, H. E. Flanagan, G. Forrest, R. Fortner, M. Fox, H. Frank, M. J. Franklin, M. Freeman, J. C. Fuess, S. Furic, I. Gadfort, T. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garcia-Bellido, A. Garfinkel, A. F. Garosi, P. Gavrilov, V. Gay, P. Geist, W. Geng, W. Gerbaudo, D. Gerber, C. E. Gerberich, H. Gerdes, D. Gershtein, Y. Gessler, A. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gillberg, D. Gimmell, J. L. Ginsburg, C. M. Ginther, G. Giokaris, N. Giordani, M. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldschmidt, N. Golossanov, A. Golovanov, G. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Goussiou, A. Grannis, P. D. Greder, S. Greenlee, H. Greenwood, Z. D. Gregores, E. M. Grenier, G. Gresele, A. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Grosso-Pilcher, C. Group, R. C. Grundler, U. Gruenendahl, S. Gruenewald, M. W. da Costa, J. Guimaraes Gunay-Unalan, Z. Guo, F. Guo, J. Gutierrez, G. Gutierrez, P. Haas, A. Haber, C. Haefner, P. Hagopian, S. Hahn, S. R. Haley, J. Halkiadakis, E. Hall, I. Han, B. -Y. Han, J. Y. Han, L. Happacher, F. Hara, K. Harder, K. Hare, D. Hare, M. Harel, A. Harr, R. F. Hartz, M. Hatakeyama, K. Hauptman, J. M. Hays, C. Hays, J. Hebbeker, T. Heck, M. Hedin, D. Heinrich, J. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herndon, M. Herner, K. Hesketh, G. Heuser, J. Hewamanage, S. Hidas, D. Hildreth, M. D. Hill, C. S. Hirosky, R. Hirschbuehl, D. Hoang, T. Hobbs, J. D. Hocker, A. Hoeneisen, B. Hohlfeld, M. Hossain, S. Houben, P. Hou, S. Houlden, M. Hsu, S. -C. Hu, Y. Hubacek, Z. Hughes, R. E. Hurwitz, M. Husemann, U. Huske, N. Hussein, M. Huston, J. Hynek, V. Iashvili, I. Illingworth, R. Incandela, J. Introzzi, G. Iori, M. Ito, A. S. Ivanov, A. Jabeen, S. Jaffre, M. Jain, S. James, E. Jamin, D. Jang, D. Jayatilaka, B. Jeon, E. J. Jesik, R. Jha, M. K. Jindariani, S. Johns, K. Johnson, C. Johnson, M. Johnson, W. Johnston, D. Jonckheere, A. Jones, M. Jonsson, P. Joo, K. K. Jun, S. Y. Jung, J. E. Junk, T. R. Juste, A. Kaadze, K. Kajfasz, E. Kamon, T. Kar, D. Karchin, P. E. Karmanov, D. Kasper, P. A. Kato, Y. Katsanos, I. Kehoe, R. Kephart, R. Kermiche, S. Ketchum, W. Keung, J. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Khatidze, D. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. H. Kirsch, L. Kirsch, M. Klimenko, S. Kohli, J. M. Kondo, K. Kong, D. J. Konigsberg, J. Korytov, A. Kotwal, A. V. Kozelov, A. V. Kraus, J. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kulkarni, N. P. Kumar, A. Kupco, A. Kurata, M. Kurca, T. Kuzmin, V. A. Kvita, J. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lammers, S. Lancaster, M. Lander, R. L. Landsberg, G. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. Lebrun, P. LeCompte, T. Lee, E. Lee, H. S. Lee, H. S. Lee, J. S. Lee, S. W. Lee, W. M. Lellouch, J. Leone, S. Lewis, J. D. Li, L. Li, Q. Z. Lietti, S. M. Lim, J. K. Linacre, J. Lincoln, D. Lin, C. -J. Lindgren, M. Linnemann, J. Lipaev, V. V. Lipeles, E. Lipton, R. Lister, A. Litvintsev, D. O. Liu, C. Liu, T. Liu, Y. Liu, Z. Lobodenko, A. Lockyer, N. S. Loginov, A. Lokajicek, M. Lovas, L. Love, P. Lubatti, H. J. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Luna-Garcia, R. Lungu, G. Lyon, A. L. Lysak, R. Lys, J. Maciel, A. K. A. Mackin, D. MacQueen, D. Madar, R. Madrak, R. Maeshima, K. Magana-Villalba, R. Makhoul, K. Maksimovic, P. Mal, P. K. Malde, S. Malik, S. Malik, S. Malyshev, V. L. Manca, G. Manousakis-Katsikakis, A. Maravin, Y. Margaroli, F. Marino, C. Marino, C. P. Martin, A. Martin, V. Martinez, M. Martinez-Ballarin, R. Martinez-Ortega, J. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McCarthy, R. McFarland, K. S. McGivern, C. L. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Meijer, M. M. Melnitchouk, A. Menezes, D. Menzione, A. Mercadante, P. G. Merkin, M. Mesropian, C. Meyer, A. Meyer, J. Miao, T. Mietlicki, D. Miladinovic, N. Miller, R. Mills, C. Milnik, M. Mitra, A. Mitselmakher, G. Miyake, H. Moed, S. Moggi, N. Mondal, N. K. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Moulik, T. Fernandez, P. Movilla Muanza, G. S. Mukherjee, A. Mulhearn, M. Muller, Th. Muelmenstaedt, J. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nagy, E. Naimuddin, M. Nakamura, K. Nakano, I. Napier, A. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Nett, J. Neu, C. Neubauer, M. S. Neubauer, S. Neustroev, P. Nielsen, J. Nilsen, H. Nodulman, L. Norman, M. Norniella, O. Novaes, S. F. Nunnemann, T. Nurse, E. Oakes, L. Obrant, G. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Onoprienko, D. Orava, R. Orduna, J. Osman, N. Osta, J. Osterberg, K. Otero y Garzon, G. J. Owen, M. Padilla, M. Griso, S. Pagan Pagliarone, C. Palencia, E. Pangilinan, M. Papadimitriou, V. Papaikonomou, A. Paramanov, A. A. Parashar, N. Parihar, V. Park, S. -J. Park, S. K. Parks, B. Parsons, J. Partridge, R. Parua, N. Pashapour, S. Patrick, J. Patwa, A. Pauletta, G. Paulini, M. Paus, C. Peiffer, T. Pellett, D. E. Penning, B. Penzo, A. Perfilov, M. Peters, K. Peters, Y. Petrillo, G. Petroff, P. Phillips, T. J. Piacentino, G. Pianori, E. Piegaia, R. Pinera, L. Piper, J. Pitts, K. Plager, C. Pleier, M. -A. Podesta-Lerma, P. L. M. Podstavkov, V. M. Pol, M. -E. Polozov, P. Pondrom, L. Popov, A. V. Potamianos, K. Poukhov, O. Prewitt, M. Price, D. Prokoshin, F. Pronko, A. Protopopescu, S. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Qian, J. Quadt, A. Quinn, B. Rademacker, J. Rahaman, A. Ramakrishnan, V. Rangel, M. S. Ranjan, K. Ranjan, N. Ratoff, P. N. Razumov, I. Redondo, I. Renkel, P. Renton, P. Renz, M. Rescigno, M. Rich, P. Richter, S. Rijssenbeek, M. Rimondi, F. Ripp-Baudot, I. Ristori, L. Rizatdinova, F. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Rominsky, M. Roser, R. Rossi, M. Rossin, R. Roy, P. Royon, C. Rubinov, P. Ruchti, R. Ruiz, A. Russ, J. Rusu, V. Rutherford, B. Saarikko, H. Safonov, A. Safronov, G. Sajot, G. Sakumoto, W. K. Sanchez-Hernandez, A. Sanders, M. P. Sanghi, B. Santi, L. Sartori, L. Sato, K. Savage, G. Saveliev, V. Savoy-Navarro, A. Sawyer, L. Scanlon, T. Schaile, D. Schamberger, R. D. Scheglov, Y. Schellman, H. Schlabach, P. Schliephake, T. Schlobohm, S. Schmidt, A. Schmidt, E. E. Schmidt, M. A. Schmidt, M. P. Schmitt, M. Schwanenberger, C. Schwarz, T. Schwienhorst, R. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Sekaric, J. Semenov, A. Severini, H. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shabalina, E. Shalhout, S. Z. Shary, V. Shchukin, A. A. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shivpuri, R. K. Shochet, M. Shon, Y. Shreyber, I. Simak, V. Simonenko, A. Sinervo, P. Sirotenko, V. Sisakyan, A. Skubic, P. Slattery, P. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smirnov, D. Smith, J. R. Snider, F. D. Snihur, R. Snow, G. R. Snow, J. Snyder, S. Soha, A. Soeldner-Rembold, S. Somalwar, S. Sonnenschein, L. Sopczak, A. Sorin, V. Sosebee, M. Soustruznik, K. Spurlock, B. Squillacioti, P. Stanitzki, M. Stark, J. St. Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Stolin, V. Stoyanova, D. A. Strang, M. A. Strauss, E. Strauss, M. Stroehmer, R. Strologas, J. Strom, D. Strycker, G. L. Stutte, L. Suh, J. S. Sukhanov, A. Suslov, I. Svoisky, P. Taffard, A. Takahashi, M. Takashima, R. Takeuchi, Y. Tanaka, R. Tanasijczuk, A. Tang, J. Taylor, W. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tiller, B. Tipton, P. Titov, M. Tkaczyk, S. Toback, D. Tokar, S. Tokmenin, V. V. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tsai, S. -Y. Tsybychev, D. Ttito-Guzman, P. Tuchming, B. Tu, Y. Tully, C. Turini, N. Tuts, P. M. Ukegawa, F. Unalan, R. Uozumi, S. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. van Remortel, N. Varelas, N. Varganov, A. Varnes, E. W. Vasilyev, I. A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Verdier, P. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vidal, M. Vila, I. Vilanova, D. Vilar, R. Vint, P. Vogel, M. Vokac, P. Volobouev, I. Volpi, G. Wagner, P. Wagner, R. G. Wagner, R. L. Wagner, W. Wagner-Kuhr, J. Wahl, H. D. Wakisaka, T. Wallny, R. Wang, M. H. L. S. Wang, S. M. Warburton, A. Warchol, J. Waters, D. Watts, G. Wayne, M. Weber, G. Weber, M. Weinberger, M. Weinelt, J. Wester, W. C. Wetstein, M. White, A. Whitehouse, B. Whiteson, D. Wicke, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Williams, G. Williams, H. H. Williams, M. R. J. Wilson, G. W. Wilson, P. Wimpenny, S. J. Winer, B. L. Wittich, P. Wobisch, M. Wolbers, S. Wolfe, C. Wolfe, H. Wood, D. R. Wright, T. Wu, X. Wuerthwein, F. Wyatt, T. R. Xie, Y. Xu, C. Yacoob, S. Yagil, A. Yamada, R. Yamamoto, K. Yamaoka, J. Yang, U. K. Yang, W. -C. Yang, Y. C. Yao, W. M. Yasuda, T. Yatsunenko, Y. A. Ye, Z. Yeh, G. P. Yi, K. Yin, H. Yip, K. Yoh, J. Yoo, H. D. Yorita, K. Yoshida, T. Youn, S. W. Yu, G. B. Yu, I. Yu, J. Yu, S. S. Yun, J. C. Zanetti, A. Zelitch, S. Zeng, Y. Zhang, X. Zhao, T. Zheng, Y. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. Zucchelli, S. CA CDF Collaboration D0 Collaboration TI Combined Tevatron upper limit on gg -> H -> W+W- and constraints on the Higgs boson mass in fourth-generation fermion models SO PHYSICAL REVIEW D LA English DT Article ID BARYON NUMBER; GAUGE BOSON; PHYSICS AB We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV. C1 [Otero y Garzon, G. J.; Piegaia, R.; Ptohos, F.; Tanasijczuk, A.] Univ Buenos Aires, Buenos Aires, DF, Argentina. [Alves, G. A.; Barreto, J.; Maciel, A. K. A.; Pol, M. -E.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Lietti, S. M.; Novaes, S. F.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] McGill Univ, Inst Particle Phys, Montreal, PQ, Canada. [Aguilo, E.; Beale, S.; Beauchemin, P. -H.; Buzatu, A.; Gillberg, D.; Liu, Z.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Taylor, W.; Warburton, A.; Williams, G.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] Univ Toronto, Toronto, ON, Canada. [Beauchemin, P. -H.; Buzatu, A.; MacQueen, D.; Roy, P.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.; Williams, G.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Aguilo, E.; Beale, S.; Gillberg, D.; Liu, Z.; Taylor, W.] York Univ, Toronto, ON M3J 2R7, Canada. [Bu, X. B.; Han, L.; Liu, Y.; Yin, H.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Patwa, A.; Soustruznik, K.] Charles Univ Prague, Fac Math & Phys, Ctr Particle Phys, Prague, Czech Republic. [Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Kupco, A.] Acad Sci Czech Republic, Inst Phys, Ctr Particle Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco, Quito, Ecuador. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; van Remortel, N.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Badaud, F.; Gay, P.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Univ Grenoble 1, LPSC, F-38041 Grenoble, France. [Arnoud, Y.; Sajot, G.; Stark, J.] Inst Natl Polytech Grenoble, CNRS, IN2P3, F-38031 Grenoble, France. [Barfuss, A. -F.; Calpas, B.; Geng, W.; Jamin, D.; Kajfasz, E.; Muanza, G. S.; Nagy, E.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Calvet, S.; Grivaz, J. -F.; Jaffre, M.; Petroff, P.; Rangel, M. S.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Bernardi, G.; Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Bernardi, G.; Corbo, M.; d'Ascenzo, N.; Enari, Y.; Ershaidat, N.; Huske, N.; Lellouch, J.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, Paris, France. [Besancon, M.; Chevalier-Thery, S.; Couderc, F.; Croc, A.; Deliot, F.; Grohsjean, A.; Madar, R.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Brown, D.; Geist, W.; Greder, S.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Bernhard, R.; Nilsen, H.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Hensel, C.; Meyer, J.; Park, S. -J.; Quadt, A.; Shabalina, E.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Chwalek, T.; Feindt, M.; Gessler, A.; Heck, M.; Heuser, J.; Hirschbuehl, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Milnik, M.; Morlock, J.; Muller, Th.; Neubauer, S.; Papaikonomou, A.; Peiffer, T.; Renz, M.; Richter, S.; Schmidt, A.; Wagner, W.; Wagner-Kuhr, J.; Weinelt, J.] Karlsruhe Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weber, G.; Wicke, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Calfayan, P.; Haefner, P.; Nunnemann, T.; Sanders, M. P.; Schaile, D.; Stroehmer, R.; Tiller, B.] Univ Munich, Munich, Germany. [Schliephake, T.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh 160014, India. [Choudhary, B.; Dubey, A.; Naimuddin, M.; Nayyar, R.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Cwiok, M.; Gruenewald, M. W.] Univ Coll Dublin, Dublin 2, Ireland. [Brigliadori, L.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. Univ Bologna, I-40127 Bologna, Italy. [Annovi, A.; Castro, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bisello, D.; Busetto, G.; d'Errico, M.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Catastini, P.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leone, S.; Menzione, A.; Morello, M. J.; Piacentino, G.; Punzi, G.; Ristori, L.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Turini, N.; Vataga, E.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Ferrazza, C.; Garosi, P.; Latino, G.; Scribano, A.; Squillacioti, P.; Turini, N.] Univ Siena, I-56127 Pisa, Italy. [Trovato, M.; Vataga, E.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Sapienza Univ Roma, I-00185 Rome, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Cauz, D.; Giordani, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Sato, K.; Shimojima, M.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Arisawa, T.; Ebina, K.; Kimura, N.; Kondo, K.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju, South Korea. [Chang, S. H.; Cho, K.; Jeon, E. J.; Joo, K. K.; Jung, J. E.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Suh, J. S.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju, South Korea. [Cho, S. W.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Choi, S.] Sungkyunkwan Univ, Suwon, South Korea. [Camacho-Perez, E.; Carrasco-Lizarraga, M. A.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Orduna, J.; Podesta-Lerma, P. L. M.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Houben, P.; van Leeuwen, W. M.] Univ Amsterdam, NIKHEF, Amsterdam, Netherlands. [Houben, P.; van Leeuwen, W. M.] FOM, NIKHEF, Amsterdam, Netherlands. [Ancu, L. S.; de Jong, S. J.; Filthaut, F.; Meijer, M. M.; Svoisky, P.] Radboud Univ Nijmegen, NIKHEF, NL-6525 ED Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sisakyan, A.; Suslov, I.; Tokmenin, V. V.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Inst Nucl Res, Dubna, Russia. [Gavrilov, V.; Polozov, P.; Safronov, G.; Shreyber, I.; Stolin, V.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bezzubov, V. A.; Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Obrant, G.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lovas, L.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Attal, A.; Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; D'Onofrio, M.; Grinstein, S.; Martinez, M.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Asman, B.; Belanger-Champagne, C.] Uppsala Univ, Uppsala, Sweden. [Asman, B.; Belanger-Champagne, C.] Stockholm Univ, S-10691 Stockholm, Sweden. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Love, P.; Ratoff, P. N.; Sopczak, A.; Williams, M. R. J.] Univ Lancaster, Lancaster LA1 4YB, England. [Houlden, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beuselinck, R.; Buszello, C. P.; Christoudias, T.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Osman, N.; Scanlon, T.; Vint, P.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Malik, S.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Harder, K.; Owen, M.; Peters, K.; Peters, Y.; Rich, P.; Schwanenberger, C.; Soeldner-Rembold, S.; Takahashi, M.; Vesterinen, M.; Wyatt, T. R.; Yang, W. -C.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Malde, S.; Oakes, L.; Rademacker, J.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Das, A.; Johns, K.; Mal, P. K.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Barbaro-Galtieri, A.; Cerri, A.; Deisher, A.; Fang, H. C.; Haber, C.; Hsu, S. -C.; Lin, C. -J.; Lujan, P.; Lys, J.; Muelmenstaedt, J.; Nielsen, J.; Volobouev, I.; Yao, W. M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Norman, M.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Plager, C.; Wallny, R.; Zheng, Y.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Ellison, J.; Heinson, A. P.; Li, L.; Padilla, M.; Wimpenny, S. J.] Univ Calif Riverside, Riverside, CA 92521 USA. [Boveia, A.; Brau, B.; Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Patrick, J.; Rossin, R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Almenar, C. Cuenca; Feild, R. G.; Husemann, U.; Loginov, A.; Martin, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Adams, T.; Askew, A.; Bandurin, D. V.; Blessing, S.; Carrera, E.; Hagopian, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Blair, R. E.; Byrum, K. L.; LeCompte, T.; Nodulman, L.; Paramanov, A. A.; Wagner, R. G.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Aoki, M.; Apollinari, G.; Appel, J.; Ashmanskas, W.; Badgett, W.; Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Beretvas, A.; Bhat, P. C.; Binkley, M.; Boehnlein, A.; Bross, A.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Casey, B. C. K.; Chlachidze, G.; Chlebana, F.; Chung, K.; Cihangir, S.; Convery, M. E.; Cooke, M.; Cooper, W. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Demarteau, M.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dong, P.; Elvira, V. D.; Fisk, H. E.; Freeman, J. C.; Fuess, S.; Ginsburg, C. M.; Ginther, G.; Glenzinski, D.; Golossanov, A.; Greenlee, H.; Group, R. C.; Gruenendahl, S.; Gutierrez, G.; Hahn, S. R.; Hocker, A.; Illingworth, R.; Ito, A. S.; James, E.; Jindariani, S.; Johnson, M.; Jonckheere, A.; Junk, T. R.; Juste, A.; Kasper, P. A.; Kephart, R.; Khalatyan, N.; Kilminster, B.; Lammel, S.; Lee, W. M.; Lewis, J. D.; Li, Q. Z.; Lincoln, D.; Lindgren, M.; Lipton, R.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Lyon, A. L.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Penning, B.; Podstavkov, V. M.; Pronko, A.; Ptohos, F.; Rominsky, M.; Roser, R.; Rubinov, P.; Rusu, V.; Rutherford, B.; Sanghi, B.; Savage, G.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Sirotenko, V.; Slaughter, A. J.; Snider, F. D.; Soha, A.; Stutte, L.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Verzocchi, M.; Wagner, R. L.; Weber, M.; Wester, W. C.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yeh, G. P.; Yi, K.; Yoh, J.; Youn, S. W.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adelman, J.; Brubaker, E.; Canelli, F.; Fedorko, W. T.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Wolfe, C.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Adams, M.; Gerber, C. E.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Chakraborty, D.; Dyshkant, A.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] No Illinois Univ, De Kalb, IL 60115 USA. [Anastassov, A.; Buchholz, D.; Kirby, M. H.; Schellman, H.; Schmitt, M.; Stentz, D.; Yacoob, S.] Northwestern Univ, Evanston, IL 60208 USA. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Grundler, U.; Marino, C. P.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Taffard, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Evans, H.; Lammers, S.; Parua, N.; Price, D.; Van Kooten, R.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Notre Dame Univ, Notre Dame, IN 46556 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Hauptman, J. M.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; McGivern, C. L.; Moulik, T.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Bolton, T. A.; Kaadze, K.; Maravin, Y.; Onoprienko, D.] Kansas State Univ, Manhattan, KS 66506 USA. [Arov, M.; Greenwood, Z. D.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Eno, S.; Ferbel, T.; Wetstein, M.] Univ Maryland, College Pk, MD 20742 USA. [Bose, T.] Boston Univ, Boston, MA 02215 USA. [Alverson, G.; Barberis, E.; Facini, G.; Haley, J.; Hesketh, G.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Mills, C.; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Alton, A.; Amidei, D.; Campbell, M.; Cully, J. C.; Gerdes, D.; Herner, K.; Mietlicki, D.; Neal, H. A.; Qian, J.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.; Xu, C.; Zhou, B.] Univ Michigan, Ann Arbor, MI 48109 USA. [Harr, R. F.; Karchin, P. E.; Kulkarni, N. P.; Mattson, M. E.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. [Abolins, M.; Benitez, J. A.; Brock, R.; Bromberg, C.; Edmunds, D.; Fisher, W.; Geng, W.; Gunay-Unalan, Z.; Hall, I.; Hussein, M.; Huston, J.; Kraus, J.; Linnemann, J.; Miller, R.; Piper, J.; Schwienhorst, R.; Tollefson, K.; Unalan, R.] Michigan State Univ, E Lansing, MI 48824 USA. [Melnitchouk, A.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Eads, M.; Johnston, D.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Atramentov, O.; Dube, S.; Duggan, D.; Gershtein, Y.; Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Gerbaudo, D.; Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Strang, M. A.] SUNY Buffalo, Buffalo, NY 14260 USA. [Brooijmans, G.; Haas, A.; Johnson, C.; Parsons, J.; Tuts, P. M.; Zivkovic, L.] Columbia Univ, New York, NY 10027 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Bodek, A.; Boisvert, V.; Budd, H. S.; Cammin, J.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Gimmell, J. L.; Ginther, G.; Han, B. -Y.; Han, J. Y.; Harel, A.; McFarland, K. S.; Petrillo, G.; Sakumoto, W. K.; Slattery, P.; Wang, M. H. L. S.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Guo, F.; Guo, J.; Hobbs, J. D.; Hu, Y.; McCarthy, R.; Rijssenbeek, M.; Schamberger, R. D.; Strauss, E.; Tsybychev, D.; Zhu, J.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Begel, M.; Evdokimov, A.; Gadfort, T.; Pleier, M. -A.; Protopopescu, S.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Hossain, S.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Norman, OK 73019 USA. [Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Neu, C.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boudreau, J.; Gibson, K.; Hartz, M.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Cho, D. K.; Cutts, D.; Ferapontov, A. V.; Heintz, U.; Jabeen, S.; Khatidze, D.; Landsberg, G.; Narain, M.; Pangilinan, M.; Parihar, V.; Partridge, R.; Yoo, H. D.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; De, K.; Sosebee, M.; Spurlock, B.; White, A.; Yu, J.] Univ Texas Arlington, Arlington, TX 76019 USA. RI Gorelov, Igor/J-9010-2015; Guo, Jun/O-5202-2015; Canelli, Florencia/O-9693-2016; Gerbaudo, Davide/J-4536-2012; Li, Liang/O-1107-2015; Christoudias, Theodoros/E-7305-2015; Lazzizzera, Ignazio/E-9678-2015; vilar, rocio/P-8480-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Muelmenstaedt, Johannes/K-2432-2015; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Alves, Gilvan/C-4007-2013; Deliot, Frederic/F-3321-2014; Sharyy, Viatcheslav/F-9057-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Kozelov, Alexander/J-3812-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Novaes, Sergio/D-3532-2012; Mercadante, Pedro/K-1918-2012; Zeng, Yu/C-1438-2013; Yip, Kin/D-6860-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Fisher, Wade/N-4491-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Kim, Soo-Bong/B-7061-2014; Ancu, Lucian Stefan/F-1812-2010; Gutierrez, Phillip/C-1161-2011; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Boos, Eduard/D-9748-2012; manca, giulia/I-9264-2012; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; Bolton, Tim/A-7951-2012; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; bu, xuebing/D-1121-2012; Merkin, Mikhail/D-6809-2012 OI Osterberg, Kenneth/0000-0003-4807-0414; Gallinaro, Michele/0000-0003-1261-2277; Turini, Nicola/0000-0002-9395-5230; Price, Darren/0000-0003-2750-9977; Bertram, Iain/0000-0003-4073-4941; Belanger-Champagne, Camille/0000-0003-2368-2617; Carrera, Edgar/0000-0002-0857-8507; Giordani, Mario/0000-0002-0792-6039; Casarsa, Massimo/0000-0002-1353-8964; Latino, Giuseppe/0000-0002-4098-3502; iori, maurizio/0000-0002-6349-0380; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Gorelov, Igor/0000-0001-5570-0133; Guo, Jun/0000-0001-8125-9433; Canelli, Florencia/0000-0001-6361-2117; Gerbaudo, Davide/0000-0002-4463-0878; Li, Liang/0000-0001-6411-6107; Bean, Alice/0000-0001-5967-8674; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Christoudias, Theodoros/0000-0001-9050-3880; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Muelmenstaedt, Johannes/0000-0003-1105-6678; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Sharyy, Viatcheslav/0000-0002-7161-2616; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Punzi, Giovanni/0000-0002-8346-9052; Novaes, Sergio/0000-0003-0471-8549; Yip, Kin/0000-0002-8576-4311; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Ancu, Lucian Stefan/0000-0001-5068-6723; Dudko, Lev/0000-0002-4462-3192; Ruiz, Alberto/0000-0002-3639-0368; FU U.S. Department of Energy [DE-FG02-08ER41531, DE-FG02-92ER40701]; Wisconsin Alumni Research Foundation FX P. F. P. would like to thank T. Han and S. Spinner for useful discussions and pointing out Ref. [15]. The work of P. F. P. was supported in part by the U.S. Department of Energy Contract No. DE-FG02-08ER41531 and in part by the Wisconsin Alumni Research Foundation. The work of M. B. W. was supported in part by the U.S. Department of Energy under Contract No. DE-FG02-92ER40701. NR 28 TC 33 Z9 33 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 15 PY 2010 VL 82 IS 1 AR 011102 DI 10.1103/PhysRevD.82.011102 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 626BT UT WOS:000279941600001 ER PT J AU Chattopadhyay, S Uysal, A Stripe, B Ha, YG Marks, TJ Karapetrova, EA Dutta, P AF Chattopadhyay, Sudeshna Uysal, Ahmet Stripe, Benjamin Ha, Young-geun Marks, Tobin J. Karapetrova, Evguenia A. Dutta, Pulak TI How Water Meets a Very Hydrophobic Surface SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; X-RAY REFLECTIVITY; NEUTRON REFLECTIVITY; INTERFACE; DENSITY; DEPLETION; CHEMISTRY; LAYER AB Is there a low-density region ("gap'') between water and a hydrophobic surface? Previous x-ray and neutron reflectivity results have been inconsistent because the effect (if any) is subresolution for the surfaces studied. We have used x-ray reflectivity to probe the interface between water and more hydrophobic smooth surfaces. The depleted region width increases with contact angle and becomes larger than the resolution, allowing definitive measurements. Large fluctuations are predicted at this interface; however, we find that their contribution to the interface roughness is too small to measure. C1 [Chattopadhyay, Sudeshna; Uysal, Ahmet; Stripe, Benjamin; Dutta, Pulak] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Ha, Young-geun; Marks, Tobin J.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Karapetrova, Evguenia A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chattopadhyay, S (reprint author), Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RI Uysal, Ahmet/E-7638-2010; OI Uysal, Ahmet/0000-0003-3278-5570; Ha, Young-Geun/0000-0001-9632-3557 FU U.S. National Science Foundation [DMR-1006432]; U.S. Department of Energy FX We thank A. Facchetti and I. Kuljanshvili for their advice and assistance, and Ali Dhinojwala, Paul Fenter, Steve Granick, and Ben Ocko for detailed comments on an early draft of this Letter. This work was supported by the U.S. National Science Foundation under Grant No. DMR-1006432. The Advanced Photon Source (APS) and Sector 33-BM are supported by the U.S. Department of Energy. NR 34 TC 36 Z9 36 U1 1 U2 47 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 15 PY 2010 VL 105 IS 3 AR 037803 DI 10.1103/PhysRevLett.105.037803 PG 4 WC Physics, Multidisciplinary SC Physics GA 626BZ UT WOS:000279942200014 PM 20867810 ER PT J AU Surer, B Glatz, A Katzgraber, HG Zimanyi, GT Allgood, BA Blatter, G AF Surer, B. Glatz, A. Katzgraber, H. G. Zimanyi, G. T. Allgood, B. A. Blatter, G. TI Comment on "Density of States and Critical Behavior of the Coulomb Glass'' Reply SO PHYSICAL REVIEW LETTERS LA English DT Editorial Material ID SYSTEMS; GAP C1 [Surer, B.; Katzgraber, H. G.; Blatter, G.] ETH, CH-8093 Zurich, Switzerland. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Katzgraber, H. G.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Zimanyi, G. T.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Allgood, B. A.] Numerate Inc, San Bruno, CA 94066 USA. RP Surer, B (reprint author), ETH, CH-8093 Zurich, Switzerland. NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 15 PY 2010 VL 105 IS 3 AR 039702 DI 10.1103/PhysRevLett.105.039702 PG 1 WC Physics, Multidisciplinary SC Physics GA 626BZ UT WOS:000279942200017 ER PT J AU De Santis, S Byrd, JM Billing, M Palmer, M Sikora, J Carlson, B AF De Santis, S. Byrd, J. M. Billing, M. Palmer, M. Sikora, J. Carlson, B. TI Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID INSTABILITY; BEAM AB A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail. C1 [De Santis, S.; Byrd, J. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Billing, M.; Palmer, M.; Sikora, J.] Cornell Univ, Ithaca, NY 14853 USA. [Carlson, B.] Grove City Coll, Grove City, PA 16127 USA. RP De Santis, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 19 TC 3 Z9 3 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 15 PY 2010 VL 13 IS 7 AR 071002 DI 10.1103/PhysRevSTAB.13.071002 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 626BX UT WOS:000279942000001 ER PT J AU Pan, L Lin, CJ Carmichael, GR Streets, DG Tang, YH Woo, JH Shetty, SK Chu, HW Ho, TC Friedli, HR Feng, XB AF Pan, Li Lin, Che-Jen Carmichael, Gregory R. Streets, David G. Tang, Youhua Woo, Jung-Hun Shetty, Suraj K. Chu, Hsing-Wei Ho, Thomas C. Friedli, Hans R. Feng, Xinbin TI Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Mercury; Chemical transport; East Asia; Seasonal variation; Mass budget ID GASEOUS ELEMENTAL MERCURY; DRY DEPOSITION FLUXES; WET DEPOSITION; PARTICULATE MERCURY; SPECIATED MERCURY; AMBIENT AIR; SCIENTIFIC UNCERTAINTIES; SENSITIVITY-ANALYSIS; NORTHERN-HEMISPHERE; METHYL MERCURY AB East Asia is the largest source region of global anthropogenic mercury emissions, and contributes to atmospheric mercury concentration and deposition in other regions. Similarly, mercury from the global pool also plays a role in the chemical transport of mercury in East Asia. Annual simulations of atmospheric mercury in East Asia were performed using the STEM-Hg modeling system to study the mass budgets of mercury in the region. The model results showed strong seasonal variation in mercury concentration and deposition, with signals from large point sources. The annual mean concentrations for gaseous elemental mercury, reactive gaseous mercury and particulate mercury in central China and eastern coastal areas were 1.8 ng m(-3), 100 pg m(-3) and 150 pg m(-3), respectively. Boundary conditions had a strong influence on the simulated mercury concentration and deposition, contributing to 80% of the concentration and 70% of the deposition predicted by the model. The rest was caused by the regional emissions before they were transported out of the model domain. Using different oxidation rates reported for the Hg(0)-O(3) reaction (i.e., by Hall, 1995 vs. by Pal and Ariya, 2004) led to a 9% difference in the predicted mean concentration and a 40% difference in the predicted mean deposition. The estimated annual dry and wet deposition for East Asia in 2001 was in the range of 590-735 Mg and 482-696 Mg, respectively. The mercury mass outflow caused by the emissions in the domain was estimated to be 681-714 Mg yr(-1). This constituted 70% of the total mercury emission in the domain. The greatest outflow occurred in spring and early summer. Published by Elsevier B.V. C1 [Pan, Li; Lin, Che-Jen] Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. [Lin, Che-Jen] S China Univ Technol, Sch Environm Sci Engn, Guangzhou 510006, Guangdong, Peoples R China. [Carmichael, Gregory R.] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA. [Streets, David G.] Argonne Natl Lab, DIS 900, Argonne, IL 60439 USA. [Tang, Youhua] NOAA, NWS, NCEP, EMC, Camp Springs, MD 20746 USA. [Woo, Jung-Hun] Dept Adv Technol Fus, Seoul, South Korea. [Chu, Hsing-Wei] Lamar Univ, Dept Mech Engn, Beaumont, TX 77710 USA. [Shetty, Suraj K.; Ho, Thomas C.] Lamar Univ, Dept Chem Engn, Beaumont, TX 77710 USA. [Friedli, Hans R.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Feng, Xinbin] Chinese Acad Sci, Inst Geochem, State Key Lab Environm Geochem, Guiyang 550002, Peoples R China. RP Pan, L (reprint author), Lamar Univ, Dept Civil Engn, Beaumont, TX 77710 USA. EM lpan@my.lamar.edu RI Feng, Xinbin/F-4512-2011; Pan, Li/G-1327-2012; Lin, Che-Jen/K-1808-2013; OI Feng, Xinbin/0000-0002-7462-8998; Lin, Che-Jen/0000-0001-5990-3093; Streets, David/0000-0002-0223-1350 FU EC/R [PO1-OPR402-LAM]; Texas Air Research Center [078LUB3068A]; Texas Commission on Environmental Quality [582-7-83975]; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences FX The study is sponsored in parts by the USEPA through a subcontract from EC/R (Contract No.: PO1-OPR402-LAM), Texas Air Research Center (Project No: 078LUB3068A), Texas Commission on Environmental Quality (2005-2009 Umbrella Contract No. 582-7-83975) and the State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences. The funding support is gratefully acknowledged. NR 70 TC 13 Z9 14 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD JUL 15 PY 2010 VL 408 IS 16 BP 3277 EP 3291 DI 10.1016/j.scitotenv.2010.04.039 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA 623VM UT WOS:000279773200028 PM 20483447 ER PT J AU Xiong, RC Odbadrakh, K Michalkova, A Luna, JP Petrova, T Keffer, DJ Nicholson, DM Fuentes-Cabrera, MA Lewis, JP Leszczynski, J AF Xiong, Ruichang Odbadrakh, Khorgolkhuu Michalkova, Andrea Luna, Johnathan P. Petrova, Tetyana Keffer, David J. Nicholson, Donald M. Fuentes-Cabrera, Miguel A. Lewis, James P. Leszczynski, Jerzy TI Evaluation of functionalized isoreticular metal organic frameworks (IRMOFs) as smart nanoporous preconcentrators of RDX SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Metal-organic framework; Explosive sensor; Preconcentrator; Molecular simulation; RDX ID MOLECULAR-DYNAMICS SIMULATIONS; METHANE STORAGE; ADSORPTION; DIFFUSION; HYDROGEN; DESIGN; SYSTEMS; GASES; MOF-5; BINDING AB Classical molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were used to generate self-diffusivities, adsorption isotherms and density distributions for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in five isoreticular metal-organic frameworks (IRMOFs), which varied in the cage size and in the presence and location of amine groups. These simulations were performed at room temperature (300 K) and low pressures (up to 1 ppm RDX). The atomic charges required for MD and GCMC simulations were calculated from quantum mechanical (QM) calculations using two different charge generation methods-Lowdin Population Analysis and Natural Bond Orbital Analysis. Both charge sets show that the presence of amine groups increases the amount of RDX adsorbed. The cage size and the location of amine groups also affect the loading of RDX. The amount of RDX adsorbed is correlated with the energy of adsorption. The activation energy for diffusion of RDX is not positively correlated with the energy of adsorption. The density distributions identify the location of the adsorption sites of RDX-exclusively in the big cage around the metal complex vertices and between benzene rings. In the absence of amine groups on the framework, one of nitro groups on RDX interacts closely with the metal complex. In the IRMOFs functionalized with amine groups, a second nitro group of the RDX interacts with an amine group, enhancing adsorption. With regard to the application as a smart nanoporous preconcentrator, these IRMOFs are found to concentrate RDX up to 3000 times compared to the gas phase, on a volumetric basis. From a simple Langmuir estimation, the selectivity of RDX over butane is up to 5000. The diffusion of RDX is sufficiently high for real time sensor applications. These results indicate IRMOFs can be tailored with functional groups to be highly selective nanoporous preconcentrators. (C) 2010 Elsevier B.V All rights reserved. C1 [Xiong, Ruichang; Luna, Johnathan P.; Keffer, David J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Odbadrakh, Khorgolkhuu; Lewis, James P.] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA. [Michalkova, Andrea; Petrova, Tetyana; Leszczynski, Jerzy] Jackson State Univ, Interdisciplinary Nanotox Ctr, Jackson, MS USA. [Nicholson, Donald M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Fuentes-Cabrera, Miguel A.] Univ Tennessee, Joint Inst Computat Sci, Oak Ridge, TN USA. [Fuentes-Cabrera, Miguel A.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RP Keffer, DJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, 1512 Middle Dr,419 Dougherty Engn Bldg, Knoxville, TN 37996 USA. EM dkeffer@utk.edu RI Xiong, Ruichang/O-3398-2013; Keffer, David/C-5133-2014; Fuentes-Cabrera, Miguel/Q-2437-2015 OI Xiong, Ruichang/0000-0001-9262-7545; Keffer, David/0000-0002-6246-0286; Fuentes-Cabrera, Miguel/0000-0001-7912-7079 FU National Science Foundation (NSF) [CMMI-0730207]; Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy; Center for Nanophase Materials Sciences; Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy; National Center for Computational Sciences (NCCS); Office of Science, USDOE; National Institute for Computational Sciences (NICS), ORNL; NSF [OCI 07-11134] FX The authors gratefully acknowledge the financial support of National Science Foundation (NSF) under grant CMMI-0730207. Work at ORNL was performed under the auspices of the Division of Materials Science and Engineering, Office of Basic Energy Science of the US Department of Energy (DMN). Work at ORNL was supported by the Center for Nanophase Materials Sciences, sponsored by the Division of Scientific User Facilities, Office of Basic Energy Science of the US Department of Energy (MFC) and used resources of the National Center for Computational Sciences (NCCS), ORNL, supported by the Office of Science, USDOE, as well as resources of the National Institute for Computational Sciences (NICS), ORNL, supported by NSF with agreement number: OCI 07-11134. This work also used resources of Pittsburgh Supercomputing Center, and West Virginia University (WVU) Nano for computing facilities. NR 47 TC 20 Z9 21 U1 4 U2 45 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 15 PY 2010 VL 148 IS 2 BP 459 EP 468 DI 10.1016/j.snb.2010.05.064 PG 10 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 631WV UT WOS:000280382200016 ER PT J AU Sekhar, PK Brosha, EL Mukundan, R Nelson, MA Williamson, TL Garzon, FH AF Sekhar, Praveen K. Brosha, Eric L. Mukundan, Rangachary Nelson, Mark A. Williamson, Todd L. Garzon, Fernando H. TI Development and testing of a miniaturized hydrogen safety sensor prototype SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Hydrogen sensor; Indium tin oxide; Miniaturized; Prototype; Mixed potential; Safety sensor ID YTTRIA-STABILIZED ZIRCONIA; OXIDE ELECTRODES; YSZ ELECTROLYTE AB In this article, the development and testing of an electrochemical hydrogen (H(2)) sensor prototype based on 'indium tin oxide (ITO)/yttria-stabilized zirconia (YSZ)/platinum (Pt)' configuration is detailed. The device fabricated on an alumina substrate integrates a resistive Pt heater to achieve precise control of operating temperature while minimizing heterogeneous catalysis. Targeting fuel cell powered automotive applications, the safety sensor was subjected to interference studies, temperature cycling, operating temperature variations, and long-term testing over 2000 h. The sensor responded in real-time to varying concentrations of H(2) (1000-20,000 ppm). Among the interference gases tested such as nitric oxide (NO), nitrogen dioxide (NO(2)), ammonia (NH(3)), carbon monoxide (CO), and propylene (C(3)H(6)), the sensor showed cross-sensitivity to C(3)H(6). Analyzing the overall device performance over 2000 h of testing for 5000 ppm of H(2), (a) the sensitivity varied between 0.135 and 0.167 V. (b) the baseline signal ranged from 0 to 0.04 V, and (c) the response rise time fluctuated between 3 and 7 s. The salient features of the H2 sensor prototype developed by Los Alamos National Laboratory (LANL) are (a) the low power consumption, (b) compactness to fit into critical areas of application, (c) simple operation, (d) fast response, (e) a direct voltage read-out circumventing the need for any additional conditioning circuitry and (f) conducive to commercialization. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Brosha, Eric L.; Mukundan, Rangachary; Nelson, Mark A.; Williamson, Todd L.; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), Los Alamos Natl Lab, Sensors & Elect Devices Grp, Los Alamos, NM 87545 USA. EM psekhar@lanl.gov OI Mukundan, Rangachary/0000-0002-5679-3930 NR 28 TC 17 Z9 17 U1 3 U2 29 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD JUL 15 PY 2010 VL 148 IS 2 BP 469 EP 477 DI 10.1016/j.snb.2010.05.031 PG 9 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 631WV UT WOS:000280382200017 ER PT J AU Pint, BA Haynes, JA Besmann, TM AF Pint, B. A. Haynes, J. A. Besmann, T. M. TI Effect of Hf and Y alloy additions on aluminide coating performance SO SURFACE & COATINGS TECHNOLOGY LA English DT Article DE Aluminide coatings; Al(2)O(3); High temperature oxidation; Scale adhesion; Chemical vapor deposition ID CHEMICAL-VAPOR-DEPOSITION; AUSTENITIC STAINLESS-STEELS; OXIDATION BEHAVIOR; CYCLIC-OXIDATION; SCALE ADHESION; DIFFUSION COATINGS; FORMING ALLOYS; OXIDE SCALES; SEGREGATION; SUPERALLOYS AB Iron- and Ni-base alloys, with and without Hf or Hf and Y alloy additions, were aluminized by chemical vapor deposition to study the potential for minor alloy additions to improve oxidation resistance of coated alloys. Compared to uncoated specimens, the coated specimens showed improved cyclic oxidation resistance at 11000 and 1150 degrees C. However, alumina scale spallation was observed at relatively short times and, particularly for the Ni-base alloy X. the aluminized lab-cast alloy with Hf tended to have poor coating performance compared to the commercial alloy without Hf. Internal oxidation of Hf at 1150 degrees C and rapid Al depletion in the relatively thin aluminide coatings contributed to the observed detrimental Hf effect. For the Ni-base alloys, the increased scale spallation could be attributed to much higher S contents (10-50 ppma) in the laboratory-cast alloys. Oxide scale spallation from the coating surface was minimized when Hf and V were added to a casting and the [Y]/[S] content ratio was similar to 1. (C) 2010 Elsevier B.V. All rights reserved. C1 [Pint, B. A.; Haynes, J. A.; Besmann, T. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, POB 2008,MS 6156, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU Oak Ridge National Laboratory FX The authors would like to thank K. M. Cooley, G. W. Garner, T. Brummett and H. Longmire for assistance with the experimental work. I. G. Wright and M. P. Brady provided helpful comments on the manuscript. The research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory. NR 40 TC 36 Z9 36 U1 2 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD JUL 15 PY 2010 VL 204 IS 20 BP 3287 EP 3293 DI 10.1016/j.surfcoat.2010.03.040 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 619UE UT WOS:000279455000030 ER PT J AU Henderson, MA AF Henderson, Michael A. TI Low temperature oxidation of Fe2+ surface sites on the (2 x 1) reconstructed surface of alpha-Fe2O3(01(1)over-bar2) SO SURFACE SCIENCE LA English DT Article DE Iron oxide; Oxygen; Water; Surface chemical reaction; Chemisorption; Electron energy loss spectroscopy (EELS); Thermal desorption spectroscopy; Low energy electron diffraction (LEED) ID OXYGEN; ALPHA-FE2O3(0001); HEMATITE; WATER; ADSORPTION; PRESSURE; PHASES; LEED AB Temperature programmed desorption (TPD), electron energy loss spectroscopy (ELS) and low energy electron diffraction (LEED) were used to study the interaction of molecular oxygen with the (2 x 1) reconstructed surface of hematite alpha-Fe2O3(01 (1) over bar2) under UHV conditions. The (2 x 1) surface is formed from vacuum annealing of the 'ideal' (1 x 1) surface and possesses Fe2+ surface sites based on ELS. While O-2 does not stick to the (1 x 1) surface at 120 K, the amount of O-2 that can be reversibly adsorbed at 120 K on the (2 x 1) surface was estimated to be similar to 0.5 ML (where 1 ML is defined as the Fe3+ surface coverage on the ideal (1 x 1) surface), with additional O-2 that is irreversibly adsorbed based on subsequent H2O TPD. Molecularly and dissociatively adsorbed O-2 modifies the surface chemistry of H2O both in terms of enhanced OH stability (relative to either the (1 x 1) or (2 x 1) surfaces) and in the blocking of H2O adsorption sites. While O-2 adsorption at 120 to 300 K does not transform the (2 x 1) surface into the (1 x 1) surface, the influence of O-2 on the (2 x 1) surface involves both charge transfer from surface Fe2+ sites and formation of an ordered c(2 x 2) structure resulting from O-2 dissociation. (C) 2010 Elsevier B.V. All rights reserved. C1 Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Henderson, MA (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. EM ma.henderson@pnl.gov FU Pacific Northwest National Laboratory (PNNL); Laboratory Directed Research and Development (LDRD) fund; US Department of Energy; Battelle Memorial Institute [DE-AC06-76RLO 1830]; Office of Biological and Environmental Research FX This work was funded by the Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research and Development (LDRD) fund and by the US Department of Energy's Office of Science, Basic Energy Sciences, and Division of Chemical, Geochemical and Biological Sciences. PNNL is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The research reported here was performed in the William R. Wiley Environmental Molecular Science Laboratory, a US DOE user facility funded by the Office of Biological and Environmental Research. NR 24 TC 9 Z9 9 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2010 VL 604 IS 13-14 BP 1197 EP 1201 DI 10.1016/j.susc.2010.04.002 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 620KE UT WOS:000279497700019 ER PT J AU Komarneni, M Kadossov, E Justin, J Lu, M Burghaus, U AF Komarneni, M. Kadossov, E. Justin, J. Lu, M. Burghaus, U. TI Adsorption of thiophene on silica-supported Mo clusters SO SURFACE SCIENCE LA English DT Article DE Kinetics; Dynamics; Thiophene; Silica; Desulfurization; TDS; AES; Adsorption transients ID DENSITY-FUNCTIONAL THEORY; MOLYBDENUM CARBIDE; CATALYTIC HYDRODESULFURIZATION; METHANETHIOL ADSORPTION; ELECTRONIC-STRUCTURE; THERMAL-DESORPTION; METAL-SURFACES; MODEL CATALYST; NANOPARTICLES; NANOCLUSTERS AB The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190-400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (v = 1 x 10(13)/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H-2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H-2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O-2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H-2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S-0, of C4H4S has been determined. At thermal impact energies (E-i = 0.04 eV), So for molecular adsorption amounts to 0.43 +/- 0.03 for a surface temperature of 200 K. S-0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S-0(T-s) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S-0(T-s) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 +/- 2) kJ/mol and (52 +/- 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters. (C) 2010 Elsevier B.V. All rights reserved. C1 [Komarneni, M.; Kadossov, E.; Justin, J.; Burghaus, U.] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58105 USA. [Lu, M.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Burghaus, U (reprint author), N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58105 USA. EM uwe.burghaus@ndsu.edu RI komarneni, mallikharjuna rao/E-1889-2015 OI komarneni, mallikharjuna rao/0000-0002-3269-1606 FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-08ER15987] FX Financial support from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy is acknowledged (Project DE-FG02-08ER15987). NR 67 TC 7 Z9 7 U1 1 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD JUL 15 PY 2010 VL 604 IS 13-14 BP 1221 EP 1229 DI 10.1016/j.susc.2010.04.008 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 620KE UT WOS:000279497700023 ER PT J AU Kropka, JM Celina, M AF Kropka, Jamie M. Celina, Mathew TI Viscoelasticity of liquid organic foam: Relaxations, temporal dependence, and bubble loading effects on flow behavior SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID HIGHLY CONCENTRATED EMULSIONS; 2-DIMENSIONAL SOAP FROTH; MULTIPLE LIGHT-SCATTERING; RIGIDITY LOSS TRANSITION; PLATEAU BORDERS; COMPUTER-SIMULATION; 3-DIMENSIONAL FOAMS; AQUEOUS FOAM; YIELD STRESS; RHEOLOGY AB Liquid organic foams are prepared using a new blowing process based on the chemical generation of carbon dioxide. The foams are volumetrically stable for periods up to hours and can be fabricated with gas volume fractions ranging from 0.10 to 0.95. Both the "fresh" and temporal dependences of the linear viscoelastic response of these materials are evaluated. The organic foams exhibit rheological behavior characteristic of their aqueous counterparts: a weak dependence of the shear moduli over an extended frequency/time regime that is bounded by both a fast and slow relaxation. The onset of the fast mechanical response of the organic foams occurs at approximately the same frequency as in aqueous foams despite the continuous phase viscosity differing by orders of magnitude between the systems. This suggests that the viscosity does not affect the time scale of the "anomalous" viscous loss characteristic of these materials, which challenges currently proposed mechanisms for this dissipation and leaves the origin of the loss behavior unclear. The relative contribution of cell growth and bubble motion to the slow relaxation is also discerned by evaluating the relation between the transient and dynamic responses of the foam. Finally, the development of elasticity in the foam due to bubble interactions is analyzed and a bubble slip process is postulated to account for the lack of a true elastic response of the foam at intermediate time scales (between the fast and slow mechanical response) when gas fractions exceed 0.64. (C) 2010 American Institute of Physics. [doi:10.1063/1.3445063] C1 [Kropka, Jamie M.; Celina, Mathew] Sandia Natl Labs, Organ Mat Dept, Albuquerque, NM 87185 USA. RP Kropka, JM (reprint author), Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. EM jmkropk@sandia.gov FU Laboratory Directed Research and Development (LDRD) FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the National Nuclear Security Administration of the United States Department of Energy under Contract No. DE-AC04-94AL85000. The current studies were funded by the Laboratory Directed Research and Development (LDRD) program. J.M.K. thanks Carlton Brooks for help with the surface tension measurements and Andrew Kraynik for helpful discussions. Nick Giron and Ryan Ross are appreciated for their contribution to foam system development. NR 49 TC 1 Z9 1 U1 4 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024904 DI 10.1063/1.3445063 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700034 PM 20632773 ER PT J AU Parkhill, JA Head-Gordon, M AF Parkhill, John A. Head-Gordon, Martin TI A tractable and accurate electronic structure method for static correlations: The perfect hextuples model SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COUPLED-CLUSTER THEORY; WAVE-FUNCTIONS; COPE REARRANGEMENT; PERTURBATION-THEORY; QUANTUM-CHEMISTRY; NONDYNAMIC CORRELATION; ATOMIZATION ENERGIES; SCHRODINGER-EQUATION; DOUBLES MODEL; IMPLEMENTATION AB We present the next stage in a hierarchy of local approximations to complete active space self-consistent field (CASSCF) model in an active space of one active orbital per active electron based on the valence orbital-optimized coupled-cluster (VOO-CC) formalism. Following the perfect pairing (PP) model, which is exact for a single electron pair and extensive, and the perfect quadruples (PQ) model, which is exact for two pairs, we introduce the perfect hextuples (PH) model, which is exact for three pairs. PH is an approximation to the VOO-CC method truncated at hextuples containing all correlations between three electron pairs. While VOO-CCDTQ56 requires computational effort scaling with the 14th power of molecular size, PH requires only sixth power effort. Our implementation also introduces some techniques which reduce the scaling to fifth order and has been applied to active spaces roughly twice the size of the CASSCF limit without any symmetry. Because PH explicitly correlates up to six electrons at a time, it can faithfully model the static correlations of molecules with up to triple bonds in a size-consistent fashion and for organic reactions usually reproduces CASSCF with chemical accuracy. The convergence of the PP, PQ, and PH hierarchy is demonstrated on a variety of examples including symmetry breaking in benzene, the Cope rearrangement, the Bergman reaction, and the dissociation of fluorine. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456001] C1 [Parkhill, John A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Parkhill, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM john.parkhill@gmail.com; mhg@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0376SF00098]; SciDac Program FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC0376SF00098 and by a grant from the SciDac Program. We would like to thank Dr. Daniel Lambrecht for reading an early draft. NR 85 TC 25 Z9 25 U1 1 U2 8 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024103 DI 10.1063/1.3456001 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700005 PM 20632744 ER PT J AU Wick, CD Dang, LX AF Wick, Collin D. Dang, Liem X. TI The behavior of NaOH at the air-water interface: A computational study SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID VALENCE-BOND MODEL; LIQUID/VAPOR INTERFACE; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTIONS; PROTON SOLVATION; HYDROXIDE IONS; BIOMOLECULAR SYSTEMS; COMPUTER-SIMULATION; AIR/WATER INTERFACE; HYDRATED PROTON AB Molecular dynamics simulations with a polarizable multistate empirical valence-bond model were carried out to investigate NaOH dissociation and pairing in water bulk and at the air-water interface. It was found that NaOH readily dissociates in the bulk and the effect of the air-water interface on NaOH dissociation is fairly minor. Also, NaOH complexes were found to be strongly repelled from the air-water interface, which is consistent with surface tension measurements. At the same time, a very strong preference for the hydroxide anion to be oriented toward the air was found that persisted a few angstroms toward the liquid from the Gibbs dividing surface of the air-water interface. This was due to a preference for the hydroxide anion to have its hydrogen pointing toward the air and the fact that the sodium ion was more likely to be found near the hydroxide oxygen than hydrogen. As a consequence, the simulation results show that surfaces of NaOH solutions should be negatively charged, in agreement with experimental observations, but also that the hydroxide has little surface affinity. This provides the possibility that the surface of water can be devoid of hydroxide anions, but still have a strong negative charge. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455332] C1 [Wick, Collin D.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Dang, Liem X.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Wick, CD (reprint author), Louisiana Tech Univ, Ruston, LA 71270 USA. EM cwick@latech.edu; liem.dang@pnl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy; Louisiana Board of Regents Research Competitiveness [3LEQSF(2008-11)-RD-A-21] FX Part of this work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U. S. Department of Energy. In addition, some of the research was funded by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract No. 3LEQSF(2008-11)-RD-A-21. The calculations were carried out using the resources from the Louisiana Optical Network Initiative (LONI). Additional computer resources were provided by the Office of Basic Energy Sciences, U. S. Department of Energy. NR 71 TC 13 Z9 13 U1 1 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024705 DI 10.1063/1.3455332 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700029 PM 20632768 ER PT J AU Xu, Y Shelton, WA AF Xu, Ye Shelton, William A. TI O-2 reduction by lithium on Au(111) and Pt(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ORGANIC ELECTROLYTE BATTERY; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; WAVE BASIS-SET; OXYGEN REDUCTION; MONOLAYER ELECTROCATALYSTS; INFRARED-SPECTRA; FUEL-CELLS; SURFACES; 1ST-PRINCIPLES AB Lithium-oxygen has one of the highest specific energies among known electrochemical couples and holds the promise of substantially boosting the specific energy of portable batteries. Mechanistic information of the oxygen reduction reaction by Li (Li-ORR) is scarce, and the factors limiting the discharge and charge efficiencies of the Li-oxygen cathode are not understood. To shed light on the fundamental surface chemistry of Li-ORR, we have performed periodic density functional theory calculations in conjunction with thermodynamic modeling for two metal surfaces, Au(111) and Pt(111). On clean Au(111) initial O-2 reduction via superoxide (LiO2) formation has a low reversible potential of 1.51 V. On clean Pt(111), the dissociative adsorption of O-2 is facile and the reduction of atomic O has a reversible potential of 1.97 V, whereas the associative channel involving LiO2 is limited by product stability versus O to 2.04 V. On both surfaces O-2 lithiation significantly weakens the O-O bond, so the product selectivity of the Li-ORR is monoxide (LixO), not peroxide (LixO2). Furthermore, on both surfaces LixO species are energetically driven to form (LixO)(n) aggregates, and the interface between (LixO)(n) and the metal surfaces are active sites for forming and dissociating LiO2. Given that bulk Li2O(s) is found to be globally the most stable phase up to 2.59 V, the presence of available metal sites may allow the cathode to access the bulk Li2O phase across a wide range of potentials. During cycling, the discharge process (oxygen reduction) is expected to begin with the reduction of chemisorbed atomic O instead of gas-phase O-2. On Au(111) this occurs at 2.42 V, whereas the greater stability of O on Pt(111) limits the reversible potential to 1.97 V. Therefore, the intrinsic reactivity of Pt(111) renders it less effective for Li-ORR than Au(111). (C) 2010 American Institute of Physics. [doi:10.1063/1.3447381] C1 [Xu, Ye] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shelton, William A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Xu, Y (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6493, Oak Ridge, TN 37831 USA. EM xuy2@ornl.gov RI Xu, Ye/B-5447-2009 OI Xu, Ye/0000-0002-6406-7832 FU Office of Science of the U. S. Department of Energy [DE-AC05-00OR22725] FX We thank Professor Hubert Gasteiger and Professor Yang Shao-Horn for stimulating discussions and for sharing unpublished experimental data. We also thank Dr. Zili Wu for discussions. This research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U. S. Department of Energy and used computing resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U. S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 73 TC 39 Z9 39 U1 1 U2 57 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 14 PY 2010 VL 133 IS 2 AR 024703 DI 10.1063/1.3447381 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 625TJ UT WOS:000279917700027 PM 20632766 ER PT J AU Kells, AP Eberling, J Su, XM Pivirotto, P Bringas, J Hadaczek, P Narrow, WC Bowers, WJ Federoff, HJ Forsayeth, J Bankiewicz, KS AF Kells, Adrian P. Eberling, Jamie Su, Xiaomin Pivirotto, Philip Bringas, John Hadaczek, Piotr Narrow, Wade C. Bowers, William J. Federoff, Howard J. Forsayeth, John Bankiewicz, Krystof S. TI Regeneration of the MPTP-Lesioned Dopaminergic System after Convection-Enhanced Delivery of AAV2-GDNF SO JOURNAL OF NEUROSCIENCE LA English DT Article ID ADENOASSOCIATED VIRUS TYPE-2; AGE-RELATED OBESITY; NEUROTROPHIC FACTOR; PARKINSONS-DISEASE; GENE-THERAPY; PRIMATE MODEL; NIGROSTRIATAL PATHWAY; TYROSINE-HYDROXYLASE; VECTOR DELIVERY; DOWN-REGULATION AB Clinical studies to date have failed to establish therapeutic benefit of glial cell-derived neurotrophic factor (GDNF) in Parkinson's disease (PD). In contrast to previous nonclinical neuroprotective reports, this study shows clinically relevant and long-lasting regeneration of the dopaminergic system in rhesus macaques lesioned with 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine 3-6 months before GDNF gene delivery (AAV2-GDNF). The observed progressive amelioration of functional deficits, recovery of dopamine, and regrowth of fibers to the striatal neuropil demonstrate that high GDNF expression in the putamen promotes restoration of the dopaminergic system in a primate model of advanced PD. Extensive distribution of GDNF within the putamen and transport to the severely lesioned substantia nigra, after convection-enhanced delivery of AAV2-GDNF into the putamen, indicates anterograde transport via striatonigral connections and is anticipated to occur in PD patients. Overall, these data demonstrate nonclinical neurorestoration after putaminal infusion of AAV2-GDNF and suggest that clinical investigation in PD patients is warranted. C1 [Kells, Adrian P.; Su, Xiaomin; Pivirotto, Philip; Bringas, John; Hadaczek, Piotr; Forsayeth, John; Bankiewicz, Krystof S.] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94103 USA. [Eberling, Jamie] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mol Imaging & Neurosci, Berkeley, CA 94720 USA. [Narrow, Wade C.; Bowers, William J.] Univ Rochester, Med Ctr, Dept Neurol, Ctr Neural Dev & Dis, Rochester, NY 14642 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Dept Neurol, Washington, DC 20007 USA. [Federoff, Howard J.] Georgetown Univ, Med Ctr, Dept Neurosci, Washington, DC 20007 USA. RP Bankiewicz, KS (reprint author), Univ Calif San Francisco, Dept Neurol Surg, 1855 Folsom St, San Francisco, CA 94103 USA. EM krystof.bankiewicz@ucsf.edu FU National Institutes of Health-National Institute of Neurological Disorders and Stroke [U54 NS045309] FX This study was funded by a National Institutes of Health-National Institute of Neurological Disorders and Stroke Cooperative Research Agreement U54 NS045309. NR 52 TC 53 Z9 53 U1 0 U2 5 PU SOC NEUROSCIENCE PI WASHINGTON PA 11 DUPONT CIRCLE, NW, STE 500, WASHINGTON, DC 20036 USA SN 0270-6474 J9 J NEUROSCI JI J. Neurosci. PD JUL 14 PY 2010 VL 30 IS 28 BP 9567 EP 9577 DI 10.1523/JNEUROSCI.0942-10.2010 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 625MJ UT WOS:000279899100024 PM 20631185 ER PT J AU Muller, A Schippers, S Phaneuf, RA Scully, SWJ Aguilar, A Cisneros, C Gharaibeh, MF Schlachter, AS McLaughlin, BM AF Mueller, A. Schippers, S. Phaneuf, R. A. Scully, S. W. J. Aguilar, A. Cisneros, C. Gharaibeh, M. F. Schlachter, A. S. McLaughlin, B. M. TI K-shell photoionization of ground-state Li-like boron ions [B2+]: experiment and theory SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DOUBLY-EXCITED RESONANCES; LASER-PRODUCED PLASMAS; SINGLE GAS COLLISIONS; R-MATRIX THEORY; HIGH-RESOLUTION; CROSS-SECTIONS; AUGER-SPECTRA; B STARS; AUTOIONIZATION; SPECTROSCOPY AB Absolute cross sections for the K-shell photoionization of ground-state Li-like boron [B2+(1s(2)2s S-2)] ions were measured by employing the ion-photon merged-beams technique at the Advanced Light Source synchrotron radiation facility. The energy ranges 197.5-200.5 eV, and 201.9-202.1 eV of the [1s(2s2p)P-3]P-2(o) and [1s(2s2p)P-1] P-2(o) resonances, respectively, were investigated using resolving powers of up to 17 600. The energy range of the experiments was extended to about 238.2 eV yielding energies of the most prominent [1s(2l nl')] Po-2 resonances with an absolute accuracy of the order of 130 ppm. The natural linewidths of the [1s(2s2p)P-3] Po-2 and [1s(2s2p)P-1] P-2(o) resonances were measured to be 4.8 +/- 0.6meV and 29.7 +/- 2.5meV, respectively, which compare favourably with theoretical results of 4.40 meV and 30.53 meV determined using an intermediate-coupling R-matrix method. C1 [Scully, S. W. J.; McLaughlin, B. M.] Queens Univ Belfast, Sch Math & Phys, CTAMOP, Belfast BT7 1NN, Antrim, North Ireland. [Mueller, A.; Schippers, S.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Phaneuf, R. A.; Scully, S. W. J.; Aguilar, A.; Gharaibeh, M. F.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Aguilar, A.; Schlachter, A. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Cisneros, C.] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62131, Morelos, Mexico. [McLaughlin, B. M.] Harvard Smithsonian Ctr Astrophys, Inst Theoret Atom & Mol Phys, Cambridge, MA 02138 USA. RP McLaughlin, BM (reprint author), Queens Univ Belfast, Sch Math & Phys, CTAMOP, David Bates Bldg,7 Coll Pk, Belfast BT7 1NN, Antrim, North Ireland. EM b.mclaughlin@qub.ac.uk RI Muller, Alfred/A-3548-2009; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Deutsche Forschungsgemeinschaft [Mu 1068/10]; US Department of Energy ( DOE) [DE-AC03-76SF-00098, DE-FG02-03ER15424]; US National Science Foundation FX We acknowledge support by Deutsche Forschungsgemeinschaft under project number Mu 1068/10 and through NATO Collaborative Linkage grant 976362 as well as by the US Department of Energy ( DOE) under contract DE-AC03-76SF-00098 and grant DE-FG02-03ER15424. BMM acknowledges support by the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics. The computational work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, USA, and on the Tera-grid at the National Institute for Computational Science (NICS) in TN, USA, which is supported in part by the US National Science Foundation. NR 46 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD JUL 14 PY 2010 VL 43 IS 13 AR 135602 DI 10.1088/0953-4075/43/13/135602 PG 11 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 613TI UT WOS:000279003500030 ER PT J AU Ehiasarian, AP Andersson, J Anders, A AF Ehiasarian, Arutiun P. Andersson, Joakim Anders, Andre TI Distance-dependent plasma composition and ion energy in high power impulse magnetron sputtering SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID THIN-FILMS; COATINGS; TECHNOLOGY AB The plasma composition of high power impulse magnetron sputtering (HIPIMS) has been studied for titanium and chromium targets using a combined energy analyser and quadrupole mass spectrometer. Measurements were done at distances from 50 to 300 mm from the sputtering target. Ti and Cr are similar in atomic mass but have significantly different sputter yields, which gives interesting clues on the effect of the target on plasma generation and transport of atoms. The Ti and Cr HIPIMS plasmas operated at a peak target current density of similar to 0.5 A cm(-2). The measurements of the argon and metal ion content as well as the ion energy distribution functions showed that (1) singly and doubly charged ions were found for argon as well as for the target metal, (2) the majority of ions were singly charged argon for both metals at all distances investigated, (3) the Cr ion density was maintained to distances further from the target than Ti. Gas rarefaction was identified as a main factor promoting transport of metal ions, with the stronger effect observed for Cr, the material with higher sputter yield. Cr ions were found to displace a significant portion of the gas ions, whereas this was less evident in the Ti case. The observations indicate that the presence of metal vapour promotes charge exchange and reduces the electron temperature and thereby practically prevents the production of Ar(2+) ions near the target. The content of higher charge states of metal ions depends on the probability of charge exchange with argon. C1 [Ehiasarian, Arutiun P.] Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England. [Andersson, Joakim; Anders, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Andersson, Joakim] Uppsala Univ, Angstrom Lab, Uppsala, Sweden. RP Ehiasarian, AP (reprint author), Sheffield Hallam Univ, Mat & Engn Res Inst, Howard St, Sheffield S1 1WB, S Yorkshire, England. EM a.ehiasarian@shu.ac.uk RI Andersson, Joakim/A-3017-2009; Anders, Andre/B-8580-2009; OI Andersson, Joakim/0000-0003-2991-1927; Anders, Andre/0000-0002-5313-6505; Ehiasarian, Arutiun/0000-0001-6080-3946 FU EPSRC [EP/D049202/1]; US Department of Energy [DE-AC02-05CH11231]; SSF Strategic Research Centre on Materials Science for Nanoscale Surface Engineering MS2E Foundation; Wenner-Gren Foundation FX The financial support of EPSRC within the framework of Grant No EP/D049202/1 is gratefully acknowledged. Work at Lawrence Berkeley National Laboratory was supported by the US Department of Energy under Contract No DE-AC02-05CH11231. JA acknowledges the support of the SSF Strategic Research Centre on Materials Science for Nanoscale Surface Engineering MS2E and Wenner-Gren Foundations. NR 24 TC 14 Z9 14 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 14 PY 2010 VL 43 IS 27 AR 275204 DI 10.1088/0022-3727/43/27/275204 PG 8 WC Physics, Applied SC Physics GA 613TK UT WOS:000279003700013 ER PT J AU Liu, N Li, YR Lu, N Yao, YX Fang, XW Wang, CZ Ho, KM AF Liu, Nuo Li, Yan-Rong Lu, Ning Yao, Yong-Xin Fang, Xiao-Wei Wang, Cai-Zhuang Ho, Kai-Ming TI Charge localization in [112] Si/Ge and Ge/Si core-shell nanowires SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID FIELD-EFFECT TRANSISTORS; SILICON NANOWIRES; ELECTRICAL DETECTION; MOLECULAR-DYNAMICS; HETEROSTRUCTURES; NANOSENSORS; METALS; SENSOR AB We report a first-principles study of Ge/Si and Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with a diameter of similar to 20 angstrom using density-functional theory. Our results show that for both NW structures the band gaps are indirect and are significantly larger than the gaps of the bulk crystalline Si and Ge. The quantum well confinement effect in these NWs is found to be modified by a type II lineup of band structures. Moreover, the carriers on the conduction band minimum are strongly localized in the Si region while the carriers on the valence band maximum are located mainly in the Ge region. The charge separation and localization characters make the NWs good candidates for nanochannels in field effect devices, solar cells with higher efficiency and high mobility heterostructures due to the spatial separation of one-dimensional electron gas and one-dimensional hole gas. C1 [Liu, Nuo; Lu, Ning; Yao, Yong-Xin; Fang, Xiao-Wei; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Liu, Nuo; Lu, Ning; Yao, Yong-Xin; Fang, Xiao-Wei; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Liu, Nuo; Li, Yan-Rong] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. RP Liu, N (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. RI lu, ning/H-1993-2011; Yao, Yongxin/B-7320-2008 FU US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No DE-AC02-07CH11358. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences including a grant of computer time at the National Energy Research Supercomputing Center (NERSC) in Berkeley. Nuo Liu's work at Ames Laboratory was also supported by the China Scholarship Council and by a grant from the Major State Basic Research Development Programme of China, the 973 Programme, Grant No 61363. NR 40 TC 7 Z9 7 U1 2 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 14 PY 2010 VL 43 IS 27 AR 275404 DI 10.1088/0022-3727/43/27/275404 PG 5 WC Physics, Applied SC Physics GA 613TK UT WOS:000279003700019 ER PT J AU Shepard, EM Duffus, BR George, SJ McGlynn, SE Challand, MR Swanson, KD Roach, PL Cramer, SP Peters, JW Broderick, JB AF Shepard, Eric M. Duffus, Benjamin R. George, Simon J. McGlynn, Shawn E. Challand, Martin R. Swanson, Kevin D. Roach, Peter L. Cramer, Stephen P. Peters, John W. Broderick, Joan B. TI [FeFe]-Hydrogenase Maturation: HydG-Catalyzed Synthesis of Carbon Monoxide SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID FE-ONLY HYDROGENASE; H-CLUSTER; ACTIVE-SITE; IRON; CO; HYDA(DELTA-EFG); BIOSYNTHESIS; ACTIVATION; SCAFFOLD; CN AB Biosynthesis of the unusual organometallic H-cluster at the active site of the [FeFe]-hydrogenase requires three accessory proteins, two of which are radical Ado Met enzymes (HydE, HydG) and one of which is a GTPase (HydF). We demonstrate here that HydG catalyzes the synthesis of CO using tyrosine as a substrate. CO production was detected by using deoxyhemoglobin as a reporter and monitoring the appearance of the characteristic visible spectroscopic features of carboxyhemoglobin. Assays utilizing (13)C-tyrosine were analyzed by FTIR to confirm the production of HbCO and to demonstrate that the CO product was synthesized from tyrosine. CO ligation is a common feature at the active sites of the [FeFe], [NiFe], and [Fe]-only hydrogenases; however, this is the first report of the enzymatic synthesis of CO in hydrogenase maturation. C1 [Shepard, Eric M.; Duffus, Benjamin R.; McGlynn, Shawn E.; Swanson, Kevin D.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Shepard, Eric M.; Duffus, Benjamin R.; McGlynn, Shawn E.; Swanson, Kevin D.; Peters, John W.; Broderick, Joan B.] Montana State Univ, Astrobiol Biogeocatalysis Res Ctr, Bozeman, MT 59717 USA. [George, Simon J.; Cramer, Stephen P.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [George, Simon J.; Cramer, Stephen P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Challand, Martin R.; Roach, Peter L.] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. RP Broderick, JB (reprint author), Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. EM jbroderick@chemistry.montana.edu RI Roach, Peter/C-6248-2013; Challand, Martin/C-6395-2015; OI Challand, Martin/0000-0002-9685-3504; Broderick, Joan/0000-0001-7057-9124; Peters, John/0000-0001-9117-9568 FU NASA Astrobiology Institute [NNA08CN85A]; Air Force Office of Scientific Research FX This work was supported by the NASA Astrobiology Institute (NNA08CN85A to J.W.P. and J.B.B.) and the Air Force Office of Scientific Research (J.W.P.). We thank David Singel and David Schwab for providing human Hb, and William Broderick for critical insights. NR 18 TC 68 Z9 68 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9247 EP 9249 DI 10.1021/ja1012273 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700010 PM 20565074 ER PT J AU Galan-Mascaros, JR Coronado, E Goddard, PA Singleton, J Coldea, AI Wallis, JD Coles, SJ Alberola, A AF Galan-Mascaros, Jose R. Coronado, Eugenio Goddard, Paul A. Singleton, John Coldea, Amalia I. Wallis, John D. Coles, Simon J. Alberola, Antonio TI A Chiral Ferromagnetic Molecular Metal SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BIMETALLIC OXALATE COMPLEXES; PHOTOINDUCED MAGNETIZATION; ORGANIC CONDUCTORS; BIS(ETHYLENEDITHIO)TETRASELENAFULVALENE; SALTS AB The first molecular material with the coexistence of ferromagnetism, metal-like conductivity, and chirality has been prepared using an organic/inorganic approach. In this case, a two-dimensional packing of chiral organic radical cations (responsible for both the electrical conductivity and optical activity) was assembled with a layered bimetallic oxalate-based anionic network (responsible for the magnetic properties). Shubnikov-de Haas oscillations confirmed the presence of a Fermi surface even when the transport properties suggested "insulating"-type behavior at very low temperatures. C1 [Galan-Mascaros, Jose R.] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain. [Coronado, Eugenio; Alberola, Antonio] Univ Valencia, Inst Ciencia Mol, Valencia 46980, Spain. [Goddard, Paul A.; Coldea, Amalia I.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab MST NHMFL, Los Alamos, NM 87545 USA. [Coldea, Amalia I.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Wallis, John D.] Nottingham Trent Univ, Sch Sci & Technol, Nottingham NG11 8NS, England. [Coles, Simon J.] Univ Southampton, Dept Chem, UK Natl Crystallog Serv, Southampton SO17 1BJ, Hants, England. RP Galan-Mascaros, JR (reprint author), Inst Chem Res Catalonia ICIQ, Av Paisos Catalans 16, Tarragona 43007, Spain. EM jrgalan@iciq.es; eugenio.coronado@uv.es RI Coles, Simon/A-1795-2009; Coronado, Eugenio/E-8960-2014; Galan-Mascaros, Jose Ramon/O-7196-2014; Goddard, Paul/A-8638-2015; icmol, icmol/I-5784-2015; Coldea, Amalia/C-1106-2013; alberola, antonio/A-5872-2017 OI WALLIS, JOHN/0000-0001-7259-8783; Coles, Simon/0000-0001-8414-9272; Galan-Mascaros, Jose Ramon/0000-0001-7983-9762; Goddard, Paul/0000-0002-0666-5236; FU European Union; Spanish Ministerio de Ciencia e Innovacion [MAT2007-61584, CTQ-2008-03197/BQU]; Generalitat Valenciana; U.S. Department of Energy [LDRD-DR 20070013]; NSF; State of Florida; Nottingham Trent University; UK EPSRC FX We are grateful for the financial support from the European Union (ERC Advanced Grant SPINMOL to E.C.), the Spanish Ministerio de Ciencia e Innovacion, with FEDER cofinancing (Project Consolider-Ingenio in Molecular Nanoscience and Projects MAT2007-61584 and CTQ-2008-03197/BQU), and the Generalitat Valenciana (Prometeo Program). Work carried out at the NHMFL was supported by the U.S. Department of Energy (partly through Grant LDRD-DR 20070013) and by NSF and the State of Florida. J.D.W. thanks Nottingham Trent University for support and the EPRSC X-ray Crystallography Service for a data set and acknowledges the EPSRC's Chemical Database Service at Daresbury for access to the Cambridge Structural Database. P.A.G. acknowledges the support of the UK EPSRC. NR 21 TC 55 Z9 55 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9271 EP 9273 DI 10.1021/ja103147k PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700018 PM 20568748 ER PT J AU Wang, Y Li, ZH Hu, DH Lin, CT Li, JH Lin, YH AF Wang, Ying Li, Zhaohui Hu, Dehong Lin, Chiann-Tso Li, Jinghong Lin, Yuehe TI Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID QUANTUM DOTS; GRAPHENE; DNA; APTAMERS; DELIVERY AB Graphene has shown fascinating applications in bio-nanotechnology, including DNA sensing, protein assays, and drug delivery. However, exploration of graphene with intracellular monitoring and in situ molecular probing is still at an early stage. In this regard, we have designed an aptamer-carboxyfluorescein (FAM)/graphene oxide nanosheet (GO-nS) nanocomplex to investigate its ability for molecular probing in living cells. Results demonstrate that uptake of aptamer-FAM/GO-nS nanocomplex and cellular target monitoring were realized successfully. The dramatic delivery, protection, and sensing capabilities of GO-nS in living cells indicate that graphene oxide could be a robust candidate for many biological fields, such as DNA and protein analysis, gene and drug delivering, and intracellular tracking. C1 [Wang, Ying; Li, Jinghong] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. [Wang, Ying; Li, Zhaohui; Hu, Dehong; Lin, Chiann-Tso; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, JH (reprint author), Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China. EM jhli@mail.tsinghua.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Li, Jinghong /D-4283-2012; Hu, Dehong/B-4650-2010 OI Lin, Yuehe/0000-0003-3791-7587; Li, Jinghong /0000-0002-0750-7352; Hu, Dehong/0000-0002-3974-2963 FU Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; National Natural Science Foundation of China [20975060]; National Basic Research Program of China [2007CB310500] FX This work was supported by a laboratory-directed research and development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. Part of the research described in this paper was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. This work was also financially supported by the National Natural Science Foundation of China (No. 20975060) and the National Basic Research Program of China (No. 2007CB310500). Y.W. acknowledges the fellowship from PNNL. We appreciate Dr. Thomas J. Weber for cell culture. NR 18 TC 586 Z9 602 U1 52 U2 604 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 14 PY 2010 VL 132 IS 27 BP 9274 EP 9276 DI 10.1021/ja103169v PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA 623MU UT WOS:000279745700019 PM 20565095 ER PT J AU Haakh, H Intravaia, F Henkel, C AF Haakh, H. Intravaia, F. Henkel, C. TI Temperature dependence of the plasmonic Casimir interaction SO PHYSICAL REVIEW A LA English DT Article ID SURFACE-PLASMONS; FORCES; SOLIDS; LIGHT AB We investigate the role of surface plasmons in the electromagnetic Casimir effect at finite temperature, including situations out of global thermal equilibrium. The free energy is calculated analytically and expanded for different regimes of distances and temperatures. Similar to the zero-temperature case, the interaction changes from attraction to repulsion with distance. Thermal effects are shown to be negligible for small plate separations and at room temperature but become dominant and repulsive at large values of these parameters. In configurations out of global thermal equilibrium, we show that the selective excitation of surface plasmons can create a repulsive Casimir force between metal plates. C1 [Haakh, H.; Intravaia, F.; Henkel, C.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Intravaia, F.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Haakh, H (reprint author), Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. RI Henkel, Carsten/C-2540-2011; Intravaia, Francesco/E-6500-2010 OI Intravaia, Francesco/0000-0001-7993-4698 FU Alexander von Humboldt foundation; LANL; German-Israeli Foundation for Development and Research (GIF) FX We would like to thank H. T. Dinani and S. Slama for discussions and help with some calculations. We benefited from exchanging ideas within the Research Network "Casimir" of the European Science Foundation (ESF). FI acknowledges partial financial support by the Alexander von Humboldt foundation and LANL. HH and CH acknowledge funding by the German-Israeli Foundation for Development and Research (GIF). NR 31 TC 8 Z9 8 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 14 PY 2010 VL 82 IS 1 AR 012507 DI 10.1103/PhysRevA.82.012507 PG 10 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 625HW UT WOS:000279887100002 ER PT J AU Kopnin, NB Galperin, YM Vinokur, VM AF Kopnin, N. B. Galperin, Y. M. Vinokur, V. M. TI Coulomb-enhanced resonance transmission of quantum SINIS junctions SO PHYSICAL REVIEW B LA English DT Article ID IMPURITY JOSEPHSON-JUNCTION; CARBON NANOTUBES; BEHAVIOR; DOT AB Coherent charge transfer through a ballistic gated SINIS (here S stands for a superconductor, N is a normal-metal island, and I is an insulator) junction is mediated by the resonant tunneling via the Andreev states. Extra charge accommodated on the Andreev levels partially compensates the charge induced by the gate voltage preserving the electron wavelength and maintaining the resonance conditions in a broad range of gate voltages. As a result, the transparency of the junction as well as the supercurrent though it can be substantially increased as compared to the zero-Coulomb case. C1 [Kopnin, N. B.] Aalto Univ, Low Temp Lab, FI-00076 Aalto, Finland. [Kopnin, N. B.] LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Galperin, Y. M.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [Galperin, Y. M.] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia. [Vinokur, V. M.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kopnin, NB (reprint author), Aalto Univ, Low Temp Lab, POB 15100, FI-00076 Aalto, Finland. RI Galperin, Yuri/A-1851-2008 OI Galperin, Yuri/0000-0001-7281-9902 FU Russian Foundation for Basic Research [09-02-00573-a]; Russian Academy of Sciences; Academy of Finland; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; Norwegian Research Council FX We thank I. Sadovskyy, V. Shumeiko, and A. Zazunov for stimulating discussions. This work was supported by the Russian Foundation for Basic Research under Grant No. 09-02-00573-a; the Program "Quantum Physics of Condensed Matter" of the Russian Academy of Sciences; the Academy of Finland Centers of Excellence Program; the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357; and by Norwegian Research Council through the program on sensors and detectors. NR 30 TC 0 Z9 0 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 1 AR 012503 DI 10.1103/PhysRevB.82.012503 PG 4 WC Physics, Condensed Matter SC Physics GA 625HX UT WOS:000279887200004 ER PT J AU Seu, KA Roy, S Turner, JJ Park, S Falco, CM Kevan, SD AF Seu, K. A. Roy, S. Turner, J. J. Park, S. Falco, C. M. Kevan, S. D. TI Cone phase and magnetization fluctuations in Au/Co/Au thin films near the spin-reorientation transition SO PHYSICAL REVIEW B LA English DT Article ID DOMAIN-STRUCTURES; X-RAYS; TEMPERATURE; ANISOTROPY; NANOSTRUCTURES; DEPENDENCE; STRIPE AB Using coherent soft x-ray scattering we have measured slow magnetization fluctuations in an Au/Co/Au heterostructure near a thermally driven spin-reorientation phase transition. The intermediate scattering function is well described by a stretched exponential, suggesting cooperative motion through the transition. The decay times were found to exhibit a pronounced maximum as a function of temperature. We argue that the transition proceeds through a cone phase in which the local magnetization evolves continuously from a perpendicular to longitudinal orientation. Our results demonstrate a different and fruitful way to probe the complex spatiotemporal dynamics that arise in unusual magnetic phases with competing anisotropies. C1 [Seu, K. A.; Roy, S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Seu, K. A.; Kevan, S. D.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Turner, J. J.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Park, S.] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Falco, C. M.] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA. RP Roy, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM SRoy@lbl.gov RI Kevan, Stephen/F-6415-2010 OI Kevan, Stephen/0000-0002-4621-9142 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DMR-0506241]; DOE [DE-FG02-93ER45488]; KOSEF [R01-2008-000-21092-0, 2009-0083140] FX The authors acknowledge J. D. Thompson of the Los Alamos National Laboratory for helping in the magnetometry measurements. This work at ALS/LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work in the group of SDK at U. Oregon was supported by NSF under Grant No. DMR-0506241. Work in the group of CMF at U. Arizona was supported by DOE under Grant No. DE-FG02-93ER45488. S. P. acknowledges support from KOSEF under Grants No. R01-2008-000-21092-0 and No. 2009-0083140. NR 31 TC 10 Z9 10 U1 3 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 1 AR 012404 DI 10.1103/PhysRevB.82.012404 PG 4 WC Physics, Condensed Matter SC Physics GA 625HX UT WOS:000279887200001 ER PT J AU Xiang, HJ Wei, SH Gong, XG AF Xiang, H. J. Wei, Su-Huai Gong, X. G. TI Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; GRAPHITE OXIDE; BERRYS PHASE; BASIS-SET; TRANSPORT; OXIDATION; SHEETS AB The structural and electronic properties of oxidized graphene are investigated on the basis of the genetic algorithm and density functional theory calculations. We find two new low-energy semiconducting phases of the fully oxidized graphene (C(1)O). In one phase, there is parallel epoxy pair chains running along the zigzag direction. In contrast, the ground-state phase with a slightly lower energy and a much larger band gap contains epoxy groups in three different ways: normal epoxy, unzipped epoxy, and epoxy pair. Interestingly, the C(1)O phase with the epoxy pair model has a lower conduction-band minimum than the Dirac point of graphene. For partially oxidized graphene, a phase separation between bare graphene and fully oxidized graphene is predicted. C1 [Xiang, H. J.; Gong, X. G.] Fudan Univ, Dept Phys, Minist Educ, Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. [Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Xiang, HJ (reprint author), Fudan Univ, Dept Phys, Minist Educ, Key Lab Computat Phys Sci, Shanghai 200433, Peoples R China. EM hxiang@fudan.edu.cn RI gong, xingao /B-1337-2010; Xiang, Hongjun/I-4305-2016; gong, xingao/D-6532-2011 OI Xiang, Hongjun/0000-0002-9396-3214; FU National Science Foundation of China; Shanghai Institutions of Higher Learning; U.S. Department of Energy [DE-AC36-08GO28308] FX Work at Fudan was partially supported by the National Science Foundation of China and The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Work at NREL was supported by the U.S. Department of Energy, under Contract No. DE-AC36-08GO28308. We thank Gus Hart for useful discussion at the early stage on this project. NR 39 TC 52 Z9 52 U1 3 U2 28 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 14 PY 2010 VL 82 IS 3 AR 035416 DI 10.1103/PhysRevB.82.035416 PG 5 WC Physics, Condensed Matter SC Physics GA 625HZ UT WOS:000279887400007 ER PT J AU De Rujula, A Lykken, J Pierini, M Rogan, C Spiropulu, M AF De Rujula, A. Lykken, Joseph Pierini, Maurizio Rogan, Christopher Spiropulu, Maria TI Higgs boson look-alikes at the LHC SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK SYMMETRY-BREAKING; STANDARD MODEL; CP VIOLATION; DECAYS; COLLIDERS; DISTRIBUTIONS; SIGNALS; PAIRS; SPIN; MASS AB The discovery of a Higgs particle is possible in a variety of search channels at the LHC. However, the true identity of any putative Higgs boson will, at first, remain ambiguous until one has experimentally excluded other possible assignments of quantum numbers and couplings. We quantify the degree to which one can discriminate a standard model Higgs boson from "look-alikes'' at, or close to, the moment of discovery at the LHC. We focus on the fully-reconstructible golden decay mode to a pair of Z bosons and a four-lepton final state. Considering both on-shell and off-shell Z's, we show how to utilize the full decay information from the events, including the distributions and correlations of the five relevant angular variables. We demonstrate how the finite phase space acceptance of any LHC detector sculpts the decay distributions, a feature neglected in previous studies. We use likelihood ratios to discriminate a standard model Higgs from look-alikes with other spins or nonstandard parity, CP, or form factors. For a resonance mass of 200 GeV/c(2), we achieve a median discrimination significance of 3 sigma with as few as 19 events, and even better discrimination for the off-shell decays of a 145 GeV/ c(2) resonance. C1 [De Rujula, A.] Univ Autonoma Madrid, Inst Fis Teor, Madrid, Spain. [De Rujula, A.] CIEMAT, E-28040 Madrid, Spain. [De Rujula, A.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [De Rujula, A.; Pierini, Maurizio; Spiropulu, Maria] CERN, Dept Phys, CH-1211 Geneva 23, Switzerland. [Lykken, Joseph] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Rogan, Christopher; Spiropulu, Maria] CALTECH, Lauritsen Lab Phys, Pasadena, CA 91125 USA. RP De Rujula, A (reprint author), Univ Autonoma Madrid, Inst Fis Teor, Madrid, Spain. FU Aspen Center for Physics; U.S. Department of Energy [DE-AC02-07CH11359, DE-FG02-92-ER40701] FX We especially acknowledge insights and inspiration from our late colleagues Andrew Lange and Juan Antonio Rubio. The authors are grateful to Andrew Cohen, Belen Gavela, Keith Ellis, Shelly Glashow, Ken Lane, Ken Lee, Michelangelo Mangano, Chiara Mariotti, Guido Martinelli, Sezen Sekmen, Riccardo Rattazzi, Raman Sundrum, Steven Weinberg, Jan Winter and Mark Wise for useful discussions. J.L. acknowledges the hospitality of the CERN Theory Department and support from the Aspen Center for Physics. Fermilab is operated by the Fermi Research Alliance LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. C.R. and M.S. are supported in part by the U.S. Department of Energy under Contact No. DE-FG02-92-ER40701. NR 54 TC 98 Z9 98 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 14 PY 2010 VL 82 IS 1 AR 013003 DI 10.1103/PhysRevD.82.013003 PG 53 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 625ID UT WOS:000279887800001 ER PT J AU Stoddard, CD Montange, RK Hennelly, SP Rambo, RP Sanbonmatsu, KY Batey, RT AF Stoddard, Colby D. Montange, Rebecca K. Hennelly, Scott P. Rambo, Robert P. Sanbonmatsu, Karissa Y. Batey, Robert T. TI Free State Conformational Sampling of the SAM-I Riboswitch Aptamer Domain SO STRUCTURE LA English DT Article ID X-RAY-SCATTERING; SELECTIVE 2'-HYDROXYL ACYLATION; METABOLITE-BINDING RIBOSWITCHES; SINGLE NUCLEOTIDE RESOLUTION; GUANINE-SENSING RIBOSWITCH; CONTROLS GENE-EXPRESSION; RNA-PROTEIN RECOGNITION; PRIMER EXTENSION SHAPE; S-ADENOSYLMETHIONINE; INDUCED FIT AB Riboswitches are highly structured elements residing in the 5' untranslated region of messenger RNAs that specifically bind cellular metabolites to alter gene expression. While there are many structures of ligand-bound riboswitches that reveal details of bimolecular recognition, their unliganded structures remain poorly characterized. Characterizing the molecular details of the unliganded state is crucial for understanding the riboswitch's mechanism of action because it is this state that actively interrogates the cellular environment and helps direct the regulatory outcome. To develop a detailed description of the ligand-free form of an S-adenosylmethionine binding riboswitch at the local and global levels, we have employed a series of biochemical, biophysical, and computational methods. Our data reveal that the ligand binding domain adopts an ensemble of states that minimizes the energy barrier between the free and bound states to establish an efficient decision making branchpoint in the regulatory process. C1 [Stoddard, Colby D.; Montange, Rebecca K.; Batey, Robert T.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Hennelly, Scott P.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Rambo, Robert P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Batey, RT (reprint author), Univ Colorado, Dept Chem & Biochem, UCB 215, Boulder, CO 80309 USA. RI Batey, Robert/A-8265-2009 OI Batey, Robert/0000-0002-1384-6625 FU National Institutes of Health [GM083953]; Los Alamos National Laboratories; NIH [ARRA RC1GM092031]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by National Institutes of Health grant GM083953 (to R T B), the Los Alamos National Laboratories LDRD program, and NIH ARRA RC1GM092031 (to K Y S) Support for data collection at the Lawrence Berkeley National Laboratory SIBYLS beamline of the Advanced Light Source came from the DOE program Integrated Diffraction Analysis Technologies (IDAT) under Contract DE-AC02-05CH11231 with the US Department of Energy In this study, C D S performed the chemical probing analysis, R K M performed the crystallography, S P H performed the NAIM experiments at LANL. S P H and K Y S performed REMD simulations, and R P R performed the SAXS analysis C D S and R T B wrote the paper with input from all authors NR 57 TC 89 Z9 89 U1 0 U2 19 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 J9 STRUCTURE JI Structure PD JUL 14 PY 2010 VL 18 IS 7 BP 787 EP 797 DI 10.1016/j.str.2010.04.006 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 627NK UT WOS:000280046300006 PM 20637415 ER PT J AU Yoon, J Herzik, MA Winter, MB Tran, R Olea, C Marletta, MA AF Yoon, Jungjoo Herzik, Mark A., Jr. Winter, Michael B. Tran, Rosalie Olea, Charles, Jr. Marletta, Michael A. TI Structure and Properties of a Bis-Histidyl Ligated Globin from Caenorhabditis elegans SO BIOCHEMISTRY LA English DT Article ID ESCHERICHIA-COLI; LIGAND-BINDING; NITRIC-OXIDE; TEMPERATURE-DEPENDENCE; GUANYLATE-CYCLASE; OXYGEN-BINDING; C. ELEGANS; IN-VIVO; NEUROGLOBIN; HEMOGLOBINS AB Globins are heme-containing proteins that are best known for their roles in oxygen (O-2) transport and storage. However, more diverse roles of globins in biology are being revealed, including gas and redox sensing. In the nematode Caenorhabditis elegans, 33 globin or globin-like genes were recently identified, some of which are known to be expressed in the sensory neurons of the worm and linked to O-2 sensing behavior. Here, we describe GLB-6, a novel globin-like protein expressed in the neurons of C. elegans. Recombinantly expressed full-length GLB-6 contains a heme site with spectral features that are similar to those of other bis-histidyl ligated globins, such as neuroglobin and cytoglobin. In contrast to these globins, however, ligands such as CO, NO, and CN- do not bind to the heme in GLB-6, demonstrating that the endogenous histidine ligands are likely very tightly coordinated. Additionally, GLB-6 exhibits rapid two-state autoxidation kinetics in the presence of physiological O-2 levels as well as a low redox potential (-193 +/- 2 mV). A high-resolution (1.40 angstrom) crystal structure of the ferric form of the heme domain of GLB-6 confirms both the putative globin fold and bis-histidyl ligation and also demonstrates key structural features that can be correlated with the unusual ligand binding and redox properties exhibited by the full-length protein. Taken together, the biochemical properties of GLB-6 suggest that this neural protein would most likely serve as a physiological sensor for O-2 in C. elegans via redox signaling and/or electron transfer. C1 [Yoon, Jungjoo; Herzik, Mark A., Jr.; Winter, Michael B.; Tran, Rosalie; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Herzik, Mark A., Jr.; Olea, Charles, Jr.; Marletta, Michael A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Winter, Michael B.; Tran, Rosalie; Marletta, Michael A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Marletta, Michael A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys Biosci, Berkeley, CA 94720 USA. RP Marletta, MA (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, QB3 Inst,570 Stanley Hall, Berkeley, CA 94720 USA. EM marletta@berkeley.edu FU National Institutes of Health [GM077365]; American Heart Association FX This study was funded by National Institutes of Health Grant GM077365 (M.A.M.) and supported by the American Heart Association Western States Affiliate Postdoctoral Fellowship Program (J.Y.). NR 65 TC 20 Z9 22 U1 1 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD JUL 13 PY 2010 VL 49 IS 27 BP 5662 EP 5670 DI 10.1021/bi100710a PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 618XL UT WOS:000279389300006 PM 20518498 ER PT J AU Todorov, I Chung, DY Claus, H Malliakas, CD Douvalis, AP Bakas, T He, JQ Dravid, VP Kanatzidis, MG AF Todorov, Iliya Chung, Duck Young Claus, Helmut Malliakas, Christos D. Douvalis, Alexios P. Bakas, Thomas He, Jiaqing Dravid, Vinayak P. Kanatzidis, Mercouri G. TI Topotactic Redox Chemistry of NaFeAs in Water and Air and Superconducting Behavior with Stoichiometry Change SO CHEMISTRY OF MATERIALS LA English DT Article ID ORDERING TEMPERATURE; T-C; LIFEAS; LAO1-XFXFEAS; PRESSURE; SURFACE AB We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCI structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr(2)Si(2) structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na(+) cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe(2)As(2). The superconducting transition temperature moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T(c) up to 25 K with contraction of unit cell volume. NaFe(2)As(2), the air oxidized product, shows T(c) of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Mossbauer spectroscopy, pOH and elemental analysis. C1 [Todorov, Iliya; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [He, Jiaqing; Dravid, Vinayak P.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Douvalis, Alexios P.; Bakas, Thomas] Univ Ioannina, Dept Phys, GR-45110 Ioannina, Greece. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Dravid, Vinayak/B-6688-2009; He, Jiaqing/A-2245-2010 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. Transmission electron microscopy work was performed in the (EPIC) (NIFTI) (Keck-II) facility of NUANCE Center at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. NR 40 TC 20 Z9 20 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3916 EP 3925 DI 10.1021/cm100252r PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200014 ER PT J AU Koech, PK Padmaperuma, AB Wang, LA Swensen, JS Polikarpov, E Darsell, JT Rainbolt, JE Gaspar, DJ AF Koech, Phillip K. Padmaperuma, Asanga B. Wang, Liang Swensen, James S. Polikarpov, Evgueni Darsell, Jens T. Rainbolt, James E. Gaspar, Daniel J. TI Synthesis and Application of 1,3,4,5,7,8-Hexafluorotetracyanonaphthoquinodimethane (F6-TNAP): A Conductivity Dopant for Organic Light-Emitting Devices SO CHEMISTRY OF MATERIALS LA English DT Article ID ACCEPTOR MOLECULES; DIODES; TETRAFLUOROTETRACYANOQUINODIMETHANE; PHTHALOCYANINE; EMISSION; FILMS AB Conductivity dopants are used in organic light-emitting devices (OLEDs) to reduce the operating voltage and consequently improve the power efficiency. Here, we report the synthesis, as well as photophysical and electroluminescent properties, of an organic molecular p-type conductivity dopant: 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TNAP). F6-TNAP was obtained in a three-step two-pot synthesis from commercially available octafluoronaphthalene. When 1%-5% of F6-TNAP was coevaporated with N,N'-di-l-naphthyl-N,N'-diphenyl-1,1'-biphenyl-4,4'diamine (alpha-NPD) an absorption band at 950 nm was formed, which is attributed to charge transfer and assigned to the F6-TNAP radical anion. Single-carrier (hole-only) devices fabricated with F6-TNAP doped into alpha-NPD as the hole transport layer (HTL) show a >2 V decrease in operating voltage, compared to the undoped device. A decrease in operating voltage was also demonstrated in blue OLED devices using a F6-TNAP-doped HTL, with only a slight decrease in external quantum efficiency, thus resulting in a net improvement in power efficiency. These results demonstrate that F6-TNAP may be useful in generating high-efficiency OLEDs. C1 [Koech, Phillip K.; Padmaperuma, Asanga B.; Wang, Liang; Swensen, James S.; Polikarpov, Evgueni; Darsell, Jens T.; Rainbolt, James E.; Gaspar, Daniel J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Padmaperuma, AB (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM asanga.padmaperuma@pnl.gov RI Gaspar, Dan/H-6166-2011; OI Gaspar, Daniel/0000-0002-8089-810X; Koech, Phillip/0000-0003-2996-0593 FU U.S. Department of Energy (US DOE) [M6743231, DE_AC06-76RLO 1830]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL) FX This project was funded by the Solid State Lighting Program of the U.S. Department of Energy (US DOE), within the Building Technologies Program (BT) (Award No. M6743231, managed by the National Energy Technology Laboratory (NETL)). A portion of this research was performed using EMSL, which is a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and is located at Pacific Northwest National Laboratory (PNNL). Computations were performed using NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1 (2007), which was developed at the High Performance Computational Chemistry Group, PNNL, Richland, WA. PNNL is operated by Battelle Memorial Institute for the U.S. DOE (under Contract DE_AC06-76RLO 1830). The authors would like to thank Dr. Rui Zhang and Dr. Zihua Zhu for performing the electrospray ionization mass spectrometry and time-of-flight secondary ion mass spectrometry analyses, respectively. NR 37 TC 32 Z9 32 U1 1 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3926 EP 3932 DI 10.1021/cm1002737 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200015 ER PT J AU Ravichandran, J Siemons, W Heijmerikx, H Huijben, M Majumdar, A Ramesh, R AF Ravichandran, Jayakanth Siemons, Wolter Heijmerikx, Herman Huijben, Mark Majumdar, Arun Ramesh, Ramamoorthy TI An Epitaxial Transparent Conducting Perovskite Oxide: Double-Doped SrTiO3 SO CHEMISTRY OF MATERIALS LA English DT Article ID THIN-FILMS; STRONTIUM-TITANATE; TRANSPORT; DEFECTS AB Epitaxial thin films of strontium titanate doped with different concentrations of lanthanum and oxygen vacancies were grown on LSAT substrates by pulsed laser deposition technique. Films grown with 5-15% La doping and a critical growth pressure of I 10 mTorr showed high transparency (> 70-95%) in the UV-visible range with a sheet resistance of 300-1000 Omega/square. With the aid of UV-visible spectroscopy and photoluminescence, we establish the presence of oxygen vacancies and the possible band structure, which is crucial for the transparent conducting nature of these films. This demonstration will enable development of various epitaxial oxide heterostructures for both realizing opto-electronic devices and understanding their intrinsic optical properties. C1 [Ravichandran, Jayakanth] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Siemons, Wolter; Heijmerikx, Herman; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Heijmerikx, Herman; Huijben, Mark] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands. [Majumdar, Arun] US DOE, Adv Res Projects Agcy, Washington, DC 20585 USA. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ravichandran, J (reprint author), Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. EM jayakanth@berkeley.edu RI Siemons, Wolter/B-3808-2011; Ravichandran, Jayakanth/H-6329-2011 OI Ravichandran, Jayakanth/0000-0001-5030-9143 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy FX We acknowledge the help of Dr. Martin Gajek in hall measurements and Dr. Kin Man Yu's help in RBS measurements. This work was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. NR 22 TC 19 Z9 19 U1 1 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 J9 CHEM MATER JI Chem. Mat. PD JUL 13 PY 2010 VL 22 IS 13 BP 3983 EP 3987 DI 10.1021/cm1005604 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 618XK UT WOS:000279389200020 ER PT J AU Heavner, MJ Morrill, JS Siefring, C Sentman, DD Moudry, DR Wescott, EM Bucsela, EJ AF Heavner, M. J. Morrill, J. S. Siefring, C. Sentman, D. D. Moudry, D. R. Wescott, E. M. Bucsela, E. J. TI Near-ultraviolet and blue spectral observations of sprites in the 320-460 nm region: N-2 (2PG) emissions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID STATE VIBRATIONAL POPULATIONS; RED SPRITES; IONOSPHERE; NITROGEN AB A near-ultraviolet (NUV) spectrograph (320-460 nm) was flown on the EXL98 aircraft sprite observation campaign during July 1998. In this wavelength range video rate (60 fields/sec) spectrographic observations found the NUV and blue emissions to be predominantly N-2 (2PG). The negligible level of N-2 + (1NG) present in the spectrum is confirmed by observations of a co-aligned, narrowly filtered 427.8 nm imager and is in agreement with previous ground-based filtered photometer observations. The synthetic spectral fit to the observations indicates a characteristic energy of similar to 1.8 eV, in agreement with our other NUV observations. C1 [Heavner, M. J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Bucsela, E. J.] SRI Int, Menlo Pk, CA 94025 USA. [Morrill, J. S.; Siefring, C.] USN, Res Lab, Washington, DC 20375 USA. [Sentman, D. D.; Moudry, D. R.; Wescott, E. M.] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA. RP Heavner, MJ (reprint author), Los Alamos Natl Lab, MS D-436, Los Alamos, NM 87544 USA. EM heavner@lanl.gov FU NASA [NAG5-5125, NAG5-5019, NAG5-5172]; ONR; NRL FX We thank the Remote Sensing Division of NRL for the use of the UV intensified camera for the EXL98 flights. Dan Osborne, Jim Desroschers, Laura Peticolas, Veronika Besser, and Don Hampton were instrumental to data collection and campaign operations. Aeroair Inc., and particularly Jeff Tobolsky, made all the EXL98 aircraft missions fly. The University of Alaska Fairbanks Geophysical Institute group was supported by NASA grants NAG5-5125 and NAG5-5019. The work at NRL was sponsored by NASA NAG5-5172 and ONR. Jeff S. Morrill was partially supported by the Edison Memorial graduate-training program at NRL. NR 24 TC 11 Z9 11 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 13 PY 2010 VL 115 AR A00E44 DI 10.1029/2009JA014858 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 627OX UT WOS:000280050500002 ER PT J AU Rosales, AM Murnen, HK Zuckermann, RN Segalman, RA AF Rosales, Adrianne M. Murnen, Hannah K. Zuckermann, Ronald N. Segalman, Rachel A. TI Control of Crystallization and Melting Behavior in Sequence Specific Polypeptoids SO MACROMOLECULES LA English DT Article ID THERMAL-PROPERTIES; RANDOM COPOLYMERS; POLYMERS; ETHYLENE; POLYETHYLENE; POLYGLYCINE; SIMULATION; CRYSTALS; BRANCHES AB The sequence specificity of a class of biologically inspired polymers based on N-substituted alywnes (polypeptolds) allows for a degree of tunability in the ci ystallization and thermal behavioi not available in classical polymw systems It is demonstrated that a sei les of peptoid homopolymers are stable up to temperatures of 250-300 degrees C and are crystalline with reversible melting transitions ranging from 150 to 225 degrees C Defects inserted at precise locations along the polymer backbone (as monomer substitutions) enable control of the melting temperatuie Melting points dew ease with mei eased defect content, and X-ray diffrw:tion (X RD) indicates defect inclusion in the et ystal lattice In addition, it is demonstrated that the distribution of the defects foi a given content level affects the thermal propel ties of the peptold chain C1 [Rosales, Adrianne M.; Murnen, Hannah K.; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Zuckermann, Ronald N.] Univ Calif Berkeley, Lawrence Berkeley Natl Labs, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RI Zuckermann, Ronald/A-7606-2014; OI Zuckermann, Ronald/0000-0002-3055-8860; Segalman, Rachel/0000-0002-4292-5103 FU Office of Naval Research; National Science Foundation; Department of Defense; Office of Science. Office of Basic Energy Sciences, U S Department of Energy [DE-AC02-05CH1231] FX This work was supported by the Office of Naval Research in the form of a Presidential Early Career Award in Science and Engineering (PECASE) lot R A.S A M R gratefully acknowledges the National Science Foundation for a graduate fellowship, and H.K.M acknowledges the Department of Defense for a NDSEG fellowship Polypeptoid synthesis and associated chemical characterization were performed at the Molecular Foundry, and XRD experiments were performed at the Advanced Light Source (ALS) Both arc Lawrence Berkeley National Laboratory user facilities supported by the Office of Science. Office of Basic Energy Sciences, U S Department of Energy, under Contract DE-AC02-05CH1231 The authors thank Dr James Holton and Dr Alexander Hexemer for experimental assistance at the ALS. We also gratefully acknowledge Dr Nitash Balsam for use of equipment NR 38 TC 41 Z9 41 U1 6 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 13 PY 2010 VL 43 IS 13 BP 5627 EP 5636 DI 10.1021/ma1002563 PG 10 WC Polymer Science SC Polymer Science GA 621JV UT WOS:000279573600024 ER PT J AU Pawlus, S Sokolov, AP Paluch, M Mierzwa, M AF Pawlus, Sebastian Sokolov, Alexei P. Paluch, Marian Mierzwa, Michal TI Influence of Pressure on Chain and Segmental Dynamics in Polyisoprene SO MACROMOLECULES LA English DT Article ID DIELECTRIC-RELAXATION; POLY(PROPYLENE GLYCOL); MOLECULAR-WEIGHT; ALPHA-RELAXATION; POLYMER BLENDS; TEMPERATURE; DEPENDENCE; VOLUME; MODE; POLYMETHYLPHENYLSILOXANE AB We present detailed studies of variation in segmental and chain dynamics of polyrsoprene under pressure Samples with two molecular weights (MW), 2 4 and 25 kg/mol (below and above entanglement), were investigated Dielectric spectroscopy measurements at isobaric and isothermal conditions exhibit clear differences in temperature and pressure dependencies of chain and segmental relaxation times Moreover, application of pressure increases time separation between the segmental and normal (chain) modes at the isochromic conditions This Increase can be explained by an effective increase in number of Rouse segments under compression at the same segmental relaxation time Our analysis also reveals that the thermodynamic scaling of the relaxation times (log tau vs TV, V IS volume) does not work well simultaneously for both processes C1 [Pawlus, Sebastian; Paluch, Marian; Mierzwa, Michal] Silesian Univ, Inst Phys, PL-40007 Katowice, Poland. [Sokolov, Alexei P.] Univ Tennessee, Div Chem Sci, ORNL, Knoxville, TN 37996 USA. [Sokolov, Alexei P.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Pawlus, S (reprint author), Silesian Univ, Inst Phys, Uniwersytecka 4, PL-40007 Katowice, Poland. FU NSF [DMR-0804571] FX A S acknowledges financial support from the NSF Polymer program (DMR-0804571) S P acknowledges financial assistance from FNP HOMING program (2008) supported by the European Economic Area Financial Mechanism M P and M M acknowledge the support of the Polish Ministry of Sciences and Information Technology Grant No N202 14732/4240 NR 39 TC 5 Z9 5 U1 4 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 J9 MACROMOLECULES JI Macromolecules PD JUL 13 PY 2010 VL 43 IS 13 BP 5845 EP 5850 DI 10.1021/ma100383r PG 6 WC Polymer Science SC Polymer Science GA 621JV UT WOS:000279573600049 ER PT J AU Sharma, SK Misra, AK Clegg, SM Barefield, JE Wiens, RC Acosta, T AF Sharma, Shiv K. Misra, Anupam K. Clegg, Samuel M. Barefield, James E. Wiens, Roger C. Acosta, Tayro TI Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration SO PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES LA English DT Article DE Venus mineralogy; time-resolved remote Raman spectroscopy; remote Raman spectra of minerals; high-temperature Raman spectra; high-pressure Raman spectra; supercritical carbon dioxide ID HIGH-PRESSURE; MICRO-RAMAN; THERMODYNAMIC PROPERTIES; PLANETARY EXPLORATION; VIBRATIONAL-MODES; SPECTROSCOPY; SPECTRA; DEHYDRATION; GYPSUM; CRYSTALLINE AB We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO2 (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e. g. talc, olivine, pyroxenes and feldspars) under supercritical CO2 (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO2. Besides the CO2 doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO4 center dot 7H(2)O) at 423 K under approximately 95 atm CO2 is detected by the presence of the Raman fingerprints of rozenite (FeSO4 center dot 4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO4 center dot 2H(2)O) and talc (Mg3Si4O10(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO3)(2)) is observed at 973 K. The TR remote Raman spectra of olivine, a-spodumene (LiAlSi2O6) and clino-enstatite (MgSiO3) pyroxenes and of albite (NaAlSi3O8) and microcline (KAlSi3O8) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances. C1 [Sharma, Shiv K.; Misra, Anupam K.; Acosta, Tayro] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Clegg, Samuel M.; Barefield, James E.; Wiens, Roger C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sharma, SK (reprint author), Univ Hawaii, Hawaii Inst Geophys & Planetol, 1680 East West Rd,POST 602, Honolulu, HI 96822 USA. EM sksharma@soest.hawaii.edu OI Barefield, James/0000-0001-8674-6214; Clegg, Sam/0000-0002-0338-0948 FU NASA [NNX08Ar10G] FX This work has been supported in part by NASA under a MIDP grant ( no. NNX08Ar10G) at the University of Hawaii, and by Laboratory Directed Research at Los Alamos National Laboratory. The authors would like to thank Nancy Hulbirt for her valuable help in drafting the figures and May Izumi for editing the manuscript. This is SOEST contribution no. 7882 and HIGP contribution no. 1834. NR 60 TC 16 Z9 17 U1 3 U2 26 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1364-503X J9 PHILOS T R SOC A JI Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. PD JUL 13 PY 2010 VL 368 IS 1922 BP 3167 EP 3191 DI 10.1098/rsta.2010.0034 PG 25 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 605ZV UT WOS:000278390500010 PM 20529953 ER PT J AU Gubkin, AF Podlesnyak, A Baranov, NV AF Gubkin, A. F. Podlesnyak, A. Baranov, N. V. TI Single-crystal neutron diffraction study of the magnetic structure of Er3Co SO PHYSICAL REVIEW B LA English DT Article AB The effect of the magnetic field applied along the main crystallographic directions on the magnetic structure of Er3Co has been studied by means of single-crystal neutron diffraction technique. At zero field the compound exhibits a noncoplanar commensurate magnetic structure with ferromagnetic alignment of the Er magnetic-moment projections along the b axis in an orthorhombic unit cell. The present measurements revealed that the application of the magnetic field along the c direction [c perpendicular to (ab)] leads to the pronounced metamagneticlike transition in the low-field region mu H-0<1.2 T, although, the magnetization curve does not exhibit any anomalies. Combining the present single-crystal diffraction and magnetization data with the results of the previous powder neutron diffraction study [Gignoux et al., Solid State Commun. 8, 391 (1970)], we conclude that the nature of the magnetic ion, whether Kramers or non-Kramers, has a decisive effect on the commensurability of the magnetic structure of R3Co. In particular, the commensurate magnetic structure observed in Er3Co originate from the Kramers character of Er3+ ion in contrast to the incommensurate structures found earlier in R3Co with R= Tb and Ho. C1 [Gubkin, A. F.; Baranov, N. V.] Ural State Univ, Ekaterinburg 620083, Russia. [Gubkin, A. F.] Korea Atom Energy Res Inst, Div Neutron Sci, Taejon 305353, South Korea. [Podlesnyak, A.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Baranov, N. V.] RAS, Inst Met Phys, Ekaterinburg 620041, Russia. RP Baranov, NV (reprint author), Ural State Univ, Ekaterinburg 620083, Russia. EM nikolai.baranov@usu.ru RI Podlesnyak, Andrey/A-5593-2013; Gubkin, Andrey/J-3240-2013; Baranov, Nikolai/J-5042-2013 OI Podlesnyak, Andrey/0000-0001-9366-6319; Gubkin, Andrey/0000-0002-4280-7561; Baranov, Nikolai/0000-0002-9720-5314 FU Presidium RAS [09-P-1008]; U.S. Department of Energy [DE-AC05-00OR22725] FX The present work was partly supported by the Program of the Presidium RAS (Project No. 09-P-1008). ORNL is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 14 TC 4 Z9 4 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 13 PY 2010 VL 82 IS 1 AR 012403 DI 10.1103/PhysRevB.82.012403 PG 4 WC Physics, Condensed Matter SC Physics GA 624KT UT WOS:000279818200002 ER PT J AU Grigoryan, HR Hohler, PM Stephanov, MA AF Grigoryan, Hovhannes R. Hohler, Paul M. Stephanov, Mikhail A. TI Towards the gravity dual of quarkonium in the strongly coupled QCD plasma SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL-SYMMETRY BREAKING; STRING THEORY; DECONFINEMENT; CORRELATORS; CHARMONIUM; DYNAMICS; PHYSICS AB We build a "bottom-up'' holographic model of charmonium by matching the essential spectral data. We argue that these data must include not only the masses but also the decay constants of the J/psi and c 0 mesons. Relative to the "soft-wall'' models for light mesons, such a matching requires two new features in the holographic potential: an overall upward shift as well as a narrow "dip'' near the holographic boundary. We calculate the spectral function as well as the position of the complex singularities (quasinormal frequencies) of the retarded correlator of the charm current at finite temperatures. We further extend this analysis by showing that the residue associated with such a singularity is given by the boundary derivative of the appropriately normalized quasinormal mode. We find that the "melting'' of the J/psi spectral peak occurs at a temperature T approximate to 540 MeV, or 2.8T(c), in good agreement with lattice results. C1 [Grigoryan, Hovhannes R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Hohler, Paul M.; Stephanov, Mikhail A.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. RP Grigoryan, HR (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU DOE ONP [DE-AC02-06CH11357]; DOE [FG0201ER41195] FX We thank A. Karch and D. Son for discussions. The work of H. G. is supported by DOE ONP Contract No. DE-AC02-06CH11357. The work of P. M. H. and M. A. S. is supported by DOE Grant No. DE-FG0201ER41195. NR 93 TC 27 Z9 27 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 13 PY 2010 VL 82 IS 2 AR 026005 DI 10.1103/PhysRevD.82.026005 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 624LG UT WOS:000279819500007 ER PT J AU Petersen, MK Lane, JMD Grest, GS AF Petersen, Matt K. Lane, J. Matthew D. Grest, Gary S. TI Shear rheology of extended nanoparticles SO PHYSICAL REVIEW E LA English DT Article ID NONEQUILIBRIUM MOLECULAR-DYNAMICS; MACROMOLECULES; NANOCOMPOSITES; DIFFUSION; VISCOSITY; FLUIDS AB Nonequilibrium molecular-dynamics simulations are presented for the shear rheology of suspensions of extended "jack"-shaped nanoparticles in an explicit solvent. The shear viscosity is measured for two jack-shaped nanoparticle suspensions for volume fractions from 0.01 to 0.15 and compared to spherical nanoparticles of the same mass. Large differences, in some cases, orders of magnitude, are observed for both the equilibrium viscosity and diffusion constant as the shape of the nanoparticle is varied. The source of enhanced viscosity is the very large effective volume swept out by these extended nanoparticles which allows them to become highly entangled even at low volume fraction. C1 [Petersen, Matt K.; Lane, J. Matthew D.; Grest, Gary S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Petersen, MK (reprint author), Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. EM matt@hec.utah.edu; jlane@sandia.gov; gsgrest@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC04-94AL85000] FX We thank T. Boyle for suggesting that jacks would more profoundly affect viscosity compared to rods and plates. We thank the New Mexico Computing Application Center NM-CAC for generous allocation of computer time. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract No. DE-AC04-94AL85000. NR 19 TC 6 Z9 6 U1 4 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 13 PY 2010 VL 82 IS 1 AR 010201 DI 10.1103/PhysRevE.82.010201 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 624LK UT WOS:000279819900001 PM 20866552 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DD Martins, CD De Souza, SF Mundim, L Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zang, J Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Montoya, CAC Moreno, BG Rios, AAO Oliveros, AF Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Papadakis, A Ptochos, F Razis, PA Rykaczewski, H Tsiakkouri, D Zinonos, Z Mahmoud, M Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Kalinowski, A Mine, P Paganini, P Sabes, D Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Speck, J Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Ata, M Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Katsas, P Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S Salerno, R Tabarelli de Fatis, T Tancini, V Taroni, S Buontempo, S Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Carlin, R Checchia, P Conti, E De Mattia, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Dagnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, DC Kim, Z Kim, JY Song, S Hong, B Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Choi, S Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, ED Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varela, J Wohri, HK Altsybeev, I Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De La Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C de Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bellan, R Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Racz, A Rolandi, G Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stockli, F Traczyk, P Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Tsirigkas, D Wilke, L Chang, YH Chen, KH Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, H Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Wei, JT Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Halu, A Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Clough, A Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCD Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Erhan, S Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Wurthwein, F Yagil, A Barge, D Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Gataullin, M Kcira, D Litvine, V Ma, Y Newman, HB Rogan, C Shin, K Timciuc, V Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Pakhotin, Y Gomez, JP Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Lacroix, F Shabalina, E Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, D Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Mignerey, A Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Strang, M Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Dutta, S Efron, J Gray, L Grogg, KS Grothe, M Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Polese, G Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Velde, C. Vander Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Oguri, V. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Da Silva De Araujo, F. Torres Dias, F. A. Dias, M. A. F. Fernandez Perez Tomei, T. R. Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Carrillo Montoya, C. A. Gomez Moreno, B. Ocampo Rios, A. A. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Papadakis, A. Ptochos, F. Razis, P. A. Rykaczewski, H. Tsiakkouri, D. Zinonos, Z. Mahmoud, M. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Kalinowski, A. Mine, P. Paganini, P. Sabes, D. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Speck, J. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Ata, M. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Katsas, P. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. b De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. Tabarelli de Fatis, T. Tancini, V. Taroni, S. Buontempo, S. Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Carlin, R. Checchia, P. Conti, E. De Mattia, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Dagnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Hong, B. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Castilla Valdez, H. De La Cruz Burelo, E. Lopez-Fernandez, R. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varela, J. Woehri, H. K. Altsybeev, I. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Diez Pardos, C. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Chuang, S. H. Diaz Merino, I. Diez Gonzalez, C. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Gonzalez Suarez, R. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Martinez Ruiz del Arbol, P. Matorras, F. Rodrigo, T. Ruiz Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bellan, R. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Coarasa Perez, J. A. Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Gomez-Reino Garrido, R. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maeki, T. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Traczyk, P. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Ivova Rikova, M. Millan Mejias, B. Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, H. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Wei, J. T. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Kayis Topaksu, A. Nart, A. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Guneratne Bryer, A. Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Tourneur, S. Vazquez Acosta, M. Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Clough, A. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. De La Barca Sanchez, M. Calderon Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Vasquez Sierra, R. Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Erhan, S. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Wuerthwein, F. Yagil, A. Barge, D. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Ford, W. T. Heyburn, B. Luiggi Lopez, E. Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Nicolas Kaufman, G. Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Pakhotin, Y. Piedra Gomez, J. Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Lacroix, F. Shabalina, E. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, D. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Mignerey, A. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Strang, M. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Dutta, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Polese, G. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI First Measurement of Bose-Einstein Correlations in Proton-Proton Collisions at root s=0.9 and 2.36 TeV at the LHC SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERFEROMETRY; ANNIHILATION AB Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, B-2020 Antwerp, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Libre Bruxelles, Brussels, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Oguri, V.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Da Silva De Araujo, F. Torres] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Dias, M. A. F.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Wang, Z.; Yang, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Carrillo Montoya, C. A.; Gomez Moreno, B.; Ocampo Rios, A. A.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Zinonos, Z.] Univ Cyprus, Nicosia, Cyprus. [Mahmoud, M.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM, IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Kalinowski, A.; Mine, P.; Paganini, P.; Sabes, D.; Sirois, Y.; Thiebaux, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Speck, J.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul, Inst Natl Phys Nucl & Phys Particules IN2P3, Villeurbanne, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Roinishvili, V.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys 1, D-5100 Aachen, Germany. [Actis, O.; Ata, M.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys A 3, D-5100 Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Univ Aachen, Rhein Westfal TH Aachen, Inst Phys B 3, D-5100 Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] Univ Hamburg, Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Katsas, P.; Panagiotou, A.] Univ Athens, Athens, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Fahim, A.; Jafari, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Giunta, M.; Masetti, G.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Benussi, L.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Tricomi, A.; Tuve, C.; Acosta, D.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Catania Univ, Catania, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Broccolo, G.; Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B. b; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Benaglia, A.; Cerati, G. B. b; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Negri, P.; Paganoni, M.; Ragazzi, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Carlin, R.; Checchia, P.; Conti, E.; De Mattia, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] IUniv Padua, Padua, Italy. [Gresele, A.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Dagnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Dagnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Trocino, D.; Pereira, A. Vilela; Rovelli, C.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Turin, Turin, Italy. [Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Ambroglini, F.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Choi, S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla Valdez, H.; De La Cruz Burelo, E.; Lopez-Fernandez, R.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Altsybeev, I.; Belotelov, I.; Bunin, P.; Finger, M.; Finger, M., Jr.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Diez Pardos, C.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Diaz Merino, I.; Diez Gonzalez, C.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Rodrigo, T.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Bunkowski, K.] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bellan, R.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maeki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Traczyk, P.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Ivova Rikova, M.; Millan Mejias, B.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Tsirigkas, D.; Wilke, L.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, H.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Kayis Topaksu, A.; Nart, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Ctr Nat Sci, UA-310108 Kharkov, Ukraine. [Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Hansen, M.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Tourneur, S.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bose, T.; Clough, A.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Andrea, J.; Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Esen, S.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Borgia, M. A.; Breedon, R.; De La Barca Sanchez, M. Calderon; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Erhan, S.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Heyburn, B.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Nicolas Kaufman, G.; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Piedra Gomez, J.; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Lacroix, F.; Shabalina, E.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Baden, D.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Mignerey, A.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Baur, U.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Smith, K.; Strang, M.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Dutta, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Polese, G.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Giunta, M.; Cerati, G. B. b; Ghezzi, A.; Malberti, M.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Bernardini, J.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Cavallari, F.; Paramatti, R.; Rahatlou, S.; Graziano, A.; Pelliccioni, M.; Castilla Valdez, H.; Varela, J.; Kossov, M.; Grishin, V.; Nesvold, E.; Virdee, T.; Sharma, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Horvath, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Menasce, Dario Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Katkov, Igor/E-2627-2012; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Bolton, Tim/A-7951-2012; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Andreev, Vladimir/M-8665-2015; Altsybeev, Igor/K-6687-2013; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Ganjour, Serguei/D-8853-2011; Gulmez, Erhan/P-9518-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Tomei, Thiago/E-7091-2012; tosi, mia/J-5777-2012; Santaolalla, Javier/C-3094-2013; Vinogradov, Alexander/M-5331-2015; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Josa, Isabel/K-5184-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Kadastik, Mario/B-7559-2008; Brona, Grzegorz/E-5544-2012; Snigirev, Alexander/D-8912-2012; Cerrada, Marcos/J-6934-2014; Calvo Alamillo, Enrique/L-1203-2014; Gribushin, Andrei/J-4225-2012; Scodellaro, Luca/K-9091-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Amapane, Nicola/J-3683-2012; Gonzalez Caballero, Isidro/E-7354-2010; Horvath, Dezso/A-4009-2011; Mundim, Luiz/A-1291-2012; Zalewski, Piotr/H-7335-2013; Janssen, Xavier/E-1915-2013; Chen, Jie/H-6210-2011; Palinkas, Jozsef/B-2993-2011; Boos, Eduard/D-9748-2012; Alves, Gilvan/C-4007-2013; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Kodolova, Olga/D-7158-2012; Hektor, Andi/G-1804-2011; Krammer, Manfred/A-6508-2010; Azzi, Patrizia/H-5404-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Troitsky, Sergey/C-1377-2014; Giacomelli, Paolo/B-8076-2009; Servoli, Leonello/E-6766-2012; Montanari, Alessandro/J-2420-2012; Novaes, Sergio/D-3532-2012; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Oguri, Vitor/B-5403-2013; Stahl, Achim/E-8846-2011; Jeitler, Manfred/H-3106-2012; Della Ricca, Giuseppe/B-6826-2013; Petrushanko, Sergey/D-6880-2012; Lokhtin, Igor/D-7004-2012; Venturi, Andrea/J-1877-2012; Ivanov, Andrew/A-7982-2013; Mignerey, Alice/D-6623-2011; Raidal, Martti/F-4436-2012; Kuleshov, Sergey/D-9940-2013; Dudko, Lev/D-7127-2012; Tinoco Mendes, Andre David/D-4314-2011; Torassa, Ezio/I-1788-2012; Varela, Joao/K-4829-2016; OI Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Actis, Oxana/0000-0001-8851-3983; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Katkov, Igor/0000-0003-3064-0466; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Altsybeev, Igor/0000-0002-8079-7026; TUVE', Cristina/0000-0003-0739-3153; Gulmez, Erhan/0000-0002-6353-518X; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Tomei, Thiago/0000-0002-1809-5226; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Cerrada, Marcos/0000-0003-0112-1691; Calvo Alamillo, Enrique/0000-0002-1100-2963; Scodellaro, Luca/0000-0002-4974-8330; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Amapane, Nicola/0000-0001-9449-2509; Mundim, Luiz/0000-0001-9964-7805; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Hektor, Andi/0000-0001-7873-8118; Krammer, Manfred/0000-0003-2257-7751; Azzi, Patrizia/0000-0002-3129-828X; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Troitsky, Sergey/0000-0001-6917-6600; Servoli, Leonello/0000-0003-1725-9185; Montanari, Alessandro/0000-0003-2748-6373; Novaes, Sergio/0000-0003-0471-8549; de Jesus Damiao, Dilson/0000-0002-3769-1680; Stahl, Achim/0000-0002-8369-7506; Della Ricca, Giuseppe/0000-0003-2831-6982; Ivanov, Andrew/0000-0002-9270-5643; Kuleshov, Sergey/0000-0002-3065-326X; Dudko, Lev/0000-0002-4462-3192; Tinoco Mendes, Andre David/0000-0001-5854-7699; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Levchenko, Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; Varela, Joao/0000-0003-2613-3146; Mackay, Catherine/0000-0003-4252-6740 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST (Russia); MAE (Russia); MSTDS (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (U.K.); DOE (U.S.); NSF (U.S.) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); and DOE and NSF (U.S.). NR 16 TC 39 Z9 39 U1 2 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 13 PY 2010 VL 105 IS 3 AR 032001 DI 10.1103/PhysRevLett.105.032001 PG 14 WC Physics, Multidisciplinary SC Physics GA 624LP UT WOS:000279820500003 PM 20867758 ER PT J AU Nautiyal, S Carlton, VEH Lu, Y Ireland, JS Flaucher, D Moorhead, M Gray, JW Spellman, P Mindrinos, M Berg, P Faham, M AF Nautiyal, Shivani Carlton, Victoria E. H. Lu, Yontao Ireland, James S. Flaucher, Diane Moorhead, Martin Gray, Joe W. Spellman, Paul Mindrinos, Michael Berg, Paul Faham, Malek TI High-throughput method for analyzing methylation of CpGs in targeted genomic regions SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE array; technology; tumor ID PROFILING DNA METHYLATION; DIFFERENTIAL METHYLATION; CANCER; CELLS; PLURIPOTENT; ISLANDS; BIOLOGY; ASSAY AB A unique microarray-based method for determining the extent of DNA methylation has been developed. It relies on a selective enrichment of the regions to be assayed by target amplification by capture and ligation (mTACL). The assay is quantitatively accurate, relatively precise, and lends itself to high-throughput determination using nanogram amounts of DNA. The measurements using mTACLs are highly reproducible and in excellent agreement with those obtained by sequencing (r = 0.94). In the present work, the methylation status of >145,000 CpGs from 5,472 promoters in 221 samples was measured. The methylation levels of nearby CpGs are correlated, but the correlation falls off dramatically over several hundred base pairs. In some instances, nearby CpGs have very different levels of methylation. Comparison of normal and tumor samples indicates that in tumors, the promoter regions of genes involved in differentiation and signaling are preferentially hypermethylated, whereas those of housekeeping genes remain hypomethylated. mTACL is a platform for profiling the state of methylation of a large number of CpG in many samples in a cost-effective fashion, and is capable of scaling to much larger numbers of CpGs than those collected here. C1 [Nautiyal, Shivani; Carlton, Victoria E. H.; Lu, Yontao; Ireland, James S.; Flaucher, Diane; Moorhead, Martin; Faham, Malek] Affymetrix Inc, Santa Clara, CA 95051 USA. [Gray, Joe W.; Spellman, Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mindrinos, Michael] Stanford Genome Technol Ctr, Palo Alto, CA 94304 USA. [Berg, Paul] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. RP Faham, M (reprint author), Affymetrix Inc, Santa Clara, CA 95051 USA. EM malek.faham@mlcdx.com FU Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of the Army [W81XWH-07-1-0663]; National Institutes of Health, National Cancer Institute [P50 CA 58207]; [U54 CA 112970] FX The work of J.W.G. and P.S. was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, by the Department of the Army, award: W81XWH-07-1-0663 (The U.S. Army Medical Research Acquisition Activity, Fort Detrick, MD is the awarding and administering acquisition office), and by the National Institutes of Health, National Cancer Institute grants P50 CA 58207, and by the U54 CA 112970 to J.W.G. NR 27 TC 22 Z9 23 U1 1 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 13 PY 2010 VL 107 IS 28 BP 12587 EP 12592 DI 10.1073/pnas.1005173107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 624TD UT WOS:000279843200036 PM 20616066 ER PT J AU Mara, NA Bhattacharyya, D Hirth, JP Dickerson, P Misra, A AF Mara, N. A. Bhattacharyya, D. Hirth, J. P. Dickerson, P. Misra, A. TI Mechanism for shear banding in nanolayered composites SO APPLIED PHYSICS LETTERS LA English DT Article ID CU/NB NANOSCALE MULTILAYERS; METALLIC MULTILAYERS; BEHAVIOR; STRENGTH AB Recent studies have shown that two-phase nanocomposite materials with semicoherent interfaces exhibit enhanced strength, deformability, and radiation damage resistance. The remarkable behavior exhibited by these materials has been attributed to the atomistic structure of the bimetal interface that results in interfaces with low shear strength and hence, strong barriers for slip transmission due to dislocation core spreading along the weak interfaces. In this work, the low interfacial shear strength of Cu/Nb nanoscale multilayers dictates a new mechanism for shear banding and strain softening during micropillar compression. Our findings, supported by molecular dynamics simulations, provide insight on the design of nanocomposites with tailored interface structures and geometry to obtain a combination of high strength and deformability. High strength is derived from the ability of the interfaces to trap dislocations through relative ease of interfacial shear, while deformability can be maximized by controlling the effects of loading geometry on shear band formation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3458000] C1 [Mara, N. A.; Dickerson, P.] Los Alamos Natl Lab, Met Mat Sci & Technol Div MST 6, Los Alamos, NM 87545 USA. [Mara, N. A.; Bhattacharyya, D.; Hirth, J. P.; Misra, A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div MPA CINT, Los Alamos, NM 87545 USA. RP Mara, NA (reprint author), Los Alamos Natl Lab, Met Mat Sci & Technol Div MST 6, MS-G770, Los Alamos, NM 87545 USA. EM namara@lanl.gov RI Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014; OI Mara, Nathan/0000-0002-9135-4693 FU Department of Energy, Office of Science, Basic Energy Sciences FX The authors gratefully acknowledge the Electron Microscopy Laboratory (EML) and Robert Dickerson at LANL for TEM support. This work was funded by the Department of Energy, Office of Science, Basic Energy Sciences, and was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 12 TC 69 Z9 69 U1 6 U2 74 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 021909 DI 10.1063/1.3458000 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800023 ER PT J AU Mayer, MA Speaks, DT Yu, KM Mao, SS Haller, EE Walukiewicz, W AF Mayer, Marie A. Speaks, Derrick T. Yu, Kin Man Mao, Samuel S. Haller, Eugene E. Walukiewicz, Wladek TI Band structure engineering of ZnO1-xSex alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID OXIDE SEMICONDUCTORS AB ZnO1-xSex alloys with Se substitutional composition x < 0.12 were synthesized using pulsed laser deposition. Incorporation of small concentrations of Se results in a greater than 1 eV red shift in the ZnO optical absorption edge which is quantitatively explained in the framework of the band anticrossing model. The Se defect level is found to be located at 0.9 eV above the ZnO valence band and the band anticrossing coupling constant is determined to be 1.2 eV. These parameters allow prediction of the composition dependence of the band gap as well as the conduction and the valence band offsets in the full composition range of ZnO1-xSex alloys. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464323] C1 [Mayer, Marie A.; Speaks, Derrick T.; Yu, Kin Man; Haller, Eugene E.; Walukiewicz, Wladek] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Mayer, Marie A.; Speaks, Derrick T.; Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mayer, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mamayer@berkeley.edu RI Yu, Kin Man/J-1399-2012 OI Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; NDSEG FX We would like to thank Julian Guzman for TEM images, Alejandro Levander for assistance with XRD data and Robert Broesler for helpful discussion. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. M. A. M. acknowledges fellowship support from NDSEG. NR 13 TC 29 Z9 29 U1 3 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 022104 DI 10.1063/1.3464323 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800029 ER PT J AU Wu, SQ Wang, CZ Hao, SG Zhu, ZZ Ho, KM AF Wu, S. Q. Wang, C. Z. Hao, S. G. Zhu, Z. Z. Ho, K. M. TI Energetics of local clusters in Cu64.5Zr35.5 metallic liquid and glass SO APPLIED PHYSICS LETTERS LA English DT Article ID BINARY-ALLOY; SIMULATION AB Correlation between the cluster energy and its population and dynamics can provide a better understanding of the complicated energy landscape of disordered metallic systems. We propose a method to analyze the cluster energy distribution for different kinds of short-range order (local clusters) in liquid and glass systems. By applying this analysis to an interesting and important glass forming system-Cu64.5Zr35.5 we observe a direct correlation between the energy and dynamics of the cluster in this realistic glass-forming system. This study suggests that dynamic arrest originates from the environment-dependent energetics of local clusters. (C) 2010 American Institute of Physics. [doi:10.1063/1.3464164] C1 [Wu, S. Q.; Wang, C. Z.; Hao, S. G.; Ho, K. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Wu, S. Q.; Zhu, Z. Z.] Xiamen Univ, Inst Theoret Phys & Astrophys, Dept Phys, Xiamen 361005, Peoples R China. RP Wu, SQ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM wsq@xmu.edu.cn RI Zhu, ZZ/G-4126-2010; Wu, S.Q./G-3992-2010 OI Wu, S.Q./0000-0002-2545-0054 FU U.S. Department of Energy; NNSF of China [10774124]; China Scholarship Council; [DE-AC02-07CH11358] FX We would like to thank Dr. Y. X. Yao for many useful discussions. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, under Contract No. DE-AC02-07CH11358. This work was partially supported by the NNSF of China under Grant No. 10774124. S.Q.W. also acknowledges fellowship support from the China Scholarship Council. NR 23 TC 31 Z9 31 U1 2 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 12 PY 2010 VL 97 IS 2 AR 021901 DI 10.1063/1.3464164 PG 3 WC Physics, Applied SC Physics GA 626WW UT WOS:000279999800015 ER PT J AU Masiel, DJ Reed, BW LaGrange, TB Campbell, GH Guo, T Browning, ND AF Masiel, Daniel J. Reed, Bryan W. LaGrange, Thomas B. Campbell, Geoffrey H. Guo, Ting Browning, Nigel D. TI Time-Resolved Annular Dark Field Imaging of Catalyst Nanoparticles SO CHEMPHYSCHEM LA English DT Article DE catalysis; catalyst dynamics; dynamic transmission electron microscopy; nanoparticles; time-resolved imaging ID IN-SITU; TEM; GROWTH C1 [Masiel, Daniel J.; Guo, Ting] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Reed, Bryan W.; LaGrange, Thomas B.; Campbell, Geoffrey H.; Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Browning, Nigel D.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. RP Masiel, DJ (reprint author), Univ Calif Davis, Dept Chem, 1 Shields Ave, Davis, CA 95616 USA. EM djmasiel@ucdavis.edu RI Reed, Bryan/C-6442-2013; Campbell, Geoffrey/F-7681-2010 OI Browning, Nigel/0000-0003-0491-251X; FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07 A27344]; DOE/NNSA [DE-PS52-05NA]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07 A27344, supported by DOE/NNSA award DE-PS52-05NA. T.L., B.W.R., G.H.C., and N.D.B supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. The authors thank Rich Shuttlesworth and Dr. Frank Yoghmaue for their support. NR 13 TC 5 Z9 5 U1 0 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2088 EP 2090 DI 10.1002/cphc.201000274 PG 3 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400008 PM 20509135 ER PT J AU Riley, LA Cavanagh, AS George, SM Jung, YS Yan, YF Lee, SH Dillon, AC AF Riley, Leah A. Cavanagh, Andrew S. George, Steven M. Jung, Yoon Seok Yan, Yanfa Lee, Se-Hee Dillon, Anne C. TI Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials SO CHEMPHYSCHEM LA English DT Article DE electrodes; kinetics; lithium; phase transitions; surface analysis ID ATOMIC LAYER DEPOSITION; NEGATIVE-ELECTRODE; LITHIUM BATTERIES; INTERCALATION COMPOUNDS; MOLYBDENUM OXIDE; SI; NANOPARTICLES; PERFORMANCE; INSERTION; TEMPERATURE AB An alumina surface coating is demonstrated to improve electrochemical performance of MoO(3) nanoparticles as high capacity/high-volume expansion anodes for Li-ion batteries. Thin, conformal surface coatings were grown using atomic layer; deposition (ALD) that relies on self-limiting surface reactions. ALD coatings were tested on both individual nanoparticles and prefabricated electrodes containing conductive additive and binder. The coated and non-coated materials were characterized using transmission electron microscopy, energy-dispersive; X-ray spectroscopy, electrochemical impedance spectroscopy, and galvanostatic charge/discharge cycling. Importantly, increased stability and capacity retention was only observed when the fully fabricated electrode was coated. The alumina layer both improves the adhesion of the entire electrode, during volume expansion/contraction and protects the nanoparticle surfaces. Coating the entire electrode also allows for an important carbothermal reduction process that occurs during electrode pre-heat treatment. ALD is thus demonstrated as a novel and necessary method that may be employed to coat the tortuous network of a battery electrode. C1 [Riley, Leah A.; Jung, Yoon Seok; Yan, Yanfa; Dillon, Anne C.] Natl Renewable Energy Lab, Ctr Mat Sci, Golden, CO 80401 USA. [Riley, Leah A.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Cavanagh, Andrew S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biochem Chem & Biochem Engn, Boulder, CO 80309 USA. RP Dillon, AC (reprint author), Natl Renewable Energy Lab, Ctr Mat Sci, 1617 Cole Blvd, Golden, CO 80401 USA. EM anne.dillon@nrel.gov RI Lee, Sehee/A-5989-2011; George, Steven/O-2163-2013; Jung, Yoon Seok/B-8512-2011 OI George, Steven/0000-0003-0253-9184; Jung, Yoon Seok/0000-0003-0357-9508 FU U.S. Department of Energy through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies [DE-AC36-08GO28308]; DARPA/MEMS [HR0011-06-1-0048] FX This work was funded by the U.S. Department of Energy under subcontract number DE-AC36-08GO28308 through DOE Office of Energy Efficiency and Renewable Energy Office of the Vehicle Technologies Program. Dr. Steven George and Andrew Cavanagh thank the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromecahnical Transducers (iMINT) and are funded by DARPA/MEMS S&T Fundamentals Program (HR0011-06-1-0048). NR 33 TC 71 Z9 73 U1 6 U2 86 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2124 EP 2130 DI 10.1002/cphc.201000158 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400014 PM 20449864 ER PT J AU Liu, DJ Evans, JW AF Liu, Da-Jiang Evans, James W. TI Interactions between Oxygen Atoms on Pt(100): Implications for Ordering during Chemisorption and Catalysis SO CHEMPHYSCHEM LA English DT Article DE chemisorption; density functional calculations; oxygen; platinum; surface chemistry ID TOTAL-ENERGY CALCULATIONS; THIN METAL-FILMS; ADSORBATE-ADSORBATE INTERACTIONS; INITIO MOLECULAR-DYNAMICS; WAVE BASIS-SET; CO OXIDATION; CARBON-MONOXIDE; WORK FUNCTION; TRANSITION; ADSORPTION AB We present a DFT analysis of the interactions between chemisorbed oxygen on the unreconstructed (1 x 1)-Pt(100) surface. These interactions control ordering of O not just for single-species adsorption, but also within O domains during coadsorption and reaction with other species such as CO. The calculations indicate that O prefers bridge sites, as deduced previously. In addition, we find a large difference in the interactions between O at different types of bridge site pairs separated by one lattice constant. There is strong repulsion for pairs separated by a Pt atom, but only a weak interaction for pairs separated by a fourfold hollow site. This finding elucidates the tendency for striped (n x 1)-O ordering often observed in chemisorption and reaction studies. C1 [Liu, Da-Jiang; Evans, James W.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Dept Math & Astron, Ames, IA 50011 USA. RP Liu, DJ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM dajiang@fi.ameslab.gov FU Division of Chemical Sciences of the US Department of Energy (USDOE) [DE-AC02-07CH11358] FX We acknowledge useful discussions with R. Imbihl and P A. Thiel. This work was supported by the Division of Chemical Sciences of the US Department of Energy (USDOE). It was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 55 TC 13 Z9 13 U1 3 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1439-4235 J9 CHEMPHYSCHEM JI ChemPhysChem PD JUL 12 PY 2010 VL 11 IS 10 BP 2174 EP 2181 DI 10.1002/cphc.200900998 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 632MI UT WOS:000280428400021 PM 20533492 ER PT J AU Muller, H Jin, JA Danev, R Spence, J Padmore, H Glaeser, RM AF Mueller, H. Jin, Jian Danev, R. Spence, J. Padmore, H. Glaeser, R. M. TI Design of an electron microscope phase plate using a focused continuous-wave laser SO NEW JOURNAL OF PHYSICS LA English DT Article ID TRANSPARENT OBJECTS; PARABOLIC-MIRROR; CONTRAST; LIGHT AB We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics. C1 [Mueller, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Jin, Jian] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Danev, R.] Natl Inst Nat Sci, Okazaki Inst Integrat Biosci, Div Nanostruct Physiol, Okazaki, Aichi 4448787, Japan. [Spence, J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Padmore, H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Glaeser, R. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Mueller, Holger/E-3194-2015 FU NIH [GM083039]; David and Lucile Packard Foundation; Alfred P Sloan Foundation FX We thank Eva Nogales for discussions and Mike Hohensee for help in preparing the manuscript. This research was supported by NIH grant GM083039, the David and Lucile Packard Foundation and the Alfred P Sloan Foundation. NR 31 TC 17 Z9 17 U1 2 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 12 PY 2010 VL 12 AR 073011 DI 10.1088/1367-2630/12/7/073011 PG 10 WC Physics, Multidisciplinary SC Physics GA 625GC UT WOS:000279881900001 ER PT J AU Marginean, C Pelz, JP Lehman, SY Cederberg, JG AF Marginean, C. Pelz, J. P. Lehman, S. Y. Cederberg, J. G. TI Measurements of the quantum-confined conduction band energy in the wetting layer surrounding individual In0.4Ga0.6As quantum dots by cross-sectional ballistic electron emission microscopy SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; GAAS(100); GROWTH; DEVICE AB We measured the quantum-confined conduction band minimum (CBM) energy in the wetting layer (WL) around and behind cleaved self-assembled In0.4Ga0.6As quantum dots (QDs) using cross-sectional ballistic electron emission microscopy (XBEEM) at room temperature. With the probe tip positioned over a QD, the dependence of the measured CBM energy on the reverse bias confirmed that XBEEM measured the CBM energy in the wetting layer at the backside of the QD and not in the QD itself. Measurements indicated that the CBM of the quantum-confined wetting layer is approximately 90 meV below the GaAs CBM, and that this conduction band offset is not substantially affected by pinning effects at the metal/semiconductor interface. The amplitude of the BEEM current entering a WL was also observed to decrease once the deposited thickness of an In0.4Ga0.6As or InAs layer exceeded a certain threshold, consistent with a reduction in the WL thickness after large-scale QD formation takes place. C1 [Marginean, C.; Pelz, J. P.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Lehman, S. Y.] Coll Wooster, Dept Phys, Wooster, OH 44691 USA. [Cederberg, J. G.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Marginean, C (reprint author), Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. OI Lehman, Susan/0000-0003-4735-1417 FU National Science Foundation [DMR-0505165, DMR-0805237]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the National Science Foundation under Grants No. DMR-0505165 and No. DMR-0805237. The authors would like to acknowledge the assistance of Michael Coviello at TEM Analysis, Inc. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 26 TC 2 Z9 2 U1 2 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2010 VL 82 IS 3 AR 035304 DI 10.1103/PhysRevB.82.035304 PG 7 WC Physics, Condensed Matter SC Physics GA 623VY UT WOS:000279775700004 ER PT J AU Yin, WJ Tang, HW Wei, SH Al-Jassim, MM Turner, J Yan, YF AF Yin, Wan-Jian Tang, Houwen Wei, Su-Huai Al-Jassim, Mowafak M. Turner, John Yan, Yanfa TI Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2 SO PHYSICAL REVIEW B LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; PHOTOCATALYSIS; ANATASE AB Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2. Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime. C1 [Yin, Wan-Jian; Tang, Houwen; Wei, Su-Huai; Al-Jassim, Mowafak M.; Turner, John; Yan, Yanfa] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM yanfa.yan@nre1.gov RI Yin, Wanjian/F-6738-2013 FU U. S. Department of Energy; Division of Materials Science and Engineering, Office of Basic Energy Sciences FX This work was supported by the U. S. Department of Energy, Hydrogen and Fuel Cells Technology Program. Su-Huai Wei acknowledges support by the Division of Materials Science and Engineering, Office of Basic Energy Sciences. NR 20 TC 179 Z9 182 U1 12 U2 137 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 12 PY 2010 VL 82 IS 4 AR 045106 DI 10.1103/PhysRevB.82.045106 PG 6 WC Physics, Condensed Matter SC Physics GA 623VZ UT WOS:000279775900002 ER PT J AU Nissen, E Erdelyi, B AF Nissen, E. Erdelyi, B. TI Differential algebraic methods for single particle dynamics studies of the University of Maryland electron ring SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The University of Maryland electron ring is a small low energy machine for the study of space-charge dominated beams. Differential algebraic methods as implemented in COSY INFINITY offer an accurate method to study and analyze single particle nonlinear dynamics. As a starting point for space-charge related studies, we undertook a comprehensive examination of the single particle nonlinear dynamics based on differential algebra methods. Quantities such as tunes, chromaticities, dispersion, amplitude dependent tune shifts, and resonance strengths were calculated, and robustness of the solutions with respect to errors tested. The model demonstrated that the earth's magnetic field has a significant impact on the beam, and adds rich dynamics even in the absence of space charge. Initially we determined the tunes for which an injection-free idealization of the ring had the largest dynamic aperture. Our study then showed that the actual ring also had the largest dynamic aperture at these same tunes, and at these tunes was also least sensitive to errors. Comparison of predicted beam trajectories with measured data showed that the model was accurate for the examined area. C1 [Nissen, E.; Erdelyi, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Erdelyi, B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Nissen, E (reprint author), No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. EM enissen@gmail.com; erdelyi@anl.gov NR 24 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 12 PY 2010 VL 13 IS 7 AR 074001 DI 10.1103/PhysRevSTAB.13.074001 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 623WI UT WOS:000279776800001 ER PT J AU Hooper, D Zurek, KM AF Hooper, Dan Zurek, Kathryn M. TI PAMELA, FGST and sub-TeV dark matter SO PHYSICS LETTERS B LA English DT Article DE Dark matter; Cosmic rays ID COSMIC-RAY POSITRONS; SOLAR MODULATION; ELECTRONS; PROPAGATION; PARTICLE; ENERGIES; FRACTION; GALAXY; HALO AB PAMELA's observation that the cosmic ray positron fraction increases rapidly with energy implies the presence of primary sources of energetic electron-positron pairs. Of particular interest is the possibility that dark matter annihilations in the halo of the Milky Way provide this anomalous flux of antimatter. The recent measurement of the cosmic ray electron spectrum by the Fermi Gamma Ray Space Telescope, however, can be used to constrain the nature of any such dark matter particle. In particular, it has been argued that in order to accommodate the observations of Fermi and provide the PAMELA positron excess, annihilating dark matter particles must be as massive as similar to 1 TeV or heavier. In this Letter, we revisit Fermi's electron spectrum measurement within the context of annihilating dark matter, focusing on masses in the range of 100-1000 GeV, and considering effects such as variations in the astrophysical backgrounds from the presence of local cosmic ray accelerators, and the finite energy resolution of the Fermi Gamma Ray Space Telescope. When these factors are taken into account, we find that dark matter particles as light as 300 GeV can be capable of generating the positron fraction observed by PAMELA. (C) 2010 Elsevier B.V. All rights reserved. C1 [Hooper, Dan; Zurek, Kathryn M.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Zurek, Kathryn M.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM dhooper@fnal.gov FU US Department of Energy [DE-FG02-95ER40896]; NASA [NAG5-10842] FX We would like to thank the Aspen Center for Physics for their hospitality, where this work was initiated. This work has been supported by the US Department of Energy, including grant DE-FG02-95ER40896, and by NASA grant NAG5-10842. NR 69 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 J9 PHYS LETT B JI Phys. Lett. B PD JUL 12 PY 2010 VL 691 IS 1 BP 18 EP 31 DI 10.1016/j.physletb.2010.06.014 PG 14 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 624EB UT WOS:000279798000003 ER PT J AU Londergan, JT Peng, JC Thomas, AW AF Londergan, J. T. Peng, J. C. Thomas, A. W. TI Charge symmetry at the partonic level SO REVIEWS OF MODERN PHYSICS LA English DT Article ID DEEP-INELASTIC-SCATTERING; DEUTERON STRUCTURE FUNCTIONS; NEUTRINO-NUCLEON SCATTERING; DRELL-YAN PROCESS; LIGHT-QUARK SEA; HIGH STATISTICS MEASUREMENT; GOTTFRIED SUM-RULE; STRANGE-SEA; FLAVOR ASYMMETRY; CROSS-SECTIONS AB s This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. Various theoretical and phenomenological models for charge-symmetry violation in parton distribution functions are reviewed. After summarizing the current experimental upper limits on charge-symmetry violation in parton distributions, a series of new experiments are proposed, which might reveal partonic charge-symmetry violation or alternatively might lower the current upper limits on parton charge-symmetry violation. C1 [Londergan, J. T.] Indiana Univ, Dept Phys, Bloomington, IN 47404 USA. [Londergan, J. T.] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47404 USA. [Peng, J. C.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Thomas, A. W.] Thomas Jefferson Natl Lab, Newport News, VA 23606 USA. RP Londergan, JT (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47404 USA. EM tlonderg@indiana.edu RI Thomas, Anthony/G-4194-2012 OI Thomas, Anthony/0000-0003-0026-499X FU U.S. National Science Foundation [NSF-PHY0555232, PHY0854805, NSF-PHY0601067]; Australian Research Council through an Australian Laureate Fellowship; U.S. Department of Energy [DE-AC05-06OR23177] FX Research by one of the authors (J.T.L.) was supported in part by the U.S. National Science Foundation under research Contracts No. NSF-PHY0555232 and No. PHY0854805. Research by one of the authors (A.W.T.) was supported by the Australian Research Council through an Australian Laureate Fellowship as well as by the U.S. Department of Energy under Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Laboratory. Research by one of the authors (J.C.P.) was supported in part by the U.S. National Science Foundation under research Contract No. NSF-PHY0601067. The authors would like to acknowledge discussions with and contributions by C. Boros, W. Melnitchouk, G.A. Miller, and D.J. Murdock. One of the authors (J.T.L.) acknowledges several discussions with S.E. Vigdor regarding this review and also discussions with C. Benesh, S. Gottlieb, S. Kulagin, K. Kumar, E. J. Stephenson, and R. S. Thorne. One of the authors (A.W.T.) wishes to acknowledge discussions with W. Bentz and I. Cloet. One of the authors (J.C.P.) acknowledges discussions with G. T. Garvey and J. M. Moss. NR 195 TC 31 Z9 31 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 12 PY 2010 VL 82 IS 3 BP 2009 EP 2052 DI 10.1103/RevModPhys.82.2009 PG 44 WC Physics, Multidisciplinary SC Physics GA 624GW UT WOS:000279806200001 ER PT J AU Kostko, O Zhou, J Sun, BJ Lie, JSA Chang, AHH Kaiser, RI Ahmed, M AF Kostko, Oleg Zhou, Jia Sun, Bian Jian Lie, Jie Shiuan Chang, Agnes H. H. Kaiser, Ralf I. Ahmed, Musahid TI DETERMINATION OF IONIZATION ENERGIES OF CnN (n=4-12): VACUUM ULTRAVIOLET PHOTOIONIZATION EXPERIMENTS AND THEORETICAL CALCULATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE astrochemistry; ISM: molecules; methods: laboratory; molecular data; techniques: spectroscopic ID DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER CALCULATIONS; CIRCUMSTELLAR ENVELOPES; GAS-PHASE; ASTRONOMICAL DETECTION; INTERSTELLAR CLOUDS; PLANETARY-NEBULAE; CARBON STARS; AB-INITIO; ISOMERS AB Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4-12, in the photon energy range of 8.0 eV-12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n = 4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-alpha region) in the interstellar medium. C1 [Kostko, Oleg; Zhou, Jia; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H. H.] Natl Dong Hwa Univ, Dept Chem, Hualien, Taiwan. [Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. RP Kostko, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM MAhmed@lbl.gov RI Ahmed, Musahid/A-8733-2009; Kostko, Oleg/B-3822-2009 OI Kostko, Oleg/0000-0003-2068-4991 FU Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-04ER15570] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Chemical Sciences Division of the U.S. Department of Energy under contracts No. DE-AC02-05CH11231 (O.K., J.Z., M.A.) and No. DE-FG02-04ER15570 (R. I. K.). B.J.S., J.S.L., and A.H.H.C. thank the National Center for High-performance Computer of Taiwan for the computer resources utilized in the calculations. NR 49 TC 14 Z9 14 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 674 EP 682 DI 10.1088/0004-637X/717/2/674 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800007 ER PT J AU Ruiter, AJ Belczynski, K Benacquista, M Larson, SL Williams, G AF Ruiter, Ashley J. Belczynski, Krzysztof Benacquista, Matthew Larson, Shane L. Williams, Gabriel TI THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: close; gravitation; gravitational waves; stars: evolution; white dwarfs ID INTERFEROMETER-SPACE-ANTENNA; CANUM-VENATICORUM BINARIES; AM CVN STARS; COMMON ENVELOPE EVOLUTION; DIGITAL SKY SURVEY; X-RAY SOURCES; POPULATION SYNTHESIS; GALACTIC BINARIES; DETACHED SYSTEMS; COMPACT OBJECTS AB Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this "foreground noise" is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e. g., gravitational waves arising from stellar-mass objects inspiraling intomassive black holes. Inmany previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since > 99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to > 6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number (similar to 11,300) of Galactic double WD binaries that will have a signal-to-noise ratio > 5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings. C1 [Ruiter, Ashley J.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Ruiter, Ashley J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruiter, Ashley J.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Belczynski, Krzysztof] Los Alamos Natl Lab, CCS 2, ISR Grp 1, Los Alamos, NM 87545 USA. [Belczynski, Krzysztof] Univ Warsaw, Astron Observ, PL-00478 Warsaw, Poland. [Benacquista, Matthew; Williams, Gabriel] Univ Texas Brownsville, Ctr Gravitat Wave Astron, Brownsville, TX 78520 USA. [Larson, Shane L.] Utah State Univ, Dept Phys, Logan, UT 84322 USA. [Williams, Gabriel] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. RP Ruiter, AJ (reprint author), Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85741 Garching, Germany. EM ajr@mpa-garching.mpg.de; kbelczyn@nmsu.edu; benacquista@phys.utb.edu; s.larson@usu.edu; gabriel.j.williams@gmail.com RI Larson, Shane/E-8576-2010 FU NASA [NNG05G106G, NNG04GD52G, NNG05GF71G]; KBN [1 P03D 022 28, PBZ-KBN-054/P03/2001]; Center for Gravitational Wave Astronomy; NSF [PHY 01-4375] FX We thank Gijs Nelemans for very useful discussion on this project, which greatly improved this work, and for providing data for Nelemans et al. (2001b) and Nelemans et al. (2004). K.B., M.B., and S.L.L. acknowledge the hospitality of the Aspen Center for Physics. M. B. and S.L.L. were supported at the Aspen Center by NASA Award Number NNG05G106G. M.B. is also supported by NASA APRA grant Number NNG04GD52G. K.B. and A.J.R. acknowledge support through KBN Grants 1 P03D 022 28 and PBZ-KBN-054/P03/2001, and the hospitality of the Center for Gravitational Wave Astronomy (UTB). S.L.L. also acknowledges support from the Center for Gravitational Wave Physics, funded by the NSF under cooperative agreement PHY 01-4375, and from NASA award NNG05GF71G. A.J.R. acknowledges the support of Sigma Xi and the hospitality of the Nicolaus Copernicus Astronomical Center. The majority of A.J.R.'s calculations for this work were carried out at New Mexico State University and the Harvard-Smithsonian Center for Astrophysics. The authors also thank Sam Finn for directing us to the KDE package for Matlab, which was used to generate the PDFs of the various channels, and Joe Romano for providing a routine for generating the LISA noise. Finally, we thank the referee Gijs Nelemans and the anonymous referee for highly insightful questions and comments. StarTrack simulations were performed at the Copernicus Center in Warsaw, Poland. NR 88 TC 34 Z9 34 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 10 PY 2010 VL 717 IS 2 BP 1006 EP 1021 DI 10.1088/0004-637X/717/2/1006 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 635JG UT WOS:000280650800033 ER PT J AU Ackermann, M Ajello, M Baldini, L Ballet, J Barbiellini, G Baring, MG Bastieri, D Bechtol, K Bellazzini, R Berenji, B Bhat, PN Bissaldi, E Blandford, RD Bonamente, E Borgland, AW Bouvier, A Bregeon, J Brez, A Briggs, MS Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Carrigan, S Casandjian, JM Cecchi, C Celik, O Charles, E Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Cutini, S Dermer, CD de Angelis, A de Palma, F Digel, SW do Couto e Silva, E Drell, PS Dubois, R Favuzzi, C Fegan, SJ Ferrara, EC Frailis, M Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Grenier, IA Grove, JE Guillemot, L Guiriec, S Hadasch, D Hays, E Horan, D Hughes, RE Johannesson, G Johnson, AS Johnson, WN Kamae, T Katagiri, H Kippen, RM Knodlseder, J Kocevski, D Kuss, M Lande, J Latronico, L Lee, SH Garde, ML Longo, F Loparco, F Lovellette, MN Lubrano, P Makeev, A Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Meegan, C Mehault, J Meszaros, P Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Nakajima, H Nakamori, T Naumann-Godo, M Nolan, PL Norris, JP Nuss, E Ohno, M Ohsugi, T Okumura, A Omodei, N Orlando, E Ormes, JF Ozaki, M Paciesas, WS Paneque, D Panetta, JH Parent, D Pelassa, V Pepe, M Pesce-Rollins, M Petrosian, V Piron, F Porter, TA Preece, R Racusin, JL Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Ripken, J Roth, M Ryde, F Sadrozinski, HFW Sander, A Scargle, JD Schalk, TL Sgro, C Siskind, EJ Smith, PD Spandre, G Spinelli, P Stamatikos, M Strickman, MS Suson, DJ Tajima, H Takahashi, H Tanaka, T Thayer, JB Thayer, JG Tibaldo, L Torres, DF Tosti, G Tramacere, A Uehara, T Usher, TL Vandenbroucke, J van der Horst, AJ Vasileiou, V Vilchez, N Vitale, V von Kienlin, A Waite, AP Wang, P Wilson-Hodge, C Winer, BL Wood, KS Wu, XF Yamazaki, R Yang, Z Ylinen, T Ziegler, M AF Ackermann, M. Ajello, M. Baldini, L. Ballet, J. Barbiellini, G. Baring, M. G. Bastieri, D. Bechtol, K. Bellazzini, R. Berenji, B. Bhat, P. N. Bissaldi, E. Blandford, R. D. Bonamente, E. Borgland, A. W. Bouvier, A. Bregeon, J. Brez, A. Briggs, M. S. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Carrigan, S. Casandjian, J. M. Cecchi, C. Celik, Oe Charles, E. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Cutini, S. Dermer, C. D. de Angelis, A. de Palma, F. Digel, S. W. do Couto e Silva, E. Drell, P. S. Dubois, R. Favuzzi, C. Fegan, S. J. Ferrara, E. C. Frailis, M. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Grenier, I. A. Grove, J. E. Guillemot, L. Guiriec, S. Hadasch, D. Hays, E. Horan, D. Hughes, R. E. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Katagiri, H. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Latronico, L. Lee, S. -H. Garde, M. Llena Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Makeev, A. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Meegan, C. Mehault, J. Meszaros, P. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Nakajima, H. Nakamori, T. Naumann-Godo, M. Nolan, P. L. Norris, J. P. Nuss, E. Ohno, M. Ohsugi, T. Okumura, A. Omodei, N. Orlando, E. Ormes, J. F. Ozaki, M. Paciesas, W. S. Paneque, D. Panetta, J. H. Parent, D. Pelassa, V. Pepe, M. Pesce-Rollins, M. Petrosian, V. Piron, F. Porter, T. A. Preece, R. Racusin, J. L. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Ripken, J. Roth, M. Ryde, F. Sadrozinski, H. F. -W. Sander, A. Scargle, J. D. Schalk, T. L. Sgro, C. Siskind, E. J. Smith, P. D. Spandre, G. Spinelli, P. Stamatikos, M. Strickman, M. S. Suson, D. J. Tajima, H. Takahashi, H. Tanaka, T. Thayer, J. B. Thayer, J. G. Tibaldo, L. Torres, D. F. Tosti, G. Tramacere, A. Uehara, T. Usher, T. L. Vandenbroucke, J. van der Horst, A. J. Vasileiou, V. Vilchez, N. Vitale, V. von Kienlin, A. Waite, A. P. Wang, P. Wilson-Hodge, C. Winer, B. L. Wood, K. S. Wu, X. F. Yamazaki, R. Yang, Z. Ylinen, T. Ziegler, M. TI FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE gamma-ray burst: individual (GRB090217A) ID SYNCHROTRON SHOCK MODEL; LARGE-AREA TELESCOPE; SPECTRAL COMPONENT; BURST; PROMPT AB The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9 sigma. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to similar to 1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs. C1 [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tramacere, A.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. [Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Glanzman, T.; Godfrey, G.; Johannesson, G.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Lee, S. -H.; Michelson, P. F.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Omodei, N.; Paneque, D.; Panetta, J. H.; Petrosian, V.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Usher, T. L.; Vandenbroucke, J.; Waite, A. P.; Wang, P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Kuss, M.; Latronico, L.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Casandjian, J. M.; Grenier, I. A.; Naumann-Godo, M.] Univ Paris Diderot, Lab AIM, CEA IRFU, CNRS,Serv Astrophys,CEA Saclay, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Moretti, E.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Moretti, E.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Carrigan, S.] Univ Padua, Dipartimento Fis G Galilei, I-35131 Padua, Italy. [Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Guiriec, S.; Paciesas, W. S.; Preece, R.] Univ Alabama, Ctr Space Plasma & Aeron Res CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; McBreen, S.; Orlando, E.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Germani, S.; Lubrano, P.; Pepe, M.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.; Horan, D.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. [Caliandro, G. A.; Torres, D. F.] Inst Ciencies Espai IEEC CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale Fis Cosm, I-20133 Milan, Italy. [Celik, Oe; Ferrara, E. C.; Gehrels, N.; Hays, E.; McEnery, J. E.; Moiseev, A. A.; Racusin, J. L.; Stamatikos, M.; Vasileiou, V.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Celik, Oe; Moiseev, A. A.; Vasileiou, V.] Ctr Res & Explorat Space Sci & Technol CRESST, Greenbelt, MD 20771 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Celik, Oe; Vasileiou, V.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Chekhtman, A.; Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Makeev, A.; Parent, D.; Razzaque, S.; Strickman, M. S.; Wood, K. S.] USN, Div Space Sci, Res Lab, Washington, DC 20375 USA. [Chekhtman, A.; Makeev, A.; Parent, D.] George Mason Univ, Fairfax, VA 22030 USA. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Pelassa, V.; Piron, F.] Univ Montpellier, Lab Phys Theor & Astroparticules, CNRS, IN2P3, Montpellier, France. [Conrad, J.; Garde, M. Llena; Ripken, J.; Yang, Z.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Garde, M. Llena; McGlynn, S.; Ripken, J.; Ryde, F.; Yang, Z.; Ylinen, T.] Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Frascati, Roma, Italy. [de Angelis, A.; Frailis, M.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.; Frailis, M.] Ist Nazl Fis Nucl, Sez Trieste, Grp Coll Udine, I-33100 Udine, Italy. [Frailis, M.] Ist Nazl Astrofis, Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Fukazawa, Y.; Katagiri, H.; Mizuno, T.; Uehara, T.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Giroletti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Ctr Astrophys Res, Sci & Technol Res Inst, Hatfield AL10 9AB, Herts, England. [Guillemot, L.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Guillemot, L.] Ctr Etud Nucl Bordeaux Gradignan, CNRS, IN2P3, UMR 5797, F-33175 Gradignan, France. [Guillemot, L.] Univ Bordeaux, Ctr Etud Nucl Bordeaux Gradignan, UMR 5797, F-33175 Gradignan, France. [Hadasch, D.; Torres, D. F.] Inst Catalana Recerca Estudis Avancats ICREA, Barcelona, Spain. [Hughes, R. E.; Sander, A.; Smith, P. D.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Knoedlseder, J.; Vilchez, N.] Ctr Etud Spatiale Rayonnements, CNRS, UPS, BP 44346, F-31028 Toulouse 4, France. [McBreen, S.] Univ Coll Dublin, Dublin 4, Ireland. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [McGlynn, S.; Ryde, F.; Ylinen, T.] Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Meegan, C.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Meszaros, P.; Wu, X. F.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Nakajima, H.] Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Nakamori, T.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Norris, J. P.; Ormes, J. F.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Ohno, M.; Okumura, A.; Ozaki, M.] Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2298510, Japan. [Ohsugi, T.; Takahashi, H.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Razzaque, S.] Natl Acad Sci, Natl Res Council Res Associate, Washington, DC 20001 USA. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.] Leopold Franzens Univ, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Sadrozinski, H. F. -W.; Schalk, T. L.; Ziegler, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Scargle, J. D.] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tramacere, A.] Consorzio Interuniv Fis Spaziale CIFS, I-10133 Turin, Italy. [Tramacere, A.] INTEGRAL Sci Data Ctr, CH-1290 Versoix, Switzerland. [van der Horst, A. J.; Wilson-Hodge, C.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Wu, X. F.] Joint Ctr Particle Nucl Phys & Cosmol J CPNPC, Nanjing 210093, Peoples R China. [Wu, X. F.] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Yamazaki, R.] Aoyama Gakuin Univ, Sagamihara, Kanagawa 2298558, Japan. [Ylinen, T.] Univ Kalmar, Sch Pure & Appl Nat Sci, SE-39182 Kalmar, Sweden. RP Ackermann, M (reprint author), Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA. EM azk@mpe.mpg.de; sarac@slac.stanford.edu; piron@lpta.in2p3.fr RI Racusin, Judith/D-2935-2012; Gehrels, Neil/D-2971-2012; Ozaki, Masanobu/K-1165-2013; Rando, Riccardo/M-7179-2013; McEnery, Julie/D-6612-2012; Baldini, Luca/E-5396-2012; lubrano, pasquale/F-7269-2012; Morselli, Aldo/G-6769-2011; Hays, Elizabeth/D-3257-2012; Kuss, Michael/H-8959-2012; giglietto, nicola/I-8951-2012; Reimer, Olaf/A-3117-2013; Tosti, Gino/E-9976-2013; Johnson, Neil/G-3309-2014; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Wu, Xuefeng/G-5316-2015; Torres, Diego/O-9422-2016; Orlando, E/R-5594-2016; OI lubrano, pasquale/0000-0003-0221-4806; Morselli, Aldo/0000-0002-7704-9553; giglietto, nicola/0000-0002-9021-2888; Reimer, Olaf/0000-0001-6953-1385; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106; Wu, Xuefeng/0000-0002-6299-1263; Torres, Diego/0000-0002-1522-9065; Sgro', Carmelo/0000-0001-5676-6214; Giordano, Francesco/0000-0002-8651-2394; Rando, Riccardo/0000-0001-6992-818X; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Frailis, Marco/0000-0002-7400-2135; Caraveo, Patrizia/0000-0003-2478-8018; Preece, Robert/0000-0003-1626-7335; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; Giroletti, Marcello/0000-0002-8657-8852; Moretti, Elena/0000-0001-5477-9097; Cutini, Sara/0000-0002-1271-2924; Gasparrini, Dario/0000-0002-5064-9495; Tramacere, Andrea/0000-0002-8186-3793; Baldini, Luca/0000-0002-9785-7726 FU DOE in the United States; CEA/Irfu in France; IN2P3/CNRS in France; ASI in Italy; INFN in Italy; MEXT; KEK; JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; NASA in the US; BMWi/DLR in Germany FX The Fermi LAT Collaboration acknowledges support from a number of agencies and institutes for both development and the operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States, CEA/Irfu and IN2P3/CNRS in France, ASI and INFN in Italy, MEXT, KEK, and JAXA in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council, and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged. The Fermi GBM Collaboration acknowledges support for GBM development, operations and data analysis from NASA in the US and BMWi/DLR in Germany. NR 20 TC 19 Z9 19 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD JUL 10 PY 2010 VL 717 IS 2 BP L127 EP L132 DI 10.1088/2041-8205/717/2/L127 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619LC UT WOS:000279430700011 ER PT J AU Connaughton, CP Nadiga, BT Nazarenko, SV Quinn, BE AF Connaughton, Colm P. Nadiga, Balasubramanya T. Nazarenko, Sergey V. Quinn, Brenda E. TI Modulational instability of Rossby and drift waves and generation of zonal jets SO JOURNAL OF FLUID MECHANICS LA English DT Article ID FREAK WAVES; TURBULENCE; FLOW; INVARIANT; OCEANS; WINDS; BETA AB We study the modulational instability of geophysical Rossby and plasma drill waves within the Charney-Hasegawa-Mima (CH M) model both theoretically, using truncated (four-mode and three-mode) models, and numerically, using direct simulations of CHM equation in the Fourier space. We review the linear theory of Gill (Geophys. Fluid Dyn., vol. 6, 1974, p. 29) and extend it to show that for strong primary waves the most unstable modes are perpendicular to the primary wave, which correspond to generation of a zonal flow if the primary wave is purely meridional. For weak waves, the maximum growth occurs for off-zonal inclined modulations that are close to being in three-wave resonance with the primary wave. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the nonlinear jet pinching predicted by Manin & Nazarenko (Pit vs. Fluids, vol. 6, 1994, p. 1158). We find that, for strong primary waves, these narrow zonal jets further roll up into Karman-like vortex streets, and at this moment the truncated models fail. For weak primary waves, the growth of the unstable mode reverses and the system oscillates between a dominant jet and a dominate primary wave, so that the truncated description holds for longer. The two-dimensional vortex streets appear to be more stable than purely one-dimensional zonal jets, and their zonal-averaged speed can reach amplitudes much stronger than is allowed by the Rayleigh-Kuo instability criterion for the one-dimensional case. In the long term, the system transitions to turbulence helped by the vortex-pairing instability (for strong waves) and the resonant wave wave interactions (for weak waves). C1 [Connaughton, Colm P.] Univ Warwick, Ctr Complex Sci, Coventry CV4 7AL, W Midlands, England. [Connaughton, Colm P.; Nazarenko, Sergey V.; Quinn, Brenda E.] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England. [Nadiga, Balasubramanya T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Connaughton, CP (reprint author), Univ Warwick, Ctr Complex Sci, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM connaughtonc@gmail.com RI Connaughton, Colm/E-8796-2011; Nazarenko, Sergey/G-2778-2016 OI Connaughton, Colm/0000-0003-4137-7050; NR 43 TC 31 Z9 31 U1 1 U2 13 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 J9 J FLUID MECH JI J. Fluid Mech. PD JUL 10 PY 2010 VL 654 BP 207 EP 231 DI 10.1017/S0022112010000510 PG 25 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 627AA UT WOS:000280008800009 ER PT J AU Stahl, HP Stephens, K Henrichs, T Smart, C Prince, FA AF Stahl, H. Philip Stephens, Kyle Henrichs, Todd Smart, Christian Prince, Frank A. TI Single-variable parametric cost models for space telescopes SO OPTICAL ENGINEERING LA English DT Article DE space telescope cost model; parametric cost model; cost model AB Parametric cost models are routinely used to plan missions, compare concepts, and justify technology investments. Unfortunately, there is no definitive space telescope cost model. For example, historical cost estimating relationships (CERs) based on primary mirror diameter vary by an order of magnitude. We present new single-variable cost models for space telescope optical telescope assembly (OTA). They are based on data collected from 30 different space telescope missions. Standard statistical methods are used to derive CERs for OTA cost versus aperture diameter and mass. The results are compared with previously published models (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3456582] C1 [Stahl, H. Philip; Prince, Frank A.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Stephens, Kyle] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA. [Henrichs, Todd] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA. [Smart, Christian] MDA DOE, Sensors & Anal Div C3, Cost Estimating & Anal Directorate, Huntsville, AL 35806 USA. RP Stahl, HP (reprint author), NASA, George C Marshall Space Flight Ctr, VP 60, Huntsville, AL 35812 USA. EM h.philip.stahl@nasa.gov NR 12 TC 4 Z9 4 U1 0 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD JUL 10 PY 2010 VL 49 IS 7 AR 073006 DI 10.1117/1.3456582 PG 13 WC Optics SC Optics GA 633RR UT WOS:000280522800007 ER PT J AU Lee, S Becht, GA Lee, B Burns, CT Firestone, MA AF Lee, Sungwon Becht, Gregory A. Lee, Byeongdu Burns, Christopher T. Firestone, Millicent A. TI Electropolymerization of a Bifunctional Ionic Liquid Monomer Yields an Electroactive Liquid-Crystalline Polymer SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LANGMUIR-BLODGETT-FILMS; ESR/UV-VIS-NIR; ELECTROCHROMIC PROPERTIES; ELECTROCHEMICAL SYNTHESIS; ELECTRICAL-CONDUCTIVITY; POLYELECTROLYTE MULTILAYERS; CONJUGATED POLYMERS; BLOCK-COPOLYMERS; POLYTHIOPHENE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE) AB The preparation and polymerization of a bifunctional imidazolium-based ionic liquid (IL) monomer that incorporates both a vinyl group and a thiophene moiety is reported. Potentiodynamic electropolymerization of the monomer produces an optically birefringent polymer film that strongly adheres to the electrode surface. Fourier transform IR spectroscopy shows that polymerization occurs through both the vinyl and thienyl groups. Cylic voltammetry (CV) is used to determine the polymer oxidation potential (1.66V) and electrochemical bandgap, E(g), of 2.45 eV. The polymer exhibits electrochromism, converting from yellow in the neutral form (lambda(max) = 380 nm) to blue in the polaronic state at 0.6 V (lambda(max) = 672 nm) and to blue-grey in the bipolaronic state at 1.2V (lambda(max) >800 nm). Topographic atomic force microscopy (AFM) images reveal isolated (separated) fibrils. Grazing-incidence small-angle X-ray scattering (GISAXS) studies indicate a lamellar structure with a lattice spacing of 3.2 nm. Wide-angle X-ray diffraction (WAXD) studies further suggest that the polymerized thiophene sheets are oriented perpendicular to the polymerized vinylimidazolium. The electrical conductivity, as determined by four-probe dc conductivity measurements was found to be 0.53S cm(-1) in the neutral form and 2.36 S cm(-1) in the iodine-doped state, values higher than typically observed for polyalkylthiophenes. The structural ordering is believed to contribute to the observed enhancement of the electrical conductivity. C1 [Lee, Sungwon; Becht, Gregory A.; Burns, Christopher T.; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Lee, S (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 FU Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Dr. Omar Green for his help with the AFM experiments. This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy under Contract No. DE-AC02-06CH11357 to the UChicago, LLC. Supporting Information is available online from Wiley InterScience or from the author. NR 64 TC 36 Z9 36 U1 8 U2 72 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1616-301X J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD JUL 9 PY 2010 VL 20 IS 13 BP 2063 EP 2070 DI 10.1002/adfm.201000024 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 630MH UT WOS:000280276900005 ER PT J AU Jasti, R Bertozzi, CR AF Jasti, Ramesh Bertozzi, Carolyn R. TI Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality SO CHEMICAL PHYSICS LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; DIELS-ALDER REACTION; GROWTH; AMPLIFICATION; MICROTUBULES; DERIVATIVES; MECHANISM; COMPLEX; SYSTEMS AB Carbon nanotubes (CNTs) have emerged as some of the most promising materials for the technologies of the future. One of the most significant limitations to furthering the understanding and application of these fascinating systems is the lack of atomic-level structural control in their syntheses. Current synthetic methods produce mixtures of structures with varying physical properties. In this Letter, we describe the potential advantages, recent advances, and challenges that lie ahead for the bottom-up organic synthesis of homogeneous carbon nanotubes with well-defined structures. (C) 2010 Elsevier B.V. All rights reserved. C1 [Jasti, Ramesh] Boston Univ, Dept Chem, Div Mat Sci & Engn, Boston, MA 02115 USA. [Jasti, Ramesh] Boston Univ, Ctr Nanosci & Nanobiotechnol, Boston, MA 02115 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Bertozzi, Carolyn R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Jasti, R (reprint author), Boston Univ, Dept Chem, Div Mat Sci & Engn, Boston, MA 02115 USA. EM jasti@bu.edu FU Howard Hughes Medical Institute NR 44 TC 110 Z9 111 U1 1 U2 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD JUL 9 PY 2010 VL 494 IS 1-3 BP 1 EP 7 DI 10.1016/j.cplett.2010.04.067 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 618PL UT WOS:000279368000001 PM 21224898 ER PT J AU Kostka, J Gritti, F Guiochon, G Kaczmarski, K AF Kostka, Joanna Gritti, Fabrice Guiochon, Georges Kaczmarski, Krzysztof TI Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE VHPLC; Heat generation; Viscous friction; Peak profiles; Equilibrium-dispersive model; Transport-dispersive model; POR model; Column efficiency ID VISCOUS HEAT DISSIPATION; TEMPERATURE-GRADIENTS; MASS-TRANSFER; PACKED-BEDS; PERFORMANCE; EFFICIENCY; HETEROGENEITY; PROFILES; FRICTION; SYSTEMS AB Currently, chromatographic analyses are carried out by operating columns packed with sub-2 mu m particles under very high pressure gradients, up to 1200 bar for 5 cm long columns. This provides the high flow rates that are necessary for the achievement of high column efficiencies and short analysis times. However, operating columns at high flow rates under such high pressure gradients generate a large amount of heat due to the viscous friction of the mobile phase stream that percolates through a low permeability bed. The evacuation of this heat causes the formation of significant or even large axial and radial gradients of all the physico-chemical parameters characterizing the packing material and the mobile phase, eventually resulting in a loss of column efficiency. We previously developed and successfully applied a model combining the heat and the mass balances of a chromatographic column operated under very high pressure gradients (VHPLC). The use of this model requires accurate estimates of the dispersion coefficients at each applied mobile phase velocity. This work reports on a modification of the mass balance model such that only one measurement is now necessary to accurately predict elution peak profiles in a wide range of mobile phase velocities. The conditions under which the simple equilibrium-dispersive (ED) and transport-dispersive (TD) models are applicable in VHPLC are also discussed. This work proves that the new combination of the heat transfer and the ED model discussed in this work enables the calculation of accurate profiles for peaks eluted under extreme conditions, like when the column is thermostated in a water bath. (C) 2010 Elsevier B.V. All rights reserved. C1 [Kostka, Joanna; Kaczmarski, Krzysztof] Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. [Gritti, Fabrice; Guiochon, Georges] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Gritti, Fabrice; Guiochon, Georges] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Kaczmarski, K (reprint author), Rzeszow Univ Technol, Dept Chem & Proc Engn, PL-35959 Rzeszow, Poland. EM kkaczmarski@prz.edu.pl FU Polish Ministry of Science and Higher Education [N N204 002036]; European Social Fund; Polish National Budget; Podkarpackie Voivodship Budget FX This work was partially supported by grant N N204 002036 of the Polish Ministry of Science and Higher Education. Financial support from the European Social Fund, Polish National Budget, Podkarpackie Voivodship Budget (within Sectoral Operational Program Human Resources) "Wzmocnienie instytucjonalnego systemu wdrazania Regionalnej Strategii Innowacji w latach 2007-2013" is gratefully acknowledged. NR 37 TC 17 Z9 17 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 J9 J CHROMATOGR A JI J. Chromatogr. A PD JUL 9 PY 2010 VL 1217 IS 28 BP 4704 EP 4712 DI 10.1016/j.chroma.2010.05.018 PG 9 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 618TP UT WOS:000279378900007 PM 20627254 ER PT J AU Garcia-Lekue, A Wang, LW AF Garcia-Lekue, A. Wang, L. W. TI Plane-wave-based electron tunneling through Au nanojunctions: Numerical calculations SO PHYSICAL REVIEW B LA English DT Article ID BARRIER HEIGHT; WORK FUNCTION; CONDUCTANCE; MICROSCOPY; MOLECULE; SURFACE AB Electron tunneling across a nanojunction is an important topic relevant to scanning tunnel microscope imaging, nanoconductance measurements, and nanoelectronic devices. To understand such tunneling phenomena, one needs to comprehend the electron-state coupling between the metal electrode and the vacuum, the dependence of such coupling on the shape of the electrode tip, and the dependence of the tunneling currents on the electrode-electrode distance. Due to the experimental difficulty to determine the exact atomic structure of the electrode tip, theoretical simulation can play an important role on such studies. This requires high-fidelity quantum-transport calculations for the tunneling system. However, most of the current quantum-transport calculations are performed using atom-centered localized basis sets, which cannot adequately describe the wave function in the vacuum region. In this work, we present tunneling-conductance calculations obtained using the transport calculation method introduced by Wang [Phys. Rev. B 72, 045417 (2005)] and Garcia-Lekue and Wang [Phys. Rev. B 74, 245404 (20060]. Since this method employs a plane-wave basis set, it provides variational description for the electron wave functions in all real space. We will present results for the tunneling-current dependence on the electrode-electrode distance, the electrode wave functions in the vacuum region depending on the electrode shape, and electron state couplings between the vacuum and the electrode. C1 [Wang, L. W.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Garcia-Lekue, A.] DIPC, E-20018 San Sebastian, Spain. RP Wang, LW (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM wmbgalea@lg.ehu.es RI DONOSTIA INTERNATIONAL PHYSICS CTR., DIPC/C-3171-2014 FU Basque Departamento de Educacion; UPV/EHU [IT-366-07]; Spanish Ministerio de Ciencia e Innovacion [FIS2007-6671-C02-00]; Basque Departamento de Industria; Diputacion Foral de Guipuzcoa; DMS/BES/SC of the U. S. Department of Energy [DE-AC02-05CH11231] FX We thank A. Arnau and N. Lorente for stimulating discussions, and T. Frederiksen for his help with transiesta calculations. Support from the Basque Departamento de Educacion, UPV/EHU (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovacion (Grant No. FIS2007-6671-C02-00), the ETORTEK program funded by the Basque Departamento de Industria and the Diputacion Foral de Guipuzcoa, and the DMS/BES/SC of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 are gratefully acknowledged. It used the resources of the National Energy Research Scientific Computing Center (NERSC). NR 28 TC 8 Z9 8 U1 2 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2010 VL 82 IS 3 AR 035410 DI 10.1103/PhysRevB.82.035410 PG 9 WC Physics, Condensed Matter SC Physics GA 622TE UT WOS:000279687700002 ER PT J AU Hua, J Welp, U Schlueter, J Kayani, A Xiao, ZL Crabtree, GW Kwok, WK AF Hua, J. Welp, U. Schlueter, J. Kayani, A. Xiao, Z. L. Crabtree, G. W. Kwok, W. K. TI Vortex pinning by compound defects in YBa2Cu3O7-delta SO PHYSICAL REVIEW B LA English DT Article ID COLUMNAR DEFECTS; COATED CONDUCTORS; SINGLE-CRYSTALS; CRITICAL-POINTS; PHASE-DIAGRAM; SUPERCONDUCTIVITY; FILMS; IRRADIATION; DEPOSITION; VORTICES AB We investigate the enhancement of vortex pinning by compound defects that are composed of correlated and point defects in a pristine untwinned YBa2Cu3O7-delta single crystal. Initial irradiation by high-energy heavy ions to a dose matching field of B phi = 2.0 T increases vortex pinning via columnar defects. Subsequent proton irradiation further enhances the critical current J(c)(H) by localizing the vortices near the columnar defects. Measurements of the shift of the irreversibility line for H vertical bar vertical bar ab plane demonstrate that compound defects consisting of correlated and point disorder may reduce the pinning anisotropy and increase the overall critical current. C1 [Hua, J.; Welp, U.; Schlueter, J.; Xiao, Z. L.; Crabtree, G. W.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Hua, J.; Xiao, Z. L.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Kayani, A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RP Hua, J (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH1088] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (U.W., J.S.,and Z.L.X.), and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-AC02-98CH1088 (J. H., G. W. C., and W.K.K.). NR 31 TC 26 Z9 26 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 9 PY 2010 VL 82 IS 2 AR 024505 DI 10.1103/PhysRevB.82.024505 PG 4 WC Physics, Condensed Matter SC Physics GA 622SV UT WOS:000279686700002 ER PT J AU Sanchez, PD Lees, JP Poireau, V Prencipe, E Tisserand, V Tico, JG Grauges, E Martinelli, M Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Battaglia, M Brown, DN Hooberman, B Kerth, LT Kolomensky, YG Lynch, G Osipenkov, IL Tanabe, T Hawkes, CM Watson, AT Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Randle-Conde, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Martin, EC Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD Eisner, AM Heusch, CA Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Winstrom, LO Cheng, CH Doll, DA Echenard, B Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Mancinelli, G Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Karbach, TM Merkel, J Petzold, A Spaan, B Wacker, K Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Watson, JE Andreotti, M Bettoni, D Bozzi, C Calabrese, R Cecchi, A Cibinetto, G Fioravanti, E Franchini, P Luppi, E Munerato, M Negrini, M Petrella, A Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Pacetti, S Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Tosi, S Bhuyan, B Lee, CL Morii, M Adametz, A Marks, J Schenk, S Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Volk, A Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Dong, L Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gao, YY Gritsan, AV Guo, ZJ Arnaud, N Davier, M Derkach, D da Costa, JF Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Perez, A Roudeau, P Schune, MH Serrano, J Sordini, V Stocchi, A Wang, L Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Gamet, R Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Wren, AC Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD West, TJ Anderson, J Cenci, R Jawahery, A Roberts, DA Simi, G Tuggle, JM Dallapiccola, C Salvati, E Cowan, R Dujmic, D Fisher, PH Sciolla, G Zhao, M Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Simard, M Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Corwin, LA Honscheid, K Kass, R Morris, JP Rahimi, AM Blount, NL Brau, J Frey, R Igonkina, O Kolb, JA Rahmat, R Sinev, NB Strom, D Strube, J Torrence, E Castelli, G Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Prendki, J Sitt, S Biasini, M Manoni, E Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Paoloni, E Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Baracchini, E Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Renga, F Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Franek, B Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Zito, M Allen, MT Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Marsiske, H Muller, DR Neal, H Nelson, S O'Grady, CP Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Schwiening, J Snyder, A Su, D Sullivan, MK Sun, S Suzuki, K Thompson, JM Va'vra, J Wagner, AP Weaver, M West, CA Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Chen, XR Park, W Purohit, MV White, RM Wilson, JR Sekula, SJ Bellis, M Burchat, PR Edwards, AJ Miyashita, TS Ahmed, S Alam, MS Ernst, JA Pan, B Saeed, MA Zain, SB Guttman, N Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Pelliccioni, M Bomben, M Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Milanes, DA Oyanguren, A Albert, J Banerjee, S Choi, HHF Hamano, K King, GJ Kowalewski, R Lewczuk, MJ Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Chen, X Dasu, S Flood, KT Pan, Y Prepost, R Vuosalo, CO Wu, SL AF del Amo Sanchez, P. Lees, J. P. Poireau, V. Prencipe, E. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Battaglia, M. Brown, D. N. Hooberman, B. Kerth, L. T. Kolomensky, Yu. G. Lynch, G. Osipenkov, I. L. Tanabe, T. Hawkes, C. M. Watson, A. T. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Randle-Conde, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Martin, E. C. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. Eisner, A. M. Heusch, C. A. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Winstrom, L. O. Cheng, C. H. Doll, D. A. Echenard, B. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Mancinelli, G. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Karbach, T. M. Merkel, J. Petzold, A. Spaan, B. Wacker, K. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Watson, J. E. Andreotti, M. Bettoni, D. Bozzi, C. Calabrese, R. Cecchi, A. Cibinetto, G. Fioravanti, E. Franchini, P. Luppi, E. Munerato, M. Negrini, M. Petrella, A. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Pacetti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Tosi, S. Bhuyan, B. Lee, C. L. Morii, M. Adametz, A. Marks, J. Schenk, S. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Volk, A. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Dong, L. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gao, Y. Y. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Derkach, D. da Costa, J. Firmino Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Perez, A. Roudeau, P. Schune, M. H. Serrano, J. Sordini, V. Stocchi, A. Wang, L. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Gamet, R. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Wren, A. C. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. West, T. J. Anderson, J. Cenci, R. Jawahery, A. Roberts, D. A. Simi, G. Tuggle, J. M. Dallapiccola, C. Salvati, E. Cowan, R. Dujmic, D. Fisher, P. H. Sciolla, G. Zhao, M. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Simard, M. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Corwin, L. A. Honscheid, K. Kass, R. Morris, J. P. Rahimi, A. M. Blount, N. L. Brau, J. Frey, R. Igonkina, O. Kolb, J. A. Rahmat, R. Sinev, N. B. Strom, D. Strube, J. Torrence, E. Castelli, G. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Prendki, J. Sitt, S. Biasini, M. Manoni, E. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Paoloni, E. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Baracchini, E. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Renga, F. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Franek, B. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Zito, M. Allen, M. T. Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Marsiske, H. Muller, D. R. Neal, H. Nelson, S. O'Grady, C. P. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Schwiening, J. Snyder, A. Su, D. Sullivan, M. K. Sun, S. Suzuki, K. Thompson, J. M. Va'vra, J. Wagner, A. P. Weaver, M. West, C. A. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Chen, X. R. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Sekula, S. J. Bellis, M. Burchat, P. R. Edwards, A. J. Miyashita, T. S. Ahmed, S. Alam, M. S. Ernst, J. A. Pan, B. Saeed, M. A. Zain, S. B. Guttman, N. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Pelliccioni, M. Bomben, M. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Milanes, D. A. Oyanguren, A. Albert, J. Banerjee, Sw. Choi, H. H. F. Hamano, K. King, G. J. Kowalewski, R. Lewczuk, M. J. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Chen, X. Dasu, S. Flood, K. T. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. TI Evidence for the decay X(3872) -> J/psi omega SO PHYSICAL REVIEW D LA English DT Article ID MESONS; BABAR; BELLE AB We present a study of the decays B-0,B-+ -> J/psi pi(+)pi(-)pi K-0(0,+), using 467 x 106 B (B) over bar pairs recorded with the BABAR detector. We present evidence for the decay mode X(3872) -> J/psi omega, with product branching fractions B(B+ -> X(3872K(+)) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.2(stat) +/- 0.1(syst)] x 10(-5), and B(B-0 -> X(3872)K-0) x B(X(3872) -> J/psi omega) = [0.6 +/- 0.3(stat) +/- 0.1(syst)] x 10(-5). A detailed study of the pi(+) pi(-) pi(0) mass distribution from X(3872) decay favors a negative-parity assignment. C1 [del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAAP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Hawkes, C. M.; Watson, A. T.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.; Randle-Conde, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.] Tech Univ Dortmund, Fac Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.; Watson, J. E.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.] INFN, Sez Ferrara, I-44100 Ferrara, Italy. [Andreotti, M.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.] INFN, Sez Gen, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.; Tosi, S.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Adametz, A.; Marks, J.; Schenk, S.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] CNRS, Lab Accerateur Lineaire, IN2P3, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Derkach, D.; da Costa, J. Firmino; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.; Wren, A. C.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.; Salvati, E.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] INFN, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Simard, M.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] INFN, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] NIKHEF, Natl Inst Nucl & High Energy Phys, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Rahimi, A. M.] Ohio State Univ, Columbus, OH 43210 USA. [Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] INFN, Sez Padova, I-35131 Padua, Italy. [Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.] Univ Denis Diderot Paris7, Lab Phys Nucl & Hautes Energies, IN2P3, CNRS,Univ Paris 06, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] INFN, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Manoni, E.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.] INFN, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Renga, F.] INFN, Sez Roma, I-00185 Rome, Italy. [Baracchini, E.; Faccini, R.; Ferroni, F.; Gaspero, M.; Renga, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Zito, M.] CEA, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. [Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.] SUNY Albany, Albany, NY 12222 USA. [Guttman, N.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] INFN, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Pelliccioni, M.] Univ Torino, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] INFN, Sez Trieste, I-34127 Trieste, Italy. [Bomben, M.; Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.] Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain. [Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Peruzzi, I. M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Sanchez, PD (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAAP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Saeed, Mohammad Alam/J-7455-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; OI Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Corwin, Luke/0000-0001-7143-3821; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Saeed, Mohammad Alam/0000-0002-3529-9255; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043; Lanceri, Livio/0000-0001-8220-3095; Ebert, Marcus/0000-0002-3014-1512; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Sciacca, Crisostomo/0000-0002-8412-4072; Adye, Tim/0000-0003-0627-5059; Martinelli, Maurizio/0000-0003-4792-9178; Lafferty, George/0000-0003-0658-4919; Strube, Jan/0000-0001-7470-9301 FU DOE; NSF (USA); NSERC (Canada); CEA (France); CNRS (France) [IN2P3]; BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); Marie Curie EIF (European Union); A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS/IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 33 TC 98 Z9 98 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JUL 9 PY 2010 VL 82 IS 1 AR 011101 DI 10.1103/PhysRevD.82.011101 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 622UL UT WOS:000279691200001 ER PT J AU Aggarwal, MM Ahammed, Z Alakhverdyants, AV Alekseev, I Alford, J Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Bunzarov, I Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Evdokimov, O Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Huang, B Huang, HZ Humanic, TJ Huo, L Igo, G Jacobs, P Jacobs, WW Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Kikola, DP Kiryluk, J Kisiel, A Klein, SR Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Koralt, I Koroleva, L Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, ZM Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Lukashov, EV Luo, X Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Mondal, MM Morozov, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okorokov, V Oldag, EW Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Qiu, H Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Svirida, DN Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Leeuwen, M van Nieuwenhuizen, G Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Voloshin, SA Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wissink, SW Witt, R Wu, YF Xie, W Xu, H Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, JB Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Alekseev, I. Alford, J. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Bunzarov, I. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. Derevschikov, A. A. Derradi de Souza, R. Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Evdokimov, O. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Huang, B. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Jacobs, P. Jacobs, W. W. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Kikola, D. P. Kiryluk, J. Kisiel, A. Klein, S. R. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Koralt, I. Koroleva, L. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. M. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Lukashov, E. V. Luo, X. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Mondal, M. M. Morozov, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okorokov, V. Oldag, E. W. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Qiu, H. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Svirida, D. N. Symons, T. J. M. Szanto de Toledo, A. Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Leeuwen, M. van Nieuwenhuizen, G. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Voloshin, S. A. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. F. Xie, W. Xu, H. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, J. B. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y. H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Higher Moments of Net Proton Multiplicity Distributions at RHIC SO PHYSICAL REVIEW LETTERS LA English DT Article ID QCD PHASE-DIAGRAM; CRITICAL-POINT; TRANSITION; COLLISIONS; MODEL AB 200 GeV corresponding to baryon chemical potentials (mu(B)) between 200 and 20 MeV. Our measurements of the products kappa sigma(2) and S sigma, which can be related to theoretical calculations sensitive to baryon number susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare these products with results from lattice QCD and various models without a critical point and study the root s(NN) dependence of kappa sigma(2). From the measurements at the three beam energies, we find no evidence for a critical point in the QCD phase diagram for mu(B) below 200 MeV. C1 [Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Burton, T. P.; Christie, W.; Debbe, R. R.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ogawa, A.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Webb, J. C.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Derradi de Souza, R.; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Betts, R. R.; Evdokimov, O.; Garcia-Solis, E. J.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Koroleva, L.; Morozov, B.; Svirida, D. N.] Alikhanov Inst Theoret & Expt Phys, Moscow, Russia. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Alford, J.; Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kumar, L.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Qiu, H.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Lukashov, E. V.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF, Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Lee, J. H.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Netrakanti, P. K.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan 609735, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; Szanto de Toledo, A.] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Huang, B.; Li, C.; Lu, Y.; Luo, X.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y. H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Oldag, E. W.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Mondal, M. M.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z. M.; Liu, F.; Shi, S. S.; Wu, Y. F.; Zhang, J. B.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Aggarwal, MM (reprint author), Panjab Univ, Chandigarh 160014, India. RI Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Xu, Wenqin/H-7553-2014; Alekseev, Igor/J-8070-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Svirida, Dmitry/R-4909-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Witt, Richard/H-3560-2012; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Voloshin, Sergei/I-4122-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Bielcikova, Jana/G-9342-2014 OI van Leeuwen, Marco/0000-0002-5222-4888; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fisyak, Yuri/0000-0002-3151-8377; Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; Xu, Wenqin/0000-0002-5976-4991; Alekseev, Igor/0000-0003-3358-9635; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Huang, Bingchu/0000-0002-3253-3210; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; FU Offices of NP, U.S; Offices of HEP, U.S; DOE Office of Science; U.S. NSF; Sloan Foundation; DFG of Germany [CNRS/IN2P]; EMN of France; STFC; EPSRC of the United Kingdom; FAPESP of Brazil; Russian Ministry of Science and Technology; NNSFC; CAS; MoST; MoE of China; IRP; GA of the Czech Republic; FOM of the Netherlands; DAE; DST; CSIR of the Government of India; Polish State Committee for Scientific Research; Korea Science and Engineering Foundation FX We thank S. Gupta, F. Karsch, K. Rajagopal, K. Redlich, and M. Stephanov for discussions. We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL and the Open Science Grid consortium for their support. This work was supported in part by the Offices of NP and HEP in the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe'' of Germany, CNRS/IN2P3, RA, RPL, and EMN of France, STFC and EPSRC of the United Kingdom, FAPESP of Brazil, the Russian Ministry of Science and Technology, the NNSFC, CAS, MoST, and MoE of China, IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India, the Polish State Committee for Scientific Research, and the Korea Science and Engineering Foundation. NR 39 TC 155 Z9 159 U1 1 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 022302 DI 10.1103/PhysRevLett.105.022302 PG 6 WC Physics, Multidisciplinary SC Physics GA 622WD UT WOS:000279695600001 PM 20867702 ER PT J AU Doubble, R Hayden, SM Dai, PC Mook, HA Thompson, JR Frost, CD AF Doubble, R. Hayden, S. M. Dai, Pengcheng Mook, H. A. Thompson, J. R. Frost, C. D. TI Direct Observation of Paramagnons in Palladium SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROMAGNETIC METALS; ELECTRONIC-STRUCTURE; SPIN FLUCTUATIONS; PD; TRANSITION; HEAT; TEMPERATURE; ALLOYS; NI3GA AB We report an inelastic neutron scattering study of the spin fluctuations in the nearly ferromagnetic element palladium. Dispersive over-damped collective magnetic excitations or "paramagnons'' are observed up to 128 meV. We analyze our results in terms of a Moriya-Lonzarich-type spin-fluctuation model and estimate the contribution of the spin fluctuations to the low-temperature heat capacity. In spite of the paramagnon excitations being relatively strong, their relaxation rates are large. This leads to a small contribution to the low-temperature electronic specific heat. C1 [Doubble, R.; Hayden, S. M.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Dai, Pengcheng; Thompson, J. R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dai, Pengcheng; Mook, H. A.; Thompson, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Frost, C. D.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Doubble, R (reprint author), Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. EM s.hayden@bris.ac.uk RI Hayden, Stephen/F-4162-2011; Dai, Pengcheng /C-9171-2012 OI Hayden, Stephen/0000-0002-3209-027X; Dai, Pengcheng /0000-0002-6088-3170 FU U.S. NSF [DMR-0756568] FX We are grateful to T. G. Perring and I. I. Mazin for helpful assistance. P. D. is supported in part by the U.S. NSF under Grant No. DMR-0756568. NR 25 TC 11 Z9 11 U1 1 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 027207 DI 10.1103/PhysRevLett.105.027207 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WY UT WOS:000279697900004 PM 20867739 ER PT J AU Moore, JE Orenstein, J AF Moore, J. E. Orenstein, J. TI Confinement-Induced Berry Phase and Helicity-Dependent Photocurrents SO PHYSICAL REVIEW LETTERS LA English DT Article ID QUANTUM-WELLS; SPIN; POLARIZATION; ELECTRONS; CRYSTALS; DYNAMICS AB The photocurrent in an optically active metal is known to contain a component that switches sign with the helicity of the incident radiation. At low frequencies, this current depends on the orbital Berry phase of the Bloch electrons via the "anomalous velocity'' of Karplus and Luttinger. We consider quantum wells in which the parent material, such as GaAs, is not optically active and the relevant Berry phase only arises as a result of quantum confinement. Using an envelope approximation that is supported by numerical tight-binding results, it is shown that the Berry-phase contribution is determined for realistic wells by a cubic Berry phase intrinsic to the bulk material, the well width, and the well direction. These results for the Berry-phase effect suggest that it may already have been observed in quantum well experiments. C1 [Moore, J. E.; Orenstein, J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Moore, J. E.; Orenstein, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Moore, JE (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Orenstein, Joseph/I-3451-2015; Moore, Joel/O-4959-2016 OI Moore, Joel/0000-0002-4294-5761 FU NSF [DMR-0804413]; DOE BES FX The authors acknowledge helpful conversations with J. Folk and A. MacDonald and support from NSF DMR-0804413 (J.E.M.) and DOE BES (J.O.). NR 22 TC 16 Z9 16 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 026805 DI 10.1103/PhysRevLett.105.026805 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WU UT WOS:000279697500001 PM 20867727 ER PT J AU Nie, S Feibelman, PJ Bartelt, NC Thurmer, K AF Nie, S. Feibelman, Peter J. Bartelt, N. C. Thuermer, K. TI Pentagons and Heptagons in the First Water Layer on Pt(111) SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ICE; METALS AB Scanning tunneling topography of long-unexplained "root 37 and "root 39 periodic wetting arrangements of water molecules on Pt(111) reveals triangular depressions embedded in a hexagonal H(2)O-molecule lattice. Remarkably, the hexagons are rotated 30 degrees relative to the "classic bilayer'' model of water-metal adsorption. With support from density functional theory energetics and image simulation, we assign the depressions to clusters of flat-lying water molecules. 5- and 7-member rings of H(2)O molecules separate these clusters from surrounding "H-down'' molecules. C1 [Nie, S.; Bartelt, N. C.; Thuermer, K.] Sandia Natl Labs, Livermore, CA 94550 USA. [Feibelman, Peter J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nie, S (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Bartelt, Norman/G-2927-2012; Thurmer, Konrad/L-4699-2013 OI Thurmer, Konrad/0000-0002-3078-7372 FU DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC04-94AL85000] FX This work was supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC04-94AL85000. P.J.F. acknowledges useful discussions with the group of T. Michely and the receipt of high-resolution STM images of the root 37 and root 39 phases after the model presented here was developed. NR 22 TC 89 Z9 91 U1 5 U2 80 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 026102 DI 10.1103/PhysRevLett.105.026102 PG 4 WC Physics, Multidisciplinary SC Physics GA 622WR UT WOS:000279697200001 PM 20867718 ER PT J AU Riedel, CJ Zurek, WH AF Riedel, C. Jess Zurek, Wojciech H. TI Quantum Darwinism in an Everyday Environment: Huge Redundancy in Scattered Photons SO PHYSICAL REVIEW LETTERS LA English DT Article ID INFORMATION; DECOHERENCE AB We study quantum Darwinism-the redundant recording of information about the preferred states of a decohering system by its environment-for an object illuminated by a blackbody. In the cases of point-source and isotropic illumination, we calculate the quantum mutual information between the object and its photon environment. We demonstrate that this realistic model exhibits fast and extensive proliferation of information about the object into the environment and results in redundancies orders of magnitude larger than the exactly soluble models considered to date. C1 [Riedel, C. Jess; Zurek, Wojciech H.] LANL, Div Theory, Los Alamos, NM 87545 USA. RP Riedel, CJ (reprint author), LANL, Div Theory, Los Alamos, NM 87545 USA. OI Riedel, C. Jess/0000-0002-0151-9926 FU U.S. Department of Energy; Foundational Questions Institute (FQXi) FX We thank Michael Zwolak and Haitao Quan for helpful discussion. One of us (W.H.Z.) is especially grateful to Charles Bennett, whose discussion of information propagation and records in (photon and other) environments [18] provides a useful setting for the study of quantum Darwinism. This research is supported by the U.S. Department of Energy through the LANL/LDRD program and, in part, by the Foundational Questions Institute (FQXi). NR 20 TC 25 Z9 25 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 9 PY 2010 VL 105 IS 2 AR 020404 DI 10.1103/PhysRevLett.105.020404 PG 4 WC Physics, Multidisciplinary SC Physics GA 622VP UT WOS:000279694200001 PM 20867689 ER PT J AU Reschke, D Bandelmann, R Buettner, T Escherich, K Goessel, A Von der Horst, B Iversen, J Klinke, D Kreps, G Krupka, N Lilje, L Matheisen, A Moeller, WD Zimmermann, HM Mueller, C Petersen, B Proch, D Schmoekel, M Steinhau-Kuehl, N Thie, JH Weise, H Weitkaemper, H Carcagno, R Khabiboulline, TN Kotelnikov, S Makulski, A Nogiec, J Nehring, R Ross, M Schappert, W AF Reschke, D. Bandelmann, R. Buettner, T. Escherich, K. Goessel, A. Von der Horst, B. Iversen, J. Klinke, D. Kreps, G. Krupka, N. Lilje, L. Matheisen, A. Moeller, W. -D. Zimmermann, H. Morales Mueller, C. Petersen, B. Proch, D. Schmoekel, M. Steinhau-Kuehl, N. Thie, J. -H. Weise, H. Weitkaemper, H. Carcagno, R. Khabiboulline, T. N. Kotelnikov, S. Makulski, A. Nogiec, J. Nehring, R. Ross, M. Schappert, W. TI Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY). The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semi-automated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational. C1 [Reschke, D.; Bandelmann, R.; Buettner, T.; Escherich, K.; Goessel, A.; Von der Horst, B.; Iversen, J.; Klinke, D.; Kreps, G.; Krupka, N.; Lilje, L.; Matheisen, A.; Moeller, W. -D.; Zimmermann, H. Morales; Mueller, C.; Petersen, B.; Proch, D.; Schmoekel, M.; Steinhau-Kuehl, N.; Thie, J. -H.; Weise, H.; Weitkaemper, H.] DESY, D-22603 Hamburg, Germany. [Carcagno, R.; Khabiboulline, T. N.; Kotelnikov, S.; Makulski, A.; Nogiec, J.; Nehring, R.; Ross, M.; Schappert, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Reschke, D (reprint author), DESY, D-22603 Hamburg, Germany. EM detlef.reschke@desy.de FU Research Instruments GmbH FX The XFEL cavity fabrication, preparation, and testing is a collaborative effort. Thus the authors would like to thank the complete team consisting of experts from different institutes. We acknowledge the technical support as well as the good cooperation of: Company Damker (Hamburg, Germany), Company ZSI Zertz + Scheid (Gummersbach, Germany), and Company CE-CON (Bremen, Germany). We also appreciate the support of Research Instruments GmbH (former ACCEL Instruments GmbH) and Zanon SPA during the rf measurements in the cavity production. We give special thanks to K. Lando for proofreading this paper. NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 9 PY 2010 VL 13 IS 7 AR 071001 DI 10.1103/PhysRevSTAB.13.071001 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 622VM UT WOS:000279693900001 ER PT J AU Volkow, ND Wang, GJ Tomasi, D Telang, F Fowler, JS Pradhan, K Jayne, M Logan, J Goldstein, RZ Alia-Klein, N Wong, C AF Volkow, Nora D. Wang, Gene-Jack Tomasi, Dardo Telang, Frank Fowler, Joanna S. Pradhan, Kith Jayne, Millard Logan, Jean Goldstein, Rita Z. Alia-Klein, Nelly Wong, Christopher TI Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers SO PLOS ONE LA English DT Article ID DOPAMINE SYSTEM REGULATION; NUCLEUS-ACCUMBENS; SEEKING BEHAVIOR; EXTRACELLULAR DOPAMINE; INTRAVENOUS COCAINE; GLUCOSE-UTILIZATION; ADDICTION; DEPENDENCE; STRIATUM; RATS AB Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and (18)FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. C1 [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD USA. [Volkow, Nora D.; Tomasi, Dardo; Telang, Frank; Jayne, Millard] NIAAA, Lab Neuroimaging, Bethesda, MD USA. [Wang, Gene-Jack; Fowler, Joanna S.; Pradhan, Kith; Logan, Jean; Goldstein, Rita Z.; Alia-Klein, Nelly; Wong, Christopher] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, Bethesda, MD USA. EM nvolkow@nida.nih.gov RI Tomasi, Dardo/J-2127-2015; OI Logan, Jean/0000-0002-6993-9994 FU National Institutes of Health; Department of Energy (DOE) [DE-AC01-76CH00016] FX Research was supported by the National Institutes of Health Intramural Research Program (NIAAA) and by the Department of Energy (DOE) (DE-AC01-76CH00016). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 46 TC 32 Z9 33 U1 1 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 9 PY 2010 VL 5 IS 7 AR e11509 DI 10.1371/journal.pone.0011509 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 623CM UT WOS:000279715300020 PM 20634975 ER PT J AU Prochnik, SE Umen, J Nedelcu, AM Hallmann, A Miller, SM Nishii, I Ferris, P Kuo, A Mitros, T Fritz-Laylin, LK Hellsten, U Chapman, J Simakov, O Rensing, SA Terry, A Pangilinan, J Kapitonov, V Jurka, J Salamov, A Shapiro, H Schmutz, J Grimwood, J Lindquist, E Lucas, S Grigoriev, IV Schmitt, R Kirk, D Rokhsar, DS AF Prochnik, Simon E. Umen, James Nedelcu, Aurora M. Hallmann, Armin Miller, Stephen M. Nishii, Ichiro Ferris, Patrick Kuo, Alan Mitros, Therese Fritz-Laylin, Lillian K. Hellsten, Uffe Chapman, Jarrod Simakov, Oleg Rensing, Stefan A. Terry, Astrid Pangilinan, Jasmyn Kapitonov, Vladimir Jurka, Jerzy Salamov, Asaf Shapiro, Harris Schmutz, Jeremy Grimwood, Jane Lindquist, Erika Lucas, Susan Grigoriev, Igor V. Schmitt, Ruediger Kirk, David Rokhsar, Daniel S. TI Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri SO SCIENCE LA English DT Article ID CYTOPLASMIC BRIDGE SYSTEM; CHLAMYDOMONAS-REINHARDTII; EXTRACELLULAR-MATRIX; EVOLUTION; DIVISION; MORPHOGENESIS; EUKARYOTES; REVEALS; PROTEIN; ORIGIN AB The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its similar to 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity. C1 [Umen, James; Ferris, Patrick] Salk Inst Biol Studies, La Jolla, CA 92037 USA. [Prochnik, Simon E.; Kuo, Alan; Hellsten, Uffe; Chapman, Jarrod; Terry, Astrid; Pangilinan, Jasmyn; Salamov, Asaf; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Rokhsar, Daniel S.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Nedelcu, Aurora M.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada. [Hallmann, Armin] Univ Bielefeld, Dept Cellular & Dev Biol Plants, D-33615 Bielefeld, Germany. [Miller, Stephen M.] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA. [Nishii, Ichiro] Nara Womens Univ, Nara 6308506, Japan. [Mitros, Therese; Fritz-Laylin, Lillian K.; Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Ctr Integrat Genom, Berkeley, CA 94720 USA. [Simakov, Oleg] European Mol Biol Lab, D-69117 Heidelberg, Germany. [Rensing, Stefan A.] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany. [Kapitonov, Vladimir; Jurka, Jerzy] Genet Informat Res Inst, Mountain View, CA 94043 USA. [Schmutz, Jeremy; Grimwood, Jane] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Schmitt, Ruediger] Univ Regensburg, Dept Genet, D-93040 Regensburg, Germany. [Kirk, David] Washington Univ, Dept Biol, St Louis, MO 63130 USA. RP Umen, J (reprint author), Salk Inst Biol Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM umen@salk.edu; dsrokhsar@gmail.com RI Hallmann, Armin/G-5823-2011; Schmutz, Jeremy/N-3173-2013; Simakov, Oleg/G-4572-2015; Umen, James/K-9120-2013; OI Schmutz, Jeremy/0000-0001-8062-9172; Simakov, Oleg/0000-0002-3585-4511; Umen, James/0000-0003-4094-9045; Fritz-Laylin, Lillian/0000-0002-9237-9403 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NIH [R01 GM078376, 5 P41 LM006252]; Coypu Foundation; Natural Sciences and Engineering Research Council-Canada; NSF [IBN-0444896, IBN-0744719]; Japan Society for the Promotion of Science [20247032, 22570203] FX The work conducted by the Joint Genome Institute of the U.S. Department of Energy is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231 and by NIH grant R01 GM078376 and a Coypu Foundation grant to J.U.; a grant from the Natural Sciences and Engineering Research Council-Canada to A.M.N.; NSF grants IBN-0444896 and IBN-0744719 to S.M.M.; Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research numbers 20247032 and 22570203 to I.N.; and NIH grant 5 P41 LM006252 to J.J. We thank M. Cipriano for Pfam annotations; E. Hom, E. Harris, and M. Stanke for Augustus u9 gene models; and R. Howson for artwork. Sequence data from this study are deposited at the DNA Databank of Japan/European Molecular Biology Laboratory/GenBank under the project accession no. ACJH00000000. NR 26 TC 244 Z9 256 U1 7 U2 66 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 9 PY 2010 VL 329 IS 5988 BP 223 EP 226 DI 10.1126/science.1188800 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 622CB UT WOS:000279635200051 PM 20616280 ER PT J AU Fuselier, SA Funsten, HO Heirtzler, D Janzen, P Kucharek, H McComas, DJ Mobius, E Moore, TE Petrinec, SM Reisenfeld, DB Schwadron, NA Trattner, KJ Wurz, P AF Fuselier, S. A. Funsten, H. O. Heirtzler, D. Janzen, P. Kucharek, H. McComas, D. J. Moebius, E. Moore, T. E. Petrinec, S. M. Reisenfeld, D. B. Schwadron, N. A. Trattner, K. J. Wurz, P. TI Energetic neutral atoms from the Earth's subsolar magnetopause SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID BOW SHOCK; MAGNETOSHEATH AB The shocked solar wind in the Earth's magnetosheath becomes nearly stationary at the subsolar magnetopause. At this location, solar wind protons are neutralized by charge exchange with neutral hydrogen atoms at the extreme limits of the Earth's tenuous exosphere. The resulting Energetic Neutral Atoms (ENAs) propagate away from the subsolar region in nearly all directions. Simultaneous observations of hydrogen ENAs from the Interstellar Boundary Explorer (IBEX) and proton distributions in the magnetosheath from the Cluster spacecraft are used to quantify this charge exchange process. By combining these observations with a relatively simple model, estimates are obtained for the ratio of ENA to shocked solar wind flux (about 10(-4)) and the exo-spheric density at distances greater than 10 Earth Radii (R-E) upstream from the Earth (about 8 cm(-3)). Citation: Fuselier, S. A., et al. (2010), Energetic neutral atoms from the Earth's subsolar magnetopause, Geophys. Res. Lett., 37, L13101, doi:10.1029/2010GL044140. C1 [Fuselier, S. A.; Petrinec, S. M.; Trattner, K. J.] Lockheed Martin Adv Technol Ctr, Palo Alto, CA 94304 USA. [Funsten, H. O.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Heirtzler, D.; Kucharek, H.; Moebius, E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Janzen, P.; Reisenfeld, D. B.] Univ Montana, Dept Phys & Astron, Billings, MT 59812 USA. [McComas, D. J.] SW Res Inst, San Antonio, TX 78228 USA. [McComas, D. J.] Univ Texas San Antonio, San Antonio, TX USA. [Moore, T. E.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. [Schwadron, N. A.] Boston Univ, Dept Astron, Boston, MA 02215 USA. [Wurz, P.] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland. RP Fuselier, SA (reprint author), Lockheed Martin Adv Technol Ctr, 3251 Hanover St, Palo Alto, CA 94304 USA. EM stephen.a.fuselier@lmco.com RI Moore, Thomas/D-4675-2012; Funsten, Herbert/A-5702-2015; Reisenfeld, Daniel/F-7614-2015 OI Moore, Thomas/0000-0002-3150-1137; Funsten, Herbert/0000-0002-6817-1039; FU NASA FX Solar wind data are from the Wind spacecraft and provided through NSSDC CDAWeb. Support for this study comes from NASA's Explorer program. IBEX is the result of efforts from a large number of scientists, engineers, and others. All who contributed to this mission share in its success. NR 20 TC 32 Z9 33 U1 0 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD JUL 8 PY 2010 VL 37 AR L13101 DI 10.1029/2010GL044140 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 624MQ UT WOS:000279823500003 ER PT J AU Hui, YW Schultz, DR Kharchenko, VA Bhardwaj, A Branduardi-Raymont, G Stancil, PC Cravens, TE Lisse, CM Dalgarno, A AF Hui, Yawei Schultz, David R. Kharchenko, Vasili A. Bhardwaj, Anil Branduardi-Raymont, Graziella Stancil, Phillip C. Cravens, Thomas E. Lisse, Carey M. Dalgarno, Alexander TI Comparative analysis and variability of the Jovian X-ray spectra detected by the Chandra and XMM-Newton observatories SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID EMISSION; JUPITER; OXYGEN; IONS; PRECIPITATION; TRANSITIONS; ATMOSPHERE; COMETS; AURORA; E1 AB Expanding upon recent work, a more comprehensive spectral model based on charge exchange induced X-ray emission by ions precipitating into the Jovian atmosphere is used to provide new understanding of the polar auroras. In conjunction with the Xspec spectral fitting software, the model is applied to analyze observations from both Chandra and XMM-Newton by systematically varying the initial precipitating ion parameters to obtain the best fit model for the observed spectra. In addition to the oxygen and sulfur ions considered previously, carbon is included to discriminate between solar wind and Jovian magnetospheric ion origins, enabled by the use of extensive databases of both atomic collision cross sections and radiative transitions. On the basis of fits to all the Chandra observations, we find that carbon contributes negligibly to the observed polar X-ray emission suggesting that the highly accelerated precipitating ions are of magnetospheric origin. Most of the XMM-Newton fits also favor this conclusion with one exception that implies a possible carbon contribution. Comparison among all the spectra from these two observatories in light of the inferred initial energies and relative abundances of precipitating ions from the modeling show that they are significantly variable in time (observation date) and space (north and south polar X-ray auroras). C1 [Hui, Yawei; Schultz, David R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kharchenko, Vasili A.] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Bhardwaj, Anil] Vikram Sarabhai Space Ctr, Space Phys Lab, Trivandrum 695022, Kerala, India. [Branduardi-Raymont, Graziella] Univ Coll London, Mullard Space Sci Lab, Surrey RH5 6NT, England. [Stancil, Phillip C.] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA. [Stancil, Phillip C.] Univ Georgia, Ctr Simulat Phys, Athens, GA 30602 USA. [Cravens, Thomas E.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Lisse, Carey M.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Dalgarno, Alexander] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. RP Hui, YW (reprint author), Oak Ridge Natl Lab, Div Phys, Bldg 6010, Oak Ridge, TN 37831 USA. EM huiy@ornl.gov; schultzd@ornl.gov; kharchenko@phys.uconn.edu; gbr@mssl.ucl.ac.uk; stancil@physast.uga.edu; cravens@ku.edu; carey.lisse@jhuapl.edu; adalgarno@cfa.harvard.edu RI Lisse, Carey/B-7772-2016; OI Lisse, Carey/0000-0002-9548-1526; Bhardwaj, Anil/0000-0003-1693-453X FU NASA [NNH07AF12I] FX This work has been supported by NASA Planetary Atmospheres Program grant NNH07AF12I. We are grateful to the Chandra Helpdesk staff, particularly Elizabeth Galle, for assistance with processing the raw observations files. We also acknowledge Glenn E. Allen who coded the new Chandra data reduction algorithms. NR 33 TC 15 Z9 15 U1 1 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 8 PY 2010 VL 115 AR A07102 DI 10.1029/2009JA014854 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 624NQ UT WOS:000279826200003 ER PT J AU Wang, YN Dai, QQ Wang, LC Zou, B Cui, TA Liu, BB Yu, WW Hu, MZ Zou, GT AF Wang, Yingnan Dai, Quanqin Wang, Liancheng Zou, Bo Cui, Tian Liu, Bingbing Yu, William W. Hu, Michael Z. Zou, Guangtian TI Mutual Transformation between Random Nanoparticles and Their Superlattices: The Configuration of Capping Ligand Chains SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PBSE SEMICONDUCTOR NANOCRYSTALS; MOLECULAR-DYNAMICS SIMULATION; MAGNETIC-PROPERTIES; GOLD NANOPARTICLES; RAMAN-SPECTROSCOPY; CDSE; ENVIRONMENT; ASSEMBLIES; ENTROPY; SOLVENT AB We presented a facile and efficient route to prepare single-component nanoparticle (NP) superlattices. It was demonstrated that mutual transformation between random NPs and their well-ordered superlattices could be unified by a proposed model of ligand configuration. When the ligand chains capped on NPs were disordered at room temperature, NPs existed separately in solution, which were noninteracting and thus showed random states on transmission electron microscopy (TEM) grids; comparatively, the ligand chains capped on NPs in an ordered state in solution would correspond to superlattice structures obtained on TEM grids. These experimental observations were consistent with our theoretical analysis. C1 [Wang, Yingnan; Dai, Quanqin; Wang, Liancheng; Zou, Bo; Cui, Tian; Liu, Bingbing; Zou, Guangtian] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Dai, Quanqin; Hu, Michael Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yu, William W.] Worcester Polytech Inst, Worcester, MA 01609 USA. RP Zou, B (reprint author), Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. EM zoubo@jlu.edu.cn RI Zou, Guangtian /A-1036-2011; Zou, Bo/C-6926-2008; OI Zou, Bo/0000-0002-3215-1255; Hu, Michael/0000-0001-8461-9684 FU NSFC [20773043, 10674053]; National Basic Research Program of China [2005CB724400, 2007CB808000]; Oak Ridge National Laboratory; U.S. Department of Energy FX This work is supported by NSFC (nos. 20773043 and 10674053), and the National Basic Research Program of China (nos. 2005CB724400 and 2007CB808000). Also, this work is partially sponsored by the LDRD program at the Oak Ridge National Laboratory and the Nanomanufacturing project under the Industrial Technology Program of the U.S. Department of Energy. NR 48 TC 12 Z9 12 U1 1 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 8 PY 2010 VL 114 IS 26 BP 11425 EP 11429 DI 10.1021/jp103586n PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 617LL UT WOS:000279282200014 ER PT J AU Fishman, RS Miller, JS AF Fishman, Randy S. Miller, Joel S. TI Average g-Factors of Anisotropic Polycrystalline Samples SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID CHARGE-TRANSFER COMPLEXES; MAGNETIC CHARACTERIZATION; FERROMAGNETIC BEHAVIOR; DECAMETHYLFERROCENIUM TETRACYANOETHENIDE; PHASES; SALTS AB Due to the lack of suitable single crystals, the average g-factor of anisotropic polycrystalline samples are commonly estimated from either the Curie Weiss susceptibility or the saturation magnetization. We show that the average g-factor obtained from the Curie constant is always greater than or equal to the average g-factor obtained from the saturation magnetization. The average g-factors are equal only for a single crystal or an isotropic polycrystal. We review experimental results for several compounds containing the anisotropic cation [Fe(C(5)Me(5))(2)](+) and propose an experiment to test this inequality using a compound with a spinless anion. C1 [Fishman, Randy S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Miller, Joel S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. RP Fishman, RS (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Fishman, Randy/C-8639-2013 FU Division of Materials Sciences and Engineering of the U.S. Department of Energy; U.S. National Science Foundation [0553573] FX We would like to thank Prof. Janice Musfeldt for her helpful comments. This research was sponsored by the Division of Materials Sciences and Engineering of the U.S. Department of Energy (RSF) and by the U.S. National Science Foundation (Grant No. 0553573) (JSM). NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JUL 8 PY 2010 VL 114 IS 26 BP 11623 EP 11626 DI 10.1021/jp1040162 PG 4 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 617LL UT WOS:000279282200042 ER PT J AU Kim, HJ Oh, S Kim, KS Zhang, ZY Cho, JH AF Kim, Hyun-Jung Oh, Sangchul Kim, Ki-Seok Zhang, Zhenyu Cho, Jun-Hyung TI Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111) SO PHYSICAL REVIEW B LA English DT Article ID PSEUDOPOTENTIALS AB Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has pi electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized pi electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively. C1 [Kim, Hyun-Jung; Cho, Jun-Hyung] Hanyang Univ, Dept Phys, Seoul 133791, South Korea. [Kim, Hyun-Jung; Cho, Jun-Hyung] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea. [Oh, Sangchul] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. [Kim, Ki-Seok] Asia Pacific Ctr Theoret Phys, Pohang 790784, Gyeongbuk, South Korea. [Zhang, Zhenyu; Cho, Jun-Hyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Zhenyu; Cho, Jun-Hyung] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhang, Zhenyu; Cho, Jun-Hyung] Univ Sci & Technol China, ICQD, Hefei, Anhui, Peoples R China. RP Cho, JH (reprint author), Hanyang Univ, Dept Phys, 17 Haengdang Dong, Seoul 133791, South Korea. EM chojh@hanyang.ac.kr RI Oh, Sangchul/C-2374-2012; Hyun-Jung, Kim/E-8074-2011; Cho, Jun-Hyung/R-7256-2016 OI Hyun-Jung, Kim/0000-0002-5602-1404; Cho, Jun-Hyung/0000-0002-1785-1835 FU Korean Government [KRF-314-2008-1-C00095]; Division of Materials Sciences and Engineering of DOE; NSF [DMR-0906025] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (Grant No. KRF-314-2008-1-C00095), in part by the Division of Materials Sciences and Engineering of DOE (Z.Z. and J.H.C.), and NSF under Grant No. DMR-0906025 (Z.Z.) NR 24 TC 2 Z9 2 U1 1 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2010 VL 82 IS 4 AR 041401 DI 10.1103/PhysRevB.82.041401 PG 4 WC Physics, Condensed Matter SC Physics GA 622FS UT WOS:000279647300001 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI High-temperature thermoelectric performance of heavily doped PbSe SO PHYSICAL REVIEW B LA English DT Article ID TRANSPORT; CARRIERS; FIGURE; MERIT AB We present a model calculation, employing first-principles calculations as well as empirical data, which suggests that properly hole-doped bulk PbSe may show a Seebeck coefficient as high as 230 mu V/K, in a temperature regime in which the lattice thermal conductivity is rather small. It may therefore show a figure-of-merit ZT as high as 2 for temperatures of 1000 K. Heavily doped p-type PbSe may offer better thermoelectric performance than the sister material, optimized PbTe, for high-temperature applications such as power generation. C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RI Singh, David/I-2416-2012 FU U.S. Department of Energy; EERE; Vehicle Technologies; Propulsion Materials Program; S3TEC Energy Frontier Research Center FX This research was supported by the U.S. Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program and the S3TEC Energy Frontier Research Center. NR 23 TC 128 Z9 129 U1 12 U2 74 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 8 PY 2010 VL 82 IS 3 AR 035204 DI 10.1103/PhysRevB.82.035204 PG 5 WC Physics, Condensed Matter SC Physics GA 622FP UT WOS:000279647000001 ER PT J AU Boukharouba, N Bateman, FB Carlson, AD Brient, CE Grimes, SM Massey, TN Haight, RC Carter, DE AF Boukharouba, N. Bateman, F. B. Carlson, A. D. Brient, C. E. Grimes, S. M. Massey, T. N. Haight, R. C. Carter, D. E. TI Measurement of the n-p elastic scattering angular distribution at E-n=14.9 MeV SO PHYSICAL REVIEW C LA English DT Article ID DIFFERENTIAL CROSS-SECTION; NEUTRON-PROTON SCATTERING AB The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E-n = 14.9 MeV and for center-of-mass scattering angles ranging from about 60 degrees to 180 degrees. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The results of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 degrees and 120 degrees and below 20 degrees. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution. C1 [Boukharouba, N.] Univ Guelma, Dept Phys, Guelma 24000, Algeria. [Bateman, F. B.; Carlson, A. D.] NIST, Gaithersburg, MD 20899 USA. [Brient, C. E.; Grimes, S. M.; Massey, T. N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Haight, R. C.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Carter, D. E.] Ohio Univ, Inst Nucl & Particle Phys, Athens, OH 45701 USA. RP Boukharouba, N (reprint author), Univ Guelma, Dept Phys, Guelma 24000, Algeria. NR 22 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 8 PY 2010 VL 82 IS 1 AR 014001 DI 10.1103/PhysRevC.82.014001 PG 9 WC Physics, Nuclear SC Physics GA 622FY UT WOS:000279647900001 ER PT J AU Abelev, BI Aggarwal, MM Ahammed, Z Alakhverdyants, AV Anderson, BD Arkhipkin, D Averichev, GS Balewski, J Barannikova, O Barnby, LS Baumgart, S Beavis, DR Bellwied, R Betancourt, MJ Betts, RR Bhasin, A Bhati, AK Bichsel, H Bielcik, J Bielcikova, J Biritz, B Bland, LC Bnzarov, I Bonner, BE Bouchet, J Braidot, E Brandin, AV Bridgeman, A Bruna, E Bueltmann, S Burton, TP Cai, XZ Caines, H Sanchez, MCD Catu, O Cebra, D Cendejas, R Cervantes, MC Chajecki, Z Chaloupka, P Chattopadhyay, S Chen, HF Chen, JH Chen, JY Cheng, J Cherney, M Chikanian, A Choi, KE Christie, W Chung, P Clarke, RF Codrington, MJM Corliss, R Cramer, JG Crawford, HJ Das, D Dash, S Leyva, AD De Silva, LC Debbe, RR Dedovich, TG DePhillips, M Derevschikov, AA de Souza, RD Didenko, L Djawotho, P Dogra, SM Dong, X Drachenberg, JL Draper, JE Dunlop, JC Mazumdar, MRD Efimov, LG Elhalhuli, E Elnimr, M Engelage, J Eppley, G Erazmus, B Estienne, M Eun, L Fachini, P Fatemi, R Fedorisin, J Fersch, RG Filip, P Finch, E Fine, V Fisyak, Y Gagliardi, CA Gangadharan, DR Ganti, MS Garcia-Solis, EJ Geromitsos, A Geurts, F Ghazikhanian, V Ghosh, P Gorbunov, YN Gordon, A Grebenyuk, O Grosnick, D Grube, B Guertin, SM Gupta, A Gupta, N Guryn, W Haag, B Hallman, TJ Hamed, A Han, LX Harris, JW Hays-Wehle, JP Heinz, M Heppelmann, S Hirsch, A Hjort, E Hoffman, AM Hoffmann, GW Hofman, DJ Hollis, RS Huang, HZ Humanic, TJ Huo, L Igo, G Iordanova, A Jacobs, P Jacobs, WW Jakl, P Jena, C Jin, F Jones, CL Jones, PG Joseph, J Judd, EG Kabana, S Kajimoto, K Kang, K Kapitan, J Kauder, K Keane, D Kechechyan, A Kettler, D Khodyrev, VY Kikola, DP Kiryluk, J Kisiel, A Knospe, AG Kocoloski, A Koetke, DD Kollegger, T Konzer, J Kopytine, M Koralt, I Korsch, W Kotchenda, L Kouchpil, V Kravtsov, P Kravtsov, VI Krueger, K Krus, M Kumar, L Kurnadi, P Lamont, MAC Landgraf, JM LaPointe, S Lauret, J Lebedev, A Lednicky, R Lee, CH Lee, JH Leight, W LeVine, MJ Li, C Li, L Li, N Li, W Li, X Li, X Li, Y Li, Z Lin, G Lindenbaum, SJ Lisa, MA Liu, F Liu, H Liu, J Ljubicic, T Llope, WJ Longacre, RS Love, WA Lu, Y Ludlam, T Ma, GL Ma, YG Mahapatra, DP Majka, R Mall, OI Mangotra, LK Manweiler, R Margetis, S Markert, C Masui, H Matis, HS Matulenko, YA McDonald, D McShane, TS Meschanin, A Milner, R Minaev, NG Mioduszewski, S Mischke, A Mitrovski, MK Mohanty, B Morozov, DA Munhoz, MG Nandi, BK Nattrass, C Nayak, TK Nelson, JM Netrakanti, PK Ng, MJ Nogach, LV Nurushev, SB Odyniec, G Ogawa, A Okada, H Okorokov, V Olson, D Pachr, M Page, BS Pal, SK Pandit, Y Panebratsev, Y Pawlak, T Peitzmann, T Perevoztchikov, V Perkins, C Peryt, W Phatak, SC Pile, P Planinic, M Ploskon, MA Pluta, J Plyku, D Poljak, N Poskanzer, AM Potukuchi, BVKS Powell, CB Prindle, D Pruneau, C Pruthi, NK Pujahari, PR Putschke, J Raniwala, R Raniwala, S Ray, RL Redwine, R Reed, R Rehberg, JM Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Rose, A Roy, C Ruan, L Sahoo, R Sakai, S Sakrejda, I Sakuma, T Salur, S Sandweiss, J Sangaline, E Schambach, J Scharenberg, RP Schmitz, N Schuster, TR Seele, J Seger, J Selyuzhenkov, I Seyboth, P Shahaliev, E Shao, M Sharma, M Shi, SS Sichtermann, EP Simon, F Singaraju, RN Skoby, MJ Smirnov, N Sorensen, P Sowinski, J Spinka, HM Srivastava, B Stanislaus, TDS Staszak, D Stevens, JR Stock, R Strikhanov, M Stringfellow, B Suaide, AAP Suarez, MC Subba, NL Sumbera, M Sun, XM Sun, Y Sun, Z Surrow, B Symons, TJM de Toledo, AS Takahashi, J Tang, AH Tang, Z Tarini, LH Tarnowsky, T Thein, D Thomas, JH Tian, J Timmins, AR Timoshenko, S Tlusty, D Tokarev, M Tram, VN Trentalange, S Tribble, RE Tsai, OD Ulery, J Ullrich, T Underwood, DG Van Buren, G van Nieuwenhuizen, G van Leeuwen, M Vanfossen, JA Varma, R Vasconcelos, GMS Vasiliev, AN Videbaek, F Viyogi, YP Vokal, S Wada, M Walker, M Wang, F Wang, G Wang, H Wang, JS Wang, Q Wang, X Wang, XL Wang, Y Webb, G Webb, JC Westfall, GD Whitten, C Wieman, H Wingfield, E Wissink, SW Witt, R Wu, Y Xie, W Xu, N Xu, QH Xu, W Xu, Y Xu, Z Xue, L Yang, Y Yepes, P Yip, K Yoo, IK Yue, Q Zawisza, M Zbroszczyk, H Zhan, W Zhang, S Zhang, WM Zhang, XP Zhang, Y Zhang, ZP Zhao, J Zhong, C Zhou, J Zhou, W Zhu, X Zhu, YH Zoulkarneev, R Zoulkarneeva, Y AF Abelev, B. I. Aggarwal, M. M. Ahammed, Z. Alakhverdyants, A. V. Anderson, B. D. Arkhipkin, D. Averichev, G. S. Balewski, J. Barannikova, O. Barnby, L. S. Baumgart, S. Beavis, D. R. Bellwied, R. Betancourt, M. J. Betts, R. R. Bhasin, A. Bhati, A. K. Bichsel, H. Bielcik, J. Bielcikova, J. Biritz, B. Bland, L. C. Bnzarov, I. Bonner, B. E. Bouchet, J. Braidot, E. Brandin, A. V. Bridgeman, A. Bruna, E. Bueltmann, S. Burton, T. P. Cai, X. Z. Caines, H. Sanchez, M. Calderon de la Barca Catu, O. Cebra, D. Cendejas, R. Cervantes, M. C. Chajecki, Z. Chaloupka, P. Chattopadhyay, S. Chen, H. F. Chen, J. H. Chen, J. Y. Cheng, J. Cherney, M. Chikanian, A. Choi, K. E. Christie, W. Chung, P. Clarke, R. F. Codrington, M. J. M. Corliss, R. Cramer, J. G. Crawford, H. J. Das, D. Dash, S. Leyva, A. Davila De Silva, L. C. Debbe, R. R. Dedovich, T. G. DePhillips, M. Derevschikov, A. A. de Souza, R. Derradi Didenko, L. Djawotho, P. Dogra, S. M. Dong, X. Drachenberg, J. L. Draper, J. E. Dunlop, J. C. Mazumdar, M. R. Dutta Efimov, L. G. Elhalhuli, E. Elnimr, M. Engelage, J. Eppley, G. Erazmus, B. Estienne, M. Eun, L. Fachini, P. Fatemi, R. Fedorisin, J. Fersch, R. G. Filip, P. Finch, E. Fine, V. Fisyak, Y. Gagliardi, C. A. Gangadharan, D. R. Ganti, M. S. Garcia-Solis, E. J. Geromitsos, A. Geurts, F. Ghazikhanian, V. Ghosh, P. Gorbunov, Y. N. Gordon, A. Grebenyuk, O. Grosnick, D. Grube, B. Guertin, S. M. Gupta, A. Gupta, N. Guryn, W. Haag, B. Hallman, T. J. Hamed, A. Han, L-X. Harris, J. W. Hays-Wehle, J. P. Heinz, M. Heppelmann, S. Hirsch, A. Hjort, E. Hoffman, A. M. Hoffmann, G. W. Hofman, D. J. Hollis, R. S. Huang, H. Z. Humanic, T. J. Huo, L. Igo, G. Iordanova, A. Jacobs, P. Jacobs, W. W. Jakl, P. Jena, C. Jin, F. Jones, C. L. Jones, P. G. Joseph, J. Judd, E. G. Kabana, S. Kajimoto, K. Kang, K. Kapitan, J. Kauder, K. Keane, D. Kechechyan, A. Kettler, D. Khodyrev, V. Yu. Kikola, D. P. Kiryluk, J. Kisiel, A. Knospe, A. G. Kocoloski, A. Koetke, D. D. Kollegger, T. Konzer, J. Kopytine, M. Koralt, I. Korsch, W. Kotchenda, L. Kouchpil, V. Kravtsov, P. Kravtsov, V. I. Krueger, K. Krus, M. Kumar, L. Kurnadi, P. Lamont, M. A. C. Landgraf, J. M. LaPointe, S. Lauret, J. Lebedev, A. Lednicky, R. Lee, C-H. Lee, J. H. Leight, W. LeVine, M. J. Li, C. Li, L. Li, N. Li, W. Li, X. Li, X. Li, Y. Li, Z. Lin, G. Lindenbaum, S. J. Lisa, M. A. Liu, F. Liu, H. Liu, J. Ljubicic, T. Llope, W. J. Longacre, R. S. Love, W. A. Lu, Y. Ludlam, T. Ma, G. L. Ma, Y. G. Mahapatra, D. P. Majka, R. Mall, O. I. Mangotra, L. K. Manweiler, R. Margetis, S. Markert, C. Masui, H. Matis, H. S. Matulenko, Yu. A. McDonald, D. McShane, T. S. Meschanin, A. Milner, R. Minaev, N. G. Mioduszewski, S. Mischke, A. Mitrovski, M. K. Mohanty, B. Morozov, D. A. Munhoz, M. G. Nandi, B. K. Nattrass, C. Nayak, T. K. Nelson, J. M. Netrakanti, P. K. Ng, M. J. Nogach, L. V. Nurushev, S. B. Odyniec, G. Ogawa, A. Okada, H. Okorokov, V. Olson, D. Pachr, M. Page, B. S. Pal, S. K. Pandit, Y. Panebratsev, Y. Pawlak, T. Peitzmann, T. Perevoztchikov, V. Perkins, C. Peryt, W. Phatak, S. C. Pile, P. Planinic, M. Ploskon, M. A. Pluta, J. Plyku, D. Poljak, N. Poskanzer, A. M. Potukuchi, B. V. K. S. Powell, C. B. Prindle, D. Pruneau, C. Pruthi, N. K. Pujahari, P. R. Putschke, J. Raniwala, R. Raniwala, S. Ray, R. L. Redwine, R. Reed, R. Rehberg, J. M. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Rose, A. Roy, C. Ruan, L. Sahoo, R. Sakai, S. Sakrejda, I. Sakuma, T. Salur, S. Sandweiss, J. Sangaline, E. Schambach, J. Scharenberg, R. P. Schmitz, N. Schuster, T. R. Seele, J. Seger, J. Selyuzhenkov, I. Seyboth, P. Shahaliev, E. Shao, M. Sharma, M. Shi, S. S. Sichtermann, E. P. Simon, F. Singaraju, R. N. Skoby, M. J. Smirnov, N. Sorensen, P. Sowinski, J. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Staszak, D. Stevens, J. R. Stock, R. Strikhanov, M. Stringfellow, B. Suaide, A. A. P. Suarez, M. C. Subba, N. L. Sumbera, M. Sun, X. M. Sun, Y. Sun, Z. Surrow, B. Symons, T. J. M. de Toledo, A. Szanto Takahashi, J. Tang, A. H. Tang, Z. Tarini, L. H. Tarnowsky, T. Thein, D. Thomas, J. H. Tian, J. Timmins, A. R. Timoshenko, S. Tlusty, D. Tokarev, M. Tram, V. N. Trentalange, S. Tribble, R. E. Tsai, O. D. Ulery, J. Ullrich, T. Underwood, D. G. Van Buren, G. van Nieuwenhuizen, G. van Leeuwen, M. Vanfossen, J. A., Jr. Varma, R. Vasconcelos, G. M. S. Vasiliev, A. N. Videbaek, F. Viyogi, Y. P. Vokal, S. Wada, M. Walker, M. Wang, F. Wang, G. Wang, H. Wang, J. S. Wang, Q. Wang, X. Wang, X. L. Wang, Y. Webb, G. Webb, J. C. Westfall, G. D. Whitten, C., Jr. Wieman, H. Wingfield, E. Wissink, S. W. Witt, R. Wu, Y. Xie, W. Xu, N. Xu, Q. H. Xu, W. Xu, Y. Xu, Z. Xue, L. Yang, Y. Yepes, P. Yip, K. Yoo, I-K. Yue, Q. Zawisza, M. Zbroszczyk, H. Zhan, W. Zhang, S. Zhang, W. M. Zhang, X. P. Zhang, Y. Zhang, Z. P. Zhao, J. Zhong, C. Zhou, J. Zhou, W. Zhu, X. Zhu, Y-H. Zoulkarneev, R. Zoulkarneeva, Y. CA STAR Collaboration TI Three-Particle Coincidence of the Long Range Pseudorapidity Correlation in High Energy Nucleus-Nucleus Collisions SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASMA FLUX TUBES AB We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component. C1 [Abelev, B. I.; Barannikova, O.; Betts, R. R.; Garcia-Solis, E. J.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kauder, K.; Suarez, M. C.] Univ Illinois, Chicago, IL 60607 USA. [Bridgeman, A.; Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Barnby, L. S.; Burton, T. P.; Elhalhuli, E.; Jones, P. G.; Nelson, J. M.] Univ Birmingham, Birmingham, W Midlands, England. [Arkhipkin, D.; Beavis, D. R.; Bland, L. C.; Christie, W.; Debbe, R. R.; DePhillips, M.; Didenko, L.; Dunlop, J. C.; Fachini, P.; Fine, V.; Fisyak, Y.; Gordon, A.; Guryn, W.; Hallman, T. J.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; LeVine, M. J.; Ljubicic, T.; Longacre, R. S.; Love, W. A.; Ludlam, T.; Ogawa, A.; Okada, H.; Perevoztchikov, V.; Pile, P.; Ruan, L.; Sorensen, P.; Tang, A. H.; Ullrich, T.; Van Buren, G.; Videbaek, F.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Ng, M. J.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Das, D.; Draper, J. E.; Haag, B.; Liu, H.; Mall, O. I.; Reed, R.; Romero, J. L.; Salur, S.; Sangaline, E.] Univ Calif Davis, Davis, CA 95616 USA. [Biritz, B.; Cendejas, R.; Gangadharan, D. R.; Ghazikhanian, V.; Guertin, S. M.; Huang, H. Z.; Igo, G.; Kurnadi, P.; Sakai, S.; Staszak, D.; Trentalange, S.; Tsai, O. D.; Wang, G.; Whitten, C., Jr.; Xu, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [de Souza, R. Derradi; Takahashi, J.; Vasconcelos, G. M. S.] Univ Estadual Campinas, Sao Paulo, Brazil. [Gorbunov, Y. N.; McShane, T. S.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Krus, M.; Pachr, M.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Chaloupka, P.; Chung, P.; Jakl, P.; Kapitan, J.; Kouchpil, V.; Sumbera, M.; Tlusty, D.] Nucl Phys Inst AS CR, Rez 25068, Czech Republic. [Kollegger, T.; Mitrovski, M. K.; Rehberg, J. M.; Schuster, T. R.; Stock, R.] Goethe Univ Frankfurt, Frankfurt, Germany. [Dash, S.; Jena, C.; Mahapatra, D. P.; Phatak, S. C.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Pujahari, P. R.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Jacobs, W. W.; Page, B. S.; Selyuzhenkov, I.; Sowinski, J.; Stevens, J. R.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Bhasin, A.; Dogra, S. M.; Gupta, A.; Gupta, N.; Mangotra, L. K.; Potukuchi, B. V. K. S.] Univ Jammu, Jammu 180001, India. [Alakhverdyants, A. V.; Averichev, G. S.; Bnzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneev, R.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Anderson, B. D.; Bouchet, J.; Joseph, J.; Keane, D.; Kopytine, M.; Margetis, S.; Pandit, Y.; Subba, N. L.; Vanfossen, J. A., Jr.; Zhang, W. M.] Kent State Univ, Kent, OH 44242 USA. [Fatemi, R.; Fersch, R. G.; Korsch, W.; Webb, G.] Univ Kentucky, Lexington, KY 40506 USA. [Sun, Z.; Wang, J. S.; Yang, Y.; Zhan, W.] Inst Modern Phys, Lanzhou, Peoples R China. [Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Masui, H.; Matis, H. S.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.; Rose, A.; Sakrejda, I.; Sichtermann, E. P.; Sun, X. M.; Symons, T. J. M.; Thomas, J. H.; Tram, V. N.; Wieman, H.; Xu, N.; Zhang, X. P.; Zhang, Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balewski, J.; Betancourt, M. J.; Corliss, R.; Hays-Wehle, J. P.; Hoffman, A. M.; Jones, C. L.; Kocoloski, A.; Leight, W.; Milner, R.; Netrakanti, P. K.; Redwine, R.; Sakuma, T.; Seele, J.; Surrow, B.; van Nieuwenhuizen, G.; Walker, M.] MIT, Cambridge, MA 02139 USA. [Schmitz, N.; Seyboth, P.; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Tarnowsky, T.; Wang, H.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kotchenda, L.; Kravtsov, P.; Okorokov, V.; Strikhanov, M.; Timoshenko, S.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Lindenbaum, S. J.] CUNY City Coll, New York, NY 10031 USA. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] NIKHEF H, NL-1009 DB Amsterdam, Netherlands. [Braidot, E.; Mischke, A.; Peitzmann, T.; van Leeuwen, M.] Univ Utrecht, Amsterdam, Netherlands. [Chajecki, Z.; Humanic, T. J.; Lisa, M. A.] Ohio State Univ, Columbus, OH 43210 USA. [Bueltmann, S.; Koralt, I.; Plyku, D.] Old Dominion Univ, Norfolk, VA 23529 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.] Panjab Univ, Chandigarh 160014, India. [Eun, L.; Heppelmann, S.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Khodyrev, V. Yu.; Kravtsov, V. I.; Matulenko, Yu. A.; Meschanin, A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino, Russia. [Hirsch, A.; Konzer, J.; Li, X.; Scharenberg, R. P.; Skoby, M. J.; Srivastava, B.; Stringfellow, B.; Ulery, J.; Wang, F.; Wang, Q.; Xie, W.] Purdue Univ, W Lafayette, IN 47907 USA. [Choi, K. E.; Grube, B.; Lee, C-H.; Yoo, I-K.] Pusan Natl Univ, Pusan, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Bonner, B. E.; Eppley, G.; Geurts, F.; Liu, J.; Llope, W. J.; McDonald, D.; Roberts, J. B.; Yepes, P.; Zhou, J.] Rice Univ, Houston, TX 77251 USA. [Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Chen, H. F.; Li, C.; Lu, Y.; Shao, M.; Sun, Y.; Tang, Z.; Wang, X. L.; Xu, Y.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, X.; Xu, Q. H.; Zhou, W.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Cai, X. Z.; Chen, J. H.; Han, L-X.; Jin, F.; Li, W.; Ma, G. L.; Ma, Y. G.; Tian, J.; Xue, L.; Zhang, S.; Zhao, J.; Zhong, C.; Zhu, Y-H.] Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Erazmus, B.; Estienne, M.; Geromitsos, A.; Kabana, S.; Roy, C.; Sahoo, R.] SUBATECH, Nantes, France. [Cervantes, M. C.; Clarke, R. F.; Codrington, M. J. M.; Djawotho, P.; Drachenberg, J. L.; Gagliardi, C. A.; Hamed, A.; Huo, L.; Mioduszewski, S.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Leyva, A. Davila; Hoffmann, G. W.; Kajimoto, K.; Li, L.; Markert, C.; Ray, R. L.; Schambach, J.; Thein, D.; Wada, M.; Wingfield, E.] Univ Texas Austin, Austin, TX 78712 USA. [Cheng, J.; Kang, K.; Li, Y.; Wang, X.; Wang, Y.; Yue, Q.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] USN Acad, Annapolis, MD 21402 USA. [Grosnick, D.; Koetke, D. D.; Manweiler, R.; Stanislaus, T. D. S.; Webb, J. C.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Chattopadhyay, S.; Mazumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Mohanty, B.; Nayak, T. K.; Pal, S. K.; Singaraju, R. N.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Kisiel, A.; Pawlak, T.; Peryt, W.; Pluta, J.; Zawisza, M.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Bichsel, H.; Cramer, J. G.; Kettler, D.; Prindle, D.] Univ Washington, Seattle, WA 98195 USA. [Bellwied, R.; De Silva, L. C.; Elnimr, M.; LaPointe, S.; Pruneau, C.; Sharma, M.; Tarini, L. H.; Timmins, A. R.] Wayne State Univ, Detroit, MI 48201 USA. [Chen, J. Y.; Li, N.; Li, Z.; Liu, F.; Shi, S. S.; Wu, Y.] CCNU HZNU, Inst Particle Phys, Wuhan 430079, Peoples R China. [Baumgart, S.; Bruna, E.; Caines, H.; Catu, O.; Chikanian, A.; Finch, E.; Harris, J. W.; Heinz, M.; Knospe, A. G.; Lin, G.; Majka, R.; Nattrass, C.; Putschke, J.; Sandweiss, J.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Planinic, M.; Poljak, N.] Univ Zagreb, HR-10002 Zagreb, Croatia. RP Abelev, BI (reprint author), Univ Illinois, Chicago, IL 60607 USA. RI Xu, Wenqin/H-7553-2014; Sumbera, Michal/O-7497-2014; Strikhanov, Mikhail/P-7393-2014; Dogra, Sunil /B-5330-2013; Chaloupka, Petr/E-5965-2012; Nattrass, Christine/J-6752-2016; Derradi de Souza, Rafael/M-4791-2013; Suaide, Alexandre/L-6239-2016; Inst. of Physics, Gleb Wataghin/A-9780-2017; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Barnby, Lee/G-2135-2010; Mischke, Andre/D-3614-2011; Takahashi, Jun/B-2946-2012; Planinic, Mirko/E-8085-2012; Peitzmann, Thomas/K-2206-2012; Witt, Richard/H-3560-2012; Yip, Kin/D-6860-2013; Xue, Liang/F-8077-2013; Pandit, Yadav/I-2170-2013; Lednicky, Richard/K-4164-2013; Yang, Yanyun/B-9485-2014; Bielcikova, Jana/G-9342-2014; OI Xu, Wenqin/0000-0002-5976-4991; Sumbera, Michal/0000-0002-0639-7323; Strikhanov, Mikhail/0000-0003-2586-0405; Nattrass, Christine/0000-0002-8768-6468; Derradi de Souza, Rafael/0000-0002-2084-7001; Suaide, Alexandre/0000-0003-2847-6556; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Fisyak, Yuri/0000-0002-3151-8377; Barnby, Lee/0000-0001-7357-9904; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Yip, Kin/0000-0002-8576-4311; Xue, Liang/0000-0002-2321-9019; Pandit, Yadav/0000-0003-2809-7943; Yang, Yanyun/0000-0002-5982-1706; Bhasin, Anju/0000-0002-3687-8179; Sorensen, Paul/0000-0001-5056-9391; Thomas, James/0000-0002-6256-4536; van Leeuwen, Marco/0000-0002-5222-4888 FU RHIC Operations Group and RCF at BNL; NERSC Center at LBNL; Open Science Grid consortium; Offices of NP; U.S. DOE Office of Science; U.S. NSF; Sloan Foundation; DFG cluster of excellence; CNRS [IN2P3]; STFC; EPSRC of the United Kingdom; FAPESP CNPq of Brazil; Ministry of Ed. and Sci. of the Russian Federation; NNSFC; CAS; MoST; MoE of China FX We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science, the U.S. NSF, the Sloan Foundation, the DFG cluster of excellence "Origin and Structure of the Universe'', CNRS/IN2P3, STFC and EPSRC of the United Kingdom, FAPESP CNPq of Brazil, Ministry of Ed. and Sci. of the Russian Federation, NNSFC, CAS, MoST, and MoE of China, GA and MSMT of the Czech Republic, FOM and NWO of the Netherlands, DAE, DST, and CSIR of India, Polish Ministry of Sci. and Higher Ed., Korea Research Foundation, Ministry of Sci., Ed. and Sports of the Rep. Of Croatia, Russian Ministry of Sci. and Tech, and RosAtom of Russia. NR 20 TC 40 Z9 40 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 8 PY 2010 VL 105 IS 2 AR 022301 DI 10.1103/PhysRevLett.105.022301 PG 7 WC Physics, Multidisciplinary SC Physics GA 622HH UT WOS:000279651500001 PM 20867701 ER PT J AU Rusydi, A Ku, W Schulz, B Rauer, R Mahns, I Qi, D Gao, X Wee, ATS Abbamonte, P Eisaki, H Fujimaki, Y Uchida, S Rubhausen, M AF Rusydi, A. Ku, W. Schulz, B. Rauer, R. Mahns, I. Qi, D. Gao, X. Wee, A. T. S. Abbamonte, P. Eisaki, H. Fujimaki, Y. Uchida, S. Ruebhausen, M. TI Experimental Observation of the Crystallization of a Paired Holon State SO PHYSICAL REVIEW LETTERS LA English DT Article ID LADDER COMPOUND SR14CU24O41; SPIN-LADDER; SUPERCONDUCTIVITY; HOLES AB An excitation at 201 meV is observed in the doped-hole ladder cuprate Sr(14)Cu(24)O(41), using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the rungs. The excitation is of charge nature, with a temperature independent excitation energy, and can be understood via an intraladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder CDW(L), but persists above its transition temperature T(CDWL), indicating a strong local pairing above the T(CDWL). The 201 meV excitation vanishes in La(6)Ca(8)Cu(24)O(41+delta), and La(5)Ca(9)Cu(24)O(41) which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below T(CDW). C1 [Rusydi, A.; Qi, D.; Gao, X.; Wee, A. T. S.; Ruebhausen, M.] Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. [Rusydi, A.; Schulz, B.; Rauer, R.; Mahns, I.; Ruebhausen, M.] Univ Hamburg, Inst Angew Phys, D-20355 Hamburg, Germany. Ctr Free Electron Laser Sci CFEL, D-22607 Hamburg, Germany. [Ku, W.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Abbamonte, P.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Abbamonte, P.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Eisaki, H.] AIST, Nanoelect Res Inst, Tsukuba, Ibaraki 3058568, Japan. [Fujimaki, Y.; Uchida, S.] Univ Tokyo, Dept Superconduct, Bunkyo Ku, Tokyo 113, Japan. RP Rusydi, A (reprint author), Natl Univ Singapore, Fac Sci, Dept Phys, Singapore 117542, Singapore. EM phyandri@nus.edu.sg RI gao, xingyu/C-4732-2008; Qi, Dongchen/A-7052-2008; Wee, Andrew/B-6624-2009; Rusydi, Andrivo/I-1849-2016 OI Qi, Dongchen/0000-0001-8466-0257; Wee, Andrew/0000-0002-5828-4312; FU DFG [Ru 773/3-2]; NUS YIA; NUS cross faculty; FRC; NUS Advanced Functional Materials [R-263-000-432646]; Japan Society for Promotion of Science; U.S. DOE [DE-FG02-06ER46285]; DOE-CMSN [DE-AC02 98CH10886]; SSLS under NUS [C-380-003-003-001]; A*STAR/MOE [RP 3979908M]; A*STAR [12 105 0038]; [VH-FZ-007]; [NRF2008NRF-CRP002-024] FX We would like to acknowledge intense discussions with M. V. Klein, G. A. Sawatzky, and S. L. Cooper. This work was supported by VH-FZ-007, DFG Ru 773/3-2, NRF2008NRF-CRP002-024, NUS YIA, NUS cross faculty, FRC, NUS Advanced Functional Materials (R-263-000-432646), the 21st Century COE program of the Japan Society for Promotion of Science, U.S. DOE Grant No. DE-FG02-06ER46285 and theoretical support DOE-CMSN under Contract No. DE-AC02 98CH10886. Work partly performed at SSLS under NUS Core Support C-380-003-003-001, A*STAR/MOE RP 3979908M and A*STAR 12 105 0038 grants. NR 33 TC 11 Z9 11 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 8 PY 2010 VL 105 IS 2 AR 026402 DI 10.1103/PhysRevLett.105.026402 PG 4 WC Physics, Multidisciplinary SC Physics GA 622HQ UT WOS:000279652600001 PM 20867721 ER PT J AU Ran, LA Larsson, J Vigil-Stenman, T Nylander, JAA Ininbergs, K Zheng, WW Lapidus, A Lowry, S Haselkorn, R Bergman, B AF Ran, Liang Larsson, John Vigil-Stenman, Theoden Nylander, Johan A. A. Ininbergs, Karolina Zheng, Wei-Wen Lapidus, Alla Lowry, Stephen Haselkorn, Robert Bergman, Birgitta TI Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium SO PLOS ONE LA English DT Article ID ORTHOLOG GROUPS; AZOLLA; BACTERIA; ANABAENA; EVOLUTION; SYMBIOSIS; SEQUENCE; PROTEIN; GENES; DIFFERENTIATION AB Background: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts) and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. Methodology/Principal Findings: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2%) and a high frequency of transposable elements (similar to 600) scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. Conclusions/Significance: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla can thus be considered at the initial phase of a transition from free-living organism to a nitrogen-fixing plant entity, a transition process which may mimic what drove the evolution of chloroplasts from a cyanobacterial ancestor. C1 [Ran, Liang; Larsson, John; Vigil-Stenman, Theoden; Nylander, Johan A. A.; Ininbergs, Karolina; Bergman, Birgitta] Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. [Zheng, Wei-Wen] Fujian Agr & Forestry Univ, Biotechnol Res Ctr, Fuzhou, Peoples R China. [Lapidus, Alla; Lowry, Stephen] Joint Genome Inst, Dept Energy, Walnut Creek, CA USA. [Haselkorn, Robert] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. RP Ran, LA (reprint author), Stockholm Univ, Dept Bot, S-10691 Stockholm, Sweden. EM bergmanb@botan.su.se RI Ininbergs, Karolina/A-8125-2013; Lapidus, Alla/I-4348-2013 OI Lapidus, Alla/0000-0003-0427-8731 FU Swedish Energy Agency; Swedish Research Council; Knut and Alice Wallenberg Foundation; US Department of Energy's Office of Science; University of California; Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC02-05CH11231]; Los Alamos National Laboratory [DE-AC02-06NA25396]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by The Swedish Energy Agency (http://www.energimyndigheten.se/en/), The Swedish Research Council Formas (http://www.formas.se/) and by the Knut and Alice Wallenberg Foundation (http://www.wallenberg.com/kaw/) (to BB). This work was performed under the auspices of the US Department of Energy's Office of Science (http://www.science.energy.gov), Biological and Environmental Research Program, and by the University of California (http://berkeley.edu/), Lawrence Livermore National Laboratory (https://www.llnl.gov/) under Contract No. W-7405-Eng-48, Lawrence Berkeley National Laboratory (www.lbl.gov/) under contract No. DE-AC02-05CH11231 and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. The work conducted by the U.S. Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/) is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 49 TC 54 Z9 58 U1 4 U2 35 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 8 PY 2010 VL 5 IS 7 AR e11486 DI 10.1371/journal.pone.0011486 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 622CS UT WOS:000279637100013 PM 20628610 ER PT J AU Morgado, L Bruix, M Pessanha, M Londer, YY Salgueiro, CA AF Morgado, Leonor Bruix, Marta Pessanha, Miguel Londer, Yuri Y. Salgueiro, Carlos A. TI Thermodynamic Characterization of a Triheme Cytochrome Family from Geobacter sulfurreducens Reveals Mechanistic and Functional Diversity SO BIOPHYSICAL JOURNAL LA English DT Article ID DESULFOVIBRIO-VULGARIS; DESULFUROMONAS ACETOXIDANS; KINETIC CHARACTERIZATION; ELECTRON-TRANSFER; REDOX POTENTIALS; FE(III) OXIDE; REDUCTION; CENTERS; HEMES; PROTEINS AB A family of five periplasmic triheme cytochromes (PpcA-E) was identified in Geobacter sulfurreducens, where they play a crucial role by driving electron transfer from the cytoplasm to the cell exterior and assisting the reduction of extracellular acceptors. The thermodynamic characterization of PpcA using NMR and visible spectroscopies was previously achieved under experimental conditions identical to those used for the triheme cytochrome c(7) from Desulfuromonas acetoxidans. Under such conditions, attempts to obtain NMR data were complicated by the relatively fast intermolecular electron exchange. This work reports the detailed thermodynamic characterization of PpcB, PpcD, and PpcE under optimal experimental conditions. The thermodynamic characterization of PpcA was redone under these new conditions to allow a proper comparison of the redox properties with those of other members of this family. The heme reduction potentials of the four proteins are negative, differ from each other, and cover different functional ranges. These reduction potentials are strongly modulated by heme-heme interactions and by interactions with protonated groups (the redox-Bohr effect) establishing different cooperative networks for each protein, which indicates that they are designed to perform different functions in the cell. PpcA and PpcD appear to be optimized to interact with specific redox partners involving e(-)/H(+) transfer via different mechanisms. Although no evidence of preferential electron transfer pathway or e(-)/H(+) coupling was found for PpcB and PpcE, the difference in their working potential ranges suggests that they may also have different physiological redox partners. This is the first study, to our knowledge, to characterize homologous cytochromes from the same microorganism and provide evidence of their different mechanistic and functional properties. These findings provide an explanation for the coexistence of five periplasmic triheme cytochromes in G. sulfurreducens. C1 [Morgado, Leonor; Pessanha, Miguel; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte Ctr Quim Fina & Biotecnol, Caparica, Portugal. [Bruix, Marta] CSIC, Inst Quim Fis Rocasolano, Dept Espect & Estruct Mol, Madrid, Spain. [Londer, Yuri Y.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Salgueiro, CA (reprint author), Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Quim, Requimte Ctr Quim Fina & Biotecnol, Caparica, Portugal. EM csalgueiro@dq.fct.unl.pt RI Bruix, Marta/H-4161-2011; Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; Caparica, cqfb_staff/H-2611-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Bruix, Marta/0000-0002-0096-3558; Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; FU Fundacao para a Ciencia e a Tecnologia [SFRH/BD/37415/2007, PTDC/QUI/70182/2006]; U.S. Department of Energy's Office of Science. Biological and Environmental Research [DE-AC02-06CH11357]; Fundacao das Universidades Portuguesas [E-69/07]; Ministerio de Educacion y Ciencia [CTQ2008-0080/BQU, HP2006-0047] FX L.M. received a grant from Fundacao para a Ciencia e a Tecnologia (SFRH/BD/37415/2007). Y.Y.L. was supported by the U.S. Department of Energy's Office of Science. Biological and Environmental Research GTL program (contract No. DE-AC02-06CH11357). This work was supported by grant PTDC/QUI/70182/2006 from Fundacao para a Ciencia e a Tecnologia, Accao Integrada E-69/07 from Fundacao das Universidades Portuguesas, and CTQ2008-0080/BQU and Hispanic-Portuguese Project HP2006-0047 from the Ministerio de Educacion y Ciencia. NR 34 TC 34 Z9 34 U1 1 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JUL 7 PY 2010 VL 99 IS 1 BP 293 EP 301 DI 10.1016/j.bpj.2010.04.017 PG 9 WC Biophysics SC Biophysics GA 623EL UT WOS:000279720800037 PM 20655858 ER PT J AU Jackson, RN Klauer, AA Hintze, BJ Robinson, H van Hoof, A Johnson, SJ AF Jackson, Ryan N. Klauer, A. Alejandra Hintze, Bradley J. Robinson, Howard van Hoof, Ambro Johnson, Sean J. TI The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing SO EMBO JOURNAL LA English DT Article DE exosome activation; RNA helicase; RNA processing; TRAMP; X-ray crystallography ID 3' END FORMATION; HUMAN PM-SCL; SACCHAROMYCES-CEREVISIAE; MESSENGER-RNA; YEAST EXOSOME; POLY(A) POLYMERASE; NUCLEAR EXOSOME; QUALITY-CONTROL; CORE EXOSOME; PROTEIN AB The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases. The EMBO Journal (2010) 29, 2205-2216. doi:10.1038/emboj.2010.107; Published online 28 May 2010 C1 [Jackson, Ryan N.; Hintze, Bradley J.; Johnson, Sean J.] Utah State Univ, Dept Chem & Biochem, Logan, UT 84322 USA. [Klauer, A. Alejandra; van Hoof, Ambro] Univ Texas Hlth Sci Ctr Houston, Dept Microbiol & Mol Genet, Houston, TX USA. [Robinson, Howard] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Johnson, SJ (reprint author), Utah State Univ, Dept Chem & Biochem, 0300 Old Main Hill, Logan, UT 84322 USA. EM sean.johnson@usu.edu RI Johnson, Sean/G-8191-2012; OI Hintze, Bradley/0000-0002-4871-2096 FU USU Center for Integrated Biosystems; Eccles Foundation; USU New Faculty; NIH [GM 069900]; Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy; National Center for Research Resources of the National Institutes of Health FX We thank Dr Christopher Hill at the University of Utah for access to crystallization robotics. We also thank Dr Patrick Linder for generously providing antibodies against Mtr4 and members of the Johnson and van Hoof labs for insightful comments. The research was supported by the USU Center for Integrated Biosystems (RNJ), the Eccles Foundation (BJH), a USU New Faculty Research Grant (SJJ) and NIH grant GM 069900 (AvH). Financial support for use of the NSLS comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the U.S. Department of Energy, and from the National Center for Research Resources of the National Institutes of Health. NR 63 TC 54 Z9 54 U1 2 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD JUL 7 PY 2010 VL 29 IS 13 BP 2205 EP 2216 DI 10.1038/emboj.2010.107 PG 12 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 622AO UT WOS:000279630600012 PM 20512111 ER PT J AU Tang, WK Li, DY Li, CC Esser, L Dai, RM Guo, LA Xia, D AF Tang, Wai Kwan Li, Dongyang Li, Chou-chi Esser, Lothar Dai, Renming Guo, Liang Xia, Di TI A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants SO EMBO JOURNAL LA English DT Article DE p97; VCP; IBMPFD; structure; conformational change ID INCLUSION-BODY MYOPATHY; VALOSIN-CONTAINING PROTEIN; AAA-ATPASE; FRONTOTEMPORAL DEMENTIA; PAGET-DISEASE; CLPAP PROTEASE; VCP MUTATIONS; UBIQUITIN; BINDING; P97/VCP AB Mutations in p97, a major cytosolic AAA (ATPases associated with a variety of cellular activities) chaperone, cause inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). IBMPFD mutants have single amino-acid substitutions at the interface between the N-terminal domain (N-domain) and the adjacent AAA domain (D1), resulting in a reduced affinity for ADP. The structures of p97 N-D1 fragments bearing IBMPFD mutations adopt an atypical N-domain conformation in the presence of Mg(2+) center dot ATP gamma S, which is reversible by ADP, showing for the first time the nucleotide-dependent conformational change of the N-domain. The transition from the ADP-to the ATP gamma S-bound state is accompanied by a loop-to-helix conversion in the N-D1 linker and by an apparent re-ordering in the N-terminal region of p97. X-ray scattering experiments suggest that wild-type p97 subunits undergo a similar nucleotide-dependent N-domain conformational change. We propose that IBMPFD mutations alter the timing of the transition between nucleotide states by destabilizing the ADP-bound form and consequently interfere with the interactions between the N-domains and their substrates. The EMBO Journal (2010) 29, 2217-2229. doi:10.1038/emboj.2010.104; Published online 28 May 2010 C1 [Tang, Wai Kwan; Li, Dongyang; Esser, Lothar; Xia, Di] NCI, Cell Biol Lab, Ctr Canc Res, NIH, Bethesda, MD 20892 USA. [Li, Chou-chi; Dai, Renming] NCI, Intramural Res Support Program, SAIC Frederick, NIH, Frederick, MD 21701 USA. [Guo, Liang] IIT, BioCAT Adv Photon Source, Argonne Natl Lab, Argonne, IL USA. RP Xia, D (reprint author), NCI, Cell Biol Lab, Ctr Canc Res, NIH, 37 Convent Dr,Bldg 37,Room 2122C, Bethesda, MD 20892 USA. EM dixia@helix.nih.gov RI Tang, Wai Kwan/A-6158-2012 FU NIH, National Cancer Institute, Center for Cancer Research; Natural Science Foundation of China [30628006] FX We thank the staff of the SER-CAT beamline at APS, ANL for their assistance with data collection. This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. We acknowledge the Natural Science Foundation of China (Program 30628006) for its support to the Tongji University, China and to DX. Our special thanks go to Drs. Susan Gottesman, Michael Maurizi, and Yihong Ye for critical reading of the manuscript. We also thank George Leiman for editorial assistance. NR 46 TC 64 Z9 66 U1 2 U2 11 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD JUL 7 PY 2010 VL 29 IS 13 BP 2217 EP 2229 DI 10.1038/emboj.2010.104 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 622AO UT WOS:000279630600013 PM 20512113 ER PT J AU Polster, CS Zhang, R Cyb, MT Miller, JT Baertsch, CD AF Polster, Christopher S. Zhang, Rong Cyb, Michael T. Miller, Jeffrey T. Baertsch, Chelsey D. TI Selectivity loss of Pt/CeO2 PROX catalysts at low CO concentrations: mechanism and active site study SO JOURNAL OF CATALYSIS LA English DT Article DE Platinum; Ceria; Pt/CeO2; PROX; Active site density; Anaerobic reaction; Anaerobic titration; CO oxidation; H-2 oxidation; Redox mechanism ID CERIA-SUPPORTED CATALYSTS; PREFERENTIAL OXIDATION; CARBON-MONOXIDE; OXIDE CATALYSTS; HYDROGEN PROX; H-2; CUO-CEO2; ALUMINA; SYSTEM; EXCESS AB CO and H-2 oxidation were studied over a series of Pt/CeO2 catalysts with differing Pt loadings and dispersions. Kinetic rate analysis confirms the presence of dual Langmuir-Hinshelwood (L-H) and Mars and van Krevelen (M-vK) pathways and is used to explain the loss in CO oxidation selectivity at low CO concentrations. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the strong CO coverage dependence on both CO and O-2 concentrations and explains the transition from L-H to M-vK reaction character. Redox site measurements are performed on Pt/CeO2 catalysts by anaerobic titrations under conditions where the M-vK pathway dominates the reaction rate. Similar redox site densities per interfacial Pt atom suggest that interfacial Pt-O-Ce sites are responsible for M-vK redox activity. (C) 2010 Elsevier Inc. All rights reserved. C1 [Polster, Christopher S.; Zhang, Rong; Cyb, Michael T.; Baertsch, Chelsey D.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Miller, Jeffrey T.] Argonne Natl Lab, CSE, Argonne, IL 60439 USA. RP Baertsch, CD (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM baertsch@purdue.edu RI ID, MRCAT/G-7586-2011 FU US Department of Energy, Office of Science and Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT member institutions FX Funding was provided by Purdue University and the Purdue Research Foundation. The authors acknowledge Ms. Carrie Clark for contributions to catalyst testing. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 29 TC 25 Z9 26 U1 8 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD JUL 7 PY 2010 VL 273 IS 1 BP 50 EP 58 DI 10.1016/j.jcat.2010.04.017 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 626ME UT WOS:000279969300006 ER PT J AU Stolte, WC Ohrwall, G AF Stolte, W. C. Ohrwall, G. TI Sulfur K-edge photofragmentation of ethylene sulfide SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID YIELD SPECTROSCOPY; PHOTODISSOCIATION; PHOTOIONIZATION; EXCITATION; SPECTRA; PHOTOEXCITATION; FRAGMENTATION; RESOLUTION; OXIDE; NM AB We have investigated the photofragmentation properties of the three-membered ring heterocyclic molecule ethylene sulfide or thiirane, C(2)H(4)S, by time-of-flight mass spectroscopy. Positive ions have been collected as a function of photon energy around the S K ionization threshold. Branching ratios were derived for all detected ions, which are informative of the decay dynamics and photofragmentation patterns of the core-excited species. We present a new assignment of the spectral features around the S K-edge. (C) 2010 American Institute of Physics. [doi:10.1063/1.3457946] C1 [Stolte, W. C.] Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. [Stolte, W. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ohrwall, G.] Lund Univ, MAX Lab, SE-22100 Lund, Sweden. RP Stolte, WC (reprint author), Univ Nevada, Dept Chem, Las Vegas, NV 89154 USA. EM wcstolte@lbl.gov FU ALS; National Science Foundation [PHY-05-55699]; DOE [DE-AC03-76SF00098] FX The authors thank the staff of the ALS for their excellent support. We would also like to thank M. N. Piancastelli for her help with the preparation of this manuscript. Support from the National Science Foundation under NSF Grant No. PHY-05-55699 is gratefully acknowledged. The Advanced Light Source is supported by DOE (Grant No. DE-AC03-76SF00098). NR 24 TC 3 Z9 3 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2010 VL 133 IS 1 AR 014306 DI 10.1063/1.3457946 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 622DU UT WOS:000279640600017 PM 20614968 ER PT J AU Teng, J Zhang, LX Jiang, Y Guo, JD Guo, QL Wang, EG Ebert, P Sakurai, T Wu, KH AF Teng, Jing Zhang, Lixin Jiang, Ying Guo, Jiandong Guo, Qinlin Wang, Enge Ebert, Philipp Sakurai, T. Wu, Kehui TI Catalystlike behavior of Si adatoms in the growth of monolayer Al film on Si(111) SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID QUANTUM-WELL STATES; LOW-TEMPERATURE; NUCLEATION; SURFACES; ISLANDS; PB AB The formation mechanism of monolayer Al(111)1 x 1 film on the Si(111) root 3 x root 3-Al substrate was studied by scanning tunneling microscopy and first-principles calculations. We found that the Si adatoms on the root 3 x root 3-Al substrate play important roles in the growth process. The growth of Al-1 x 1 islands is mediated by the formation and decomposition of SiAl2 clusters. Based on experiments and theoretical simulations we propose a model where free Si atoms exhibit a catalystlike behavior by capturing and releasing Al atoms during the Al film growth. (c) 2010 American Institute of Physics. [doi:10.1063/1.3455231] C1 [Teng, Jing; Jiang, Ying; Guo, Jiandong; Guo, Qinlin; Wang, Enge; Wu, Kehui] Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. [Zhang, Lixin] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ebert, Philipp] Forschungszentrum Julich GmbH, Inst Festkorperforsch, D-52425 Julich, Germany. [Sakurai, T.] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan. RP Wu, KH (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China. EM khwu@aphy.iphy.ac.cn RI Teng, Jing/E-9035-2013; Jiang, Ying/D-3626-2014; Guo, Jiandong/F-2081-2015; OI Jiang, Ying/0000-0002-6887-5503; Guo, Jiandong/0000-0002-7893-022X; Ebert, Ph./0000-0002-2022-2378 FU National Natural Science Foundation of China [10874210, 60621091]; CAS; MOST of China [2007CB936800] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 10874210 and 60621091), CAS, and MOST of China (Grant No. 2007CB936800). NR 22 TC 2 Z9 2 U1 2 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD JUL 7 PY 2010 VL 133 IS 1 AR 014704 DI 10.1063/1.3455231 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 622DU UT WOS:000279640600030 PM 20614981 ER PT J AU Tringides, MC Hupalo, M AF Tringides, M. C. Hupalo, M. TI Surface diffusion experiments with STM: equilibrium correlations and non-equilibrium low temperature growth SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article ID CURRENT FLUCTUATIONS; PB; NUCLEATION; OVERLAYERS; EVOLUTION; ISLANDS; UNIFORM; FILMS AB Measurements of surface diffusion depend on the state of the system whether the state is equilibrium versus non-equilibrium. Equilibrium experiments carried out in 2-d overlayers measure the collective diffusion coefficient D(c) and can test theoretical predictions in two-dimensional statistical mechanics. Growth experiments typically carried out at low temperatures and/or high flux rates probe systems under non-equilibrium conditions where novel diffusion mechanisms can potentially exist. The use of STM to study both types of measurements is discussed. Dc can be measured from the autocorrelation of time-dependent tunneling current fluctuations generated by atom motion in and out of the tunneling area. Controlled experiments as function of temperature, coverage and tip-surface separation confirm that the signal is diffusive. For growth experiments the unusually uniform height island (for Pb/Si(111) In/Si(111)) has revealed a novel and intriguing type of diffusion at low temperatures that accounts for the high degree of the self organization. By monitoring the evolution of the stable islands out of a mixture of stable and unstable islands the unusual role of the wetting layer surrounding the growing islands is revealed. C1 [Tringides, M. C.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tringides, MC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. FU Office of Science, Basic Energy Sciences, Materials Science Division of the US Department of Energy-USDOE through the Ames Laboratory [DE-AC02-07CH11358] FX This work was supported in part by the Office of Science, Basic Energy Sciences, Materials Science Division of the US Department of Energy-USDOE under Contract No. DE-AC02-07CH11358 through the Ames Laboratory. NR 56 TC 4 Z9 4 U1 3 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD JUL 7 PY 2010 VL 22 IS 26 AR 264002 DI 10.1088/0953-8984/22/26/264002 PG 14 WC Physics, Condensed Matter SC Physics GA 611HA UT WOS:000278802000008 PM 21386459 ER PT J AU Anjum, S Jaffari, GH Rumaiz, AK Rafique, MS Shah, SI AF Anjum, Safia Jaffari, G. Hassnain Rumaiz, Abdul K. Rafique, M. Shahid Shah, S. Ismat TI Role of vacancies in transport and magnetic properties of nickel ferrite thin films SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID DEPOSITION; NIFE2O4; GROWTH; TIO2 AB Nickel ferrite thin films were synthesized by pulsed laser deposition. It was determined that the monotonic increase in saturation magnetization and the non-monotonic increase in electrical conductivity depend on the oxygen partial pressure during the growth of the thin films. A substantial reduction in magnetization was found which ranged between 0.4% and 40% of the bulk value as the oxygen partial pressure increased from 0.2 x 10(-6) Torr to 500 mTorr during the deposition of the films. There was a three orders of magnitude increase in conductivity for the sample prepared under the most oxygen deficient environment ( partial pressure of oxygen 0.2 x 10-6 Torr). These variations in saturation magnetization and conductivity are described within the framework of cation/oxygen vacancies in an inverse spinel nickel ferrite structure. The changes in the electronic structure due to the presence of the vacancies were investigated using x-ray photoelectron spectroscopy, which confirmed the formation of lower valent Ni for the samples prepared in an oxygen deficient atmosphere. C1 [Jaffari, G. Hassnain; Shah, S. Ismat] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Anjum, Safia; Rafique, M. Shahid] Univ Engn & Technol, Dept Phys, Lahore, Pakistan. [Rumaiz, Abdul K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Shah, S. Ismat] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Shah, SI (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. RI Dom, Rekha/B-7113-2012; Rumaiz, Abdul/J-5084-2012 NR 34 TC 17 Z9 17 U1 5 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2010 VL 43 IS 26 AR 265001 DI 10.1088/0022-3727/43/26/265001 PG 7 WC Physics, Applied SC Physics GA 612MI UT WOS:000278902400007 ER PT J AU Kim, SK AF Kim, Sang-Koog TI Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID EXCHANGE BOUNDARY-CONDITIONS; FERROMAGNETIC-FILMS; DOMAIN-WALL; ROOM-TEMPERATURE; MAGNETOSTATIC MODES; SURFACE ANISOTROPY; CELLULAR-AUTOMATA; MAGNETORESISTANCE; PROPAGATION; RESONANCE AB Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale patterned magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin wave dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel wave characteristics of spin waves, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of patterned magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-wave studies. C1 [Kim, Sang-Koog] Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Nanospin Lab, Res Inst Adv Mat,Dept Mat Sci & Engn, Seoul 151744, South Korea. [Kim, Sang-Koog] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Div Mat Sci, Berkeley, CA 94720 USA. RP Kim, SK (reprint author), Seoul Natl Univ, Res Ctr Spin Dynam & Spin Wave Devices, Nanospin Lab, Res Inst Adv Mat,Dept Mat Sci & Engn, Seoul 151744, South Korea. EM sangkoog@snu.ac.kr RI Kim, Sang-Koog/J-4638-2014 FU Ministry of Education, Science and Technology (MEST) [20090063589]; Center for X-ray Optics, Lawrence Berkeley National Laboratory FX The author is thankful to Ki-Suk Lee and Dong-Soo Han for their valuable assistance. This work was supported by the Basic Science Research Program through a grant of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST; Grant No 20090063589). The author also gratefully acknowledges the LG YONAM Foundation for its financial support through the Professors' overseas research program for sabbatical research leave at the Center for X-ray Optics, Lawrence Berkeley National Laboratory. NR 169 TC 78 Z9 79 U1 1 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JUL 7 PY 2010 VL 43 IS 26 AR 264004 DI 10.1088/0022-3727/43/26/264004 PG 25 WC Physics, Applied SC Physics GA 612MI UT WOS:000278902400005 ER PT J AU Hoekstra, RM Telo, JP Wu, Q Stephenson, RM Nelsen, SF Zink, JI AF Hoekstra, Ryan M. Telo, Joao P. Wu, Qin Stephenson, Rachel M. Nelsen, Stephen F. Zink, Jeffrey I. TI Solvent Effects on the Coexistence of Localized and Delocalized 4,4 '-Dinitrotolane Radical Anion by Resonance Raman Spectroscopy SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ELECTRON-TRANSFER REACTIONS; REORGANIZATION ENERGY; TEMPERATURE-DEPENDENCE; OPTICAL-SPECTRA; POLAR-SOLVENTS; BORDERLINE; DYNAMICS; LIQUIDS; RATES AB The resonance Raman spectrum of the simple alkyne bndge in 4,4'-dimtrotolane radical anion shows two distinct bands, providing proof of the solvent-dependent coexistence of charge-localized and -delocalized species. The Raman spectra of normal modes primarily involving the charge-bearing -PhNO(2) units also support the coexistence of two solvent-dependent electronic species. The temperature dependence of the spectra of the bridging unit shows an inverse relationship between the solvent reorganization energy (lambda(s)) and the temperature. C1 [Telo, Joao P.] Inst Super Tecn, Ctr Quim Estrutural, P-1049001 Lisbon, Portugal. [Hoekstra, Ryan M.; Stephenson, Rachel M.; Zink, Jeffrey I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Wu, Qin] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Nelsen, Stephen F.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Nelsen, Stephen F.] Univ Wisconsin, Mol Struct Lab, Madison, WI 53706 USA. RP Telo, JP (reprint author), Inst Super Tecn, Ctr Quim Estrutural, Av Rovisco Pats, P-1049001 Lisbon, Portugal. EM jptelo@ist.utl.pt; nelsen@chem.wisc.edu; zink@chem.ucla.edu RI Telo, Joao/H-7977-2012; Wu, Qin/C-9483-2009 OI Telo, Joao/0000-0003-1463-1068; Wu, Qin/0000-0001-6350-6672 FU NSF [CHE-0647719, CHE-0809384]; FCT [SFRH/BSAB/880/2009]; DOE [BES/DE-AC02-98CH10886] FX We thank NSF under CHE-0647719 (S F N) and CHE-0809384 (J I Z.), FCT under SFRH/BSAB/880/2009 (J.P T), and DOE under BES/DE-AC02-98CH10886 (Q W.) for support of this work. NR 28 TC 16 Z9 16 U1 1 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8825 EP + DI 10.1021/ja1017859 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200007 PM 20545327 ER PT J AU Chapman, KW Chupas, PJ Nenoff, TM AF Chapman, Karena W. Chupas, Peter J. Nenoff, Tina M. TI Radioactive Iodine Capture in Silver-Containing Mordenites through Nanoscale Silver Iodide Formation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PAIR DISTRIBUTION FUNCTION; ROOM-TEMPERATURE; AGI; STABILIZATION; NANOPARTICLES; CONDUCTION; PHASE AB The effective capture and storage of radiological iodine ((129)I) remains a strong concern for safe nuclear waste storage and safe nuclear energy. Silver-containing mordenite (MOR) is a longstanding benchmark for iodine capture; however, the molecular level understanding of this process needed to develop more effective iodine getters has remained elusive. Here we probe the structure and distribution of iodine sorbed by silver-containing MOR using differential pair distribution function analysis. While iodine is distributed between gamma-AgI nanoparticles on the zeolite surface and subnanometer alpha-AgI clusters within the pores for reduced silver MOR, in the case of unreduced silver-exchanged MOR, iodine is exclusively confined to the pores as subnanometer alpha-AgI. Consequently, unreduced silver-containing zeolites may offer a more secure route for radioactive iodine capture, with the potential to more effectively trap the iodine for long-term storage. C1 [Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nenoff, Tina M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chapman, KW (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chapmank@aps.anl.gov RI Chapman, Karena/G-5424-2012 FU U.S Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S DOE; U S DOE's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank J. L. Krumhansl, N. W. Ockwig, and D Rademacher for their help in laboratory experiments. Work performed at Argonne and use of the Advanced Photon Source were supported by the U.S Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 Work performed at Sandia is supported by the U.S DOE, Office of Nuclear Energy, Fuel Cycle R&D, Separations and Waste Forms Campaign Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U S DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000 NR 24 TC 102 Z9 102 U1 10 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8897 EP + DI 10.1021/ja103110y PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200039 PM 20550110 ER PT J AU Podsiadlo, P Krylova, G Lee, B Critchley, K Gosztola, DJ Talapin, DV Ashby, PD Shevchenko, EV AF Podsiadlo, Paul Krylova, Galyna Lee, Byeongdu Critchley, Kevin Gosztola, David J. Talapin, Dmitri V. Ashby, Paul D. Shevchenko, Elena V. TI The Role of Order, Nanocrystal Size, and Capping Ligands in the Collective Mechanical Response of Three-Dimensional Nanocrystal Solids SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID BINARY NANOPARTICLE SUPERLATTICES; COLLOIDAL CRYSTALS; ELASTIC PROPERTIES; PBS NANOCRYSTALS; QUANTUM DOTS; THIN-FILMS; CDSE; TRANSITION AB Chemically synthesized PbS, CdSe, and CoPt3 nanocrystals (NCs) were self-assembled into highly periodic supercrystals Using the combination of small-angle X-ray scattering, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetric analysis, and nanoindentation, we correlated the mechanical properties of the supercrystals with the NC size, capping ligands, and degree of ordering. We found that such structures have elastic moduli and hardnesses in the range of similar to 0 2-6 GPa and 10-450 MPa, respectively, which are analogous to strong polymers The high degree of ordering characteristic to supercrystals was found to lead to more than 2-fold increase in hardnesses and elastic moduli due to tighter packing of the NCs, and smaller interparticle distance The nature of surface ligands also significantly affects the mechanical properties of NCs solids. The experiments with series of 4.7, 7 1, and 13 nm PbS NCs revealed a direct relationship between the core size and hardness/modulus, analogous to the nanoparticle-filled polymer composites. This observation suggests that the matrices of organic ligands have properties similar to polymers The effective moduli of the ligand matrices were calculated to be in the range of similar to 0.1-0 7 GPa C1 [Podsiadlo, Paul; Krylova, Galyna; Gosztola, David J.; Talapin, Dmitri V.; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Critchley, Kevin] Univ Leeds, Sch Phys, Leeds LS2 9JT, W Yorkshire, England. [Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Ashby, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Podsiadlo, P (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Gosztola, David/D-9320-2011; OI Gosztola, David/0000-0003-2674-1379; Critchley, Kevin/0000-0002-0112-8626; Lee, Byeongdu/0000-0003-2514-8805 FU Office of Science, Office of Basic Energy Sciences, of the U S. Department of Energy [DE-AC02-06CH11357, DE-AC02-05CH11231]; Argonne National Laboratory FX Work at the Center for Nanoscale Materials and Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the U S. Department of Energy under Contract Nos DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively. P.P. thanks the support of Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory. NR 59 TC 74 Z9 74 U1 3 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8953 EP 8960 DI 10.1021/ja100464a PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200051 PM 20550200 ER PT J AU Francisco, MC Malliakas, CD Piccoli, PMB Gutmann, MJ Schultz, AJ Kanatzidis, MG AF Francisco, Melanie C. Malliakas, Christos D. Piccoli, Paula M. B. Gutmann, Matthias J. Schultz, Arthur J. Kanatzidis, Mercouri G. TI Development and Loss of Ferromagnetism Controlled by the Interplay of Ge Concentration and Mn Vacancies in Structurally Modulated Y4Mn1-xGa12-yGey SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID NEUTRON STRUCTURE DETERMINATION; TERNARY INTERMETALLIC COMPOUND; SINGLE-CRYSTAL DIFFRACTOMETER; HEAVY-FERMION COMPOUNDS; MAGNETIC-PROPERTIES; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; HOMOLOGOUS SERIES; MOLTEN GALLIUM; LIQUID INDIUM AB The cubic intermetallic phase Y4Mn1-xGa12-yGey (x = 0-0 26, y = 0-4 0) has been isolated from a molten gallium flux reaction It presents a rare example of a system where ferromagnetism can be induced by controlling the vacancies of the magnetic centers. The Y4PdGa12 type crystal structure is made up of a corner-sharing octahedral network of Ga and Ge atoms with Mn atoms at the centers of half the octahedra and Y atoms in the voids At the highest Ge concentration, y = 4.0, the Mn site is nearly fully occupied, x = 0.05, and the samples are paramagnetic At a lower Ge concentration, y = 1 0, Mn deficiency develops with x = 0 10 Surprisingly, strong ferromagnetism is observed with T-c = 223 K. When Ge is excluded, y = 0, Mn is substantially deficient at x = 0.26 and ferromagnetism is maintained with a T-c of similar to 160 K. In addition, a 6-fold modulated superstructure appears owing to an ordered slab-like segregation of Mn atoms and vacancies. Corresponding bond distortions propagate throughout the octahedral Ga network Structure-property relationships are examined with X-ray and neutron diffraction, magnetic susceptibility, and electrical resistivity measurements C1 [Francisco, Melanie C.; Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Piccoli, Paula M. B.; Schultz, Arthur J.] Argonne Natl Lab, Intense Pulsed Neutron Source, Argonne, IL 60439 USA. [Gutmann, Matthias J.] Rutherford Appleton Lab STFC, ISIS Facil, Didcot OX11 0QX, Oxon, England. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. FU U S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-07ER46356]; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University; National Science Foundation; U.S Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Science and Technology Facilities Council FX Research supported by the U S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-07ER46356 The SEM EDS work was performed in the EPIC facility of NUANCE Center at Northwestern University NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University. Trace metals analysis was performed in the IMSERC facility at Northwestern University and supported by the National Science Foundation. Work at Argonne National Laboratory was supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357 Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council NR 73 TC 12 Z9 12 U1 1 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 8998 EP 9006 DI 10.1021/ja1009986 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200056 PM 20552958 ER PT J AU Krylova, G Dimitrijevic, NM Talapin, DV Guest, JR Borchert, H Lobo, A Rajh, T Shevchenko, EV AF Krylova, Galyna Dimitrijevic, Nada M. Talapin, Dmitri V. Guest, Jeffrey R. Borchert, Holger Lobo, Arun Rajh, Tijana Shevchenko, Elena V. TI Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ONE-POT SYNTHESIS; FEPT NANOPARTICLES; OXYGEN-REDUCTION; CAPILLARY-ELECTROPHORESIS; HYDROGEN-PEROXIDE; LUMINOL CHEMILUMINESCENCE; MAGNETIC NANOPARTICLES; ALLOY NANOPARTICLES; COPT3 NANOCRYSTALS; SUPEROXIDE ANION AB We propose a simple chemiluminescence (CL) method for investigation of the surface of Co-based nanocrystals (NCs). Using a combination of CL and spin-trap electron paramagnetic resonance techniques, we systematically studied the generation of reactive oxygen species (ROS) at the surface of differently sized CoPt(3) spherical NCs and CoPt(3)/Au nanodumbbells. We have shown that differently sized CoPt(3) NCs can promote the formation of ROS and as a result can lead to the oxidation of luminol accompanied by the emission of the light. CL allows monitoring the stability of transition-metal-based NCs against oxidation and dissolution. We found by CL that cobalt ions slowly leach from the surface of CoPt(3) NCs even under very mild conditions, however, the amount of the leached cobalt ions does not exceed the maximal concentration of cobalt at the NC surface indicating that only surface atoms can go into solution C1 [Krylova, Galyna; Dimitrijevic, Nada M.; Talapin, Dmitri V.; Guest, Jeffrey R.; Rajh, Tijana; Shevchenko, Elena V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Dimitrijevic, Nada M.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Borchert, Holger] Carl von Ossietzky Univ Oldenburg, Dept Phys, Energy & Semicond Res Lab, D-26111 Oldenburg, Germany. [Lobo, Arun] DESY, HASYLAB, D-22607 Hamburg, Germany. RP Shevchenko, EV (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Borchert, Holger/F-9461-2011; Guest, Jeffrey/B-2715-2009 OI Guest, Jeffrey/0000-0002-9756-8801 FU U S Department of Energy [DE-AC02-06CH11357]; NSF [DMR-0847535]; German Science Foundation (DEG) [SFB 508] FX We acknowledge Prof. Horst Weller (University of Hamburg) and Thomas Moller (HASYLAB at DESY) for fruitful discussions The work at the Center for Nanoscale Materials (ANL) was supported by the U S Department of Energy under Contract No DE-AC02-06CH11357 D V.T acknowledges the NSF CAREER under Award No. DMR-0847535 XPS measurements were supported by the German Science Foundation (DEG) within the framework of the SFB 508. NR 72 TC 13 Z9 13 U1 6 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JUL 7 PY 2010 VL 132 IS 26 BP 9102 EP 9110 DI 10.1021/ja102413k PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 621FP UT WOS:000279561200068 PM 20550199 ER PT J AU Baek, SH Sakai, H Lee, H Fisk, Z Bauer, ED Thompson, JD AF Baek, S. -H. Sakai, H. Lee, H. Fisk, Z. Bauer, E. D. Thompson, J. D. TI Crystal-electric-field effects and quadrupole fluctuations in Ce3Au3Sb4 detected by Sb NQR SO PHYSICAL REVIEW B LA English DT Article ID SEMICONDUCTING PROPERTIES; TRANSPORT-PROPERTIES; HEAVY-FERMION; GAP; RELAXATION; CE3BI4PT3; METALS; YBSB; NMR; CU AB We report Sb-121,Sb-123 nuclear quadrupole resonance (NQR) studies on single crystals of the narrow-gap semiconductor Ce3Au3Sb4. Five NQR lines from the two Sb isotopes were successfully identified. The temperature dependence of the nuclear quadrupole frequency (nu(Q)), as well as the static magnetic susceptibility (chi), is well explained by crystal-electric-field effects. The nuclear spin-lattice relaxation rates (T1(-1)) of both Sb-121 and Sb-123 increase rapidly with decreasing temperature. The ratio of T-1(-1) for the two Sb isotopes is constant at high temperature but it decreases at low temperatures, indicating the role of quadrupole fluctuations of the Ce ions. The possible origin of the large specific heat at low temperatures is discussed basing on our results. C1 [Baek, S. -H.; Sakai, H.; Lee, H.; Fisk, Z.; Bauer, E. D.; Thompson, J. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakai, H.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Fisk, Z.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. RP Baek, SH (reprint author), IFW Dresden, Inst Solid State Res, Dresden, Germany. EM sbaek.fu@gmail.com RI Bauer, Eric/D-7212-2011; Baek, Seung-Ho/F-4733-2011; OI Baek, Seung-Ho/0000-0002-0059-8255; Bauer, Eric/0000-0003-0017-1937 FU U.S. Department of Energy, Office of Science FX We thank V. Kataev, S. Kambe, and Y. Tokunaga for the useful suggestions and discussions. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. Department of Energy, Office of Science. NR 24 TC 1 Z9 1 U1 0 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 7 PY 2010 VL 82 IS 3 AR 035203 DI 10.1103/PhysRevB.82.035203 PG 4 WC Physics, Condensed Matter SC Physics GA 621SA UT WOS:000279601600001 ER PT J AU Adare, A Afanasiev, S Aidala, C Ajitanand, NN Akiba, Y Al-Bataineh, H Alexander, J Aoki, K Aphecetche, L Asai, J Atomssa, ET Averbeck, R Awes, TC Azmoun, B Babintsev, V Bai, M Baksay, G Baksay, L Baldisseri, A Barish, KN Barnes, PD Bassalleck, B Basye, AT Bathe, S Batsouli, S Baublis, V Baumann, C Bazilevsky, A Belikov, S Bennett, R Berdnikov, A Berdnikov, Y Bickley, AA Boissevain, JG Borel, H Boyle, K Brooks, ML Buesching, H Bumazhnov, V Bunce, G Butsyk, S Camacho, CM Campbell, S Chang, BS Chang, WC Charvet, JL Chernichenko, S Chi, CY Chiu, M Choi, IJ Choudhury, RK Chujo, T Chung, P Churyn, A Cianciolo, V Citron, Z Cole, BA Del Valle, ZC Constantin, P Csanad, M Csorgo, T Dahms, T Dairaku, S Das, K David, G Denisov, A d'Enterria, D Deshpande, A Desmond, EJ Dietzsch, O Dion, A Donadelli, M Drapier, O Drees, A Drees, KA Dubey, AK Durum, A Dutta, D Dzhordzhadze, V Efremenko, YV Ellinghaus, F Engelmore, T Enokizono, A En'yo, H Esumi, S Eyser, KO Fadem, B Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Fraenkel, Z Frantz, JE Franz, A Frawley, AD Fujiwara, K Fukao, Y Fusayasu, T Garishvili, I Glenn, A Gong, H Gonin, M Gosset, J Goto, Y De Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gunji, T Gustafsson, HA Henni, AH Haggerty, JS Hamagaki, H Han, R Hartouni, EP Haruna, K Haslum, E Hayano, R Heffner, M Hemmick, TK Hester, T He, X Hill, JC Hohlmann, M Holzmann, W Homma, K Hong, B Horaguchi, T Hornback, D Huang, S Ichihara, T Ichimiya, R Ikeda, Y Imai, K Imrek, J Inaba, M Isenhower, D Ishihara, M Isobe, T Issah, M Isupov, A Ivanischev, D Jacak, BV Jia, J Jin, J Johnson, BM Joo, KS Jouan, D Kajihara, F Kametani, S Kamihara, N Kamin, J Kang, JH Kapustinsky, J Kawall, D Kazantsev, AV Kempel, T Khanzadeev, A Kijima, KM Kikuchi, J Kim, BI Kim, DH Kim, DJ Kim, E Kim, SH Kinney, E Kiriluk, K Kiss, A Kistenev, E Klay, J Klein-Boesing, C Kochenda, L Komkov, B Konno, M Koster, J Kozlov, A Kral, A Kravitz, A Kunde, GJ Kurita, K Kurosawa, M Kweon, MJ Kwon, Y Kyle, GS Lacey, R Lai, YS Lajoie, JG Layton, D Lebedev, A Lee, DM Lee, KB Lee, T Leitch, MJ Leite, MAL Lenzi, B Liebing, P Liska, T Litvinenko, A Liu, H Liu, MX Li, X Love, B Lynch, D Maguire, CF Makdisi, YI Malakhov, A Malik, MD Manko, VI Mannel, E Mao, Y Masek, L Masui, H Matathias, F McCumber, M McGaughey, PL Means, N Meredith, B Miake, Y Mikes, P Miki, K Milov, A Mishra, M Mitchell, JT Mohanty, AK Morino, Y Morreale, A Morrison, DP Moukhanova, TV Mukhopadhyay, D Murata, J Nagamiya, S Nagle, JL Naglis, M Nagy, MI Nakagawa, I Nakamiya, Y Nakamura, T Nakano, K Newby, J Nguyen, M Niita, T Nouicer, R Nyanin, AS O'Brien, E Oda, SX Ogilvie, CA Okada, H Okada, K Oka, M Onuki, Y Oskarsson, A Ouchida, M Ozawa, K Pak, R Palounek, APT Pantuev, V Papavassiliou, V Park, J Park, WJ Pate, SF Pei, H Peng, JC Pereira, H Peresedov, V Peressounko, DY Pinkenburg, C Purschke, ML Purwar, AK Qu, H Rak, J Rakotozafindrabe, A Ravinovich, I Read, KF Rembeczki, S Reygers, K Riabov, V Riabov, Y Roach, D Roche, G Rolnick, SD Rosati, M Rosendahl, SSE Rosnet, P Rukoyatkin, P Ruzicka, P Rykov, VL Sahlmueller, B Saito, N Sakaguchi, T Sakai, S Sakashita, K Samsonov, V Sato, T Sawada, S Sedgwick, K Seele, J Seidl, R Semenov, AY Semenov, V Seto, R Sharma, D Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Silvestre, C Sim, KS Singh, BK Singh, CP Singh, V Slunecka, M Soldatov, A Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Staley, F Stankus, PW Stenlund, E Stepanov, M Ster, A Stoll, SP Sugitate, T Suire, C Sukhanov, A Sziklai, J Takagui, EM Taketani, A Tanabe, R Tanaka, Y Tanida, K Tannenbaum, MJ Taranenko, A Tarjan, P Themann, H Thomas, TL Togawa, M Toia, A Tomasek, L Tomita, Y Torii, H Towell, RS Tram, VN Tserruya, I Tsuchimoto, Y Vale, C Valle, H van Hecke, HW Veicht, A Velkovska, J Vertesi, R Vinogradov, AA Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, Y Wei, F Wessels, J White, SN Winter, D Woody, CL Wysocki, M Xie, W Yamaguchi, YL Yamaura, K Yang, R Yanovich, A Ying, J Yokkaichi, S Young, GR Younus, I Yushmanov, IE Zajc, WA Zaudtke, O Zhang, C Zhou, S Zolin, L AF Adare, A. Afanasiev, S. Aidala, C. Ajitanand, N. N. Akiba, Y. Al-Bataineh, H. Alexander, J. Aoki, K. Aphecetche, L. Asai, J. Atomssa, E. T. Averbeck, R. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Baksay, G. Baksay, L. Baldisseri, A. Barish, K. N. Barnes, P. D. Bassalleck, B. Basye, A. T. Bathe, S. Batsouli, S. Baublis, V. Baumann, C. Bazilevsky, A. Belikov, S. Bennett, R. Berdnikov, A. Berdnikov, Y. Bickley, A. A. Boissevain, J. G. Borel, H. Boyle, K. Brooks, M. L. Buesching, H. Bumazhnov, V. Bunce, G. Butsyk, S. Camacho, C. M. Campbell, S. Chang, B. S. Chang, W. C. Charvet, J. -L. Chernichenko, S. Chi, C. Y. Chiu, M. Choi, I. J. Choudhury, R. K. Chujo, T. Chung, P. Churyn, A. Cianciolo, V. Citron, Z. Cole, B. A. Del Valle, Z. Conesa Constantin, P. Csanad, M. Csorgo, T. Dahms, T. Dairaku, S. Das, K. David, G. Denisov, A. d'Enterria, D. Deshpande, A. Desmond, E. J. Dietzsch, O. Dion, A. Donadelli, M. Drapier, O. Drees, A. Drees, K. A. Dubey, A. K. Durum, A. Dutta, D. Dzhordzhadze, V. Efremenko, Y. V. Ellinghaus, F. Engelmore, T. Enokizono, A. En'yo, H. Esumi, S. Eyser, K. O. Fadem, B. Fields, D. E. Finger, M., Jr. Finger, M. Fleuret, F. Fokin, S. L. Fraenkel, Z. Frantz, J. E. Franz, A. Frawley, A. D. Fujiwara, K. Fukao, Y. Fusayasu, T. Garishvili, I. Glenn, A. Gong, H. Gonin, M. Gosset, J. Goto, Y. De Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gunji, T. Gustafsson, H. -A. Henni, A. Hadj Haggerty, J. S. Hamagaki, H. Han, R. Hartouni, E. P. Haruna, K. Haslum, E. Hayano, R. Heffner, M. Hemmick, T. K. Hester, T. He, X. Hill, J. C. Hohlmann, M. Holzmann, W. Homma, K. Hong, B. Horaguchi, T. Hornback, D. Huang, S. Ichihara, T. Ichimiya, R. Ikeda, Y. Imai, K. Imrek, J. Inaba, M. Isenhower, D. Ishihara, M. Isobe, T. Issah, M. Isupov, A. Ivanischev, D. Jacak, B. V. Jia, J. Jin, J. Johnson, B. M. Joo, K. S. Jouan, D. Kajihara, F. Kametani, S. Kamihara, N. Kamin, J. Kang, J. H. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Kempel, T. Khanzadeev, A. Kijima, K. M. Kikuchi, J. Kim, B. I. Kim, D. H. Kim, D. J. Kim, E. Kim, S. H. Kinney, E. Kiriluk, K. Kiss, A. Kistenev, E. Klay, J. Klein-Boesing, C. Kochenda, L. Komkov, B. Konno, M. Koster, J. Kozlov, A. Kral, A. Kravitz, A. Kunde, G. J. Kurita, K. Kurosawa, M. Kweon, M. J. Kwon, Y. Kyle, G. S. Lacey, R. Lai, Y. S. Lajoie, J. G. Layton, D. Lebedev, A. Lee, D. M. Lee, K. B. Lee, T. Leitch, M. J. Leite, M. A. L. Lenzi, B. Liebing, P. Liska, T. Litvinenko, A. Liu, H. Liu, M. X. Li, X. Love, B. Lynch, D. Maguire, C. F. Makdisi, Y. I. Malakhov, A. Malik, M. D. Manko, V. I. Mannel, E. Mao, Y. Masek, L. Masui, H. Matathias, F. McCumber, M. McGaughey, P. L. Means, N. Meredith, B. Miake, Y. Mikes, P. Miki, K. Milov, A. Mishra, M. Mitchell, J. T. Mohanty, A. K. Morino, Y. Morreale, A. Morrison, D. P. Moukhanova, T. V. Mukhopadhyay, D. Murata, J. Nagamiya, S. Nagle, J. L. Naglis, M. Nagy, M. I. Nakagawa, I. Nakamiya, Y. Nakamura, T. Nakano, K. Newby, J. Nguyen, M. Niita, T. Nouicer, R. Nyanin, A. S. O'Brien, E. Oda, S. X. Ogilvie, C. A. Okada, H. Okada, K. Oka, M. Onuki, Y. Oskarsson, A. Ouchida, M. Ozawa, K. Pak, R. Palounek, A. P. T. Pantuev, V. Papavassiliou, V. Park, J. Park, W. J. Pate, S. F. Pei, H. Peng, J. -C. Pereira, H. Peresedov, V. Peressounko, D. Yu. Pinkenburg, C. Purschke, M. L. Purwar, A. K. Qu, H. Rak, J. Rakotozafindrabe, A. Ravinovich, I. Read, K. F. Rembeczki, S. Reygers, K. Riabov, V. Riabov, Y. Roach, D. Roche, G. Rolnick, S. D. Rosati, M. Rosendahl, S. S. E. Rosnet, P. Rukoyatkin, P. Ruzicka, P. Rykov, V. L. Sahlmueller, B. Saito, N. Sakaguchi, T. Sakai, S. Sakashita, K. Samsonov, V. Sato, T. Sawada, S. Sedgwick, K. Seele, J. Seidl, R. Semenov, A. Yu. Semenov, V. Seto, R. Sharma, D. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Silvestre, C. Sim, K. S. Singh, B. K. Singh, C. P. Singh, V. Slunecka, M. Soldatov, A. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Staley, F. Stankus, P. W. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Sugitate, T. Suire, C. Sukhanov, A. Sziklai, J. Takagui, E. M. Taketani, A. Tanabe, R. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Taranenko, A. Tarjan, P. Themann, H. Thomas, T. L. Togawa, M. Toia, A. Tomasek, L. Tomita, Y. Torii, H. Towell, R. S. Tram, V-N. Tserruya, I. Tsuchimoto, Y. Vale, C. Valle, H. van Hecke, H. W. Veicht, A. Velkovska, J. Vertesi, R. Vinogradov, A. A. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, Y. Wei, F. Wessels, J. White, S. N. Winter, D. Woody, C. L. Wysocki, M. Xie, W. Yamaguchi, Y. L. Yamaura, K. Yang, R. Yanovich, A. Ying, J. Yokkaichi, S. Young, G. R. Younus, I. Yushmanov, I. E. Zajc, W. A. Zaudtke, O. Zhang, C. Zhou, S. Zolin, L. CA PHENIX Collaboration TI Transverse momentum dependence of J/psi polarization at midrapidity in p plus p collisions at root s=200 GeV SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC COLLISIONS; HEAVY-QUARKONIUM; PAIR PRODUCTION; CROSS-SECTIONS; N INTERACTIONS; J-PSI; HADROPRODUCTION; TEVATRON; ANNIHILATION AB We report the measurement of the transverse momentum dependence of inclusive J/psi polarization in p + p collisions at root s = 200 GeV performed by the PHENIX Experiment at the Relativistic Heavy Ion Collider. The J/psi polarization is studied in the helicity, Gottfried-Jackson, and Collins-Soper frames for p(T) < 5 GeV/c and vertical bar y vertical bar < 0.35. The polarization in the helicity and Gottfried-Jackson frames is consistent with zero for all transverse momenta, with a slight (1.8 sigma) trend towards longitudinal polarization for transverse momenta above 2 GeV/c. No conclusion is allowed due to the limited acceptance in the Collins-Soper frame and the uncertainties of the current data. The results are compared to observations for other collision systems and center of mass energies and to different quarkonia production models. C1 [Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Kiriluk, K.; Nagle, J. L.; Seele, J.; Wysocki, M.] Univ Colorado, Boulder, CO 80309 USA. [Basye, A. T.; Isenhower, D.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Chang, W. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Mishra, M.; Singh, B. K.; Singh, C. P.; Singh, V.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Choudhury, R. K.; Dutta, D.; Mohanty, A. K.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bai, M.; Drees, K. A.; Makdisi, Y. I.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Azmoun, B.; Bazilevsky, A.; Belikov, S.; Buesching, H.; Bunce, G.; David, G.; Desmond, E. J.; Franz, A.; Haggerty, J. S.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Milov, A.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Pinkenburg, C.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; White, S. N.; Woody, C. L.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Barish, K. N.; Bathe, S.; Dzhordzhadze, V.; Eyser, K. O.; Hester, T.; Morreale, A.; Rolnick, S. D.; Sedgwick, K.; Seto, R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M., Jr.; Finger, M.; Masek, L.; Slunecka, M.] Charles Univ Prague, Prague 111636, Czech Republic. [Li, X.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Gunji, T.; Hamagaki, H.; Hayano, R.; Horaguchi, T.; Isobe, T.; Kajihara, F.; Morino, Y.; Oda, S. X.; Ozawa, K.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Tokyo 1130033, Japan. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Chi, C. Y.; Cole, B. A.; Engelmore, T.; Grau, N.; Jia, J.; Jin, J.; Kravitz, A.; Lai, Y. S.; Mannel, E.; Matathias, F.; Winter, D.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Kral, A.; Liska, T.; Virius, M.] Czech Tech Univ, Prague 16636 6, Czech Republic. [Baldisseri, A.; Borel, H.; Charvet, J. -L.; Gosset, J.; Pereira, H.; Silvestre, C.; Staley, F.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Imrek, J.; Tarjan, P.; Vertesi, R.] Debrecen Univ, H-4010 Debrecen, Hungary. [Csanad, M.; Kiss, A.; Nagy, M. I.] Eotvos Lorand Univ, ELTE, H-1117 Budapest, Hungary. [Baksay, G.; Baksay, L.; Hohlmann, M.; Rembeczki, S.] Florida Inst Technol, Melbourne, FL 32901 USA. [Das, K.; Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [He, X.; Qu, H.; Ying, J.] Georgia State Univ, Atlanta, GA 30303 USA. [Haruna, K.; Homma, K.; Kijima, K. M.; Nakamiya, Y.; Nakamura, T.; Ouchida, M.; Shigaki, K.; Sugitate, T.; Torii, H.; Tsuchimoto, Y.; Yamaura, K.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Babintsev, V.; Bumazhnov, V.; Chernichenko, S.; Churyn, A.; Denisov, A.; Durum, A.; Semenov, V.; Shein, I.; Soldatov, A.; Yanovich, A.] Inst High Energy Phys, State Res Ctr Russian Fed, IHEP Protvino, Protvino 142281, Russia. [Chiu, M.; Perdekamp, M. Grosse; Koster, J.; Layton, D.; Meredith, B.; Peng, J. -C.; Seidl, R.; Veicht, A.; Yang, R.] Univ Illinois, Urbana, IL 61801 USA. [Masek, L.; Mikes, P.; Ruzicka, P.; Tomasek, L.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague 18221 8, Czech Republic. [Hill, J. C.; Kempel, T.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Pei, H.; Rosati, M.; Semenov, A. Yu.; Vale, C.; Wei, F.] Iowa State Univ, Ames, IA 50011 USA. [Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.] Joint Inst Nucl Res, Dubna 141980, Russia. [Nagamiya, S.; Sawada, S.] High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Csorgo, T.; Ster, A.; Sziklai, J.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, MTA KFKI RMKI, H-1525 Budapest, Hungary. [Hong, B.; Kim, B. I.; Kweon, M. J.; Lee, K. B.; Park, W. J.; Sim, K. S.] Korea Univ, Seoul 136701, South Korea. [Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Vinogradov, A. A.; Yushmanov, I. E.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Aoki, K.; Dairaku, S.; Fukao, Y.; Imai, K.; Okada, H.; Saito, N.; Shoji, K.; Togawa, M.] Kyoto Univ, Kyoto 6068502, Japan. [Atomssa, E. T.; Del Valle, Z. Conesa; d'Enterria, D.; Drapier, O.; Fleuret, F.; Gonin, M.; De Cassagnac, R. Granier; Rakotozafindrabe, A.; Tram, V-N.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Enokizono, A.; Hartouni, E. P.; Heffner, M.; Klay, J.; Newby, J.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, P. D.; Boissevain, J. G.; Brooks, M. L.; Butsyk, S.; Camacho, C. M.; Constantin, P.; Kapustinsky, J.; Kunde, G. J.; Lee, D. M.; Leitch, M. J.; Liu, M. X.; McGaughey, P. L.; Palounek, A. P. T.; Purwar, A. K.; Sondheim, W. E.; van Hecke, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Roche, G.; Rosnet, P.] Univ Clermont Ferrand, CNRS, LPC, IN2P3, F-63177 Clermont Ferrand, France. [Gustafsson, H. -A.; Haslum, E.; Oskarsson, A.; Rosendahl, S. S. E.; Stenlund, E.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Aidala, C.; Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Baumann, C.; Klein-Boesing, C.; Reygers, K.; Sahlmueller, B.; Wessels, J.; Zaudtke, O.] Univ Munster, Inst Kernphys, D-48149 Munster, Germany. [Fadem, B.] Muhlenberg Coll, Allentown, PA 18104 USA. [Joo, K. S.; Kim, D. H.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Bassalleck, B.; Fields, D. E.; Malik, M. D.; Rak, J.; Thomas, T. L.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Al-Bataineh, H.; Kyle, G. S.; Liu, H.; Papavassiliou, V.; Pate, S. F.; Stepanov, M.; Wang, X. R.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Awes, T. C.; Batsouli, S.; Cianciolo, V.; Efremenko, Y. V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Young, G. R.; Zhang, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.; Suire, C.] Univ Paris 11, CNRS, IPN Orsay, IN2P3, F-91406 Orsay, France. [Han, R.; Mao, Y.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanischev, D.; Khanzadeev, A.; Kochenda, L.; Komkov, B.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Reg, Russia. [Akiba, Y.; Aoki, K.; Asai, J.; Dairaku, S.; En'yo, H.; Fujiwara, K.; Fukao, Y.; Goto, Y.; Horaguchi, T.; Ichihara, T.; Ichimiya, R.; Imai, K.; Ishihara, M.; Kametani, S.; Kurita, K.; Kurosawa, M.; Mao, Y.; Murata, J.; Nakagawa, I.; Nakano, K.; Okada, H.; Onuki, Y.; Rykov, V. L.; Saito, N.; Sakashita, K.; Shibata, T. -A.; Shoji, K.; Taketani, A.; Tanida, K.; Togawa, M.; Torii, H.; Watanabe, Y.; Yokkaichi, S.] RIKEN, Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Akiba, Y.; Bunce, G.; Deshpande, A.; En'yo, H.; Fields, D. E.; Goto, Y.; Perdekamp, M. Grosse; Ichihara, T.; Kamihara, N.; Kawall, D.; Liebing, P.; Nakagawa, I.; Okada, K.; Saito, N.; Taketani, A.; Tanida, K.; Watanabe, Y.; Xie, W.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Upton, NY 11973 USA. [Kurita, K.; Murata, J.] Rikkyo Univ, Dept Phys, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Dietzsch, O.; Donadelli, M.; Leite, M. A. L.; Lenzi, B.; Silva, C. L.; Takagui, E. M.] Univ Sao Paulo, Inst Fis, BR-66318 Sao Paulo, Brazil. [Kim, E.; Lee, T.; Park, J.] Seoul Natl Univ, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Chung, P.; Holzmann, W.; Issah, M.; Lacey, R.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Averbeck, R.; Bennett, R.; Boyle, K.; Campbell, S.; Citron, Z.; Dahms, T.; Deshpande, A.; Dion, A.; Drees, A.; Frantz, J. E.; Gong, H.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; McCumber, M.; Means, N.; Nguyen, M.; Pantuev, V.; Themann, H.; Toia, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Aphecetche, L.; Henni, A. Hadj] Univ Nantes, Ecole Mines Nantes, SUBATECH, CNRS IN2P3, F-44307 Nantes, France. [Garishvili, I.; Hornback, D.; Kwon, Y.; Read, K. F.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Horaguchi, T.; Nakano, K.; Sakashita, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Chujo, T.; Esumi, S.; Ikeda, Y.; Inaba, M.; Konno, M.; Masui, H.; Miake, Y.; Miki, K.; Niita, T.; Oka, M.; Sakai, S.; Sato, T.; Shimomura, M.; Tanabe, R.; Tomita, Y.] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 305, Japan. [Greene, S. V.; Huang, S.; Love, B.; Maguire, C. F.; Mukhopadhyay, D.; Roach, D.; Valle, H.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Kikuchi, J.; Yamaguchi, Y. L.] Waseda Univ, Adv Res Inst Sci & Engn, Tokyo 1620044, Japan. [Dubey, A. K.; Fraenkel, Z.; Kozlov, A.; Naglis, M.; Ravinovich, I.; Sharma, D.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Chang, B. S.; Choi, I. J.; Kang, J. H.; Kim, D. J.; Kim, S. H.] Yonsei Univ, IPAP, Seoul 120749, South Korea. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jacak@skipper.physics.sunysb.edu RI Semenov, Vitaliy/E-9584-2017; seto, richard/G-8467-2011; Csanad, Mate/D-5960-2012; Wei, Feng/F-6808-2012; Csorgo, Tamas/I-4183-2012; Tomasek, Lukas/G-6370-2014; Dahms, Torsten/A-8453-2015; En'yo, Hideto/B-2440-2015; Hayano, Ryugo/F-7889-2012; HAMAGAKI, HIDEKI/G-4899-2014; Durum, Artur/C-3027-2014; Sorensen, Soren /K-1195-2016; Yokkaichi, Satoshi/C-6215-2017; Taketani, Atsushi/E-1803-2017 OI Tomasek, Lukas/0000-0002-5224-1936; Dahms, Torsten/0000-0003-4274-5476; Hayano, Ryugo/0000-0002-1214-7806; Sorensen, Soren /0000-0002-5595-5643; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy; National Science Foundation; Renaissance Technologies LLC; Abilene Christian University Research Council; Research Foundation of SUNY; Dean of the College of Arts and Sciences; Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology; Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique; Commissariat a l'Energie Atomique; Institut National de Physique Nucleaire et de Physique des Particules (France); Ministry of Industry, Science and Tekhnologies; Bundesministerium fur Bildung und Forschung; Deutscher Akademischer Austausch Dienst; A. von Humboldt Stiftung (Germany); Hungarian National Science Fund; OTKA (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); National Research Foundation (Korea); Ministry of Education and Science; Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union; US-Hungarian Fulbright Foundation for Educational Exchange; US-Israel Binational Science Foundation FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and the Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l'Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Ministry of Industry, Science and Tekhnologies, Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and A. von Humboldt Stiftung (Germany), Hungarian National Science Fund, OTKA (Hungary), Department of Atomic Energy (India), Israel Science Foundation (Israel), National Research Foundation (Korea), Ministry of Education and Science, Russia Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and the Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the US-Hungarian Fulbright Foundation for Educational Exchange, and the US-Israel Binational Science Foundation. NR 41 TC 46 Z9 46 U1 6 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 7 PY 2010 VL 82 IS 1 AR 012001 DI 10.1103/PhysRevD.82.012001 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 621SO UT WOS:000279603800001 ER PT J AU Belkin, M Glatz, A Snezhko, A Aranson, IS AF Belkin, M. Glatz, A. Snezhko, A. Aranson, I. S. TI Model for dynamic self-assembled magnetic surface structures SO PHYSICAL REVIEW E LA English DT Article ID NANOPARTICLES AB We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. C1 [Belkin, M.] Northwestern Univ, Dept Chem Engn, Evanston, IL 60208 USA. [Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Belkin, M (reprint author), Northwestern Univ, Dept Chem Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. RI Aranson, Igor/I-4060-2013 FU U. S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX The research was supported by the U. S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DE AC02-06CH11357. NR 23 TC 18 Z9 18 U1 3 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 7 PY 2010 VL 82 IS 1 AR 015301 DI 10.1103/PhysRevE.82.015301 PN 2 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 621TN UT WOS:000279607300001 PM 20866678 ER PT J AU Schneider, C Jusufi, A Farina, R Pincus, P Tirrell, M Ballauff, M AF Schneider, Christian Jusufi, Arben Farina, Robert Pincus, Philip Tirrell, Matthew Ballauff, Matthias TI Stability behavior of anionic spherical polyelectrolyte brushes in the presence of La(III) counterions SO PHYSICAL REVIEW E LA English DT Article ID DYNAMIC LIGHT-SCATTERING; COAGULATION RATE CONSTANTS; ATOMIC-FORCE MICROSCOPE; COLLOIDAL PARTICLES; SURFACE FORCES; ACID) BRUSHES; LATEX; AGGREGATION; EXPRESSIONS; ADSORPTION AB In this paper we discuss the stability behavior of spherical polyelectrolyte brushes (SPB) in the presence of trivalent lanthanum counterions. Stability behavior is measured through the rate of coagulation of the SPB as a function of the lanthanum concentration using simultaneous static and dynamic light scattering. As the counterion concentration increases, we observe coagulation of the SPB which in turn leads to a dramatic decrease in the stability of our particles. Since the rate of coagulation is dependent upon the balance between the repulsive interactions and the thermal energy of the diffusing particles (reaction-limited colloidal aggregation; RLCA), we then can relate the measured particle stability to the value of the repulsive potential in the RLCA regime. These "microsurface potential measurements" (MSPM) allow us to measure repulsive energies down to the order of k(B)T. From the repulsive energy of the particles we can then determine precise information about the net surface potential Psi(0) of the SPB as a function of the lanthanum counterion concentration. Moreover, we demonstrate that a simple mean-field model predicts the stability of the SPB in the presence of lanthanum counterions with high accuracy. C1 [Schneider, Christian] Univ Bayreuth, D-95440 Bayreuth, Germany. [Jusufi, Arben] Temple Univ, Inst Computat Mol Sci, Philadelphia, PA 19122 USA. [Farina, Robert; Pincus, Philip; Tirrell, Matthew] Univ Calif Santa Barbara, Mat Res Lab, Dept Mat, Santa Barbara, CA 93106 USA. [Farina, Robert; Pincus, Philip; Tirrell, Matthew] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Tirrell, Matthew] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Dept Bioengn Chem Engn & Mat Sci & Engn, Berkeley, CA 94720 USA. [Ballauff, Matthias] Helmholtz Zentrum Berlin, Soft Matter & Funct Mat F 12, D-14109 Berlin, Germany. [Ballauff, Matthias] Humboldt Univ, Dept Phys, D-12489 Berlin, Germany. RP Schneider, C (reprint author), Univ Bayreuth, D-95440 Bayreuth, Germany. EM mvtirrell@berkeley.edu; matthias.ballauff@helmholtz-berlin.de RI Ballauff, Matthias/O-4593-2016 OI Ballauff, Matthias/0000-0003-0872-1438 FU National Science Foundation [DMR-0520415, DMR-0710521]; Deutsche Forschungsgemeinschaft; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Elite Study Program; Bavarian California Technology Center BaCaTec FX R.F., P.P., and M.T. gratefully acknowledge support for this work from the National Science Foundation Grants No. DMR-0520415 and No. DMR-0710521 (Materials World Network) M.B. gratefully acknowledges support by the Deutsche Forschungsgemeinschaft. C.S. thanks the Elite Study Program Macromolecular Science in the Elite Network Bavaria and the Bavarian Graduate Support Program for financial support during this work. C.S and M.B. gratefully acknowledge the Bavarian California Technology Center BaCaTec for financial support of this joined project. The work at Berkeley was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the Department of Energy Contract No. DE-AC02-05CH11231. NR 64 TC 17 Z9 18 U1 3 U2 26 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 7 PY 2010 VL 82 IS 1 AR 011401 DI 10.1103/PhysRevE.82.011401 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 621TK UT WOS:000279606900001 PM 20866614 ER PT J AU Eyal, A Pelleg, O Embon, L Polturak, E AF Eyal, A. Pelleg, O. Embon, L. Polturak, E. TI Evidence for a High-Temperature Disorder-Induced Mobility in Solid He-4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID CRYSTALS AB We have carried out torsional oscillator experiments on solid He-4 at temperatures between 1.3 K and 1.9 K. We discovered phenomena similar to those observed at temperatures below 0.2 K, which currently are under debate regarding their interpretation in terms of supersolidity. These phenomena include a partial decoupling of the solid helium mass from the oscillator, a change of the dissipation, and a velocity dependence of the decoupled mass. These were all observed both in the bcc and hcp phases of solid He-4. The onset of this behavior is coincidental with the creation of crystalline disorder but does not depend strongly on the crystalline symmetry or on the temperature. C1 [Eyal, A.; Embon, L.; Polturak, E.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Pelleg, O.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Eyal, A (reprint author), Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. EM satanan@tx.technion.ac.il FU Israel Science Foundation; Technion Fund for Research FX We thank S. Hoida, A. Post, and L. Yumin for their help with the experiment. This work was supported by the Israel Science Foundation and by the Technion Fund for Research. NR 21 TC 18 Z9 18 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 7 PY 2010 VL 105 IS 2 AR 025301 DI 10.1103/PhysRevLett.105.025301 PG 4 WC Physics, Multidisciplinary SC Physics GA 621UA UT WOS:000279608700001 PM 20867713 ER PT J AU Hedskog, C Mild, M Jernberg, J Sherwood, E Bratt, G Leitner, T Lundeberg, J Andersson, B Albert, J AF Hedskog, Charlotte Mild, Mattias Jernberg, Johanna Sherwood, Ellen Bratt, Goran Leitner, Thomas Lundeberg, Joakim Andersson, Bjorn Albert, Jan TI Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing SO PLOS ONE LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; CD4(+) T-CELLS; TYPE-1 REVERSE-TRANSCRIPTASE; DRUG-RESISTANCE MUTATIONS; IN-VIVO; ANTIRETROVIRAL THERAPY; VIRAL VARIANTS; INFECTION; NAIVE; REPLICATION AB Background: Ultra-deep pyrosequencing (UDPS) allows identification of rare HIV-1 variants and minority drug resistance mutations, which are not detectable by standard sequencing. Principal Findings: Here, UDPS was used to analyze the dynamics of HIV-1 genetic variation in reverse transcriptase (RT) (amino acids 180-220) in six individuals consecutively sampled before, during and after failing 3TC and AZT containing antiretroviral treatment. Optimized UDPS protocols and bioinformatic software were developed to generate, clean and analyze the data. The data cleaning strategy reduced the error rate of UDPS to an average of 0.05%, which is lower than previously reported. Consequently, the cut-off for detection of resistance mutations was very low. A median of 16,016 (range 2,406-35,401) sequence reads were obtained per sample, which allowed detection and quantification of minority resistance mutations at amino acid position 181, 184, 188, 190, 210, 215 and 219 in RT. In four of five pre-treatment samples low levels (0.07-0.09%) of the M184I mutation were observed. Other resistance mutations, except T215A and T215I were below the detection limit. During treatment failure, M184V replaced M184I and dominated the population in combination with T215Y, while wild-type variants were rarely detected. Resistant virus disappeared rapidly after treatment interruption and was undetectable as early as after 3 months. In most patients, drug resistant variants were replaced by wild-type variants identical to those present before treatment, suggesting rebound from latent reservoirs. Conclusions: With this highly sensitive UDPS protocol preexisting drug resistance was infrequently observed; only M184I, T215A and T215I were detected at very low levels. Similarly, drug resistant variants in plasma quickly decreased to undetectable levels after treatment interruption. The study gives important insights into the dynamics of the HIV-1 quasispecies and is of relevance for future research and clinical use of the UDPS technology. C1 [Hedskog, Charlotte; Mild, Mattias; Jernberg, Johanna; Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. [Hedskog, Charlotte; Mild, Mattias; Jernberg, Johanna; Albert, Jan] Swedish Inst Infect Dis Control, Dept Virol, Stockholm, Sweden. [Sherwood, Ellen] Sci Life Lab Stockholm, Solna, Sweden. [Bratt, Goran] Stockholm S Gen Hosp, Stockholm, Sweden. [Bratt, Goran] Karolinska Inst, Dept Clin Sci & Educ, Stockholm, Sweden. [Leitner, Thomas] Los Alamos Natl Lab, Los Alamos, NM USA. [Lundeberg, Joakim] AlbaNova Univ Ctr, Royal Inst Technol, Sch Biotechnol, Div Gene Technol, Stockholm, Sweden. [Andersson, Bjorn] Karolinska Inst, Dept Cell & Mol Biol, Stockholm, Sweden. RP Hedskog, C (reprint author), Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden. EM jan.albert@smi.se RI Andersson, Bjorn/G-9832-2013 OI Andersson, Bjorn/0000-0002-4624-0259 FU Swedish Research Council [2007-1131-49460-36]; Swedish International Development Cooperation Agency [SWE-2006-018]; Europe HIV Resistance (EHR) [LSHP-CT-2006-518211]; CHAIN [223131] FX M. Mild was funded by a post doctoral fellowship grant from The Swedish Research Council. The research leading to these results has received funding from the Swedish Research Council (grant no. 2007-1131-49460-36); Swedish International Development Cooperation Agency (grant no. SWE-2006-018), a non-commercial organization working according to directives of the Swedish Parliament and Government (http://www.sida.se/English/); Europe HIV Resistance (EHR) (LSHP-CT-2006-518211) and CHAIN (FP7/2007-2013) "Collaborative HIV and Anti-HIV Drug Resistance Network" grant agreement no 223131. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 70 Z9 74 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 7 PY 2010 VL 5 IS 7 AR e11345 DI 10.1371/journal.pone.0011345 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 621OQ UT WOS:000279589300001 PM 20628644 ER PT J AU Basore, JR Lavrik, NV Baker, LA AF Basore, Joseph R. Lavrik, Nickolay V. Baker, Lane A. TI Single-Pore Membranes Gated by Microelectromagnetic Traps SO ADVANCED MATERIALS LA English DT Article ID SOLID-STATE NANOPORES; MAGNETIC NANOPARTICLES; NANOTUBE MEMBRANES; POTASSIUM CHANNEL; DNA DETECTION; ON-CHIP; TRANSPORT; ELECTROMAGNETS; MANIPULATION; SENSITIVITY AB Gating of a single pore with a microelectromagnetic trap consisting of a single-turn gold wire microfabricated on a silicon membrane is described. A single micrometer-sized pore in the center of the microcoil conducts ionic current under the application of an applied transmembrane potential. When energized, the microelectromagnetic trap attracts a droplet of magnetic fluid, bringing the fluid to rest in the center of the trap, blocking the transport of ions through the pore, turning it "off". Reversal of the current flow through the trap moves the droplet to the periphery of the trap, turning the pore "on". C1 [Basore, Joseph R.; Baker, Lane A.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Baker, LA (reprint author), Indiana Univ, Dept Chem, 800 E Kirkwood Ave, Bloomington, IN 47405 USA. EM lanbaker@indiana.edu RI Baker, Lane/B-6452-2008; Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU NSF [CHE-0847624]; Division of Scientific User Facilities, U.S. Department of Energy at Oak Ridge National Laboratory FX Financial support was provided by the NSF (CHE-0847624). Portions of this research were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. NR 58 TC 9 Z9 9 U1 3 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0935-9648 J9 ADV MATER JI Adv. Mater. PD JUL 6 PY 2010 VL 22 IS 25 BP 2759 EP + DI 10.1002/adma.201000566 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 629QA UT WOS:000280213600005 PM 20408136 ER PT J AU Siu, H Duhamel, J Sasaki, DY Pincus, JL AF Siu, Howard Duhamel, Jean Sasaki, Darryl Y. Pincus, Jennifer L. TI Nanodomain Formation in Lipid Membranes Probed by Time-Resolved Fluorescence SO LANGMUIR LA English DT Article ID CAPPED POLY(ETHYLENE OXIDE); PHOSPHATIDYLCHOLINE LIPOSOMES; PHOSPHOLIPID BILAYERS; CHEMICAL RECOGNITION; LUMINESCENT PROBES; ASSOCIATION LEVEL; PHASE-TRANSITIONS; BLOB MODEL; PYRENE; ORGANIZATION AB Time-resolved fluorescence measurements on liposomes prepared with 1 mol% pyrene-labeled lipids (PLLs) with a headgroup bearing either an alcohol (PSOH) or an imido diacetic acid (PSIDA) and 99 mol% 1-palmitoyl-2-oleyl-3-sn-phosphatidylcholines (POPC) or 99 mol% distearylphosphatidylcholine (DSPC) were performed to investigate how lipids phase separate within the membrane bilayer. Global analysis of the fluorescence decays with the fluorescence blob model (FBM) led to the conclusion that the PLLs were homogeneously distributed on the surface of POPC vesicles while the PLLs phase-separated in the DSPC vesicles. The analysis yielded the fraction of aggregated pyrenes, f(agg). The large f(agg) values found for PSIDA suggest that the imido diacetic acid headgroup of PSIDA induces self-aggregation and phase separation in both membranes. The addition of external cations such as Cu(2+) and La(3+) was shown to hinder diffusional encounters between PSIDAs. The cations seem to target preferentially unassociated PSIDAs rather than aggregated PSIDA clusters. Accounting for the quenching of pyretic. by Cu(2+) enables one to use PSIDA to probe the microviscosity of the lipid membrane. Using this effect, the environment of PSIDA in the DSPC membrane was found to be about 6 times more viscous than that in the POPC membrane. This difference is at to the difference in viscosity of the fluid POPC membrane and the gel-like DSPC membranes. C1 [Siu, Howard; Duhamel, Jean] Univ Waterloo, Dept Chem, Polymer Res Inst, Waterloo, ON N2L 3G1, Canada. [Sasaki, Darryl Y.; Pincus, Jennifer L.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Duhamel, J (reprint author), Univ Waterloo, Dept Chem, Polymer Res Inst, Waterloo, ON N2L 3G1, Canada. FU NSERC; Division of Materials Science and Engineering in the Department of Energy's Office of Basic Energy Sciences; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX J.D. and H.S. would like to thank NSERC for generous funding. The synthesis of PLLs and preparation of liposomes by D.Y.S. and J.L.P. were supported by the Division of Materials Science and Engineering in the Department of Energy's Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 38 TC 8 Z9 8 U1 1 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 6 PY 2010 VL 26 IS 13 BP 10985 EP 10994 DI 10.1021/la9045429 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 616VX UT WOS:000279239900080 PM 20536249 ER PT J AU Dai, QQ Zhang, Y Wang, YN Hu, MZ Zou, B Wang, YD Yu, WW AF Dai, Quanqin Zhang, Yu Wang, Yingnan Hu, Michael Z. Zou, Bo Wang, Yiding Yu, William W. TI Size-Dependent Temperature Effects on PbSe Nanocrystals SO LANGMUIR LA English DT Article ID COLLOIDAL QUANTUM DOTS; EXTINCTION COEFFICIENT; SEMICONDUCTOR NANOCRYSTALS; INFRARED-EMISSION; CDSE NANOCRYSTALS; LEAD SELENIDE; PHOTOVOLTAICS; EFFICIENT; MONOMERS; CDTE AB An investigation show that the temperature-induced band gap (E(g)) variation of PbSe nanocrystals is strongly size-dependent. The temperature coefficients (dE(g)/dT) evolve from negative to zero and then to positive values, with the increase of PbSe nanocrystal sizes. Such phenomena imply that PbSe nanocrystals may be the potential candidate as sensitive temperature markers. Additional analyses disclose that the molar extinction coefficients of PbSe nanocrystals remain unchanged in the investigated temperature range (25-120 degrees C). C1 [Wang, Yingnan; Zou, Bo] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. [Dai, Quanqin; Zhang, Yu; Yu, William W.] Worcester Polytech Inst, Dept Chem & Biochem, Worcester, MA 01609 USA. [Dai, Quanqin; Hu, Michael Z.] Oak Ridge Natl Lab, Nucl Sci & Technol Div, Oak Ridge, TN 37831 USA. [Zhang, Yu; Wang, Yiding; Yu, William W.] Jilin Univ, State Key Lab Integrated Optoelect, Coll Elect Sci & Engn, Changchun 130012, Peoples R China. RP Zou, B (reprint author), Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China. EM zoubo@jlu.edu.cn; wyu@wpi.edu RI Zou, Bo/C-6926-2008; OI Zou, Bo/0000-0002-3215-1255; Hu, Michael/0000-0001-8461-9684 FU Worcester Polytechnic Institute; National 863 Projects of China [2007AA03Z112, 2007AA06Z112]; NSFC [20773043]; National Basic Research Program of China [2005CB724400, 200703808000]; U.S. Department of Energy FX This work was supported by the Worcester Polytechnic Institute, the National 863 Projects of China (2007AA03Z112, 2007AA06Z112), NSFC (20773043), and the National Basic Research Program of China (2005CB724400 and 200703808000). Also, this work is sponsored partially by the Laboratory Directed Research and Development (LDRD) program at the Oak Ridge National Laboratory and the Nanomanufacturing project under the Industrial Technology Program of the U.S. Department of Energy. NR 39 TC 37 Z9 37 U1 0 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD JUL 6 PY 2010 VL 26 IS 13 BP 11435 EP 11440 DI 10.1021/la101545w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 616VX UT WOS:000279239900141 PM 20550166 ER PT J AU Allaria, E Callegari, C Cocco, D Fawley, WM Kiskinova, M Masciovecchio, C Parmigiani, F AF Allaria, E. Callegari, C. Cocco, D. Fawley, W. M. Kiskinova, M. Masciovecchio, C. Parmigiani, F. TI The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications SO NEW JOURNAL OF PHYSICS LA English DT Article ID HIGH-GAIN FELS; NANOSCALE DYNAMICS; RARE-GASES; GENERATION; RADIATION; AMPLIFICATION; POLARIZATION; SPECTROSCOPY; FLASH; LIGHT AB FERMI@Elettra comprises two free electron lasers (FELs) that will generate short pulses (tau similar to 25-200 fs) of highly coherent radiation in the XUV and soft x-ray region. The use of external laser seeding together with a harmonic upshift scheme to obtain short wavelengths will give FERMI@Elettra the capability of producing high-quality, longitudinally coherent photon pulses. This capability, together with the possibilities of temporal synchronization to external lasers and control of the output photon polarization, will open up new experimental opportunities that are not possible with currently available FELs. Here, we report on the predicted radiation coherence properties and important configuration details of the photon beam transport system. We discuss the several experimental stations that will be available during initial operations in 2011, and we give a scientific perspective on possible experiments that can exploit the critical parameters of this new light source. C1 [Allaria, E.; Callegari, C.; Cocco, D.; Fawley, W. M.; Kiskinova, M.; Masciovecchio, C.; Parmigiani, F.] Sincrotrone Trieste SCpA, Trieste, Italy. [Fawley, W. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Parmigiani, F.] Univ Trieste, Dipartimento Fis, Trieste, Italy. RP Parmigiani, F (reprint author), Sincrotrone Trieste SCpA, Trieste, Italy. EM fulvio.parmigiani@elettra.trieste.it RI Allaria, Enrico/H-1811-2012; OI Allaria, Enrico/0000-0001-9570-6361; Parmigiani, Fulvio/0000-0001-9529-7406; Masciovecchio, Claudio/0000-0002-8571-3522; Callegari, Carlo/0000-0001-5491-7752 FU European Research Council [202804]; Office of Science, US Department of Energy [DE-AC02-05CH11231] FX We acknowledge many useful discussions with our colleagues at Sincrotrone Trieste and elsewhere working on the FERMI project, including W Barletta, H Chapman, P Craievich, M Cornacchia, M Danailov, A Di Cicco, B Diviacco, S DiMitri, G DeNinno, A Filipponi, J Hajdu, S Milton, T Moeller, A Nelson, M Pelizzo, G Penco, G Penn, L Poletto, K Prince, F Stienkemeier, S Stranges, C Svetina, S Tazzari, M Zangrando and A Zholents. CM acknowledges the European Research Council for partially supporting the TIMER project through ERC Contract No. 202804. Part of the work of WMF was supported by the Office of Science, US Department of Energy, under Contract No. DE-AC02-05CH11231 to LBNL. NR 60 TC 99 Z9 99 U1 1 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JUL 6 PY 2010 VL 12 AR 075002 DI 10.1088/1367-2630/12/7/075002 PG 17 WC Physics, Multidisciplinary SC Physics GA 625FO UT WOS:000279880400002 ER PT J AU Chien, CC Levin, K AF Chien, Chih-Chun Levin, K. TI Fermi-liquid theory of ultracold trapped Fermi gases: Implications for pseudogap physics and other strongly correlated phases SO PHYSICAL REVIEW A LA English DT Article ID HE-3 AB We show how Fermi-liquid theory can be applied to ultracold Fermi gases, thereby expanding their "simulation" capabilities to a class of problems of interest to multiple physics subdisciplines. We introduce procedures for measuring and calculating position-dependent Landau parameters. This lays the groundwork for addressing important controversial issues: (i) the suggestion that thermodynamically, the normal state of a unitary gas is indistinguishable from a Fermi liquid and (ii) that a fermionic system with strong repulsive contact interactions is associated with either ferromagnetism or localization; this relates as well to (3)He and its p-wave superfluidity. C1 [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Chien, CC (reprint author), Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. FU US Department of Energy through LANL/LDRD; [NSF-MRSEC DMR-0213745] FX This work was supported by Grant no. NSF-MRSEC DMR-0213745. We thank Q. J. Chen for providing thermodynamical plots. C. C. C. acknowledges the support of the US Department of Energy through the LANL/LDRD Program. NR 26 TC 8 Z9 8 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 6 PY 2010 VL 82 IS 1 AR 013603 DI 10.1103/PhysRevA.82.013603 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 620YY UT WOS:000279540700002 ER PT J AU Tsetseris, L Pantelides, ST AF Tsetseris, L. Pantelides, S. T. TI Oxygen and water-related impurities in C-60 crystals: A density-functional theory study SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; PHOTOCARRIER DYNAMICS; DIMERS C-120; C60; INTERCALATION; ENERGY; C120O; PHOTOCONDUCTIVITY; TEMPERATURE; RESISTIVITY AB Despite the importance of impurity effects for the use of the prototype organic semiconductor C-60 in modern electronics, the atomic-scale mechanisms which underlie several key oxygen-induced modifications of C-60 crystal properties remain elusive. Here we use first-principles calculations to address varying, and, in cases, seemingly conflicting experimental data on oxygen or water incorporation in crystalline C-60. We clarify the role of several oxygen- and water-related configurations, including spin-polarized physisorbed structures, chemisorbed geometries, and polymer precursors, in the creation of deep traps, shallow traps, or resonances. The role of annealing is thus clarified in producing a hierarchy of impurity-related effects in C-60. C1 [Tsetseris, L.] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. [Tsetseris, L.; Pantelides, S. T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Pantelides, S. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tsetseris, L (reprint author), Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece. FU DOE [DEFG0203ER46096]; DTRA [HDTRA 1-10-1-0016] FX This work was supported in part by the William A. and Nancy F. McMinn Endowment at Vanderbilt University, by DOE Grant No. DEFG0203ER46096, and by DTRA Grant No. HDTRA 1-10-1-0016. The calculations were performed at ORNL's Center for Computational Sciences. NR 47 TC 21 Z9 21 U1 1 U2 55 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 6 PY 2010 VL 82 IS 4 AR 045201 DI 10.1103/PhysRevB.82.045201 PG 5 WC Physics, Condensed Matter SC Physics GA 621AM UT WOS:000279545500001 ER PT J AU Rzaca-Urban, T Urban, W Pinston, JA Simpson, GS Durell, JL Smith, AG Ahmad, I AF Rzaca-Urban, T. Urban, W. Pinston, J. A. Simpson, G. S. Durell, J. L. Smith, A. G. Ahmad, I. TI Medium-spin structure of Cs-145 SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-RICH; OCTUPOLE CORRELATIONS; SPONTANEOUS FISSION; BARIUM ISOTOPES; NUCLEI; STATE; DEFORMATION; TRANSITION; MOMENTS; SHAPES AB Excited states in Cs-145, populated following the spontaneous fission of Cm-248, were studied by means of prompt-gamma spectroscopy, using the EUROGAM2 multidetector array. A new level scheme of Cs-145 was proposed. We identified a decoupled band corresponding to 1/2 [550] proton configuration and interpreted the ground-state band as a mixed configuration of 1/2 [440] and 3/2 [422] proton orbitals. Quasiparticle-rotor calculations performed for Cs-145 support such assignments. The electric dipole moment in Cs-145, D-0 = 0.013(4) efm, is smaller than in lighter Cs isotopes, which suggests that octupole correlations in Cs isotopes decrease at the neutron number N = 90, similarly as observed in the Ba-146 and La-147 isotones. C1 [Rzaca-Urban, T.; Urban, W.] Univ Warsaw, Fac Phys, PL-00681 Warsaw, Poland. [Urban, W.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France. [Pinston, J. A.; Simpson, G. S.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS, Inst Natl Polytech Grenoble,IN2P3, F-38026 Grenoble, France. [Durell, J. L.; Smith, A. G.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England. [Ahmad, I.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Rzaca-Urban, T (reprint author), Univ Warsaw, Fac Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. FU Office of Basic Energy Sciences, U.S. Department of Energy FX The authors are indebted to the Office of Basic Energy Sciences, U.S. Department of Energy, for the use of 248Cm through the transplutonium element production facilities at the Oak Ridge National Laboratory. NR 27 TC 4 Z9 4 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JUL 6 PY 2010 VL 82 IS 1 AR 017301 DI 10.1103/PhysRevC.82.017301 PG 4 WC Physics, Nuclear SC Physics GA 621BH UT WOS:000279548100001 ER PT J AU Sullivan, Z Berger, EL AF Sullivan, Zack Berger, Edmond L. TI Isolated leptons from heavy flavor decays: Theory and data SO PHYSICAL REVIEW D LA English DT Article AB Events with isolated leptons play a prominent role in signatures of new physics phenomena at high energy collider physics facilities. In earlier publications, we examine the standard model contribution to isolated lepton production from bottom and charm mesons and baryons through their semileptonic decays b, c -> l + X, showing that this source can overwhelm the effects of other standard model processes in some kinematic domains. In this paper, we show that we obtain good agreement with recent Tevatron collider data, both validating our simulations and showing that we underestimate the magnitude of the heavy-flavor contribution to the isolated lepton yields. We also show that the isolation requirement acts as a narrow bandpass filter on the momentum of the isolated lepton, and we illustrate the effect of this filter on the background to Higgs boson observation in the dilepton mode. We introduce and justify a new rule of thumb: isolated electrons and muons from heavy-flavor decay are produced with roughly the same distributions as b and c quarks, but with 1/200 times the rates of b and c production, respectively. C1 [Sullivan, Zack] IIT, Chicago, IL 60616 USA. [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Sullivan, Z (reprint author), IIT, Chicago, IL 60616 USA. EM Zack.Sullivan@IIT.edu; berger@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX E.L.B. is supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. We gratefully acknowledge the use of JAZZ, a 350-node computer cluster operated by the Mathematics and Computer Science Division at Argonne as part of the Laboratory Computing Resource Center. We wish to thank J. Strologas for discussions regarding details of the CDF data. NR 11 TC 13 Z9 13 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 6 PY 2010 VL 82 IS 1 AR 014001 DI 10.1103/PhysRevD.82.014001 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 621BN UT WOS:000279548700001 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kasieczka, G Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Benucci, L Ceard, L De Wolf, EA Hashemi, M Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Adler, V Beauceron, S Blyweert, S D'Hondt, J Devroede, O Kalogeropoulos, A Maes, J Maes, M Tavernier, S Van Doninck, W Van Mulders, P Villella, I Chabert, EC Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Marage, PE Velde, CV Vanlaer, P Wickens, J Costantini, S Grunewald, M Klein, B Marinov, A Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J De Jeneret, JD Delaere, C Demin, P Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Militaru, O Ovyn, S Pagano, D Pin, A Piotrzkowski, K Quertenmont, L Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Pol, ME Souza, MHG Carvalho, W Da Costa, EM Damiao, DD Martins, CD De Souza, SF Mundim, L Oguri, V Santoro, A Do Amaral, SMS Sznajder, A De Araujo, FTD Dias, FA Dias, MAF Tomei, TRFP Gregores, EM Marinho, F Novaes, SF Padula, SS Darmenov, N Dimitrov, L Genchev, V Iaydjiev, P Piperov, S Stoykova, S Sultanov, G Trayanov, R Vankov, I Dyulendarova, M Hadjiiska, R Kozhuharov, V Litov, L Marinova, E Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Wang, J Wang, J Wang, X Wang, Z Yang, M Zhang, Z Ban, Y Guo, S Hu, Z Mao, Y Qian, SJ Teng, H Zhu, B Cabrera, A Montoya, CAC Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Fereos, R Galanti, M Mousa, J Nicolaou, C Papadakis, A Ptochos, F Razis, PA Rykaczewski, H Tsiakkouri, D Zinonos, Z Mahmoud, M Hektor, A Kadastik, M Kannike, K Muntel, M Raidal, M Rebane, L Azzolini, V Eerola, P Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Klem, J Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Korpela, A Tuuva, T Sillou, D Besancon, M Dejardin, M Denegri, D Descamps, J Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Rousseau, D Titov, M Verrecchia, P Baffioni, S Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Kalinowski, A Mine, P Paganini, P Sabes, D Sirois, Y Thiebaux, C Zabi, A Agram, JL Besson, A Bloch, D Bodin, D Brom, JM Cardaci, M Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Speck, J Van Hove, P Fassi, F Mercier, D Baty, C Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chanon, N Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Tosi, S Tschudi, Y Verdier, P Xiao, H Roinishvili, V Anagnostou, G Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Actis, O Ata, M Bender, W Biallass, P Erdmann, M Frangenheim, J Hebbeker, T Hinzmann, A Hoepfner, K Hof, C Kirsch, M Klimkovich, T Kreuzer, P Lanske, D Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Sowa, M Steggemann, J Teyssier, D Zeidler, C Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Thomas, M Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Borras, K Campbell, A Castro, E Dammann, D Eckerlin, G Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Kleinwort, C Kluge, H Knutsson, A Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Parenti, A Raspereza, A Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Tomaszewska, J Volyanskyy, D Wissing, C Autermann, C Draeger, J Eckstein, D Enderle, H Gebbert, U Kaschube, K Kaussen, G Klanner, R Mura, B Naumann-Emme, S Nowak, F Sander, C Schettler, H Schleper, P Schroder, M Schum, T Schwandt, J Stadie, H Steinbruck, G Thomsen, J Wolf, R Bauer, J Buege, V Cakir, A Chwalek, T Daeuwel, D De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Piparo, D Quast, G Rabbertz, K Ratnikov, F Renz, M Sabellek, A Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Petrakou, E Gouskos, L Katsas, P Panagiotou, A Evangelou, I Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Debreczeni, G Hajdu, C Horvath, D Kapusi, A Krajczar, K Laszlo, A Sikler, F Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Bansal, S Beri, SB Bhatnagar, V Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Sharma, R Singh, AP Singh, JB Singh, SP Ahuja, S Bhattacharya, S Chauhan, S Choudhary, BC Gupta, P Jain, S Jain, S Kumar, A Ranjan, K Shivpuri, RK Choudhury, RK Dutta, D Kailas, S Kataria, SK Mohanty, AK Pant, LM Shukla, P Suggisetti, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Fahim, A Jafari, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Colaleo, A Creanza, D De Filippis, N De Palma, M Dimitrov, A Fedele, F Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Castro, A Cavallo, FR Codispoti, G Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Montanari, A Navarria, FL Odorici, F Perrotta, A Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Tricomi, A Tuve, C Barbagli, G Broccolo, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Genta, C Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A Cerati, GB De Guio, F Di Matteo, L Ghezzi, A Govoni, P Malberti, M Malvezzi, S Martelli, A Massironi, A Menasce, D Miccio, V Moroni, L Negri, P Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S Salerno, R Tabarelli de Fatis, T Tancini, V Taroni, S Buontempo, S Cimmino, A De Cosa, A De Gruttola, M Fabozzi, F Iorio, AOM Lista, L Noli, P Paolucci, P Azzi, P Bacchetta, N Bellan, P Bellato, M Biasotto, M Bisello, D Carlin, R Checchia, P De Mattia, M Dorigo, T Fanzago, F Gasparini, F Giubilato, P Gresele, A Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Zumerle, G Baesso, P Berzano, U Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Santocchia, A Servoli, L Valdata, M Volpe, R Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Dagnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Organtini, G Palma, A Pandolfi, F Paramatti, R Rahatlou, S Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Trocino, D Pereira, AV Ambroglini, F Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Son, DC Kim, Z Kim, JY Song, S Hong, B Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Rhee, HB Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Choi, S Choi, Y Choi, YK Goh, J Lee, J Lee, S Seo, H Yu, I Janulis, M Martisiute, D Petrov, P Sabonis, T Valdez, HC Burelo, EDLC Lopez-Fernandez, R Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Allfrey, P Krofcheck, D Tam, J Aumeyr, T Butler, PH Signal, T Williams, JC Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khan, WA Khurshid, T Qazi, S Cwiok, M Dominik, W Doroba, K Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Szleper, M Wrochna, G Zalewski, P Almeida, N David, A Faccioli, P Parracho, PGF Gallinaro, M Mini, G Musella, P Nayak, A Raposo, L Ribeiro, PQ Seixas, J Silva, P Soares, D Varela, J Woehri, HK Altsybeev, I Belotelov, I Bunin, P Finger, M Finger, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Bondar, N Golovtsov, V Ivanov, Y Kim, V Levchenko, P Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Ilina, N Kaftanov, V Kossov, M Krokhotin, A Kuleshov, S Oulianov, A Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Obraztsov, S Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Dremin, I Kirakosyan, M Rusakov, SV Vinogradov, A Azhgirey, I Bitioukov, S Datsko, K Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Slabospitsky, S Sobol, A Sytine, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Maletic, D Milosevic, J Puzovic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De la Cruz, B Pardos, CD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Willmott, C Albajar, C de Troconiz, JF Cuevas, J Menendez, JF Caballero, IG Iglesias, LL Garcia, JMV Cabrillo, IJ Calderon, A Chuang, SH Merino, ID Gonzalez, CD Campderros, JD Fernandez, M Gomez, G Sanchez, JG Suarez, RG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Del Arbol, PMR Matorras, F Rodrigo, T Jimeno, AR Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Baillon, P Ball, AH Barney, D Beaudette, F Bell, AJ Bellan, R Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Breuker, H Brona, G Bunkowski, K Camporesi, T Cano, E Cattai, A Cerminara, G Christiansen, T Perez, JAC Covarelli, R Cure, B Dahms, T De Roeck, A Elliott-Peisert, A Funk, W Gaddi, A Gennai, S Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegner, B Henderson, C Hoffmann, HF Honma, A Innocente, V Janot, P Lecoq, P Leonidopoulos, C Lourenco, C Macpherson, A Maki, T Malgeri, L Mannelli, M Masetti, L Mavromanolakis, G Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Orsini, L Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Racz, A Rolandi, G Rovelli, C Rovere, M Ryjov, V Sakulin, H Schaefer, C Schwick, C Segoni, I Sharma, A Siegrist, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoeckli, F Traczyk, P Tropea, P Tsirou, A Veres, GI Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Koenig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Caminada, L Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Herve, A Hintz, W Lecomte, P Lustermann, W Marchica, C Meridiani, P Milenovic, P Moortgat, F Nardulli, A Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Sala, L Sanchez, AK Sawley, MC Schinzel, D Sordini, V Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Weber, M Wehrli, L Weng, J Amsler, C Chiochia, V De Visscher, S Rikova, MI Mejias, BM Regenfus, C Robmann, P Rommerskirchen, T Schmidt, A Tsirigkas, D Wilke, L Chang, YH Chen, KH Chen, WT Go, A Kuo, CM Li, SW Lin, W Liu, MH Lu, YJ Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lin, SW Lu, RS Shiu, JG Tzeng, YM Ueno, K Wang, CC Wang, M Wei, JT Adiguzel, A Ayhan, A Bakirci, MN Cerci, S Demir, Z Dozen, C Dumanoglu, I Eskut, E Girgis, S Goekbulut, G Gueller, Y Gurpinar, E Hos, I Kangal, EE Karaman, T Topaksu, AK Nart, A Oenenguet, G Ozdemir, K Ozturk, S Polatoez, A Sahin, O Sengul, O Sogut, K Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Zorbilmez, C Akin, IV Aliev, T Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Zeyrek, M Deliomeroglu, M Demir, D Guelmez, E Halu, A Isildak, B Kaya, M Kaya, O Oezbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bell, P Bostock, F Brooke, JJ Cheng, TL Cussans, D Frazier, R Goldstein, J Hansen, M Heath, GP Heath, HF Hill, C Huckvale, B Jackson, J Kreczko, L Mackay, CK Metson, S Newbold, DM Nirunpong, K Smith, VJ Ward, S Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Kennedy, BW Olaiya, E Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Foudas, C Fulcher, J Futyan, D Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Karapostoli, G Lyons, L Magnan, AM Marrouche, J Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, M Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Teodorescu, L Bose, T Clough, A Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sulak, L Andrea, J Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Esen, S Heintz, U Jabeen, S Kukartsev, G Landsberg, G Narain, M Nguyen, D Speer, T Tsang, KV Borgia, MA Breedon, R Sanchez, MCDLB Cebra, D Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Erhan, S Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Wallny, R Babb, J Clare, R Ellison, J Gary, JW Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Luthra, A Nguyen, H Pasztor, G Satpathy, A Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Dusinberre, E Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Muelmenstaedt, J Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Tu, Y Vartak, A Rthwein, FWR Yagil, A Barge, D Blume, M Campagnari, C D'Alfonso, M Danielson, T Garberson, J Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lamb, J Lowette, S Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Witherell, M Bornheim, A Bunn, J Gataullin, M Kcira, D Litvine, V Ma, Y Newman, HB Rogan, C Shin, K Timciuc, V Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Jang, DW Jun, SY Paulini, M Russ, J Terentyev, N Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Ford, WT Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Blekman, F Chatterjee, A Das, S Eggert, N Fields, LJ Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Kuznetsov, V Kaufman, GN Patterson, JR Puigh, D Riley, D Ryd, A Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Demarteau, M Eartly, DP Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gutsche, O Hahn, A Hanlon, J Harris, RM James, E Jensen, H Johnson, M Joshi, U Khatiwada, R Kilminster, B Klima, B Kousouris, K Kunori, S Kwan, S Limon, P Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P McCauley, T Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Popescu, S Pordes, R Prokofyev, O Saoulidou, N Sexton-Kennedy, E Sharma, S Smith, RP Soha, A Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fu, Y Furic, IK Gartner, J Kim, B Klimenko, S Konigsberg, J Korytov, A Kotov, K Kropivnitskaya, A Kypreos, T Matchev, K Mitselmakher, G Pakhotin, Y Gomez, JP Prescott, C Remington, R Schmitt, M Scurlock, B Sellers, P Wang, D Yelton, J Zakaria, M Ceron, C Gaultney, V Kramer, L Lebolo, LM Linn, S Markowitz, P Martinez, G Mesa, D Rodriguez, JL Adams, T Askew, A Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Guragain, S Hohlmann, M Kalakhety, H Mermerkaya, H Ralich, R Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Garcia-Solis, EJ Gerber, CE Hofman, DJ Khalatian, S Lacroix, F Shabalina, E Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Cankocak, K Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Murray, M Radicci, V Sanders, S Wood, JS Zhukova, V Bandurin, D Bolton, T Chakaberia, I Ivanov, A Kaadze, K Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, D Boutemeur, M Eno, SC Ferencek, D Hadley, NJ Kellogg, RG Kirn, M Mignerey, A Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M D'Enterria, D Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Roland, C Roland, G Rudolph, M Stephans, GSF Sumorok, K Sung, K Wenger, EA Wyslouch, B Xie, S Yilmaz, Y Yoon, AS Zanetti, M Cole, P Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Haupt, J Klapoetke, K Kubota, Y Mans, J Petyt, D Rekovic, V Rusack, R Sasseville, M Singovsky, A Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Sonnek, P Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Lundstedt, C Malbouisson, H Malik, S Snow, GR Baur, U Iashvili, I Kharchilava, A Kumar, A Smith, K Strang, M Zennamo, J Alverson, G Barberis, E Baumgartel, D Boeriu, O Reucroft, S Swain, J Wood, D Zhang, J Anastassov, A Kubik, A Ofierzynski, RA Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Lynch, S Marinelli, N Morse, DM Ruchti, R Slaunwhite, J Valls, N Warchol, J Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Killewald, P Ling, TY Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hunt, A Jones, J Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatzerklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D Everett, A Garfinkel, AF Gecse, Z Gutay, L Jones, M Koybasi, O Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Potamianos, K Shipsey, I Silvers, D Yoo, HD Zablocki, J Zheng, Y Jindal, P Parashar, N Cuplov, V Ecklund, KM Geurts, FJM Liu, JH Morales, J Padley, BP Redjimi, R Roberts, J Betchart, B Bodek, A Chung, YS de Barbaro, P Demina, R Flacher, H Garcia-Bellido, A Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Demortier, L Goulianos, K Hatakeyama, K Lungu, G Mesropian, C Yan, M Atramentov, O Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Asaadi, J Eusebi, R Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Nguyen, CN Pivarski, J Safonov, A Sengupta, S Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Velkovska, J Arenton, MW Balazs, M Buehler, M Conetti, S Cox, B Hirosky, R Ledovskoy, A Neu, C Yohay, R Gollapinni, S Gunthoti, K Harr, R Karchin, PE Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Bellinger, JN Carlsmith, D Dasu, S Dutta, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Lomidze, D Loveless, R Mohapatra, A Polese, G Reeder, D Savin, A Smith, WH Swanson, J Weinberg, M Onengut, G AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kasieczka, G. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Benucci, L. Ceard, L. De Wolf, E. A. Hashemi, M. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Adler, V. Beauceron, S. Blyweert, S. D'Hondt, J. Devroede, O. Kalogeropoulos, A. Maes, J. Maes, M. Tavernier, S. Van Doninck, W. Van Mulders, P. Villella, I. Chabert, E. C. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Marage, P. E. Velde, C. Vander Vanlaer, P. Wickens, J. Costantini, S. Grunewald, M. Klein, B. Marinov, A. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. De Jeneret, J. De Favereau Delaere, C. Demin, P. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Militaru, O. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Quertenmont, L. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Pol, M. E. Souza, M. H. G. Carvalho, W. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Mundim, L. Oguri, V. Santoro, A. Do Amaral, S. M. Silva Sznajder, A. De Araujo, F. Torres Da Silva Dias, F. A. Dias, M. A. F. Tomei, T. R. Fernandez Perez Gregores, E. M. Marinho, F. Novaes, S. F. Padula, Sandra S. Darmenov, N. Dimitrov, L. Genchev, V. Iaydjiev, P. Piperov, S. Stoykova, S. Sultanov, G. Trayanov, R. Vankov, I. Dyulendarova, M. Hadjiiska, R. Kozhuharov, V. Litov, L. Marinova, E. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Wang, J. Wang, J. Wang, X. Wang, Z. Yang, M. Zhang, Z. Ban, Y. Guo, S. Hu, Z. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Cabrera, A. Montoya, C. A. Carrillo Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Fereos, R. Galanti, M. Mousa, J. Nicolaou, C. Papadakis, A. Ptochos, F. Razis, P. A. Rykaczewski, H. Tsiakkouri, D. Zinonos, Z. Mahmoud, M. Hektor, A. Kadastik, M. Kannike, K. Muentel, M. Raidal, M. Rebane, L. Azzolini, V. Eerola, P. Czellar, S. Haerkoenen, J. Heikkinen, A. Karimaeki, V. Kinnunen, R. Klem, J. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Dejardin, M. Denegri, D. Descamps, J. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Rousseau, D. Titov, M. Verrecchia, P. Baffioni, S. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Kalinowski, A. Mine, P. Paganini, P. Sabes, D. Sirois, Y. Thiebaux, C. Zabi, A. Agram, J. -L. Besson, A. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Speck, J. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chanon, N. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Tosi, S. Tschudi, Y. Verdier, P. Xiao, H. Roinishvili, V. Anagnostou, G. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Actis, O. Ata, M. Bender, W. Biallass, P. Erdmann, M. Frangenheim, J. Hebbeker, T. Hinzmann, A. Hoepfner, K. Hof, C. Kirsch, M. Klimkovich, T. Kreuzer, P. Lanske, D. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Sowa, M. Steggemann, J. Teyssier, D. Zeidler, C. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Thomas, M. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Borras, K. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Kleinwort, C. Kluge, H. Knutsson, A. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Parenti, A. Raspereza, A. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Tomaszewska, J. Volyanskyy, D. Wissing, C. Autermann, C. Draeger, J. Eckstein, D. Enderle, H. Gebbert, U. Kaschube, K. Kaussen, G. Klanner, R. Mura, B. Naumann-Emme, S. Nowak, F. Sander, C. Schettler, H. Schleper, P. Schroeder, M. Schum, T. Schwandt, J. Stadie, H. Steinbrueck, G. Thomsen, J. Wolf, R. Bauer, J. Buege, V. Cakir, A. Chwalek, T. Daeuwel, D. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Piparo, D. Quast, G. Rabbertz, K. Ratnikov, F. Renz, M. Sabellek, A. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Petrakou, E. Gouskos, L. Katsas, P. Panagiotou, A. Evangelou, I. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Debreczeni, G. Hajdu, C. Horvath, D. Kapusi, A. Krajczar, K. Laszlo, A. Sikler, F. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bansal, S. Beri, S. B. Bhatnagar, V. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Sharma, R. Singh, A. P. Singh, J. B. Singh, S. P. Ahuja, S. Bhattacharya, S. Chauhan, S. Choudhary, B. C. Gupta, P. Jain, S. Jain, S. Kumar, A. Ranjan, K. Shivpuri, R. K. Choudhury, R. K. Dutta, D. Kailas, S. Kataria, S. K. Mohanty, A. K. Pant, L. M. Shukla, P. Suggisetti, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Fahim, A. Jafari, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Dimitrov, A. Fedele, F. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Castro, A. Cavallo, F. R. Codispoti, G. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Tricomi, A. Tuve, C. Barbagli, G. Broccolo, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Genta, C. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. Cerati, G. B. De Guio, F. Di Matteo, L. Ghezzi, A. Govoni, P. Malberti, M. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Miccio, V. Moroni, L. Negri, P. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. Salerno, R. Tabarelli de Fatis, T. Tancini, V. Taroni, S. Buontempo, S. Cimmino, A. De Cosa, A. De Gruttola, M. Fabozzi, F. Iorio, A. O. M. Lista, L. Noli, P. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bellato, M. Biasotto, M. Bisello, D. Carlin, R. Checchia, P. De Mattia, M. Dorigo, T. Fanzago, F. Gasparini, F. Giubilato, P. Gresele, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Zumerle, G. Baesso, P. Berzano, U. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Santocchia, A. Servoli, L. Valdata, M. Volpe, R. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Dagnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Organtini, G. Palma, A. Pandolfi, F. Paramatti, R. Rahatlou, S. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Trocino, D. Pereira, A. Vilela Ambroglini, F. Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Son, D. C. Kim, Zero Kim, J. Y. Song, S. Hong, B. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Rhee, H. B. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Choi, S. Choi, Y. Choi, Y. K. Goh, J. Lee, J. Lee, S. Seo, H. Yu, I. Janulis, M. Martisiute, D. Petrov, P. Sabonis, T. Valdez, H. Castilla Burelo, E. De la Cruz Lopez-Fernandez, R. Hernandez, A. Sanchez Villasenor-Cendejas, L. M. Moreno, S. Carrillo Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Allfrey, P. Krofcheck, D. Tam, J. Aumeyr, T. Butler, P. H. Signal, T. Williams, J. C. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khan, W. A. Khurshid, T. Qazi, S. Cwiok, M. Dominik, W. Doroba, K. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Mini, G. Musella, P. Nayak, A. Raposo, L. Ribeiro, P. Q. Seixas, J. Silva, P. Soares, D. Varela, J. Woehri, H. K. Altsybeev, I. Belotelov, I. Bunin, P. Finger, M. Finger, M., Jr. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Bondar, N. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Ilina, N. Kaftanov, V. Kossov, M. Krokhotin, A. Kuleshov, S. Oulianov, A. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Obraztsov, S. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Dremin, I. Kirakosyan, M. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bitioukov, S. Datsko, K. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Slabospitsky, S. Sobol, A. Sytine, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Maletic, D. Milosevic, J. Puzovic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Llatas, M. Chamizo Colino, N. De la Cruz, B. Pardos, C. Diez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. Pelayo, J. Puerta Redondo, I. Romero, L. Santaolalla, J. Willmott, C. Albajar, C. de Troconiz, J. F. Cuevas, J. Menendez, J. Fernandez Caballero, I. Gonzalez Iglesias, L. Lloret Garcia, J. M. Vizan Cabrillo, I. J. Calderon, A. Chuang, S. H. Merino, I. Diaz Gonzalez, C. Diez Campderros, J. Duarte Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Suarez, R. Gonzalez Jorda, C. Pardo, P. Lobelle Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Del Arbol, P. Martinez Ruiz Matorras, F. Rodrigo, T. Jimeno, A. Ruiz Scodellaro, L. Sanudo, M. Sobron Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Baillon, P. Ball, A. H. Barney, D. Beaudette, F. Bell, A. J. Bellan, R. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Breuker, H. Brona, G. Bunkowski, K. Camporesi, T. Cano, E. Cattai, A. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Covarelli, R. Cure, B. Dahms, T. De Roeck, A. Elliott-Peisert, A. Funk, W. Gaddi, A. Gennai, S. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegner, B. Henderson, C. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Lecoq, P. Leonidopoulos, C. Lourenco, C. Macpherson, A. Maki, T. Malgeri, L. Mannelli, M. Masetti, L. Mavromanolakis, G. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Orsini, L. Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Racz, A. Rolandi, G. Rovelli, C. Rovere, M. Ryjov, V. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoeckli, F. Traczyk, P. Tropea, P. Tsirou, A. Veres, G. I. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Caminada, L. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Herve, A. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Meridiani, P. Milenovic, P. Moortgat, F. Nardulli, A. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Sala, L. Sanchez, A. K. Sawley, M. -C. Schinzel, D. Sordini, V. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Weber, M. Wehrli, L. Weng, J. Amsler, C. Chiochia, V. De Visscher, S. Rikova, M. Ivova Mejias, B. Millan Regenfus, C. Robmann, P. Rommerskirchen, T. Schmidt, A. Tsirigkas, D. Wilke, L. Chang, Y. H. Chen, K. H. Chen, W. T. Go, A. Kuo, C. M. Li, S. W. Lin, W. Liu, M. H. Lu, Y. J. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lin, S. W. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Ueno, K. Wang, C. C. Wang, M. Wei, J. T. Adiguzel, A. Ayhan, A. Bakirci, M. N. Cerci, S. Demir, Z. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Goekbulut, G. Gueller, Y. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Topaksu, A. Kayis Nart, A. Oenenguet, G. Ozdemir, K. Ozturk, S. Polatoez, A. Sahin, O. Sengul, O. Sogut, K. Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Zorbilmez, C. Akin, I. V. Aliev, T. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Zeyrek, M. Deliomeroglu, M. Demir, D. Guelmez, E. Halu, A. Isildak, B. Kaya, M. Kaya, O. Oezbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bell, P. Bostock, F. Brooke, J. J. Cheng, T. L. Cussans, D. Frazier, R. Goldstein, J. Hansen, M. Heath, G. P. Heath, H. F. Hill, C. Huckvale, B. Jackson, J. Kreczko, L. Mackay, C. K. Metson, S. Newbold, D. M. Nirunpong, K. Smith, V. J. Ward, S. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Kennedy, B. W. Olaiya, E. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Foudas, C. Fulcher, J. Futyan, D. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, M. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Teodorescu, L. Bose, T. Clough, A. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sulak, L. Andrea, J. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Esen, S. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Narain, M. Nguyen, D. Speer, T. Tsang, K. V. Borgia, M. A. Breedon, R. Sanchez, M. Calderon De la Barca Cebra, D. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Erhan, S. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Wallny, R. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Luthra, A. Nguyen, H. Pasztor, G. Satpathy, A. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Dusinberre, E. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Muelmenstaedt, J. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Tu, Y. Vartak, A. Rthwein, F. Wu R. Yagil, A. Barge, D. Blume, M. Campagnari, C. D'Alfonso, M. Danielson, T. Garberson, J. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lamb, J. Lowette, S. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Witherell, M. Bornheim, A. Bunn, J. Gataullin, M. Kcira, D. Litvine, V. Ma, Y. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Jang, D. W. Jun, S. Y. Paulini, M. Russ, J. Terentyev, N. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Ford, W. T. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Blekman, F. Chatterjee, A. Das, S. Eggert, N. Fields, L. J. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Kuznetsov, V. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Riley, D. Ryd, A. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Demarteau, M. Eartly, D. P. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gutsche, O. Hahn, A. Hanlon, J. Harris, R. M. James, E. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Kilminster, B. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Limon, P. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. McCauley, T. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Popescu, S. Pordes, R. Prokofyev, O. Saoulidou, N. Sexton-Kennedy, E. Sharma, S. Smith, R. P. Soha, A. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fu, Y. Furic, I. K. Gartner, J. Kim, B. Klimenko, S. Konigsberg, J. Korytov, A. Kotov, K. Kropivnitskaya, A. Kypreos, T. Matchev, K. Mitselmakher, G. Pakhotin, Y. Gomez, J. Piedra Prescott, C. Remington, R. Schmitt, M. Scurlock, B. Sellers, P. Wang, D. Yelton, J. Zakaria, M. Ceron, C. Gaultney, V. Kramer, L. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Mesa, D. Rodriguez, J. L. Adams, T. Askew, A. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Guragain, S. Hohlmann, M. Kalakhety, H. Mermerkaya, H. Ralich, R. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Garcia-Solis, E. J. Gerber, C. E. Hofman, D. J. Khalatian, S. Lacroix, F. Shabalina, E. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Cankocak, K. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Murray, M. Radicci, V. Sanders, S. Wood, J. S. Zhukova, V. Bandurin, D. Bolton, T. Chakaberia, I. Ivanov, A. Kaadze, K. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, D. Boutemeur, M. Eno, S. C. Ferencek, D. Hadley, N. J. Kellogg, R. G. Kirn, M. Mignerey, A. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. D'Enterria, D. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Sumorok, K. Sung, K. Wenger, E. A. Wyslouch, B. Xie, S. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cole, P. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Petyt, D. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Sonnek, P. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Lundstedt, C. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Iashvili, I. Kharchilava, A. Kumar, A. Smith, K. Strang, M. Zennamo, J. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Reucroft, S. Swain, J. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Ofierzynski, R. A. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Lynch, S. Marinelli, N. Morse, D. M. Ruchti, R. Slaunwhite, J. Valls, N. Warchol, J. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Killewald, P. Ling, T. Y. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hunt, A. Jones, J. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatzerklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. Everett, A. Garfinkel, A. F. Gecse, Z. Gutay, L. Jones, M. Koybasi, O. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Potamianos, K. Shipsey, I. Silvers, D. Yoo, H. D. Zablocki, J. Zheng, Y. Jindal, P. Parashar, N. Cuplov, V. Ecklund, K. M. Geurts, F. J. M. Liu, J. H. Morales, J. Padley, B. P. Redjimi, R. Roberts, J. Betchart, B. Bodek, A. Chung, Y. S. de Barbaro, P. Demina, R. Flacher, H. Garcia-Bellido, A. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Demortier, L. Goulianos, K. Hatakeyama, K. Lungu, G. Mesropian, C. Yan, M. Atramentov, O. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Asaadi, J. Eusebi, R. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Nguyen, C. N. Pivarski, J. Safonov, A. Sengupta, S. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Velkovska, J. Arenton, M. W. Balazs, M. Buehler, M. Conetti, S. Cox, B. Hirosky, R. Ledovskoy, A. Neu, C. Yohay, R. Gollapinni, S. Gunthoti, K. Harr, R. Karchin, P. E. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Bellinger, J. N. Carlsmith, D. Dasu, S. Dutta, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Lomidze, D. Loveless, R. Mohapatra, A. Polese, G. Reeder, D. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. Onengut, Gulsen CA CMS Collaboration TI Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PARTICLES; ENERGIES; DEPENDENCE AB Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at root s = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dN(ch)/d eta vertical bar(vertical bar eta vertical bar<0.5) = 5.78 +/- 0.01(stat) +/- 0.23(stat) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from root s = 0.9 to 7 TeV is [66.1 +/- 1.0(stat) +/- 4.2(syst)]%. The mean transverse momentum is measured to be 0.545 +/- 0.005(stat) +/- 0.015(syst) GeV/c. The results are compared with similar measurements at lower energies. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Chabert, E. C.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Marage, P. E.; Velde, C. Vander; Vanlaer, P.; Wickens, J.] Univ Ghent, B-9000 Ghent, Belgium. [Costantini, S.; Grunewald, M.; Klein, B.; Marinov, A.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; De Jeneret, J. De Favereau; Delaere, C.; Demin, P.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Militaru, O.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Quertenmont, L.; Schul, N.] Univ Mons, B-7000 Mons, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alves, G. A.; Pol, M. E.; Souza, M. H. G.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Carvalho, W.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Mundim, L.; Oguri, V.; Santoro, A.; Do Amaral, S. M. Silva; Sznajder, A.; De Araujo, F. Torres Da Silva] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Dias, F. A.; Dias, M. A. F.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Dyulendarova, M.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Marinova, E.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Wang, J.; Wang, X.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Hu, Z.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Montoya, C. A. Carrillo; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Fereos, R.; Galanti, M.; Mousa, J.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Zinonos, Z.] Univ Cyprus, Nicosia, Cyprus. [Mahmoud, M.] Acad Sci Res & Technol,Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Kannike, K.; Muentel, M.; Raidal, M.; Rebane, L.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Haerkoenen, J.; Heikkinen, A.; Karimaeki, V.; Kinnunen, R.; Klem, J.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy Vieux Phys Particules, Annecy, France. [Besancon, M.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Rousseau, D.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Kalinowski, A.; Mine, P.; Paganini, P.; Sabes, D.; Sirois, Y.; Thiebaux, C.; Zabi, A.; Agram, J. -L.; Besson, A.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Speck, J.; Van Hove, P.] CNRS, IN2P3, Ecole Polytechn, Lab Leprince Ringuet, Palaiseau, France. [Fassi, F.; Mercier, D.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Baty, C.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chanon, N.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Tosi, S.; Tschudi, Y.; Verdier, P.; Xiao, H.] IN2P3, Ctr Calcul, Villeurbanne, France. [Roinishvili, V.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Anagnostou, G.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Acad Sci, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Actis, O.; Ata, M.; Bender, W.; Biallass, P.; Erdmann, M.; Frangenheim, J.; Hebbeker, T.; Hinzmann, A.; Hoepfner, K.; Hof, C.; Kirsch, M.; Klimkovich, T.; Kreuzer, P.; Lanske, D.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Sowa, M.; Steggemann, J.; Teyssier, D.; Zeidler, C.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Heydhausen, D.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Thomas, M.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Borras, K.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Parenti, A.; Raspereza, A.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Tomaszewska, J.; Volyanskyy, D.; Wissing, C.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Autermann, C.; Draeger, J.; Eckstein, D.; Enderle, H.; Gebbert, U.; Kaschube, K.; Kaussen, G.; Klanner, R.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Sander, C.; Schettler, H.; Schleper, P.; Schroeder, M.; Schum, T.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Wolf, R.] DESY, D-2000 Hamburg, Germany. [Bauer, J.; Buege, V.; Cakir, A.; Chwalek, T.; Daeuwel, D.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Piparo, D.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Renz, M.; Sabellek, A.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Hamburg, Hamburg, Germany. [Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Petrakou, E.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Gouskos, L.; Katsas, P.; Panagiotou, A.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Athens, Athens, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Horvath, D.; Kapusi, A.; Krajczar, K.; Laszlo, A.; Sikler, F.; Vesztergombi, G.] Univ Ioannina, GR-45110 Ioannina, Greece. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Sharma, R.; Singh, A. P.; Singh, J. B.; Singh, S. P.] Univ Debrecen, Debrecen, Hungary. [Ahuja, S.; Bhattacharya, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Ranjan, K.; Shivpuri, R. K.] Panjab Univ, Chandigarh 160014, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Suggisetti, P.] Univ Delhi, Delhi 110007, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Inst Studies Theoret Phys & Math IPM, Tehran, Iran. [Selvaggi, M.; Abbrescia, M.; Barbone, L.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Dimitrov, A.; Fedele, F.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Selvaggi, M.; Abbrescia, M.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Creanza, D.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Braibant-Giacomelli, S.; Castro, A.; Codispoti, G.; Fanfani, A.; Masetti, G.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.] Univ Catania, Catania, Italy. [Broccolo, G.; Ciulli, V.; Focardi, E.; Frosali, S.; Genta, C.; Lenzi, P.] Univ Florence, Florence, Italy. [Barbagli, G.; Broccolo, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Genta, C.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Martelli, A.; Massironi, A.; Miccio, V.; Negri, P.; Paganoni, M.; Ragazzi, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Univ Milano Bicocca, Milan, Italy. [Benaglia, A.; Cerati, G. B.; De Guio, F.; Di Matteo, L.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.] Ist Nazl Fis Nucl, Sez Milano Biccoca, I-20133 Milan, Italy. [Buontempo, S.; Cimmino, A.; De Cosa, A.; De Gruttola, M.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Noli, P.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Cimmino, A.; De Cosa, A.; De Gruttola, M.; Noli, P.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bellato, M.; Biasotto, M.; Bisello, D.; Carlin, R.; Checchia, P.; De Mattia, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Giubilato, P.; Gresele, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; De Mattia, M.; Gasparini, F.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zumerle, G.] Univ Padua, Padua, Italy. [Baesso, P.; Berzano, U.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pelliccioni, M.; Romero, A.; Sacchi, R.; Solano, A.; Trocino, D.; Pereira, A. Vilela] Univ Trento, Padua, Italy. [Baesso, P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Santocchia, A.; Servoli, L.; Valdata, M.; Volpe, R.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Dagnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Swain, J.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Pereira, A. Vilela; Ambroglini, F.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Ambroglini, F.; Belforte, S.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.] Univ Perugia, I-06100 Perugia, Italy. [Fiori, F.] Univ Pisa, Pisa, Italy. [Dagnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Palma, A.; Pandolfi, F.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.] Univ Turin, Turin, Italy. [Ambroglini, F.; Della Ricca, G.] Univ Trieste, Trieste, Italy. [Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Hong, B.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Rhee, H. B.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kang, S.; Park, C.; Park, I. C.; Park, S.] Univ Seoul, Seoul, South Korea. [Choi, S.; Choi, Y.; Choi, Y. K.; Goh, J.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Janulis, M.; Martisiute, D.; Petrov, P.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Valdez, H. Castilla; Burelo, E. De la Cruz; Lopez-Fernandez, R.; Hernandez, A. Sanchez; Villasenor-Cendejas, L. M.] IPN, Centro Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Montoya, C. A. Carrillo] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Swain, J.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Allfrey, P.; Krofcheck, D.; Tam, J.] Univ Auckland, Auckland, New Zealand. [Aumeyr, T.; Butler, P. H.; Signal, T.; Williams, J. C.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Qazi, S.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Inst Expt Phys, Warsaw, Poland. [Almeida, N.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Mini, G.; Musella, P.; Nayak, A.; Raposo, L.; Ribeiro, P. Q.; Seixas, J.; Silva, P.; Soares, D.; Varela, J.; Woehri, H. K.] Lab Instrumentacao & Fis Expt Particulars, Lisbon, Portugal. [Bondar, N.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Cwiok, M.; Dominik, W.; Doroba, K.; Konecki, M.; Krolikowski, J.] Inst Theoret & Expt Phys, Moscow, Russia. [Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Dremin, I.; Kirakosyan, M.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bitioukov, S.; Datsko, K.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Fed, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Maletic, D.; Milosevic, J.; Puzovic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Llatas, M. Chamizo; Colino, N.; De la Cruz, B.; Pardos, C. Diez; Bedoya, C. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Redondo, I.; Romero, L.; Santaolalla, J.; Willmott, C.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Menendez, J. Fernandez; Caballero, I. Gonzalez; Iglesias, L. Lloret; Garcia, J. M. Vizan] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Merino, I. Diaz; Gonzalez, C. Diez; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Suarez, R. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Del Arbol, P. Martinez Ruiz; Matorras, F.; Rodrigo, T.; Jimeno, A. Ruiz; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, IFCA, E-39005 Santander, Spain. [Sharma, A.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Beaudette, F.; Bell, A. J.; Bellan, R.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Breuker, H.; Brona, G.; Bunkowski, K.; Camporesi, T.; Cano, E.; Cattai, A.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Covarelli, R.; Cure, B.; Dahms, T.; De Roeck, A.; Elliott-Peisert, A.; Funk, W.; Gaddi, A.; Gennai, S.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegner, B.; Henderson, C.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Lecoq, P.; Leonidopoulos, C.; Lourenco, C.; Macpherson, A.; Maki, T.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Orsini, L.; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Racz, A.; Rolandi, G.; Rovelli, C.; Rovere, M.; Ryjov, V.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Siegrist, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoeckli, F.; Traczyk, P.; Tropea, P.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] European Org Nucl Res, CERN, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, M.; Caminada, L.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Herve, A.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Meridiani, P.; Milenovic, P.; Moortgat, F.; Nardulli, A.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Schinzel, D.; Sordini, V.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Wehrli, L.; Weng, J.; Swain, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Chen, W. T.; Go, A.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, M. H.; Lu, Y. J.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lin, S. W.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Wang, C. C.; Wang, M.; Wei, J. T.] Natl Taiwan Univ, Taipei, Taiwan. [Adiguzel, A.; Ayhan, A.; Bakirci, M. N.; Cerci, S.; Demir, Z.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Goekbulut, G.; Gueller, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Topaksu, A. Kayis; Nart, A.; Oenenguet, G.; Ozdemir, K.; Ozturk, S.; Polatoez, A.; Sahin, O.; Sengul, O.; Sogut, K.; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Guelmez, E.; Halu, A.; Isildak, B.; Kaya, M.; Kaya, O.; Oezbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Hansen, M.; Bell, P.; Bostock, F.; Brooke, J. J.; Cheng, T. L.; Cussans, D.; Frazier, R.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Kreczko, L.; Mackay, C. K.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Smith, V. J.; Ward, S.] Univ Bristol, Bristol, Avon, England. [Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Kennedy, B. W.; Olaiya, E.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Foudas, C.; Fulcher, J.; Futyan, D.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, M.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardrope, D.; Whyntie, T.] Univ London, Imperial Coll, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge, Middx, England. [Bose, T.; Clough, A.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Andrea, J.; Avetisyan, A.; Chou, J. P.; Cutts, D.; Esen, S.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Andreev, V.; Borgia, M. A.; Breedon, R.; Sanchez, M. Calderon De la Barca; Cebra, D.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Erhan, S.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Liu, H.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Luthra, A.; Nguyen, H.; Pasztor, G.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Dusinberre, E.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Muelmenstaedt, J.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Tu, Y.; Vartak, A.; Rthwein, F. Wu R.; Yagil, A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Blume, M.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Garberson, J.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lamb, J.; Lowette, S.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; Witherell, M.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Bornheim, A.; Bunn, J.; Gataullin, M.; Kcira, D.; Litvine, V.; Ma, Y.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Blekman, F.; Chatterjee, A.; Das, S.; Eggert, N.; Fields, L. J.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kuznetsov, V.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Riley, D.; Ryd, A.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Demarteau, M.; Eartly, D. P.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Kilminster, B.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Limon, P.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; McCauley, T.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Popescu, S.; Pordes, R.; Prokofyev, O.; Saoulidou, N.; Sexton-Kennedy, E.; Sharma, S.; Smith, R. P.; Soha, A.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gartner, J.; Kim, B.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Kropivnitskaya, A.; Kypreos, T.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Gomez, J. Piedra; Prescott, C.; Remington, R.; Schmitt, M.; Scurlock, B.; Sellers, P.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Ceron, C.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Mesa, D.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Khalatian, S.; Lacroix, F.; Shabalina, E.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Cankocak, K.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Murray, M.; Radicci, V.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Bandurin, D.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Baden, D.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Mignerey, A.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; D'Enterria, D.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Sumorok, K.; Sung, K.; Wenger, E. A.; Wyslouch, B.; Xie, S.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cole, P.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Petyt, D.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Sonnek, P.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Lundstedt, C.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Kumar, A.; Baur, U.; Iashvili, I.; Kharchilava, A.; Smith, K.; Strang, M.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Reucroft, S.; Swain, J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmitt, M.; Anastassov, A.; Kubik, A.; Ofierzynski, R. A.; Pozdnyakov, A.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Lynch, S.; Marinelli, N.; Morse, D. M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Warchol, J.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Killewald, P.; Ling, T. Y.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatzerklyaniy, A.; Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; Everett, A.; Garfinkel, A. F.; Gecse, Z.; Gutay, L.; Jones, M.; Koybasi, O.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Potamianos, K.; Shipsey, I.; Silvers, D.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Jindal, P.; Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Liu, J. H.; Morales, J.; Padley, B. P.; Redjimi, R.; Roberts, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; de Barbaro, P.; Demina, R.; Flacher, H.; Garcia-Bellido, A.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Yan, M.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Asaadi, J.; Eusebi, R.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Sengupta, S.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Gunthoti, K.; Harr, R.; Karchin, P. E.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Dutta, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Lomidze, D.; Loveless, R.; Mohapatra, A.; Polese, G.; Reeder, D.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Kreuzer, P.; Panagiotou, A.; Szillasi, Z.; Dallavalle, G. M.; Giunta, M.; Cerati, G. B.; Ghezzi, A.; Malberti, M.; De Cosa, A.; De Gruttola, M.; Bellan, P.; Volpe, R.; Bernardini, J.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Paramatti, R.; Pelliccioni, M.; Pereira, A. Vilela] European Org Nucl Res, CERN, Geneva, Switzerland. [Martelli, A.; Beaudette, F.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Bluj, M.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Zhukov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Andrews, W.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Baringer, P.] Univ Kansas, Lawrence, KS 66045 USA. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Caminada, L.; Marchica, C.] Paul Scherrer Inst, Villigen, Switzerland. [Pasztor, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Univ Antwerp, Antwerp, Belgium. [Benucci, L.; Ceard, L.; De Wolf, E. A.; Hashemi, M.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Vrije Univ Brussel, Brussels, Belgium. [Adler, V.; Beauceron, S.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Kalogeropoulos, A.; Maes, J.; Maes, M.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Villella, I.] Univ Libre Brussels, Brussels, Belgium. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Paulini, Manfred/N-7794-2014; Gerbaudo, Davide/J-4536-2012; KIM, Tae Jeong/P-7848-2015; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Della Ricca, Giuseppe/B-6826-2013; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Bedoya, Cristina/K-8066-2014; Marco, Jesus/B-8735-2008; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Muelmenstaedt, Johannes/K-2432-2015; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Vinogradov, Alexander/M-5331-2015; Altsybeev, Igor/K-6687-2013; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Gonzalez Caballero, Isidro/E-7354-2010; Horvath, Dezso/A-4009-2011; Palinkas, Jozsef/B-2993-2011; Mignerey, Alice/D-6623-2011; Ganjour, Serguei/D-8853-2011; Stahl, Achim/E-8846-2011; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Arce, Pedro/L-1268-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Snigirev, Alexander/D-8912-2012; Raidal, Martti/F-4436-2012; Fruhwirth, Rudolf/H-2529-2012; Torassa, Ezio/I-1788-2012; Kadastik, Mario/B-7559-2008; Hill, Christopher/B-5371-2012; Kuleshov, Sergey/D-9940-2013; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Alves, Gilvan/C-4007-2013; Dudko, Lev/D-7127-2012; Brona, Grzegorz/E-5544-2012; Servoli, Leonello/E-6766-2012; Tomei, Thiago/E-7091-2012; Padula, Sandra /G-3560-2012; Azzi, Patrizia/H-5404-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Menasce, Dario Livio/A-2168-2016; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Novaes, Sergio/D-3532-2012; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; OI Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Actis, Oxana/0000-0001-8851-3983; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Della Ricca, Giuseppe/0000-0003-2831-6982; Paganoni, Marco/0000-0003-2461-275X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Bedoya, Cristina/0000-0001-8057-9152; Marco, Jesus/0000-0001-7914-8494; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Muelmenstaedt, Johannes/0000-0003-1105-6678; Rovelli, Tiziano/0000-0002-9746-4842; Altsybeev, Igor/0000-0002-8079-7026; TUVE', Cristina/0000-0003-0739-3153; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Stahl, Achim/0000-0002-8369-7506; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Hill, Christopher/0000-0003-0059-0779; Kuleshov, Sergey/0000-0002-3065-326X; Troitsky, Sergey/0000-0001-6917-6600; Dudko, Lev/0000-0002-4462-3192; Servoli, Leonello/0000-0003-1725-9185; Tomei, Thiago/0000-0002-1809-5226; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Novaes, Sergio/0000-0003-0471-8549; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Ghezzi, Alessio/0000-0002-8184-7953; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Levchenko, Petr/0000-0003-4913-0538; Uliyanov, Alexey/0000-0001-6935-8949; bianco, stefano/0000-0002-8300-4124; Varela, Joao/0000-0003-2613-3146; Mackay, Catherine/0000-0003-4252-6740; Heath, Helen/0000-0001-6576-9740 FU FMSR (Austria); FNRS, Belgium; CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U. K.); DOE and NSF (U. S.) FX We congratulate and express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U. K.); DOE and NSF (U.S.). NR 29 TC 307 Z9 308 U1 12 U2 164 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 022002 DI 10.1103/PhysRevLett.105.022002 PG 14 WC Physics, Multidisciplinary SC Physics GA 621DZ UT WOS:000279555600002 PM 20867699 ER PT J AU Moutanabbir, O Miyamoto, S Haller, EE Itoh, KM AF Moutanabbir, Oussama Miyamoto, Satoru Haller, Eugene E. Itoh, Kohei M. TI Transport of Deposited Atoms throughout Strain-Mediated Self-Assembly SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRANSKI-KRASTANOW GROWTH; GE; SI(001); NANOSTRUCTURES; ISLANDS; SI(100); EPITAXY; INGAAS; GAAS AB Using enriched isotopes, we developed a method to elucidate the long-standing issue of Ge transport governing the strain-driven self-assembly. Here (76)Ge was employed to form the 2D metastable layer on a Si(001) surface, while the 3D transition and growth were completed by additional evaporation of (70)Ge. This isotope tracing combined with the analysis of the Ge-Ge LO phonon enables the tracking of the origin of Ge atoms and their flow towards the growing islands. This atomic transport was quantified based on the quasiharmonic approximation of Ge-Ge vibrations and described using a rate equation model. C1 [Moutanabbir, Oussama; Miyamoto, Satoru; Itoh, Kohei M.] Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan. [Moutanabbir, Oussama] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. [Haller, Eugene E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Moutanabbir, O (reprint author), Keio Univ, Sch Fundamental Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan. EM moutanab@mpi-halle.mpg.de RI Moutanabbir, Oussama/A-4001-2009; Itoh, Kohei/C-5738-2014 FU JSPS; Special Coordination Funds for Promoting Science and Technology [18001002]; Global Center of Excellence at Keio University FX O.M. is grateful to Jerry Tersoff for fruitful discussions and to JSPS for financial support. The authors are thankful to Oscar D. Dubon and Kin Man Yu for RBS measurements. This work was supported in part by a Grant-in-Aid for Scientific Research No 18001002, in part by Special Coordination Funds for Promoting Science and Technology, and in part by a Grant-in-Aid for the Global Center of Excellence at Keio University. NR 29 TC 12 Z9 12 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 026101 DI 10.1103/PhysRevLett.105.026101 PG 4 WC Physics, Multidisciplinary SC Physics GA 621EE UT WOS:000279556300001 PM 20867717 ER PT J AU Tsvelik, AM Essler, FHL AF Tsvelik, A. M. Essler, F. H. L. TI Effects of Thermal Phase Fluctuations in a Two-Dimensional Superconductor: An Exact Result for the Spectral Function SO PHYSICAL REVIEW LETTERS LA English DT Article ID TOMONAGAS MODEL AB We consider the single particle spectral function for a two-dimensional clean superconductor in a regime of strong critical thermal phase fluctuations. In the limit where the maximum of the superconducting gap is much smaller than the Fermi energy we obtain an exact expression for the spectral function integrated over the momentum component perpendicular to the Fermi surface. C1 [Tsvelik, A. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Essler, F. H. L.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. FU U.S. Department of Energy, Office of Science; EPSRC [EP/D050952/1, EP/H021639/1] FX We thank M. Khodas for important discussions. This work was supported by the Center for Emerging Superconductivity funded by the U.S. Department of Energy, Office of Science (AMT) by the EPSRC under Grants No. EP/D050952/1 (FHLE) and No. EP/H021639/1 (AMT and FHLE). NR 29 TC 2 Z9 2 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 027002 DI 10.1103/PhysRevLett.105.027002 PG 4 WC Physics, Multidisciplinary SC Physics GA 621EM UT WOS:000279557200002 PM 20867729 ER PT J AU Yu, P Lee, JS Okamoto, S Rossell, MD Huijben, M Yang, CH He, Q Zhang, JX Yang, SY Lee, MJ Ramasse, QM Erni, R Chu, YH Arena, DA Kao, CC Martin, LW Ramesh, R AF Yu, P. Lee, J. -S. Okamoto, S. Rossell, M. D. Huijben, M. Yang, C. -H. He, Q. Zhang, J. X. Yang, S. Y. Lee, M. J. Ramasse, Q. M. Erni, R. Chu, Y. -H. Arena, D. A. Kao, C. -C. Martin, L. W. Ramesh, R. TI Interface Ferromagnetism and Orbital Reconstruction in BiFeO3-La0.7Sr0.3MnO3 Heterostructures SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETIC CIRCULAR-DICHROISM; EXCHANGE BIAS; THIN-FILMS; OXIDES; MULTIFERROICS; ANISOTROPY; MODEL AB We report the formation of a novel ferromagnetic state in the antiferromagnet BiFeO3 at the interface with ferromagnet La0.7Sr0.3MnO3. Using x-ray magnetic circular dichroism at Mn and Fe L-2,L-3 edges, we discovered that the development of this ferromagnetic spin structure is strongly associated with the onset of a significant exchange bias. Our results demonstrate that the magnetic state is directly related to an electronic orbital reconstruction at the interface, which is supported by the linearly polarized x-ray absorption measurement at the oxygen K edge. C1 [Yu, P.; Huijben, M.; Yang, C. -H.; He, Q.; Zhang, J. X.; Yang, S. Y.; Lee, M. J.; Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yu, P.; Huijben, M.; Yang, C. -H.; He, Q.; Zhang, J. X.; Yang, S. Y.; Lee, M. J.; Ramesh, R.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Lee, J. -S.; Arena, D. A.; Kao, C. -C.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Okamoto, S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Rossell, M. D.; Ramasse, Q. M.; Erni, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Huijben, M.] Univ Twente, Fac Sci & Technol, MSEA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. [Chu, Y. -H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Martin, L. W.; Ramesh, R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Martin, L. W.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Yu, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM pyu@lbl.gov RI Ying-Hao, Chu/A-4204-2008; He, Qing/E-3202-2010; YANG, CHAN-HO/C-2079-2011; Okamoto, Satoshi/G-5390-2011; Martin, Lane/H-2409-2011; Erni, Rolf/P-7435-2014; Yu, Pu/F-1594-2014; Rossell, Marta/E-9785-2017 OI Ying-Hao, Chu/0000-0002-3435-9084; Okamoto, Satoshi/0000-0002-0493-7568; Martin, Lane/0000-0003-1889-2513; Erni, Rolf/0000-0003-2391-5943; FU SRC NRI-WIN program; Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Council,, R. O. C [NSC98-2119-M-009-016] FX Research at Berkeley was sponsored by the SRC NRI-WIN program as well as by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NSLS, Brookhaven National Laboratory, is supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Work at ORNL was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Y.H.C. also acknowledges the support of the National Science Council, R. O. C, under contract NSC98-2119-M-009-016. NR 38 TC 200 Z9 202 U1 15 U2 182 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 6 PY 2010 VL 105 IS 2 AR 027201 DI 10.1103/PhysRevLett.105.027201 PG 5 WC Physics, Multidisciplinary SC Physics GA 621EN UT WOS:000279557300001 PM 20867733 ER PT J AU Larsen, PE Trivedi, G Sreedasyam, A Lu, V Podila, GK Collart, FR AF Larsen, Peter E. Trivedi, Geetika Sreedasyam, Avinash Lu, Vincent Podila, Gopi K. Collart, Frank R. TI Using Deep RNA Sequencing for the Structural Annotation of the Laccaria Bicolor Mycorrhizal Transcriptome SO PLOS ONE LA English DT Article ID PROTEIN FUNCTION; ECTOMYCORRHIZAL SYMBIOSIS; DNA-SEQUENCES; GENOME; GENE; SEQ; PREDICTION; ACCURACY; FUNGI; TOOL AB Background: Accurate structural annotation is important for prediction of function and required for in vitro approaches to characterize or validate the gene expression products. Despite significant efforts in the field, determination of the gene structure from genomic data alone is a challenging and inaccurate process. The ease of acquisition of transcriptomic sequence provides a direct route to identify expressed sequences and determine the correct gene structure. Methodology: We developed methods to utilize RNA-seq data to correct errors in the structural annotation and extend the boundaries of current gene models using assembly approaches. The methods were validated with a transcriptomic data set derived from the fungus Laccaria bicolor, which develops a mycorrhizal symbiotic association with the roots of many tree species. Our analysis focused on the subset of 1501 gene models that are differentially expressed in the free living vs. mycorrhizal transcriptome and are expected to be important elements related to carbon metabolism, membrane permeability and transport, and intracellular signaling. Of the set of 1501 gene models, 1439 (96%) successfully generated modified gene models in which all error flags were successfully resolved and the sequences aligned to the genomic sequence. The remaining 4% (62 gene models) either had deviations from transcriptomic data that could not be spanned or generated sequence that did not align to genomic sequence. The outcome of this process is a set of high confidence gene models that can be reliably used for experimental characterization of protein function. Conclusions: 69% of expressed mycorrhizal JGI "best'' gene models deviated from the transcript sequence derived by this method. The transcriptomic sequence enabled correction of a majority of the structural inconsistencies and resulted in a set of validated models for 96% of the mycorrhizal genes. The method described here can be applied to improve gene structural annotation in other species, provided that there is a sequenced genome and a set of gene models. C1 [Larsen, Peter E.; Lu, Vincent; Collart, Frank R.] Argonne Natl Lab, Biosci Div, Lemont, IL USA. [Trivedi, Geetika; Sreedasyam, Avinash; Podila, Gopi K.] Univ Alabama, Dept Biol Sci, Huntsville, AL 35899 USA. RP Larsen, PE (reprint author), Argonne Natl Lab, Biosci Div, Lemont, IL USA. EM fcollart@anl.gov OI Collart, Frank/0000-0001-6942-4483 FU US Department of Energy (DOE) Office of Biological and Environmental Research FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne''). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The authors have been supported by the US Department of Energy (DOE) Office of Biological and Environmental Research (http://www.sc.doe.gov/ober/ober_top.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 18 Z9 18 U1 1 U2 12 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 6 PY 2010 VL 5 IS 7 AR e9780 DI 10.1371/journal.pone.0009780 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 620TI UT WOS:000279522500001 PM 20625404 ER PT J AU Byrne, ME Ball, DA Guerquin-Kern, JL Rouiller, I Wu, TD Downing, KH Vali, H Komeili, A AF Byrne, Meghan E. Ball, David A. Guerquin-Kern, Jean-Luc Rouiller, Isabelle Wu, Ting-Di Downing, Kenneth H. Vali, Hojatollah Komeili, Arash TI Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE bacterial organelle; biomineralization; magnetotactic bacteria; dynamic secondary ion mass spectroscopy; magnetite ID SULFATE-REDUCING BACTERIUM; ION MASS-SPECTROMETRY; MAGNETOSPIRILLUM-GRYPHISWALDENSE; MAGNETOTACTIC BACTERIA; BIOMINERALIZATION; MEMBRANE; CRYSTALS; GROWTH; CELL AB Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, non-crystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle. C1 [Byrne, Meghan E.; Komeili, Arash] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Ball, David A.; Downing, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Guerquin-Kern, Jean-Luc; Wu, Ting-Di] Univ Paris 11, INSERM, U759, F-91405 Orsay, France. [Guerquin-Kern, Jean-Luc; Wu, Ting-Di] Inst Curie, Lab Microscopie Ion, F-91405 Orsay, France. [Rouiller, Isabelle; Vali, Hojatollah] McGill Univ, Facil Electron Microscopy Res, Montreal, PQ H3A 2B2, Canada. [Rouiller, Isabelle; Vali, Hojatollah] McGill Univ, Dept Anat & Cell Biol, Montreal, PQ H3A 2B2, Canada. [Vali, Hojatollah] McGill Univ, Dept Earth & Planetary Sci, Montreal, PQ H3A 2B2, Canada. RP Komeili, A (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM komeili@berkeley.edu RI Vali, Hojatollah/F-3511-2012; rouiller, isabelle/K-7679-2012; OI Vali, Hojatollah/0000-0003-3464-9943; rouiller, isabelle/0000-0002-1288-8575; Byrne, Meghan/0000-0003-1953-5833 FU David and Lucille Packard Foundation; Natural Sciences and Engineering Research Council (NSERC) of Canada [355873-08]; US Department of Energy [DE-AC02-05CH11231]; Canadian Institutes of Health Research FX We thank Kent McDonald and Reena Zalpuri of the University of California Berkeley Electron Microscope Laboratory for technical assistance; members of John Coates' laboratory for technical assistance and equipment; and Olga Draper, Shannon Greene, Sepehr Keyhani, Dorothee Murat, and Anna Quinlan for critical reading of the manuscript. We also thank the PICT-IBiSA imaging facility in the Institut Curie and J. Mui and Dr. S. K. Sears (both of the Facility for Electron Microscopy Research, McGill University) for assistance. A.K. is supported by a grant through the David and Lucille Packard Foundation. H.V. acknowledges financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. I.R. received funding from NSERC (Grant 355873-08) as well as the receipt of a Canadian Institutes of Health Research New Investigator award. This work was supported in part by US Department of Energy Contract DE-AC02-05CH11231. NR 28 TC 36 Z9 38 U1 2 U2 26 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD JUL 6 PY 2010 VL 107 IS 27 BP 12263 EP 12268 DI 10.1073/pnas.1001290107 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 621JI UT WOS:000279572100041 PM 20566879 ER PT J AU Xiao, D Chang, MC Niu, Q AF Xiao, Di Chang, Ming-Che Niu, Qian TI Berry phase effects on electronic properties SO REVIEWS OF MODERN PHYSICS LA English DT Article ID QUANTIZED HALL CONDUCTANCE; GENERALIZED WANNIER FUNCTIONS; ADIABATIC CHARGE-TRANSPORT; MAGNETIC TRANSLATION GROUP; SPIN-ORBIT INTERACTION; WAVE-PACKET DYNAMICS; BLOCH ELECTRONS; CONDENSED-MATTER; SEMICLASSICAL DYNAMICS; ELECTROMAGNETIC-FIELD AB Ever since its discovery the notion of Berry phase has permeated through all branches of physics. Over the past three decades it was gradually realized that the Berry phase of the electronic wave function can have a profound effect on material properties and is responsible for a spectrum of phenomena, such as polarization, orbital magnetism, various (quantum, anomalous, or spin) Hall effects, and quantum charge pumping. This progress is summarized in a pedagogical manner in this review. A brief summary of necessary background is given and a detailed discussion of the Berry phase effect in a variety of solid-state applications. A common thread of the review is the semiclassical formulation of electron dynamics, which is a versatile tool in the study of electron dynamics in the presence of electromagnetic fields and more general perturbations. Finally, a requantization method is demonstrated that converts a semiclassical theory to an effective quantum theory. It is clear that the Berry phase should be added as an essential ingredient to our understanding of basic material properties. C1 [Xiao, Di] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Chang, Ming-Che] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan. [Niu, Qian] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. RP Xiao, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Xiao, Di/B-1830-2008; Niu, Qian/G-9908-2013 OI Xiao, Di/0000-0003-0165-6848; FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy; NSC of Taiwan; NSF, DOE; Welch Foundation [F-1255]; Texas Advanced Research Program FX D.X. was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, Department of Energy. M.-C.C. was supported by the NSC of Taiwan. Q.N. acknowledges the support from NSF, DOE, the Welch Foundation (F-1255), and the Texas Advanced Research Program. NR 259 TC 727 Z9 737 U1 43 U2 265 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD JUL 6 PY 2010 VL 82 IS 3 BP 1959 EP 2007 DI 10.1103/RevModPhys.82.1959 PG 49 WC Physics, Multidisciplinary SC Physics GA 621EO UT WOS:000279557500001 ER PT J AU Gray, B Lee, HN Liu, JA Chakhalian, J Freeland, JW AF Gray, Benjamin Lee, Ho Nyung Liu, Jian Chakhalian, J. Freeland, J. W. TI Local electronic and magnetic studies of an artificial La2FeCrO6 double perovskite SO APPLIED PHYSICS LETTERS LA English DT Article DE iron compounds; lanthanum compounds; magnetic moments; magnetic thin films; remanence ID SUPEREXCHANGE INTERACTION; WEAK FERROMAGNETISM; SUPERLATTICES; INTERFACE AB Through the utilization of element-resolved polarized x-ray probes, the electronic and magnetic state of an artificial La2FeCrO6 double perovskite were explored. Applying unit-cell level control of thin film growth on SrTiO3(111), the rock salt double perovskite structure can be created for this system, which does not have an ordered perovskite phase in the bulk. We find that the Fe and Cr are in the proper 3+ valence state, but, contrary to previous studies, the element-resolved magnetic studies find the moments in field are small and show no evidence of sizable magnetic moments in the remanent state. Based on our findings, we argue that the ground state is consistent with canted antiferromagnetic order. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455323] C1 [Gray, Benjamin; Liu, Jian; Chakhalian, J.] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Lee, Ho Nyung] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Freeland, J. W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gray, B (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM bagray@uark.edu RI Liu, Jian/I-6746-2013; Lee, Ho Nyung/K-2820-2012; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; Lee, Ho Nyung/0000-0002-2180-3975; FU DOD-ARO [0402-17291]; NSF [DMR-0747808]; U.S. Department of Energy, Office of Science [DEAC02-06CH11357]; Division of Materials Sciences and Engineering, U.S. Department of Energy FX The authors acknowledge fruitful discussions with W. Pickett, V. Pardo, S. Okamoto, and D. Khomskii. J.C. was supported by DOD-ARO under the Contract No. 0402-17291 and NSF Contract No. DMR-0747808. Work at the Advanced Photon Source, Argonne is supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. The synthesis work at Oak Ridge National Laboratory (H.N.L.) was sponsored by the Division of Materials Sciences and Engineering, U.S. Department of Energy. NR 22 TC 26 Z9 28 U1 3 U2 28 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD JUL 5 PY 2010 VL 97 IS 1 AR 013105 DI 10.1063/1.3455323 PG 3 WC Physics, Applied SC Physics GA 623AB UT WOS:000279707800047 ER PT J AU Rakich, PT Davids, P Wang, Z AF Rakich, Peter T. Davids, Paul Wang, Zheng TI Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces SO OPTICS EXPRESS LA English DT Article ID CRYSTAL OPTOMECHANICAL CAVITY; PHOTOELASTIC CONSTANTS; SILICON; ENHANCEMENT; POTENTIALS; SYSTEMS AB Radiation pressure is known to scale to large values in engineered micro and nanoscale photonic waveguide systems. In addition to radiation pressure, dielectric materials also exhibit strain-dependent refractive index changes, through which optical fields can induce electrostrictive forces. To date, little attention has been paid to the electrostrictive component of optical forces in high-index contrast waveguides. In this paper, we examine the magnitude, scaling, and spatial distribution of electrostrictive forces through analytical and numerical models, revealing that electrostrictive forces increase to large values in high index-contrast waveguides. Similar to radiation pressure, electrostrictive forces increase quadratically with the optical field. However, since electrostrictive forces are determined by the material photoelastic tensor, the sign of the electrostrictive force is highly material-dependent, resulting in cancellation with radiation pressure in some instances. Furthermore, our analysis reveals that the optical forces resulting from both radiation pressure and electrostriction can scale to remarkably high levels (i.e., greater than 10(4)(N/m(2))) for realistic guided powers. Additionally, even in simple rectangular waveguides, the magnitude and distribution of both forces can be engineered at the various boundaries of the waveguide system by choice of material system and geometry of the waveguide. This tailorability points towards novel and simple waveguide designs which enable selective excitation of elastic waves with desired symmetries through engineered stimulated Brillouin scattering processes in nanoscale waveguide systems. C1 [Rakich, Peter T.; Davids, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Wang, Zheng] MIT, Cambridge, MA 02139 USA. RP Rakich, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rakich@alum.mit.edu RI Wang, Zheng/B-9804-2009; Pant, Ravi/B-3134-2010 FU office of the Director of Defense Research and Engineering under Air Force [FA8721-05-C-0002]; DARPA MTO FX We acknowledge the generous support and encouragement of F. B. McCormick, M. Soljacic, Y. Fink and J. D. Joannopoulos. Thanks to Milos A. Popovic for use of his mode solver code and to Charles Reinke for careful reading of the manuscript. We are grateful to C. E. Rakich andW. J. Purvis for help in preparing this manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was supported in part by the office of the Director of Defense Research and Engineering under Air Force contract FA8721-05-C-0002 and by a Seedling effort managed by Dr. Mike Haney of DARPA MTO. NR 39 TC 61 Z9 61 U1 4 U2 26 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14439 EP 14453 DI 10.1364/OE.18.014439 PG 15 WC Optics SC Optics GA 622DN UT WOS:000279639900015 PM 20639929 ER PT J AU Brizuela, F Carbajo, S Sakdinawat, A Alessi, D Martz, DH Wang, Y Luther, B Goldberg, KA Mochi, I Attwood, DT La Fontaine, B Rocca, JJ Menoni, CS AF Brizuela, Fernando Carbajo, Sergio Sakdinawat, Anne Alessi, David Martz, Dale H. Wang, Yong Luther, Bradley Goldberg, Kenneth A. Mochi, Iacopo Attwood, David T. La Fontaine, Bruno Rocca, Jorge J. Menoni, Carmen S. TI Extreme ultraviolet laser-based table-top aerial image metrology of lithographic masks SO OPTICS EXPRESS LA English DT Article ID MICROSCOPY; INSPECTION AB We have realized the first demonstration of a table-top aerial imaging microscope capable of characterizing pattern and defect printability in extreme ultraviolet lithography masks. The microscope combines the output of a 13.2 nm wavelength, table-top, plasma-based, EUV laser with zone plate optics to mimic the imaging conditions of an EUV lithographic stepper. We have characterized the illumination of the system and performed line-edge roughness measurements on an EUVL mask. The results open a path for the development of a compact aerial imaging microscope for high-volume manufacturing. (C) 2010 Optical Society of America C1 [Brizuela, Fernando; Carbajo, Sergio; Sakdinawat, Anne; Alessi, David; Martz, Dale H.; Wang, Yong; Luther, Bradley; Attwood, David T.; Rocca, Jorge J.; Menoni, Carmen S.] Colorado State Univ, Natl Sci Fdn, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. [Brizuela, Fernando; Carbajo, Sergio; Alessi, David; Martz, Dale H.; Wang, Yong; Luther, Bradley; Rocca, Jorge J.; Menoni, Carmen S.] Colorado State Univ, Ft Collins, CO 80526 USA. [Sakdinawat, Anne; Goldberg, Kenneth A.; Mochi, Iacopo; Attwood, David T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [La Fontaine, Bruno] GLOBALFOUNDRIES, Sunnyvale, CA 94085 USA. RP Brizuela, F (reprint author), Colorado State Univ, Natl Sci Fdn, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. EM brizuela@engr.colostate.edu RI Carbajo, Sergio/C-2870-2011; Martz, Dale/A-9693-2012; Menoni, Carmen/B-4989-2011 FU National Science Foundation [EEC-0310717] FX This work was supported by the Engineering Research Centers Program of the National Science Foundation under NSF Award Number EEC-0310717. NR 15 TC 11 Z9 12 U1 0 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14467 EP 14473 DI 10.1364/OE.18.014467 PG 7 WC Optics SC Optics GA 622DN UT WOS:000279639900017 PM 20639931 ER PT J AU Bolakis, C Grbovic, D Lavrik, NV Karunasiri, G AF Bolakis, C. Grbovic, D. Lavrik, N. V. Karunasiri, G. TI Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films SO OPTICS EXPRESS LA English DT Article AB A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm. (C) 2010 Optical Society of America C1 [Bolakis, C.; Grbovic, D.; Karunasiri, G.] USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. [Lavrik, N. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Bolakis, C (reprint author), USN, Postgrad Sch, Dept Phys, Monterey, CA 93943 USA. EM gkarunas@nps.edu RI Lavrik, Nickolay/B-5268-2011 OI Lavrik, Nickolay/0000-0002-9543-5634 FU AFOSR; Scientific User Facilities Division, U.S. Department of Energy FX The authors would like to thank John Dunec at COMSOL for helpful discussions on finite element modeling. The work is supported in part by a grant from the AFOSR. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U. S. Department of Energy. NR 12 TC 20 Z9 23 U1 1 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14488 EP 14495 DI 10.1364/OE.18.014488 PG 8 WC Optics SC Optics GA 622DN UT WOS:000279639900020 PM 20639934 ER PT J AU Zhao, RK Koschny, T Soukoulis, CM AF Zhao, Rongkuo Koschny, Thomas Soukoulis, Costas M. TI Chiral metamaterials: retrieval of the effective parameters with and without substrate SO OPTICS EXPRESS LA English DT Article ID STRONG OPTICAL-ACTIVITY; NEGATIVE REFRACTION; PHOTONIC METAMATERIAL; CIRCULAR-DICHROISM; INDEX; WAVES; MEDIA AB After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate. (C) 2010 Optical Society of America C1 [Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhao, Rongkuo] Beijing Normal Univ, Dept Phys, Appl Opt Beijing Area Major Lab, Beijing 100875, Peoples R China. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71110, Crete, Greece. [Koschny, Thomas; Soukoulis, Costas M.] Univ Crete, FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Zhao, RK (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Zhao, Rongkuo/B-5731-2008; Soukoulis, Costas/A-5295-2008 FU Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; European Community [213390]; China Scholarship Council (CSC) FX Work at Ames Laboratory was supported by the Department of Energy (Basic Energy Sciences) under contract No. DE-AC02-07CH11358. This work was partially supported by the European Community FET project PHOME (contract No. 213390). The author Rongkuo Zhao specially acknowledges the China Scholarship Council (CSC) for financial support. NR 38 TC 103 Z9 104 U1 7 U2 52 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14553 EP 14567 DI 10.1364/OE.18.014553 PG 15 WC Optics SC Optics GA 622DN UT WOS:000279639900027 PM 20639941 ER PT J AU Heebner, JE Sridharan, AK Dawson, JW Messerly, MJ Pax, PH Shverdin, MY Beach, RJ Barty, CPJ AF Heebner, John E. Sridharan, Arun K. Dawson, Jay W. Messerly, Michael J. Pax, Paul H. Shverdin, Miro Y. Beach, Raymond J. Barty, C. P. J. TI High brightness, quantum-defect-limited conversion efficiency in cladding-pumped Raman fiber amplifiers and oscillators SO OPTICS EXPRESS LA English DT Article ID STIMULATED RAMAN; OPTICAL-FIBERS; POWER; SCATTERING AB We present a detailed theoretical investigation of cladding-pumped Raman fiber amplification in an unexplored parameter space of high conversion efficiency (> 60%) and high brightness enhancement (> 1000). Fibers with large clad-to-core diameter ratios can provide a promising means for Raman-based brightness enhancement of diode pump sources. Unfortunately, the diameter ratio cannot be extended indefinitely since the intensity generated in the core can greatly exceed that in the cladding long before the pump is fully depleted. If left uncontrolled, this leads to the generation of parasitic second-order Stokes wavelengths in the core, limiting the conversion efficiency and as we will show, clamping the achievable brightness enhancement. Using a coupled-wave formalism, we present the upper limit on brightness enhancement as a function of diameter ratio for conventionally guided fibers. We further present strategies for overcoming this limit based upon depressed well core designs. We consider two configurations: (1) pulsed cladding-pumped Raman fiber amplifier (CPRFA) and (2) cw cladding-pumped Raman fiber laser (CPRFL). (C) 2010 Optical Society of America C1 [Heebner, John E.] Lawrence Livermore Natl Lab, NIF, Livermore, CA 94550 USA. Lawrence Livermore Natl Lab, Photon Sci Directorate, Livermore, CA 94550 USA. RP Heebner, JE (reprint author), Lawrence Livermore Natl Lab, NIF, 7000 East Ave, Livermore, CA 94550 USA. EM heebner@llnl.gov RI Heebner, John/C-2411-2009 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 4 Z9 4 U1 0 U2 8 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 14705 EP 14716 DI 10.1364/OE.18.014705 PG 12 WC Optics SC Optics GA 622DN UT WOS:000279639900042 PM 20639956 ER PT J AU Rodriguez, G Dakovski, GL AF Rodriguez, George Dakovski, Georgi L. TI Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence SO OPTICS EXPRESS LA English DT Article ID FEMTOSECOND LASER-PULSES; THZ EMISSION; IONIZATION; AIR; SPECTROSCOPY; DISPERSION; FILAMENTS; MEDIA; BEAM; O-2 AB Ultrafast terahertz emission from two-color generated laser plasma gas targets is studied using air and the noble gases (neon, argon, krypton, and xenon) as the generation media. Terahertz output pulse energy and power spectra are measured as function of gas species, gas pressure, and input pulse energy up to 6 mJ per pulse using a 40-fs 1-kHz Ti:sapphire laser system as the drive source. Terahertz pulse energies approaching 1 mu J per pulse with spectral content out to 40 THz and pulse duration of 35 fs is reported. A simple one dimensional transient photocurrent ionization model is used to calculate the spectra showing good agreement with experiments. (C) 2010 Optical Society of America C1 [Rodriguez, George; Dakovski, Georgi L.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Rodriguez, G (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Mail Stop K771, Los Alamos, NM 87545 USA. EM rodrigeo@lanl.gov RI Rodriguez, George/G-7571-2012 OI Rodriguez, George/0000-0002-6044-9462 FU Department of Energy for Los Alamos National Security LLC [DE-AC52-06NA25396] FX Funding for this work is provided by the Laboratory Directed Research and Development Program at Los Alamos National Laboratory under the auspices of the Department of Energy for Los Alamos National Security LLC under contract number DE-AC52-06NA25396. NR 32 TC 37 Z9 39 U1 2 U2 20 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 15130 EP 15143 DI 10.1364/OE.18.015130 PG 14 WC Optics SC Optics GA 622DN UT WOS:000279639900084 PM 20639998 ER PT J AU Raman, RN Matthews, MJ Adams, JJ Demos, SG AF Raman, Rajesh N. Matthews, Manyalibo J. Adams, John J. Demos, Stavros G. TI Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy SO OPTICS EXPRESS LA English DT Article ID 355 NM LASER; DAMAGE; TEMPERATURE; FLUORESCENCE; BREAKDOWN; CENTERS; GROWTH AB Photoluminescence (PL) microscopy and spectroscopy under 266 nm and 355 nm laser excitation are explored as a means of monitoring defect populations in laser-modified sites on the surface of fused silica and their subsequent response to heating to different temperatures via exposure to a CO2 laser beam. Laser-induced temperature changes were estimated using an analytic solution to the heat flow equation and compared to changes in the PL emission intensity. The results indicate that the defect concentrations decrease significantly with increasing CO2 laser exposure and are nearly eliminated when the peak surface temperature exceeds the softening point of fused silica (similar to 1900K), suggesting that this method might be suitable for in situ monitoring of repair of defective sites in fused silica optical components. (C) 2010 Optical Society of America C1 [Raman, Rajesh N.; Matthews, Manyalibo J.; Adams, John J.; Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Raman, RN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM raman4@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank Mary A. Norton and Gabriel M. Guss for assistance with sample preparation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 23 Z9 23 U1 0 U2 12 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD JUL 5 PY 2010 VL 18 IS 14 BP 15207 EP 15215 DI 10.1364/OE.18.015207 PG 9 WC Optics SC Optics GA 622DN UT WOS:000279639900092 PM 20640006 ER PT J AU Wang, YM Yu, MY Lu, GM Chen, ZY AF Wang, Youmei Yu, M. Y. Lu, Gaimin Chen, Z. Y. TI Exact plasma wave solutions for isothermal electron fluid plasma SO PHYSICS LETTERS A LA English DT Article DE Nonlinear plasma waves; Solitary waves; Exact solutions ID STRONG TURBULENCE; ABSORPTION AB Quasistationary electron plasma waves of arbitrary amplitude and speed that are exact solutions of the isothermal electron fluid equations are shown to exist. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Youmei; Yu, M. Y.; Lu, Gaimin] Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Peoples R China. [Wang, Youmei] Hangzhou Dianzi Univ, Dept Phys, Sch Sci, Hangzhou 310018, Peoples R China. [Yu, M. Y.] Ruhr Univ Bochum, Inst Theoret Phys 1, D-44780 Bochum, Germany. [Lu, Gaimin] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Chen, Z. Y.] Univ Calif Berkeley, Adv Energy Technol Dept, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yu, MY (reprint author), Zhejiang Univ, Inst Fus Theory & Simulat, Dept Phys, Hangzhou 310027, Peoples R China. EM myyu@zju.edu.cn FU National Natural Science Foundation of China [10835003]; National Hi-Tech Inertial Confinement Fusion Committee of China; National Basic Research Program of China [2008CB717806]; Ministry of Science and Technology of China [2009GB105005] FX This work was supported by the National Natural Science Foundation of China (10835003), the National Hi-Tech Inertial Confinement Fusion Committee of China, the National Basic Research Program of China (2008CB717806), and the Ministry of Science and Technology of China Special Project for ITER (2009GB105005). NR 18 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9601 J9 PHYS LETT A JI Phys. Lett. A PD JUL 5 PY 2010 VL 374 IS 30 BP 3053 EP 3056 DI 10.1016/j.physleta.2010.05.039 PG 4 WC Physics, Multidisciplinary SC Physics GA 632TV UT WOS:000280452400011 ER PT J AU He, JB Kanjanaboos, P Frazer, NL Weis, A Lin, XM Jaeger, HM AF He, Jinbo Kanjanaboos, Pongsakorn Frazer, N. Laszlo Weis, Adam Lin, Xiao-Min Jaeger, Heinrich M. TI Fabrication and Mechanical Properties of Large-Scale Freestanding Nanoparticle Membranes SO SMALL LA English DT Article DE core/shell materials; mechanical properties; membranes; nanoparticles; self-assembly ID SELF-ASSEMBLED MONOLAYERS; GRAPHENE SHEETS; MAGNETITE NANOPARTICLES; GOLD NANOCRYSTALLITES; ELASTIC PROPERTIES; THERMODYNAMICS; POLYETHYLENE; OLEYLAMINE; MODULUS; FILMS AB Thin-film membranes consisting of nanoparticles are of interest in applications ranging from nanosieves to electric, magnetic, or photonic devices and sensors. However, the fabrication of large-scale membranes in a simple but controlled way has remained a challenge, due to the limited understanding of their mechanical properties. Systematic experiments on ultrathin, freestanding nanoparticle membranes of different core materials, core sizes, and capping ligands are reported. The results demonstrate that a drying-mediated self-assembly process can be used to create close-packed monolayer membranes that span holes tens of micrometers in diameter. Containing up to approximate to 10(7) particles, these freely suspended layers exhibit remarkable mechanical properties with Young's moduli of the order of several GPa, independent of membrane size. Comparison of three different core-ligand combinations suggests that the membrane's elastic response is set by how tightly the ligands are bound to the particle cores and by the ligand-ligand interactions. C1 [He, Jinbo; Kanjanaboos, Pongsakorn; Frazer, N. Laszlo; Weis, Adam; Jaeger, Heinrich M.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Lin, Xiao-Min] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [He, Jinbo; Kanjanaboos, Pongsakorn; Frazer, N. Laszlo; Weis, Adam; Jaeger, Heinrich M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Jaeger, HM (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM h-jaeger@uchicago.edu RI He, Jinbo/B-1445-2010; Kanjanaboos, Pongsakorn/Q-1050-2015; OI Kanjanaboos, Pongsakorn/0000-0002-4854-1733; Frazer, Laszlo/0000-0003-3574-8003 FU NSF [DMR-0751473, DMR-0907075]; US Department of Energy (DOE), BES-Materials Sciences [DE-ACO2-06CH11357]; DOE Center for Nanoscale Materials FX We thank K. Elteto-Mueggenburg, T. Witten, and R. Josephs for insightful discussions, and Q. Guo for help with the chip fabrication. This work was supported by NSF DMR-0751473 and DMR-0907075. Use of shared experimental facilities provided by the NSF MRSEC program under DMR-0820054 is gratefully acknowledged. The work at Argonne was supported by the US Department of Energy (DOE), BES-Materials Sciences, under Contract #DE-ACO2-06CH11357, and by the DOE Center for Nanoscale Materials. NR 31 TC 78 Z9 78 U1 9 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 1613-6810 J9 SMALL JI Small PD JUL 5 PY 2010 VL 6 IS 13 BP 1449 EP 1456 DI 10.1002/smll.201000114 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 629SH UT WOS:000280219500013 PM 20521265 ER PT J AU Kuznetsova, E Xu, LD Singer, A Brown, G Dong, AP Flick, R Cui, H Cuff, M Joachimiak, A Savchenko, A Yakunin, AF AF Kuznetsova, Ekaterina Xu, Linda Singer, Alexander Brown, Greg Dong, Aiping Flick, Robert Cui, Hong Cuff, Marianne Joachimiak, Andrzej Savchenko, Alexei Yakunin, Alexander F. TI Structure and Activity of the Metal-independent Fructose-1,6-bisphosphatase YK23 from Saccharomyces cerevisiae SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID DEPENDENT PHOSPHOGLYCERATE MUTASE; GLUCONEOGENIC ENZYME FRUCTOSE-1,6-BISPHOSPHATASE; ESCHERICHIA-COLI FRUCTOSE-1,6-BISPHOSPHATASE; FRUCTOSE 1,6-BISPHOSPHATASE; CRYSTAL-STRUCTURE; ACID-PHOSPHATASE; BACILLUS-STEAROTHERMOPHILUS; INOSITOL MONOPHOSPHATASE; ALKALINE-PHOSPHATASE; FUNCTIONAL-ANALYSIS AB Fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis and photosynthetic CO(2) fixation, catalyzes the hydrolysis of fructose 1,6-bisphosphate (FBP) to produce fructose 6-phosphate, an important precursor in various bio-synthetic pathways. All known FBPases are metal-dependent enzymes, which are classified into five different classes based on their amino acid sequences. Eukaryotes are known to contain only the type-I FBPases, whereas all five types exist in various combinations in prokaryotes. Here we demonstrate that the uncharacterized protein YK23 from Saccharomyces cerevisiae efficiently hydrolyzes FBP in a metal-independent reaction. YK23 is a member of the histidine phosphatase (phosphoglyceromutase) superfamily with homologues found in all organisms. The crystal structure of the YK23 apo-form was solved at 1.75-angstrom resolution and revealed the core domain with the alpha/beta/alpha-fold covered by two small cap domains. Two liganded structures of this protein show the presence of two phosphate molecules (an inhibitor) or FBP (a substrate) bound to the active site. FBP is bound in its linear, open conformation with the cleavable C1-phosphate positioned deep in the active site. Alanine replacement mutagenesis of YK23 identified six conserved residues absolutely required for activity and suggested that His(13) and Glu(99) are the primary catalytic residues. Thus, YK23 represents the first family of metal-independent FBPases and a second FBPase family in eukaryotes. C1 [Kuznetsova, Ekaterina; Xu, Linda; Singer, Alexander; Brown, Greg; Flick, Robert; Cui, Hong; Savchenko, Alexei; Yakunin, Alexander F.] Univ Toronto, Banting & Best Dept Med Res, Ctr Struct Prote Toronto, Toronto, ON M5G 1L6, Canada. [Kuznetsova, Ekaterina; Xu, Linda; Singer, Alexander; Brown, Greg; Flick, Robert; Cui, Hong; Savchenko, Alexei; Yakunin, Alexander F.] Max Bell Res Ctr, Ontario Canc Inst, Toronto, ON M5G 2C4, Canada. [Dong, Aiping] Univ Toronto, Struct Genom Consortium, Toronto, ON M5G 1L5, Canada. [Cuff, Marianne; Joachimiak, Andrzej] Midwest Ctr Struct Genom, Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Yakunin, AF (reprint author), Univ Toronto, Banting & Best Dept Med Res, Ctr Struct Prote Toronto, 112 Coll St, Toronto, ON M5G 1L6, Canada. EM a.iakounine@utoronto.ca RI Yakunin, Alexander/J-1519-2014; OI Yakunin, Alexander/0000-0003-0813-6490 FU National Institutes of Health [GM074942]; United States Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; Genome Canada through Ontario Genomics Institute FX This work was supported, in whole or in part, by National Institutes of Health Grant GM074942, United States Department of Energy, Office of Biological and Environmental Research contract DE-AC02-06CH11357, and Genome Canada (through the Ontario Genomics Institute). NR 77 TC 9 Z9 11 U1 0 U2 9 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD JUL 2 PY 2010 VL 285 IS 27 BP 21049 EP 21059 DI 10.1074/jbc.M110.118315 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 616SH UT WOS:000279228600068 PM 20427268 ER PT J AU Kokubo, K Arastoo, RS Oshima, T Wang, CC Gao, YA Wang, HL Geng, H Chiang, LY AF Kokubo, Ken Arastoo, Riyah S. Oshima, Takumi Wang, Chun-Chih Gao, Yuan Wang, Hsing-Lin Geng, Hao Chiang, Long Y. TI Synthesis and Regiochemistry of [60]Fullerenyl 2-Methylmalonate Bisadducts and their Facile Electron-Accepting Properties SO JOURNAL OF ORGANIC CHEMISTRY LA English DT Article ID NUCLEOPHILIC-SUBSTITUTION; FULLERENE CHEMISTRY; CHEMICAL GENERATION; EMERALD GREEN; C-60 ADDUCTS; SILYLLITHIUM; ALKYLATION; REDUCTION; DIMER AB A simple one-pot reaction using in situ chemically generated Na-naphthalenide as an electron reductant in the preferential generation of C(60)(2-) is described. Trapping of C(60)(2-) intermediate with 2 molar equiv of sterically hindered 2-bromo-2-methylmalonate ester afforded two singly bonded fullerenyl bis-adducts C(60)[-CMe(CO(2)Et)(2)](2) in 35% and 7% yield, respectively. The regiochemistry of these two products was determined to be 1,4- and 1,16-bisadducts, respectively, by NMR, LCMS, and X-ray single crystal structural analysis. The minor 1,16-bisadduct 2 exhibits long wavelength absorption bands in the near-IR region and prominent electron-accepting characteristics as compared with those of the major 1,4-bisadduct and pristine C(60). As revealed by DFT calculation, we propose that the origin of these unusual characters of 2 arises from the moiety of [18 pi]-trannulene, in close resemblance to that oldie highly symmetrical emerald green 1,16,29,38,43,60-hexaadduct of C(60), EF-6MC(n). Accordingly, we anticipate a fast progressive formation of plausible 1,16-bisadduct-like intermediate moieties on a C(60) cage as the precursor structure leading to the formation of EF-6MC(n), by taking the corresponding regiochemistry and electronic properties into account. C1 [Kokubo, Ken; Arastoo, Riyah S.; Oshima, Takumi] Osaka Univ, Grad Sch Engn, Div Appl Chem, Suita, Osaka 5650871, Japan. [Wang, Chun-Chih; Gao, Yuan; Wang, Hsing-Lin] Los Alamos Natl Lab, Phys Chem & Spect Grp, Div Chem, Los Alamos, NM 87545 USA. [Kokubo, Ken; Geng, Hao; Chiang, Long Y.] Univ Massachusetts Lowell, Dept Chem, Lowell, MA 01854 USA. RP Kokubo, K (reprint author), Osaka Univ, Grad Sch Engn, Div Appl Chem, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan. EM kokubo@chem.eng.osaka-u.ac.jp; long_chiang@uml.edu OI Kokubo, Ken/0000-0002-8776-7102 FU MEXT, Japan [21710109]; National Institutes of Health (NIH) [1R01CA137108] FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Grant-in-Aid for Young Scientists (B) (No. 21710109) from MEXT, Japan. We thank Dr. Masato Ohashi (Osaka University) for analyzing of crystallographic data and Dr. Kei Okubo (Osaka University) for measurement of NIR spectrum. The authors at UML are thankful for the financial support of the National Institutes of Health (NIH) under grant no. 1R01CA137108. NR 46 TC 11 Z9 11 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0022-3263 J9 J ORG CHEM JI J. Org. Chem. PD JUL 2 PY 2010 VL 75 IS 13 BP 4574 EP 4583 DI 10.1021/jo1007674 PG 10 WC Chemistry, Organic SC Chemistry GA 614BV UT WOS:000279030900027 PM 20524640 ER PT J AU Nguyen, G Vlassiouk, I Siwy, ZS AF Nguyen, Gael Vlassiouk, Ivan Siwy, Zuzanna S. TI Comparison of bipolar and unipolar ionic diodes SO NANOTECHNOLOGY LA English DT Article ID CURRENT RECTIFICATION; NANOFLUIDIC DIODE; NANOPORES; TRANSPORT; SELECTIVITY; MEMBRANES AB Nanoporous ionic diodes, as well as devices for manipulating ions and molecules in a solution, have attracted a great deal of interest from researchers in various fields from the fundamental point of view. Ionic diodes allow the ions to be transported in one direction and block the transport in the other. There are two types of diodes that have been realized experimentally. A bipolar diode contains a junction between two zones of the pore walls with positive and negative surface charges. A unipolar diode contains a zone that is neutral and a zone that is charged. In this paper we discuss differences in operation of the diodes with a special emphasis on the sensitivity of their performance to the lengths of the charged and neutral zones. We also show that a bipolar diode offers more asymmetric current-voltage curves than a unipolar diode. C1 [Nguyen, Gael; Siwy, Zuzanna S.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92717 USA. [Vlassiouk, Ivan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Nguyen, G (reprint author), Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92717 USA. EM zsiwy@uci.edu RI Vlassiouk, Ivan/F-9587-2010 OI Vlassiouk, Ivan/0000-0002-5494-0386 FU National Science Foundation [CHE 0747237] FX This work was supported by the National Science Foundation (CHE 0747237). The single heavy ion irradiation was performed at the Gesellschaft fuer Schwerionenforschung, Darmstadt, Germany. We are grateful to Dr Ken Healy and Eric Kalman for their help in preparing scanning electron microscopy images. NR 29 TC 32 Z9 32 U1 3 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD JUL 2 PY 2010 VL 21 IS 26 AR 265301 DI 10.1088/0957-4484/21/26/265301 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 610DN UT WOS:000278711100007 PM 20522926 ER PT J AU Yotphan, S Bergman, RG Ellman, JA AF Yotphan, Sirilata Bergman, Robert G. Ellman, Jonathan A. TI Synthesis of Multicyclic Pyridine and Quinoline Derivatives via Intramolecular C-H Bond Functionalization SO ORGANIC LETTERS LA English DT Article ID ONE-POT SYNTHESIS; KINASE INHIBITORS; DIRECT ARYLATION; HETEROCYCLES; ACTIVATION; RUTHENIUM; ROUTE; CYCLOADDITION; ACETYLENES; ALKYNES AB An efficient method is reported for the preparation of multicyclic pyridines and quinolines by a rhodium-catalyzed intramolecular C H bond functionalization process. The method shows good scope for branched and unbranched alkyl substituents on the pyridine ring and at the R position of the tethered alkene group. Starting materials capable of undergoing olefin isomerization to provide terminal 1,1-disubstituted alkenes also proved to be effective substrates. C1 [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jellman@berkeley.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NIH Grant No. GM069559 (to J.A.E.) and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, US Department of Energy under contract DE-AC02-05CH11231 (to R.G.B.). NR 33 TC 26 Z9 26 U1 2 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD JUL 2 PY 2010 VL 12 IS 13 BP 2978 EP 2981 DI 10.1021/ol101002b PG 4 WC Chemistry, Organic SC Chemistry GA 614OR UT WOS:000279070100023 PM 20518526 ER PT J AU Pesic, ZD Rolles, D Dumitriu, I Berrah, N AF Pesic, Z. D. Rolles, D. Dumitriu, I. Berrah, N. TI Fragmentation dynamics of gas-phase furan following K-shell ionization SO PHYSICAL REVIEW A LA English DT Article ID SYNCHROTRON-RADIATION; UNIMOLECULAR DECOMPOSITION; COINCIDENCE EXPERIMENTS; ION; SPECTROSCOPY; PHOTOELECTRON; DISSOCIATION; MOLECULES; CO2; PHOTODISSOCIATION AB A multicoincidence velocity-map-imaging technique was employed to study the fragmentation of inner-shell excited furan molecules for the photon energies encompassing the C and O K edges. We have analyzed the kinetic energy distributions and the momentum correlations of detected ionic fragments. Comparisons of our experimental observations with predictions of a Coulomb explosion model elucidate possible fragmentation pathways. C1 [Pesic, Z. D.; Rolles, D.; Dumitriu, I.; Berrah, N.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Pesic, Z. D.; Rolles, D.; Dumitriu, I.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Pesic, Z. D.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Rolles, D.] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22761 Hamburg, Germany. RP Pesic, ZD (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. EM zoran.pesic@diamond.ac.uk FU Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division; Alexander von Humboldt Foundation FX The work was supported by the Office of Basic Energy Sciences, US Department of Energy, Chemical Sciences, Geosciences and Biosciences Division. D. R. acknowledges support from the Alexander von Humboldt Foundation through the Feodor-Lynen program. We would also like to thank the staff at the ALS for their assistance during the experiment. NR 34 TC 6 Z9 6 U1 2 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD JUL 2 PY 2010 VL 82 IS 1 AR 013401 DI 10.1103/PhysRevA.82.013401 PG 9 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 619YU UT WOS:000279467000001 ER PT J AU Chien, TY Liu, JA Chakhalian, J Guisinger, NP Freeland, JW AF Chien, TeYu Liu, Jian Chakhalian, Jacques Guisinger, Nathan P. Freeland, John W. TI Visualizing nanoscale electronic band alignment at the La2/3Ca1/3MnO3/ONb:SrTiO3 interface SO PHYSICAL REVIEW B LA English DT Article ID SRTIO3; RECONSTRUCTION; PROPERTY; SURFACES; OXIDES AB Cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) were used to map out the band alignment across the complex oxide interface of La2/3Ca1/3MnO3/Nb-doped SrTiO3. By a controlled cross-sectional fracturing procedure, unit-cell high steps persist near the interface between the thin film and the substrate in the noncleavable perovskite materials. The abrupt changes in the mechanical and electronic properties were visualized directly by XSTM/S. Using changes in the density of states as probe by STM, the electronic band alignment across the heterointerface was mapped out providing an approach to directly measure the electronic properties at complex oxide interfaces. C1 [Chien, TeYu; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liu, Jian; Chakhalian, Jacques] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chien, TY (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM tchien@anl.gov RI Liu, Jian/I-6746-2013; Chakhalian, Jak/F-2274-2015 OI Liu, Jian/0000-0001-7962-2547; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0747808] FX Authors acknowledge the valuable discussion with T.S. Santos. Work at Argonne, including the Center for Nanoscale Materials, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.C. and J.L. were supported by NSF under Grant No. DMR-0747808. NR 34 TC 17 Z9 17 U1 1 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 2 PY 2010 VL 82 IS 4 AR 041101 DI 10.1103/PhysRevB.82.041101 PG 4 WC Physics, Condensed Matter SC Physics GA 620AV UT WOS:000279472300001 ER PT J AU Shaughnessy, M Fong, CY Snow, R Yang, LH Chen, XS Jiang, ZM AF Shaughnessy, M. Fong, C. Y. Snow, Ryan Yang, L. H. Chen, X. S. Jiang, Z. M. TI Structural and magnetic properties of single dopants of Mn and Fe for Si-based spintronic materials SO PHYSICAL REVIEW B LA English DT Article ID APPROXIMATION; SILICON AB Single dopings of Mn and Fe in Si are investigated using 8-, 64-, and 216-atom supercells and a first-principles method based on density functional theory. Between the two transition metal elements (TMEs), atom sizes play an essential role in determining the contraction or the expansion of neighboring atoms around the TME dopant at a substitutional site. At a tetrahedral interstitial site, there is only expansion. Magnetic moments/TME at the two sites are calculated. Physical origins for these inter-related properties are discussed. A few suggestions about the growth of these Si-based alloys are given. C1 [Shaughnessy, M.; Fong, C. Y.; Snow, Ryan] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Shaughnessy, M.; Yang, L. H.] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94551 USA. [Chen, X. S.] Inst Tech Phys, Shanghai, Peoples R China. [Jiang, Z. M.] Fudan Univ, Surface Phys Lab, Shanghai 200433, Peoples R China. RP Shaughnessy, M (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. FU NSF [ECCS-0725902]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by the NSF Grant No. ECCS-0725902. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. NR 25 TC 10 Z9 10 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JUL 2 PY 2010 VL 82 IS 3 AR 035202 DI 10.1103/PhysRevB.82.035202 PG 6 WC Physics, Condensed Matter SC Physics GA 620AJ UT WOS:000279471100001 ER PT J AU Aoki, Y Blum, T Lin, HW Ohta, S Sasaki, S Tweedie, R Zanotti, J Yamazaki, T AF Aoki, Yasumichi Blum, Tom Lin, Huey-Wen Ohta, Shigemi Sasaki, Shoichi Tweedie, Robert Zanotti, James Yamazaki, Takeshi CA RBC Collaboration UKQCD Collaboration TI Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; POLARIZED QUARK DISTRIBUTIONS; PARTON DISTRIBUTIONS; LATTICE QCD; NONPERTURBATIVE RENORMALIZATION; QUANTUM CHROMODYNAMICS; PROTON SCATTERING; CHIRAL FERMIONS; JET DATA; OPERATORS AB We report on numerical lattice QCD calculations of some of the low moments of the nucleon structure functions. The calculations are carried out with gauge configurations generated by the RBC and UKQCD Collaborations with (2 + 1)-flavors of dynamical domain-wall fermions and the Iwasaki gauge action (beta = 2.13). The inverse lattice spacing is a(-1) 1.73 GeV, and two spatial volumes of (2.7 fm)(3) and (1.8 fm)(3) are used. The up and down quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV, while the strange mass is about 12% heavier than the physical one. The structure function moments we present include the fully nonperturbatively renormalized isovector quark momentum fraction < x >(u-d), the helicity fraction < x >(Delta u-Delta d), and transversity < 1 >(delta u-delta d), as well as an unrenormalized twist-3 coefficient d(1). The ratio of the momentum to helicity fractions, < x >(u-d)/< x >(Delta u-Delta d), does not show dependence on the light quark mass and agrees well with the value obtained from experiment. Their respective absolute values, fully renormalized, show interesting trends toward their respective experimental values at the lightest quark mass. A prediction for the transversity, 0.7 < < 1 >(delta u-delta d) < 1.1, in the (MS) over bar scheme at 2 GeV is obtained. The twist-3 coefficient, d(1), though yet to be renormalized, supports the perturbative Wandzura-Wilczek relation. C1 [Aoki, Yasumichi; Ohta, Shigemi] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Blum, Tom] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA. [Lin, Huey-Wen] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Ohta, Shigemi] KEK, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan. [Ohta, Shigemi] Sokendai Grad Univ Adv Studies, Dept Particle & Nucl Phys, Kanagawa 2400193, Japan. [Sasaki, Shoichi] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Tweedie, Robert; Zanotti, James] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Yamazaki, Takeshi] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. RP Aoki, Y (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Zanotti, James/H-8128-2012 OI Zanotti, James/0000-0002-3936-1597 FU U.S. D.O.E. [DE-FG03-97ER4014, DE-FG02-92ER40716]; STFC [ST/F009658/1]; RIKEN-BNL Research Center; JSPS [19540265, 21540289] FX We thank the members of the RBC and UKQCD Collaborations. H. L. is supported by the U.S. D.O.E. under Grant No. DE-FG03-97ER4014 and J.Z. by STFC Grant No. ST/F009658/1. S.O. thanks the RIKEN-BNL Research Center for partial support. S. S. is supported by the JSPS for a Grant-in-Aid for Scientific Research (C), Grant No. 19540265, T. B. by the U.S. D.O.E. under Contract No. DE-FG02-92ER40716, and Y.A. by the JSPS for a Grant-in-Aid for Scientific Research (C), Grant No. 21540289. RIKEN, BNL, the U.S. D.O.E., Edinburgh University, and the UK PPARC provided facilities essential for this work. The computations reported here were carried out on the QCDOC supercomputers at the RBRC and the University of Edinburgh. NR 57 TC 44 Z9 44 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD JUL 2 PY 2010 VL 82 IS 1 AR 014501 DI 10.1103/PhysRevD.82.014501 PG 14 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 620BG UT WOS:000279473400001 ER PT J AU Lee, WK Scardovelli, R Trubatch, AD Yecko, P AF Lee, Wah Keat Scardovelli, Ruben Trubatch, A. David Yecko, Philip TI Numerical, experimental, and theoretical investigation of bubble aggregation and deformation in magnetic fluids SO PHYSICAL REVIEW E LA English DT Article ID FREE-SURFACE; FLOWS; FIELD; FERROFLUIDS; DROPLETS; NANOPARTICLES; SIMULATION; PARTICLES; LIQUID AB Deformation and aggregation of bubbles in magnetic fluid (ferrofluid) can be observed at high resolution by x-ray phase-contrast imaging. Images of gas bubbles in water-based ferrofluid (EMG-607/707) reveal that bubbles with diameters of a few hundreds of microns deform only slightly in applied fields up to 0.2 T, becoming prolate along the field direction. Also, neighboring bubbles readily attract one another along the field direction, forming linear chains of two or more bubbles. Comparison of experimentally measured bubble trajectories with direct numerical simulations and theoretical predictions shows that aggregation of bubbles under an externally applied field is driven by the attractive magnetophoretic force resulting from the induced fields of the bubbles. Direct numerical simulations were performed with a volume-of-fluid code that incorporates a multiple-color function scheme, to suppress numerical bubble merger, as well as Maxwell stresses as an interfacial force. C1 [Lee, Wah Keat] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Scardovelli, Ruben] Univ Bologna, DIENCA, Bologna, Italy. [Trubatch, A. David; Yecko, Philip] Montclair State Univ, Dept Math Sci, Montclair, NJ 07043 USA. RP Lee, WK (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM david.trubatch@montclair.edu RI Yecko, Philip/B-6621-2008; Scardovelli, Ruben/P-9270-2015 OI Yecko, Philip/0000-0002-8075-1271; Scardovelli, Ruben/0000-0002-1009-2434 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 49 TC 4 Z9 4 U1 0 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD JUL 2 PY 2010 VL 82 IS 1 AR 016302 DI 10.1103/PhysRevE.82.016302 PN 1 PG 11 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 620CQ UT WOS:000279477000001 PM 20866720 ER PT J AU Ticknor, C Rittenhouse, ST AF Ticknor, Christopher Rittenhouse, Seth T. TI Three Body Recombination of Ultracold Dipoles to Weakly Bound Dimers SO PHYSICAL REVIEW LETTERS LA English DT Article ID POLAR-MOLECULES; FERMI GASES; ATOMS; UNIVERSALITY; SCATTERING; SYSTEM; STATES AB We use universality in two-body dipolar physics to study three-body recombination. We present results for the universal structure of weakly bound two-dipole states that depend only on the s-wave scattering length ( a). We study threshold three-body recombination rates into weakly bound dimer states as a function of the scattering length. A Fermi golden rule analysis is used to estimate rates for different events mediated by the dipole-dipole interaction and a phenomenological contact interaction. The three-body recombination rate in the limit where a >> D contains terms which scale as a(4), a(2)D(2), and D(4), where D is the dipolar length. When a << D, the three-body recombination rate scales as D(4). C1 [Ticknor, Christopher; Rittenhouse, Seth T.] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA. [Ticknor, Christopher] Swinburne Univ Technol, ARC Ctr Excellence Quantum Atom Opt, Hawthorn, Vic 3122, Australia. [Ticknor, Christopher] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Hawthorn, Vic 3122, Australia. [Ticknor, Christopher] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Ticknor, C (reprint author), Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA. RI Rittenhouse, Seth/E-7688-2011; Ticknor, Christopher/B-8651-2014; OI Ticknor, Christopher/0000-0001-9972-4524 FU NSF through ITAMP at Harvard University; Smithsonian Astrophysical Observatory; Australian Research Council; U.S. DOE [DE-AC52-06NA25396] FX The authors thank H.R. Sadeghpour for numerous helpful discussions. Both authors gratefully acknowledge support from the NSF through ITAMP at Harvard University and Smithsonian Astrophysical Observatory. C.T. gratefully acknowledges partial support from the Australian Research Council and LANL, which is operated by Los Alamos National Security, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC52-06NA25396. NR 28 TC 18 Z9 18 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JUL 2 PY 2010 VL 105 IS 1 AR 013201 DI 10.1103/PhysRevLett.105.013201 PG 4 WC Physics, Multidisciplinary SC Physics GA 620FL UT WOS:000279484300001 PM 20867441 ER PT J AU Kim, AA Mazarakis, MG Manylov, VI Vizir, VA Stygar, WA AF Kim, A. A. Mazarakis, M. G. Manylov, V. I. Vizir, V. A. Stygar, W. A. TI Energy loss due to eddy current in linear transformer driver cores SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009); Phys. Rev. ST Accel. Beams 12, 050401 (2009)] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader's convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper. C1 [Kim, A. A.; Manylov, V. I.; Vizir, V. A.] Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. [Mazarakis, M. G.; Stygar, W. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kim, AA (reprint author), Russian Acad Sci, Inst High Current Elect, Tomsk 634055, Russia. FU U.S. Department of Energy [DE-AC04-94-AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94-AL85000. NR 8 TC 17 Z9 22 U1 1 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 2 PY 2010 VL 13 IS 7 AR 070401 DI 10.1103/PhysRevSTAB.13.070401 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 620GJ UT WOS:000279486800001 ER PT J AU Kim, SH Aleksandrov, A Crofford, M Galambos, J Gibson, P Hardek, T Henderson, S Kang, Y Kasemir, K Peters, C Thompson, D Stockli, M Williams, D AF Kim, Sang-Ho Aleksandrov, Alexander Crofford, Mark Galambos, John Gibson, Paul Hardek, Tom Henderson, Stuart Kang, Yoon Kasemir, Kay Peters, Charles Thompson, David Stockli, Martin Williams, Derrick TI Stabilized operation of the Spallation Neutron Source radio-frequency quadrupole SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID DESORPTION; SURFACE AB The Spallation Neutron Source (SNS) radio-frequency quadrupole (RFQ) had resonance control instabilities at duty factors higher than approximately 4%. Systematic investigations have been carried out to understand the cause of the instability and to ensure the operational stability of the RFQ. The most critical source of the instability is revealed to be an interaction between hydrogen released by beam bombardments and the RFQ rf field resulting in a discharge, which consumes additional rf power and could cause the RFQ to operate in an unstable region. This paper reports improvement of the SNS RFQ operational stability based on the findings during the SNS operation. C1 [Kim, Sang-Ho; Aleksandrov, Alexander; Crofford, Mark; Galambos, John; Gibson, Paul; Hardek, Tom; Henderson, Stuart; Kang, Yoon; Kasemir, Kay; Peters, Charles; Thompson, David; Stockli, Martin; Williams, Derrick] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kim, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy [DE-AC05-00OR22725] FX The authors extend our thanks to all our SNS colleagues who contributed to this work, especially to John Mammosser and Mike Plum for the fruitful discussions. SNS is managed by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy. NR 9 TC 5 Z9 5 U1 1 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD JUL 2 PY 2010 VL 13 IS 7 AR 070101 DI 10.1103/PhysRevSTAB.13.070101 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 620GI UT WOS:000279486700001 ER PT J AU Hung, MS Lin, YC Mao, JH Kim, IJ Xu, ZD Yang, CT Jablons, DM You, LA AF Hung, Ming-Szu Lin, Yu-Ching Mao, Jian-Hua Kim, Il-Jin Xu, Zhidong Yang, Cheng-Ta Jablons, David M. You, Liang TI Functional Polymorphism of the CK2 alpha Intronless Gene Plays Oncogenic Roles in Lung Cancer SO PLOS ONE LA English DT Article ID PROTEIN-KINASE CK2; PML TUMOR-SUPPRESSOR; II SUBUNIT-ALPHA; PSEUDOGENE; IDENTIFICATION; TUMORIGENESIS; DEGRADATION; EXPRESSION; ORIGINS; GENOME AB Protein kinase CK2 is frequently up-regulated in human cancers, although the mechanism of CK2 activation in cancer remains unknown. In this study, we investigated the role of the CK2 alpha intronless gene (CSNK2A1P, a presumed CK2 alpha pseudogene) in the pathogenesis of human cancers. We found evidence of amplification and over-expression of the CSNK2A1P gene in non-small cell lung cancer and leukemia cell lines and 25% of the lung cancer tissues studied. The mRNA expression levels correlated with the copy numbers of the CSNK2A1P gene. We also identified a novel polymorphic variant (398T/C, I133T) of the CSNK2A1P gene and showed that the 398T allele is selectively amplified over the 398C allele in 101 non-small cell lung cancer tissue samples compared to those in 48 normal controls (p = 0.013<0.05). We show for the first time CSNK2A1P protein expression in transfected human embryonic kidney 293T and mouse embryonic fibroblast NIH-3T3 cell lines. Both alleles are transforming in these cell lines, and the 398T allele appears to be more transforming than the 398C allele. Moreover, the 398T allele degrades PML tumor suppressor protein more efficiently than the 398C allele and shows a relatively stronger binding to PML. Knockdown of the CSNK2A1P gene expression with specific siRNA increased the PML protein level in lung cancer cells. We report, for the first time, that the CSNK2A1P gene is a functional proto-oncogene in human cancers and its functional polymorphism appears to degrade PML differentially in cancer cells. These results are consistent with an important role for the 398T allele of the CSNK2A1P in human lung cancer susceptibility. C1 [Hung, Ming-Szu; Kim, Il-Jin; Xu, Zhidong; Jablons, David M.; You, Liang] Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. [Hung, Ming-Szu; Lin, Yu-Ching; Yang, Cheng-Ta] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Chiayi, Taiwan. [Hung, Ming-Szu] Chang Gung Univ, Coll Med, Grad Inst Clin Med Sci, Tao Yuan, Taiwan. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Yang, Cheng-Ta] Chang Gung Univ, Coll Med, Dept Resp Care, Tao Yuan, Taiwan. RP Hung, MS (reprint author), Univ Calif San Francisco, Dept Surg, Ctr Comprehens Canc, Thorac Oncol Lab, San Francisco, CA 94143 USA. EM jablonsd@surgery.ucsf.edu; Liang.You@ucsfmedctr.org FU National Institutes of Health [093708-01A3]; Larry Hall and Zygielbaum Memorial Trust; Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation FX This work was partially supported by the National Institutes of Health (093708-01A3) and the Larry Hall and Zygielbaum Memorial Trust, and the Kazan, McClain, Edises, Abrams, Fernandez, Lyons and Farrise Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 31 TC 10 Z9 12 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JUL 2 PY 2010 VL 5 IS 7 AR e11418 DI 10.1371/journal.pone.0011418 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 619YH UT WOS:000279465700006 PM 20625391 ER PT J AU Larsen, RE Glover, WJ Schwartz, BJ AF Larsen, Ross E. Glover, William J. Schwartz, Benjamin J. TI Does the Hydrated Electron Occupy a Cavity? SO SCIENCE LA English DT Article ID AQUEOUS SOLVATED ELECTRON; OPTICAL-ABSORPTION SPECTRUM; PUMP-PROBE SPECTROSCOPY; RAMAN-SPECTRA; DYNAMICS; WATER; SIMULATION; MODEL; CLUSTERS AB Since the discovery of the hydrated electron more than 40 years ago, a general consensus has emerged that the hydrated electron occupies a quasispherical cavity in liquid water. We simulated the electronic structure and dynamics of the hydrated electron using a rigorously derived pseudopotential to treat the electron-water interaction, which incorporates attractive oxygen and repulsive hydrogen features that have not been included in previous pseudopotentials. What emerged was a hydrated electron that did not reside in a cavity but instead occupied a similar to 1-nanometer-diameter region of enhanced water density. Both the calculated ground-state absorption spectrum and the excited-state spectral dynamics after simulated photoexcitation of this noncavity hydrated electron showed excellent agreement with experiment. The relaxation pathway involves a rapid internal conversion followed by slow ground-state cooling, the opposite of the mechanism implicated by simulations in which the hydrated electron occupies a cavity. C1 [Larsen, Ross E.; Glover, William J.; Schwartz, Benjamin J.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Larsen, RE (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Ross.Larsen@nrel.gov; schwartz@chem.ucla.edu RI Glover, William/A-6968-2010; Larsen, Ross/E-4225-2010; OI Larsen, Ross/0000-0002-2928-9835; Glover, William/0000-0002-2908-5680; Schwartz, Benjamin/0000-0003-3257-9152 FU NSF [CHE-0908548] FX This research was funded by NSF under grant CHE-0908548. We thank M. C. Larsen and A. E. Bragg for helpful discussions, C. N. Mejia for performing the preliminary Hartree-Fock calculations that we used to generate the new electron-water pseudopotential, and K. D. Jordan for a critical reading of the manuscript. NR 30 TC 109 Z9 110 U1 3 U2 62 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD JUL 2 PY 2010 VL 329 IS 5987 BP 65 EP 69 DI 10.1126/science.1189588 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 619BL UT WOS:000279402700032 PM 20595609 ER PT J AU Formo, EV Mahurin, SM Dai, S AF Formo, Eric V. Mahurin, Shannon M. Dai, Sheng TI Robust SERS Substrates Generated by Coupling a Bottom-Up Approach and Atomic Layer Deposition SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE SERS; ALD; nanowire; robust; bottom-up; silver ID ENHANCED RAMAN-SPECTROSCOPY; IN-SITU; SILVER NANOPARTICLES; SCATTERING; NANOCUBES; FILMS; ACID AB This paper reports on the development of a novel thermally stable surface enhanced Raman scattering (SERS) substrate. Specifically, these substrates can withstand high temperatures in air for an extended period of time without the loss of their enhancement capabilities. To accomplish this, we utilized a bottom-up approach, where the polyol reduction process was used to synthesize silver nanowires (NW) that were roughly 90 nm wide to act as the SERS active moiety. Subsequently, the NW were deposited onto a glass substrate and then coated with a thin protective layer of Al2O3 via atomic layer deposition (ALD). After heating these SERS substrates at 400 degrees C for 24 h in air, it was found that the coated samples maintained a significant enhancement of the Raman signal, with further heating resulting in effectively no change in the SERS spectrum. The stability imbued by the ALD coating stems from limiting surface oxidation along with impeding aggregation that occurs at the higher temperature, which would otherwise lead to the destruction of the nanomorphology and complete loss of the SERS capabilities. These highly stable SERS substrates highlight the potential application of SERS in investigation of high-temperature chemical reactions and catalytic processes. C1 [Formo, Eric V.; Mahurin, Shannon M.; Dai, Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat, Oak Ridge, TN 37831 USA. [Mahurin, Shannon M.; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; U.S. Department of Energy (DOE) [DE-AC05-00OR22725] FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. Further, a portion of this research was conducted through The Division of Chemical Sciences, Office of Basic Energy Sciences, U.S. Department of Energy. The Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy (DOE) under Contract DE-AC05-00OR22725. We also thank Harry M. Meyer for his assistance performing the XPS experiments. NR 28 TC 25 Z9 25 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2010 VL 2 IS 7 BP 1987 EP 1991 DI 10.1021/am100272h PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 631SB UT WOS:000280367000031 ER PT J AU Fowlkes, JD Wu, YY Rack, PD AF Fowlkes, Jason D. Wu, Yueying Rack, Philip D. TI Directed Assembly of Bimetallic Nanoparticles by Pulsed-Laser-Induced Dewetting: A Unique Time and Length Scale Regime SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE dewetting; thin film; self-assembly; capillary force; Plateau-Rayleigh; spinodal; Rayleigh-Plateau; pulsed laser induced dewetting ID LIQUID-FILMS; DYNAMICS; INSTABILITIES; MODEL; HOLES AB Pulsed-laser-induced dewetting (PLiD) was used to assemble patterned, nanoscale metallic thin film features into bimetallic nanoparticles. The liquid-phase flow is related to a conventional droplet impact test and, in appropriate dimensions, have inertial and viscoinertial flow characteristics. The final size, morphology, composition, and interdiffusion of the nanoparticles is governed by the interplay of capillary, inertial, and viscous forces and an appropriate dimensional regime defined by competing Rayleigh-Plateau and spinodal instabilities. C1 [Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wu, Yueying; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Rack, PD (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM prack@utk.edu OI Rack, Philip/0000-0002-9964-3254 FU DOE Office of Science [ERKCM38]; Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), U.S. Department of Energy FX The authors acknowledge support from the Material Sciences and Engineering Division Program of the DOE Office of Science (ERKCM38) for sponsoring the aspects of this work related to understanding the fundamental mechanisms operative during liquid-phase thin film dewetting. P.R. and J.F. also acknowledge that the lithography and electron imaging results reported in this article were conducted at the Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, and sponsored by the Scientific User Facilities Division (SUFD), Office of Basic Energy Sciences (BES), U.S. Department of Energy. NR 33 TC 21 Z9 21 U1 2 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD JUL PY 2010 VL 2 IS 7 BP 2153 EP 2161 DI 10.1021/am100417x PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 631SB UT WOS:000280367000053 ER PT J AU Nayak, TK Dennis, MK Ramesh, C Burai, R Atcher, RW Sklar, LA Norenberg, JP Hathaway, HJ Arterburn, JB Prossnitz, ER AF Nayak, Tapan K. Dennis, Megan K. Ramesh, Chinnasamy Burai, Ritwik Atcher, Robert W. Sklar, Larry A. Norenberg, Jeffrey P. Hathaway, Helen J. Arterburn, Jeffrey B. Prossnitz, Eric R. TI Influence of Charge on Cell Permeability and Tumor Imaging of GPR30-Targeted In-111-Labeled Nonsteroidal Imaging Agents SO ACS CHEMICAL BIOLOGY LA English DT Article ID POSITRON-EMISSION-TOMOGRAPHY; ESTROGEN-RECEPTOR; G-PROTEIN; BREAST-CANCER; GPR30; ACTIVATION; MEMBRANE; AFFINITY; THERAPY; RELEASE AB Recent clinical studies implicate the role of G protein-coupled estrogen receptor, GPR30, in aggressive forms of breast, ovarian, and endometrial cancers. However, the functional role of GPR30 at cellular and molecular levels remains less clear and controversial, particularly its subcellular location. The primary objective of this study was to develop radiolabeled neutral and charged GPR30-targeted nonsteroidal analogues to understand the influence of ligand charge on cell binding, cellular permeability, and in vivo tumor imaging. Therefore, we developed a series of GPR30-targeted In-111/113(III)-labeled analogues using macrocyclic and acyclic polyamino-polycarboxylate chelate designs that would render either a net negative or neutral charge. In vitro biological evaluations were performed to determine the role of negatively charged analogues on receptor binding and activation using calcium mobilization and phosphoinositide 3-kinase assays. In vivo evaluations were performed on GPR30-expressing human endometrial Hec50 tumor-bearing mice to characterize the biodistribution and potential application of GPR30-targeted imaging agents for translational research. In vitro functional assays revealed an effect of charge, such that only the neutral analogue activated GPR30-mediated rapid signaling pathways. These observations are consistent with expectations for initial rates of membrane permeability and suggest an intracellular rather than the cell surface location of functional receptor. In vivo studies revealed receptor-mediated uptake of the radiotracer in target organs and tumors; however, further structural modifications will be required for the development of future generations of GPR30-targeted imaging agents with enhanced metabolic properties and decreased nonspecific localization to the intestines. C1 [Nayak, Tapan K.; Dennis, Megan K.; Hathaway, Helen J.; Prossnitz, Eric R.] Univ New Mexico, Hlth Sci Ctr, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA. [Nayak, Tapan K.; Atcher, Robert W.; Sklar, Larry A.; Norenberg, Jeffrey P.] Univ New Mexico, Hlth Sci Ctr, Coll Pharm, Albuquerque, NM 87131 USA. [Atcher, Robert W.; Sklar, Larry A.; Norenberg, Jeffrey P.; Hathaway, Helen J.; Arterburn, Jeffrey B.; Prossnitz, Eric R.] Univ New Mexico, Hlth Sci Ctr, UNM Canc Ctr, Albuquerque, NM 87131 USA. [Sklar, Larry A.] Univ New Mexico, Hlth Sci Ctr, Dept Pathol, Albuquerque, NM 87131 USA. [Ramesh, Chinnasamy; Burai, Ritwik; Arterburn, Jeffrey B.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Atcher, Robert W.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Prossnitz, ER (reprint author), Univ New Mexico, Hlth Sci Ctr, Dept Cell Biol & Physiol, Albuquerque, NM 87131 USA. EM eprossnitz@salud.unm.edu RI Prossnitz, Eric/B-4543-2008; OI Atcher, Robert/0000-0003-4656-2247; Dennis, Megan/0000-0002-8986-5021; Nayak, Tapan/0000-0002-3706-6092; Prossnitz, Eric/0000-0001-9190-8302 FU NIH [R01 CA127731, CA118743, MH074425, MH084690]; University of New Mexico Cancer Center [NIH P30 CA118100]; New Mexico Cowboys for Cancer Research Foundation; Oxnard Foundation; Stranahan Foundation; W. M. Keck Foundation FX This work was supported by NIH grants R01 CA127731 (JBA, ERP), CA118743 (ERP), and MH074425 (LAS) and MH084690 (LAS); the University of New Mexico Cancer Center (NIH P30 CA118100); the New Mexico Cowboys for Cancer Research Foundation (JBA); Oxnard Foundation (ERP); and the Stranahan Foundation (ERP). SPECT/CT images were generated in the Keck-UNM Small Animal Imaging resource established with funding from the W. M. Keck Foundation (LAS/ERP). Fluorescence microscopy images were generated in the University of New Mexico Cancer Center Fluorescence Microscopy Facility supported as at http://hsc.unm.edu/crtc/microscopy/Facility.html. NR 34 TC 12 Z9 12 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD JUL PY 2010 VL 5 IS 7 BP 681 EP 690 DI 10.1021/cb1000636 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 625FU UT WOS:000279881100007 PM 20486699 ER PT J AU Jiang, JY Lima, OV Pei, Y Jiang, Z Chen, ZG Yu, CC Wang, J Zeng, XC Forsythe, E Tan, L AF Jiang, Jinyue Lima, Ocelio V. Pei, Yong Jiang, Zhang Chen, Ziguang Yu, Chichao Wang, Jin Zeng, Xiao Cheng Forsythe, Eric Tan, Li TI Self-Assembled Nano layers of Conjugated Si lane with pi-pi Interlocking SO ACS NANO LA English DT Article DE self-assembly; nanolayer; pi-pi interlocking; conjugation; silane ID MONOLAYERS; GOLD; GROWTH; TRANSISTORS; HYDROLYSIS; MOLECULES; SURFACES; FILM AB The packing of electronic molecules into planar structures and an ensured pi-pi interaction within the plane are preferred for efficient organic transistors. Thin films of organic electronics are exemplar, but the widely adopted molecular design and associated fabrication lead to limited ordering in multistack construction motifs. Here we demonstrate self-assembled nanolayers of organic molecules having potential electronic utility using an amphiphilic silane as a building block. Unlike a cross-linked (tetrahedral) configuration found in conventional siloxane networks, a linear polymer chain is produced following silane polycondensation. As a result, hydrophobic branches plus a noncovalent pi-pi interlocking between the molecules promote planar packing and continuous stacking along the surface normal. In contrast to conventional pi-pi stacking or hydrogen bonding pathways in a fibrous construct, multistacked nanolayers with coexisting pi-pi and herringbone interlocking can provide unmatched properties and processing convenience in molecular electronics. C1 [Jiang, Jinyue; Lima, Ocelio V.; Chen, Ziguang; Yu, Chichao; Tan, Li] Univ Nebraska, Dept Engn Mech, Lincoln, NE 68588 USA. [Jiang, Jinyue; Lima, Ocelio V.; Chen, Ziguang; Yu, Chichao; Tan, Li] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Pei, Yong; Zeng, Xiao Cheng] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Jiang, Zhang; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Forsythe, Eric] USA, Res Lab, Flexible Display Ctr, Adelphi, MD 20783 USA. RP Tan, L (reprint author), Univ Nebraska, Dept Engn Mech, Lincoln, NE 68588 USA. EM Itan4@unl.edu RI Jiang, Zhang/A-3297-2012; Chen, Ziguang/B-8193-2012; Yu, Chichao/F-9423-2012; Pei, Yong/G-1564-2015 OI Jiang, Zhang/0000-0003-3503-8909; Chen, Ziguang/0000-0002-5773-9469; FU National Science Foundation [CMMI 0825905, CMMI 0900644] FX The authors thank Professor Patrick H. Dussault and his group members, as well as Mr. Alexandre Dhotel, for their generous help and gratefully acknowledge the partial financial support from the National Science Foundation (CMMI 0825905 and CMMI 0900644; Program Manager: Dr. Dwight Woolard). NR 39 TC 13 Z9 14 U1 4 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2010 VL 4 IS 7 BP 3773 EP 3780 DI 10.1021/nn100273m PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631RG UT WOS:000280364800027 PM 20518569 ER PT J AU Talanov, VV Del Barga, C Wickey, L Kalichava, I Gonzales, E Shaner, EA Gin, AV Kalugin, NG AF Talanov, Vladimir V. Del Barga, Christopher Wickey, Lee Kalichava, Irakli Gonzales, Edward Shaner, Eric A. Gin, Aaron V. Kalugin, Nikolai G. TI Few-Layer Graphene Characterization by Near-Field Scanning Microwave Microscopy SO ACS NANO LA English DT Article DE graphene; near-field microwave microscopy; impedance ID 2-DIMENSIONAL ELECTRON-GAS; OPTICAL MICROSCOPY; SHEAR FORCE; RESONANCE; PROBE; SPECTROSCOPY; TRANSISTORS; RESOLUTION; THICKNESS; TRANSPORT AB Near-field scanning microwave microscopy is employed for quantitative imaging at 4 GHz of the local impedance for monolayer and few-layer graphene. The microwave response of graphene is found to be thickness dependent and determined by the local sheet resistance of the graphene flake. Calibration of the measurement system and knowledge of the probe geometry allows evaluation of the AC impedance for monolayer and few-layer graphene, which is found to be predominantly active. The use of localized evanescent electromagnetic field in our experiment provides a promising tool for investigations of plasma waves in graphene with wave numbers determined by the spatial spectrum of the near-field. By using near-field microwave microscopy one can perform simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication. C1 [Del Barga, Christopher; Wickey, Lee; Kalichava, Irakli; Kalugin, Nikolai G.] New Mexico Inst Min & Technol, Dept Mat Engn, Socorro, NM 87801 USA. [Gonzales, Edward; Shaner, Eric A.; Gin, Aaron V.] Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Gonzales, Edward; Shaner, Eric A.; Gin, Aaron V.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Talanov, Vladimir V.] Semilab USA LLC, Billerica, MA 01821 USA. RP Talanov, VV (reprint author), Neocera LLC, Beltsville, MD 20705 USA. EM talanov@neocera.com; nkalugin@nmt.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC04-94AL85000]; NASA; UCDRD FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Sandia National Laboratories (Contract DE-AC04-94AL85000). We gratefully acknowledge support from the NASA NM Space Grant Consortium program and from the LANL-NMT MOU program supported by UCDRD. We are thankful to Dr. Dmitry Smirnov for fruitful discussions and to Mr. Chad Cooper and Mr. B. Bobrzynski for experimental assistance. NR 56 TC 22 Z9 23 U1 3 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD JUL PY 2010 VL 4 IS 7 BP 3831 EP 3838 DI 10.1021/nn1004931 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631RG UT WOS:000280364800034 PM 20536187 ER PT J AU Dukes, MJ Peckys, DB de Jonge, N AF Dukes, Madeline J. Peckys, Diana B. de Jonge, Niels TI Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum-Dot-Labeled Proteins in Whole Cells in Liquid SO ACS NANO LA English DT Article DE scanning transmission electron microscopy; quantum dots; molecular probes; protein labels; correlative microscopy; fluorescence microscopy; electron microscopy in liquid ID EPIDERMAL GROWTH-FACTOR; LIGHT; RECEPTOR; TRANSDUCTION; CRYOSECTIONS; TOMOGRAPHY; NANOSCALE; DYNAMICS; GAP AB Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid with fluorescence microscopy and with scanning transmission electron microscopy (STEM); there is no additional sample preparation necessary for the electron microscopy. Quantum dots (QDs) were bound to epidermal growth factor (EGF) receptors of COS7 fibroblast cells. Fixed whole cells in saline water were imaged with fluorescence microscopy and subsequently with STEM. The STEM images were correlated with fluorescence images of the same cellular regions. ODs of dimensions 7 X 12 nm were visible in a 5 mu m thick layer of saline water, consistent with calculations. A spatial resolution of 3 nm was achieved on the QDs. C1 [de Jonge, Niels] Vanderbilt Univ, Dept Mol Physiol & Biophys, Sch Med, Nashville, TN 37232 USA. [de Jonge, Niels] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Dukes, Madeline J.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Peckys, Diana B.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. RP de Jonge, N (reprint author), Vanderbilt Univ, Dept Mol Physiol & Biophys, Sch Med, Nashville, TN 37232 USA. EM niels.de.jonge@vanderbilt.edu RI de Jonge, Niels/B-5677-2008; Peckys, Diana/B-4642-2015 FU Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy; Vanderbilt University School of Medicine; NIH [1R43EB008589] FX We thank S. Head, T.E. McKnight, G.J. Kremers, E.A. Ring, D.W. Piston, and Proto-chips Inc. A portion of this research was conducted at the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy. Research supported by Vanderbilt University School of Medicine, and by NIH Grant 1R43EB008589 (to S. Mick for D.B.P. and N.J.). NR 29 TC 42 Z9 43 U1 6 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2010 VL 4 IS 7 BP 4110 EP 4116 DI 10.1021/nn1010232 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631RG UT WOS:000280364800068 PM 20550177 ER PT J AU Shin, J Borisevich, AY Meunier, V Zhou, J Plummer, EW Kalinin, SV Baddorf, AP AF Shin, Junsoo Borisevich, Albina Y. Meunier, Vincent Zhou, Jing Plummer, E. Ward Kalinin, Sergei V. Baddorf, Arthur P. TI Oxygen-Induced Surface Reconstruction of SrRuO3 and Its Effect on the BaTiO3 Interface SO ACS NANO LA English DT Article DE surface reconstruction; oxide interface; epitaxial film; oxygen engineering; in situ analysis ID AUGMENTED-WAVE METHOD; ELECTRON-GAS; FILMS; STABILITY AB Atomically engineered oxide multilayers and superlattices display unique properties responsive to the electronic and atomic structures of the interfaces. We have followed the growth of ferroelectric BaTiO3 on SrRuO3 electrode with in situ atomic scale analysis of the surface structure at each stage. An oxygen-induced surface reconstruction of SrRuO3 leads to formation of SrO rows spaced at twice the bulk periodicity. This reconstruction modifies the structure of the first BaTiO3 layers grown subsequently, including intermixing observed with cross-section spectroscopy. These observations reveal that this common oxide interface is much more interesting than previously reported and provide a paradigm for oxygen engineering of oxide structure at an interface. C1 [Shin, Junsoo] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Shin, Junsoo; Borisevich, Albina Y.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Zhou, Jing] Univ Wyoming, Dept Chem, Laramie, WY 82071 USA. [Plummer, E. Ward] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Kalinin, Sergei V.; Baddorf, Arthur P.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Shin, J (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM jshin@ornl.gov; baddorfap@ornl.gov RI Meunier, Vincent/F-9391-2010; Kim, Yu Jin/A-2433-2012; Kalinin, Sergei/I-9096-2012; Borisevich, Albina/B-1624-2009; Baddorf, Arthur/I-1308-2016 OI Meunier, Vincent/0000-0002-7013-179X; Kalinin, Sergei/0000-0001-5354-6152; Borisevich, Albina/0000-0002-3953-8460; Baddorf, Arthur/0000-0001-7023-2382 FU Division of Materials Science and Engineering; Center for Nanophase Materials Sciences by the Scientific User Facilities Division, at Oak Ridge National Laboratory, for the Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy [DE-SC0002136] FX Research was sponsored by the Division of Materials Science and Engineering (J.S.) and at the Center for Nanophase Materials Sciences (S.V.K. and A.P.B.) by the Scientific User Facilities Division, at Oak Ridge National Laboratory, for the Office of Basic Energy Sciences, U.S. Department of Energy. This work was also partially supported by the Department of Energy Grant DE-SC0002136 (E.W.P.). NR 31 TC 23 Z9 23 U1 0 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2010 VL 4 IS 7 BP 4190 EP 4196 DI 10.1021/nn1008337 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631RG UT WOS:000280364800078 PM 20575506 ER PT J AU Luer, L Crochet, J Hertel, T Cerullo, G Lanzani, G AF Lueer, Larry Crochet, Jared Hertel, Tobias Cerullo, Giulio Lanzani, Guglielmo TI Ultrafast Excitation Energy Transfer in Small Semiconducting Carbon Nanotube Aggregates SO ACS NANO LA English DT Article DE carbon nanotubes; femtosecond spectroscopy; excitation energy transfer; optoelectronics; aggregates; chirality enrichment; excitons ID PHOTOLUMINESCENCE; EXCITONS; BUNDLES; DYNAMICS; SPECTRA; STATES AB We study excitation energy transfer in small aggregates of chirality enriched carbon nanotubes by transient absorption spectroscopy. Ground state photobleaching is used to monitor exciton population dynamics with sub-10 fs time resolution. Upon resonant excitation of the first exciton transition in (6,5) tubes, we find evidence for energy transfer to (7,5) tubes within our time resolution (<10 fs). Excitation in the visible spectral range, where the second excitonic transitions occur, is followed by fast intratube relaxation and subsequent energy transfer, in particular from the (8,4) tube toward other tubes, the latter process occurring in less than 10 fs. C1 [Lueer, Larry] Madrid Inst Adv Studies IMDEA Nanociencia, Madrid, Spain. [Lueer, Larry] Politecn Milan, CNR, INFM ULTRAS, I-20133 Milan, Italy. [Crochet, Jared; Hertel, Tobias] Univ Wurzburg, Inst Phys & Theoret Chem, D-97070 Wurzburg, Germany. [Crochet, Jared] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Cerullo, Giulio] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. [Lanzani, Guglielmo] Politecn Milan, Dept Phys, I-20133 Milan, Italy. [Lanzani, Guglielmo] Politecn Milan, Ctr Nanosci & Technol IIT POLIMI, I-20133 Milan, Italy. RP Luer, L (reprint author), Madrid Inst Adv Studies IMDEA Nanociencia, Madrid, Spain. EM larry.luer@imdea.org RI Cerullo, Giulio/F-6534-2011; Crochet, Jared/C-8488-2011; Hertel, Tobias/J-4243-2012; Hertel, Tobias/D-5805-2013; Luer, Larry/L-9375-2014; OI Cerullo, Giulio/0000-0002-9534-2702; Crochet, Jared/0000-0002-9570-2173 FU European Commission [MRTN-CT-2006-035859] FX This work was financially supported by the European Commission through the Human Potential Programme (Marie-Curie RTN BIMORE, Grant No. MRTN-CT-2006-035859). NR 31 TC 38 Z9 38 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD JUL PY 2010 VL 4 IS 7 BP 4265 EP 4273 DI 10.1021/nn100674h PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 631RG UT WOS:000280364800087 PM 20518568 ER PT J AU Scharf, TW Kotula, PG Prasad, SV AF Scharf, T. W. Kotula, P. G. Prasad, S. V. TI Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings SO ACTA MATERIALIA LA English DT Article DE Coatings; Thin films; Nanocomposites; Wear; Friction ID SOLID LUBRICANT COATINGS; DEPOSITED MOS2 FILMS; ABSORPTION FINE-STRUCTURE; TUNGSTEN DISULFIDE FILMS; THIN-FILMS; TRIBOLOGICAL PERFORMANCE; DUCTILE MATERIALS; BEHAVIOR; METAL; MICROSTRUCTURE AB Fundamental phenomena governing the tribological mechanisms in sputter deposited amorphous MoS2/Sb2O3/Au nanocomposite coatings are reported. In dry environments the nanocomposite has the same low friction coefficient as pure MoS2 (similar to 0.007). However, unlike pure MoS2 coatings, which wear through in air (50% relative humidity), the composite coatings showed minimal wear, with wear factors of similar to 1.2-1.4 x 10(-7) mm(3) Nm(-1) in both dry nitrogen and air. The coatings exhibited non-Amontonian friction behavior, with the friction coefficient decreasing with increasing Hertzian contact stress. Cross-sectional transmission electron microscopy of wear surfaces revealed that frictional contact resulted in an amorphous to crystalline transformation in MoS2 with 2H-basal (0 0 0 2) planes aligned parallel to the direction of sliding. In air the wear surface and subsurface regions exhibited islands of Au. The mating transfer films were also comprised of (0 0 0 2)-oriented basal planes of MoS2, resulting in predominantly self-mated "basal on basal" interfacial sliding and, thus, low friction and wear. (C) 2010 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Scharf, T. W.; Kotula, P. G.; Prasad, S. V.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87185 USA. RP Prasad, SV (reprint author), Sandia Natl Labs, Ctr Mat Sci & Engn, POB 5800, Albuquerque, NM 87185 USA. EM svprasa@sandia.gov RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU US Department of Energy [DE-AC04-94AL8500] FX The authors would like to thank Andy Both of Dayton Coatings Technology (TXI) for supplying the coatings and Rand Garfield for performing the friction measurements. The authors also thank Bonnie McKenzie, Michael Rye, Dick Grant and Gary Bryant for their assistance in electron microscopy and Mark Rodriguez for X-ray diffraction measurements. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL8500. One of the authors (T.W.S.) gratefully acknowledges Sandia's University Summer Faculty program during July and August 2009. NR 49 TC 53 Z9 56 U1 3 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD JUL PY 2010 VL 58 IS 12 BP 4100 EP 4109 DI 10.1016/j.actamat.2010.03.040 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 617JR UT WOS:000279277500003 ER PT J AU Sahu, KK Mauro, NA Longstreth-Spoor, L Saha, D Nussinov, Z Miller, MK Kelton, KF AF Sahu, K. K. Mauro, N. A. Longstreth-Spoor, L. Saha, D. Nussinov, Z. Miller, M. K. Kelton, K. F. TI Phase separation mediated devitrification of Al88Y7Fe5 glasses SO ACTA MATERIALIA LA English DT Article DE Coarsening; Aluminum alloys; Phase separation; Nucleation and growth; Metallic glass ID AL-Y-FE; METALLIC-GLASS; PRIMARY CRYSTALLIZATION; AMORPHOUS-ALLOYS; NANOCRYSTAL DEVELOPMENT; PRECIPITATION; NUCLEATION; KINETICS; TI AB The mechanisms responsible for the nanoscale devitrification of Al-based metallic glasses are unclear. A particularly well-studied case is Al88Y7Fe5, where non-isothermal differential scanning calorimetry (DSC) measurements show an exothermic peak that is consistent with glass devitrification to alpha-Al, but with no glass transition. Additionally, isothermal DSC studies show a monotonic decrease in enthalpy release with annealing, a feature generally taken to indicate grain coarsening. The results of coordinated DSC, bright field transmission electron microscopy, in situ electrical resistivity and atom probe tomography (APT) studies of Al88Y7Fe5 support a nucleation/growth-based crystallization process. The APT data indicate the presence of sub-nanometer pure Al zones and coarser scale (separation distance similar to 74-126 nm) Al-rich regions in the glass. The pure Al zones dispersed in the Al-rich regions appear to catalyze alpha-Al nucleation, explaining the high nucleation rates. The solute-rich regions between the Al-rich regions inhibit long-range diffusion, explaining the low growth rates. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Sahu, K. K.; Mauro, N. A.; Longstreth-Spoor, L.; Saha, D.; Nussinov, Z.; Miller, M. K.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Sahu, K. K.; Mauro, N. A.; Longstreth-Spoor, L.; Nussinov, Z.; Kelton, K. F.] Washington Univ, Ctr Mat Innovat, St Louis, MO 63130 USA. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kelton, KF (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA. EM kfk@wustl.edu FU National Science Foundation [DMR-06-06065, DMR-08-56199]; US Air Force Office of Scientific Research [FA9550-05-1-0110]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Department of Energy, Basic Energy Sciences [DS-ACO2-07CH11358]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357] FX The research was partially supported by the National Science Foundation under Grants DMR-06-06065, DMR-08-56199, and the US Air Force Office of Scientific Research under Contract FA9550-05-1-0110. The APT research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The synchrotron measurements were made on the MUCAT beam-line at the Advanced Photon Source. Work in the MUCAT Sector at the APS, and the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DS-ACO2-07CH11358. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. NR 45 TC 20 Z9 20 U1 5 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2010 VL 58 IS 12 BP 4199 EP 4206 DI 10.1016/j.actamat.2010.04.011 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 617JR UT WOS:000279277500013 ER PT J AU Cao, GH Becker, AT Wu, D Chumbley, LS Lograsso, TA Russell, AM Gschneidner, KA AF Cao, G. H. Becker, A. T. Wu, D. Chumbley, L. S. Lograsso, T. A. Russell, A. M. Gschneidner, K. A., Jr. TI Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound SO ACTA MATERIALIA LA English DT Article DE Intermetallics; Mechanical properties; Slip; Transmission electron microscopy (TEM); YZn ID DEFORMATION-BEHAVIOR; FRACTURE-TOUGHNESS; YCU; YAG; ALUMINIDES; DUCTILITY AB Single crystal specimens of YZn (B2) were tested in tension at room temperature. Specimens with a [1 0 1] tensile axis orientation exhibited {0 1 1} < 1 0 0 > primary slip and an ultimate tensile strength of 365 MPa at 3.7% elongation. Specimens with [0 0 1] and [1 1 1] tensile axis orientations showed no slip lines and fractured at a stress of 180 MPa at 3.3% and 130 MPa at 2.9% elongation, respectively. Transmission electron microscopy (TEM) examination of the Burger's vector of dislocations in tensile tested specimens revealed < 1 0 0 >-type dislocations. TEM analysis suggested that a secondary slip system, {0 0 1} < 1 0 0 >, may be active. Banded features with a {0 2 1} orientation were observed in deformed YZn; these may be slip traces produced by the cross-slip of < 1 0 0 > dislocations. Acting together, {0 1 1} < 1 0 0 > and {0 0 1} < 1 0 0 > slip provide only three independent slip systems, and no extra independent systems are provided by the cross-slip. This finding is consistent with the low ductility of YZn. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Cao, G. H.] Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. [Becker, A. T.; Wu, D.; Chumbley, L. S.; Lograsso, T. A.; Russell, A. M.; Gschneidner, K. A., Jr.] Ames Lab, Mat Sci & Engn Program, Ames, IA 50011 USA. [Becker, A. T.; Chumbley, L. S.; Russell, A. M.; Gschneidner, K. A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Cao, GH (reprint author), Shanghai Univ, Dept Mat Engn, Shanghai 200072, Peoples R China. EM ghcao@shu.edu.cn; russell@iastate.edu OI Russell, Alan/0000-0001-5264-0104 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Science Foundation [0413616]; Iowa State University [DE-ACO2-07CH11358]; Natural Science Foundation of China (NSFC) [50771061]; Shanghai Committee of Science and Technology [09520703300] FX This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The financial support of the National Science Foundation under Grant no. 0413616 is also gratefully acknowledged (L.S.C. and A.M.R.). The Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract no. DE-ACO2-07CH11358. G.H. Cao is grateful to Prof. Guangjun Shen (Southeast University, China) for assistance with the TEM analysis and helpful discussion, and the Natural Science Foundation of China (NSFC) under Grant no. 50771061 and the Shanghai Committee of Science and Technology under Grant no. 09520703300 for supporting this work. NR 18 TC 9 Z9 10 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD JUL PY 2010 VL 58 IS 12 BP 4298 EP 4304 DI 10.1016/j.actamat.2010.04.024 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 617JR UT WOS:000279277500023 ER PT J AU Parke, SJ AF Parke, Stephen J. TI ACCELERATOR NEUTRINO PROGRAMME AT FERMILAB SO ACTA PHYSICA POLONICA B LA English DT Article; Proceedings Paper CT Cracow Epiphany Conference on Physics in Underground Laboratories and Its Connection with LHC CY JAN 05-08, 2010 CL Cracow, POLAND AB The accelerator neutrino programme in the USA consists primarily of the Fermi lab neutrino programme. Currently, Fermi lab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NO nu A. The major experiment in the beamline to DUSEL will be LBNE. C1 Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. RP Parke, SJ (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM parke@fnal.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO PI KRAKOW PA UL GRODZKA 26, KRAKOW, 31044, POLAND SN 0587-4254 J9 ACTA PHYS POL B JI Acta Phys. Pol. B PD JUL PY 2010 VL 41 IS 7 BP 1555 EP 1563 PG 9 WC Physics, Multidisciplinary SC Physics GA 640QZ UT WOS:000281068200013 ER PT J AU Ingebretsen, M AF Ingebretsen, Mark TI The Global Rare-Earth Race SO ADVANCED MATERIALS & PROCESSES LA English DT Article AB Rare earth processing and manufacturing technology were invented in the United States, but today the world has become almost completely dependent on China. C1 US DOE, Ames Lab, Ames, IA 50011 USA. RP Ingebretsen, M (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM marki@ameslab.gov NR 0 TC 3 Z9 3 U1 1 U2 8 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD JUL PY 2010 VL 168 IS 7 BP 24 EP 25 PG 2 WC Materials Science, Multidisciplinary SC Materials Science GA 628PI UT WOS:000280132300004 ER PT J AU de Keizer, PLJ Laberge, RM Campisi, J AF de Keizer, Peter L. J. Laberge, Remi-Martin Campisi, Judith TI p53: Pro-aging or pro-longevity? SO AGING-US LA English DT Editorial Material ID CELLULAR SENESCENCE; INFLAMMATORY NETWORKS; SECRETORY PHENOTYPE; TUMOR SUPPRESSION; MOUSE; CELLS; MICE; TRANSFORMATION; RESISTANT; ONCOGENE C1 [de Keizer, Peter L. J.; Laberge, Remi-Martin; Campisi, Judith] Buck Inst Age Res, Novato, CA 94945 USA. [Campisi, Judith] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP de Keizer, PLJ (reprint author), Buck Inst Age Res, Novato, CA 94945 USA. EM JCampisi@lbl.gov NR 30 TC 30 Z9 32 U1 0 U2 4 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1945-4589 J9 AGING-US JI Aging-US PD JUL PY 2010 VL 2 IS 7 BP 377 EP 379 PG 3 WC Cell Biology SC Cell Biology GA 650SY UT WOS:000281873900002 PM 20657035 ER PT J AU Wullschleger, SD Davis, EB Borsuk, ME Gunderson, CA Lynd, LR AF Wullschleger, S. D. Davis, E. B. Borsuk, M. E. Gunderson, C. A. Lynd, L. R. TI Biomass Production in Switchgrass across the United States: Database Description and Determinants of Yield SO AGRONOMY JOURNAL LA English DT Article ID PANICUM-VIRGATUM; ALAMO SWITCHGRASS; ALMANAC MODEL; BIG BLUESTEM; SEASON AREA; POPULATIONS; FEEDSTOCK; BIOFUELS; NITROGEN; ENERGY AB Fundamental to deriving a sustainable supply of cellulosic feedstock for an emerging biofuels industry is understanding how biomass yield varies as a function of crop management, climate, and soils. Here we focus on the perennial switchgrass (Panicum virgatum L.) and compile a database that contains 1190 observations of yield from 39 field trials conducted across the United States. Data include site location, stand age, plot size, cultivar, crop management, biomass yield, temperature, precipitation, and information on land quality. Statistical analysis revealed the major sources of variation in yield. Frequency distributions of yield for upland and lowland ecotypes were unimodal, with mean (+/- SD) biomass yields of 8.7 +/- 4.2 and 12.9 +/- 5.9 Mg ha(-1) for the two ecotypes, respectively. We looked for, but did not find, bias toward higher yields associated with small plots or preferential establishment of stands on high quality lands. A parametric yield model was fit to the data and accounted for one-third of the total observed variation in biomass yields, with an equal contribution of growing season precipitation, annual temperature, N fertilization, and ecotype. The model was used to predict yield across the continental United States. Mapped output was consistent with the natural range of switchgrass and, as expected, yields were shown to be limited by precipitation west of the Great Plains. Future studies should extend the geographic distribution of field trials and thus improve our understanding of biomass production as a function of soil, climate, and crop management for promising biofuels such as switchgrass. C1 [Wullschleger, S. D.; Gunderson, C. A.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Davis, E. B.; Borsuk, M. E.; Lynd, L. R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. RP Wullschleger, SD (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM wullschlegsd@ornl.gov RI Wullschleger, Stan/B-8297-2012; Langholtz, Matthew/B-9416-2012; Lynd, Lee/N-1260-2013; OI Wullschleger, Stan/0000-0002-9869-0446; Langholtz, Matthew/0000-0002-8153-7154; Lynd, Lee/0000-0002-5642-668X; Borsuk, Mark/0000-0002-5121-1110 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Morgan Family Fund; U.S. Department of Energy [DE-05-00OR22725] FX The authors wish to thank those site investigators who provided additional information and data for the analyses presented. The authors would also like to thank Dr. Jonathan Chipman, the director of the Applied Spatial Analysis Laboratory at Dartmouth College, for advice, consultation, and access to the lab facilities. This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Oak Ridge National Laboratory is managed by UT-Battelle, LIC for the U.S. Department of Energy under contract DE-05-00OR22725. E.B Davis was supported by a grant from the Morgan Family Fund. NR 43 TC 100 Z9 103 U1 4 U2 43 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0002-1962 J9 AGRON J JI Agron. J. PD JUL-AUG PY 2010 VL 102 IS 4 BP 1158 EP 1168 DI 10.2134/agronj2010.0087 PG 11 WC Agronomy SC Agriculture GA 627HO UT WOS:000280030300011 ER PT J AU Agarwal, A Biegler, LT Zitney, SE AF Agarwal, Anshul Biegler, Lorenz T. Zitney, Stephen E. TI A Superstructure-Based Optimal Synthesis of PSA Cycles for Post-Combustion CO2 Capture SO AICHE JOURNAL LA English DT Article DE adsorption/gas; optimization; design ID PRESSURE SWING ADSORPTION; CARBON-DIOXIDE SEQUESTRATION; PLANT FLUE-GAS; ACTIVATED CARBON; OPTIMAL-DESIGN; ZEOLITE 13X; RECOVERY; OPTIMIZATION; STRATEGIES; SYSTEMS AB Recent developments have shown pressure/vacuum swing adsorption (PSA/VSA) to be a promising option to effectively capture CO2 from flue gas streams. In most commercial PSA cycles, the weakly adsorbed component in the mixture is the desired product, and enriching the strongly adsorbed CO2 is not a concern. On the other hand, it is necessary to concentrate CO2 to high purity to reduce CO2 sequestration costs and minimize safety and environmental risks. Thus, it is necessary to develop PSA processes specifically targeted to obtain pure strongly adsorbed component. A multitude of PSA/VSA cycles have been developed in the literature for CO2 capture from feedstocks low in CO2 concentration. However, no systematic methodology has been suggested to develop, evaluate, and optimize PSA cycles for high purity CO2 capture. This study presents a systematic optimization-based formulation to synthesize novel PSA cycles for a given application. In particular, a novel PSA superstructure is presented to design optimal PSA cycle configurations and evaluate CO2 capture strategies. The superstructure is rich enough to predict a number of different PSA operating steps. The bed connections in the superstructure are governed by time-dependent control variables, which can be varied to realize most PSA operating steps. An optimal sequence of operating steps is achieved through the formulation of an optimal control problem with the partial differential and algebraic equations of the PSA system and the cyclic steady state condition. Large-scale optimization capabilities have enabled us to adopt a complete discretization methodology to solve the optimal control problem as a large-scale nonlinear program, using the nonlinear optimization solver IPOPT. The superstructure approach is demonstrated for case studies related to post-combustion CO2 capture. In particular, optimal PSA cycles were synthesized, which maximize CO2 recovery for a given purity, and minimize overall power consumption. The results show the potential of the superstructure to predict PSA cycles with up to 98% purity and recovery of CO2. Moreover, for recovery of around 85% and purity of over 90%, these cycles can recover CO2 from atmospheric,flue gas with a low power consumption of 465 kWh tonne(-1) CO2. The approach presented is, therefore, very promising and quite useful for evaluating the suitability of different adsorbents, feedstocks, and operating strategies for PSA, and assessing its usefulness for CO2 capture. Published (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 1813-1828, 2010 C1 [Agarwal, Anshul; Biegler, Lorenz T.; Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Agarwal, Anshul; Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Biegler, LT (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM lb01@andrew.cmu.edu OI Agarwal, Anshul/0000-0003-3685-8052 FU RDS [DE-AC26-04NT41817] FX This technical effort was performed in support of the National Energy Technology Laboratory's on-going research in Process and Dynamic Systems Research under the RDS contract DE-AC26-04NT41817. NR 48 TC 58 Z9 61 U1 6 U2 37 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD JUL PY 2010 VL 56 IS 7 BP 1813 EP 1828 DI 10.1002/aic.12107 PG 16 WC Engineering, Chemical SC Engineering GA 612IL UT WOS:000278890800014 ER PT J AU Hargraves, R Moir, R AF Hargraves, Robert Moir, Ralph TI Liquid Fluoride Thorium Reactors An old idea in nuclear power gets reexamined SO AMERICAN SCIENTIST LA English DT Article ID MOLTEN-SALT REACTOR C1 [Hargraves, Robert] Dartmouth Coll, Inst Lifelong Educ, Hanover, NH 03755 USA. [Moir, Ralph] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Hargraves, R (reprint author), 7 Cuttings Corner, Hanover, NH 03755 USA. EM robert.hargraves@gmail.com NR 8 TC 31 Z9 32 U1 3 U2 50 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD JUL-AUG PY 2010 VL 98 IS 4 BP 304 EP 313 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 609BW UT WOS:000278631000014 ER PT J AU Rana, GSJB York, TP Edmiston, JS Zedler, BK Pounds, JG Adkins, JN Smith, RD Liu, ZG Li, GY Webb, BT Murrelle, EL Flora, JW AF Rana, Gaurav S. J. B. York, Timothy P. Edmiston, Jeffery S. Zedler, Barbara K. Pounds, Joel G. Adkins, Joshua N. Smith, Richard D. Liu, Zaigang Li, Guoya Webb, Bradley T. Murrelle, Edward L. Flora, Jason W. TI Proteomic biomarkers in plasma that differentiate rapid and slow decline in lung function in adult cigarette smokers with chronic obstructive pulmonary disease (COPD) SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article DE Amino acids/peptides; Bioanalytical methods; Biological samples; Clinical/biomedical analysis; Genomics/proteomics ID SYSTEMIC INFLAMMATION; AIRWAY INFLAMMATION; MASS-SPECTROMETRY; ACCURATE MASS; TAG STRATEGY; IN-VIVO; SMOKING; ASSOCIATION; COMPLEMENT; IDENTIFICATION AB Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of morbidity and mortality in the United States and cigarette smoking is a primary determinant of the disease. COPD is characterized by chronic airflow limitation as measured by the forced expiratory volume in one second (FEV(1)). In this study, the plasma proteomes of 38 middle-aged or older adult smokers with mild to moderate COPD, with FEV1 decline characterized as either rapid (RPD, n=20) or slow or absent (SLW, n=18), were interrogated using a comprehensive high-throughput proteomic approach, the accurate mass and time (AMT) tag technology. This technology is based upon a putative mass and time tag database (PMT), high-resolution LC separations and high mass accuracy measurements using FT-ICR MS with a 9.4-T magnetic field. The peptide and protein data were analyzed using three statistical approaches to address ambiguities related to the high proportion of missing data inherent to proteomic analysis. The RPD and SLW groups were differentiated by 55 peptides which mapped to 33 unique proteins. Twelve of the proteins have known roles in the complement or coagulation cascade and, despite an inability to adjust for some factors known to affect lung function decline, suggest potential mechanistic biomarkers associated with the rate of lung function decline in COPD. Whether these proteins are the cause or result of accelerated decline will require further research. C1 [Rana, Gaurav S. J. B.; Edmiston, Jeffery S.; Zedler, Barbara K.; Liu, Zaigang; Li, Guoya; Murrelle, Edward L.; Flora, Jason W.] Altria Client Serv, Richmond, VA 23219 USA. [York, Timothy P.; Webb, Bradley T.] Virginia Commonwealth Univ, Sch Med, Inst Biomarker Discovery & Personalized Med, Dept Human & Mol Genet, Richmond, VA 23219 USA. [Pounds, Joel G.; Adkins, Joshua N.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [York, Timothy P.; Webb, Bradley T.] Virginia Commonwealth Univ, Inst Biomarker Discovery & Personalized Med, Dept Pharm, Sch Med, Richmond, VA 23219 USA. RP Flora, JW (reprint author), Altria Client Serv, 601 E Jackson St, Richmond, VA 23219 USA. EM Jason.W.Flora@Altria.com RI Smith, Richard/J-3664-2012; Adkins, Joshua/B-9881-2013; Webb, Bradley/B-1459-2009; OI Smith, Richard/0000-0002-2381-2349; Adkins, Joshua/0000-0003-0399-0700; Webb, Bradley/0000-0002-0576-5366; Pounds, Joel/0000-0002-6616-1566 FU Philip Morris USA Inc.; LineaGen, Inc. FX The authors gratefully acknowledge the contributions to this study and manuscript by Michael S. Paul, Ph.D. and Alex Lindell from LineaGen, Inc., Salt Lake City, Utah and George J. Patskan, Ph.D. from Altria Client Services. The authors also acknowledge the comments of reviewers Rutger Van der Hoeven, Ph.D. and Marc R. Kraus, Ph.D. and the editorial assistance of Eileen Ivasauskas of Accuwrit Inc. Financial support was provided by Philip Morris USA Inc. and LineaGen, Inc. NR 55 TC 9 Z9 10 U1 0 U2 7 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2010 VL 397 IS 5 BP 1809 EP 1819 DI 10.1007/s00216-010-3742-4 PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 611IY UT WOS:000278810000023 PM 20442989 ER PT J AU Ma, CB Yeung, ES AF Ma, Changbei Yeung, Edward S. TI Highly sensitive detection of DNA phosphorylation by counting single nanoparticles SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Article; Proceedings Paper CT 6th International Conference on Instrumental Methods of Analysis CY OCT 04-08, 2009 CL Athens, GREECE DE DNA; Phosphorylation; Kinase activity; Single particle ID T4 POLYNUCLEOTIDE KINASE; STRAND BREAK REPAIR; MOLECULE DETECTION; PROTEIN MOLECULES; NUCLEIC-ACIDS; TERMINI; ENZYME; QUANTIFICATION; AMPLIFICATION; QUANTITATION AB DNA phosphorylation is a vital process in the repair, replication, and recombination of nucleic acids. Traditionally, it is assayed by denaturing gel electrophoresis and autoradiography, which are tedious and not sensitive. We report on the development of a sensitive, simple, and economical method for DNA phosphorylation detection and T4 polynucleotide kinase (T4 PNK) activity assay based on marking DNA phosphorylation/biotinylation events by the attachment of fluorescent nanoparticles. Enzyme activity of T4 PNK is measured down to a limit of 5 x 10(-6)U/ml, which is 400 times lower than previous reports. We also studied DNA phosphorylation specificity with different DNA substrates. Furthermore, T4 PNK inhibition by the inhibitor ADP and activation by the activator spermine are shown, demonstrating the potential for high-throughput screening for inhibitors and activators. C1 [Ma, Changbei; Yeung, Edward S.] US DOE, Ames Lab, Ames, IA 50011 USA. [Ma, Changbei; Yeung, Edward S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Yeung, ES (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM yeung@ameslab.gov NR 38 TC 31 Z9 31 U1 6 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD JUL PY 2010 VL 397 IS 6 BP 2279 EP 2284 DI 10.1007/s00216-010-3801-x PG 6 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 619TK UT WOS:000279453000029 PM 20512316 ER PT J AU Johnson, GE Lysonski, M Laskin, J AF Johnson, Grant E. Lysonski, Michael Laskin, Julia TI In Situ Reactivity and TOF-SIMS Analysis of Surfaces Prepared by Soft and Reactive Landing of Mass-Selected Ions SO ANALYTICAL CHEMISTRY LA English DT Article ID ASSEMBLED MONOLAYER SURFACES; LANDED PROTEIN VOLTAMMETRY; SIZE-SELECTED CLUSTERS; THIN-FILM GROWTH; INDUCED DISSOCIATION; PEPTIDE IONS; ELECTROSPRAY-IONIZATION; SOLID-SURFACES; HETEROGENEOUS CATALYSIS; COVALENT IMMOBILIZATION AB An instrument has been designed and constructed that enables in situ reactivity and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of surfaces prepared or modified through soft and reactive landing of mass-selected polyatomic cations and anions. The apparatus employs an electrospray ion source coupled to a high transmission electrodynamic ion funnel, two focusing collision quadrupoles, a large 19 mm diameter quadrupole mass filter, and a quadrupole bender that deflects the ion beam, thereby preventing neutral contaminants from impinging on the deposition surface. The ion soft landing apparatus is coupled to a commercial TOF-SIMS instrument permitting the introduction of surfaces into vacuum and SIMS analysis before and after ion deposition without breaking vacuum. To facilitate a comparison of the current TOF-SIMS instrument with the in situ Fourier transform ion cyclotron resonance (FTICR-SIMS) deposition apparatus constructed previously, dications of the cyclic peptide Gramicidin S (GS) and the photoactive organonometallic complex ruthenium tris-bipyridine (Ru-(bpy)(3)) were soft-landed onto fluorinated self-assembled monolayer (FSAM) on gold surfaces. In both cases, similarities and differences were observed in the secondary ion mass spectra, with the TOF-SIMS results, in general, characterized by greater sensitivity, larger dynamic range, less fragmentation, and fewer in-plume reactions than the corresponding FTICR-SIMS spectra. The charge reduction kinetics of both the doubly and singly protonated GS cations on the FSAM surface were also examined as was the influence of the primary gallium ion (Ga(+)) flux on the efficiency of these processes. In addition, we demonstrate that the new instrument enables detailed studies of the reactivity of catalytically active species immobilized by soft and reactive landing toward gaseous reagents. C1 [Johnson, Grant E.; Lysonski, Michael; Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Grant.Johnson@pnl.gov; Julia.Laskin@pnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); U.S. DOE of Biological and Environmental Research; DOE Science Undergraduate Laboratory Internship (SULI) at Pacific Northwest National Laboratory (PNNL) FX We acknowledge support for this research by a grant from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE), and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. M.L. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI) program at Pacific Northwest National Laboratory (PNNL). We also gratefully acknowledge the technical help of James Ewing, Mark Townsend, Michael Russcher, and Beverly Taylor (PNNL). NR 100 TC 30 Z9 30 U1 1 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD JUL 1 PY 2010 VL 82 IS 13 BP 5718 EP 5727 DI 10.1021/ac100734g PG 10 WC Chemistry, Analytical SC Chemistry GA 617AO UT WOS:000279253300042 PM 20524671 ER PT J AU Thrash, JC Ahmadi, S Torok, T Coates, JD AF Thrash, J. Cameron Ahmadi, Sarir Torok, Tamas Coates, John D. TI Magnetospirillum bellicus sp nov., a Novel Dissimilatory Perchlorate-Reducing Alphaproteobacterium Isolated from a Bioelectrical Reactor SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID (PER)CHLORATE-REDUCING BACTERIA; AQUASPIRILLUM-MAGNETOTACTICUM; DECHLOROMONAS-AGITATA; TAXONOMIC DESCRIPTION; MAGNETOSOME FORMATION; OXIDIZING BACTERIUM; MAGNETITE FORMATION; UNITED-STATES; STRAIN 2002; HIGH-PLAINS AB Previously isolated dissimilatory perchlorate-reducing bacteria (DPRB) have been primarily affiliated with the Betaproteobacteria. Enrichments from the cathodic chamber of a bioelectrical reactor (BER) inoculated from creek water in Berkeley, CA, yielded a novel organism most closely related to a previously described strain, WD (99% 16S rRNA gene identity). Strain VDY(T) has 96% 16S rRNA gene identity to both Magnetospirillum gryphiswaldense and Magnetospirillum magnetotacticum, and along with strain WD, distinguishes a clade of perchlorate-reducing Magnetospirillum species in the Alphaproteobacteria. In spite of the phylogenetic location of VDY(T), attempted PCR for the key magnetosome formation genes mamI and mamL was negative. Strain VDY(T) was motile, non-spore forming, and, in addition to perchlorate, could use oxygen, chlorate, nitrate, nitrite, and nitrous oxide as alternative electron acceptors with acetate as the electron donor. Transient chlorate accumulation occurred during respiration of perchlorate. The organism made use of fermentation end products, such as acetate and ethanol, as carbon sources and electron donors for heterotrophic growth, and in addition, strain VDY(T) could grow chemolithotrophically with hydrogen serving as the electron donor. VDY(T) contains a copy of the RuBisCo cbbM gene, which was expressed under autotrophic but not heterotrophic conditions. DNA-DNA hybridization with strain WD confirmed VDY(T) as a separate species (46.2% identity), and the name Magnetospirillum bellicus sp. nov. (DSM 21662, ATCC BAA-1730) is proposed. C1 [Thrash, J. Cameron; Ahmadi, Sarir; Coates, John D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Torok, Tamas; Coates, John D.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Coates, JD (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM jdcoates@berkeley.edu FU U.S. Department of Defense [DACA72-00-C-0016] FX Support to J.D.C. for this research was from grant DACA72-00-C-0016 from the U.S. Department of Defense SERDP program. NR 45 TC 20 Z9 21 U1 4 U2 15 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2010 VL 76 IS 14 BP 4730 EP 4737 DI 10.1128/AEM.00015-10 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 621UX UT WOS:000279611500017 PM 20495050 ER PT J AU Durso, LM Harhay, GP Smith, TPL Bono, JL DeSantis, TZ Harhay, DM Andersen, GL Keen, JE Laegreid, WW Clawson, ML AF Durso, Lisa M. Harhay, Gregory P. Smith, Timothy P. L. Bono, James L. DeSantis, Todd Z. Harhay, Dayna M. Andersen, Gary L. Keen, James E. Laegreid, William W. Clawson, Michael L. TI Animal-to-Animal Variation in Fecal Microbial Diversity among Beef Cattle SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RIBOSOMAL-RNA SEQUENCES; SPECIES RICHNESS; PCR; TAXONOMY; PROGRAM; FLORA AB The intestinal microbiota of beef cattle are important for animal health, food safety, and methane emissions. This full-length sequencing survey of 11,171 16S rRNA genes reveals animal-to-animal variation in communities that cannot be attributed to breed, gender, diet, age, or weather. Beef communities differ from those of dairy. Core bovine taxa are identified. C1 [Durso, Lisa M.; Harhay, Gregory P.; Smith, Timothy P. L.; Bono, James L.; Harhay, Dayna M.; Keen, James E.; Laegreid, William W.; Clawson, Michael L.] ARS, USDA, US Meat Anim Res Ctr, Clay Ctr, NE 68933 USA. [DeSantis, Todd Z.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. RP Durso, LM (reprint author), ARS, USDA, ANRU, Room 307,Biochem Hall,UNL E Campus, Lincoln, NE 68583 USA. EM lisa.durso@ars.usda.gov RI Andersen, Gary/G-2792-2015; OI Andersen, Gary/0000-0002-1618-9827; Clawson, Michael/0000-0002-3355-5390 FU USDA, ARS [108] FX Support for this study was provided by the USDA, ARS, National Program 108. NR 19 TC 56 Z9 61 U1 3 U2 28 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2010 VL 76 IS 14 BP 4858 EP 4862 DI 10.1128/AEM.00207-10 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 621UX UT WOS:000279611500033 PM 20472731 ER PT J AU Liu, WJ Zhang, XZ Zhang, ZM Zhang, YHP AF Liu, Wenjin Zhang, Xiao-Zhou Zhang, Zuoming Zhang, Y. -H. Percival TI Engineering of Clostridium phytofermentans Endoglucanase Cel5A for Improved Thermostability SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CELLULOSE-BINDING DOMAINS; TRICHODERMA-REESEI; PROCESSIVE ENDOGLUCANASE; CRYSTALLINE CELLULOSE; ENZYMATIC-HYDROLYSIS; SURFACE DISPLAY; LIGNOCELLULOSE; CELLULOVORANS; ADSORPTION; EVOLUTION AB A family 5 glycoside hydrolase from Clostridium phytofermentans was cloned and engineered through a cellulase cell surface display system in Escherichia coli. The presence of cell surface anchoring, a cellulose binding module, or a His tag greatly influenced the activities of wild-type and mutant enzymes on soluble and solid cellulosic substrates, suggesting the high complexity of cellulase engineering. The best mutant had 92%, 36%, and 46% longer half-lives at 60 degrees C on carboxymethyl cellulose, regenerated amorphous cellulose, and Avicel, respectively. C1 [Liu, Wenjin; Zhang, Xiao-Zhou; Zhang, Zuoming; Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Zuoming] Jilin Univ, Minist Educ, Key Lab Mol Enzymol & Engn, Changchun 130023, Peoples R China. [Zhang, Y. -H. Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] BESC, Dept Energy, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI ZHANG, XIAOZHOU/A-2706-2009 FU DOE BioEnergy Science Center (BESC); USDA Bioprocessing and Biodesign Center; DuPont Young Professor Award; China Scholar Council FX This work was supported mainly by the DOE BioEnergy Science Center (BESC) and partially by the USDA Bioprocessing and Biodesign Center and DuPont Young Professor Award to Y.-H.P. Zhang. Z. Zhang was partially supported by the China Scholar Council. NR 38 TC 40 Z9 42 U1 0 U2 20 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD JUL PY 2010 VL 76 IS 14 BP 4914 EP 4917 DI 10.1128/AEM.00958-10 PG 4 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 621UX UT WOS:000279611500045 PM 20511418 ER PT J AU Fox, JB Ambuken, PV Stretz, HA Peascoe, RA Payzant, EA AF Fox, James B. Ambuken, Preejith V. Stretz, Holly A. Peascoe, Roberta A. Payzant, E. Andrew TI Organo-montmorillonite barrier layers formed by combustion: Nanostructure and permeability SO APPLIED CLAY SCIENCE LA English DT Article DE Montmorillonite; High temperature; X-ray diffraction; Permeability; Organo-montmorillonite ID SILICATE NANOCOMPOSITES; THERMAL-DEGRADATION; STRUCTURAL-CHANGES; POLYMER; FLAMMABILITY; POLYPROPYLENE; MIGRATION; POLYAMIDE-6; MORPHOLOGY; MECHANISM AB Self-assembly of nanoparticles into barrier layers has been the most cited theoretical explanation for the significant reduction in flammability often noted for polymer/montmorillonite nanocomposites. Both mass and heat transport reductions have been credited for such improvements, and in most cases a coupled mechanism is expected. To provide validation for early transport models, the structure of model barrier layers was investigated, these being produced by combustion of a homologous series of organo-montmorillonites. One model barrier layer was subjected to novel permeability analysis to obtain a flux, which will be useful in the evaluation of transport models. The effects of compatibilizer structure, temperature and pressure on barrier layer structure were examined. XRD versus TGA results suggest that the onset of chemical degradation and the onset of physical collapse on heating are correlated. Addition of pressure as low as 7 kPa affected the onset of structural collapse: for the case of a "two-tailed" dimethyl dialkyl quaternary ammonium ion compatibilized organo-montmorillonite this meant expansion of the basal spacing rather than the expected densification. Permeability of Ar through the ash was found to be a sensitive measure of structural change of high aspect ratio MMT nanoparticles. Actual fluxes ranged from 0.139 to 0.151 mol (m(2) s)(-1) for 0.5 mm thick samples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Fox, James B.; Ambuken, Preejith V.; Stretz, Holly A.] Tennessee Technol Univ, Dept Chem Engn, Cookeville, TN 38505 USA. [Peascoe, Roberta A.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Payzant, E. Andrew] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Stretz, HA (reprint author), Tennessee Technol Univ, Dept Chem Engn, 1020 Stadium Dr,Box 5013, Cookeville, TN 38505 USA. EM hstretz@tntech.edu; meisnerra@ornl.gov; payzanta@ornl.gov RI Payzant, Edward/B-5449-2009 OI Payzant, Edward/0000-0002-3447-2060 FU National Institute of Standards and Technologies [70NANB7H6006]; Tennessee Technological University Center for Energy Systems Research; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX Funding for this project was provided by the National Institute of Standards and Technologies Grant Number 70NANB7H6006 and the Tennessee Technological University Center for Energy Systems Research. We thank Southern Clay Products for donating materials for this project. The real-time high temperature X-ray diffraction measurements were conducted at the Oak Ridge National Laboratory's High Temperature Materials Laboratory which is sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Other X-ray diffraction measurements were conducted courtesy of the Tennessee Technological University Center for Manufacturing Research. NR 41 TC 5 Z9 5 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 J9 APPL CLAY SCI JI Appl. Clay Sci. PD JUL PY 2010 VL 49 IS 3 BP 213 EP 223 DI 10.1016/j.clay.2010.05.009 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA 638IG UT WOS:000280886500019 ER PT J AU Aithal, SM AF Aithal, S. M. TI Modeling of NOx formation in diesel engines using finite-rate chemical kinetics SO APPLIED ENERGY LA English DT Article DE Finite-rate kinetics; NOx; EGR; Diesel engines AB A fast, physics-based model to predict the temporal evolution of NOx in diesel engines is investigated using finite-rate chemical kinetics. The temporal variation of temperature required for the computation of the reaction rate constants is obtained from the solution of the energy equation. NOx formation is modeled by using a six step mechanism with eight species instead of the traditional equilibrium calculations based on the Zeldovich mechanism. Fuel combustion chemistry is modeled by a single-step global reaction. Effects of various stages of combustion on NOx formation is included using a phenomenological burning rate model. The effects of composition and temperature on the thermophysical properties of the working fluid are included in the computations. Comparison with measured single-cylinder engine-out NO shows good agreement with experimental data. The validated model is then used to demonstrate the impact of various operating parameters such as injection timing and EGR on engine-out NOx. This fast, robust model has potential applications in model-based real-time control strategies seeking to reduce feed gas NOx emissions from diesel engines. (C) 2010 Elsevier Ltd. All rights reserved. C1 Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Aithal, SM (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aithal@mcs.anl.gov NR 19 TC 18 Z9 18 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD JUL PY 2010 VL 87 IS 7 BP 2256 EP 2265 DI 10.1016/j.apenergy.2010.01.011 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 609RP UT WOS:000278675100018 ER PT J AU Lange, K Rowe, RK Jamieson, H Flemming, RL Lanzirotti, A AF Lange, K. Rowe, R. K. Jamieson, H. Flemming, R. L. Lanzirotti, A. TI Characterization of geosynthetic clay liner bentonite using micro-analytical methods SO APPLIED GEOCHEMISTRY LA English DT Article ID X-RAY-DIFFRACTION; ABSORPTION SPECTROSCOPY; HYDRAULIC CONDUCTIVITY; SEQUENTIAL EXTRACTION; COMPOSITE LINER; TRACE-METALS; SPECIATION; SURFACE; SOILS; MONTMORILLONITE AB In barrier design, familiarity of the structure and composition of the soil material at the micron scale is necessary for delineating the retention mechanisms of introduced metals, such as the formation of new mineral phases. In this study, the mineralogical and chemical makeup of the bentonite from a geosynthetic clay liner (GCL) was extensively characterized using a combination of conventional benchtop X-ray diffraction (XRD) and micro X-ray diffraction (mu XRD) with synchrotron-generated micro X-ray fluorescence (mu XRF) elemental mapping and mu XRD (S-mu XRD). These methods allow for the non-destructive, in situ investigation of a sample, with pm spatial resolution. Synchrotron-based hard X-ray microprobes are specifically advantageous to the study of trace metals due to higher spatial resolution (<10 mu m) and higher analytical sensitivity (femtogram detection) than is possible using normal laboratory-based instruments. Minerals comprising less than 5% of the total bentonite sample such as gypsum, goethite and pyrite were identified that were not accessible by other conventional methods for the same GCL bentonite. Two dimensional General Area Diffraction Detector System (GADDS) images proved to be particularly advantageous in differentiating between the microcrystalline clay, which appeared as homogeneous Debye rings, and the 'spotty' or 'grainy' appearance of primary, more-coarsely-crystalline, accessory minerals. For S-mu XRD, the tunability of the synchrotron X-rays allowed for efficient distinction of both clay minerals at low scattering angles and in identifying varying Fe oxide minerals at higher angles. GCL samples permeated with metal-bearing mining solutions were also examined in order to consider how mechanisms of metal attenuation may be identified using the same techniques. In addition to the cation exchange capacity from the montmorillonite clay, tests showed how minerals comprising only 1-2% of the bentonite such as goethite could potentially play a significant role in sequestering a range of metals, specifically Ni, Zn and Cu. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Lange, K.; Rowe, R. K.; Jamieson, H.] Queens Univ, GeoEngn Ctr Queens RMC, Kingston, ON K7L 3N6, Canada. [Flemming, R. L.] Univ Western Ontario, Dept Earth Sci, London, ON N6A 5B7, Canada. [Lanzirotti, A.] Univ Chicago, Ctr Adv Radiat Sources, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lange, K (reprint author), Queens Univ, GeoEngn Ctr Queens RMC, Kingston, ON K7L 3N6, Canada. EM karina.lange@cnsc-ccsn.gc.ca OI Rowe, R. Kerry/0000-0002-1009-0447 FU Department of Energy (DOE) - Geosciences [DE-FG02-92ER14244]; DOE - Office of Biological and Environmental Research, Environmental Remediation Sciences Div. [DE-FC09-96-SR18546]; DOE [DE-AC02-98CH10886] FX Micro-analytical work was conducted at the Geology Department at the University of Western Ontario and at the National Synchrotron Light Source; the authors would like to thank the institution and staff at these facilities for their support in analyzing the data. The support from Stephan Walker and Lori Wrye collecting and analyzing data at NSLS is also gratefully acknowledged. The authors would like to thank James Talbot for performing the semi-quantitative XRD analysis of the bentonite. Part of this work was performed at Beamline X26A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. X26A is supported by the Department of Energy (DOE) - Geosciences (DE-FG02-92ER14244 to The University of Chicago - CARS) and DOE - Office of Biological and Environmental Research, Environmental Remediation Sciences Div. (DE-FC09-96-SR18546 to the University of Kentucky). Use of the NSLS was supported by DOE under Contract No. DE-AC02-98CH10886. NR 50 TC 5 Z9 5 U1 0 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD JUL PY 2010 VL 25 IS 7 BP 1056 EP 1069 DI 10.1016/j.apgeochem.2010.04.011 PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 614XU UT WOS:000279093900012 ER PT J AU Sheen, D McMakin, D Hall, T AF Sheen, David McMakin, Douglas Hall, Thomas TI Near-field three-dimensional radar imaging techniques and applications SO APPLIED OPTICS LA English DT Article ID SYNTHETIC-APERTURE RADAR; CONCEALED WEAPON DETECTION; HOLOGRAPHY; INVERSION; SYSTEM AB Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results. (C) 2010 Optical Society of America C1 [Sheen, David; McMakin, Douglas; Hall, Thomas] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sheen, D (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM david.sheen@pnl.gov FU U.S. Department of Energy [DE-AC06-76RL01830] FX The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy and the work described in this paper was conducted under contract DE-AC06-76RL01830 with the U.S. Department of Energy (DOE). NR 29 TC 49 Z9 53 U1 4 U2 19 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD JUL 1 PY 2010 VL 49 IS 19 BP E83 EP E93 DI 10.1364/AO.49.000E83 PG 11 WC Optics SC Optics GA 619BO UT WOS:000279403400011 PM 20648125 ER PT J AU Allain, JP Nieto-Perez, M Hendricks, MR Zink, P Metzmacher, C Bergmann, K AF Allain, J. P. Nieto-Perez, M. Hendricks, M. R. Zink, P. Metzmacher, C. Bergmann, K. TI Energetic Sn+ irradiation effects on ruthenium mirror specular reflectivity at 13.5-nm SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID HIGH FLUENCE; LITHOGRAPHY; TARGETS; STATE; IONS AB Sn+ irradiations of Ru single-layer mirrors (SLM) simulate conditions of fast-Sn ion exposure in high-intensity 13.5 nm lithography lamps. Ultra-shallow implantation of Sn is measured down to 1-1.5 nm depth for energies between 1-1.3 keV at near-normal incident angles on Ru mirror surfaces. The Sn surface concentration reaches an equilibrium of 55-58% Sn/Ru for near-normal incidence and 36-38% for grazing incidence at approximately 63 degrees with respect to the mirror surface normal. The relative reflectivity at 13.5 nm at 15-degree incidence was measured in-situ during Sn+ irradiation. For near-normal Sn+ exposures the reflectivity is measured to decrease between 4-7% for a total Sn fluence of 10(16) cm(-2). Theoretical Fresnel reflectivity modeling shows for the same fluence assuming all Sn atoms form a layer on the Ru mirror surface, that the reflectivity loss should be between 15-18% for this dose. Ex-situ absolute 13.5 nm reflectivity data corroborate these results, indicating that implanted energetic Sn atoms mixed with Ru reflect 13.5-nm light differently than theoretically predicted by Fresnel reflectivity models. C1 [Allain, J. P.] Purdue Univ, W Lafayette, IN 47907 USA. [Nieto-Perez, M.] CICATA IPN, Queretaro 76090, Qro, Mexico. [Hendricks, M. R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Zink, P.] Philips Extreme UV, D-52074 Aachen, Germany. [Metzmacher, C.] Philips Res Labs, D-52066 Aachen, Germany. [Bergmann, K.] Fraunhofer Inst Laser Technol, D-52074 Aachen, Germany. RP Allain, JP (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM allain@purdue.edu OI Nieto-Perez, Martin/0000-0001-6600-9786; Allain, Jean Paul/0000-0003-1348-262X FU Bryan Rice; Intel Corporation FX We would like to thank Bryan Rice and Robert Bristol of Intel Corporation for overall guidance and support in nano-lithography manufacturing implications; V. Titov for assistance with the setup of experiments; the Department of Energy SULI (Summer Undergraduate Laboratory Internship) students C. Chrobak, E. Hinson and D. Rokusek, for assistance with experiments. We would like to thank Al Macrander, C. Liu and Ray Conley of the Optics Fabrication and Metrology Lab of Argonne's Advanced Photon Source (APS) for fabrication and XRR characterization of Ru, Rh and Pd single-layer mirrors. NR 18 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD JUL PY 2010 VL 100 IS 1 BP 231 EP 237 DI 10.1007/s00339-010-5581-8 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 615IH UT WOS:000279127700034 ER PT J AU Bagnoud, V Aurand, B Blazevic, A Borneis, S Bruske, C Ecker, B Eisenbarth, U Fils, J Frank, A Gaul, E Goette, S Haefner, C Hahn, T Harres, K Heuck, HM Hochhaus, D Hoffmann, DHH Javorkova, D Kluge, HJ Kuehl, T Kunzer, S Kreutz, M Merz-Mantwill, T Neumayer, P Onkels, E Reemts, D Rosmej, O Roth, M Stoehlker, T Tauschwitz, A Zielbauer, B Zimmer, D Witte, K AF Bagnoud, V. Aurand, B. Blazevic, A. Borneis, S. Bruske, C. Ecker, B. Eisenbarth, U. Fils, J. Frank, A. Gaul, E. Goette, S. Haefner, C. Hahn, T. Harres, K. Heuck, H. -M. Hochhaus, D. Hoffmann, D. H. H. Javorkova, D. Kluge, H. -J. Kuehl, T. Kunzer, S. Kreutz, M. Merz-Mantwill, T. Neumayer, P. Onkels, E. Reemts, D. Rosmej, O. Roth, M. Stoehlker, T. Tauschwitz, A. Zielbauer, B. Zimmer, D. Witte, K. TI Commissioning and early experiments of the PHELIX facility SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID INCIDENCE PUMPING GEOMETRY; X-RAY LASERS; HYDROGEN PLASMA; OPTICAL PULSES; HEAVY-IONS; AMPLIFICATION; ACCELERATOR; PHYSICS; SYSTEM; BEAMS AB At the Helmholtz center GSI, PHELIX (Petawatt High Energy Laser for heavy Ion eXperiments) has been commissioned for operation in stand-alone mode and, in combination with ions accelerated up to an energy of 13 MeV/u by the heavy ion accelerator UNILAC. The combination of PHELIX with the heavy-ion beams available at GSI enables a large variety of unique experiments. Novel research opportunities are spanning from the study of ion-matter interaction, through challenging new experiments in atomic physics, nuclear physics, and astrophysics, into the field of relativistic plasma physics. C1 [Bagnoud, V.; Aurand, B.; Blazevic, A.; Borneis, S.; Bruske, C.; Ecker, B.; Eisenbarth, U.; Fils, J.; Goette, S.; Hahn, T.; Hochhaus, D.; Kluge, H. -J.; Kuehl, T.; Kunzer, S.; Kreutz, M.; Merz-Mantwill, T.; Neumayer, P.; Onkels, E.; Reemts, D.; Rosmej, O.; Stoehlker, T.; Tauschwitz, A.; Zielbauer, B.; Zimmer, D.; Witte, K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Bagnoud, V.; Blazevic, A.; Ecker, B.; Fils, J.; Stoehlker, T.] Helmholtz Inst Jena, D-07745 Jena, Germany. [Aurand, B.; Ecker, B.; Kuehl, T.; Zimmer, D.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany. [Frank, A.; Harres, K.; Hoffmann, D. H. H.; Roth, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Gaul, E.] Univ Texas Austin, Austin, TX 78712 USA. [Haefner, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Heuck, H. -M.] Leica Microsyst CMS GmbH, D-35578 Wetzlar, Germany. [Hochhaus, D.; Neumayer, P.] Goethe Univ Frankfurt, D-60325 Frankfurt, Germany. [Javorkova, D.] Univ Munster, Inst Phys, D-48149 Munster, Germany. [Kluge, H. -J.; Stoehlker, T.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Zimmer, D.] Univ Paris 11, LASERIX CLUPS, LIXAM UMR 8624, F-91405 Orsay, France. RP Bagnoud, V (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, Planckstr 1, D-64291 Darmstadt, Germany. EM v.bagnoud@gsi.de RI Frank, Alexander/K-3332-2012; Kuhl, Thomas/C-2243-2012; Bagnoud, Vincent/K-4266-2015 OI Kuhl, Thomas/0000-0001-6306-4579; Bagnoud, Vincent/0000-0003-1512-4578 FU European International Infrastructure Initiative Laserlab Europe FX The successful completion of PHELIX and quality of operation depended on a number of very different valuable contributions. Basis for the whole project was the endowment of expensive large diameter laser components from the former Nova and Phebus systems by DOE and CEA. In this matter, our sincere thanks go to J. Caird, M. Campbell, R. McKnight, G. Logan, and M. Perry, and A. Bettinger, M. Decroisette and F. Kovacs. We also thank D. Habs (LMU Munchen), F. Krausz (MPQ Munchen), W. Sandner (MBI Berlin) and R. Sauerbrey (FZD Rossendorf) for their contributions. Important laser developments and access of European researchers was supported by the European International Infrastructure Initiative Laserlab Europe. NR 32 TC 77 Z9 78 U1 1 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD JUL PY 2010 VL 100 IS 1 SI SI BP 137 EP 150 DI 10.1007/s00340-009-3855-7 PG 14 WC Optics; Physics, Applied SC Optics; Physics GA 631UT UT WOS:000280376100015 ER PT J AU Wessen, E Nyberg, K Jansson, JK Hallin, S AF Wessen, Ella Nyberg, Karin Jansson, Janet K. Hallin, Sara TI Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management SO APPLIED SOIL ECOLOGY LA English DT Article DE Ammonia oxidation; AOB; AOA; amoA gene; Agricultural soil ID 2 AGRICULTURAL SOILS; REAL-TIME PCR; MICROBIAL COMMUNITY; ABUNDANCE; DIVERSITY; OXIDATION; NITRIFICATION; CRENARCHAEOTA; RHIZOSPHERE; ENVIRONMENT AB Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) co-exist in soil, but their relative distribution may vary depending on the environmental conditions. Effects of changes in soil organic matter and nutrient content on the AOB and AOA are poorly understood. Our aim was to compare effects of long-term soil organic matter depletion and amendments with labile (straw) and more recalcitrant (peat) organic matter, with and without easily plant-available nitrogen, on the activities, abundances and community structures of AOB and AOA. Soil was sampled from a long-term field site in Sweden that was established in 1956. The potential ammonia oxidation rates, the AOB and AOA amoA gene abundances and the community structures of both groups based on T-RFLP of amoA genes were determined. Straw amendment during 50 years had not altered any of the measured soil parameters, while the addition of peat resulted in a significant increase of soil organic carbon as well as a decrease in pH. Nitrogen fertilization alone resulted in a small decrease in soil pH, organic carbon and total nitrogen, but an increase in primary production. Type and amount of organic matter had an impact on the AOB and AOA community structures and the AOA abundance. Our findings confirmed that AOA are abundant in soil, but showed that under certain conditions the AOB dominate, suggesting niche differentiation between the two groups at the field site. The large differences in potential rates between treatments correlated to the AOA community size, indicating that they were functionally more important in the nitrification process than the AOB. The AOA abundance was positively related to addition of labile organic carbon, which supports the idea that AOA could have alternative growth strategies using organic carbon. The AOB community size varied little in contrast to that of the AOA. This indicates that the bacterial ammonia oxidizers as a group have a greater ecophysiological diversity and potentially cover a broader range of habitats. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wessen, Ella; Hallin, Sara] Swedish Univ Agr Sci, Dept Microbiol, S-75007 Uppsala, Sweden. [Nyberg, Karin] Natl Vet Inst, S-75007 Uppsala, Sweden. [Jansson, Janet K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wessen, E (reprint author), Box 7025, S-75007 Uppsala, Sweden. EM Ella.Wessen@mikrob.slu.se RI Hallin, Sara/H-4648-2012 OI Hallin, Sara/0000-0002-9069-9024 FU Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning; FORMAS; Uppsala Microbiomics Center; U. S. Department of Energy [DE-AC02-05CH11231] FX We thank J. Jernberg for technical assistance and the Department of Soil & Environment, SLU, for managing the Ultuna field experiment. This work was supported by the Swedish Research Council for the Environment, Agricultural Sciences and Spatial Planning, FORMAS, which finance the Uppsala Microbiomics Center (www.microbiomics.se) and in part by the U. S. Department of Energy Contact DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. NR 43 TC 78 Z9 89 U1 5 U2 80 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0929-1393 J9 APPL SOIL ECOL JI Appl. Soil Ecol. PD JUL PY 2010 VL 45 IS 3 BP 193 EP 200 DI 10.1016/j.apsoil.2010.04.003 PG 8 WC Soil Science SC Agriculture GA 633XX UT WOS:000280541700011 ER PT J AU Huang, CF Hsing, TL Cressie, N Ganguly, AR Protopopescu, VA Rao, NS AF Huang, Chunfeng Hsing, Tailen Cressie, Noel Ganguly, Auroop R. Protopopescu, Vladimir A. Rao, Nageswara S. TI Bayesian source detection and parameter estimation of a plume model based on sensor network measurements SO APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY LA English DT Editorial Material DE Bayesian statistics; Markov chain Monte Carlo; partial differential equation; plume model; sensor networks ID RADIOACTIVE SOURCES; TRACKING AB We consider a network of sensors that measure the intensities of a complex plume composed of multiple absorption-diffusion source components. We address the problem of estimating the plume parameters, including the spatial and temporal source origins and the parameters of the diffusion model for each source, based on a sequence of sensor measurements. The approach not only leads to multiple-source detection, but also the characterization and prediction of the combined plume in space and time. The parameter estimation is formulated as a Bayesian inference problem, and the solution is obtained using a Markov chain Monte Carlo algorithm. The approach is applied to a simulation study, which shows that an accurate parameter estimation is achievable. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 [Huang, Chunfeng] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA. [Hsing, Tailen] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. [Cressie, Noel] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA. [Ganguly, Auroop R.; Protopopescu, Vladimir A.; Rao, Nageswara S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Huang, CF (reprint author), Indiana Univ, Dept Stat, Bloomington, IN 47405 USA. EM huang48@indiana.edu RI Cressie, Noel/B-8858-2009; OI Cressie, Noel/0000-0002-0274-8050; Rao, Nageswara/0000-0002-3408-5941 NR 28 TC 4 Z9 5 U1 1 U2 9 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1524-1904 J9 APPL STOCH MODEL BUS JI Appl. Stoch. Models. Bus. Ind. PD JUL-AUG PY 2010 VL 26 IS 4 BP 331 EP 348 DI 10.1002/asmb.859 PG 18 WC Operations Research & Management Science; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Operations Research & Management Science; Mathematics GA 646XK UT WOS:000281578000001 ER PT J AU Huang, CF Hsing, TL Cressie, N Ganguly, AR Protopopescu, VA Rao, NS AF Huang, Chunfeng Hsing, Tailen Cressie, Noel Ganguly, Auroop R. Protopopescu, Vladimir A. Rao, Nageswara S. TI 'Bayesian source detection and parameter estimation of a plume model based on sensor network measurements' by C. Huang et al.: Rejoinder SO APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY LA English DT Editorial Material C1 [Huang, Chunfeng] Indiana Univ, Dept Stat, Bloomington, IN 47405 USA. [Hsing, Tailen] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA. [Cressie, Noel] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA. [Ganguly, Auroop R.; Protopopescu, Vladimir A.; Rao, Nageswara S.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Huang, CF (reprint author), Indiana Univ, Dept Stat, Bloomington, IN 47405 USA. RI Cressie, Noel/B-8858-2009; OI Cressie, Noel/0000-0002-0274-8050; Rao, Nageswara/0000-0002-3408-5941 NR 2 TC 0 Z9 0 U1 0 U2 4 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1524-1904 J9 APPL STOCH MODEL BUS JI Appl. Stoch. Models. Bus. Ind. PD JUL-AUG PY 2010 VL 26 IS 4 BP 360 EP 361 DI 10.1002/asmb.858 PG 2 WC Operations Research & Management Science; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Operations Research & Management Science; Mathematics GA 646XK UT WOS:000281578000005 ER PT J AU Dieckmann, J Brodrick, J AF Dieckmann, John Brodrick, James TI VFDs for Chiller Auxiliaries SO ASHRAE JOURNAL LA English DT Article C1 [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. NR 6 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD JUL PY 2010 VL 52 IS 7 BP 96 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 629TG UT WOS:000280222000018 ER PT J AU Becker, RH Helfand, DJ White, RL Proctor, DD AF Becker, Robert H. Helfand, David J. White, Richard L. Proctor, Deanne D. TI VARIABLE RADIO SOURCES IN THE GALACTIC PLANE SO ASTRONOMICAL JOURNAL LA English DT Article DE catalogs; Galaxy: general; H II regions; ISM: supernova remnants; radio continuum: ISM; surveys ID SYNOPTIC SURVEY TELESCOPE; 1ST SURVEY; CATALOG; TRANSIENT; EMISSION; VARIABILITY; MAGNETAR; PROJECT; STARS; SKY AB Using three epochs of Very Large Array observations of the Galactic plane in the first quadrant taken similar to 15 years apart, we have conducted a search for a population of variable Galactic radio emitters in the flux density range 1-100 mJy at 6 cm. We find 39 variable sources in a total survey area of 23.2 deg(2). Correcting for various selection effects and for the extragalactic variable population of active galactic nuclei, we conclude there are similar to 1.6 deg(-2) Galactic sources which vary by more than 50% on a time scale of years (or shorter). We show that these sources are much more highly variable than extragalactic objects; more than 50% show variability by a factor >2 compared to <10% for extragalactic objects in the same flux density range. We also show that the fraction of variable sources increases toward the Galactic center (another indication that this is a Galactic population), and that the spectral indices of many of these sources are flat or inverted. A small number of the variables are coincident with mid-IR sources and two are coincident with X-ray emitters, but most have no known counterparts at other wavelengths. Intriguingly, one lies at the center of a supernova remnant, while another appears to be a very compact planetary nebula; several are likely to represent activity associated with star formation regions. We discuss the possible source classes which could contribute to the variable cohort and follow-up observations which could clarify the nature of these sources. C1 [Becker, Robert H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Becker, Robert H.; Proctor, Deanne D.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA USA. [Helfand, David J.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Helfand, David J.] Quest Univ, Squamish, BC V8B 0N8, Canada. [White, Richard L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Becker, RH (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM bob@igpp.ucllnl.org RI White, Richard/A-8143-2012 FU National Science Foundation [AST-05-07598, AST-02-6-55]; US Department of Energy by Lawrence Livermore National Laboratory [W-7405-ENG-48]; NASA [NAG5-13062]; Space Telescope Science Institute [NAS5-26555] FX R. H. B. and D.J.H. acknowledge the support of the National Science Foundation under grants AST-05-07598 and AST-02-6-55. R.H.B.'s work was supported in part under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48. D.J.H. was also supported in this work by NASA grant NAG5-13062. R.L.W. acknowledges the support of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS5-26555. The first three authors are grateful for the hospitality of Quest University Canada (http://www.questu.ca), an innovative new undergraduate university in British Columbia, where this manuscript was completed. NR 37 TC 25 Z9 26 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2010 VL 140 IS 1 BP 157 EP 166 DI 10.1088/0004-6256/140/1/157 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 609XK UT WOS:000278691700013 ER PT J AU Cenko, SB Butler, NR Ofek, EO Perley, DA Morgan, AN Frail, DA Gorosabel, J Bloom, JS Castro-Tirado, AJ Cepa, J Chandra, P Postigo, AD Filippenko, AV Klein, CR Kulkarni, SR Miller, AA Nugent, PE Starr, DL AF Cenko, S. B. Butler, N. R. Ofek, E. O. Perley, D. A. Morgan, A. N. Frail, D. A. Gorosabel, J. Bloom, J. S. Castro-Tirado, A. J. Cepa, J. Chandra, P. Postigo, A. de Ugarte Filippenko, A. V. Klein, C. R. Kulkarni, S. R. Miller, A. A. Nugent, P. E. Starr, D. L. TI UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST SO ASTRONOMICAL JOURNAL LA English DT Article DE gamma-ray burst: general; stars: neutron ID HOST GALAXIES; GIANT FLARE; STAR-FORMATION; SKY SURVEY; REPEATER SGR-0526-66; LUMINOSITY FUNCTION; SUPERNOVA REMNANT; GALACTIC MAGNETAR; NEUTRON-STARS; SGR 1900+14 AB We present broadband (gamma-ray, X-ray, near-infrared, optical, and radio) observations of the Swift gamma-ray burst (GRB) 090709A and its afterglow in an effort to ascertain the origin of this high-energy transient. Previous analyses suggested that GRB 090709A exhibited quasi-periodic oscillations with a period of 8.06 s, a trait unknown in long-duration GRBs but typical of flares from soft gamma-ray repeaters. When properly accounting for the underlying shape of the power-density spectrum of GRB 090709A, we find no conclusive (>3 sigma) evidence for the reported periodicity. In conjunction with the location of the transient (far from the Galactic plane and absent any nearby host galaxy in the local universe) and the evidence for extinction in excess of the Galactic value, we consider a magnetar origin relatively unlikely. A long-duration GRB, however, can account for the majority of the observed properties of this source. GRB 090709A is distinguished from other long-duration GRBs primarily by the large amount of obscuration from its host galaxy (A(K,obs) greater than or similar to 2 mag). C1 [Cenko, S. B.; Butler, N. R.; Perley, D. A.; Morgan, A. N.; Bloom, J. S.; Filippenko, A. V.; Klein, C. R.; Miller, A. A.; Starr, D. L.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Ofek, E. O.; Kulkarni, S. R.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Frail, D. A.] Natl Radio Astron Observ, Socorro, NM 87801 USA. [Gorosabel, J.; Castro-Tirado, A. J.] IAA CSIC, E-18080 Granada, Spain. [Cepa, J.] Inst Astrofis Canarias, San Cristobal la Laguna 38205, Spain. [Chandra, P.] Royal Mil Coll Canada, Dept Phys, Kingston, ON, Canada. [Postigo, A. de Ugarte] INAF Osservatorio Astron Brera, I-23807 Merate, LC, Italy. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Starr, D. L.] Las Cumbres Observ Global Telescope Network Inc, Goleta, CA 93117 USA. RP Cenko, SB (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. OI Castro-Tirado, A. J./0000-0003-2999-3563; de Ugarte Postigo, Antonio/0000-0001-7717-5085 FU Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund; NASA [NNX09AL08G, NNG06GH61G, NNG06GH50G, NNX08AN84G]; National Science Foundation (NSF) [AST0908886]; Spanish programs [ESP2005-07714-C03-03, AYA2004-01515, AYA2007-67627-C03-03, AYA2008-03467/ESP, AYA2009-14000-C03-01]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-06ER06-04]; Harvard University; University of Virginia; SAO; UC Berkeley; W. M. Keck Foundation FX We thank Eliot Quataert and Tony Piro for valuable discussions, Cullen Blake and Bethany Cobb for their assistance in automating and operating the PAIRITEL telescope, C. Alvarez for his help with the GTC observations, G. Bergond for his support during the 3.5 m CAHA observations, Mansi Kasliwal and Fiona Harrison for assistance in operating P60, and Andy Boden for acquiring the Keck/LGS data. S. B. C. and A. V. F. are grateful for generous support from Gary and Cynthia Bengier, the Richard and Rhoda Goldman Fund, NASA/Swift Guest Investigator grant NNX09AL08G, and National Science Foundation (NSF) grant AST0908886. A.N.M. acknowledges support from an NSF Graduate Research Fellowship. The research of J.G. and A.J.C.-T. is supported by the Spanish programs ESP2005-07714-C03-03, AYA2004-01515, AYA2007-67627-C03-03, AYA2008-03467/ESP, and AYA2009-14000-C03-01. The National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, provided staff, computational resources and data storage for this project. P.E.N., A. V. F., and J.S.B. acknowledge support from the US Department of Energy Scientific Discovery through Advanced Computing program under contract DE-FG02-06ER06-04. P60 operations are funded in part by NASA through the Swift Guest Investigator Program (grant no. NNG06GH61G). This publication has made use of data obtained from the Swift interface of the High-Energy Astrophysics Archive (HEASARC), provided by NASA's Goddard Space Flight Center. PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and was made possible by a grant from the Harvard University Milton Fund, a camera loan from the University of Virginia, and continued support of the SAO and UC Berkeley. The PAIRITEL project and those working on PAIRITEL data are further supported by NASA/Swift Guest Investigator grants NNG06GH50G and NNX08AN84G. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in the island of La Palma. Based in part on observations collected at the Centro Astronomico Hispano Aleman (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut fur Astronomie and the Instituto de Astrofisica de Andalucia (CSIC). We thank Calar Alto Observatory for allocation of Director's Discretionary Time. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community; we are most fortunate to have the opportunity to conduct observations from this mountain. NR 125 TC 21 Z9 21 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD JUL PY 2010 VL 140 IS 1 BP 224 EP 234 DI 10.1088/0004-6256/140/1/224 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 609XK UT WOS:000278691700021 ER PT J AU Fouque, P Heyrovsky, D Dong, S Gould, A Udalski, A Albrow, MD Batista, V Beaulieu, JP Bennett, DP Bond, IA Bramich, DM Novati, SC Cassan, A Coutures, C Dieters, S Dominik, M Prester, DD Greenhill, J Horne, K Jorgensen, UG Kozlowski, S Kubas, D Lee, CH Marquette, JB Mathiasen, M Menzies, J Monard, LAG Nishiyama, S Papadakis, I Street, R Sumi, T Williams, A Yee, JC Brillant, S Caldwell, JAR Cole, A Cook, KH Donatowicz, J Kains, N Kane, SR Martin, R Pollard, KR Sahu, KC Tsapras, Y Wambsganss, J Zub, M Depoy, DL Gaudi, BS Han, C Lee, CU Park, BG Pogge, RW Kubiak, M Szymanski, MK Pietrzynski, G Soszynski, I Szewczyk, O Ulaczyk, K Wyrzykowski, L Abe, F Fukui, A Furusawa, K Gilmore, AC Hearnshaw, JB Itow, Y Kamiya, K Kilmartin, PM Korpela, AV Lin, W Ling, CH Masuda, K Matsubara, Y Miyake, N Muraki, Y Nagaya, M Ohnishi, K Okumura, T Perrott, Y Rattenbury, NJ Saito, T Sako, T Sato, S Skuljan, L Sullivan, D Sweatman, W Tristram, PJ Yock, PCM Allan, A Bode, MF Burgdorf, MJ Clay, N Fraser, SN Hawkins, E Kerins, E Lister, TA Mottram, CJ Saunders, ES Snodgrass, C Steele, IA Wheatley, PJ Anguita, T Bozza, V Harpsoe, K Hinse, TC Hundertmark, M Kjaergaard, P Liebig, C Mancini, L Masi, G Rahvar, S Ricci, D Scarpetta, G Southworth, J Surdej, J Thone, CC Riffeser, A Seitz, S Bender, R AF Fouque, P. Heyrovsky, D. Dong, S. Gould, A. Udalski, A. Albrow, M. D. Batista, V. Beaulieu, J. -P. Bennett, D. P. Bond, I. A. Bramich, D. M. Novati, S. Calchi Cassan, A. Coutures, C. Dieters, S. Dominik, M. Prester, D. Dominis Greenhill, J. Horne, K. Jorgensen, U. G. Kozlowski, S. Kubas, D. Lee, C. -H. Marquette, J. -B. Mathiasen, M. Menzies, J. Monard, L. A. G. Nishiyama, S. Papadakis, I. Street, R. Sumi, T. Williams, A. Yee, J. C. Brillant, S. Caldwell, J. A. R. Cole, A. Cook, K. H. Donatowicz, J. Kains, N. Kane, S. R. Martin, R. Pollard, K. R. Sahu, K. C. Tsapras, Y. Wambsganss, J. Zub, M. DePoy, D. L. Gaudi, B. S. Han, C. Lee, C. -U. Park, B. -G. Pogge, R. W. Kubiak, M. Szymanski, M. K. Pietrzynski, G. Soszynski, I. Szewczyk, O. Ulaczyk, K. Wyrzykowski, L. Abe, F. Fukui, A. Furusawa, K. Gilmore, A. C. Hearnshaw, J. B. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. V. Lin, W. Ling, C. H. Masuda, K. Matsubara, Y. Miyake, N. Muraki, Y. Nagaya, M. Ohnishi, K. Okumura, T. Perrott, Y. Rattenbury, N. J. Saito, To Sako, T. Sato, S. Skuljan, L. Sullivan, D. Sweatman, W. Tristram, P. J. Yock, P. C. M. Allan, A. Bode, M. F. Burgdorf, M. J. Clay, N. Fraser, S. N. Hawkins, E. Kerins, E. Lister, T. A. Mottram, C. J. Saunders, E. S. Snodgrass, C. Steele, I. A. Wheatley, P. J. Anguita, T. Bozza, V. Harpsoe, K. Hinse, T. C. Hundertmark, M. Kjaergaard, P. Liebig, C. Mancini, L. Masi, G. Rahvar, S. Ricci, D. Scarpetta, G. Southworth, J. Surdej, J. Thone, C. C. Riffeser, A. Seitz, S. Bender, R. CA PLANET Collaboration FUN Collaboration OGLE Collaboration MOA Collaboration RoboNet-II Collaboration MiNDSTEp Consortium WeCAPP Collaboration TI OGLE 2008-BLG-290: an accurate measurement of the limb darkening of a galactic bulge K Giant spatially resolved by microlensing SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE gravitational lensing: micro; techniques: high angular resolution; stars: atmospheres; stars: individual: OGLE 2008-BLG-290 ID SURFACE BRIGHTNESS RELATIONS; DETACHED ECLIPSING BINARIES; INTERSTELLAR EXTINCTION LAW; STELLAR ATMOSPHERE MODELS; DIFFERENCE IMAGE-ANALYSIS; JOVIAN-MASS PLANET; RED CLUMP STARS; EVENT MOA-2007-BLG-192; HIGH-MAGNIFICATION; LIGHT CURVES AB Context. Not only is gravitational microlensing a successful tool for discovering distant exoplanets, but it also enables characterization of the lens and source stars involved in the lensing event. Aims. In high-magnification events, the lens caustic may cross over the source disk, which allows determination of the angular size of the source and measurement of its limb darkening. Methods. When such extended-source effects appear close to maximum magnification, the resulting light curve differs from the characteristic Paczy ' nski point-source curve. The exact shape of the light curve close to the peak depends on the limb darkening of the source. Dense photometric coverage permits measurement of the respective limb-darkening coefficients. Results. In the case of the microlensing event OGLE 2008-BLG-290, the K giant source star reached a peak magnification at about 100. Thirteen different telescopes have covered this event in eight different photometric bands. Subsequent light-curve analysis yielded measurements of linear limb-darkening coefficients of the source in six photometric bands. The best-measured coefficients lead to an estimate of the source effective temperature of about 4700(-200)(+100) K. However, the photometric estimate from colour-magnitude diagrams favours a cooler temperature of 4200 +/- 100 K. Conclusions. Because the limb-darkening measurements, at least in the CTIO/SMARTS2 V-s- and I-s-bands, are among the most accurate obtained, the above disagreement needs to be understood. A solution is proposed, which may apply to previous events where such a discrepancy also appeared. C1 [Dong, S.; Gould, A.; Kozlowski, S.; Yee, J. C.; DePoy, D. L.; Gaudi, B. S.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Albrow, M. D.; Pollard, K. R.; Gilmore, A. C.; Hearnshaw, J. B.; Lin, W.; Skuljan, L.; Sweatman, W.] Univ Canterbury, Dept Phys & Astron, Christchurch 8020, New Zealand. [Kubas, D.; Brillant, S.; Snodgrass, C.] ESO, Santiago, Chile. [Bramich, D. M.] ESO, D-85748 Garching, Germany. [Batista, V.; Beaulieu, J. -P.; Coutures, C.; Dieters, S.; Marquette, J. -B.] Univ Paris 06, Inst Astrophys Paris, CNRS, F-75014 Paris, France. [Cassan, A.; Wambsganss, J.; Zub, M.; Anguita, T.; Liebig, C.] Heidelberg Univ, ARI, Zentrum Astron, D-69120 Heidelberg, Germany. [Dominik, M.; Horne, K.; Kains, N.] Univ St Andrews, Scottish Univ Phys Alliance, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Bennett, D. P.; Caldwell, J. A. R.] Univ Texas, McDonald Observ, Ft Davis, TX 79734 USA. [Cook, K. H.] Lawrence Livermore Natl Lab, IGPP, Livermore, CA 94551 USA. [Prester, D. Dominis] Univ Rijeka, Dept Phys, Fac Arts & Sci, Rijeka 51000, Croatia. [Donatowicz, J.; Ling, C. H.] Vienna Univ Technol, Dept Comp, A-1060 Vienna, Austria. [Greenhill, J.; Cole, A.] Univ Tasmania, Sch Math & Phys, Hobart, Tas 7001, Australia. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Williams, A.; Martin, R.] Perth Observ, Perth, WA 6076, Australia. [Menzies, J.] S African Astron Observ, ZA-7925 Cape Town, South Africa. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Han, C.] Chungbuk Natl Univ, Dept Phys, Inst Basic Sci Res, Chonju 361763, South Korea. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Monard, L. A. G.] Bronberg Observ, Pretoria, South Africa. [Udalski, A.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.; Szewczyk, O.; Ulaczyk, K.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Pietrzynski, G.; Szewczyk, O.] Univ Concepcion, Dept Fis, Astron Grp, Concepcion, Chile. [Wyrzykowski, L.; Kilmartin, P. M.; Tristram, P. J.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Bond, I. A.] Massey Univ, Inst Informat & Math Sci, Auckland, New Zealand. [Papadakis, I.; Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Kamiya, K.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nagaya, M.; Okumura, T.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Kerins, E.] Univ Manchester, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Muraki, Y.] Konan Univ, Dept Phys, Kobe, Hyogo 6588501, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Perrott, Y.; Rattenbury, N. J.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland 1142, New Zealand. [Saito, To] Tokyo Metropolitan Coll Ind Technol, Tokyo 1160003, Japan. [Sato, S.] Nagoya Univ, Dept Phys & Astrophys, Fac Sci, Nagoya, Aichi 4648602, Japan. [Korpela, A. V.; Sullivan, D.] Mt John Observ, Lake Tekapo 8770, New Zealand. [Street, R.; Tsapras, Y.; Hawkins, E.; Lister, T. A.; Saunders, E. S.] Las Cumbres Observ, Goleta, CA 93117 USA. [Bode, M. F.; Clay, N.; Fraser, S. N.; Mottram, C. J.; Steele, I. A.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Allan, A.; Saunders, E. S.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Wheatley, P. J.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Street, R.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Fouque, P.] Univ Toulouse, CNRS, LATT, F-31400 Toulouse, France. [Jorgensen, U. G.; Mathiasen, M.; Harpsoe, K.; Hinse, T. C.; Kjaergaard, P.; Thone, C. C.] Univ Copenhagen, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Lee, C. -H.; Riffeser, A.; Seitz, S.; Bender, R.] Univ Observ Munich, D-81679 Munich, Germany. [Seitz, S.; Bender, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Heyrovsky, D.] Charles Univ Prague, Inst Theoret Phys, Prague 18000, Czech Republic. [Masi, G.] Bellatrix Observ, I-03023 Ceccano, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Univ Salerno, Dipartimento Fis, Salerno, Italy. [Novati, S. Calchi; Bozza, V.; Mancini, L.; Scarpetta, G.] Ist Nazl Fis Nucl, Sez Napoli, Milan, Italy. [Hinse, T. C.] Armagh Observ, Armagh BT61 9DG, Ireland. [Rahvar, S.] Sharif Univ Technol, Dept Phys, Tehran, Iran. [Hundertmark, M.] Univ Gottingen, Inst Astrophys, D-37077 Gottingen, Germany. [Ricci, D.; Surdej, J.] Inst Astrophys & Geophys, B-4000 Liege, Belgium. [Thone, C. C.] Osserv Astron Brera, INAF, I-23807 Merate, LC, Italy. [Burgdorf, M. J.] Univ Stuttgart, Deutsch SOFIA Inst, D-70569 Stuttgart, Germany. [Burgdorf, M. J.] NASA, Ames Res Ctr, SOFIA Sci Ctr, Moffett Field, CA 94035 USA. [Nishiyama, S.] Kyoto Univ, Dept Astron, Kyoto 6068502, Japan. [Tsapras, Y.] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England. RI Heyrovsky, David/A-2031-2015; Hundertmark, Markus/C-6190-2015; Rahvar, Sohrab/A-9350-2008; Papadakis, Iossif/C-3235-2011; Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; Williams, Andrew/K-2931-2013 OI Thone, Christina/0000-0002-7978-7648; Ricci, Davide/0000-0002-9790-0552; Snodgrass, Colin/0000-0001-9328-2905; Heyrovsky, David/0000-0002-5198-5343; Hundertmark, Markus/0000-0003-0961-5231; Rahvar, Sohrab/0000-0002-7084-5725; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105 FU Bronberg; Canopus; CTIO; ESO; IRSF; LCOGT; Liverpool; LOAO; MOA; OGLE; Perth; SAAO; Skinakas; Polish MNiSW [N20303032/4275]; French Agence Nationale de la Recherche; Czech Science Foundation [GACR 205/07/0824]; Czech Ministry of Education [MSM0021620860]; National Research Foundation of Korea [2009-0081561]; Department for Culture, Arts and Leisure, Northern Ireland, UK; Communaute francaise de Belgique - Actions de recherche concertees - Academie universitaire Wallonie-Europe; Danish National Research Council; National Aeronautics and Space Administration; National Science Foundation FX We express our gratitude to ESO for a two months invitation at Santiago headquarters, Chile, where part of this work was achieved. We are very grateful to the observatories that support our science (Bronberg, Canopus, CTIO, ESO, IRSF, LCOGT, Liverpool, LOAO, MOA, OGLE, Perth, SAAO, Skinakas) via the generous allocation of time that makes this work possible. The operation of Canopus Observatory is in part supported by a financial contribution from David Warren. The OGLE project is partially supported by the Polish MNiSW grant N20303032/4275 to AU. Allocation of the Holmes grant from the French Agence Nationale de la Recherche has been indispensable to finance observing trips and meeting travels, and is gratefully acknowledged here. D. H. was supported by Czech Science Foundation grant GACR 205/07/0824 and by the Czech Ministry of Education project MSM0021620860. C. H. was supported by the grant 2009-0081561 of National Research Foundation of Korea. T. C. H. was financed for his astronomical research at the Armagh Observatory by the Department for Culture, Arts and Leisure, Northern Ireland, UK. D. R. and J.S. acknowledge support from the Communaute francaise de Belgique - Actions de recherche concertees - Academie universitaire Wallonie-Europe. The Dark Cosmology Centre is funded by the Danish National Research Council. P. F. wishes to thank Noriyuki Matsunaga for discussions about the interplay between adopted distance and derived extinction, David Nataf for measuring the red giant clump in the recently released OGLE-III photometric catalogue, and Etienne Bachelet for checking the whole chain from extinction to source size using a refined method. We are grateful to the anonymous referee for constructive comments that helped us improve the manuscript.; This publication makes use of data products from the 2MASS project, as well as the SIMBAD database, Aladin and Vizier catalogue operation tools (CDS Strasbourg, France). The Two Micron All Sky Survey is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 71 TC 9 Z9 9 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR A51 DI 10.1051/0004-6361/201014053 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500029 ER PT J AU Mantovani, F Rossetti, A Junor, W Saikia, DJ Salter, CJ AF Mantovani, F. Rossetti, A. Junor, W. Saikia, D. J. Salter, C. J. TI Radio polarimetry of 3C 119, 3C 318, and 3C 343 at milliarcsecond resolution SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE polarization ID ACTIVE GALACTIC NUCLEI; STEEP-SPECTRUM SOURCES; SCALE ROTATION MEASURES; FARADAY-ROTATION; POLARIZATION OBSERVATIONS; 5 GHZ; MAGNETIC-FIELD; VLBI POLARIMETRY; GALAXIES; CORES AB Aims. We report new Very Long Baseline Array (VLBA) polarimetric observations of the compact steep-spectrum (CSS) sources 3C 119, 3C 318, and 3C 343 at 5 and 8.4 GHz. Methods. We analysed our VLBA observations and derived milliarcsecond-resolution images of the total intensity, polarisation, and rotation measure (RM) distributions. Results. The CSS source 3C 119, associated with a possible quasar, has source rest-frame RM values up to similar to 10 200 rad m(-2) in a region that coincides with a change in the direction of the inner jet. This component is located similar to 325 pc from the core, which is a variable source with a peaked radio spectrum. For 3C 318, which is associated with a galaxy, a rest-frame RM of similar to 3030 rad m(-2) was estimated for the brightest component contributing almost all of the polarised emission. Two more extended components were detected, that contain "wiggles" in the jet towards the southern side of the source. The CSS source 3C 343 contains two peaks of emission and a curved jet embedded in more diffuse emission. It exhibits complex field directions close to the emission peaks, which are indicative of rest-frame RM values in excess of approximate to 6000 rad m(-2). The locations of the cores in 3C 318 and 3C 343 are unclear. Conclusions. The available data about mas-scale rest-frame RM estimates for CSS sources show that these have a wide range of values extending up to similar to 40 000 rad m(-2) in the central region of OQ172, and may be located at projected distances from the core of up to similar to 1600 pc, as in 3C 43 where this feature has a rest-frame RM of similar to 14 000 rad m(-2). The RM estimates for the cores of core-dominated radio sources indicate that in addition to responding to an overall density gradient of the magneto-ionic medium, geometry, orientation, and modes of fuelling may also play a significant role. In addition to these effects, the high values of RM in CSS sources are possibly caused by dense clouds of gas interacting with the radio jets. The observed distortions in the radio structures of many CSS sources are consistent with this interpretation. C1 [Mantovani, F.; Rossetti, A.] INAF, Inst Radioastron, I-40129 Bologna, Italy. [Junor, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Saikia, D. J.] TIFR, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India. [Saikia, D. J.] Univ Western Australia, ICRAR, Crawley, WA 6009, Australia. [Salter, C. J.] Arecibo Observ, Arecibo, PR 00612 USA. RP Mantovani, F (reprint author), INAF, Inst Radioastron, Via Gobetti 101, I-40129 Bologna, Italy. EM fmantovani@ira.inaf.it FU National Aeronautics and Space Administration FX We thank an anonymous referee for his/her very helpful comments and suggestions, and for a careful reading of the manuscript of this paper. The VLBA is operated by the U.S. National Radio Astronomy Observatory which is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. This research has made use of data from the MOJAVE database that is maintained by the MOJAVE team (Lister et al. 2009, AJ, 137, 3718). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. F.M. likes to thank Prof. Anton Zensus, Director, for the kind hospitality at the Max-Planck-Institut fur Radioastronomie, Bonn, for a period during which part of this work has been done. NR 58 TC 7 Z9 7 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL-AUG PY 2010 VL 518 AR A33 DI 10.1051/0004-6361/201014400 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 695AH UT WOS:000285342500054 ER PT J AU Fischer, T Whitehouse, SC Mezzacappa, A Thielemann, FK Liebendorfer, M AF Fischer, T. Whitehouse, S. C. Mezzacappa, A. Thielemann, F. -K. Liebendoerfer, M. TI Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE hydrodynamics; neutrinos; radiative transfer; relativistic processes ID CORE-COLLAPSE SUPERNOVAE; R-PROCESS NUCLEOSYNTHESIS; ELECTRON-CAPTURE SUPERNOVAE; II SUPERNOVAE; EXPLOSIONS; TRANSPORT; SHOCK; CONVECTION; ACCRETION; HOT AB Massive stars end their lives in explosions with kinetic energies on the order of 1051 erg. Immediately after the explosion has been launched, a region of low density and high entropy forms behind the ejecta, which is continuously subject to neutrino heating. The neutrinos emitted from the remnant at the center, the protoneutron star (PNS), heat the material above the PNS surface. This heat is partly converted into kinetic energy, and the material accelerates to an outflow that is known as the neutrino-driven wind. For the first time we simulate the collapse, bounce, explosion, and the neutrino-driven wind phases consistently over more than 20 s. Our numerical model is based on spherically symmetric general relativistic radiation hydrodynamics using spectral three-flavor Boltzmann neutrino transport. In simulations where no explosions are obtained naturally, we model neutrino-driven explosions for low- and intermediate-mass Fe-core progenitor stars by enhancing the charged current reaction rates. In the case of a special progenitor star, the 8.8 M-circle dot O-Ne-Mg-core, the explosion in spherical symmetry was obtained without enhanced opacities. The post-explosion evolution is in qualitative agreement with static steady-state and parametrized dynamic models of the neutrino-driven wind. On the other hand, we generally find lower neutrino luminosities and mean neutrino energies, as well as a different evolutionary behavior of the neutrino luminosities and mean neutrino energies. The neutrino-driven wind is proton-rich for more than 10 s and the contraction of the PNS differs from the assumptions made for the conditions at the inner boundary in previous neutrino-driven wind studies. Despite the moderately high entropies of about 100 k(B)/baryon and the fast expansion timescales, the conditions found in our models are unlikely to favor r-process nucleosynthesis. The simulations are carried out until the neutrino-driven wind settles down to a quasi-stationary state. About 5 s after the bounce, the peak temperature inside the PNS already starts to decrease because of the continued deleptonization. This moment determines the beginning of a cooling phase dominated by the emission of neutrinos. We discuss the physical conditions of the quasi-static PNS evolution and take the effects of deleptonization and mass accretion from early fallback into account. C1 [Fischer, T.; Whitehouse, S. C.; Thielemann, F. -K.; Liebendoerfer, M.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Mezzacappa, A.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Thielemann, F. -K.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. RP Fischer, T (reprint author), Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland. RI Mezzacappa, Anthony/B-3163-2017 OI Mezzacappa, Anthony/0000-0001-9816-9741 FU Swiss National Science Foundation [PP002-106627/1, PP00P2-124879, 200020-122287, IB7320-110996/1]; European Science Foundation; US Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank A. Arcones and G. Martinez-Pinedo for discussions and helpful comments. The project was funded by the Swiss National Science Foundation grant numbers PP002-106627/1, PP00P2-124879 and 200020-122287. The authors are additionally supported by CompStar, a research networking program of the European Science Foundation, and the Scopes project funded by the Swiss National Science Foundation grant. No. IB7320-110996/1. A. Mezzacappa is supported at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the US Department of Energy under contract DE-AC05-00OR22725. NR 63 TC 189 Z9 192 U1 1 U2 7 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD JUL PY 2010 VL 517 AR A80 DI 10.1051/0004-6361/200913106 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 638WR UT WOS:000280929400090 ER PT J AU Kessler, R Cinabro, D Bassett, B Dilday, B Frieman, JA Garnavich, PM Jha, S Marriner, J Nichol, RC Sako, M Smith, M Bernstein, JP Bizyaev, D Goobar, A Kuhlmann, S Schneider, DP Stritzinger, M AF Kessler, Richard Cinabro, David Bassett, Bruce Dilday, Benjamin Frieman, Joshua A. Garnavich, Peter M. Jha, Saurabh Marriner, John Nichol, Robert C. Sako, Masao Smith, Mathew Bernstein, Joseph P. Bizyaev, Dmitry Goobar, Ariel Kuhlmann, Stephen Schneider, Donald P. Stritzinger, Maximilian TI PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; supernovae: general; techniques: photometric Online-only material: color figures ID DIGITAL SKY SURVEY; K-CORRECTIONS; LIGHT CURVES AB Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for cosmological study. We present a light curve fitting technique for type Ia supernova (SN Ia) photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this "LCFIT+Z" technique within the frameworks of the MLCS2K2 and SALTII light curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including the SDSS, SNLS, and the Large Synoptic Survey Telescope. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates. C1 [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Kessler, Richard; Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Cinabro, David] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48202 USA. [Bassett, Bruce; Smith, Mathew] Univ Cape Town, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. [Bassett, Bruce] S African Astron Observ, ZA-7935 Observatory, South Africa. [Dilday, Benjamin; Jha, Saurabh] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Garnavich, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 2EG, Hants, England. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Bernstein, Joseph P.; Kuhlmann, Stephen] Argonne Natl Lab, Lemont, IL 60437 USA. [Bizyaev, Dmitry] Apache Point Observ, Sunspot, NM 88349 USA. [Goobar, Ariel] Stockholm Univ, Albanova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Goobar, Ariel] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Stritzinger, Maximilian] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Stritzinger, Maximilian] Univ Copenhagen, Dark Cosmol Ctr, Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. RP Kessler, R (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM kessler@kicp.uchicago.edu OI Bassett, Bruce/0000-0001-7700-1069; stritzinger, maximilian/0000-0002-5571-1833 FU Kavli Institute of Cosmological Physics at the University of Chicago; National Science Foundation at Wayne State; Department of Energy at Fermilab; University of Chicago; Rutgers University; U.S. Department of Energy [DE-FG02-08ER41562]; Alfred P. Sloan Foundation; National Science Foundation; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Cambridge University; Case Western Reserve University; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPA); Max-Planck-Institute for Astrophysics (MPiA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Johns Hopkins University; W.M. Keck Foundation FX We gratefully acknowledge support from the Kavli Institute of Cosmological Physics at the University of Chicago, the National Science Foundation at Wayne State, and the Department of Energy at Fermilab, the University of Chicago, and Rutgers University. S.J. is grateful for the support of DOE grant DE-FG02-08ER41562. Funding for the creation and distribution of the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSSWeb site is http://www.sdss.org/.; The SDSS ismanaged by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPA), the Max-Planck-Institute for Astrophysics (MPiA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The W.M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. NR 31 TC 22 Z9 22 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2010 VL 717 IS 1 BP 40 EP 57 DI 10.1088/0004-637X/717/1/40 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610YV UT WOS:000278777900003 ER PT J AU Civano, F Elvis, M Lanzuisi, G Jahnke, K Zamorani, G Blecha, L Bongiorno, A Brusa, M Comastri, A Hao, H Leauthaud, A Loeb, A Mainieri, V Piconcelli, E Salvato, M Scoville, N Trump, J Vignali, C Aldcroft, T Bolzonella, M Bressert, E Finoguenov, A Fruscione, A Koekemoer, AM Cappelluti, N Fiore, F Giodini, S Gilli, R Impey, CD Lilly, SJ Lusso, E Puccetti, S Silverman, JD Aussel, H Capak, P Frayer, D Le Floch, E McCracken, HJ Sanders, DB Schiminovich, D Taniguchi, Y AF Civano, F. Elvis, M. Lanzuisi, G. Jahnke, K. Zamorani, G. Blecha, L. Bongiorno, A. Brusa, M. Comastri, A. Hao, H. Leauthaud, A. Loeb, A. Mainieri, V. Piconcelli, E. Salvato, M. Scoville, N. Trump, J. Vignali, C. Aldcroft, T. Bolzonella, M. Bressert, E. Finoguenov, A. Fruscione, A. Koekemoer, A. M. Cappelluti, N. Fiore, F. Giodini, S. Gilli, R. Impey, C. D. Lilly, S. J. Lusso, E. Puccetti, S. Silverman, J. D. Aussel, H. Capak, P. Frayer, D. Le Floch, E. McCracken, H. J. Sanders, D. B. Schiminovich, D. Taniguchi, Y. TI A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL? SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: active; galaxies: formation; galaxies: interactions; galaxies: nuclei; quasars: absorption lines ID ACTIVE GALACTIC NUCLEI; BROAD ABSORPTION-LINE; WIDE-FIELD SURVEY; DIGITAL SKY SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; EVOLUTION SURVEY COSMOS; QUASI-STELLAR OBJECTS; DOUBLE-PEAKED EMITTER; X-RAY-SPECTRA; PHOTON BUBBLES AB We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0 ''.495 +/- 0 ''.005 that, at the redshift of the source, corresponds to a projected separation of 2.46 +/- 0.02 kpc. A large (similar to 1200 km s(-1)) velocity offset between the narrow and broad components of H beta has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by Delta E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs. C1 [Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Bressert, E.; Fruscione, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Lanzuisi, G.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Jahnke, K.] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Zamorani, G.; Comastri, A.; Bolzonella, M.; Gilli, R.; Lusso, E.] INAF Osservatorio Astron Bologna, I-40127 Bologna, Italy. [Blecha, L.; Loeb, A.] Harvard Univ, Dept Astron, Cambridge, MA 02138 USA. [Bongiorno, A.; Brusa, M.; Finoguenov, A.; Cappelluti, N.; Giodini, S.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Leauthaud, A.] Univ Calif Berkeley, LBNL, Berkeley, CA 94720 USA. [Leauthaud, A.] Univ Calif Berkeley, BCCP, Berkeley, CA 94720 USA. [Mainieri, V.] European So Observ, D-85748 Garching, Germany. [Piconcelli, E.; Fiore, F.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. [Salvato, M.; Scoville, N.] CALTECH, Pasadena, CA 91125 USA. [Trump, J.; Impey, C. D.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Vignali, C.; Lusso, E.] Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy. [Finoguenov, A.] Univ Maryland Baltimore Cty, Baltimore, MD 21250 USA. [Koekemoer, A. M.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Lilly, S. J.; Silverman, J. D.] Swiss Fed Inst Technol ETH Honggerberg, Inst Astron, CH-8093 Zurich, Switzerland. [Puccetti, S.] ASI Sci Data Ctr, I-00044 Frascati, Italy. [Aussel, H.] Univ Paris 07, CNRS, AIM Unite Mixte Rech CEA, UMR 158, Paris, France. [Le Floch, E.; Sanders, D. B.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [McCracken, H. J.] Univ Paris 06, CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Schiminovich, D.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Taniguchi, Y.] Ehime Univ, Res Ctr Space & Cosm Evolut, Matsuyama, Ehime 7908577, Japan. RP Civano, F (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. RI Vignali, Cristian/J-4974-2012; Lanzuisi, Giorgio/K-4378-2013; Bolzonella, Micol/O-9495-2015; Comastri, Andrea/O-9543-2015; Gilli, Roberto/P-1110-2015; OI Zamorani, Giovanni/0000-0002-2318-301X; Koekemoer, Anton/0000-0002-6610-2048; Brusa, Marcella/0000-0002-5059-6848; Puccetti, Simonetta/0000-0002-2734-7835; Fiore, Fabrizio/0000-0002-4031-4157; Cappelluti, Nico/0000-0002-1697-186X; Vignali, Cristian/0000-0002-8853-9611; Lanzuisi, Giorgio/0000-0001-9094-0984; Bolzonella, Micol/0000-0003-3278-4607; Comastri, Andrea/0000-0003-3451-9970; Gilli, Roberto/0000-0001-8121-6177; piconcelli, enrico/0000-0001-9095-2782; Bongiorno, Angela/0000-0002-0101-6624; Bressert, Eli/0000-0002-6564-6182; Jahnke, Knud/0000-0003-3804-2137 FU NASA [GO7-8136A, NAS8-39073]; German Science Foundation (DFG) [JA 1114/3-1]; ASI/INAF In Italy [I/023/05/0, I/024/05/0, I/088/06]; PRIN/MUR [2006-02-5203]; Bundesministerium fur Bildung und Forschung/Deutsches Zentrum fur Luft und Raumfahrt In Germany; Max Planck Society FX F. C. thanks E. Costantini, T. J. Cox, M. Dotti, L. Hernquist, and A. Sesana for useful discussion. The authors thank Chien Y. Peng for useful discussions about GALFIT. The authors thank the anonymous referee, whose critical analysis helped improve this paper, making it more interesting. This work was supported in part by NASA Chandra grant number GO7-8136A (F. C., M. E., and A. F.), NASA contract NAS8-39073 (Chandra X-ray Center). K. J. acknowledges support from the Emmy Noether Programme of the German Science Foundation (DFG) through grant number JA 1114/3-1. In Italy, this work is supported by ASI/INAF contracts I/023/05/0, I/024/05/0, and I/088/06, and by PRIN/MUR grant 2006-02-5203. In Germany, this project is supported by the Bundesministerium fur Bildung und Forschung/Deutsches Zentrum fur Luft und Raumfahrt and the Max Planck Society. NR 135 TC 60 Z9 60 U1 2 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD JUL 1 PY 2010 VL 717 IS 1 BP 209 EP 222 DI 10.1088/0004-637X/717/1/209 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 610YV UT WOS:000278777900017 ER PT J AU DiPompeo, MA Brotherton, MS Becker, RH Tran, HD Gregg, MD White, RL Laurent-Muehleisen, SA AF DiPompeo, M. A. Brotherton, M. S. Becker, R. H. Tran, H. D. Gregg, M. D. White, R. L. Laurent-Muehleisen, S. A. TI SPECTROPOLARIMETRY OF RADIO-SELECTED BROAD ABSORPTION LINE QUASARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE polarization; quasars: absorption lines; quasars: emission lines; quasars: general ID GRAVITATIONALLY LENSED QUASARS; X-RAY OBSERVATIONS; POLARIZATION PROPERTIES; STELLAR OBJECTS; SKY SURVEY; LOW-REDSHIFT; DATA RELEASE; BAL QSOS; LOUD; BRIGHT AB We report spectropolarimetry of 30 radio-selected broad absorption line (BAL) quasars with the Keck Observatory, 25 from the sample of Becker et al. Both high-and low-ionization BAL quasars are represented, with redshifts ranging from 0.5 to 2.5. The spectropolarimetric properties of radio-selected BAL quasars are very similar to those of radio-quiet BAL quasars: a sizeable fraction (20%) shows large continuum polarization (2%-10%) usually rising toward short wavelengths; emission lines are typically less polarized than the continuum; and absorption line troughs often show large polarization jumps. There are no significant correlations between polarization properties and radio properties, including those indicative of system orientation, suggesting that BAL quasars are not simply normal quasars seen from an edge-on perspective. C1 [DiPompeo, M. A.; Brotherton, M. S.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. [Becker, R. H.; Gregg, M. D.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94550 USA. [Becker, R. H.; Gregg, M. D.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Tran, H. D.] WM Keck Observ, Kamuela, HI 96743 USA. [White, R. L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Laurent-Muehleisen, S. A.] IIT, Chicago, IL 60616 USA. RP DiPompeo, MA (reprint author), Univ Wyoming, Dept Phys & Astron, 3905,1000 E Univ Ave, Laramie, WY 82071 USA. RI White, Richard/A-8143-2012; OI tran, hien/0000-0001-7548-6664; DiPompeo, Michael/0000-0001-6788-1701 FU NASA [NNG05GE84G, NNG05G165H]; U.S. Department of Energy [W-7405-ENG-48] FX The W. M. Keck Observatory is a scientific partnership between the University of California and the California Institute of Technology, made possible by the generous gift of the W. M. Keck Foundation. We acknowledge support from NASA through grant no. NNG05GE84G and the Wyoming NASA Space Grant Consortium, NASA Grant no. NNG05G165H. A portion of this work has been performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48. NR 56 TC 10 Z9 10 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2010 VL 189 IS 1 BP 83 EP 103 DI 10.1088/0067-0049/189/1/83 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619AW UT WOS:000279400100004 ER PT J AU Stone, JM Gardiner, TA AF Stone, James M. Gardiner, Thomas A. TI IMPLEMENTATION OF THE SHEARING BOX APPROXIMATION IN ATHENA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE hydrodynamics; magnetohydrodynamics (MHD); methods: numerical ID UNSPLIT GODUNOV METHOD; 3-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS; WEAKLY MAGNETIZED DISKS; SPIRAL DENSITY WAVES; ACCRETION DISKS; MAGNETOROTATIONAL INSTABILITY; MHD TURBULENCE; CONSTRAINED TRANSPORT; NUMERICAL SIMULATIONS; STRATIFIED DISKS AB We describe the implementation of the shearing box approximation for the study of the dynamics of accretion disks in the Athena magnetohydrodynamic (MHD) code. Second-order Crank-Nicholson time differencing is used for the Coriolis and tidal gravity source terms that appear in the momentum equation for accuracy and stability. We show that this approach conserves energy for epicyclic oscillations in hydrodynamic flows to round-off error. In the energy equation, the tidal gravity source terms are differenced as the gradient of an effective potential in a way that guarantees that total energy (including the gravitational potential energy) is also conserved to round-off error. We introduce an orbital advection algorithm for MHD based on constrained transport to preserve the divergence-free constraint on the magnetic field. This algorithm removes the orbital velocity from the time step constraint, and makes the truncation error more uniform in radial position. Modifications to the shearing box boundary conditions applied at the radial boundaries are necessary to conserve the total vertical magnetic flux. In principle, similar corrections are also required to conserve mass, momentum, and energy; however in practice we find that the orbital advection method conserves these quantities to better than 0.03% over hundreds of orbits. The algorithms have been applied to studies of the nonlinear regime of theMRI in very wide (up to 32 scale heights) horizontal domains. C1 [Stone, James M.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Gardiner, Thomas A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Stone, JM (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. FU DOE [DE-FG52-06NA26217]; NSF [AST-0722479] FX We thank Sebastien Fromang, Charles Gammie, John Hawley, Bryan Johnson, E. Ostriker, and Jake Simon for helpful discussions, and S. Fromang for providing the initial conditions for the nonlinear density wave test, and B. Johnson for providing the reference solution for the MHD shearing wave test. Financial support was provided by the DOE through DE-FG52-06NA26217. Simulations were performed on computational facilities at the Princeton Institute for Computational Science and Engineering, and through resources provided by the NSF grant AST-0722479. NR 41 TC 63 Z9 64 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2010 VL 189 IS 1 BP 142 EP 155 DI 10.1088/0067-0049/189/1/142 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619AW UT WOS:000279400100007 ER PT J AU Cyburt, RH Amthor, AM Ferguson, R Meisel, Z Smith, K Warren, S Heger, A Hoffman, RD Rauscher, T Sakharuk, A Schatz, H Thielemann, FK Wiescher, M AF Cyburt, Richard H. Amthor, A. Matthew Ferguson, Ryan Meisel, Zach Smith, Karl Warren, Scott Heger, Alexander Hoffman, R. D. Rauscher, Thomas Sakharuk, Alexander Schatz, Hendrik Thielemann, F. K. Wiescher, Michael TI THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE nuclear reactions; nucleosynthesis; abundances; X-rays: bursts ID THERMONUCLEAR REACTION-RATES; WEAK-INTERACTION RATES; PROTON DRIP-LINE; INTERMEDIATE-MASS NUCLEI; ACCRETING NEUTRON-STARS; CAPTURE CROSS-SECTIONS; HOT CNO CYCLE; RP-PROCESS; PROCESS NUCLEOSYNTHESIS; MODEL CALCULATIONS AB We present results from the JINA REACLIB project, an ongoing effort to maintain a current and accurate library of thermonuclear reaction rates for astrophysical applications. Ongoing updates are transparently documented and version tracked, and any set of rates is publicly available and can be downloaded via a Web interface at http://groups.nscl.msu.edu/jina/reaclib/db/. We discuss here our library V1.0, a snapshot of recommended rates for stable and explosive hydrogen and helium burning. We show that the updated reaction rates lead to modest but significant changes in full network, one-dimensional X-ray burst model calculations, compared with calculations with previously used reaction rate sets. The late time behavior of X-ray burst light curves shows significant changes, suggesting that the previously found small discrepancies between model calculations and observations may be solved with a better understanding of the nuclear input. Our X-ray burst model calculations are intended to serve as a benchmark for future model comparisons and sensitivity studies, as the complete underlying nuclear physics is fully documented and publicly available. C1 [Cyburt, Richard H.; Amthor, A. Matthew; Ferguson, Ryan; Meisel, Zach; Smith, Karl; Warren, Scott; Sakharuk, Alexander; Schatz, Hendrik] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Amthor, A. Matthew; Ferguson, Ryan; Meisel, Zach; Smith, Karl; Schatz, Hendrik] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Warren, Scott] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA. [Heger, Alexander] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Hoffman, R. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rauscher, Thomas; Thielemann, F. K.] Univ Basel, Dept Phys, CH-4056 Basel, Switzerland. [Wiescher, Michael] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. EM cyburt@nscl.msu.edu RI Rauscher, Thomas/D-2086-2009; Smith, Karl/A-9864-2013 OI Rauscher, Thomas/0000-0002-1266-0642; Smith, Karl/0000-0003-2740-5449 FU U.S. National Science Foundation [PHY-01-10253, PHY-02-016783, PHY-08-22648]; US DOE [DE-FG02-87ER40328, DE-SC0002300]; DOE [DC-FC02-01ER41176]; Swiss NSF [200020-122287] FX We thank Sam Austin for helpful discussions and Michael Smith (http://www.nucastrodata.org), Kerstin Sonnabend (CARINA, http://www.ikp.physik.tu-darmstadt.de/carina/), Iris Dillmann (KADoNiS, http://www.kadonis.org), and Boris Pritychenko (NNDC ENDF, http://www.nndc.bnl.gov/astro/) for useful discussions on data availability, evaluation, and dissemination. This work was supported by the U.S. National Science Foundation Grants PHY-01-10253 (NSCL), PHY-02-016783, and PHY-08-22648 (JINA). A.H. was supported in part by US DOE grants DE-FG02-87ER40328 and DE-SC0002300. This work was performed in part under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Additional support was granted through the DOE Scientific Discovery through Advanced Computing program (DC-FC02-01ER41176). T.R. and F.K. T were supported by the Swiss NSF grant 200020-122287. NR 164 TC 204 Z9 205 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD JUL PY 2010 VL 189 IS 1 BP 240 EP 252 DI 10.1088/0067-0049/189/1/240 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 619AW UT WOS:000279400100011 ER PT J AU Mussack, K Dappen, W AF Mussack, Katie Daeppen, Werner TI Dynamic screening in solar and stellar nuclear reactions SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Equation of state; Nuclear reactions; Nucleosynthesis; Abundances; Plasmas; Sun: general ID THERMONUCLEAR REACTIONS; PLASMA AB In the hot, dense plasma of solar and stellar interiors, the Coulomb interaction is screened by the surrounding plasma. Although the standard Salpeter approximation for static screening is widely accepted and used in stellar modeling, the question of dynamic screening has been revisited. In particular, Shaviv and Shaviv apply the techniques of molecular dynamics to the conditions in the solar core in order to numerically determine the dynamic screening effect. By directly calculating the motion of ions and electrons due to Coulomb interactions, they compute the effect of screening without the mean-field assumption inherent in the Salpeter approximation. Here we reproduce their numerical analysis of the screening energy in the plasma of the solar core and conclude that the effects of dynamic screening are relevant and should be included in the treatment of the plasma, especially in the computation of stellar nuclear reaction rates. C1 [Mussack, Katie] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Mussack, Katie] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Daeppen, Werner] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. RP Mussack, K (reprint author), Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. EM mussack@lanl.gov FU National Science Foundation [AST-0708568] FX We thank Dan Mao for helpful discussions about the simulations. This work was supported in part by grant AST-0708568 of the National Science Foundation. NR 19 TC 4 Z9 4 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD JUL PY 2010 VL 328 IS 1-2 BP 153 EP 156 DI 10.1007/s10509-009-0245-x PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 641GQ UT WOS:000281113200026 ER PT J AU Morgado, L Bruix, M Londer, YY Salgueiro, CA AF Morgado, Leonor Bruix, Marta Londer, Yuri Y. Salgueiro, Carlos A. TI Fine-tuned cooperative redox networks of multiheme periplasmic cytochromes in Geobacter sulfiarreducens: Optimal bioenergetic adaptation to environmental changes SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Meeting Abstract CT 16th European Bioenergetics Conference CY JUL 17-22, 2010 CL Old Lib Univ Warsaw, Warsaw, POLAND SP Nencki Inst Expt Biol, Section of Bioenergetics of the Polish Biochemical Soc HO Old Lib Univ Warsaw ID SULFURREDUCENS C1 [Morgado, Leonor; Salgueiro, Carlos A.] Univ Nova Lisboa, Fac Ciencias Tecnol, Dept Quim, Requimte CQFB, P-1200 Lisbon, Portugal. [Bruix, Marta] CSIC, Inst Quim Fis Rosacolano, Dept Espect Estruct Mol, Madrid, Spain. [Londer, Yuri Y.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. EM csalgueiro@dq.fct.unl.pt RI Bruix, Marta/H-4161-2011; Salgueiro, Carlos/A-4522-2013; Morgado, Leonor/D-7387-2013; REQUIMTE, AL/H-9106-2013; Chaves, Pedro/K-1288-2013; REQUIMTE, SMB/M-5694-2013; REQUIMTE, UCIBIO/N-9846-2013 OI Bruix, Marta/0000-0002-0096-3558; Salgueiro, Carlos/0000-0003-1136-809X; Morgado, Leonor/0000-0002-3760-5180; NR 3 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD JUL PY 2010 VL 1797 SU S BP 116 EP 116 DI 10.1016/j.bbabio.2010.04.348 PG 1 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 622KR UT WOS:000279662500324 ER PT J AU Longo, ML Blanchette, CD AF Longo, Marjorie L. Blanchette, Craig D. TI Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Review DE Membrane raft; AFM; GUV; Liquid-ordered; Myelin; HIV ID DIFFERENTIAL SCANNING CALORIMETRY; GIANT UNILAMELLAR VESICLES; ATOMIC-FORCE MICROSCOPY; FLUORESCENCE CORRELATION SPECTROSCOPY; SUPPORTED PHOSPHOLIPID-BILAYERS; LIPID-BILAYERS; LINE TENSION; THERMOTROPIC BEHAVIOR; MEMBRANE RAFTS; BOVINE BRAIN AB The objective of this paper is to review phase behavior and shape characterization of cerebroside-rich domains in binary and ternary lipid bilayers, as obtained by microscopy techniques. These lipid mixtures provide a format to examine molecular (e.g. headgroup, tail unsaturation, and tail hydroxylation) and thermodynamic (e.g. temperature and mole percentages) factors that determine phase behavior, molecular partitioning, crystal/atomic scale structure, and microstructure/shape (particularly of phase-separated domains). Microscopy can provide excellent spatial (often with high resolution) characterization of cerebroside-rich domains (and their surroundings) to identify, describe or infer with high certainty these characteristics. In the introduction to this review we review briefly the molecular structure, phase behavior, and intermolecular interactions of cerebrosides, in comparison to ceramides and sphingomyelins and in some binary and biological systems. The bulk of the review is then devoted to microscopy investigations of cerebroside-rich domain microstructure and shape dynamics in binary and ternary (one component is cholesterol) systems. Quantitative and/or high-resolution microscopy techniques have been used to interrogate cerebroside-rich domains such as freeze-fracture electron microscopy, atomic force microscopy, imaging elipsometry, two-photon fluorescence microscopy, and lAURDAN generalized polarization in addition to the laboratory workhorse technique of epifluorescence microscopy that allows a quick often qualitative assessment of microstructure and dynamics. We particularly focus on the information these microscopy investigations have revealed with respect to phase behavior, cholesterol partitioning, domain shape, and determinants of domain shape. (C) 2009 Elsevier B.V. All rights reserved. C1 [Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Blanchette, Craig D.] Lawrence Livermore Natl Lab, Biophys & Interfacial Sci Grp, Livermore, CA 94550 USA. RP Longo, ML (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. EM mllongo@ucdavis.edu FU NSF [CHE 0210807, CBET 0506602, DMR 0213618]; U.S. Department of Energy [W-7405-Eng-48, DE-AC52-07NA27344] FX We acknowledge funding by the NSF NIRT Program (CHE 0210807 and CBET 0506602) and the NSF MRSEC Program CPIMA (NSF DMR 0213618). This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 87 TC 9 Z9 10 U1 2 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD JUL PY 2010 VL 1798 IS 7 SI SI BP 1357 EP 1367 DI 10.1016/j.bbamem.2009.11.013 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 618OI UT WOS:000279365000010 PM 19945421 ER PT J AU de Castro, S Maruoka, H Hong, KL Kilbey, SM Costanzi, S Hechler, B Brown, GG Gachet, C Harden, TK Jacobson, KA AF de Castro, Sonia Maruoka, Hiroshi Hong, Kunlun Kilbey, S. Michael, II Costanzi, Stefano Hechler, Beatrice Brown, Garth G., Jr. Gachet, Christian Harden, T. Kendall Jacobson, Kenneth A. TI Functionalized Congeners of P2Y(1) Receptor Antagonists: 2-Alkynyl (N)-Methanocarba 2 '-Deoxyadenosine 3 ',5 '-Bisphosphate Analogues and Conjugation to a Polyamidoamine (PAMAM) Dendrimer Carrier SO BIOCONJUGATE CHEMISTRY LA English DT Article ID PROTEIN-COUPLED RECEPTORS; A(3) ADENOSINE RECEPTOR; BETA(2)-ADRENERGIC RECEPTOR; NUCLEOTIDE RECEPTORS; PLATELET-AGGREGATION; CRYSTAL-STRUCTURE; ENHANCED POTENCY; CLICK CHEMISTRY; DRUG DISCOVERY; MICE AB The P2Y(1) receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3 ',5 '-bisphosphate antagonists of the P2Y(1) receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N-6-methyl-(N)-methanocarba-2 '-deoxyadenosine-3 ',5 '-bisphosphates containing extended 2-alkynyl chains was designed, and binding all at the human (h) P2Y(1) receptor detertmined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K-i 23 nM) and extended amine congener 15 (K-i 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended epsilon-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y(1) receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y(1) receptor modeling and ligand docking. Attempted P2Y(1) antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e., antithrombotic action. C1 [Jacobson, Kenneth A.] NIDDKD, Bioorgan Chem Lab, Mol Recognit Sect, NIH, Bethesda, MD 20892 USA. [Costanzi, Stefano] NIDDKD, Lab Biol Modeling, NIH, Bethesda, MD 20892 USA. [Brown, Garth G., Jr.] PerkinElmer Inc, Waltham, MA 02451 USA. [Harden, T. Kendall] Univ N Carolina, Sch Med, Dept Pharmacol, Chapel Hill, NC USA. [Hong, Kunlun; Kilbey, S. Michael, II] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hechler, Beatrice; Gachet, Christian] Univ Strasbourg, INSERM, UMR S949, EFS Alsace, Strasbourg, France. RP Jacobson, KA (reprint author), NIDDKD, Bioorgan Chem Lab, Mol Recognit Sect, NIH, Bldg 8A,Rm B1A-19, Bethesda, MD 20892 USA. EM kajacobs@helix.nih.gov RI de castro, sonia/E-7303-2012; Jacobson, Kenneth/A-1530-2009; Costanzi, Stefano/G-8990-2013; Hong, Kunlun/E-9787-2015; Hechler, Beatrice/D-4227-2017; Gachet, Christian/H-9156-2016; OI de castro, sonia/0000-0002-3838-6856; Jacobson, Kenneth/0000-0001-8104-1493; Hong, Kunlun/0000-0002-2852-5111; Costanzi, Stefano/0000-0003-3183-7332 FU National Institute of General Medical Sciences [GM38213]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Ministerio de Educacien y Ciencia (Spain); Asubio Pharmaceuticals; NIH, National Institute of Diabetes and Digestive and Kidney Diseases FX This research was supported by the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases, and a grant (GM38213) from the National Institute of General Medical Sciences. We thank Dr. John Lloyd and Dr. Noel Whittaker (NIDDK) for the mass spectral determinations. Research conducted at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. S. de Castro thanks Ministerio de Educacien y Ciencia (Spain) for financial support. H. Maruoka thanks Asubio Pharmaceuticals for financial support. NR 47 TC 13 Z9 13 U1 0 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD JUL PY 2010 VL 21 IS 7 BP 1190 EP 1205 DI 10.1021/bc900569u PG 16 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 627GS UT WOS:000280028100010 PM 20565071 ER PT J AU Blanchette, CD Fischer, NO Corzett, M Bench, G Hoeprich, PD AF Blanchette, Craig D. Fischer, Nicholas O. Corzett, Michele Bench, Graham Hoeprich, Paul D. TI Kinetic Analysis of His-Tagged Protein Binding to Nickel-Chelating Nanolipoprotein Particles SO BIOCONJUGATE CHEMISTRY LA English DT Article ID SURFACE-PLASMON RESONANCE; INTEGRAL MEMBRANE-PROTEINS; HUMAN APOLIPOPROTEIN-E; PHOSPHOLIPID-BILAYER; AMPHOTERICIN-B; SENSOR CHIP; CHOLESTEROL ACYLTRANSFERASE; CONFORMATIONAL-CHANGE; DISCOIDAL COMPLEXES; HEXAHISTIDINE-TAG AB Nanolipoprotein particles (NLPs) are discoidal self-assembling membrane mimetics that have been primarily used as a platform for the solubilization and stabilization of membrane proteins. Nickel-chelating nanolipoprotein particles (NiNLPs) containing nickel-chelating lipids (Ni-lipid) for the targeted immobilization of His-tagged proteins hold promise as carriers of hydrophilic biological molecules for a range of applications. The effect of protein loading (i.e., the number of proteins bound per NiNLP) and Ni-lipid content on the time scales and kinetics of binding are important to various applications such as vaccine development, diagnostic imaging, and drug delivery. We have immobilized hexa-His-tagged Lsr13, a Yersinia pesns transport protein, onto NiNLPs to examine the effect of protein binding stoichiometry and Ni-lipid content on the time scales and kinetics of protein binding by surface plasmon resonance (SPR). Data indicate that the dissociation half-time increases with Ni-lipid content up to a molar concentration of 35% and decreases as the number of bound protein per NiNLP increases. These findings indicate that the kinetics of protein binding are highly dependent on both the number of bound protein per NiNLP and Ni-lipid content. C1 [Blanchette, Craig D.; Fischer, Nicholas O.; Corzett, Michele; Hoeprich, Paul D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. [Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. RP Hoeprich, PD (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM hoeprich2@llnl.gov NR 50 TC 11 Z9 11 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD JUL PY 2010 VL 21 IS 7 BP 1321 EP 1330 DI 10.1021/bc100129s PG 10 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 627GS UT WOS:000280028100024 PM 20586461 ER PT J AU Sickman, JO DiGiorgio, CL Davisson, ML Lucero, DM Bergamaschi, B AF Sickman, James O. DiGiorgio, Carol L. Davisson, M. Lee Lucero, Delores M. Bergamaschi, Brian TI Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California SO BIOGEOCHEMISTRY LA English DT Article DE Rivers; Dissolved organic carbon; Radiocarbon; Sacramento-San Joaquin Delta; XAD resins ID MISSISSIPPI RIVER; BLACK CARBON; PEAT SOILS; MATTER; EXPORT; DELTA; C-14; DEPOSITION; WATER; LAKE AB We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Delta(14)C for DOC was -254aEuro degrees in agricultural drains in the Sacramento-San Joaquin Delta, -218aEuro degrees in the San Joaquin River, -175aEuro degrees in the California State Water Project and -152aEuro degrees in the Sacramento River. The age of bulk DOC transiting the rivers of California's Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured (14)C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Delta(14)C of 91 and 76aEuro degrees for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, -204aEuro degrees, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Delta(14)C values of between -275 and -687aEuro degrees; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California's Central Valley. C1 [Sickman, James O.; Lucero, Delores M.] Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. [DiGiorgio, Carol L.] Calif State Dept Water Resources, Off Water Qual, Sacramento, CA 95814 USA. [Davisson, M. Lee] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bergamaschi, Brian] US Geol Survey, Sacramento, CA USA. RP Sickman, JO (reprint author), Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA. EM jsickman@ucr.edu; caroldi@water.ca.gov; davisson2@llnl.gov; dlucero@ucr.edu; bbergama@usgs.gov RI Bergamaschi, Brian/D-8325-2012 OI Bergamaschi, Brian/0000-0002-9610-5581 FU CALFED; California State Water Contractors FX This study was a collaborative effort of Municipal Water Quality Investigations of the Department of Water Resources (DWR). We specifically thank DWR Field Staff, David Gonzalez, Steven San Julian, Walt Lambert and Arin Conner for assistance with water sampling. We thank the Center For Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory for conducting the radiocarbon measurements. Supporting laboratory analyses were conducted by the Bryte Analytical Laboratory. Funding was provided by the CALFED Bay Delta Program and the California State Water Contractors. NR 55 TC 27 Z9 27 U1 5 U2 43 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 J9 BIOGEOCHEMISTRY JI Biogeochemistry PD JUL PY 2010 VL 99 IS 1-3 BP 79 EP 96 DI 10.1007/s10533-009-9391-z PG 18 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 613ZV UT WOS:000279025100006 ER PT J AU Shah, AR Agarwal, K Baker, ES Singhal, M Mayampurath, AM Ibrahim, YM Kangas, LJ Monroe, ME Zhao, R Belov, ME Anderson, GA Smith, RD AF Shah, Anuj R. Agarwal, Khushbu Baker, Erin S. Singhal, Mudita Mayampurath, Anoop M. Ibrahim, Yehia M. Kangas, Lars J. Monroe, Matthew E. Zhao, Rui Belov, Mikhail E. Anderson, Gordon A. Smith, Richard D. TI Machine learning based prediction for peptide drift times in ion mobility spectrometry SO BIOINFORMATICS LA English DT Article ID PROTEIN-PROTEIN INTERACTIONS; INTRINSIC SIZE PARAMETERS; FLIGHT MASS-SPECTROMETRY; ACCURATE MASS; PHYSICOCHEMICAL PROPERTIES; SOFTWARE PACKAGE; REGRESSION; HYDROPHOBICITY; CLASSIFIERS; MIXTURES AB Motivation: Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics techniques, such as in the elucidation of secondary structure information, identification of post-translational modifications, as well as higher identification rates with reduced experiment times. The high throughput nature of this technique benefits from accurate calculation of cross sections, mobilities and associated drift times of peptides, thereby enhancing downstream data analysis. Here, we present a model that uses physicochemical properties of peptides to accurately predict a peptide's drift time directly from its amino acid sequence. This model is used in conjunction with two mathematical techniques, a partial least squares regression and a support vector regression setting. Results: When tested on an experimentally created high confidence database of 8675 peptide sequences with measured drift times, both techniques statistically significantly outperform the intrinsic size parameters-based calculations, the currently held practice in the field, on all charge states (+2, +3 and +4). C1 [Shah, Anuj R.; Agarwal, Khushbu; Baker, Erin S.; Singhal, Mudita; Ibrahim, Yehia M.; Monroe, Matthew E.; Zhao, Rui; Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Mayampurath, Anoop M.] Indiana Univ, Sch Informat, Bloomington, IN 47408 USA. [Kangas, Lars J.] Pacific NW Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, 999 Battelle Blvd, Richland, WA 99352 USA. EM rds@pnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU National Institutes of Health National Center for Research Resources [RR 18522]; National Institutes of Health National Cancer Institute [R21 CA12619-01]; Washington State Life Sciences Discovery Fund; Pacific Northwest National Laboratory FX National Institutes of Health National Center for Research Resources (RR 18522); National Institutes of Health National Cancer Institute (R21 CA12619-01); Washington State Life Sciences Discovery Fund; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. NR 49 TC 18 Z9 19 U1 2 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 1 PY 2010 VL 26 IS 13 BP 1601 EP 1607 DI 10.1093/bioinformatics/btq245 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 613GN UT WOS:000278967500004 PM 20495001 ER PT J AU Webb-Robertson, BJM Cannon, WR Oehmen, CS Shah, AR Gurumoorthi, V Lipton, MS Waters, KM AF Webb-Robertson, Bobbie-Jo M. Cannon, William R. Oehmen, Christopher S. Shah, Anuj R. Gurumoorthi, Vidhya Lipton, Mary S. Waters, Katrina M. TI A support vector machine model for the prediction of proteotypic peptides for accurate mass and time proteomics (vol 24, pg 1503, 2008) SO BIOINFORMATICS LA English DT Correction ID PROTEIN IDENTIFICATION TECHNOLOGY; AMINO-ACID-SEQUENCES; SPECTROMETRY; SPECTRA; CLASSIFICATION; DATABASE; MS/MS; MS AB Motivation: The standard approach to identifying peptides based on accurate mass and elution time (AMT) compares profiles obtained from a high resolution mass spectrometer to a database of peptides previously identified from tandem mass spectrometry (MS/MS) studies. It would be advantageous, with respect to both accuracy and cost, to only search for those peptides that are detectable by MS (proteotypic). Results: We present a support vector machine (SVM) model that uses a simple descriptor space based on 35 properties of amino acid content, charge, hydrophilicity and polarity for the quantitative prediction of proteotypic peptides. Using three independently derived AMT databases (Shewanella oneidensis, Salmonella typhimurium, Yersinia pestis) for training and validation within and across species, the SVM resulted in an average accuracy measure of similar to 0.83 with an SD of < 0.038. Furthermore, we demonstrate that these results are achievable with a small set of 13 variables and can achieve high proteome coverage. C1 [Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Oehmen, Christopher S.; Shah, Anuj R.; Gurumoorthi, Vidhya; Lipton, Mary S.; Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Webb-Robertson, BJM (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM bj@pnl.gov RI Cannon, William/K-8411-2014 OI Cannon, William/0000-0003-3789-7889 NR 38 TC 28 Z9 29 U1 0 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD JUL 1 PY 2010 VL 26 IS 13 BP 1677 EP 1683 DI 10.1093/bioinformatics/btq251 PG 7 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 613GN UT WOS:000278967500019 PM 20568665 ER PT J AU Zimmermann, EA Launey, ME Ritchie, RO AF Zimmermann, Elizabeth A. Launey, Maximilien E. Ritchie, Robert O. TI The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone SO BIOMATERIALS LA English DT Article DE Human cortical bone; Mixed-mode fracture; Fracture toughness; Crack-growth resistance curve ID PROPAGATION; MECHANISMS; CERAMICS; GROWTH; SPECIMEN; CRITERIA; DUCTILE; BRITTLE; SHEAR AB The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and "weakest" microstructural resistance. Published by Elsevier Ltd. C1 [Zimmermann, Elizabeth A.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zimmermann, Elizabeth A.; Launey, Maximilien E.; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; OI Ritchie, Robert/0000-0002-0501-6998; Zimmermann, Elizabeth/0000-0001-9927-3372 FU National Institute of Health (NIH/NIDCR) through the U.S. Department of Energy [5R01 DE015633, DE-AC02-05CH11231] FX This work was supported by the National Institute of Health (NIH/NIDCR) under grant no. 5R01 DE015633 through the U.S. Department of Energy under contract No. DE-AC02-05CH11231. The authors wish to thank Dr. Tony P. Tomsia, at the Lawrence Berkeley National Laboratory, for many helpful discussions and Professor Tony M. Keaveny and Mike Jekir, of the Mechanical Engineering Department at the University of California, Berkeley, for graciously allowing us to use their facilities to machine samples for this project. NR 36 TC 29 Z9 30 U1 1 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD JUL PY 2010 VL 31 IS 20 BP 5297 EP 5305 DI 10.1016/j.biomaterials.2010.03.056 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 608GP UT WOS:000278571800002 PM 20409579 ER PT J AU Li, CL Knierim, B Manisseri, C Arora, R Scheller, HV Auer, M Vogel, KP Simmons, BA Singh, S AF Li, Chenlin Knierim, Bernhard Manisseri, Chithra Arora, Rohit Scheller, Henrik V. Auer, Manfred Vogel, Kenneth P. Simmons, Blake A. Singh, Seema TI Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification SO BIORESOURCE TECHNOLOGY LA English DT Article DE Pretreatment; Ionic liquid; Dilute acid; Comparison; Enzymatic saccharification ID CORN STOVER; LIME PRETREATMENT; CELLULOSE; HYDROLYSIS; LIGNIN; SUGAR; LIGNOCELLULOSE; TECHNOLOGIES; ENHANCEMENT; DEGRADATION AB The efficiency of two biomass pretreatment technologies, dilute acid hydrolysis and dissolution in an ionic liquid, are compared in terms of delignification, saccharification efficiency and saccharide yields with switchgrass serving as a model bioenergy crop. When subject to ionic liquid pretreatment (dissolution and precipitation of cellulose by anti-solvent) switchgrass exhibited reduced cellulose crystallinity, increased surface area, and decreased lignin content compared to dilute acid pretreatment. Pretreated material was characterized by powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and chemistry methods. Ionic liquid pretreatment enabled a significant enhancement in the rate of enzyme hydrolysis of the cellulose component of switchgrass, with a rate increase of 16.7-fold, and a glucan yield of 96.0% obtained in 24 h. These results indicate that ionic liquid pretreatment may offer unique advantages when compared to the dilute acid pretreatment process for switchgrass. However, the cost of the ionic liquid process must also be taken into consideration. Published by Elsevier Ltd. C1 [Li, Chenlin; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94550 USA. [Li, Chenlin; Knierim, Bernhard; Manisseri, Chithra; Arora, Rohit; Scheller, Henrik V.; Auer, Manfred; Simmons, Blake A.; Singh, Seema] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Phys Biosci Div, Emeryville, CA USA. [Vogel, Kenneth P.] Univ Nebraska, USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA. RP Singh, S (reprint author), Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA 94550 USA. EM seesing@sandia.gov RI Scheller, Henrik/A-8106-2008; OI Scheller, Henrik/0000-0002-6702-3560; Li, Chenlin/0000-0002-0793-0505; Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The authors thank Novozymes for the gift of the cellulase cocktails used in this work. The authors thank Dr. Shunlin Wang from Bruker Optics, Drs. Andreia M Smith and Lan Sun from the Joint BioEnergy Institute for the suggestions and discussion on FTIR and Raman analysis. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. NR 42 TC 423 Z9 433 U1 24 U2 209 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2010 VL 101 IS 13 SI SI BP 4900 EP 4906 DI 10.1016/j.biortech.2009.10.066 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 585YT UT WOS:000276867500019 PM 19945861 ER PT J AU Sathitsuksanoh, N Zhu, ZG Ho, TJ Bai, MD Zhang, YHP AF Sathitsuksanoh, Noppadon Zhu, Zhiguang Ho, Tsung-Jen Bai, Ming-Der Zhang, Yi-Heng Percival TI Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings SO BIORESOURCE TECHNOLOGY LA English DT Article DE Bamboo; Biomass saccharification; Cellulose accessibility to cellulase; Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF); Enzymatic cellulose hydrolysis ID SUPRAMOLECULAR STRUCTURE; LIGNOCELLULOSE; ACID; RECALCITRANCE; ACCESSIBILITY; DISSOLUTION; ADSORPTION; BIOFUELS; ECONOMY AB The modified cellulose solvent- (concentrated phosphoric acid) and organic solvent- (95% ethanol) based lignocellulose fractionation (COSLIF) was applied to a naturally-dry moso bamboo sample. The biomass dissolution conditions were 50 degrees C, 1 atm for 60 min. Glucan digestibility was 88.2% at an ultra-low cellulase loading of one filter paper unit per gram of glucan. The overall glucose and xylose yields were 86.0% and 82.6%, respectively. COSLIF efficiently destructed bamboo's fibril structure, resulting in a 33-fold increase in cellulose accessibility to cellulase (CAC) from 0.27 to 9.14 m(2) per gram of biomass. Cost analysis indicated that a 15-fold decrease in use of costly cellulase would be of importance to decrease overall costs of biomass saccharification when cellulase costs are higher than $0.15 per gallon of cellulosic ethanol. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Yi-Heng Percival] Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Yi-Heng Percival] Virginia Polytech Inst & State Univ, ICTAS, Blacksburg, VA 24061 USA. [Ho, Tsung-Jen] Ind Technol Res Inst, Pilot Proc & Applicat Dept, Div Chem Engn, Mat Res Lab, Hsinchu 30011, Taiwan. [Ho, Tsung-Jen] Ind Technol Res Inst, Pilot Proc & Applicat Dept, Div Chem Engn, Chem Res Lab, Hsinchu 30011, Taiwan. [Ho, Tsung-Jen] Natl Cent Univ, Dept Chem & Mat Engn, Chungli 32001, Taiwan. [Bai, Ming-Der] Ind Technol Res Inst, BioFuel Dept, New Energy Technol Div, Energy Res Lab, Hsinchu 31040, Taiwan. [Bai, Ming-Der] Ind Technol Res Inst, BioFuel Dept, New Energy Technol Div, Environm Res Lab, Hsinchu 31040, Taiwan. [Zhang, Yi-Heng Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014; Zhu, Zhiguang/I-3936-2016 OI sathitsuksanoh, noppadon/0000-0003-1521-9155; FU DOD [W911SR-08-P-0021]; USDA; DOE BioEnergy Science Center; Dupont Young Professor Award; ICTAS FX Support for this work was provided to YHPZ from ITRI of Taiwan, partially from the DOD Grant (W911SR-08-P-0021), USDA-sponsored Bioprocessing and Biodesign Center, DOE BioEnergy Science Center, Dupont Young Professor Award, and ICTAS. NS was partially supported by the ICTAS scholar program. NR 20 TC 55 Z9 59 U1 4 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2010 VL 101 IS 13 SI SI BP 4926 EP 4929 DI 10.1016/j.biortech.2009.09.081 PG 4 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 585YT UT WOS:000276867500023 PM 19854047 ER PT J AU Datta, S Bals, BD Lin, YPJ Negri, MC Datta, R Pasieta, L Ahmad, SF Moradia, AA Dale, BE Snyder, SW AF Datta, Saurav Bals, B. D. Lin, Yupo J. Negri, M. C. Datta, R. Pasieta, L. Ahmad, Sabeen F. Moradia, Akash A. Dale, B. E. Snyder, Seth W. TI An attempt towards simultaneous biobased solvent based extraction of proteins and enzymatic saccharification of cellulosic materials from distiller's grains and solubles SO BIORESOURCE TECHNOLOGY LA English DT Article DE Distiller's grains and solubles (DGS); Biobased solvents; Protein extraction; Enzymatic hydrolysis; AFEX ID FIBER EXPLOSION AFEX; CORN STOVER; PRETREATMENT; HYDROLYSIS; FRACTIONATION; OPTIMIZATION; SOLIDS; ZEIN; DDGS AB Distiller's grains and solubles (DGS) is the major co-product of corn dry mill ethanol production, and is composed of 30% protein and 30-40% polysaccharides. We report a strategy for simultaneous extraction of protein with food-grade biobased solvents (ethyl lactate, D-limonene, and distilled methyl esters) and enzymatic saccharification of glucan in DGS. This approach would produce a high-value animal feed while simultaneously producing additional sugars for ethanol production. Preliminary experiments on protein extraction resulted in recovery of 15-45% of the protein, with hydrophobic biobased solvents obtaining the best results. The integrated hydrolysis and extraction experiments showed that biobased solvent addition did not inhibit hydrolysis of the cellulose. However, only 25-33% of the total protein was extracted from DGS. and the extracted protein largely resided in the aqueous phase, not the solvent phase. We hypothesize that the hydrophobic solvent could not access the proteins surrounded by the aqueous phase inside the fibrous structure of DGS due to poor mass transfer. Further process improvements are needed to overcome this obstacle. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Datta, Saurav; Lin, Yupo J.; Negri, M. C.; Ahmad, Sabeen F.; Moradia, Akash A.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Bals, B. D.; Dale, B. E.] Michigan State Univ, Dept Chem Engn & Mat Sci, Biomass Convers Res Lab, E Lansing, MI 48824 USA. [Datta, R.; Pasieta, L.] Vertec BioSolvents Inc, Downers Grove, IL USA. [Moradia, Akash A.] Illinois Math & Sci Acad, Aurora, IL USA. RP Snyder, SW (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM seth@anl.gov OI Snyder, Seth/0000-0001-6232-1668 FU US Dept. of Agriculture - CSREES [68-3A75-6-505] FX The authors would like to acknowledge the US Dept. of Agriculture - CSREES Grant # 68-3A75-6-505 for financial support of this research. Argonne is operated by The UChicago-Argonne LLC for the US Dept. of Energy under contract DE-AC02-06CH11357. We would also like to thank the Woodbury, MI ethanol facility formerly owned by US Bioenergy for donating the DGS, and Genencor, a Danisco Division, for donating the enzymes used in this study. NR 22 TC 5 Z9 5 U1 1 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2010 VL 101 IS 14 BP 5444 EP 5448 DI 10.1016/j.biortech.2010.02.039 PG 5 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 594ZS UT WOS:000277581100054 PM 20206501 ER PT J AU Zhang, XZ Sathitsuksanoh, N Zhang, YHP AF Zhang, Xiao-Zhou Sathitsuksanoh, Noppadon Zhang, Y-H. P. TI Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans: Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase SO BIORESOURCE TECHNOLOGY LA English DT Article DE Clostridium phytofermentans; Cellulase; Family 9 glycoside hydrolase; Processive endoglucanase; Synergy ID CELLULOSE-BINDING DOMAINS; ENZYMATIC-HYDROLYSIS; CRYSTALLINE CELLULOSE; AVICELASE-I; CELLULOLYTICUM; THERMOCELLUM; CELLODEXTRINS; STERCORARIUM; CELLULASES; BIOFUELS AB The glycoside hydrolase family 9 cellulase (Cel9) from Clostridium phytofermentans has a multi-modular structure and is essential for cellulose hydrolysis. In order to facilitate production and purification of Cel9, recombinant Cel9 was functionally expressed in Escherichia coli. Cel9 exhibited maximum activity at pH 6.5 and 65 degrees C on carboxymethyl cellulose in a 10-min reaction period. The hydrolysis products on regenerated amorphous cellulose (RAC) were cellotetraose (a major product), cellotriose, cellobiose and glucose, and 71-80% of the reducing sugars produced by Cel9 were in soluble form, suggesting that Cel9 was a processive endoglucanase. The highest synergy between C. phytofermentans Cel9 and C. phytofermentans cellobiohydrolase Cel48 on Avicel was about 1.8 at a ratio of about 1:5. Cel9 alone was sufficient to solublize filter paper while Cel48 was not; however, it enhanced the solublization process along with Cel9 synergistically. This study provided useful information for understanding of the cellulose hydrolysis mechanism of this cellulolytic bacterium with potential industrial importance. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Zhang, Xiao-Zhou; Sathitsuksanoh, Noppadon; Zhang, Y-H. P.] Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Sathitsuksanoh, Noppadon; Zhang, Y-H. P.] Virginia Polytech Inst & State Univ, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Zhang, Y-H. P.] Dept Energy, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI ZHANG, XIAOZHOU/A-2706-2009; sathitsuksanoh, noppadon/O-6305-2014 OI sathitsuksanoh, noppadon/0000-0003-1521-9155 FU DOE BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; USDA Bioprocessing and Biodesign Center; DuPont Young Professor Award; ICTAS FX This work was supported mainly by the DOE BioEnergy Science Center. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the USDA Bioprocessing and Biodesign Center and the DuPont Young Professor Award. Noppadon Sathitsuksanoh was partially supported by the ICTAS scholar program. NR 33 TC 29 Z9 30 U1 4 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2010 VL 101 IS 14 BP 5534 EP 5538 DI 10.1016/j.biortech.2010.01.152 PG 5 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 594ZS UT WOS:000277581100067 PM 20206499 ER PT J AU Yazdanpanah, F Sokhansanj, S Lau, AK Lim, CJ Bi, X Melin, S Afzal, M AF Yazdanpanah, F. Sokhansanj, S. Lau, A. K. Lim, C. J. Bi, X. Melin, S. Afzal, M. TI Permeability of wood pellets in the presence of fines SO BIORESOURCE TECHNOLOGY LA English DT Article DE Wood pellets; Fines content; Air flow; Pressure drop; Predicted values ID AIR-FLOW; CANOLA RAPESEED; PRESSURE; RESISTANCE AB Broken pellets and fines are produced when pellets are handled. The resistance to air flow was measured for clean pellets and for pellets mixed with 1-20% broken pellets (fines). A pellet diameter was 6 mm. The lengths ranged from 6 to 12 mm. Clean pellets were defined as particles that remained on a 4 mm screen. A typical sieve analysis showed 30% of the mass of particles that passed through the 4 mm screen was smaller than 1 mm. The airflow rates used in the experiment ranged from 0.004 to 0.357 ms(-1). The corresponding pressure drop ranged from 1.9 to 271 Pa m(-1) for clean pellets, from 4.8 to 1100 Pa m(-1) for 10% fines content, and from 7.9 to 1800 Pa m(-1) for 20% fines content. Coefficients of Hukill and Ives' equation were estimated for clean pellets and a multiplier was defined to calculate pressure drop for pellets mixed with fines. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Yazdanpanah, F.; Sokhansanj, S.; Lau, A. K.; Lim, C. J.; Bi, X.; Melin, S.] Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37381 USA. [Melin, S.] Delta Res Corp, Delta, BC, Canada. [Afzal, M.] Univ New Brunswick, Fredericton, NB, Canada. RP Lau, AK (reprint author), Univ British Columbia, Chem & Biol Engn Dept, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM aklau@chbe.ubc.ca RI Lau, Anthony/J-8519-2015 FU Natural Sciences and Engineering Research Council of Canada (NSERC); Wood Pellets Association of Canada; BC Ministry of Forest and Range; Princeton Co-generation Corporation FX The authors wish to acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC), the Wood Pellets Association of Canada, and the BC Ministry of Forest and Range. Thanks are also extended to Princeton Co-generation Corporation for donating the wood pellets for this project. NR 20 TC 5 Z9 5 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD JUL PY 2010 VL 101 IS 14 BP 5565 EP 5570 DI 10.1016/j.biortech.2010.01.096 PG 6 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 594ZS UT WOS:000277581100072 PM 20223658 ER PT J AU Henry, CS Overbeek, R Stevens, RL AF Henry, Christopher S. Overbeek, Ross Stevens, Rick L. TI Building the blueprint of life SO BIOTECHNOLOGY JOURNAL LA English DT Review DE Bacillus subtilis; Escherichia coli; Minimal organism; Mycoplasma genitalium; Synthetic biology ID TRANSPOSON MUTANT LIBRARY; MINIMAL-GENE-SET; ESCHERICHIA-COLI; BACILLUS-SUBTILIS; MYCOPLASMA-GENITALIUM; HAEMOPHILUS-INFLUENZAE; METABOLIC MODEL; REDUCED-GENOME; IDENTIFICATION; GROWTH AB With recent breakthroughs in experimental microbiology making it possible to synthesize and implant an entire genome to create a living cell, the challenge of constructing a working blueprint for the first truly minimal synthetic organism is more important than ever. Here we review the significant progress made in the design and creation of a minimal organism. We discuss how comparative genomics, gene essentiality data, naturally small genomes, and metabolic modeling are all being applied to produce a catalogue of the biological functions essential for life. We compare the minimal gene sets from three published sources with functions identified in 13 existing gene essentiality datasets. We examine how genome-scale metabolic models have been applied to design a minimal metabolism for growth in simple and complex media. Additionally, we survey the progress of efforts to construct a minimal organism, either through implementation of combinatorial deletions in Bacillus subtilis and Escherichia coli or through the synthesis and implantation of synthetic genomes. C1 [Henry, Christopher S.; Stevens, Rick L.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Henry, Christopher S.; Stevens, Rick L.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Henry, CS (reprint author), Univ Chicago, Computat Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM cshenry@uchicago.edu FU U.S. Department of Energy [DE-ACO2-06CH11357] FX This work was supported in part by the U.S. Department of Energy under contract DE-ACO2-06CH11357. We thank the entire SEED development team for advice and assistance in using the SEED annotation system. We thank Kosei Tanaka and Philippe Noirot for data on the top-down B. subtilis minimization project. NR 52 TC 14 Z9 15 U1 4 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1860-6768 EI 1860-7314 J9 BIOTECHNOL J JI Biotechnol. J. PD JUL PY 2010 VL 5 IS 7 BP 695 EP 704 DI 10.1002/biot.201000076 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 634YP UT WOS:000280622500006 PM 20665643 ER PT J AU Weigelt, B Lo, AT Park, CC Gray, JW Bissell, MJ AF Weigelt, Britta Lo, Alvin T. Park, Catherine C. Gray, Joe W. Bissell, Mina J. TI HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment SO BREAST CANCER RESEARCH AND TREATMENT LA English DT Article DE Breast cancer cell lines; Drug response; Targeted therapy; 3D cell culture; HER2 signaling ID MAMMARY EPITHELIAL-CELLS; 3-DIMENSIONAL CULTURE; EXTRACELLULAR-MATRIX; BASEMENT-MEMBRANE; TISSUE ARCHITECTURE; TUMOR-INDUCTION; IN-VIVO; TRASTUZUMAB; GROWTH; RESISTANCE AB Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of beta 1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPK-pathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies. C1 [Weigelt, Britta; Lo, Alvin T.; Gray, Joe W.; Bissell, Mina J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Park, Catherine C.] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Radiat Oncol, San Francisco, CA 94143 USA. RP Weigelt, B (reprint author), Canc Res UK London Res Inst, London, England. EM Britta.Weigelt@cancer.org.uk; MJBissell@lbl.gov FU Dutch Cancer Society; U.S. Department of Energy, Office of Biological and Environmental Research [DE-AC02-05CH1123]; Distinguished Fellow Award; Low Dose Radiation Program; Office of Health and Environmental Research [03-76SF00098]; National Cancer Institute [5 R01CA064786, R01CA057621, U54CA126552, U54CA112970]; U.S. Department of Defense [W81XWH0810736]; American Cancer Society [RSG-07-1110-01-CCE]; National Institutes of Health [R01CA124891]; Office of Science, Office of Biological & Environmental Research, of the US Department of Energy [DE-AC02-05CH1123]; National Institutes of Health, National Cancer Institute [U54CA112970, P50CA58207]; SmithKline Beecham Corporation FX BW was supported by a postdoctoral fellowship of the Dutch Cancer Society. The work from MJB's laboratory was supported by grants from the U.S. Department of Energy, Office of Biological and Environmental Research (DE-AC02-05CH1123), a Distinguished Fellow Award, Low Dose Radiation Program, Office of Health and Environmental Research (03-76SF00098), National Cancer Institute awards 5 R01CA064786, R01CA057621, U54CA126552 and U54CA112970 and by U.S. Department of Defense (W81XWH0810736). CP was supported by grants from the American Cancer Society (RSG-07-1110-01-CCE) and National Institutes of Health (R01CA124891); JWG by the Director, Office of Science, Office of Biological & Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH1123, by the National Institutes of Health, National Cancer Institute grants P50CA58207 and U54CA112970, and by the SmithKline Beecham Corporation grant. NR 39 TC 121 Z9 122 U1 0 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0167-6806 J9 BREAST CANCER RES TR JI Breast Cancer Res. Treat. PD JUL PY 2010 VL 122 IS 1 BP 35 EP 43 DI 10.1007/s10549-009-0502-2 PG 9 WC Oncology SC Oncology GA 608WD UT WOS:000278615800005 PM 19701706 ER PT J AU Nam, JM Onodera, Y Bissell, MJ Park, CC AF Nam, Jin-Min Onodera, Yasuhito Bissell, Mina J. Park, Catherine C. TI Breast Cancer Cells in Three-dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin alpha 5 beta 1 and Fibronectin SO CANCER RESEARCH LA English DT Article ID BETA(1) INTEGRIN; IN-VITRO; SIGNAL-TRANSDUCTION; EPITHELIAL-CELLS; CARCINOMA CELLS; MELANOMA-CELLS; EXPRESSION; SURVIVAL; INHIBITION; GROWTH AB Tactics to selectively enhance cancer radioresponse are of great interest. Cancer cells actively elaborate and remodel their extracellular matrix (ECM) to aid in survival and progression. Previous work has shown that beta 1-integrin inhibitory antibodies can enhance the growth-inhibitory and apoptotic responses of human breast cancer cell lines to ionizing radiation, either when cells are cultured in three-dimensional laminin-rich ECM (3D IrECM) or grown as xenografts in mice. Here, we show that a specific alpha heterodimer of beta 1-integrin preferentially mediates a prosurvival signal in human breast cancer cells that can be specifically targeted for therapy. 3D IrECM culture conditions were used to compare alpha-integrin heterodimer expression in malignant and nonmalignant cell lines. Under these conditions, we found that expression of alpha 5 beta 1-integrin was upregulated in malignant cells compared with nonmalignant breast cells. Similarly, we found that normal and oncofetal splice variants of fibronectin, the primary ECM ligand of alpha 5 beta 1-integrin, were also strikingly upregulated in malignant cell lines compared with nonmalignant acini. Cell treatment with a peptide that disrupts the interactions of alpha 5 beta 1-integrin with fibronectin promoted apoptosis in malignant cells and further heightened the apoptotic effects of radiation. In support of these results, an analysis of gene expression array data from breast cancer patients revealed an association of high levels of alpha 5-integrin expression with decreased survival. Our findings offer preclinical validation of fibronectin and alpha 5 beta 1-integrin as targets for breast cancer therapy. Cancer Res; 70(13); 5238-48. (C) 2010 AACR. C1 [Park, Catherine C.] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Radiat Oncol, San Francisco, CA 94143 USA. [Nam, Jin-Min; Onodera, Yasuhito; Bissell, Mina J.; Park, Catherine C.] Ernest Orlando Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [Onodera, Yasuhito] Hokkaido Univ, Grad Sch Med, Dept Mol Biol, Sapporo, Hokkaido, Japan. RP Park, CC (reprint author), Univ Calif San Francisco, Ctr Comprehens Canc, Dept Radiat Oncol, 1600 Div St H1031, San Francisco, CA 94143 USA. EM cpark@radonc.ucsf.edu RI Nam, Jin-Min/D-6468-2012; Onodera, Yasuhito/D-7108-2012 FU NIH [1R01CA124891]; American Cancer Society [RSG-07-1110-01-CCE]; U.S., DOE, Office of Biological and Environmental Research [DE-AC02-05CH1123]; Distinguished Fellow Award; Low Dose Radiation Program; Office of Health and Environmental Research, Health Effects Division [03-76SF00098]; NIH-National Cancer Institute [R37CA064786, R01CA057621, U54CA126552, U54CA143836, U01CA143233, U54CA112970]; U.S. DOD [W81XWH0810736] FX NIH grant 1R01CA124891 (C.C. Park); the American Cancer Society RSG-07-1110-01-CCE (C.C. Park); grants from the U.S., DOE, Office of Biological and Environmental Research (DE-AC02-05CH1123), a Distinguished Fellow Award and Low Dose Radiation Program, and the Office of Health and Environmental Research, Health Effects Division (03-76SF00098); NIH-National Cancer Institute awards R37CA064786, R01CA057621, U54CA126552, U54CA143836, U01CA143233, and U54CA112970; and by the U.S. DOD grant W81XWH0810736 (M.J. Bissell). NR 50 TC 70 Z9 72 U1 1 U2 11 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JUL 1 PY 2010 VL 70 IS 13 BP 5238 EP 5248 DI 10.1158/0008-5472.CAN-09-2319 PG 11 WC Oncology SC Oncology GA 618ZY UT WOS:000279396800007 PM 20516121 ER PT J AU Carpenter, RD Natarajan, A Lau, EY Andrei, M Solano, DM Lightstone, FC DeNardo, SJ Lam, KS Kurth, MJ AF Carpenter, Richard D. Natarajan, Arutselvan Lau, Edmond Y. Andrei, Mirela Solano, Danielle M. Lightstone, Felice C. DeNardo, Sally J. Lam, Kit S. Kurth, Mark J. TI Halogenated Benzimidazole Carboxamides Target Integrin alpha(4)beta(1) on T-Cell and B-Cell Lymphomas SO CANCER RESEARCH LA English DT Article ID CHRONIC LYMPHOCYTIC-LEUKEMIA; COMBINATORIAL CHEMISTRY; PSI-BLAST; PROTEINS; CANCER; MODEL; ARYL; RADIOIODINATION; THERAPEUTICS; FIBRONECTIN AB Integrin alpha(4)beta(1) is an attractive but poorly understood target for selective diagnosis and treatment of T-cell and B-cell lymphomas. This report focuses on the rapid microwave preparation, structure-activity relationships, and biological evaluation of medicinally pertinent benzimidazole heterocycles as integrin alpha(4)beta(1) antagonists. We documented tumor uptake of derivatives labeled with I-125 in xenograft murine models of B-cell lymphoma. Molecular homology models of integrin alpha(4)beta(1) predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. The high-affinity halogenated ligands identified offer attractive tools for medicinal and biological use, including fluoro and iodo derivatives with potential radiodiagnostic (F-18) or radiotherapeutic (I-131) applications, or chloro and bromo analogues that could provide structural insights into integrin-ligand interactions through photoaffinity, cross-linking/mass spectroscopy, and X-ray crystallographic studies. Cancer Res; 70(13); 5448-56. (C) 2010 AACR. C1 [Carpenter, Richard D.; Solano, Danielle M.; Kurth, Mark J.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Natarajan, Arutselvan; DeNardo, Sally J.] Univ Calif, Davis Sch Med, UC Davis Canc Ctr, Div Hematol & Oncol,Dept Internal Med, Sacramento, CA USA. [Natarajan, Arutselvan; DeNardo, Sally J.] Univ Calif, Davis Sch Med, UC Davis Canc Ctr, Div Radiodiagn & Therapy,Dept Internal Med, Sacramento, CA USA. [Andrei, Mirela; Lam, Kit S.] Univ Calif Davis, Sch Med, UC Davis Canc Ctr, Div Hematol & Oncol,Dept Internal Med, Sacramento, CA 95817 USA. [Lau, Edmond Y.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. RP Kurth, MJ (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. EM mjkurth@ucdavis.edu FU National Cancer Institute [U19CA113298]; National Science Foundation [CHE-0614756, CHE-0443516, CHE-9808183]; National Institute for General Medical Sciences [RO1-GM076151]; American Chemical Society's Division of Medicinal Chemistry, Sanofi-Aventis; Howard Hughes Medical Institute; U.C. Davis R.B. Miller Graduate Fellowship; Alfred P. Sloan Minority Ph.D. Program; U.C. Davis Alliance for Graduate Education; U.S. Department of Energy [DE-AC52-07NA27344] FX National Cancer Institute (U19CA113298), National Science Foundation (CHE-0614756), National Institute for General Medical Sciences (RO1-GM076151), American Chemical Society's Division of Medicinal Chemistry Predoctoral Fellowship sponsored by Sanofi-Aventis (R. D. Carpenter), Howard Hughes Medical Institute Med into Grad Fellowship (R. D. Carpenter), U.C. Davis R.B. Miller Graduate Fellowship and Outstanding Dissertation Award (R. D. Carpenter), Alfred P. Sloan Minority Ph.D. Program (D. M. Solano), and U.C. Davis Alliance for Graduate Education and the Professoriate Advantage Program (D. M. Solano). NMR spectrometers were funded in part by the National Science Foundation (CHE-0443516 and CHE-9808183). A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 47 TC 7 Z9 7 U1 0 U2 6 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 J9 CANCER RES JI Cancer Res. PD JUL 1 PY 2010 VL 70 IS 13 BP 5448 EP 5456 DI 10.1158/0008-5472.CAN-09-3736 PG 9 WC Oncology SC Oncology GA 618ZY UT WOS:000279396800027 PM 20530664 ER PT J AU Michelsen, HA Schrader, PE Goulay, F AF Michelsen, Hope A. Schrader, Paul E. Goulay, Fabien TI Wavelength and temperature dependences of the absorption and scattering cross sections of soot SO CARBON LA English DT Article ID LASER-INDUCED INCANDESCENCE; TURBULENT-DIFFUSION FLAMES; LONG RESIDENCE TIMES; THERMAL-EXPANSION; OPTICAL-PROPERTIES; OVERFIRE SOOT; EXTINCTION COEFFICIENTS; CARBONACEOUS PARTICLES; REFRACTIVE-INDEXES; GRAPHITE AB We have inferred the wavelength and temperature dependence of the absorption and scattering cross sections of mature soot in an ethylene flame from laser-induced incandescence (LII) and transmittance measurements at 532 and 1064 nm. The LH measurements indicate that the emissivity of soot in a flame deviates from the expected 1/lambda dependence. Combining the LII results with transmittance measurements yields single-scattering albedos of 0.058-0.077 at 1064 nm and 0.22-0.29 at 532 nm and values of F(m)/E(m) of 2.2-2.9 at 532 nm and 2.4-3.3 at 1064 nm. These values confirm that scattering must be taken into account when interpreting extinction data at these wavelengths. Our results also indicate increases in the absorption cross section and decreases in the scattering cross section with increasing fluence at low fluences. The increase in absorption cross section is consistent with increases in primary particle size with increasing particle temperature during laser heating. The decrease in scattering cross section could be attributable to an increase in the radius of gyration or a decrease in the fractal dimension of the aggregate with increasing temperature. Alternatively these trends might be the result of changes to the optical properties of the particles with increasing temperature. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Michelsen, Hope A.; Schrader, Paul E.; Goulay, Fabien] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, POB 969,MS 9055, Livermore, CA 94551 USA. EM hamiche@sandia.gov FU Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences (BES); U.S. Department of Energy (DOE); National Nuclear Security Administration [DE-AC04-94-AL85000] FX We thank Mark Dansson for recording preliminary data for this study and Daniel Strong for renditions of the experimental set-up. This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences (BES), the U.S. Department of Energy (DOE). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 60 TC 26 Z9 26 U1 5 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUL PY 2010 VL 48 IS 8 BP 2175 EP 2191 DI 10.1016/j.carbon.2010.02.014 PG 17 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 597SD UT WOS:000277780500005 ER PT J AU Qi, L Huang, JY Feng, J Li, J AF Qi, Liang Huang, Jian Yu Feng, Ji Li, Ju TI In situ observations of the nucleation and growth of atomically sharp graphene bilayer edges SO CARBON LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON NANOTUBES; ELECTRONIC-PROPERTIES; BALLISTIC TRANSPORT; NANORIBBONS; METALS; GAS AB Using in situ transmission electron microscopy, we observed the nucleation and growth of graphene bilayer edges (BLE) with "fractional nanotube"-like structure from the reaction of graphene monolayer edges (MLEs). Most BLEs showed atomically sharp zigzag or armchair crystallographic facets in contrast to the atomically rough MLEs with irregular shapes, suggesting that the BLEs are much more stable and crystallographically anisotropic. Our direct observations and theoretical studies (geometric models and ab initio calculations) provide important clues for tailoring the edge structure and transport properties of multi-layer graphene. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Qi, Liang; Feng, Ji; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Li, J (reprint author), Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM liju@seas.upenn.edu RI Feng, Ji/B-6775-2009; Qi, Liang/A-3851-2010; Huang, Jianyu/C-5183-2008; Li, Ju/A-2993-2008 OI Feng, Ji/0000-0003-1944-718X; Qi, Liang/0000-0002-0201-9333; Li, Ju/0000-0002-7841-8058 FU US Department of Energy [DE-AC04-94AL85000, DOE-DE-FG02-06ER46330]; NSF [CMMI-0728069]; Honda Research Institute USA; AFOSR; ONR [N00014-05-1-0504] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. J.L. would like to acknowledge support by NSF CMMI-0728069, Honda Research Institute USA, DOE-DE-FG02-06ER46330, AFOSR, and ONR N00014-05-1-0504. NR 29 TC 22 Z9 22 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUL PY 2010 VL 48 IS 8 BP 2354 EP 2360 DI 10.1016/j.carbon.2010.03.018 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 597SD UT WOS:000277780500026 ER PT J AU Bhat, VV Contescu, CI Gallego, NC AF Bhat, Vinay V. Contescu, Cristian I. Gallego, Nidia C. TI Kinetic effect of Pd additions on the hydrogen uptake of chemically-activated ultramicroporous carbon SO CARBON LA English DT Letter AB The effect of mixing chemically-activated ultramicroporous carbon (UMC) with Pd nano-powder is investigated. Results show that Pd addition doubles the rate of hydrogen uptake, but does not enhance the hydrogen capacity or improve desorption kinetics. The effect of Pd on the rate of hydrogen adsorption supports the existence of the hydrogen spillover mechanism in the Pd - UMC system. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Bhat, Vinay V.; Contescu, Cristian I.; Gallego, Nidia C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Contescu, CI (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM contescuci@ornl.gov RI Contescu, Cristian/E-8880-2011; OI Contescu, Cristian/0000-0002-7450-3722; Gallego, Nidia/0000-0002-8252-0194 NR 9 TC 14 Z9 14 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD JUL PY 2010 VL 48 IS 8 BP 2361 EP 2364 DI 10.1016/j.carbon.2010.02.025 PG 4 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 597SD UT WOS:000277780500027 ER PT J AU Kliewer, CJ Somorjai, GA AF Kliewer, Christopher J. Somorjai, Gabor A. TI Structure Effects on Pyridine Hydrogenation over Pt(111) and Pt(100) Studied with Sum Frequency Generation Vibrational Spectroscopy SO CATALYSIS LETTERS LA English DT Article DE Pyridine hydrogenation; Pt(111); Pt(100); Catalysis; Nanoparticles ID SURFACES AB Sum frequency generation vibrational spectroscopy was applied in-situ during pyridine hydrogenation (10 Torr pyridine and 100 Torr hydrogen) over two well-defined platinum single crystals, Pt(100) and Pt(111). The surface reaction intermediates were clarified. Pyridine adsorbs to both crystals vertically, with in-tact aromatic ring. Over Pt(100) 1,4-dihydropyridine bound through the nitrogen was observed as a reaction intermediate, while over Pt(111) this was not detected. Upon heating the crystals from 300 to 350 K, the pyridine ring lies down flat on the catalyst surfaces. Over Pt(111) a tilted piperidine product is bound to the surface. Ring-cracking products were not observed over either surface. C1 [Kliewer, Christopher J.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kliewer, Christopher J.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM somorjai@socrates.berkeley.edu RI Kliewer, Christopher/E-4070-2010 OI Kliewer, Christopher/0000-0002-2661-1753 FU Director, Office of Energy Research, Office of Basic Energy Sciences; Materials Sciences Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, and Materials Sciences Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 13 TC 9 Z9 9 U1 2 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X J9 CATAL LETT JI Catal. Lett. PD JUL PY 2010 VL 137 IS 3-4 BP 118 EP 122 DI 10.1007/s10562-010-0353-9 PG 5 WC Chemistry, Physical SC Chemistry GA 611PQ UT WOS:000278832400002 ER PT J AU Datye, A Koneti, S Gomes, G Wu, KH Lin, HT AF Datye, Amit Koneti, Srinivasarao Gomes, George Wu, Kuang-Hsi Lin, Hua-Tay TI Synthesis and characterization of aluminum oxide boron carbide coatings by air plasma spraying SO CERAMICS INTERNATIONAL LA English DT Article DE Air plasma spraying; Alumina; Boron carbide; Thermal diffusivity; Vickers hardness ID MECHANICAL-PROPERTIES; NANOCRYSTALLINE POWDERS; MICROSTRUCTURE; COMPOSITES; CERAMICS; NANOCOMPOSITES; STRESS AB Aluminum oxide (Al(2)O(3)) boron carbide (B(4)C) composites have been proposed for use as cutting tools as well as in high temperature applications due to their high hardness and fracture toughness. The air plasma spraying method was used to fabricate the composite coatings of Al(2)O(3) and B(4)C. Three different Al(2)O(3):B(4)C composition ratios of 90:10, 80:20, and 70:30 by weight were plasma sprayed on plain carbon steel substrates. The effect of B(4)C content on microstructure, hardness, porosity and thermal diffusivity of the coatings were studied using scanning electron microscopy (SEM), microhardness testing, X-ray diffraction (XRD), and the flash diffusivity method. The plasma spray parameters were optimized in order to achieve a theoretical density of approximately 90%. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved. C1 [Datye, Amit; Koneti, Srinivasarao; Gomes, George; Wu, Kuang-Hsi] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA. [Lin, Hua-Tay] Oak Ridge Natl Lab, Ceram Sci & Technol Grp, Oak Ridge, TN 37831 USA. RP Wu, KH (reprint author), Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA. EM wu@fiu.edu FU Office of Naval Research (ONR) [N000140610131]; ONR FX The authors would like acknowledge the support of the Office of Naval Research (ONR) Grant Number #N000140610131 and Dr. I. Perez of ONR for his support. A special thanks to Dr. Agarwal and the PFL Group at Florida International University for the use of the Plasma Spray Equipment. The authors wish to thank Walter McKinley for his help in preparing this manuscript. NR 27 TC 7 Z9 7 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0272-8842 J9 CERAM INT JI Ceram. Int. PD JUL PY 2010 VL 36 IS 5 BP 1517 EP 1522 DI 10.1016/j.ceramint.2010.02.024 PG 6 WC Materials Science, Ceramics SC Materials Science GA 606NK UT WOS:000278432800004 ER PT J AU Myrach, P Nilius, N Levchenko, SV Gonchar, A Risse, T Dinse, KP Boatner, LA Frandsen, W Horn, R Freund, HJ Schlogl, R Scheffler, M AF Myrach, Philipp Nilius, Niklas Levchenko, Sergey V. Gonchar, Anastasia Risse, Thomas Dinse, Klaus-Peter Boatner, Lynn A. Frandsen, Wiebke Horn, Raimund Freund, Hans-Joachim Schloegl, Robert Scheffler, Matthias TI Temperature-Dependent Morphology, Magnetic and Optical Properties of Li-Doped MgO SO CHEMCATCHEM LA English DT Article DE doping; EPR spectroscopy; lithium; optical; analysis; scanning probe microscopy ID MAGNESIUM-OXIDE CATALYST; ELECTRONIC-STRUCTURE; LITHIUM; SURFACE; METHANE; SPECTROSCOPY; ADSORPTION; MGO(100); ETHYLENE; DEFECTS AB Li-doped MgO is a potential catalyst for the oxidative coupling of methane, whereby surface Li(+) O(-) centers are suggested to be the chemically active species. To elucidate the role of Li in the MgO matrix, two model systems are prepared and their morphological, optical and magnetic properties as a function of Li doping are investigated. The first is an MgO film deposited on Mo(001) and doped with various amounts of Li, whereas the second is a powder sample fabricated by calcination of Li and Mg precursors in an oxygen atmosphere. Scanning tunneling and transmission electron microscopy are performed to characterize the morphology of both samples. At temperatures above 700 K, Li starts segregating towards the surface and forms irregular Li-rich oxide patches. Above 1050 K, Li desorbs from the MgO surface, leaving behind a characteristic defect pattern. Traces of Li also dissolve into the MgO, as concluded from a distinct optical signature that is absent in the pristine oxide. No electron paramagnetic resonance signal that would be compatible with Li(+) O(-) centers is detected in the two Li/MgO samples. Density-functional theory calculations are used to determine the thermodynamic stability of various Li-induced defects in the MgO. The calculations clarify the driving forces for Li segregation towards the MgO surface, but also rationalize the absence of Li(+)O(-) centers. From the combination of experimental and theoretical results, a detailed picture arises on the role of Li for the MgO properties, which can be used as a starting point to analyze the chemical behavior of the doped oxide in future. C1 [Myrach, Philipp; Nilius, Niklas; Levchenko, Sergey V.; Gonchar, Anastasia; Risse, Thomas; Frandsen, Wiebke; Horn, Raimund; Freund, Hans-Joachim; Schloegl, Robert; Scheffler, Matthias] Fritz Haber Inst MPG, D-14195 Berlin, Germany. [Dinse, Klaus-Peter] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. [Boatner, Lynn A.] Oak Ridge Natl Lab, Div Solid State, Oak Ridge, TN 37831 USA. RP Nilius, N (reprint author), Fritz Haber Inst MPG, Faradayweg 4-6, D-14195 Berlin, Germany. EM nilius@fhi-berlin.mpg.de; sergey@fhi-berlin.mpg.de RI Boatner, Lynn/I-6428-2013; Scheffler, Matthias/O-4649-2016; OI Boatner, Lynn/0000-0002-0235-7594; Risse, Thomas/0000-0003-0228-9189 FU Alexander von Humboldt foundation; DFG FX The authors thank U. Zavyalova for preparing the Li/MgO powder samples. S. V L. acknowledges support by the Alexander von Humboldt foundation. This work has been partially funded by the DFG through the 'Cluster of Excellence UNICAT' NR 40 TC 56 Z9 56 U1 0 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD JUL PY 2010 VL 2 IS 7 BP 854 EP 862 DI 10.1002/cctc.201000083 PG 9 WC Chemistry, Physical SC Chemistry GA 632MZ UT WOS:000280430100016 ER PT J AU Widder, S Calloway, TB AF Widder, Sarah Calloway, T. Bond, Jr. TI Nuclear Waste Policy in the United States SO CHEMICAL ENGINEERING PROGRESS LA English DT Article C1 [Widder, Sarah] Pacific NW Natl Lab, Richland, WA 99352 USA. [Calloway, T. Bond, Jr.] Savannah River Natl Lab, Savannah, GA USA. RP Widder, S (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM sarah.widder@pnl.gov; bond.calloway@srnl.doe.gov NR 9 TC 1 Z9 1 U1 0 U2 3 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD JUL PY 2010 VL 106 IS 7 BP 36 EP 40 PG 5 WC Engineering, Chemical SC Engineering GA 626EU UT WOS:000279949800012 ER PT J AU Summers, WA AF Summers, William A. TI Nuclear Power: Fueling the Hydrogen Economy SO CHEMICAL ENGINEERING PROGRESS LA English DT Article ID DECOMPOSITION; ELECTROLYSIS; CYCLE C1 Savannah River Natl Lab, Nucl Energy Programs, Aiken, SC USA. RP Summers, WA (reprint author), Savannah River Natl Lab, Nucl Energy Programs, Bldg 773-41A, Aiken, SC USA. EM william.summers@srnl.doe.gov NR 11 TC 1 Z9 1 U1 1 U2 3 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD JUL PY 2010 VL 106 IS 7 BP 45 EP 50 PG 6 WC Engineering, Chemical SC Engineering GA 626EU UT WOS:000279949800014 ER PT J AU Calloway, TB AF Calloway, T. Bond, Jr. TI Energy Research: Following the Money SO CHEMICAL ENGINEERING PROGRESS LA English DT Article C1 Savannah River Natl Lab, Aiche Res & New Technol Comm, Savannah, GA USA. RP Calloway, TB (reprint author), Savannah River Natl Lab, Aiche Res & New Technol Comm, Savannah, GA USA. EM bond.calloway@srnl.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD JUL PY 2010 VL 106 IS 7 BP 53 EP 55 PG 3 WC Engineering, Chemical SC Engineering GA 626EU UT WOS:000279949800016 ER PT J AU Bednarz, N Eltze, E Semjonow, A Rink, M Andreas, A Mulder, L Hannemann, J Fisch, M Pantel, K Weier, HUG Bielawski, KP Brandt, B AF Bednarz, Natalia Eltze, Elke Semjonow, Axel Rink, Michael Andreas, Antje Mulder, Lennart Hannemann, Juliane Fisch, Margit Pantel, Klaus Weier, Heinz-Ulrich G. Bielawski, Krzysztof P. Brandt, Burkhard TI BRCA1 Loss Preexisting in Small Subpopulations of Prostate Cancer Is Associated with Advanced Disease and Metastatic Spread to Lymph Nodes and Peripheral Blood SO CLINICAL CANCER RESEARCH LA English DT Article ID BREAST-CANCER; TUMOR-SUPPRESSOR; CELLS; EXPRESSION; HETEROZYGOSITY; VIMENTIN; DISTINCT; ORIGIN; GENE; MUTATIONS AB Purpose: A preliminary study performed on a small cohort of multifocal prostate cancer (PCa) detected BRCA1 allelic imbalances among circulating tumor cells (CTC). The present analysis was aimed to elucidate the biological and clinical roles of BRCA1 losses in metastatic spread and tumor progression in PCa patients. Experimental Design: To map molecular progression in PCa outgrowth, we used fluorescence in situ hybridization analysis of primary tumors and lymph node sections, and CTCs from peripheral blood. Results: We found that 14% of 133 tested patients carried monoallelic BRCA1 loss in at least one tumor focus. Extended molecular analysis of chr17q revealed that this aberration was often a part of larger cytogenetic rearrangement involving chr17q21 accompanied by allelic imbalance of the tumor suppressor gene PTEN and lack of BRCA1 promoter methylation. The BRCA1 losses correlated with advanced T stage (P < 0.05), invasion to pelvic lymph nodes (P < 0.05), as well as biochemical recurrence (P < 0.01). Their prevalence was twice as high within 62 lymph node metastases (LNM) as in primary tumors (27%, P < 0.01). The analysis of 11 matched primary PCa-LNM pairs confirmed the suspected transmission of genetic abnormalities between these two sites. In four of seven patients with metastatic disease, BRCA1 losses appeared in a minute fraction of cytokeratin-and vimentin-positive CTCs. Conclusions: Small subpopulations of PCa cells bearing BRCA1 losses might be one confounding factor initiating tumor dissemination and might provide an early indicator of shortened disease-free survival. Clin Cancer Res; 16(13); 3340-8. (C) 2010 AACR. C1 [Bednarz, Natalia; Andreas, Antje; Hannemann, Juliane; Pantel, Klaus; Brandt, Burkhard] Univ Med Ctr Hamburg Eppendorf, Inst Tumor Biol, D-20246 Hamburg, Germany. [Rink, Michael; Fisch, Margit] Univ Med Ctr Hamburg Eppendorf, Dept Urol, D-20246 Hamburg, Germany. [Bednarz, Natalia; Bielawski, Krzysztof P.] Univ Gdansk, Mol Diagnost Div, Intercollegiate Fac Biotechnol, PL-80952 Gdansk, Poland. [Bednarz, Natalia; Bielawski, Krzysztof P.] Med Univ Gdansk, Gdansk, Poland. [Eltze, Elke] Univ Clin Munster, Gerhard Domagk Inst Pathol, Prostate Ctr, Munster, Germany. [Semjonow, Axel] Univ Clin Munster, Dept Urol, Prostate Ctr, Munster, Germany. [Mulder, Lennart] Netherlands Canc Inst, Dept Expt Therapy, Amsterdam, Netherlands. [Weier, Heinz-Ulrich G.] Univ Calif Berkeley, Div Life Sci, EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Brandt, B (reprint author), Univ Med Ctr Hamburg Eppendorf, Inst Tumor Biol, Martinistr 52, D-20246 Hamburg, Germany. EM bu.brandt@uke.uni-hamburg.de RI Bednarz-Knoll, Natalia/D-3663-2011; Bielawski, Krzysztof/D-8711-2011; OI Brandt, Burkhard/0000-0003-3681-3049 FU NIH [CA123370]; Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX H-U. Weier was supported in part by NIH grant CA123370 and a grant from the Director, Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231. The ideogram of chromosome 17 in Fig. 1 was provided by David Adler (Department of Pathology, University of Washington, Seattle, WA). NR 33 TC 36 Z9 38 U1 1 U2 5 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD JUL 1 PY 2010 VL 16 IS 13 BP 3340 EP 3348 DI 10.1158/1078-0432.CCR-10-0150 PG 9 WC Oncology SC Oncology GA 619AR UT WOS:000279399200006 PM 20592016 ER PT J AU Kuhl, AL Bell, JB Beckner, VE AF Kuhl, A. L. Bell, J. B. Beckner, V. E. TI Heterogeneous Continuum Model of Aluminum Particle Combustion in Explosions SO COMBUSTION EXPLOSION AND SHOCK WAVES LA English DT Article DE continuum model; combustion; aluminum; explosion ID HYPERBOLIC CONSERVATION-LAWS; ADAPTIVE MESH REFINEMENT; SHOCK-WAVES; IGNITION; GAS; EQUATIONS; POWDERS AB A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines gasdynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Interphase mass, momentum, and energy exchange are prescribed by the phenomenological model of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air, and products. The source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air and the combustion of the Al particles with air. The model equations are integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g shock-dispersed-fuel charges in 3 different chambers are performed. Computed pressure histories are similar to measured waveforms when the ignition temperature model is employed. The predicted product production is 10-14% greater than that measured in the experiments. This fact can be ascribed to unsteady ignition effects not included in the modeling. C1 [Kuhl, A. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bell, J. B.; Beckner, V. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kuhl, AL (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM kuhl2@llnl.gov FU U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; Defense Threat Reduction Agency under IACRO [06-40731, 09-4509l]; UCRL-CONF [231319]; [LLNL-JRNL-417022] FX This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. It was sponsored by the Defense Threat Reduction Agency under IACRO No. 06-40731 and IACRO No. 09-4509l, UCRL-CONF 231319, and LLNL-JRNL-417022. NR 48 TC 9 Z9 9 U1 2 U2 6 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0010-5082 EI 1573-8345 J9 COMBUST EXPLO SHOCK+ JI Combust. Explos. PD JUL PY 2010 VL 46 IS 4 BP 433 EP 448 DI 10.1007/s10573-010-0058-9 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Materials Science, Multidisciplinary SC Thermodynamics; Energy & Fuels; Engineering; Materials Science GA 648RJ UT WOS:000281711300008 ER PT J AU Xu, J Mustapha, B Ostroumov, P Nolen, J AF Xu, Jin Mustapha, Brahim Ostroumov, Peter Nolen, Jerry TI Direct Vlasov Solvers with High-Order Spectral Element Method SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Vlasov equation; Spectral Element Method; Poisson's equation; interpolation; domain decomposition ID PHASE-SPACE; EQUATION; SIMULATION; ALGORITHM; SCHEMES AB This paper presents the development of parallel direct Vlasov solvers using the Spectral Element Method (SEM). Instead of the standard Particle-In-Cell (PIC) approach for kinetic space plasma simulation, i.e. solving the Vlasov-Maxwell equations, the direct method has been used in this paper. There are several benefits to solve the Vlasov equation directly, such as avoiding noise associated with the finite number of particles and the capability to capture the fine structure in the plasma, etc. The most challenging part of direct Vlasov solver comes from high dimension, as the computational cost increases as N-2d, where d is the dimension of the physical space. Recently due to fast development of supercomputers, the possibility of high dimensions becomes more realistic. A significant effort has been devoted to solve the Vlasov equation in low dimensions so far, now more interests focus on higher dimensions. Different numerical methods have been tried so far, such as finite difference method, Fourier spectral method, finite volume method, etc. In this paper SEM has been successfully applied to construct these solvers. SEM has shown several advantages, such as easy interpolation due to local element structure and long time integration due to its high order accuracy. Domain decomposition in high dimensions have been used for parallelization, these include scalable parallel 1D and 2D Poisson solvers. Benchmark results have been shown and simulation results have been reported for two different cases: one dimension (1P1V), and two dimensions (2P2V) in both physical and velocity spaces. C1 [Xu, Jin; Mustapha, Brahim; Ostroumov, Peter; Nolen, Jerry] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Xu, Jin] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Xu, J (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jin_xu@anl.gov; mustapha@phy.anl.gov; ostroumov@phy.anl.gov; nolen@anl.gov RI Xu, Jin/C-7751-2014 OI Xu, Jin/0000-0002-1147-7408 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We would like to thank Dr. Paul Fischer of the Mathematics and Computer Science (MCS) Division at Argonne (ANL) for his help and suggestions, and extend a special thanks to ALCF support team at ANL. Claire Hillig proofread the paper. This work was completed at ANL, but also used machines at other supercomputing centers, such as NERSC, ARSC and PSC. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 29 TC 2 Z9 2 U1 0 U2 3 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD JUL PY 2010 VL 8 IS 1 BP 159 EP 184 DI 10.4208/cicp.080409.051009a PG 26 WC Physics, Mathematical SC Physics GA 610EH UT WOS:000278713500006 ER PT J AU Jungthawan, S Kim, K Limpijumnong, S AF Jungthawan, Sirichok Kim, Kwiseon Limpijumnong, Sukit TI The effects of unit cell size on the bandgap range in the direct enumeration study of AlxGayIn1-x-yP alloys SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT Symposium Q: Computational Materials Design at All Scales: From Theory to Application International Conference on Materials for Advanced Technologies (ICMAT) CY JUN 28-JUL 03, 2009 CL undefined, SINGAPORE DE AlGaInP; Direct enumeration; Ordering; Bandgap reduction; Bandgap range; Band interaction ID SYMMETRY-SIGNIFICANT PROPERTIES; V SEMICONDUCTOR ALLOYS; AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; PERSISTENT PHOTOCONDUCTIVITY; ULTRASOFT PSEUDOPOTENTIALS; DERIVATIVE LATTICES; ORDERED GA0.5IN0.5P; ENERGY; PHOTOLUMINESCENCE AB Direct enumeration method is an efficient way for scanning alloy properties by computing all possible configurations. This method thoroughly covers all possible configurations without bias and provides an informative trend of alloy properties on ordering patterns. In an actual study, the number of possible configurations increases rapidly with the size of the unit cell and usually a reasonable size that give a sufficiently large number of configurations are chosen. In this work, the convergence of the bandgap range with respect to the unit cell size of AlGaInP alloy is studied up to 8 cation atoms per unit cell. It is found that the bandgap range already converges to within 0.1 eV when the unit cell size is 4 cation atoms. Interestingly, we also found that the lowest bandgap value of GaInP alloy is achieved already in a small cell (2 cations in the unit cell). The cause for this special small bandgap case is discussed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Jungthawan, Sirichok; Limpijumnong, Sukit] Suranaree Univ Technol, Sch Phys, Inst Sci, Nakhon Ratchasima 30000, Thailand. [Jungthawan, Sirichok; Limpijumnong, Sukit] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Jungthawan, Sirichok; Limpijumnong, Sukit] Commiss Higher Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand. [Kim, Kwiseon] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Jungthawan, S (reprint author), Suranaree Univ Technol, Sch Phys, Inst Sci, Nakhon Ratchasima 30000, Thailand. EM sirichok@sut.ac.th FU NANOTEC [NN-B-22-DI2-20-51-09]; AOARD/AFOSR [FA2386-09-1-4106]; DOE [DE-AC36-99G010337]; Thailand Research Fund [MRG5280235] FX The work is supported by NANOTEC (Grant No. NN-B-22-DI2-20-51-09), AOARD/AFOSR (Contract No. FA2386-09-1-4106), and DOE (Contract No. DE-AC36-99G010337). The authors thank L.-W. Wang for providing the PESCAN codes. One of the authors (SJ) acknowledges the funding from the Thailand Research Fund (Grant No. MRG5280235). NR 42 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD JUL PY 2010 VL 49 SU 1 BP S114 EP S118 DI 10.1016/j.commatsci.2010.01.049 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 647LQ UT WOS:000281620400024 ER PT J AU Pope, A Habib, S Lukic, Z Daniel, D Fasel, P Heitmann, K Desai, N AF Pope, Adrian Habib, Salman Lukic, Zarija Daniel, David Fasel, Patricia Heitmann, Katrin Desai, Nehal TI The Accelerated Universe A Hybrid Cosmology Code for Roadrunner SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article C1 [Pope, Adrian; Heitmann, Katrin] Los Alamos Natl Lab, Grp ISR 1, Los Alamos, NM 87545 USA. [Habib, Salman] Los Alamos Natl Lab, Div Theoret, Nucl & Particle Phys Astrophys & Cosmol Grp, Los Alamos, NM 87545 USA. [Daniel, David] Los Alamos Natl Lab, Comp Sci High Performance Comp Grp, Los Alamos, NM 87545 USA. [Fasel, Patricia] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. RP Pope, A (reprint author), Los Alamos Natl Lab, Grp ISR 1, Los Alamos, NM 87545 USA. EM pope@lanl.gov; habib@lanl.gov; zarija@lanl.gov; ddd@lanl.gov; pkf@lanl.gov; heitmann@lanl.gov; nehal.desai@aero.org FU Los Alamos National Laboratory; LANL Laboratory Directed Research and Development FX We're indebted to Cornell Wright, Sriram Swaminarayan, and Scott Pakin for help with Roadrunner programming issues. Adrian Pope was supported by a Los Alamos National Laboratory Director's Fellowship, and the LANL Laboratory Directed Research and Development program also supported this work. NR 7 TC 19 Z9 19 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD JUL-AUG PY 2010 VL 12 IS 4 BP 17 EP 25 DI 10.1109/MCSE.2010.28 PG 9 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 621MH UT WOS:000279582400003 ER PT J AU Lillard, RS Vasquez, G Bahr, DF AF Lillard, R. S. Vasquez, G., Jr. Bahr, D. F. TI Influence of Nitrate on Pit Stability in Austenitic Stainless Steel SO CORROSION LA English DT Article DE nitrates; pitting; steels ID CORROSION; NITROGEN; TRANSITION; BEHAVIOR; IRON AB Sufficiently high concentrations of nitrate (NO;) additions to chloride (Cl(-)) solution resulted in the elimination of slow rise metastable pitting transients and, correspondingly, localized corrosion inhibition in Type 304L (UNS S30403) stainless steel (SS). In comparison, the nucleation frequency of sharp rise metastable pitting transients was independent of NO(3)(-) concentration. Sharp rise transients in solutions containing only NO(3)(-) were associated with the highest peak current and calculated pit current densities. 50 A/cm(2) to 200 A/cm(2). Thus, NO(3)(-) does not appear to inhibit pitting corrosion by reducing the current density at the incipient pit surface. To evaluate the influence of NO(3)(-) on repassivation. we developed a mathematical expression for fitting transients. In the case of sharp rise transients, the resulting parameters were used to generate plots of the anodic dissolution and the film growth components of the current as well as the fraction of passive film coverage with time. In comparison, the decay portion of slow rise transients could not be fit by our expression. It was concluded that. while the repassivation of sharp rise transients can be modeled as exposure of bare metal and subsequent oxide film formation, it appears that the repassivation of slow transients is governed by a different process. Submitted for publication C1 [Lillard, R. S.; Vasquez, G., Jr.] Los Alamos Natl Lab, Mat Corros & Environm Effects Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Bahr, D. F.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Lillard, RS (reprint author), Los Alamos Natl Lab, Mat Corros & Environm Effects Lab, Mat Sci & Technol Div, MST 6, Los Alamos, NM 87545 USA. EM lillard@lanl.gov RI Bahr, David/A-6521-2012; Street, Steven/A-5398-2015 OI Bahr, David/0000-0003-2893-967X; Street, Steven/0000-0002-8999-3701 FU Department of Energy [DE-AC52-06NA25396] FX The Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. We thank D. Kolman, J. Frankel, and R. Newman for helpful comments along the way. The authors are grateful for the support of the DOE Office of Science EMSP Program SCPML58, M. Kuperberg and R. Hirsch, Program Managers. NR 16 TC 1 Z9 1 U1 1 U2 5 PU NATL ASSOC CORROSION ENG PI HOUSTON PA 1440 SOUTH CREEK DRIVE, HOUSTON, TX 77084-4906 USA SN 0010-9312 J9 CORROSION JI Corrosion PD JUL PY 2010 VL 66 IS 7 AR 075004 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 621QT UT WOS:000279597800004 ER PT J AU Weaver, ML Qiu, SR Friddle, RW Casey, WH De Yoreo, JJ AF Weaver, M. L. Qiu, S. R. Friddle, R. W. Casey, W. H. De Yoreo, J. J. TI How the Overlapping Time Scales for Peptide Binding and Terrace Exposure Lead to Nonlinear Step Dynamics during Growth of Calcium Oxalate Monohydrate SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ATOMIC-FORCE MICROSCOPY; CRYSTAL-GROWTH; AMINO-ACIDS; CRYSTALLIZATION; INHIBITION; KINETICS; CITRATE; OSTEOPONTIN; ELECTROLYTE; MODULATION AB Using in situ atomic force microscopy (AFM), we investigate the inhibition of calcium oxalate monohydrate (COM) step growth by aspartic acid-rich peptides and find that the magnitude of the effect depends on terrace lifetime. We then derive a time-dependent step-pinning model in which average impurity spacing depends on the terrace lifetime as given by the ratio of step spacing to step speed. We show that the measured variation in step speed is well lit by the model and allows us to extract the characteristic peptide adsorption time. The model also predicts that a crossover in the time scales for impurity adsorption and terrace exposure leads to bistable growth dynamics described mathematically by a catastrophe. We observe this behavior experimentally both through the sudden drop in step speed to zero upon decrease of supersaturation and through fluctuations in step speed between the two limiting values at the point where the catastrophe occurs. We discuss the model's general applicability to macromolecular modifiers and biomineral phases. C1 [Friddle, R. W.; De Yoreo, J. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Weaver, M. L.; Casey, W. H.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Weaver, M. L.; Casey, W. H.] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA. [Weaver, M. L.; Qiu, S. R.; Friddle, R. W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP De Yoreo, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM deyoreo1@lbl.gov FU National Institutes of Health [DK61673]; Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The A FM experiments were supported by Grant DK61673 from the National Institutes of Health. Theoretical developments were supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory, under Contract DE-AC52-07NA27344. NR 34 TC 24 Z9 24 U1 4 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2010 VL 10 IS 7 BP 2954 EP 2959 DI 10.1021/cg901626a PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 619IF UT WOS:000279422700025 PM 20835404 ER PT J AU Fang, HC Zhu, JQ Zhou, LJ Jia, HY Li, SS Gong, X Li, SB Cai, YP Thallapally, PK Liu, J Exarhos, GJ AF Fang, Hua-Cai Zhu, Ji-Qin Zhou, Li-Jiang Jia, Hong-Yang Li, Shan-Shan Gong, Xue Li, Shu-Bin Cai, Yue-Peng Thallapally, Praveen K. Liu, Jun Exarhos, Gregory J. TI pH-Dependent Assembly and Conversions of Six Cadmium(II)-Based Coordination Complexes SO CRYSTAL GROWTH & DESIGN LA English DT Article ID METAL-ORGANIC FRAMEWORKS; CRYSTAL-STRUCTURES; BUILDING-BLOCKS; SCHIFF-BASES; INDUCED TRANSFORMATION; MOLECULAR CAPSULES; HYDROGEN-BONDS; CITRIC-ACID; LIGAND; POLYMERS AB Six cadmium(II) complexes containing the N(2)O(2) donor tetradentate asymmetrical Schiff base ligand 2-{[2-(dimethylamino)ethylimino]methyl}-6-methoxyphenol (HL(5)), namely, [(Cd(3)L(2)(5)O(4))(2)]center dot CH(3)OH center dot H(2)O (I), [Cd(L(5))Cl](2)center dot CH(3)OH (2), [Cd(2)(HL(5))Cl(4)](n) (3), {[Cd(3)(H(2)L(5))(2)Cl(8)]center dot 2H(2)O} (4), [(H(2)L(5))(2)](2+)center dot[Cd(3)Cl(4)](2-)center dot H(2)O (5), and [(H(2)L(5))(2)](2+)center dot[CdCl(4)](2-) (6), have been synthesized using cadmium(II) chloride and the asymmetrical Schiff base ligand H L5 under different pH conditions at room temperature. The diverse structures show the marked sensitivity of the structural chemistry of the tetradentate asymmetrical Schiff base ligand HL(5). Complex 1 formed at pH = 10 exhibits a rare zero-dimensional structure of trinuclear cadmium(11). At pH = 8-9, a dinuclear cadmium(11) complex 2 is formed. The reaction at pH = 5-7 leads to two one-dimensional structures of 3 and 4. A further decrease of the pH to 3-5 results in a zero-dimensional structure 5. Owing to the departure of lattice water molecules in the crystal, complex 5 at room temperature can gradually undergo single-crystal-to-single-crystal transformation to result in complex 6. The results further show that conversions of complex 1-5 can also be achieved by adjusting the pH value of the reaction solution, 1 --> 2(pH) (= 8) --> 5(pH = 3) and 5. Comparing these experimental results, it is clear that the pH plays a crucial role in the formation of the resulting structures, which simultaneously provides very effective strategies for constructing the Cd(II) compounds with N(2)O(2) donor tetradentate asymmetrical Schiff base ligand. The strong fluorescent emissions of the six compounds (1-6) make them potentially useful photoactive materials. Furthermore, six Schiff base cadmium complexes (1-6), with 2,2-diphenyl-1-picrylhydrazyl (DPPH) as a co-oxidant exhibited the stronger scavenging activity. C1 [Fang, Hua-Cai; Zhu, Ji-Qin; Jia, Hong-Yang; Li, Shan-Shan; Gong, Xue; Cai, Yue-Peng] S China Normal Univ, Key Lab Electrochem Technol Energy Storage & Powe, Guandong Higher Educ Inst,Sch Chem & Environm, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Guangzhou 510006, Guangdong, Peoples R China. [Zhou, Li-Jiang; Li, Shu-Bin] S China Normal Univ, Coll Life Sci, Guangzhou 510631, Guangdong, Peoples R China. [Thallapally, Praveen K.; Liu, Jun; Exarhos, Gregory J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Cai, YP (reprint author), S China Normal Univ, Key Lab Electrochem Technol Energy Storage & Powe, Guandong Higher Educ Inst,Sch Chem & Environm, Engn Res Ctr Mat & Technol Electrochem Energy Sto, Guangzhou 510006, Guangdong, Peoples R China. EM ypcai8@yahoo.com; Praveen.Thallapally@pnl.gov RI thallapally, praveen/I-5026-2014 OI thallapally, praveen/0000-0001-7814-4467 FU National Natural Science Foundation of P. R. China [20772037]; Science and Technology Planning Project of Guangdong Province [2006A10902002]; National Science Foundation of Guangdong Province [9251063101000006, 06025033]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE [DE-AC05-76RL01830] FX The authors are grateful for financial aid from the National Natural Science Foundation of P. R. China (Grant No, 20772037), the Science and Technology Planning Project of Guangdong Province (Grant No. 2006A10902002), and the National Science Foundation of Guangdong Province (Grant Nos. 9251063101000006 and 06025033). P.K.T., J.L., and G.J.E. thank the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 61 TC 65 Z9 65 U1 3 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD JUL PY 2010 VL 10 IS 7 BP 3277 EP 3284 DI 10.1021/cg1004598 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 619IF UT WOS:000279422700063 ER PT J AU Ito, J Petzold, CJ Mukhopadhyay, A Heazlewood, JL AF Ito, Jun Petzold, Christopher J. Mukhopadhyay, Aindrila Heazlewood, Joshua L. TI The Role of Proteomics in the Development of Cellulosic Biofuels SO CURRENT PROTEOMICS LA English DT Review DE Biofuels; synthetic biology; feedstocks; targeted proteomics; bioenergy ID CELL-WALL PROTEINS; ARABIDOPSIS PLASMA-MEMBRANE; SACCHAROMYCES-CEREVISIAE STRAINS; SUSPENSION-CULTURED CELLS; ENGINEERED ESCHERICHIA-COLI; IONICALLY BOUND PROTEINS; FUEL ETHANOL-PRODUCTION; ROOT ELONGATION ZONE; CLOSTRIDIUM-ACETOBUTYLICUM; CORYNEBACTERIUM-GLUTAMICUM AB Global demand on energy combined with dwindling fuel reserves has led to record fuel prices around the world and resulted in a concerted effort to identify alternate and sustainable fuel supplies. One such alternative is to produce cellulosic biofuels through the conversion of complex sugars found in plant cell walls (plant biomass) into fuels. While the synthesis of cellulosic biofuels is currently an achievable technology, associated production costs due to biomass recalcitrance, sugar composition and ineffectual conversion make their production impractical. In order to overcome these issues significant research will be required in areas ranging from plant cell wall biosynthesis, microbial host metabolism and tolerance that enable targeted engineering of these systems. Proteomics will play a central role in implementing this strategy by identifying new targets for biofuel crop engineering, analyzing engineered biochemical pathways and characterizing plant cell wall biosynthesis. This review will examine the current use of proteomics to fast-track cellulosic biofuel production and evaluate the potential of this technology to provide significant breakthroughs in this area. C1 [Ito, Jun; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Heazlewood, Joshua L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. RP Heazlewood, JL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Joint BioEnergy Inst, 1 Cyclotron Rd MS 978-4466, Berkeley, CA 94720 USA. EM jlheazlewood@lbl.gov RI Heazlewood, Joshua/A-2554-2008 OI Heazlewood, Joshua/0000-0002-2080-3826 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. We would like to thank Miguel Vega-Sanchez, Edward Baidoo and Anthe George (JBEI) for assistance and the reviewers for their helpful suggestions and additions. NR 179 TC 6 Z9 6 U1 1 U2 23 PU BENTHAM SCIENCE PUBL LTD PI SHARJAH PA EXECUTIVE STE Y26, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES SN 1570-1646 J9 CURR PROTEOMICS JI Curr. Proteomics PD JUL PY 2010 VL 7 IS 2 BP 121 EP 134 PG 14 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 599CP UT WOS:000277888100006 ER PT J AU Auciello, O Sumant, AV AF Auciello, Orlando Sumant, Anirudha V. TI Status review of the science and technology of ultrananocrystalline diamond (UNCD (TM)) films and application to multifunctional devices SO DIAMOND AND RELATED MATERIALS LA English DT Article; Proceedings Paper CT 20th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides CY SEP 06-10, 2009 CL Athens, GREECE DE Ultrananocrystalline diamond; Films; MEMS; NEMS; Biomedical devices ID CHEMICAL-VAPOR-DEPOSITION; BIAS-ENHANCED NUCLEATION; ELECTRON FIELD-EMISSION; NANOCRYSTALLINE DIAMOND; THIN-FILMS; CVD-DIAMOND; POLYCRYSTALLINE DIAMOND; THERMAL-CONDUCTIVITY; DIELECTRIC-CONSTANT; GROWTH AB This review focuses on a status report on the science and technology of ultrananocrystalline diamond (UNCD) films developed and patented at Argonne National Laboratory. The UNCD material has been developed in thin film form and exhibit multifunctionalities applicable to a broad range of macro to nanoscale multifunctional devices. UNCD thin films are grown by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD) using new patented Ar-rich/CH(4) or H(2)/CH(4) plasma chemistries. UNCD films exhibit a unique nanostructure with 2-5 nm grain size (thus the trade name UNCD) and grain boundaries of 0.4-0.6 nm for plain films, and grain sizes of 7-10 nm and grain boundaries of 2-4 nm when grown with nitrogen introduced in the Ar-rich/CH(4) chemistry, to produce UNCD films incorporated with nitrogen, which exhibit electrical conductivity up to semi-metallic level. This review provides a status report on the synthesis of UNCD films via MPCVD and integration with dissimilar materials like oxides for piezoactuated MEMS/NEMS, metal films for contacts, and biological matter for a new generation of biomedical devices and biosensors. A broad range of applications from macro to nanoscale multifunctional devices is reviewed, such as coatings for mechanical pumps seals, field-emission cold cathodes, RF MEMS/NEMS resonators and switches for wireless communications and radar systems, NEMS devices, biomedical devices, biosensors, and UNCD as a platform for developmental biology, involving biological cells growth on the surface. Comparisons with nanocrystalline diamond films and technology are made when appropriate. Published by Elsevier BM. C1 [Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Auciello, Orlando; Sumant, Anirudha V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Auciello, O (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM auciello@anl.gov NR 92 TC 81 Z9 81 U1 6 U2 75 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD JUL-SEP PY 2010 VL 19 IS 7-9 SI SI BP 699 EP 718 DI 10.1016/j.diamond.2010.03.015 PG 20 WC Materials Science, Multidisciplinary SC Materials Science GA 616SS UT WOS:000279229700006 ER PT J AU Sanchez-Barriga, J Varykhalov, A Scholz, MR Rader, O Marchenko, D Rybkin, A Shikin, AM Vescovo, E AF Sanchez-Barriga, J. Varykhalov, A. Scholz, M. R. Rader, O. Marchenko, D. Rybkin, A. Shikin, A. M. Vescovo, E. TI Chemical vapour deposition of graphene on Ni(111) and Co(0001) and intercalation with Au to study Dirac-cone formation and Rashba splitting SO DIAMOND AND RELATED MATERIALS LA English DT Article; Proceedings Paper CT 20th European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides CY SEP 06-10, 2009 CL Athens, GREECE DE Quasirelativistic carriers; Electronic decoupling; Spin-orbit splitting; Exchange splitting; Angle-resolved photoemission; Spin; and angle-resolved photoemission ID ANGLE-RESOLVED PHOTOEMISSION; ENERGY-BAND DISPERSIONS; ELECTRONIC-STRUCTURE; CARBON NANOTUBES; SPIN; GRAPHITE; FILMS; TRANSPORT; DIAMOND; COBALT AB We show in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapour deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions appears in the graphene pi-band in the vicinity of the Fermi energy. In order to study ferromagnetism and spin-orbit effects by spin- and angle-resolved photoelectron spectroscopy, the sample must be magnetized in remanence. To this end, a W(110) substrate is prepared, its cleanliness verified by photoemission from W(110) surface states and surface core levels, and epitaxial Ni(111) and Co(0001) thin films are grown on top. Spin-resolved photoemission from the pi-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect. (C) 2010 Published by Elsevier B.V. C1 [Sanchez-Barriga, J.; Varykhalov, A.; Scholz, M. R.; Rader, O.] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Marchenko, D.; Rybkin, A.; Shikin, A. M.] St Petersburg State Univ, Inst Phys, St Petersburg 198504, Russia. [Vescovo, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Rader, O (reprint author), Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str, D-12489 Berlin, Germany. EM rader@helmholtz-berlin.de RI Rader, Oliver/H-8498-2013; Sanchez-Barriga, Jaime/I-3493-2013; Varykhalov, Andrei/I-3571-2013; Rybkin, Artem/J-8510-2013; Marchenko, Dmitry/H-5242-2013; Shikin, Alexander/M-7405-2013 OI Rader, Oliver/0000-0003-3639-0971; Sanchez-Barriga, Jaime/0000-0001-9947-6700; Varykhalov, Andrei/0000-0002-7901-3562; Rybkin, Artem/0000-0002-8237-4959; Marchenko, Dmitry/0000-0003-1496-4161; Shikin, Alexander/0000-0002-2476-1248 NR 54 TC 28 Z9 28 U1 5 U2 59 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD JUL-SEP PY 2010 VL 19 IS 7-9 SI SI BP 734 EP 741 DI 10.1016/j.diamond.2010.01.047 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 616SS UT WOS:000279229700010 ER PT J AU Leis, J Zhao, WC Pinnaduwage, LA Gehl, AC Allman, SL Shepp, A Mahmud, KK AF Leis, John Zhao, Weichang Pinnaduwage, Lal A. Gehl, Anthony C. Allman, Steve L. Shepp, Allan Mahmud, Ken K. TI Estimating gas concentration using a microcantilever-based electronic nose SO DIGITAL SIGNAL PROCESSING LA English DT Article DE Pattern recognition; Information fusion AB This paper investigates the determination of the concentration of a chemical vapor as a function of several nonspecific microcantilever array sensors. The nerve agent dimethyl methyl phosphonate (DMMP) in parts-per-billion concentrations in binary and ternary mixtures is able to be resolved when present in a mixture containing parts-per-million concentrations of water and ethanol. The goal is to not only detect the presence of DMMP, but additionally to map the nonspecific output of the sensor array onto a concentration scale. We investigate both linear and nonlinear approaches - the linear approach uses a separate least-squares model for each component, and a nonlinear approach which estimates the component concentrations in parallel. Application of both models to experimental data indicate that both models are able to produce bounded estimates of concentration, but that the outlier performance favors the linear model. The linear model is better suited to portable handheld analyzer, where processing and memory resources are constrained. (C) 2009 Elsevier Inc. All rights reserved. C1 [Leis, John] Univ So Queensland, Dept Elect Elect & Comp Engn, Toowoomba, Qld 4350, Australia. [Zhao, Weichang; Pinnaduwage, Lal A.; Gehl, Anthony C.; Allman, Steve L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhao, Weichang; Shepp, Allan; Mahmud, Ken K.] Triton Syst Inc, Chelmsford, MA 01824 USA. [Pinnaduwage, Lal A.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. RP Leis, J (reprint author), Univ So Queensland, Dept Elect Elect & Comp Engn, Toowoomba, Qld 4350, Australia. EM leis@usq.edu.au RI Allman, Steve/A-9121-2011; OI Allman, Steve/0000-0001-6538-7048; Gehl, Anthony/0000-0002-4841-403X FU Office of Naval Research (ONR) [N00014-06-C-0182, N00014-06-IP-20082]; U.S. Department of Energy [DE-ACO5-00OR22725] FX These studies were conducted with the support from Office of Naval Research (ONR) contract number N00014-06-C-0182 to Triton Systems Inc. and contract number N00014-06-IP-20082 to Oak Ridge National Laboratory (ORNL). ORNL is operated and managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-ACO5-00OR22725. NR 5 TC 6 Z9 6 U1 0 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1051-2004 J9 DIGIT SIGNAL PROCESS JI Digit. Signal Prog. PD JUL PY 2010 VL 20 IS 4 BP 1229 EP 1237 DI 10.1016/j.dsp.2009.10.026 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 609VZ UT WOS:000278687400024 ER PT J AU Wilson, PF Hinz, JM Urbin, SS Nham, PB Thompson, LH AF Wilson, Paul F. Hinz, John M. Urbin, Salustra S. Nham, Peter B. Thompson, Larry H. TI Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in gamma-irradiated CHO cells SO DNA REPAIR LA English DT Article DE Radiosensitivity; Cell cycle; Homologous recombinational repair; Non-homologous end-joining; Chromosomal aberrations; Complex exchange ID DOUBLE-STRAND BREAKS; 5 RAD51 PARALOGS; IONIZING-RADIATION; MAMMALIAN-CELLS; DNA-REPAIR; GENETIC INSTABILITY; S-PHASE; CENTROSOME AMPLIFICATION; CANCER SUSCEPTIBILITY; ATAXIA-TELANGIECTASIA AB The repair of DNA double-strand breaks (DSBs) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and non-homologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after gamma-irradiation, we compared HRR-deficient RAD51D-knockout 51131 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (similar to 20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 5101 cells irradiated in S and G2 had similar to 2-fold higher chromatid-type CAs and a remarkable similar to 25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al., DNA Repair 4, 782-792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wilson, Paul F.; Hinz, John M.; Urbin, Salustra S.; Nham, Peter B.; Thompson, Larry H.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94551 USA. RP Thompson, LH (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Bldg 361,Room 1343,7000 E Ave, Livermore, CA 94550 USA. EM thompson14@llnl.gov FU U.S. Department of Health and Human Services [CA112566]; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX We would like to thank Dr. Joel Bedford and Dr. Hatsumi Nagasawa for their insightful comments. This research was supported by NIH National Cancer Institute grant CA112566 from the U.S. Department of Health and Human Services. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contracts W-7405-Eng-48 and DE-AC52-07NA27344. NR 59 TC 11 Z9 11 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 J9 DNA REPAIR JI DNA Repair PD JUL 1 PY 2010 VL 9 IS 7 BP 737 EP 744 DI 10.1016/j.dnarep.2010.03.009 PG 8 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 626KF UT WOS:000279964200002 PM 20434408 ER PT J AU Forte, AM Quere, S Moucha, R Simmons, NA Grand, SP Mitrovica, JX Rowley, DB AF Forte, Alessandro M. Quere, Sandrine Moucha, Robert Simmons, Nathan A. Grand, Stephen P. Mitrovica, Jerry X. Rowley, David B. TI Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE seismic tomography; mantle convection; thermochemical buoyancy; geoid and gravity; dynamic topography; superplumes ID BENEATH SOUTHERN AFRICA; DYNAMIC TOPOGRAPHY; THERMOCHEMICAL STRUCTURE; ANISOTROPY BENEATH; WAVE TOMOGRAPHY; PLATE-MOTION; FLOW; SHEAR; HETEROGENEITY; SUPERPLUME AB Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep-mantle structure below the African continent. We present a tomography-based model of mantle convection that provides an excellent match to fundamental surface geodynamic constraints on internal density heterogeneity that includes both compositional and thermal contributions, where the latter are constrained by mineral physics. The application of this thermochemical convection model to the problem of African mantle dynamics yields a reconciliation of both surface gravity and topography anomalies to deep-seated mantle flow under the African plate, over a wider range of wavelengths than has been possible to date. On the basis of these results, we predict flow in the African asthenosphere characterised by a clear pattern of focussed upwellings below the major centres of late Cenozoic volcanism, including the Kenya domes, Hoggar massif, Cameroon volcanicline, Cape Verde and Canary Islands. The flow predictions also reveal a deep-seated, large-scale, active hot upwelling below the western margin of Africa under the Cape Verde Islands that extends down to the core-mantle boundary. The scale and dynamical intensity of this 'West African Superplume' is comparable to the 'South African Superplume' that has long been assumed to dominate the large-scale flow dynamics in the deep-mantle under Africa. We evaluate the plausibility of the predicted asthenospheric flow patterns through a comparison with seismic azimuthal anisotropy derived from independent analyses of African shear wave splitting data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Moucha, Robert] Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada. [Quere, Sandrine] Univ Utrecht, Dept Earth Sci, NL-3508 TA Utrecht, Netherlands. [Simmons, Nathan A.] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Grand, Stephen P.] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA. [Mitrovica, Jerry X.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Rowley, David B.] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Forte, AM (reprint author), Univ Quebec, Geotop, Montreal, PQ H3C 3P8, Canada. EM forte60@gmail.com RI Grand, Stephen/B-4238-2011; Simmons, Nathan/J-9022-2014; OI Rowley, David/0000-0001-9767-9029 FU Canadian Institute for Advanced Research (CIFAR); NSERC; Canada Research Chair program; US Department of Energy [DE-AC52-07NA27344]; NSF [EAR0309189] FX We are grateful for the very helpful and constructive review comments provided by Andy Nyblade and Anne Davaille. Postdoctoral support for RM was provided by the Canadian Institute for Advanced Research (CIFAR). AMF and JXM acknowledge funding from CIFAR and NSERC. AMF also thanks the Canada Research Chair program for the support. Work performed by NAS is under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. SPG acknowledges NSF grant EAR0309189. NR 68 TC 96 Z9 97 U1 3 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 1 PY 2010 VL 295 IS 3-4 BP 329 EP 341 DI 10.1016/j.epsl.2010.03.017 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 623MP UT WOS:000279744900001 ER PT J AU Goodrich, CA Hutcheon, ID Kita, NT Huss, GR Cohen, BA Keil, K AF Goodrich, Cyrena Anne Hutcheon, Ian D. Kita, Noriko T. Huss, Gary R. Cohen, Barbara Anne Keil, Klaus TI Mn-53-Cr-53 and Al-26-Mg-26 ages of a feldspathic lithology in polymict ureilites SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE ureilite; early solar system chronology; Mn-Cr isotopes; Al-Mg isotopes ID EARLY SOLAR-SYSTEM; ND ISOTOPIC SYSTEMATICS; U-TH-PB; ANGRA-DOS-REIS; PARENT BODY; SM-ND; TERRESTRIAL CONTAMINATION; GOALPARA UREILITE; TRACE-ELEMENT; MAGMATIC INCLUSIONS AB We report Mn-53-Cr-53 and Al-26-Mg-26 isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the "albitic lithology," the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase. Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable Mn-55/Cr-52 ratios (500-58,000) and shows correlated Cr-53 excesses up to similar to 1500 parts per thousand, clearly indicating the presence of live Mn-53 at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (Mn-53/Mn-55)=(2.84 +/- 0.10) x 10(-6) (2 sigma). Data for less Mn-55/Cr-52-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 +/- 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 +/- 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant Al-27/Mg-24 ratio of similar to 900 and shows resolvable Mg-26 excesses of similar to 2 parts per thousand. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 +/- 1.1) x 10(-7) (2 sigma), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial Al-26/Al-27 ratio of 5 x 10(-5)) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+0.4/-0.5) Ma, in agreement with the Mn-53-Cr-53 age from clast 19. These data provide the first high-precision age date, similar to 5.4 Ma after CAl, for ureilites, giving a minimum estimate for the age of differentiation of their parent asteroid. Interpretation of this age for the thermal and physical history of that asteroid depends on a number of currently unknown or model-dependent parameters, including its size, bulk composition, and oxidation state, and the petrologic relationship between the feldspathic clasts and main group ureilites. (C) 2010 Elsevier B.V. All rights reserved. C1 [Goodrich, Cyrena Anne] Planetary Sci Inst, Tucson, AZ 85719 USA. [Hutcheon, Ian D.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94551 USA. [Kita, Noriko T.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Huss, Gary R.; Keil, Klaus] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Cohen, Barbara Anne] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. RP Goodrich, CA (reprint author), Planetary Sci Inst, 1700 E Ft Lowell Dr, Tucson, AZ 85719 USA. EM cyrena@vermontel.net RI Kita, Noriko/H-8035-2016 OI Kita, Noriko/0000-0002-0204-0765 FU NASA [NAG5-1191, NNX08AE08G, NNG05GH72G, NNX08AG63G, NNX07AI46G, NNH07AG011, NAG5-8158]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank Sasha Krot for suggesting that we analyze 53Mn-53Cr in polymict ureilites, and Gunter Lugmair and Harold Connolly for helpful discussions about ureilite and early solar system chronology. We thank Kent Ross for assistance with EMPA, Yuichi Morishita and Gen Shimoda for their support on the GSJ SIMS work, and Jennifer Matzel and Benjamin Jacobsen for assistance with the Mn-Cr relative sensitivity factor measurements. We greatly appreciate the comments and criticisms of reviewers Alexander Shukolyukov and Joel Baker, and the Editor Richard Carlson, which led to significant improvements in this manuscript. This work was supported by NASA grants NAG5-1191 and NNX08AE08G to Klaus Keil, NNG05GH72G and NNX08AG63G to Cyrena Goodrich, NNX07AI46G to Noriko Kita, NNH07AG011 to Ian Hutcheon, and NAG5-8158 to Gary Huss. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 86 TC 20 Z9 22 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD JUL 1 PY 2010 VL 295 IS 3-4 BP 531 EP 540 DI 10.1016/j.epsl.2010.04.036 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 623MP UT WOS:000279744900020 ER PT J AU Yin, RX Xu, P Piette, MA Kiliccote, S AF Yin, Rongxin Xu, Peng Piette, Mary Ann Kiliccote, Sila TI Study on Auto-DR and pre-cooling of commercial buildings with thermal mass in California SO ENERGY AND BUILDINGS LA English DT Article DE Pre-cooling; Demand response; Thermal mass; Auto-DR; Demand shed; Peak demand ID ENERGY; PERFORMANCE; SIMULATION; MODEL AB This paper discusses how to optimize pre-cooling strategies for buildings in a hot California climate zone with the Demand Response Quick Assessment Tool (DRQAT), a building energy simulation tool. This paper outlines the procedure used to develop and calibrate DRQAT simulation models, and applies this procedure to eleven field test buildings. The results of a comparison between the measured demand savings during the peak period and the savings predicted by the simulation model indicate that the predicted demand shed match well with measured data for the corresponding auto-demand response (Auto-DR) days. The study shows that the accuracy of the simulation models is greatly improved after calibrating the initial models with measured data. These improved models can be used to predict load reductions for automated demand response events. The simulation results were compared with field test data to confirm the actual effect of demand response strategies. Results indicate that the optimal demand response strategies worked well for most of the buildings tested in this hot climate zone. Published by Elsevier B.V. C1 [Yin, Rongxin; Xu, Peng; Piette, Mary Ann; Kiliccote, Sila] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Commercial Bldg Syst Grp, Berkeley, CA 94720 USA. RP Yin, RX (reprint author), Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Commercial Bldg Syst Grp, 1 Cyclotron Rd,MS90R3111, Berkeley, CA 94720 USA. EM RYin@lbl.gov RI Yin, Rongxin/N-5323-2015 OI Yin, Rongxin/0000-0001-7782-1294 FU Southern California Edison (SCE) [DR 08-02]; California Energy Commission (Energy Commission) [500-03-026]; U.S. Department of Energy [DE-AC02-05CH11231]; Global Energy Partners (GEP); Auto-DR program FX This work described in this paper was coordinated by the Demand Response Research Center and was funded by Southern California Edison (SCE), under contract No. DR 08-02, the California Energy Commission (Energy Commission) Public Interest Energy Research (PIER) Program under Work for Others Contract No. 500-03-026 and by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful for the extensive support from SCE, Global Energy Partners (GEP), and the Auto-DR program managed by LBNL. Special thanks to our project managers, J. Carlos Naiad (SCE) and Kristy Chew (California Energy Commission). Thanks also to Joe Prijyanonda from Global Energy Partners (GEP) for technical support. NR 28 TC 39 Z9 40 U1 2 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD JUL PY 2010 VL 42 IS 7 BP 967 EP 975 DI 10.1016/j.enbuild.2010.01.008 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 606LB UT WOS:000278425400001 ER PT J AU Sioshansi, R Hurlbut, D AF Sioshansi, Ramteen Hurlbut, David TI Market protocols in ERCOT and their effect on wind generation SO ENERGY POLICY LA English DT Article DE Wind integration; Reliability; Transmission operation AB Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatory and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Finally, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future. (C) 2009 Elsevier Ltd. All rights reserved. C1 [Sioshansi, Ramteen] Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. [Hurlbut, David] Natl Renewable Energy Lab, Golden, CO USA. RP Sioshansi, R (reprint author), Ohio State Univ, Integrated Syst Engn Dept, Columbus, OH 43210 USA. EM sioshansi.1@osu.edu NR 19 TC 16 Z9 16 U1 1 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2010 VL 38 IS 7 BP 3192 EP 3197 DI 10.1016/j.enpol.2009.07.046 PG 6 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 611SV UT WOS:000278843700008 ER PT J AU Choi, JK Bakshi, BR Haab, T AF Choi, Jun-Ki Bakshi, Bhavik R. Haab, Timothy TI Effects of a carbon price in the US on economic sectors, resource use, and emissions: An input-output approach SO ENERGY POLICY LA English DT Article DE Carbon price; Input-output analysis; Resource consumption and emission ID UNITED-STATES; CONSUMPTION; INDUSTRIAL; IMPACTS; DEMAND; TAXES; MODEL AB Despite differences in their implementation, most carbon policies aim to have similar outcomes: effectively raising the price of carbon-intensive products relative to non-carbon-intensive products. While it is possible to predict the simple broad-scale economic impacts of raising the price of carbon-intensive products-the demand for non-carbon-intensive products will increase-understanding the economic and environmental impacts of carbon policies throughout the life cycle of both types of products is more difficult. Using the example of a carbon tax, this study proposes a methodology that integrates short-term policy-induced consumer demand changes into the input-output framework to analyze the environmental and economic repercussions of a policy. Environmental repercussions include the direct and the indirect impacts on emissions, materials flow in the economy, and the reliance on various ecosystem goods and services. The approach combines economic data with data about physical flow of fossil fuels between sectors, consumption of natural resources and emissions from each sector. It applies several input-output modeling equations sequentially and uses various levels of aggregation/disaggregation. It is illustrated with the data for the 2002 U.S. economy and physical flows. The framework provides insight into the short-term complex interactions between carbon price and its economic and environmental effects. Published by Elsevier Ltd. C1 [Choi, Jun-Ki] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. [Bakshi, Bhavik R.] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Haab, Timothy] Ohio State Univ, Dept Agr Environm & Dev Econ, Columbus, OH 43210 USA. RP Choi, JK (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jkchoi@bnl.gov; bakshi.2@osu.edu; haab.1@osu.edu RI Bakshi, Bhavik/G-3878-2012; Choi, Jun-Ki/I-2576-2012; Haab, Tim/N-4392-2013; OI Haab, Tim/0000-0002-2381-0087; Bakshi, Bhavik/0000-0002-6604-8408 FU National Science Foundation [ECS-0524924] FX Partial financial support from the National Science Foundation (ECS-0524924) is gratefully acknowledged. We acknowledge all reviewers for their great insight and comments for the paper. NR 43 TC 19 Z9 21 U1 4 U2 21 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2010 VL 38 IS 7 BP 3527 EP 3536 DI 10.1016/j.enpol.2010.02.029 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 611SV UT WOS:000278843700043 ER PT J AU Eom, J Schipper, L AF Eom, Jiyong Schipper, Lee TI Trends in passenger transport energy use in South Korea SO ENERGY POLICY LA English DT Article DE Transport energy; Passenger travel; South Korea AB Having a clear understanding of transport energy use trends is crucial to identifying opportunities and challenges for efficient energy use for the transport sector. To this date, however, no detailed analysis has been conducted with regard to rapidly growing passenger transport energy use in South Korea. Using bottom-up data developed from a variety of recent sources, we described the trends of transport activity, energy use, and CO(2) emissions from South Korea's transport sector since 1986 with a particular focus on its passenger transport. By decomposing the trends in passenger transport energy use into activity, modal structure, and energy intensity, we showed that while travel activity has been the major driver of the increase in passenger transport energy use in South Korea, the increase was to some extent offset by the recent favorable structural shift toward bus travel and away from car travel. We also demonstrated that while bus travel has become less energy intensive since the Asian Financial Crisis, car travel has become increasingly energy intensive. Published by Elsevier Ltd. C1 [Eom, Jiyong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Schipper, Lee] Stanford Univ, Precourt Energy Efficiency Ctr, Stanford, CA 94305 USA. [Schipper, Lee] UC Berkeley, Berkeley, CA USA. RP Eom, J (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD USA. EM eomjiyong@gmail.com; mrmeter@stanford.edu RI Eom, Jiyong/A-1161-2014 FU Precourt Energy Efficiency Center (PEEC) FX We would like to acknowledge the constructive comments and suggestions made by anonymous reviewers. We also acknowledge the help from specialists at the Ministry of Land, Transport, and Marine Affairs in Korea. The first author was financially supported by the Precourt Energy Efficiency Center (PEEC) during the preparation of this work. NR 31 TC 9 Z9 11 U1 1 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD JUL PY 2010 VL 38 IS 7 BP 3598 EP 3607 DI 10.1016/j.enpol.2010.02.037 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 611SV UT WOS:000278843700050 ER PT J AU Prime, MB AF Prime, Michael B. TI Plasticity effects in incremental slitting measurement of residual stresses SO ENGINEERING FRACTURE MECHANICS LA English DT Article DE Residual stresses; Stress-intensity factor; Weight function; Crack compliance ID HOLE-DRILLING METHOD; CRACK COMPLIANCE METHOD; FOCUSED ION-BEAM; NUMERICAL-ANALYSIS; WALLED CYLINDERS; PLATE; LASER; WELDS; COMPOSITES; SIMULATION AB The effect of plasticity is investigated for the incremental slitting, or crack-compliance, method for measuring through-thickness profiles of residual stress. Based on finite element simulations, the errors can be strongly correlated with K-Irs, the stress-intensity factor caused by the cut extending into a residual stress field. 3-D simulations also show that the errors are strongly dependent on the amount of constraint provided by the part width. The simulations are used to develop a procedure for estimating errors from experimental data. Even with the possibility of plasticity errors in the measured residual stresses, the K-Irs can be simply calculated using only the experimentally measured strains. This K-Irs is called "apparent" because the calculation assumes elasticity. The apparent K-Irs can then be used to bound the errors in the measured residual stresses. The error bound is given as a function of non-dimensionalized apparent K-Irs and part width. (C) 2010 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Prime, MB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM prime@lanl.gov OI Prime, Michael/0000-0002-4098-5620 FU US Department of Energy [DE-AC52-06NA25396] FX The author would like to thank several members of ASTM Task Group E28.13.02 for helpful discussions: Weili Cheng, C. Can Aydiner, Michael R. Hill, and Hans-Jakob Schindler. This work was performed at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 49 TC 23 Z9 23 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-7944 EI 1873-7315 J9 ENG FRACT MECH JI Eng. Fract. Mech. PD JUL PY 2010 VL 77 IS 10 BP 1552 EP 1566 DI 10.1016/j.engfracmech.2010.04.031 PG 15 WC Mechanics SC Mechanics GA 629CR UT WOS:000280172500005 ER PT J AU Zamecnik, JR Choi, AS AF Zamecnik, John R. Choi, Alexander S. TI Impact of Eliminating Mercury Removal Pretreatment on the Performance of a High-Level Radioactive Waste Melter Offgas System SO ENVIRONMENTAL ENGINEERING SCIENCE LA English DT Article; Proceedings Paper CT International Conference on Themal Treatment Technologies and Hazard Waste Combustors CY MAY 12-22, 2009 CL Cincinnati, OH DE chemical kinetics and equilibria; high-level radioactive wastes; mathematical analysis and modeling; radioactive materials ID DETAILED CHEMICAL-KINETICS; FLUE-GASES; AQUATIC ENVIRONMENTS; ELEMENTAL MERCURY; OXIDATION; COMBUSTION; SPECIATION; CHEMISTRY; CHLORIDE; WATER AB The Defense Waste Processing Facility (DWPF) at the Savannah River Site processes high-level radioactive waste from the processing of nuclear materials that contains dissolved and precipitated metals and radionuclides. Vitrification of this waste into borosilicate glass for ultimate disposal at a geologic repository involves chemically modifying the waste to make it compatible with the glass melter system. Pretreatment steps include removal of excess aluminum by dissolution and washing, and processing with formic and nitric acids to (1) adjust the reduction-oxidation (redox) potential in the glass melter to reduce radionuclide volatility and improve melt rate; (2) adjust feed rheology; and (3) reduce, by steam stripping, the amount of mercury that must be processed in the melter. Elimination of formic acid pretreatment has been proposed to eliminate the production of hydrogen in the pretreatment systems; alternative reductants would be used to control redox. However, elimination of formic acid would result in significantly more mercury in the melter feed; the current specification is no more than 0.45 wt%, whereas the maximum expected before pretreatment is about 2.5 wt%. An engineering study has been undertaken to estimate the effects of eliminating mercury removal on the melter offgas system performance. A homogeneous gas-phase oxidation model and an aqueous phase model were developed to study the speciation of mercury in the DWPF melter offgas system. The model was calibrated against available experimental data and then applied to DWPF conditions. The gas-phase model predicted the Hg(2)(2+)/Hg(2+) ratio accurately, but some un-oxidized Hg(0) remained. The aqueous model, with the addition of < 1 mM Cl(2) showed that this remaining Hg(0) would be oxidized such that the final Hg(2)(2+)/Hg(2+) ratios matched the experimental data. Results of applying the model to DWPF show that due to excessive shortage of chloride, only 6% of the mercury fed is expected to be chlorinated, mostly as Hg(2)Cl(2), whereas the remaining mercury would exist either as elemental mercury (90%) or HgO (4%). C1 [Zamecnik, John R.; Choi, Alexander S.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Zamecnik, JR (reprint author), Savannah River Natl Lab, Bldg 999-W, Aiken, SC 29808 USA. EM jack.zamecnik@srnl.doe.gov NR 49 TC 0 Z9 0 U1 1 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1092-8758 J9 ENVIRON ENG SCI JI Environ. Eng. Sci. PD JUL PY 2010 VL 27 IS 7 BP 593 EP 611 DI 10.1089/ees.2009.0401 PG 19 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 625GW UT WOS:000279884400007 ER PT J AU Ivanova, N Tringe, SG Liolios, K Liu, WT Morrison, N Hugenholtz, P Kyrpides, NC AF Ivanova, Natalia Tringe, Susannah G. Liolios, Konstantinos Liu, Wen-Tso Morrison, Norman Hugenholtz, Philip Kyrpides, Nikos C. TI A call for standardized classification of metagenome projects SO ENVIRONMENTAL MICROBIOLOGY LA English DT Editorial Material ID RESOURCE C1 [Ivanova, Natalia; Tringe, Susannah G.; Liolios, Konstantinos; Hugenholtz, Philip; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Liu, Wen-Tso] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Morrison, Norman] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. RP Kyrpides, NC (reprint author), DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. EM nckyrpides@lbl.gov RI Liu, Wen-Tso/C-8788-2011; Hugenholtz, Philip/G-9608-2011; Kyrpides, Nikos/A-6305-2014; OI Liu, Wen-Tso/0000-0002-8700-9803; Kyrpides, Nikos/0000-0002-6131-0462; Tringe, Susannah/0000-0001-6479-8427; Ivanova, Natalia/0000-0002-5802-9485 NR 8 TC 13 Z9 14 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD JUL PY 2010 VL 12 IS 7 BP 1803 EP 1805 DI 10.1111/j.1462-2920.2010.02270.x PG 3 WC Microbiology SC Microbiology GA 628FX UT WOS:000280101200001 PM 20653767 ER PT J AU Weyens, N Croes, S Dupae, J Newman, L van der Lelie, D Carleer, R Vangronsveld, J AF Weyens, Nele Croes, Sarah Dupae, Joke Newman, Lee van der Lelie, Daniel Carleer, Robert Vangronsveld, Jaco TI Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination SO ENVIRONMENTAL POLLUTION LA English DT Article DE Co-contamination; Endophytes; Ni; Organic pollutants; Toxic metals; Trichloroethylene (TCE) ID ORGANIC POLLUTANTS; HEAVY-METALS; CEPACIA G4; DEGRADATION; TRICHLOROETHYLENE; SOIL; PLASMID; TOLUENE; IMPACT AB The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increased root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Weyens, Nele; Croes, Sarah; Dupae, Joke; Carleer, Robert; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium. [Newman, Lee; van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Weyens, N (reprint author), Hasselt Univ, Ctr Environm Sci, Agoralaan,Bldg D, B-3590 Diepenbeek, Belgium. EM nele.weyens@uhasselt.be FU Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen); Fund for Scientific Research Flanders (FWO-Vlaanderen); UHasselt Methusalem project [08M03VGRJ]; Brookhaven National Laboratory [LDRD05-063, LDRD09-005]; U.S. Department of Energy FX This research was funded by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for N.W. and for J.D. and by the Fund for Scientific Research Flanders (FWO-Vlaanderen), Ph.D. grant for S.C. This work was also supported by the UHasselt Methusalem project 08M03VGRJ. Work by D.v.d.L. and L.N. was funded by Laboratory Directed Research and Development funds (LDRD05-063 and LDRD09-005) at the Brookhaven National Laboratory under contract with the U.S. Department of Energy. NR 23 TC 53 Z9 55 U1 5 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD JUL PY 2010 VL 158 IS 7 BP 2422 EP 2427 DI 10.1016/j.envpol.2010.04.004 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 614MP UT WOS:000279063600010 PM 20462680 ER PT J AU French, RJ Hrdlicka, J Baldwin, R AF French, Richard J. Hrdlicka, Jason Baldwin, Robert TI Mild Hydrotreating of Biomass Pyrolysis Oils to Produce a Suitable Refinery Feedstock SO ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY LA English DT Article DE Fwood; thermochemical; bio-fuel; hydrodeoxygenation; hydroprocessing ID CATALYTIC HYDROTREATMENT AB Fast pyrolysis produces a liquid product that represents similar to 70% of the mass of the starling material. However; since the raw oil is highly corrosive, largely immiscible with hydrocarbons, and only partly volatile, it is unsuitable for use in a conventional petroleum refinery or as a finished fuel. Catalytic hydroprocessing can remove oxygen to make a gasoline- or diesel-like product but the processing costs have not been attractive. Economic analysis suggests that mild hydroprocesslug, leaving 7 wt % oxygen in the pyrolysis oil reduce hydrotreating costs to a range that is more economically viable. If the physical and chemical properties of the mildly hydrotreated products were acceptable, these materials could potentially be available fur coprocessing in a petroleum refinery leveraging the economies of scale and existing refining infrastructure to produce a lower-cost product. Mildly hydrotreated Pyrolysis oil with low acidity, good miscibility with hydrocarbons, and high volatility was generated in a semibatch laboratory reactor A 0.5-L sample was produced at 360 degrees C, 2500 psig hydrogen, with a hydrogen flow of 0.22 sl/g-oil/h and 10 wt % nickel-molybdenum/Al(2)O(3) catalyst. Yields were 36% light product. (7% oxygen) and 30% liquid residue. This oil will be subjected to further physical and chemical tests to determine the technical feasibility of co-processing in a petroleum. refinery. (C) 2010 American Institute of Chemical Engineers Environ Prog, 29: 142-150, 2010* C1 [French, Richard J.; Baldwin, Robert] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Hrdlicka, Jason] Indian Hlth Serv, Sisseton, SD 57262 USA. RP French, RJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM Richard.French@nrel.gov FU United States Department of Energy, Office of the Biomass Program FX The authors gratefully acknowledge the assistance of Stefan Czernik, Stuart Black, Michele Myers, and William Michener. This work was supported by the United States Department of Energy, Office of the Biomass Program. NR 30 TC 35 Z9 35 U1 2 U2 22 PU JOHN WILEY & SONS INC PI HOBOKEN PA 111 RIVER ST, HOBOKEN, NJ 07030 USA SN 1944-7442 J9 ENVIRON PROG SUSTAIN JI Environ. Prog. Sustain. Energy PD JUL PY 2010 VL 29 IS 2 SI SI BP 142 EP 150 DI 10.1002/ep.10419 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Engineering, Chemical; Engineering, Industrial; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 612IC UT WOS:000278889600001 ER PT J AU Dutta, A Bain, RL Biddy, MJ AF Dutta, Abhijit Bain, Richard L. Biddy, Mary J. TI Techno-economics of the Production of Mixed Alcohols from Lignocellulosic Biomass via High-Temperature Gasification SO ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY LA English DT Article DE biomass; economics; ethanol; entrained; gasification; slagging ID COMBUSTION AB This techno-economic study investigates the production of mixed alcohols from lignocellulosic biomass using an entrained,flow slagging gasifier Similar analyses for 2000 dry tonne per day plants have been performed at the National Renewable Energy Laboratory using indirect, and direct dry ash gasifiers. The use of a high-temperature entrained flow gasifier differs from the previous studies because it eliminates equipment for tar and methane reformation. The conversion targets for tar reforming in the previous studies, and for alcohol synthesis in all of the studies, are based on DOE's research goals for 2012. The conversion cost increased compared to both of the previous studies, assuming the achievement of the 2012 research targets. Feed handling, high oxygen demand, and a high gasifier capital cost are primarily responsible for the high cost projected by this study. It is understood that the achievement of research targets, maturity, reliability, relative complexities, and redundancy requirements will be the other keys to commercialization. The effect of key assumptions and uncertainties were evaluated using sensitivity analysis. (C) 2010 American Institute of Chemical Engineers Environ Prog, 29: 163-174, 2010 C1 [Dutta, Abhijit; Bain, Richard L.; Biddy, Mary J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dutta, A (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM Abhijit.Dutta@nrel.gov FU U.S. Department of Energy's Office of the Biomass Program FX This work was supported by the U.S. Department of Energy's Office of the Biomass Program. We thank Sara Havig for editing this manuscript. NR 31 TC 17 Z9 17 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1944-7442 EI 1944-7450 J9 ENVIRON PROG SUSTAIN JI Environ. Prog. Sustain. Energy PD JUL PY 2010 VL 29 IS 2 SI SI BP 163 EP 174 DI 10.1002/ep.10445 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Engineering, Chemical; Engineering, Industrial; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 612IC UT WOS:000278889600003 ER PT J AU Maltrud, M Peacock, S Visbeck, M AF Maltrud, Mathew Peacock, Synte Visbeck, Martin TI On the possible long-term fate of oil released in the Deepwater Horizon incident, estimated using ensembles of dye release simulations SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE ocean modeling; tracer transport; oil spill modeling ID OCEAN MODEL AB We have conducted an ensemble of 20 simulations using a high resolution global ocean model in which dye was continuously injected at the site of the Deepwater Horizon drilling rig for two months. We then extended these simulations for another four months to track the dispersal of the dye in the model. We have also performed five simulations in which dye was continuously injected at the site of the spill for four months and then run them out to one year from the initial spill date. The experiments can elucidate the approximate timescales and space scales of dispersal of polluted waters and also give a quantitative estimate of the dilution rate. Given the uncertainty in rates of chemical or biological degradation for oil or an oil-dispersant mixture, we do not include a decay term for the dye. Thus, these results should be considered an absolute upper bound on the possible spatial extent of the dispersal of oil or oil-dispersant mixture. The model results indicate that it is likely that oil-polluted waters from the Deepwater Horizon incident will, at some time over the six months following the initial spill date, be transported at relatively low concentrations over a significant part of the North-West Atlantic Ocean. However, this does not imply that oil will reach the eastern shores of North America, or that it will even be detectable. We present probabilities for the transport timescales and estimates of ensemble mean arrival times, and we briefly discuss the likely dispersion timescales and pathways of dye released in the subsurface ocean. C1 [Maltrud, Mathew] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Peacock, Synte] Natl Ctr Atmospher Res, Boulder, CO 80305 USA. [Visbeck, Martin] IFM GEOMAR, Kiel, Germany. RP Maltrud, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM maltrud@lanl.gov RI Visbeck, Martin/G-2461-2011; Visbeck, Martin/B-6541-2016 OI Visbeck, Martin/0000-0002-0844-834X; Visbeck, Martin/0000-0002-0844-834X NR 13 TC 14 Z9 14 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2010 VL 5 IS 3 AR 035301 DI 10.1088/1748-9326/5/3/035301 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 655TX UT WOS:000282273700017 ER PT J AU Rasch, PJ AF Rasch, Philip J. TI Technical fixes and climate change: optimizing for risks and consequences SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Editorial Material C1 Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Rasch, PJ (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM philip.rasch@pnl.gov NR 11 TC 1 Z9 1 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2010 VL 5 IS 3 AR 031001 DI 10.1088/1748-9326/5/3/031001 PG 2 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 655TX UT WOS:000282273700001 ER PT J AU Yi, CX Ricciuto, D Li, R Wolbeck, J Xu, XY Nilsson, M Aires, L Albertson, JD Ammann, C Arain, MA de Araujo, AC Aubinet, M Aurela, M Barcza, Z Barr, A Berbigier, P Beringer, J Bernhofer, C Black, AT Bolstad, PV Bosveld, FC Broadmeadow, MSJ Buchmann, N Burns, SP Cellier, P Chen, JM Chen, JQ Ciais, P Clement, R Cook, BD Curtis, PS Dail, DB Dellwik, E Delpierre, N Desai, AR Dore, S Dragoni, D Drake, BG Dufrene, E Dunn, A Elbers, J Eugster, W Falk, M Feigenwinter, C Flanagan, LB Foken, T Frank, J Fuhrer, J Gianelle, D Goldstein, A Goulden, M Granier, A Grunwald, T Gu, L Guo, HQ Hammerle, A Han, SJ Hanan, NP Haszpra, L Heinesch, B Helfter, C Hendriks, D Hutley, LB Ibrom, A Jacobs, C Johansson, T Jongen, M Katul, G Kiely, G Klumpp, K Knohl, A Kolb, T Kutsch, WL Lafleur, P Laurila, T Leuning, R Lindroth, A Liu, HP Loubet, B Manca, G Marek, M Margolis, HA Martin, TA Massman, WJ Matamala, R Matteucci, G McCaughey, H Merbold, L Meyers, T Migliavacca, M Miglietta, F Misson, L Moelder, M Moncrieff, J Monson, RK Montagnani, L Montes-Helu, M Moors, E Moureaux, C Mukelabai, MM Munger, JW Myklebust, M Nagy, Z Noormets, A Oechel, W Oren, R Pallardy, SG Kyaw, TPU Pereira, JS Pilegaard, K Pinter, K Pio, C Pita, G Powell, TL Rambal, S Randerson, JT von Randow, C Rebmann, C Rinne, J Rossi, F Roulet, N Ryel, RJ Sagerfors, J Saigusa, N Sanz, MJ Mugnozza, GS Schmid, HP Seufert, G Siqueira, M Soussana, JF Starr, G Sutton, MA Tenhunen, J Tuba, Z Tuovinen, JP Valentini, R Vogel, CS Wang, JX Wang, SQ Wang, WG Welp, LR Wen, XF Wharton, S Wilkinson, M Williams, CA Wohlfahrt, G Yamamoto, S Yu, GR Zampedri, R Zhao, B Zhao, XQ AF Yi, Chuixiang Ricciuto, Daniel Li, Runze Wolbeck, John Xu, Xiyan Nilsson, Mats Aires, Luis Albertson, John D. Ammann, Christof Arain, M. Altaf de Araujo, Alessandro C. Aubinet, Marc Aurela, Mika Barcza, Zoltan Barr, Alan Berbigier, Paul Beringer, Jason Bernhofer, Christian Black, Andrew T. Bolstad, Paul V. Bosveld, Fred C. Broadmeadow, Mark S. J. Buchmann, Nina Burns, Sean P. Cellier, Pierre Chen, Jingming Chen, Jiquan Ciais, Philippe Clement, Robert Cook, Bruce D. Curtis, Peter S. Dail, D. Bryan Dellwik, Ebba Delpierre, Nicolas Desai, Ankur R. Dore, Sabina Dragoni, Danilo Drake, Bert G. Dufrene, Eric Dunn, Allison Elbers, Jan Eugster, Werner Falk, Matthias Feigenwinter, Christian Flanagan, Lawrence B. Foken, Thomas Frank, John Fuhrer, Juerg Gianelle, Damiano Goldstein, Allen Goulden, Mike Granier, Andre Gruenwald, Thomas Gu, Lianhong Guo, Haiqiang Hammerle, Albin Han, Shijie Hanan, Niall P. Haszpra, Laszlo Heinesch, Bernard Helfter, Carole Hendriks, Dimmie Hutley, Lindsay B. Ibrom, Andreas Jacobs, Cor Johansson, Torbjoern Jongen, Marjan Katul, Gabriel Kiely, Gerard Klumpp, Katja Knohl, Alexander Kolb, Thomas Kutsch, Werner L. Lafleur, Peter Laurila, Tuomas Leuning, Ray Lindroth, Anders Liu, Heping Loubet, Benjamin Manca, Giovanni Marek, Michal Margolis, Hank A. Martin, Timothy A. Massman, William J. Matamala, Roser Matteucci, Giorgio McCaughey, Harry Merbold, Lutz Meyers, Tilden Migliavacca, Mirco Miglietta, Franco Misson, Laurent Moelder, Meelis Moncrieff, John Monson, Russell K. Montagnani, Leonardo Montes-Helu, Mario Moors, Eddy Moureaux, Christine Mukelabai, Mukufute M. Munger, J. William Myklebust, May Nagy, Zoltan Noormets, Asko Oechel, Walter Oren, Ram Pallardy, Stephen G. Kyaw, Tha Paw U. Pereira, Joao S. Pilegaard, Kim Pinter, Krisztina Pio, Casimiro Pita, Gabriel Powell, Thomas L. Rambal, Serge Randerson, James T. von Randow, Celso Rebmann, Corinna Rinne, Janne Rossi, Federica Roulet, Nigel Ryel, Ronald J. Sagerfors, Jorgen Saigusa, Nobuko Sanz, Maria Jose Mugnozza, Giuseppe-Scarascia Schmid, Hans Peter Seufert, Guenther Siqueira, Mario Soussana, Jean-Francois Starr, Gregory Sutton, Mark A. Tenhunen, John Tuba, Zoltan Tuovinen, Juha-Pekka Valentini, Riccardo Vogel, Christoph S. Wang, Jingxin Wang, Shaoqiang Wang, Weiguo Welp, Lisa R. Wen, Xuefa Wharton, Sonia Wilkinson, Matthew Williams, Christopher A. Wohlfahrt, Georg Yamamoto, Susumu Yu, Guirui Zampedri, Roberto Zhao, Bin Zhao, Xinquan TI Climate control of terrestrial carbon exchange across biomes and continents SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE NEE; climate control; terrestrial carbon sequestration; temperature; dryness; eddy flux; biomes; photosynthesis; respiration; global carbon cycle ID EDDY-COVARIANCE MEASUREMENTS; LONG-TERM; INTERANNUAL VARIABILITY; SPATIAL VARIABILITY; SOIL RESPIRATION; DECIDUOUS FOREST; WATER-VAPOR; FLUXES; DIOXIDE; UNCERTAINTY AB Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence. C1 [Yi, Chuixiang; Wolbeck, John; Xu, Xiyan] CUNY, Sch Earth & Environm Sci, Queens Coll, New York, NY 11367 USA. [Ricciuto, Daniel; Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Li, Runze] Penn State Univ, Dept Stat, University Pk, PA 16802 USA. [Nilsson, Mats; Sagerfors, Jorgen] Swedish Univ Agr Sci, Dept Forest Ecol, SE-90183 Umea, Sweden. [Albertson, John D.] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA. [Ammann, Christof; Fuhrer, Juerg] Fed Res Stn Agroscope Reckenholz Tanikon, CH-8046 Zurich, Switzerland. [Arain, M. Altaf] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON L8S 4K1, Canada. [de Araujo, Alessandro C.] Inst Nacl de Pesquisas da Amazonia, BR-69060 Manaus, Amazonas, Brazil. [Aubinet, Marc; Heinesch, Bernard; Moureaux, Christine] Univ Liege, Unit Biosyst Phys, B-5030 Gembloux, Belgium. [Laurila, Tuomas; Tuovinen, Juha-Pekka] Finnish Meteorol Inst, FI-00101 Helsinki, Finland. [Barcza, Zoltan] Eotvos Lorand Univ, Dept Meteorol, H-1117 Budapest, Hungary. [Barr, Alan] Environm Canada, Div Climate Res, Saskatoon, SK S7N 3H5, Canada. [Berbigier, Paul] EPHYSE, UR1263, INRA, F-33883 Villenave Dornon, France. [Beringer, Jason] Monash Univ, Sch Geog & Environm Sci, Clayton, Vic, Australia. [Bernhofer, Christian] Tech Univ Dresden, Inst Hydrol & Meteorol, D-01737 Tharandt, Germany. [Black, Andrew T.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada. [Bolstad, Paul V.] Univ Minnesota, St Paul, MN 55108 USA. [Bosveld, Fred C.] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands. [Broadmeadow, Mark S. J.; Wilkinson, Matthew] Alice Holt Lodge, Forest Res, Farnham GU10 4LH, Surrey, England. [Buchmann, Nina; Eugster, Werner; Knohl, Alexander] Inst Plant Sci, ETH, Zurich, Switzerland. [Burns, Sean P.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Cellier, Pierre; Loubet, Benjamin] UMR INRA INA PG, Environm & Arable Crops Unit, F-78850 Thiverval Grignon, France. [Chen, Jingming] Univ Toronto, Dept Geog, Toronto, ON M5S 3G3, Canada. [Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA. [Ciais, Philippe] CNRS, CEA, UMR, LSCE, F-91191 Gif Sur Yvette, France. [Clement, Robert; Moncrieff, John] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JU, Midlothian, Scotland. [Cook, Bruce D.] NASAs Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA. [Curtis, Peter S.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA. [Dail, D. Bryan] Univ Maine, Dept Plant Soil & Environm Sci, Orono, ME 04469 USA. [Dellwik, Ebba] Tech Univ Denmark, Wind Energy Div, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Delpierre, Nicolas; Dufrene, Eric] Univ Paris 11, Ecol Systemat & Evolut, F-91405 Orsay, France. [Desai, Ankur R.] Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI 53706 USA. [Dore, Sabina; Kolb, Thomas; Montes-Helu, Mario] No Arizona Univ, Sch Forestry No Arizona Univ, Flagstaff, AZ 86001 USA. [Dragoni, Danilo] Indiana Univ, Dept Geog, Atmospher Sci Program, Bloomington, IN 47405 USA. [Drake, Bert G.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA. [Dunn, Allison] Worcester State Coll, Dept Phys & Earth Sci, Worcester, MA 01602 USA. [Elbers, Jan; Jacobs, Cor] ESS CC, NL-6700 AA Wageningen, Netherlands. [Falk, Matthias] Atmospher Sci Grp, UC Davis, LAWR, Davis, CA 95616 USA. [Feigenwinter, Christian] Univ Basel, Inst Meteorol, CH-4056 Basel, Switzerland. [Flanagan, Lawrence B.] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada. [Foken, Thomas] Univ Bayreuth, Dept Micrometeorol, D-95440 Bayreuth, Germany. [Frank, John; Massman, William J.] USDA Forest Serv, Rocky Mt Res Stn, Ft Collins, CO 80526 USA. [Gianelle, Damiano; Zampedri, Roberto] Fdn E Mach, IASMA Res & Innovat Ctr, Environm & Nat Resources Area, I-38010 Trento, Italy. [Goldstein, Allen] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Goulden, Mike; Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Granier, Andre] Ecol & Ecophysiol Forestier, INRA, UMR 1137, F-54280 Seichamps, France. [Gruenwald, Thomas] Tech Univ Dresden, Inst Hydrol & Meteorol, Dept Meteorol, D-01737 Dresden, Germany. [Guo, Haiqiang; Zhao, Bin] Fudan Univ, Inst Biodivers Sci, Minist Educ Key Lab Biodivers Sci & Ecol Engn, Shanghai 200433, Peoples R China. [Hammerle, Albin; Wohlfahrt, Georg] Univ Innsbruck, Inst Ecol, A-6020 Innsbruck, Austria. [Han, Shijie] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China. [Hanan, Niall P.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Haszpra, Laszlo] Hungarian Meteorol Serv, H-1675 Budapest, Hungary. [Helfter, Carole] Ctr Ecol & Hydrol Edinburgh Bush Estate Penicuik, Penicuik EH26 0QB, Midlothian, Scotland. [Hendriks, Dimmie] Vrije Univ Amsterdam, Dept Hydrol & Geo Environm Sci, NL-1081 HV Amsterdam, Netherlands. [Hutley, Lindsay B.] Charles Darwin Univ, Sch Environm & Life Sci, Darwin, NT 0909, Australia. [Ibrom, Andreas; Pilegaard, Kim] Tech Univ Denmark, Biosyst Div, Riso Natl Lab Sustainable Energy, DK-4000 Roskilde, Denmark. [Johansson, Torbjoern; Lindroth, Anders; Moelder, Meelis] Lund Univ, Geobiosphere Sci Ctr, Phys Geog & Ecosyst Anal, SE-22362 Lund, Sweden. [Jongen, Marjan; Pereira, Joao S.] Univ Tecn Lisboa, Inst Super Agron, P-1349017 Lisbon, Portugal. [Katul, Gabriel] Duke Univ, Sch Environm, Durham, NC 27708 USA. [Kiely, Gerard] Univ Coll Cork, Dept Civil & Environm Engn, Cork, Ireland. [Klumpp, Katja; Soussana, Jean-Francois] Unit Agron, INRA, F-63000 Clermont Ferrand, France. [Klumpp, Katja; Soussana, Jean-Francois] Inst Agrarrelevante Klimaforsch, Johann Heinrich Thunen Inst vTI, D-38116 Braunschweig, Germany. [Lafleur, Peter; Rebmann, Corinna] Trent Univ, Dept Geog, Peterborough, ON K9J 7B8, Canada. [Leuning, Ray; Myklebust, May] CSIRO Marine & Atmospher Res, Canberra, ACT, Australia. [Liu, Heping] Jackson State Univ, Dept Phys Atmospher Sci & Geosci, Jackson, MS 39217 USA. [Manca, Giovanni] Inst Atmospher Pollut Consiglio Nazl Ric, Rende Div, I-87036 Arcavacata Di Rende, Italy. [Marek, Michal] Inst Syst Biol & Ecol, Div Ecosyst Processes Lab Plants Ecol Physiol, Ceske Budejovice 370050, Czech Republic. [Martin, Timothy A.] Univ Florida, Gainesville, FL 32611 USA. [Matamala, Roser] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Matteucci, Giorgio] Inst Agroenvironm & Forest Biol, Natl Res Council, I-00015 Monterotondo, RM, Italy. [McCaughey, Harry] Queens Univ, Dept Geog, Kingston, ON K7L 3N6, Canada. [Merbold, Lutz] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Meyers, Tilden] NOAA ATDD, Oak Ridge, TN 37831 USA. [Migliavacca, Mirco] Univ Milano Bicocca, Remote Sensing Environm Dynam Lab, DISAT, Milan, Italy. [Miglietta, Franco; Rossi, Federica] Ist Biometeorol, CNR, IBIMET, I-50145 Florence, Italy. [Misson, Laurent] CEFE, CNRS, F-34293 Montpellier 5, France. [Monson, Russell K.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Montagnani, Leonardo] Serv Forestali, Agenzia Ambiente, I-39100 Bolzano, Italy. [Montagnani, Leonardo] Free Univ Bozen Bolzano, Fac Sci & Technol, I-39100 Bolzano, Italy. [Moors, Eddy] Alterra Green World Res, NL-6700 AA Wageningen, Netherlands. [Moureaux, Christine] Univ Liege, Unit Crops Management, B-5030 Gembloux, Belgium. [Mukelabai, Mukufute M.] Zambian Meteorol Dept, Mongu, Zambia. [Munger, J. William] Harvard Univ, Div Engn & Appl Sci, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Nagy, Zoltan; Pinter, Krisztina; Tuba, Zoltan] Agr Univ Godollo, Inst Bot & Ecophysiol, H-2103 Godollo, Hungary. [Noormets, Asko] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA. [Oechel, Walter] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Oren, Ram; Siqueira, Mario] Duke Univ, Nicholas Sch Environm & Earth Sci, Durham, NC 27708 USA. [Pallardy, Stephen G.] Univ Missouri, Dept Forestry, Columbia, MO 65211 USA. [Pio, Casimiro] Univ Aveiro, Dept Environm, P-3810193 Aveiro, Portugal. [Pio, Casimiro] CESAM, P-3810193 Aveiro, Portugal. [Pita, Gabriel] Inst Super Tecn, Dept Mech Engn, P-1049001 Lisbon, Portugal. [Powell, Thomas L.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Rambal, Serge] UMR5175, CNRS, CEFE, DREAM, Montpellier 5, France. [von Randow, Celso] Natl Inst Space Res, Ctr Earth Syst Sci, BR-12630 Cachoeira Paulista, SP, Brazil. [Rinne, Janne] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Ryel, Ronald J.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA. [Saigusa, Nobuko] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan. [Sanz, Maria Jose] Ctr Estud Ambient Mediterraneo, E-46980 Paterna, Spain. [Mugnozza, Giuseppe-Scarascia] Dept Agron Forestry & Land Use, Agr Res Council, I-00184 Rome, Italy. [Schmid, Hans Peter] Atmospher Environm Res Inst Meteorol, Garmisch Partenkirchen, Germany. [Schmid, Hans Peter] Climate Res Forschungszentrum Karlsruhe, Garmisch Partenkirchen, Germany. [Seufert, Guenther] Inst Environm & Sustainabil, Joint Res Ctr European Commiss, I-21020 Ispra, Italy. [Starr, Gregory] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA. [Sutton, Mark A.] Atmospher Sci Ctr Ecol & Hydrol CEH, Penicuik EH26 0QB, Midlothian, Scotland. [Tenhunen, John] Univ Bayreuth, Dept Plant Ecol, D-95440 Bayreuth, Germany. [Valentini, Riccardo] Univ Tuscia, Dept Forest Environm & Resources, I-01100 Viterbo, Italy. [Vogel, Christoph S.] Univ Michigan Biol Stn, Pellston, MI 49769 USA. [Wang, Jingxin] Liaoning Normal Univ, Sch Math, Dalian 116039, Peoples R China. [Wang, Shaoqiang; Wen, Xuefa; Yu, Guirui] Chinese Acad Sci, Inst Geog Sci & Nat Resource Res, Beijing 100101, Peoples R China. [Wang, Weiguo] NOAA, IMSG Natl Ctr Environm Predict, Camp Springs, MD 20746 USA. [Welp, Lisa R.] Univ Calif, Geosci Res Div, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA. [Williams, Christopher A.] Clark Univ, Grad Degree Program Geog, Worcester, MA 01610 USA. [Yamamoto, Susumu] Okayama Univ, Okayama 7008530, Japan. [Zhao, Xinquan] Chinese Acad Sci, NW Plateau Inst Biol, Xining 810001, Jiangxi, Peoples R China. RP Yi, CX (reprint author), CUNY, Sch Earth & Environm Sci, Queens Coll, New York, NY 11367 USA. RI Powell, Thomas/F-9877-2016; Ricciuto, Daniel/I-3659-2016; Munger, J/H-4502-2013; Hammerle, Albin/N-4345-2016; Soussana, Jean-Francois/P-2094-2016; Gianelle, Damiano/G-9437-2011; Gu, Lianhong/H-8241-2014; Goldstein, Allen/A-6857-2011; Oechel, Walter/F-9361-2010; Goulden, Michael/B-9934-2008; Eugster, Werner/E-5116-2010; Beringer, Jason/B-8528-2008; Soussana, Jean-Francois/E-2543-2012; Aurela, Mika/L-4724-2014; Lindroth, Anders/N-4697-2014; Wohlfahrt, Georg/D-2409-2009; Marek, Michal V./D-4383-2014; Merbold, Lutz/K-6103-2012; Desai, Ankur/A-5899-2008; Xu, Xiyan/D-2854-2015; Barr, Alan/H-9939-2014; Seufert, Gunther/J-9918-2013; Matteucci, Giorgio/N-3526-2015; Sanz Sanchez, Maria Jose/A-6099-2016; Meyers, Tilden/C-6633-2016; Montagnani, Leonardo/F-1837-2016; Rinne, Janne/A-6302-2008; Chen, Jiquan/D-1955-2009; Ryel, Ronald/A-3422-2008; Burns, Sean/A-9352-2008; Miglietta, Franco/A-1257-2009; Feigenwinter, Christian/A-6151-2008; Buchmann, Nina/E-6095-2011; Noormets, Asko/A-7257-2009; Katul, Gabriel/A-7210-2008; Helfter, Carole/A-1835-2010; Feigenwinter, Christian/A-4606-2012; Valentini, Riccardo/D-1226-2010; Ibrom, Andreas/A-9850-2011; Leuning, Ray/A-2793-2008; Pio, Casimiro/A-8135-2008; Hutley, Lindsay/A-7925-2011; Zhao, Bin/E-5349-2010; Schmid, Hans Peter/I-1224-2012; Migliavacca, mirco/C-1260-2011; Moors, Eddy/J-5165-2012; Sutton, Mark/K-2700-2012; Wang, Weiguo/B-4948-2009; Flanagan, Lawrence/B-1307-2013; Elbers, Jan/D-9477-2013; von Randow, Celso/B-3335-2009; Pilegaard, Kim/I-7137-2013; Kiely, Gerard/I-8158-2013; Cook, Bruce/M-4828-2013; Yi, Chuixiang/A-1388-2013; Zhao, Bin/I-3651-2013; 于, 贵瑞/C-1768-2014; Knohl, Alexander/F-9453-2014; Barcza, Zoltan/G-3880-2014; Garmisch-Pa, Ifu/H-9902-2014; Li, Runze/C-5444-2013 OI Martin, Timothy/0000-0002-7872-4194; Foken, Thomas/0000-0003-4562-9083; Hanan, Niall/0000-0002-9130-5306; Aires, Luis Miguel Igreja/0000-0003-2052-6045; Kiely, Gerard/0000-0003-2189-6427; Ibrom, Andreas/0000-0002-1341-921X; Jongen, Marjan/0000-0003-1026-6622; Pita, Gabriel/0000-0002-2225-5309; Arain, M. Altaf/0000-0002-1433-5173; rambal, serge/0000-0001-5869-8382; Pereira, Joao/0000-0002-3658-5587; Powell, Thomas/0000-0002-3516-7164; Ricciuto, Daniel/0000-0002-3668-3021; Munger, J/0000-0002-1042-8452; Hammerle, Albin/0000-0003-1963-5906; Soussana, Jean-Francois/0000-0002-1932-6583; Gianelle, Damiano/0000-0001-7697-5793; Gu, Lianhong/0000-0001-5756-8738; Goldstein, Allen/0000-0003-4014-4896; Oechel, Walter/0000-0002-3504-026X; Eugster, Werner/0000-0001-6067-0741; Beringer, Jason/0000-0002-4619-8361; Lindroth, Anders/0000-0002-7669-784X; Wohlfahrt, Georg/0000-0003-3080-6702; Merbold, Lutz/0000-0003-4974-170X; Desai, Ankur/0000-0002-5226-6041; Xu, Xiyan/0000-0003-2732-1325; Seufert, Gunther/0000-0002-6019-6688; Matteucci, Giorgio/0000-0002-4790-9540; Sanz Sanchez, Maria Jose/0000-0003-0471-3094; Montagnani, Leonardo/0000-0003-2957-9071; Goulden, Michael/0000-0002-9379-3948; Rinne, Janne/0000-0003-1168-7138; Burns, Sean/0000-0002-6258-1838; Miglietta, Franco/0000-0003-1474-8143; Feigenwinter, Christian/0000-0003-2447-5492; Noormets, Asko/0000-0003-2221-2111; Katul, Gabriel/0000-0001-9768-3693; Valentini, Riccardo/0000-0002-6756-5634; Pio, Casimiro/0000-0002-3531-8620; Hutley, Lindsay/0000-0001-5533-9886; Schmid, Hans Peter/0000-0001-9076-4466; Moors, Eddy/0000-0003-2309-2887; Flanagan, Lawrence/0000-0003-1748-0306; Elbers, Jan/0000-0002-0631-3505; von Randow, Celso/0000-0003-1045-4316; Pilegaard, Kim/0000-0002-5169-5717; Cook, Bruce/0000-0002-8528-000X; Zhao, Bin/0000-0002-3530-2469; Knohl, Alexander/0000-0002-7615-8870; Barcza, Zoltan/0000-0002-1278-0636; Li, Runze/0000-0002-0154-2202 FU National Science Foundation [NSF-DEB-0949637]; PSC-CUNY [62787-00 40]; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; University of Tuscia; US Department of Energy; AmeriFlux; Fluxnet-Canada; ChinaFlux; OzFlux; CarboAfrica; AsiaFlux; Department of Commerce (NOAA); Department of Agriculture (USDA/Forest Service); NASA; European Commission; Canadian Foundation for Climate and Atmospheric Sciences (CFCAS); Natural Sciences and Engineering Research Council (NSERC); BIOCAP Canada (Fluxnet-Canada only); Chinese Academy of Sciences; Ministry of Science and Technology; Australian Research Council; Ministry of Agriculture, Forest and Fisheries (MAFF); Ministry of Industrial Trade and Industry (MITI); Ministry of Education, Science, Sports and Culture (MESSC); Brazilian Ministry of Science and Technology (MCT); LBA FX This work was financially supported in part by the National Science Foundation (NSF-DEB-0949637) and the PSC-CUNY Faculty Research Award (Grant No 62787-00 40). This work was based on the database produced by the La Thuile FLUXNET project, which received financial support of CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, US Department of Energy. We acknowledge database and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. The following regional networks were involved with this work: AmeriFlux, CarboEuropeIP, Fluxnet-Canada, ChinaFlux, OzFlux, CarboAfrica, and AsiaFlux. AmeriFlux, is sponsored by the United States Departments of Energy (Terrestrial Carbon Program, National Institutes of Global Environmental Change (NIGEC), National Institute for Climate Change Research (NICCR)), Department of Commerce (NOAA), and Department of Agriculture (USDA/Forest Service), NASA, and the National Science Foundation. European sites in the NitroEurope, Euroflux and Medeflu projects are supported by the European Commission Directorate General XII Environment, Climate Program and the Program CONSOLIDER-INGENIO 2010 (GRACCIE). Canadian sites are sponsored by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), the Natural Sciences and Engineering Research Council (NSERC), and BIOCAP Canada (Fluxnet-Canada only). Chinese sites are supported by the Chinese Academy of Sciences and the Ministry of Science and Technology. Australian sites are supported by the Australian Research Council. The Japanese site is supported by the Ministry of Agriculture, Forest and Fisheries (MAFF), the Ministry of Industrial Trade and Industry (MITI), and Ministry of Education, Science, Sports and Culture (MESSC). The Brazilian site is supported by the Brazilian Ministry of Science and Technology (MCT) and the LBA program. We thank the numerous scientists, students, and technicians responsible for the day-to-day gathering of the flux data, and the agency representatives who fund the respective projects. Without the dedicated efforts of so many individuals, this analysis would be impossible. NR 45 TC 56 Z9 58 U1 4 U2 132 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD JUL-SEP PY 2010 VL 5 IS 3 AR 034007 DI 10.1088/1748-9326/5/3/034007 PG 10 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 655TX UT WOS:000282273700008 ER PT J AU Huo, H Zhang, QA Wang, MQ Streets, DG He, KB AF Huo, Hong Zhang, Qiang Wang, Michael Q. Streets, David G. He, Kebin TI Environmental Implication of Electric Vehicles in China SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POLLUTANT EMISSIONS; AIR-POLLUTION; CO2 EMISSIONS; FUTURE; CONSUMPTION; TRENDS AB Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO2, SO2, and NOx emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO2 emissions currently, but greater CO2 reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO2 emissions by 3-10 times and also double NOx emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NOx emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO2. EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives. C1 [Huo, Hong] Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. [Zhang, Qiang] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China. [Wang, Michael Q.] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Streets, David G.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [He, Kebin] Tsinghua Univ, State Key Joint Lab Environm Simulat & Pollut Con, Dept Environm Sci & Engn, Beijing 100084, Peoples R China. RP Huo, H (reprint author), Tsinghua Univ, Inst Energy Environm & Econ, Beijing 100084, Peoples R China. EM hhuo@tsinghua.edu.cn; hekb@tsinghua.edu.cn RI Zhang, Qiang/D-9034-2012; OI Streets, David/0000-0002-0223-1350 FU National Natural Science Foundation of China [20625722, 20921140409] FX This work was supported by the National Natural Science Foundation of China (20625722 and 20921140409). NR 38 TC 68 Z9 75 U1 3 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 4856 EP 4861 DI 10.1021/es100520c PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700011 PM 20496930 ER PT J AU Jackson, WA Bohlke, JK Gu, BH Hatzinger, PB Sturchio, NC AF Jackson, W. Andrew Boehlke, John Karl Gu, Baohua Hatzinger, Paul B. Sturchio, Neil C. TI Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID OXYGEN ISOTOPES; HIGH-PLAINS; WATER; FRACTIONATION; GROUNDWATER; DESERT; USA; BIODEGRADATION; EQUILIBRATION; DEPOSITION AB Perchlorate (ClO(4)(-)) has been detected widely in groundwater and soils of the southwestern United States. Much of this ClO(4)(-) appears to be natural, and it may have accumulated largely through wet and dry atmospheric deposition. This study evaluates the isotopic composition of natural ClO(4)(-) indigenous to the southwestern U.S. Stable isotope ratios were measured in ClO(4)(-) (delta(18)O, Delta(17)O, delta(37)Cl) and associated NO(3)(-) (delta(18)O, Delta(17)O, delta(15)N) in groundwater from the southern High Plains (SHP) of Texas and New Mexico and the Middle Rio Grande Basin (MRGB) in New Mexico, from unsaturated subsoil in the SHP, and from NO(3)(-)-rich surface caliche deposits near Death Valley, California. The data indicate natural ClO(4)(-) in the southwestern U.S. has a wide range of isotopic compositions that are distinct from those reported previously for natural ClO(4)(-) from the Atacama Desert of Chile as well as all known synthetic ClO(4)(-).ClO(4)(-) in Death Valley caliche has a range of high Delta(17)O values (+8.6 to +18.4 parts per thousand), overlapping and extending the Atacama range, indicating at least partial atmospheric formation via reaction with ozone (O(3)). However, the Death Valley delta(37)Cl values (-3.1 to -0.8 parts per thousand) and delta(18)O values (+2.9 to +26.1 parts per thousand) are higher than those of Atacama ClO(4)(-). In contrast, ClO(4)(-) from western Texas and New Mexico has much lower Delta(17)O (+0.3 to +1.3 parts per thousand), with relatively high delta(37)Cl (+3.4 to +5.1 parts per thousand) and delta(18)O (+0.5 to +4.8 parts per thousand), indicating either that this material was not primarily generated with O(3) as a reactant or that the ClO(4)(-) was affected by postdepositional O isotope exchange. High Delta(17)O values in ClO(4)(-) (Atacama and Death Valley) are associated with high Delta(17)O values in NO(3)(-), indicating that both compounds preserve characteristics of O(3)-related atmospheric production in hyper-arid settings, whereas both compounds have low Delta(17)O values in less arid settings. Although Delta(17)O variations in terrestrial NO(3)(-) can be attributed to mixing of atmospheric (high Delta(17)O) and biogenic (low Delta(17)O) NO(3)(-), variations in Delta(17)O of terrestrial ClO(4)(-) are not readily explained in the same way. This study provides important new constraints for identifying natural sources of ClO(4)(-) in different environments by multicomponent isotopic characteristics, while presenting the possibilities of divergent ClO(4)(-) formation mechanisms and(or) ClO(4)(-) isotopic exchange in biologically active environments. C1 [Jackson, W. Andrew] Texas Tech Univ, Lubbock, TX 79410 USA. [Boehlke, John Karl] US Geol Survey, Reston, VA 20192 USA. [Gu, Baohua] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hatzinger, Paul B.] Shaw Environm Inc, Lawrenceville, NJ 08648 USA. [Sturchio, Neil C.] Univ Illinois, Chicago, IL 60607 USA. RP Jackson, WA (reprint author), Texas Tech Univ, Lubbock, TX 79410 USA. EM andrew.jackson@ttu.edu RI Jackson, William/B-8999-2009; Gu, Baohua/B-9511-2012 OI Gu, Baohua/0000-0002-7299-2956 FU U.S. Department of Defense [ER-1435, ER-0509]; U.S. Geological Survey FX This work was supported by the Strategic Environmental Research and Development Program (SERDP Project ER-1435) and the Environmental Security Technology Certification Program (ESTCP Project ER-0509) of the U.S. Department of Defense, and the U.S. Geological Survey National Research Program in water resources. Abeloso Beloso (UIC) and Yongrong Bian at ORNL performed some of the perchlorate purifications, Linnea Heraty (UIC) performed Cl isotope analyses, and Stanley Mroczkowski (USGS) performed O isotope analyses. We appreciate the assistance of Srinath Rajagopolan, Bradley Thornhill, Stanley Mroczkowski, Greta Orris, Julio Betancourt, and Reika Yokochi in collecting soil and groundwater samples. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 40 TC 57 Z9 66 U1 5 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 4869 EP 4876 DI 10.1021/es903802j PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700013 PM 20521813 ER PT J AU Deo, RP Songkasiri, W Rittmann, BE Reed, DT AF Deo, Randhir P. Songkasiri, Warinthorn Rittmann, Bruce E. Reed, Donald T. TI Surface Complexation of Neptunium(V) onto Whole Cells and Cell Components of Shewanella alga: Modeling and Experimental Study SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BACILLUS-LICHENIFORMIS S-86; CHEMICAL-EQUILIBRIUM MODEL; EXTRACELLULAR POLYMERS EPS; METAL ADSORPTION; POTENTIOMETRIC TITRATIONS; BACTERIAL SURFACES; SUBTILIS; PH; THERMODYNAMICS; SPECTROSCOPY AB We systematically quantified surface complexation of Np(V) onto whole cells, cell wall, and extracellular polymeric substances (EPS) of Shewanella alga strain BrY. We first performed acid and base titrations and used the mathematical model FITEQL to estimate the concentrations and deprotonation constants of specific surface functional groups. Deprotonation constants most likely corresponded to a carboxyl group not associated with amino acids (pK(a) similar to 5), a phosphoryl site (pK(a) similar to 7.2), and an amine site (pK(a) > 10). We then carried out batch sorption experiments with Np(V) and each of the S. alga components as a function of pH. Since significant Np(V) sorption was observed on S. alga whole cells and its components in the pH range 2-5, we assumed the existence of a fourth site: a low-pK(a) carboxyl site (pK(a) similar to 2.4) that is associated with amino acids. We used the SPECIATE submodel of the biogeochemical model CCBATCH to compute the stability constants for Np(V) complexation to each surface functional group. The stability constants were similar for each functional group on S. alga bacterial whole cells, cell walls, and EPS, and they explain the complicated sorption patterns when they are combined with the aqueous-phase speciation of Np(V). For pH < 8, the aquo NpO(2)(+) species was the dominant form of Np(V), and its log K values for the low-pK(a) carboxyl, mid-pK(a) carboxyl, and phosphoryl groups were 1.8, 1.8, and 2.5-3.1, respectively. For pH greater than 8, the key surface ligand was amine >XNH(3)(+), which complexed with NpO(2)(CO(3))(3)(5-). The log K for NpO(2)(CO(3))(3)(5-) complexed onto the amine groups was 3.1-3.9. All of the log K values are similar to those of Np(V) complexes with aqueous carboxyl and N-containing carboxyl ligands. These results help quantify the role of surface complexation in defining actinide-microbiological interactions in the subsurface. C1 [Deo, Randhir P.; Rittmann, Bruce E.] Arizona State Univ, Ctr Environm Biotechnol, Biodesign Inst, Tempe, AZ 85287 USA. [Songkasiri, Warinthorn] King Mongkuts Univ Technol Thonburi, Natl Ctr Genet Engn & Biotechnol, Excellence Ctr Waste Utilizat & Management, Bangkok 10150, Thailand. [Reed, Donald T.] Los Alamos Natl Lab, Earth & Environm Sci Div, Carlsbad, NM 88220 USA. RP Rittmann, BE (reprint author), Arizona State Univ, Ctr Environm Biotechnol, Biodesign Inst, Tempe, AZ 85287 USA. EM Rittmann@asu.edu RI Songkasiri , Warinthorn/H-9274-2013 FU DOE office of Science; Nuclear Energy Research Initiative (NERI); United States Department of Energy; National Center for Genetic Engineering and Biotechnology, Thailand FX The experimental work was performed in the Chemical Technology division at Argonne National Laboratory. XANES analyses were performed at the Advanced Photon Source which is supported by the DOE office of Science. The research was supported, in part, by the Nuclear Energy Research Initiative (NERI), the Environmental Remediation Sciences Program (ERSP) of the United States Department of Energy, and the National Center for Genetic Engineering and Biotechnology, Thailand, for partial financial support. NR 35 TC 17 Z9 17 U1 2 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 4930 EP 4935 DI 10.1021/es9035336 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700022 PM 20521812 ER PT J AU Chun, CL Baer, DR Matson, DW Amonette, JE Penn, RL AF Chun, Chan Lan Baer, Donald R. Matson, Dean W. Amonette, James E. Penn, R. Lee TI Characterization and Reactivity of Iron Nanoparticles prepared with added Cu, Pd, and Ni SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CARBON-TETRACHLORIDE TRANSFORMATION; AQUEOUS-SOLUTION; REDUCTIVE DEHALOGENATION; BIMETALLIC REDUCTANTS; RAPID DECHLORINATION; GRANULAR IRON; PARTICLES; SURFACE; DEGRADATION; 1,1,1-TRICHLOROETHANE AB The association of a secondary metal with iron particles affects redox reactivity in engineered remediation systems. However, the structural characteristics of the metal additives and mechanism responsible for changes in reactivity have not been fully elucidated. Here, we synthesized iron nanoparticles with Cu, Pd, and Ni content ranging from 0-2 mol % via a solution deposition process (SDP), hydrogen reduction process (HRP), or hydrogen reduction of ferrihydrite coprecipitated with the metal cations (HRCO). Results from solid-state characterization show that the synthesis methods produced similar iron core/magnetite shell particles but produced substantial differences in terms of the distribution of the metal additives. In SDP, the metal additives were heterogeneously distributed on the surface of the particles. The metal additives were clearly discernible in TEM images as spherical nanoparticles (5-20 nm) on the HRP and HRCO panicles. Because the metals were integral to the synthesis process, we hypothesize that the metal additive is present as solute within the iron core of the HRCO particles. Kinetic batch experiments of carbon tetrachloride (CT) degradation were performed to quantitatively compare the redox reactivity of the particles. Overall, metal additives resulted in enhanced pseudo-first-order rate constants of CT degradation (k(O,CT)) compared to that of the iron nanoparticles. For the bimetallic iron nanoparticles prepared by SDP and HRP, k(O,CT) increased with the concentration of metal additives. The values of chloroform yield (Y(CF)) were independent of the identity and amount of metal additives. However, both k(O,CT) and Y(CF) of the HRCO iron particles were significantly increased. Results suggest that it is the distribution of the metal additives that most strongly impacts reactivity and product distribution. For example, for materials with ca. 0.9 mol% Ni, reactivity and Y(CF) varied substantially (HRCO > SDP > HRP), and HRCO-NiFe resulted in the lowest final chloroform concentration because chloroform was rapidly dechlorinated. In addition, sequential spike experiments for long-term reactivity demonstrated that the presence of the metal additives facilitated reduction by enabling greater utilization of Fe(0). C1 [Penn, R. Lee] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA. [Chun, Chan Lan; Baer, Donald R.; Matson, Dean W.; Amonette, James E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Penn, RL (reprint author), Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA. EM rleepenn@umn.edu RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU U.S. Department of Energy (DOE) Offices of Basic Energy Sciences (Chemical Sciences Division) and Biological and Environmental Research FX This work was supported by the U.S. Department of Energy (DOE) Offices of Basic Energy Sciences (Chemical Sciences Division) and Biological and Environmental Research (Environmental Management Sciences Program). Parts of the work were conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is located at the Pacific Northwest National Laboratory (PNNL). EMSL is a DOE User Facility operated by Battelle for the DOE Office of Biological and Environmental Research. PNNL also provided support to C.L.C. through the Summer Research Institute Interfacial and Condensed Phase Chemical Physics. NR 35 TC 56 Z9 61 U1 5 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 5079 EP 5085 DI 10.1021/es903278e PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700043 PM 20509654 ER PT J AU Wu, WM Carley, J Green, SJ Luo, J Kelly, SD Van Nostrand, J Lowe, K Mehlhorn, T Carroll, S Boonchayanant, B Lofller, FE Watson, D Kemner, KM Zhou, JZ Kitanidis, PK Kostka, JE Jardine, PM Criddle, CS AF Wu, Wei-Min Carley, Jack Green, Stefan J. Luo, Jian Kelly, Shelly D. Van Nostrand, Joy Lowe, Kenneth Mehlhorn, Tonia Carroll, Sue Boonchayanant, Benjaporn Loefller, Frank E. Watson, David Kemner, Kenneth M. Zhou, Jizhong Kitanidis, Peter K. Kostka, Joel E. Jardine, Philip M. Criddle, Craig S. TI Effects of Nitrate on the Stability of Uranium in a Bioreduced Region of the Subsurface SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID HIGHLY CONTAMINATED AQUIFER; IN-SITU BIOSTIMULATION; MICROBIAL COMMUNITIES; SP-NOV.; SUBMICROMOLAR LEVELS; DISSOLVED-OXYGEN; U(IV) OXIDATION; GEN. NOV.; REDUCTION; BIOREMEDIATION AB The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 mu M. C1 [Wu, Wei-Min; Boonchayanant, Benjaporn; Kitanidis, Peter K.; Criddle, Craig S.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Carley, Jack; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Watson, David; Jardine, Philip M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Green, Stefan J.; Kostka, Joel E.] Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA. [Luo, Jian; Loefller, Frank E.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Kelly, Shelly D.; Kemner, Kenneth M.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Van Nostrand, Joy; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Loefller, Frank E.] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. RP Criddle, CS (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM ccriddle@stanford.edu RI Green, Stefan/C-8980-2011; BM, MRCAT/G-7576-2011; Watson, David/C-3256-2016; Van Nostrand, Joy/F-1740-2016; OI Watson, David/0000-0002-4972-4136; Van Nostrand, Joy/0000-0001-9548-6450; Boonchayaanant Suwannasilp, Benjaporn/0000-0003-4321-5370; Green, Stefan/0000-0003-2781-359X FU U.S. DOE [DOEAC05-00OR22725] FX This work was funded by the U.S. DOE Subsurface Bio-geochemical Research Program under grant DOEAC05-00OR22725. We thank Xiangping Ying for analytical help and Julie Stevens for her daily work in project administration. Support for XANES data collection at the MRCAT at the Advanced Photo Source, and analyses was provided by the U.S. DOE SBR and DOE Office of Science, Office of Basic Energy Sciences. NR 44 TC 41 Z9 42 U1 3 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 5104 EP 5111 DI 10.1021/es1000837 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700047 PM 20527772 ER PT J AU Ritalahti, KM Hatt, JK Lugmayr, V Henn, L Petrovskis, EA Ogles, DM Davis, GA Yeager, CM Lebron, CA Loffler, FE AF Ritalahti, Kirsti M. Hatt, Janet K. Lugmayr, Veronica Henn, Leith Petrovskis, Erik A. Ogles, Dora M. Davis, Greg A. Yeager, Chris M. Lebron, Carmen A. Loeffler, Frank E. TI Comparing On-Site to Off-Site Biomass Collection for Dehalococcoides Biomarker Gene Quantification To Predict in Situ Chlorinated Ethene Detoxification Potential SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID REDUCTIVE DEHALOGENASE GENES; 16S RIBOSOMAL-RNA; TIME RT-PCR; VINYL-CHLORIDE; DECHLORINATION; BACTERIUM; STRAINS; DNA AB Biostimulation and bioaugmentation have emerged as constructive remedies for chlorinated ethene-contaminated aquifers, and a link between Dehalococcoides (Dhc) bacteria and chlorinated ethene detoxification has been established. To quantify Dhc biomarker genes, groundwater samples are shipped to analytical laboratories where biomass is collected on membrane filters by vacuum filtration for DNA extraction and quantitative real-time PCR analysis. This common practice was compared with a straightforward, on-site filtration approach to Sterivex cartridges. In initial laboratory studies with groundwater amended with known amounts of Dhc target cells, Sterivex cartridges yielded one-third of the total DNA and 9-18% of the Dhc biomarker gene copies compared with vacuum filtration. Upon optimization, DNA yields increased to 94 +/- 38% (+/- SD, n = 10), and quantification of Dhc biomarker genes exceeded the values obtained with the vacuum filtration procedure up to 5-fold. Both methods generated reproducible results when volumes containing >10(4) total Dhc target gene copies were collected. Analysis of on-site and off-site biomass collection procedures corroborated the applicability of the Sterivex cartridge for Dhc biomarker quantification in groundwater. Ethene formation coincided with Dhc cell titers of >2 x 10(6) L(-1) and high (i.e., >10(5)) abundance of the vinyl chloride reductive dehalogenase genes vcrA and/or bvcA; however, high Dhc cell titers alone were insufficient to predict ethene formation. Further, ethene formation occurred at sites with high Dhc cell titers but low or no detectable vcrA or bvcA genes, suggesting that other, not yet identified vinyl chloride reductive dehalogenases contribute to ethene formation. On-site biomass collection with Sterivex cartridges avoids problems associated with shipping groundwater and has broad applicability for biomarker monitoring in aqueous samples. C1 [Ritalahti, Kirsti M.; Lugmayr, Veronica; Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hatt, Janet K.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Henn, Leith] Tetra Tech Inc, Pittsburgh, PA 15220 USA. [Petrovskis, Erik A.] Geosyntec Consultants, Dexter, MI 48130 USA. [Ogles, Dora M.; Davis, Greg A.] Microbial Insights, Rockford, TN 37853 USA. [Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Lebron, Carmen A.] NAVFAC Engn Serv Ctr, Port Hueneme, CA USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Loffler, FE (reprint author), Univ Tennessee, Dept Microbiol, M409 WLS Bldg,1414 Cumberland Ave, Knoxville, TN 37996 USA. EM frank.loeffler@utk.edu RI Ritalahti, Kirsti/B-4624-2010; Loeffler, Frank/M-8216-2013 FU Environmental Security Technology Certification Program (ESTCP) [N68711-05-C-0054, ER-0518]; Strategic Environmental Research and Development Program (SERDP) [N47408-04-C-7515, ER-1561, W912HQ-07-C-0036, ER-1586]; Department of Energy, Office of Environmental Management, Soils and Groundwater Remediation Technology Development Program FX This research was supported by the Environmental Security Technology Certification Program (ESTCP) under Contract N68711-05-C-0054 (project ER-0518) and, in part, by the Strategic Environmental Research and Development Program (SERDP) under Contracts N47408-04-C-7515 (project ER-1561) and W912HQ-07-C-0036 (project ER-1586). C. M. Yeager's efforts were supported by the Department of Energy, Office of Environmental Management, Soils and Groundwater Remediation Technology Development Program. NR 32 TC 24 Z9 24 U1 3 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 5127 EP 5133 DI 10.1021/es100408r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700050 PM 20545341 ER PT J AU Suresh, AK Pelletier, DA Wang, W Moon, JW Gu, BH Mortensen, NP Allison, DP Joy, DC Phelps, TJ Doktycz, MJ AF Suresh, Anil K. Pelletier, Dale A. Wang, Wei Moon, Ji-Won Gu, Baohua Mortensen, Ninell P. Allison, David P. Joy, David C. Phelps, Tommy J. Doktycz, Mitchel J. TI Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ATOMIC-FORCE MICROSCOPY; REDUCTASE-MEDIATED SYNTHESIS; ESCHERICHIA-COLI; EXTRACELLULAR BIOSYNTHESIS; COPPER NANOPARTICLES; OXIDE NANOPARTICLES; PARTICLES; DRUG; DISSOLUTION; MECHANISM AB Microorganisms have long been known to develop resistance to metal ions either by sequestering metals inside the cell or by effluxing them into the extracellular media. Here we report the biosynthesis of extracellular silver-based single nanocrystallites of well-defined composition and homogeneous morphology utilizing the gamma-proteobacterium, Shewanella oneidensis MR-1, upon incubation with aqueous silver nitrate solution. Further characterization of these particles revealed that the crystals consist of small, reasonably monodispersed spheres in the 2-11 nm size range (average of 4 +/- 1.5 nm). The bactericidal effect of these nanoparticles (biogenic-Ag) is compared to chemically synthesized silver nanoparticles (colloidal-Ag and oleate capped silver nanoparticles, oleate-Ag) and assessed using Gram-negative (E. coli and S. oneidensis) and Gram-positive (B. subtilis) bacteria. Relative toxicity was based on the diameter of inhibition zone in disk diffusion tests, minimum inhibitory concentrations, live/dead assays, and atomic force microscopy. From a toxicity perspective, strain-dependent inhibition depended on the synthesis procedure and the surface coat. Biogenic-Ag was found to be of higher toxicity compared to colloidal-Ag for all three strains tested, whereas E. coli and S. oneidensis were found to be more resistant to either of these nanoparticles than B. subtilis. In contrast, oleate-Ag was not toxic to any of the bacteria. These findings have implications for the potential uses of Ag nanomaterials and for their fate in biological and environmental systems. C1 [Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji-Won; Mortensen, Ninell P.; Phelps, Tommy J.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wang, Wei; Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Allison, David P.; Joy, David C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Joy, David C.; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Suresh, AK (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM sureshak@ornl.gov; doktyczmj@ornl.gov RI Doktycz, Mitchel/A-7499-2011; Moon, Ji-Won/A-9186-2011; phelps, tommy/A-5244-2011; Pelletier, Dale/F-4154-2011; Wang, Wei/B-5924-2012; Gu, Baohua/B-9511-2012 OI Doktycz, Mitchel/0000-0003-4856-8343; Moon, Ji-Won/0000-0001-7776-6889; Gu, Baohua/0000-0002-7299-2956 FU U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; Lundbeck Foundation FX We acknowledge support from the Office of Biological and Environmental Research, U.S. Department of Energy (DOE). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. We thank Ms. X. Yin for the ICP-MS measurements. N.P.M. thanks Lundbeck Foundation for financial support. NR 42 TC 109 Z9 112 U1 8 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 5210 EP 5215 DI 10.1021/es903684r PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700063 PM 20509652 ER PT J AU Hsu, DD Inman, D Heath, GA Wolfrum, EJ Mann, MK Aden, A AF Hsu, David D. Inman, Daniel Heath, Garvin A. Wolfrum, Edward J. Mann, Margaret K. Aden, Andy TI Life Cycle Environmental Impacts of Selected US Ethanol Production and Use Pathways in 2022 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID CORN-ETHANOL; CELLULOSIC ETHANOL; SCALE PRODUCTION; UNITED-STATES; NET ENERGY; SWITCHGRASS; BIOMASS; EFFICIENCY; EMISSIONS; HARVEST AB Projected life cycle greenhouse gas (GHG) emissions and net energy value (NEV) of high-ethanol blend fuel (E85) used to propel a passenger car in the United States are evaluated using attributional life cycle assessment. Input data represent national-average conditions projected to 2022 for ethanol produced from corn grain, corn stover, wheat straw, switchgrass, and forest residues. Three conversion technologies are assessed: advanced dry mill (corn grain), biochemical (switchgrass, corn stover, wheat straw), and thermochemical (forest residues). A reference case is compared against results from Monte Carlo uncertainty analysis. For this case, one kilometer traveled on E85 from the feedstock-to-ethanol pathways evaluated has 43%-57% lower GHG emissions than a car operated on conventional U.S. gasoline (base year 2005). Differences in NEV cluster by conversion technology rather than by feedstock. The reference case estimates of GHG and NEV skew to the tails of the estimated frequency distributions. Though not as optimistic as the reference case, the projected median GHG and NEV for all feedstock-to-E85 pathways evaluated offer significant improvement over conventional U.S. gasoline. Sensitivity analysis suggests that inputs to the feedstock production phase are the most influential parameters for GHG and NEV. Results from this study can be used to help focus research and development efforts. C1 [Hsu, David D.; Inman, Daniel; Heath, Garvin A.; Wolfrum, Edward J.; Mann, Margaret K.; Aden, Andy] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hsu, DD (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM david.hsu@nrel.gov OI Wolfrum, Edward/0000-0002-7361-8931 FU U.S. Department of Energy [DE-AC36-08-GO28308] FX Authors D.D.H. and DJ. contributed equally to this work. Funding for this project was provided by the U.S. Department of Energy's Office of the Biomass Program (DE-AC36-08-GO28308). Feedback and contributions from the following people are greatly appreciated: Brian Bush, Helena Chum, Joyce Cooper, Nathan Fields, Thomas Foust, Alison Goss Eng, Zia Haq, Sara Havig, Jacob Jacobson, Leonard Johnson, Lise Laurin, Andy McAloon, Laurel McEwen, Leslie Miller, Elaine Oneil, Bob Reynolds, Robert Rummer, Heather Wakeley, Bob Wallace, Michael Wang, Dwayne Westfall, Christopher Wright, May Wu, Winnie Yee, and Yimin Zhang. NR 64 TC 71 Z9 71 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD JUL 1 PY 2010 VL 44 IS 13 BP 5289 EP 5297 DI 10.1021/es100186h PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 617TL UT WOS:000279304700074 PM 20527764 ER PT J AU Khaymovich, IM Chtchelkatchev, NM Shereshevskii, IA Mel'nikov, AS AF Khaymovich, I. M. Chtchelkatchev, N. M. Shereshevskii, I. A. Mel'nikov, A. S. TI Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields SO EPL LA English DT Article ID MATRIX THEORY; GRAPHENE; REFLECTION; CHARGE AB The conductance in two-dimensional (2D) normal-superconducting (NS) systems is analyzed in the limit of strong magnetic fields when the transport is mediated by the electron-hole states bound to the sample edges and NS interface, i.e., in the Integer Quantum Hall Effect regime. The Andreev-type process of the conversion of the quasiparticle current into the superflow is shown to be strongly affected by the mixing of the edge states localized at the NS and insulating boundaries. The magnetoconductance in 2D NS structures is calculated for both quadratic and Dirac-like normal state spectra. Assuming a random scattering of the edge modes we analyze both the average value and fluctuations of conductance for an arbitrary number of conducting channels. Copyright (C) EPLA, 2010 C1 [Khaymovich, I. M.; Shereshevskii, I. A.; Mel'nikov, A. S.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. [Chtchelkatchev, N. M.] RAS, LD Landau Theoret Phys Inst, Moscow 117940, Russia. [Chtchelkatchev, N. M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Chtchelkatchev, N. M.] Russian Acad Sci, Inst High Pressure Phys, Troitsk 142190, Moscow Region, Russia. RP Khaymovich, IM (reprint author), Russian Acad Sci, Inst Phys Microstruct, GSP 105, Nizhnii Novgorod 603950, Russia. EM hai@ipm.sci-nnov.ru RI Khaymovich, Ivan/F-2695-2013; Chtchelkatchev, Nikolay/L-1273-2013; Mel'nikov, Alexander/E-8099-2017 OI Khaymovich, Ivan/0000-0003-2160-5984; Chtchelkatchev, Nikolay/0000-0002-7242-1483; Mel'nikov, Alexander/0000-0002-4241-467X FU Russian Foundation for Basic Research; "Dynasty" Foundation; Russian Presidential Program [MK-7674.2010.2]; FTP "Scientific and educational personnel of innovative Russia" FX We are thankful to M. A. SILAEV for many stimulating discussions. This work was supported in part by the Russian Foundation for Basic Research, the "Dynasty" Foundation, Russian Presidential Program Grant No. MK-7674.2010.2, and the FTP "Scientific and educational personnel of innovative Russia in 2009-2013". NR 20 TC 3 Z9 3 U1 1 U2 8 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD JUL PY 2010 VL 91 IS 1 AR 17005 DI 10.1209/0295-5075/91/17005 PG 5 WC Physics, Multidisciplinary SC Physics GA 654SJ UT WOS:000282188800018 ER PT J AU Majewski, J Stec, B AF Majewski, Jaroslaw Stec, Boguslaw TI X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS LA English DT Article DE Plant toxins; Thionins; Mechanism of toxicity; Membrane lysis; Grazing incidence diffraction (GIXD); X-ray reflectivity; Langmuir monolayers; Air-water interface; Model biomembranes ID SOLUTE PARTICLES IMPORTANT; BETA-PUROTHIONIN; ANTIMICROBIAL PEPTIDES; ANGSTROM RESOLUTION; PYRULARIA THIONIN; LATTICE FORMATION; PLANT DEFENSE; PART II; REFLECTIVITY; DIFFRACTION AB Thionins, ubiquitous plant toxins, are believed to act by lysing the membrane of pathogenic organisms. Several competing mechanisms were proposed for the lysis of phospholipid membranes by the toxins. In order to study in more detail the proposed mechanisms and possibly resolve among the competing proposals, the interactions of purothionins with a model lipid membrane in the form of a monolayer were studied. The monolayer formed at the air-water interface was studied by synchrotron X-ray reflectivity and grazing incidents diffraction methods. The model membrane was composed of 90:10 mol% DPPC:DPPS (dipylmitoyl phosphatidylcholine:dipylmitoyl phosphatidylserine). The protein interaction with the monolayer disturbs the in-plane and out-of-plane order of phospholipids, increases the amount of the liquid phase of the monolayer, and increases the average surface area per alkyl chain. The results indicate that the protein is bound only transiently, and after similar to 4 h most of the properties of the monolayer are reminiscent of the pure DPPC monolayer suggesting partial withdrawal of DPPS. Obtained electron density distributions perpendicular to the membrane interface do not show any significant contribution from the adsorbed proteins, further supporting the withdrawal hypothesis. C1 [Stec, Boguslaw] Burnham Inst Med Res, Infect & Inflammatory Dis Ctr, La Jolla, CA 92037 USA. [Majewski, Jaroslaw] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Stec, B (reprint author), Burnham Inst Med Res, Infect & Inflammatory Dis Ctr, 10901 N Torrey Pines Rd, La Jolla, CA 92037 USA. EM bstec@burnham.org RI Lujan Center, LANL/G-4896-2012 FU Los Alamos National Laboratory under United States Department of Energy under DOE [W7405-ENG-36]; DOE Office of Basic Energy Science FX The work was supported by the Los Alamos National Laboratory under the auspices of the United States Department of Energy under DOE contract W7405-ENG-36, and by the DOE Office of Basic Energy Science. We thank Dr. Kristian Kjaer from the University of Copenhagen in Denmark who collaborated with us on the GIXD and XR measurements at HASYLAB, Hamburg, Germany. NR 34 TC 10 Z9 10 U1 1 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7571 J9 EUR BIOPHYS J BIOPHY JI Eur. Biophys. J. Biophys. Lett. PD JUL PY 2010 VL 39 IS 8 BP 1155 EP 1165 DI 10.1007/s00249-009-0568-0 PG 11 WC Biophysics SC Biophysics GA 616FN UT WOS:000279194500005 PM 19997910 ER PT J AU Mitri, FG AF Mitri, F. G. TI Acoustic radiation force due to incident plane-progressive waves on coated spheres immersed in ideal fluids (vol 43, pg 379, 2005) SO EUROPEAN PHYSICAL JOURNAL B LA English DT Correction C1 [Mitri, F. G.] Mayo Clin, Coll Med, Dept Physiol & Biomed Engn, Ultrasound Res Lab, Rochester, MN 55905 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 1 TC 3 Z9 3 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6028 J9 EUR PHYS J B JI Eur. Phys. J. B PD JUL PY 2010 VL 76 IS 1 BP 185 EP 185 DI 10.1140/epjb/e2010-00194-2 PG 1 WC Physics, Condensed Matter SC Physics GA 628BS UT WOS:000280089900017 ER PT J AU Batley, JR Kalmus, G Lazzeroni, C Munday, DJ Slater, MW Wotton, SA Arcidiacono, R Bocquet, G Cabibbo, N Ceccucci, A Cundy, D Falaleev, V Fidecaro, M Gatignon, L Gonidec, A Kubischta, W Norton, A Maier, A Patel, M Peters, A Balev, S Frabetti, PL Goudzovski, E Hristov, P Kekelidze, V Kozhuharov, V Litov, L Madigozhin, D Marinova, E Molokanova, N Polenkevich, I Potrebenikov, Y Stoynev, S Zinchenko, A Monnier, E Swallow, E Winston, R Rubin, P Walker, A Baldini, W Ramusino, AC Dalpiaz, P Damiani, C Fiorini, M Gianoli, A Martini, M Petrucci, F Savrie, M Scarpa, M Wahl, H Bizzeti, A Lenti, M Veltri, M Calvetti, M Celeghini, E Iacopini, E Ruggiero, G Behler, M Eppard, K Kleinknecht, K Marouelli, P Masetti, L Moosbrugger, U Morales, CM Renk, B Wache, M Wanke, R Winhart, A Coward, D Dabrowski, A Martin, TF Shieh, M Szleper, M Velasco, M Wood, MD Cenci, P Petrucci, MC Pepe, M Anzivino, G Imbergamo, E Nappi, A Piccini, M Raggi, M Valdata-Nappi, M Cerri, C Fantechi, R Collazuol, G DiLella, L Lamanna, G Mannelli, I Michetti, A Costantini, F Doble, N Fiorini, L Giudici, S Pierazzini, G Sozzi, M Venditti, S Bloch-Devaux, B Cheshkov, C Cheze, JB De Beer, M Derre, J Marel, G Mazzucato, E Peyaud, B Vallage, B Holder, M Ziolkowski, M Bifani, S Biino, C Cartiglia, N Clemencic, M Lopez, SG Marchetto, F Dibon, H Jeitler, M Markytan, M Mikulec, I Neuhofer, G Widhalm, L AF Batley, J. R. Kalmus, G. Lazzeroni, C. Munday, D. J. Slater, M. W. Wotton, S. A. Arcidiacono, R. Bocquet, G. Cabibbo, N. Ceccucci, A. Cundy, D. Falaleev, V. Fidecaro, M. Gatignon, L. Gonidec, A. Kubischta, W. Norton, A. Maier, A. Patel, M. Peters, A. Balev, S. Frabetti, P. L. Goudzovski, E. Hristov, P. Kekelidze, V. Kozhuharov, V. Litov, L. Madigozhin, D. Marinova, E. Molokanova, N. Polenkevich, I. Potrebenikov, Y. Stoynev, S. Zinchenko, A. Monnier, E. Swallow, E. Winston, R. Rubin, P. Walker, A. Baldini, W. Ramusino, A. Cotta Dalpiaz, P. Damiani, C. Fiorini, M. Gianoli, A. Martini, M. Petrucci, F. Savrie, M. Scarpa, M. Wahl, H. Bizzeti, A. Lenti, M. Veltri, M. Calvetti, M. Celeghini, E. Iacopini, E. Ruggiero, G. Behler, M. Eppard, K. Kleinknecht, K. Marouelli, P. Masetti, L. Moosbrugger, U. Morales, C. Morales Renk, B. Wache, M. Wanke, R. Winhart, A. Coward, D. Dabrowski, A. Martin, T. Fonseca Shieh, M. Szleper, M. Velasco, M. Wood, M. D. Cenci, P. Petrucci, M. C. Pepe, M. Anzivino, G. Imbergamo, E. Nappi, A. Piccini, M. Raggi, M. Valdata-Nappi, M. Cerri, C. Fantechi, R. Collazuol, G. DiLella, L. Lamanna, G. Mannelli, I. Michetti, A. Costantini, F. Doble, N. Fiorini, L. Giudici, S. Pierazzini, G. Sozzi, M. Venditti, S. Bloch-Devaux, B. Cheshkov, C. Cheze, J. B. De Beer, M. Derre, J. Marel, G. Mazzucato, E. Peyaud, B. Vallage, B. Holder, M. Ziolkowski, M. Bifani, S. Biino, C. Cartiglia, N. Clemencic, M. Goy Lopez, S. Marchetto, F. Dibon, H. Jeitler, M. Markytan, M. Mikulec, I. Neuhofer, G. Widhalm, L. CA NA48 2 Collaboration TI Measurement of the direct emission and interference terms and search for CP violation in the decay K-+/- -> pi(+/-)pi(0)gamma SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID DIRECT PHOTON-EMISSION; RADIATIVE KAON DECAYS; PI-PI-SCATTERING; DETECTOR AB We report on the measurement of the direct emission (DE) and interference (INT) terms of the K-+/- -> pi(+/-)pi(0)gamma decay by the NA48/2 experiment at the CERN SPS. From the data collected during 2003 and 2004 about 600k such decay candidates have been selected. The relative amounts of DE and INT with respect to the internal bremsstrahlung (IB) contribution have been measured in the range 0 < T-pi* < 80 MeV: Frac(DE) (0 < T-pi* < 80 MeV) = (3.32 +/- 0.15(stat) +/- 0.14(sys)) x 10(-2), Frac(INT)(0 < T-pi* < 80 MeV) = (-2.35 +/- 0.35(stat) +/- 0.39(sys)) x 10(-2) where T-pi* is the kinetic energy of the charged pion in the kaon rest frame. This is the first observation of an interference term in K-+/- -> pi(+/-)pi(0)gamma decays, thus allowing the normalised electric and magnetic amplitudes to be measured, giving X-E = (-24 +/- 6) GeV-4, and X-M = (254 +/- 9) GeV-4. In addition, a limit on the CP violating asymmetry in the K+ and K- branching ratios for this channel has been determined to be less than 1.5 x 10(-3) at 90% confidence level. C1 [Kalmus, G.; Lazzeroni, C.; Munday, D. J.; Slater, M. W.; Wotton, S. A.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Arcidiacono, R.; Bocquet, G.; Cabibbo, N.; Ceccucci, A.; Cundy, D.; Falaleev, V.; Fidecaro, M.; Gatignon, L.; Gonidec, A.; Kubischta, W.; Norton, A.; Maier, A.; Patel, M.; Peters, A.; Hristov, P.; Fiorini, M.; Cheshkov, C.] CERN, CH-1211 Geneva 23, Switzerland. [Balev, S.; Frabetti, P. L.; Goudzovski, E.; Hristov, P.; Kekelidze, V.; Kozhuharov, V.; Litov, L.; Madigozhin, D.; Marinova, E.; Molokanova, N.; Polenkevich, I.; Potrebenikov, Y.; Stoynev, S.; Zinchenko, A.] Joint Inst Nucl Res, Dubna 141980, Moscow Region, Russia. [Monnier, E.; Swallow, E.; Winston, R.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60126 USA. [Rubin, P.; Walker, A.] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini, W.; Ramusino, A. Cotta; Dalpiaz, P.; Damiani, C.; Fiorini, M.; Gianoli, A.; Martini, M.; Petrucci, F.; Savrie, M.; Scarpa, M.; Wahl, H.] Sez INFN Ferrara, I-44100 Ferrara, Italy. [Bizzeti, A.; Lenti, M.; Veltri, M.; Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.] Sez INFN Firenze, I-50125 Florence, Italy. [Calvetti, M.; Celeghini, E.; Iacopini, E.; Ruggiero, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Behler, M.; Eppard, K.; Kleinknecht, K.; Marouelli, P.; Masetti, L.; Moosbrugger, U.; Morales, C. Morales; Renk, B.; Wache, M.; Wanke, R.; Winhart, A.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Coward, D.; Dabrowski, A.; Martin, T. Fonseca; Shieh, M.; Szleper, M.; Velasco, M.; Wood, M. D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Marinova, E.; Cenci, P.; Petrucci, M. C.; Pepe, M.; Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.] Sez INFN Perugia, I-06100 Perugia, Italy. [Anzivino, G.; Imbergamo, E.; Nappi, A.; Piccini, M.; Raggi, M.; Valdata-Nappi, M.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Cerri, C.; Fantechi, R.; Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.; Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.] Sez INFN Pisa, I-56100 Pisa, Italy. [Balev, S.; Ruggiero, G.; Collazuol, G.; DiLella, L.; Lamanna, G.; Mannelli, I.; Michetti, A.] Scuola Normale Super Pisa, I-56100 Pisa, Italy. [Costantini, F.; Doble, N.; Fiorini, L.; Giudici, S.; Pierazzini, G.; Sozzi, M.; Venditti, S.] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy. [Bloch-Devaux, B.; Cheshkov, C.; Cheze, J. B.; De Beer, M.; Derre, J.; Marel, G.; Mazzucato, E.; Peyaud, B.; Vallage, B.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Holder, M.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Arcidiacono, R.; Bifani, S.; Biino, C.; Cartiglia, N.; Clemencic, M.; Goy Lopez, S.; Marchetto, F.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Arcidiacono, R.; Bifani, S.; Biino, C.; Cartiglia, N.; Clemencic, M.; Goy Lopez, S.; Marchetto, F.] Sez INFN Torino, I-10125 Turin, Italy. [Dibon, H.; Jeitler, M.; Markytan, M.; Mikulec, I.; Neuhofer, G.; Widhalm, L.] Austrian Acad Sci, Inst Hochenergiephys, A-10560 Vienna, Austria. [Lazzeroni, C.; Goudzovski, E.] Univ Birmingham, Birmingham B15 2TT, W Midlands, England. [Cabibbo, N.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Cabibbo, N.] Sez INFN Roma, I-00185 Rome, Italy. [Cundy, D.; Norton, A.; Clemencic, M.] CNR, Ist Cosmogeofis, I-10133 Turin, Italy. [Kekelidze, V.] Sofia Univ St Kliment Ohridski, Fac Phys, Sofia 1164, Bulgaria. [Monnier, E.] Univ Aix Marseille 2, Ctr Phys Particules Marseille, IN2P3, CNRS, Marseille, France. [Rubin, P.] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA. [Bizzeti, A.] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy. [Veltri, M.] Univ Urbino, Inst Fis, I-61029 Urbino, Italy. [Masetti, L.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Coward, D.] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. [Martin, T. Fonseca] Univ London, Egham TW20 0EX, Surrey, England. [Raggi, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Rome, Italy. [Fiorini, L.] UAB, Inst Fis Altes Energies, Bellaterra 08193, Barcelona, Spain. [Bifani, S.] Natl Univ Ireland Univ Coll Dublin, Sch Phys Belfield, Dublin 4, Ireland. [Goy Lopez, S.] Ctr Invest Energet Medioambientales & Tecnol, Madrid 28040, Spain. RP Batley, JR (reprint author), Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. EM mauro.raggi@lnf.infn.it; silvia.goy.lopez@cern.ch RI Cenci, Patrizia/A-4071-2012; Collazuol, Gianmaria/C-5670-2012; Piccini, Mauro/G-7163-2012; Sozzi, Marco/H-1674-2011; Jeitler, Manfred/H-3106-2012; Fiorini, Massimiliano/A-5354-2015; Gianoli, Alberto/H-5544-2015; OI Collazuol, Gianmaria/0000-0002-7876-6124; Sozzi, Marco/0000-0002-2923-1465; Fiorini, Massimiliano/0000-0001-6559-2084; Gianoli, Alberto/0000-0002-2456-8667; Bloch-Devaux, Brigitte/0000-0002-2463-1232; Anzivino, Giuseppina/0000-0002-5967-0952; Cotta Ramusino, Angelo/0000-0003-1727-2478 FU UK Particle Physics and Astronomy Research Council; German Federal Minister for Education and research [05HK1UM1/1]; German Federal Minister for Research and Technology (BMBF) [056SI74]; Ministry for Traffic and Research [GZ 616.360/2-IV, GZ 616.363/2-VIII]; Fonds fur Wissenschaft und Forschung FWF [P08929-PHY] FX Funded by the UK Particle Physics and Astronomy Research Council.; Funded by the German Federal Minister for Education and research under contract 05HK1UM1/1.; Funded by the German Federal Minister for Research and Technology (BMBF) under contract 056SI74.; Funded by the n Ministry for Traffic and Research under the contract GZ 616.360/2-IV GZ 616.363/2-VIII, and by the Fonds fur Wissenschaft und Forschung FWF Nr. P08929-PHY. NR 34 TC 18 Z9 18 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2010 VL 68 IS 1-2 BP 75 EP 87 DI 10.1140/epjc/s10052-010-1349-8 PG 13 WC Physics, Particles & Fields SC Physics GA 624TF UT WOS:000279843400002 ER PT J AU Aamodt, K Abel, N Abeysekara, U Quintana, AA Abramyan, A Adamova, D Aggarwal, MM Rinella, GA Agocs, AG Salazar, SA Ahammed, Z Ahmad, A Ahmad, N Ahn, SU Akimoto, R Akindinov, A Aleksandrov, D Alessandro, B Molina, RA Alici, A Avina, EA Alme, J Alt, T Altini, V Altinpinar, S Andrei, C Andronic, A Anelli, G Angelov, V Anson, C Anticic, T Antinori, F Antinori, S Antipin, K Antonczyk, D Antonioli, P Anzo, A Aphecetche, L Appelshuser, H Arcelli, S Arceo, R Arend, A Armesto, N Arnaldi, R Aronsson, T Arsene, I Asryan, A Augustinus, A Averbeck, R Awes, T Aysto, J Azmi, M Bablok, S Bach, M Badala, A Baek, Y Bagnasco, S Bailhache, R Bala, R Baldisseri, A Baldit, A Ban, J Barbera, R Barnafoldi, G Barnby, L Barret, V Bartke, J Barile, F Basile, M Basmanov, V Bastid, N Bathen, B Batigne, G Batyunya, B Baumann, C Bearden, I Becker, B Belikov, I Bellwied, R Belmont-Moreno, E Belogianni, A Benhabib, L Beole, S Berceanu, I Bercuci, A Berdermann, E Berdnikov, Y Betev, L Bhasin, A Bhati, A Bianchi, L Bianchi, N Bianchin, C Bielik, J Bielikova, J Bilandzic, A Bimbot, L Biolcati, E Blanc, A Blanco, F Blanco, F Blau, D Blume, C Boccioli, M Bock, N Bogdanov, A Boggild, H Bogolyubsky, M Bohm, J Boldizsar, L Bombara, M Bombonati, C Bondila, M Borel, H Borshchov, V Borisov, A Bortolin, C Bose, S Bosisio, L Bossu, F Botje, M Bottger, S Bourdaud, G Boyer, B Braun, M Braun-Munzinger, P Bravina, L Bregant, M Breitner, T Bruckner, G Brun, R Bruna, E Bruno, G Budnikov, D Buesching, H Buncic, P Busch, O Buthelezi, Z Caffarri, D Cai, X Caines, H Camacho, E Camerini, P Campbell, M Canoa Roman, V Capitani, G Cara Romeo, G Carena, F Carena, W Carminati, F Diaz, AC Caselle, M Castillo Castellanos, J Castillo Hernandez, J Catanescu, V Cattaruzza, E Cavicchioli, C Cerello, P Chambert, V Chang, B Chapeland, S Charpy, A Charvet, J Chattopadhyay, S Chattopadhyay, S Cherney, M Cheshkov, C Cheynis, B Chiavassa, E Chibante Barroso, V Chinellato, D Chochula, P Choi, K Chojnacki, M Christakoglou, P Christensen, C Christiansen, P Chujo, T Chuman, F Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Cobanoglu, O Coffin, JP Coli, S Colla, A Conesa Balbastre, G Conesa del Valle, Z Conner, E Constantin, P Contin, G Contreras, J Corrales Morales, Y Cormier, T Cortese, P Maldonado, IC Cosentino, M Costa, F Cotallo, M Crescio, E Crochet, P Cuautle, E Cunqueiro, L Cussonneau, J Dainese, A Dalsgaard, H Danu, A Das, I Das, S Dash, A Dash, S de Barros, GOV De Caro, A de Cataldo, G de Cuveland, J De Falco, A De Gaspari, M de Groot, J De Gruttola, D De Marco, N De Pasquale, S De Remigis, R de Rooij, R de Vaux, G Delagrange, H Dellacasa, G Deloff, A Demanov, V Denes, E Deppman, A D'Erasmo, G Derkach, D Devaux, A Di Bari, D Di Giglio, C Di Liberto, S Di Mauro, A Di Nezza, P Dialinas, M Diaz, L Diaz, R Dietel, T Divia, R Djuvsland, O Dobretsov, V Dobrin, A Dobrowolski, T Donigus, B Dominguez, I Don, D Dordic, O Dubey, A Dubuisson, J Ducroux, L Dupieux, P Majumdar, AKD Majumdar, MRD Elia, D Emschermann, D Enokizono, A Espagnon, B Estienne, M Esumi, S Evans, D Evrard, S Eyyubova, G Fabjan, C Fabris, D Faivre, J Falchieri, D Fantoni, A Fasel, M Fateev, O Fearick, R Fedunov, A Fehlker, D Fekete, V Felea, D Fenton-Olsen, B Feofilov, G Tellez, AF Ferreiro, E Ferretti, A Ferretti, R Figueredo, MAS Filchagin, S Fini, R Fionda, F Fiore, E Floris, M Fodor, Z Foertsch, S Foka, P Fokin, S Formenti, F Fragiacomo, E Fragkiadakis, M Frankenfeld, U Frolov, A Fuchs, U Furano, F Furget, C Girard, MF Gaardhoje, J Gadrat, S Gagliardi, M Gago, A Gallio, M Ganoti, P Ganti, M Garabatos, C Garcia Trapaga, C Gebelein, J Gemme, R Germain, M Gheata, A Gheata, M Ghidini, B Ghosh, P Giraudo, G Giubellino, P Gladysz-Dziadus, E Glasow, R Glassel, P Glenn, A Jimenez, RG Santos, HG Gonzalez-Trueba, LH Gonzalez-Zamora, P Gorbunov, S Gorbunov, Y Gotovac, S Gottschlag, H Grabski, V Grajcarek, R Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gros, P Grosse-Oetringhaus, J Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gulkanyan, H Gunji, T Gupta, A Gupta, R Gustafsson, HA Gutbrod, H Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamblen, J Han, B Harris, J Hartig, M Harutyunyan, A Hasch, D Hasegan, D Hatzifotiadou, D Hayrapetyan, A Heide, M Heinz, M Helstrup, H Herghelegiu, A Hernandez, C Herrera Corral, G Herrmann, N Hetland, K Hicks, B Hiei, A Hille, P Hippolyte, B Horaguchi, T Hori, Y Hristov, P Hrivnacova, I Hu, S Huang, M Huber, S Humanic, T Hutter, D Hwang, D Ichou, R Ilkaev, R Ilkiv, I Inaba, M Innocenti, P Ippolitov, M Irfan, M Ivan, C Ivanov, A Ivanov, M Ivanov, V Iwasaki, T Jachokowski, A Jacobs, P Janurova, L Jangal, S Janik, R Jena, C Jena, S Jirden, L Jones, G Jones, P Jovanovic, P Jung, H Jung, W Jusko, A Kaidalov, A Kalcher, S Kalinak, P Kalisky, M Kalliokoski, T Kalweit, A Kamal, A Kamermans, R Kanaki, K Kang, E Kang, J Kapitan, J Kaplin, V Kapusta, S Karavichev, O Karavicheva, T Karpechev, E Kazantsev, A Kebschull, U Keidel, R Khan, M Khan, S Khanzadeev, A Kharlov, Y Kikola, D Kileng, B Kim, D Kim, D Kim, D Kim, H Kim, J Kim, J Kim, J Kim, M Kim, M Kim, S Kim, S Kim, Y Kirsch, S Kisel, I Kiselev, S Kisiel, A Klay, J Klein, J Klein-Bosing, C Kliemant, M Klovning, A Kluge, A Kniege, S Koch, K Kolevatov, R Kolojvari, A Kondratiev, V Kondratyeva, N Konevskih, A Kornas, E Kour, R Kowalski, M Kox, S Kozlov, K Kral, J Kralik, I Kramer, F Kraus, I Kravakova, A Krawutschke, T Krivda, M Krumbhorn, D Krus, M Kryshen, E Krzewicki, M Kucheriaev, Y Kuhn, C Kuijer, P Kumar, L Kumar, N Kupczak, R Kurashvili, P Kurepin, A Kurepin, A Kuryakin, A Kushpil, S Kushpil, V Kutouski, M Kvaerno, H Kweon, M Kwon, Y Rocca, P Lackner, F de Guevara, PL Lafage, V Lal, C Lara, C Larsen, D Laurenti, G Lazzeroni, C Bornec, Y Bris, N Lee, H Lee, K Lee, S Lefevre, F Lenhardt, M Leistam, L Lehnert, J Lenti, V Leon, H Monzon, IL Vargas, HL Levai, P Li, X Li, Y Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, M Listratenko, O Liu, L Loginov, V Lohn, S Lopez, X Noriega, ML Lopez-Ramirez, R Torres, EL Lovhoiden, G Soares, ALF Lu, S Lunardon, M Luparello, G Luquin, L Lutz, JR Ma, K Ma, R Madagodahettige-Don, D Maevskaya, A Mager, M Mahapatra, D Maire, A Makhlyueva, I Mal'Kevich, D Malaev, M Malagalage, K Maldonado Cervantes, I Malek, M Malkiewicz, T Malzacher, P Mamonov, A Manceau, L Mangotra, L Manko, V Manso, F Manzari, V Mao, Y Mare, J Margagliotti, G Margotti, A Marin, A Martashvili, I Martinengo, P Hernandez, MIM Davalos, AM Garcia, GM Maruyama, Y Chiesa, AM Masciocchi, S Masera, M Masetti, M Masoni, A Massacrier, L Mastromarco, M Mastroserio, A Matthews, Z Matyja, A Mayani, D Mazza, G Mazzoni, M Meddi, F Menchaca-Rocha, A Lorenzo, PM Meoni, M Perez, JM Mereu, P Miake, Y Michalon, A Miftakhov, N Milosevic, J Minafra, F Mischke, A Miskowiec, D Mitu, C Mizoguchi, K Mlynarz, J Mohanty, B Molnar, L Mondal, M Montao Zetina, L Monteno, M Montes, E Morando, M Moretto, S Morsch, A Moukhanova, T Muccifora, V Mudnic, E Muhuri, S Muller, H Munhoz, M Munoz, J Musa, L Musso, A Nandi, B Nania, R Nappi, E Navach, F Navin, S Nayak, T Nazarenko, S Nazarov, G Nedosekin, A Nendaz, F Newby, J Nianine, A Nicassio, M Nielsen, B Nikolaev, S Nikolic, V Nikulin, S Nikulin, V Nilsen, B Nilsson, M Noferini, F Nomokonov, P Nooren, G Novitzky, N Nyatha, A Nygaard, C Nyiri, A Nystrand, J Ochirov, A Odyniec, G Oeschler, H Oinonen, M Okada, K Okada, Y Oldenburg, M Oleniacz, J Oppedisano, C Orsini, F Velasquez, AO Ortona, G Oskarsson, A Osmic, F Osterman, L Ostrowski, P Otterlund, I Otwinowski, J Ovrebekk, G Oyama, K Ozawa, K Pachmayer, Y Pachr, M Padilla, F Pagano, P Paic, G Painke, F Pajares, C Pal, S Pal, S Palaha, A Palmeri, A Panse, R Papikyan, V Pappalardo, G Park, W Pastirak, B Pastore, C Paticchio, V Pavlinov, A Pawlak, T Peitzmann, T Pepato, A Pereira, H Peressounko, D Perez, C Perini, D Perrino, D Peryt, W Peschek, J Pesci, A Peskov, V Pestov, Y Peters, A Petracek, V Petridis, A Petris, M Petrov, P Petrovici, M Petta, C Peyre, J Piano, S Piccotti, A Pikna, M Pillot, P Pinazza, O Pinsky, L Pitz, N Piuz, F Platt, R Ploskon, M Pluta, J Pocheptsov, T Pochybova, S Lerma, PLMP Poggio, F Poghosyan, M Polak, K Polichtchouk, B Polozov, P Polyakov, V Pommeresch, B Pop, A Posa, F Pospiil, V Potukuchi, B Pouthas, J Prasad, S Preghenella, R Prino, F Pruneau, C Pshenichnov, I Puddu, G Pujahari, P Pulvirenti, A Punin, A Punin, V Putis, M Putschke, J Quercigh, E Rachevski, A Rademakers, A Radomski, S Raiha, T Rak, J Rakotozafindrabe, A Ramello, L Ramirez Reyes, A Rammler, M Raniwala, R Raniwala, S Rasanen, S Rashevskaya, I Rath, S Read, K Real, J Redlich, K Renfordt, R Reolon, A Reshetin, A Rettig, F Revol, JP Reygers, K Ricaud, H Riccati, L Ricci, R Richter, M Riedler, P Riegler, W Riggi, F Rivetti, A Cahuantzi, MR Roed, K Rohrich, D Lopez, SR Romita, R Ronchetti, F Rosinsky, P Rosnet, P Rossegger, S Rossi, A Roukoutakis, F Rousseau, S Roy, C Roy, P Rubio-Montero, A Rui, R Rusanov, I Russo, G Ryabinkin, E Rybicki, A Sadovsky, S Safarik, K Sahoo, R Saini, J Saiz, P Sakata, D Salgado, C da Silva, RSD Salur, S Samanta, T Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sano, S Santo, R Santoro, R Sarkamo, J Saturnini, P Scapparone, E Scarlassara, F Scharenberg, RP Schiaua, C Schicker, R Schindler, H Schmidt, C Schmidt, H Schossmaier, K Schreiner, S Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Segato, G Semenov, D Senyukov, S Seo, J Serci, S Serkin, L Serradilla, E Sevcenco, A Sgura, I Shabratova, G Shahoyan, R Sharkov, G Sharma, N Sharma, S Shigaki, K Shimomura, M Shtejer, K Sibiriak, Y Siciliano, M Sicking, E Siddi, E Siemiarczuk, T Silenzi, A Silvermyr, D Simili, E Simonetti, G Singaraju, R Singh, R Singhal, V Sinha, B Sinha, T Sitar, B Sitta, M Skaali, T Skjerdal, K Smakal, R Smirnov, N Snellings, R Snow, H Sogaard, C Soloviev, A Soltveit, H Soltz, R Sommer, W Son, C Son, H Song, M Soos, C Soramel, F Soyk, D Spyropoulou-Stassinaki, M Srivastava, B Stachel, J Staley, F Stan, E Stefanek, G Stefanini, G Steinbeck, T Stenlund, E Steyn, G Stocco, D Stock, R Stolpovsky, P Strmen, P Suaide, A Vasquez, MAS Sugitate, T Suire, C Umbera, M Susa, T Swoboda, D Symons, J de Toledo, AS Szarka, I Szostak, A Szuba, M Tadel, M Tagridis, C Takahara, A Takahashi, J Tanabe, R Takaki, DJT Taureg, H Tauro, A Tavlet, M Munoz, G Telesca, A Terrevoli, C Thader, J Tieulent, R Tlusty, D Toia, A Tolyhy, T De Matos, CT Torii, H Torralba, G Toscano, L Tosello, F Tournaire, A Traczyk, T Tribedy, P Troger, G Truesdale, D Trzaska, W Tsiledakis, G Tsilis, E Tsuji, T Tumkin, A Turrisi, R Turvey, A Tveter, T Tydesjo, H Tywoniuk, K Ulery, J Ullaland, K Uras, A Urban, J Urciuoli, G Usai, G Vacchi, A Vala, M Palomo, LV Vallero, S van der Kolk, N Vyvre, PV van Leeuwen, M Vannucci, L Vargas, A Varma, R Vasiliev, A Vassiliev, I Vasileiou, M Vechernin, V Venaruzzo, M Vercellin, E Vergara, S Vernet, R Verweij, M Vetlitskiy, I Vickovic, L Viesti, G Vikhlyantsev, O Vilakazi, Z Baillie, OV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Viyogi, Y Vodopianov, A Voloshin, K Voloshin, S Volpe, G von Haller, B Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, V Wallet, L Wan, R Wang, D Wang, Y Watanabe, K Wen, Q Wessels, J Westerhoff, U Wiechula, J Wikne, J Wilk, A Wilk, G Williams, M Willis, N Windelband, B Xu, C Yang, C Yang, H Yasnopolskiy, S Yermia, F Yi, J Yin, Z Yokoyama, H Yoo, IK Yuan, X Yurevich, V Yushmanov, I Zabrodin, E Zagreev, B Zalite, A Zampolli, C Zanevsky, Y Zaporozhets, S Zarochentsev, A Zavada, P Zbroszczyk, H Zelnicek, P Zenin, A Zepeda, A Zgura, I Zhalov, M Zhang, X Zhou, D Zhou, S Zhu, J Zichichi, A Zinchenko, A Zinovjev, G Zoccarato, Y Zychacek, V Zynovyev, M AF Aamodt, K. Abel, N. Abeysekara, U. Quintana, A. Abrahantes Abramyan, A. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agocs, A. G. Salazar, S. Aguilar Ahammed, Z. Ahmad, A. Ahmad, N. Ahn, S. U. Akimoto, R. Akindinov, A. Aleksandrov, D. Alessandro, B. Molina, R. Alfaro Alici, A. Almaraz Avina, E. Alme, J. Alt, T. Altini, V. Altinpinar, S. Andrei, C. Andronic, A. Anelli, G. Angelov, V. Anson, C. Anticic, T. Antinori, F. Antinori, S. Antipin, K. Antonczyk, D. Antonioli, P. Anzo, A. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arceo, R. Arend, A. Armesto, N. Arnaldi, R. Aronsson, T. Arsene, I. C. Asryan, A. Augustinus, A. Averbeck, R. Awes, T. C. Aysto, J. Azmi, M. D. Bablok, S. Bach, M. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Baldit, A. Ban, J. Barbera, R. Barnafoeldi, G. G. Barnby, L. Barret, V. Bartke, J. Barile, F. Basile, M. Basmanov, V. Bastid, N. Bathen, B. Batigne, G. Batyunya, B. Baumann, C. Bearden, I. G. Becker, B. Belikov, I. Bellwied, R. Belmont-Moreno, E. Belogianni, A. Benhabib, L. Beole, S. Berceanu, I. Bercuci, A. Berdermann, E. Berdnikov, Y. Betev, L. Bhasin, A. Bhati, A. K. Bianchi, L. Bianchi, N. Bianchin, C. Bielik, J. Bielikova, J. Bilandzic, A. Bimbot, L. Biolcati, E. Blanc, A. Blanco, F. Blanco, F. Blau, D. Blume, C. Boccioli, M. Bock, N. Bogdanov, A. Boggild, H. Bogolyubsky, M. Bohm, J. Boldizsar, L. Bombara, M. Bombonati, C. Bondila, M. Borel, H. Borshchov, V. Borisov, A. Bortolin, C. Bose, S. Bosisio, L. Bossu, F. Botje, M. Bottger, S. Bourdaud, G. Boyer, B. Braun, M. Braun-Munzinger, P. Bravina, L. Bregant, M. Breitner, T. Bruckner, G. Brun, R. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Buncic, P. Busch, O. Buthelezi, Z. Caffarri, D. Cai, X. Caines, H. Camacho, E. Camerini, P. Campbell, M. Canoa Roman, V. Capitani, G. P. Cara Romeo, G. Carena, F. Carena, W. Carminati, F. Casanova Diaz, A. Caselle, M. Castillo Castellanos, J. Castillo Hernandez, J. F. Catanescu, V. Cattaruzza, E. Cavicchioli, C. Cerello, P. Chambert, V. Chang, B. Chapeland, S. Charpy, A. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Cherney, M. Cheshkov, C. Cheynis, B. Chiavassa, E. Chibante Barroso, V. Chinellato, D. D. Chochula, P. Choi, K. Chojnacki, M. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chuman, F. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Cobanoglu, O. Coffin, J.-P. Coli, S. Colla, A. Conesa Balbastre, G. Conesa del Valle, Z. Conner, E. S. Constantin, P. Contin, G. Contreras, J. G. Corrales Morales, Y. Cormier, T. M. Cortese, P. Maldonado, I. Cortes Cosentino, M. R. Costa, F. Cotallo, M. E. Crescio, E. Crochet, P. Cuautle, E. Cunqueiro, L. Cussonneau, J. Dainese, A. Dalsgaard, H. H. Danu, A. Das, I. Das, S. Dash, A. Dash, S. de Barros, G. O. V. De Caro, A. de Cataldo, G. de Cuveland, J. De Falco, A. De Gaspari, M. de Groot, J. De Gruttola, D. De Marco, N. De Pasquale, S. De Remigis, R. de Rooij, R. de Vaux, G. Delagrange, H. Dellacasa, G. Deloff, A. Demanov, V. Denes, E. Deppman, A. D'Erasmo, G. Derkach, D. Devaux, A. Di Bari, D. Di Giglio, C. Di Liberto, S. Di Mauro, A. Di Nezza, P. Dialinas, M. Diaz, L. Diaz, R. Dietel, T. Divia, R. Djuvsland, O. Dobretsov, V. Dobrin, A. Dobrowolski, T. Donigus, B. Dominguez, I. Don, D. M. M. Dordic, O. Dubey, A. K. Dubuisson, J. Ducroux, L. Dupieux, P. Majumdar, A. K. Dutta Majumdar, M. R. Dutta Elia, D. Emschermann, D. Enokizono, A. Espagnon, B. Estienne, M. Esumi, S. Evans, D. Evrard, S. Eyyubova, G. Fabjan, C. W. Fabris, D. Faivre, J. Falchieri, D. Fantoni, A. Fasel, M. Fateev, O. Fearick, R. Fedunov, A. Fehlker, D. Fekete, V. Felea, D. Fenton-Olsen, B. Feofilov, G. Tellez, A. Fernandez Ferreiro, E. G. Ferretti, A. Ferretti, R. Figueredo, M. A. S. Filchagin, S. Fini, R. Fionda, F. M. Fiore, E. M. Floris, M. Fodor, Z. Foertsch, S. Foka, P. Fokin, S. Formenti, F. Fragiacomo, E. Fragkiadakis, M. Frankenfeld, U. Frolov, A. Fuchs, U. Furano, F. Furget, C. Girard, M. Fusco Gaardhoje, J. J. Gadrat, S. Gagliardi, M. Gago, A. Gallio, M. Ganoti, P. Ganti, M. S. Garabatos, C. Garcia Trapaga, C. Gebelein, J. Gemme, R. Germain, M. Gheata, A. Gheata, M. Ghidini, B. Ghosh, P. Giraudo, G. Giubellino, P. Gladysz-Dziadus, E. Glasow, R. Glassel, P. Glenn, A. Jimenez, R. Gomez Santos, H. Gonzalez Gonzalez-Trueba, L. H. Gonzalez-Zamora, P. Gorbunov, S. Gorbunov, Y. Gotovac, S. Gottschlag, H. Grabski, V. Grajcarek, R. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gros, P. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gulkanyan, H. Gunji, T. Gupta, A. Gupta, R. Gustafsson, H. -A. Gutbrod, H. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamblen, J. Han, B. H. Harris, J. W. Hartig, M. Harutyunyan, A. Hasch, D. Hasegan, D. Hatzifotiadou, D. Hayrapetyan, A. Heide, M. Heinz, M. Helstrup, H. Herghelegiu, A. Hernandez, C. Herrera Corral, G. Herrmann, N. Hetland, K. F. Hicks, B. Hiei, A. Hille, P. T. Hippolyte, B. Horaguchi, T. Hori, Y. Hristov, P. Hrivnacova, I. Hu, S. Huang, M. Huber, S. Humanic, T. J. Hutter, D. Hwang, D. S. Ichou, R. Ilkaev, R. Ilkiv, I. Inaba, M. Innocenti, P. G. Ippolitov, M. Irfan, M. Ivan, C. Ivanov, A. Ivanov, M. Ivanov, V. Iwasaki, T. Jachokowski, A. Jacobs, P. Janurova, L. Jangal, S. Janik, R. Jena, C. Jena, S. Jirden, L. Jones, G. T. Jones, P. G. Jovanovic, P. Jung, H. Jung, W. Jusko, A. Kaidalov, A. B. Kalcher, S. Kalinak, P. Kalisky, M. Kalliokoski, T. Kalweit, A. Kamal, A. Kamermans, R. Kanaki, K. Kang, E. Kang, J. H. Kapitan, J. Kaplin, V. Kapusta, S. Karavichev, O. Karavicheva, T. Karpechev, E. Kazantsev, A. Kebschull, U. Keidel, R. Khan, M. M. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kikola, D. Kileng, B. Kim, D. J. Kim, D. S. Kim, D. W. Kim, H. N. Kim, J. Kim, J. H. Kim, J. S. Kim, M. Kim, M. Kim, S. H. Kim, S. Kim, Y. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Klay, J. L. Klein, J. Klein-Bosing, C. Kliemant, M. Klovning, A. Kluge, A. Kniege, S. Koch, K. Kolevatov, R. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Konevskih, A. Kornas, E. Kour, R. Kowalski, M. Kox, S. Kozlov, K. Kral, J. Kralik, I. Kramer, F. Kraus, I. Kravakova, A. Krawutschke, T. Krivda, M. Krumbhorn, D. Krus, M. Kryshen, E. Krzewicki, M. Kucheriaev, Y. Kuhn, C. Kuijer, P. G. Kumar, L. Kumar, N. Kupczak, R. Kurashvili, P. Kurepin, A. Kurepin, A. N. Kuryakin, A. Kushpil, S. Kushpil, V. Kutouski, M. Kvaerno, H. Kweon, M. J. Kwon, Y. Rocca, P. La Lackner, F. Ladron de Guevara, P. Lafage, V. Lal, C. Lara, C. Larsen, D. T. Laurenti, G. Lazzeroni, C. Bornec, Y. Le Bris, N. Le Lee, H. Lee, K. S. Lee, S. C. Lefevre, F. Lenhardt, M. Leistam, L. Lehnert, J. Lenti, V. Leon, H. Monzon, I. Leon Vargas, H. Leon Levai, P. Li, X. Li, Y. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Listratenko, O. Liu, L. Loginov, V. Lohn, S. Lopez, X. Noriega, M. Lopez Lopez-Ramirez, R. Torres, E. Lopez Lovhoiden, G. Feijo Soares, A. Lozea Lu, S. Lunardon, M. Luparello, G. Luquin, L. Lutz, J.-R. Ma, K. Ma, R. Madagodahettige-Don, D. M. Maevskaya, A. Mager, M. Mahapatra, D. P. Maire, A. Makhlyueva, I. Mal'Kevich, D. Malaev, M. Malagalage, K. J. Maldonado Cervantes, I. Malek, M. Malkiewicz, T. Malzacher, P. Mamonov, A. Manceau, L. Mangotra, L. Manko, V. Manso, F. Manzari, V. Mao, Y. Mare, J. Margagliotti, G. V. Margotti, A. Marin, A. Martashvili, I. Martinengo, P. Hernandez, M. I. Martinez Davalos, A. Martinez Garcia, G. Martinez Maruyama, Y. Chiesa, A. Marzari Masciocchi, S. Masera, M. Masetti, M. Masoni, A. Massacrier, L. Mastromarco, M. Mastroserio, A. Matthews, Z. L. Matyja, A. Mayani, D. Mazza, G. Mazzoni, M. A. Meddi, F. Menchaca-Rocha, A. Lorenzo, P. Mendez Meoni, M. Perez, J. Mercado Mereu, P. Miake, Y. Michalon, A. Miftakhov, N. Milosevic, J. Minafra, F. Mischke, A. Miskowiec, D. Mitu, C. Mizoguchi, K. Mlynarz, J. Mohanty, B. Molnar, L. Mondal, M. M. Montao Zetina, L. Monteno, M. Montes, E. Morando, M. Moretto, S. Morsch, A. Moukhanova, T. Muccifora, V. Mudnic, E. Muhuri, S. Muller, H. Munhoz, M. G. Munoz, J. Musa, L. Musso, A. Nandi, B. K. Nania, R. Nappi, E. Navach, F. Navin, S. Nayak, T. K. Nazarenko, S. Nazarov, G. Nedosekin, A. Nendaz, F. Newby, J. Nianine, A. Nicassio, M. Nielsen, B. S. Nikolaev, S. Nikolic, V. Nikulin, S. Nikulin, V. Nilsen, B. S. Nilsson, M. S. Noferini, F. Nomokonov, P. Nooren, G. Novitzky, N. Nyatha, A. Nygaard, C. Nyiri, A. Nystrand, J. Ochirov, A. Odyniec, G. Oeschler, H. Oinonen, M. Okada, K. Okada, Y. Oldenburg, M. Oleniacz, J. Oppedisano, C. Orsini, F. Velasquez, A. Ortiz Ortona, G. Oskarsson, A. Osmic, F. Osterman, L. Ostrowski, P. Otterlund, I. Otwinowski, J. Ovrebekk, G. Oyama, K. Ozawa, K. Pachmayer, Y. Pachr, M. Padilla, F. Pagano, P. Paic, G. Painke, F. Pajares, C. Pal, S. Pal, S. K. Palaha, A. Palmeri, A. Panse, R. Papikyan, V. Pappalardo, G. S. Park, W. J. Pastirak, B. Pastore, C. Paticchio, V. Pavlinov, A. Pawlak, T. Peitzmann, T. Pepato, A. Pereira, H. Peressounko, D. Perez, C. Perini, D. Perrino, D. Peryt, W. Peschek, J. Pesci, A. Peskov, V. Pestov, Y. Peters, A. J. Petracek, V. Petridis, A. Petris, M. Petrov, P. Petrovici, M. Petta, C. Peyre, J. Piano, S. Piccotti, A. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Pitz, N. Piuz, F. Platt, R. Ploskon, M. Pluta, J. Pocheptsov, T. Pochybova, S. Lerma, P. L. M. Podesta Poggio, F. Poghosyan, M. G. Polak, K. Polichtchouk, B. Polozov, P. Polyakov, V. Pommeresch, B. Pop, A. Posa, F. Pospiil, V. Potukuchi, B. Pouthas, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puddu, G. Pujahari, P. Pulvirenti, A. Punin, A. Punin, V. Putis, M. Putschke, J. Quercigh, E. Rachevski, A. Rademakers, A. Radomski, S. Raiha, T. S. Rak, J. Rakotozafindrabe, A. Ramello, L. Ramirez Reyes, A. Rammler, M. Raniwala, R. Raniwala, S. Rasanen, S. S. Rashevskaya, I. Rath, S. Read, K. F. Real, J. S. Redlich, K. Renfordt, R. Reolon, A. R. Reshetin, A. Rettig, F. Revol, J.-P. Reygers, K. Ricaud, H. Riccati, L. Ricci, R. A. Richter, M. Riedler, P. Riegler, W. Riggi, F. Rivetti, A. Cahuantzi, M. Rodriguez Roed, K. Rohrich, D. Lopez, S. Roman Romita, R. Ronchetti, F. Rosinsky, P. Rosnet, P. Rossegger, S. Rossi, A. Roukoutakis, F. Rousseau, S. Roy, C. Roy, P. Rubio-Montero, A. J. Rui, R. Rusanov, I. Russo, G. Ryabinkin, E. Rybicki, A. Sadovsky, S. Safarik, K. Sahoo, R. Saini, J. Saiz, P. Sakata, D. Salgado, C. A. da Silva, R. Salgueiro Domingues Salur, S. Samanta, T. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sano, S. Santo, R. Santoro, R. Sarkamo, J. Saturnini, P. Scapparone, E. Scarlassara, F. Scharenberg, R. P. Schiaua, C. Schicker, R. Schindler, H. Schmidt, C. Schmidt, H. R. Schossmaier, K. Schreiner, S. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Segato, G. Semenov, D. Senyukov, S. Seo, J. Serci, S. Serkin, L. Serradilla, E. Sevcenco, A. Sgura, I. Shabratova, G. Shahoyan, R. Sharkov, G. Sharma, N. Sharma, S. Shigaki, K. Shimomura, M. Shtejer, K. Sibiriak, Y. Siciliano, M. Sicking, E. Siddi, E. Siemiarczuk, T. Silenzi, A. Silvermyr, D. Simili, E. Simonetti, G. Singaraju, R. Singh, R. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Skjerdal, K. Smakal, R. Smirnov, N. Snellings, R. Snow, H. Sogaard, C. Soloviev, A. Soltveit, H. K. Soltz, R. Sommer, W. Son, C. W. Son, H. Song, M. Soos, C. Soramel, F. Soyk, D. Spyropoulou-Stassinaki, M. Srivastava, B. K. Stachel, J. Staley, F. Stan, E. Stefanek, G. Stefanini, G. Steinbeck, T. Stenlund, E. Steyn, G. Stocco, D. Stock, R. Stolpovsky, P. Strmen, P. Suaide, A. A. P. Vasquez, M. A. Subieta Sugitate, T. Suire, C. Umbera, M. Susa, T. Swoboda, D. Symons, J. de Toledo, A. Szanto Szarka, I. Szostak, A. Szuba, M. Tadel, M. Tagridis, C. Takahara, A. Takahashi, J. Tanabe, R. Takaki, D. J. Tapia Taureg, H. Tauro, A. Tavlet, M. Tejeda Munoz, G. Telesca, A. Terrevoli, C. Thader, J. Tieulent, R. Tlusty, D. Toia, A. Tolyhy, T. de Matos, C. Torcato Torii, H. Torralba, G. Toscano, L. Tosello, F. Tournaire, A. Traczyk, T. Tribedy, P. Troger, G. Truesdale, D. Trzaska, W. H. Tsiledakis, G. Tsilis, E. Tsuji, T. Tumkin, A. Turrisi, R. Turvey, A. Tveter, T. S. Tydesjo, H. Tywoniuk, K. Ulery, J. Ullaland, K. Uras, A. Urban, J. Urciuoli, G. M. Usai, G. L. Vacchi, A. Vala, M. Palomo, L. Valencia Vallero, S. van der Kolk, N. Vyvre, P. Vande van Leeuwen, M. Vannucci, L. Vargas, A. Varma, R. Vasiliev, A. Vassiliev, I. Vasileiou, M. Vechernin, V. Venaruzzo, M. Vercellin, E. Vergara, S. Vernet, R. Verweij, M. Vetlitskiy, I. Vickovic, L. Viesti, G. Vikhlyantsev, O. Vilakazi, Z. Baillie, O. Villalobos Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Viyogi, Y. P. Vodopianov, A. Voloshin, K. Voloshin, S. Volpe, G. von Haller, B. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, V. Wallet, L. Wan, R. Wang, D. Wang, Y. Watanabe, K. Wen, Q. Wessels, J. Westerhoff, U. Wiechula, J. Wikne, J. Wilk, A. Wilk, G. Williams, M. C. S. Willis, N. Windelband, B. Xu, C. Yang, C. Yang, H. Yasnopolskiy, S. Yermia, F. Yi, J. Yin, Z. Yokoyama, H. Yoo, I. -K. Yuan, X. Yurevich, V. Yushmanov, I. Zabrodin, E. Zagreev, B. Zalite, A. Zampolli, C. Zanevsky, Yu. Zaporozhets, S. Zarochentsev, A. Zavada, P. Zbroszczyk, H. Zelnicek, P. Zenin, A. Zepeda, A. Zgura, I. Zhalov, M. Zhang, X. Zhou, D. Zhou, S. Zhu, J. Zichichi, A. Zinchenko, A. Zinovjev, G. Zoccarato, Y. Zychacek, V. Zynovyev, M. CA ALICE Collaboration TI Charged-particle multiplicity measurement in proton-proton collisions at root s=0.9 and 2.36 TeV with ALICE at LHC SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HADRON-HADRON COLLISIONS; DIFFRACTION DISSOCIATION; PP INTERACTIONS; PSEUDORAPIDITY DISTRIBUTIONS; POSSIBLE SCENARIOS; ISR ENERGIES; CM ENERGIES; COLLIDER; INTERVALS; PHYSICS AB Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.4. In the central region (vertical bar eta vertical bar < 0.5), at 0.9 TeV, we measure charged-particle pseudo-rapidity density dN(ch)/d eta = 3.02 +/- 0.01(stat.)(-0.05)(+0.08)(syst.) for inelastic interactions, and dN(ch)/d eta = 3.58 +/- 0.01 (stat.)(-0.12)(+0.12)(syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dN(ch)/d eta = 3.77 +/- 0.01(stat.)(-0.12)(+0.25)(syst.) for inelastic, and dN(ch)/d eta = 4.43 +/- 0.01(stat.)(-0.12)(+0.17)(syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% +/- 0.5%(stat.)(-2.8)(+5.7)%(syst.) for inelastic and 23.7% +/- 0.5%(stat.)(-1.1)(+4.6)%(syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions. C1 [Aamodt, K.; Arsene, I. C.; Bravina, L.; Dordic, O.; Eyyubova, G.; Hille, P. T.; Kolevatov, R.; Kvaerno, H.; Lindal, S.; Lovhoiden, G.; Milosevic, J.; Nilsson, M. S.; Nyiri, A.; Pocheptsov, T.; Skaali, T. B.; Tveter, T. S.; Tywoniuk, K.; Wikne, J.; Zabrodin, E.] Univ Oslo, Dept Phys, Oslo, Norway. [Bregant, M.; Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & tecnol Avanzate, Alessandria, Italy. [Bregant, M.; Cortese, P.; Dellacasa, G.; Ferretti, R.; Gemme, R.; Ramello, L.; Senyukov, S.; Sitta, M.] Ist Nazl Fis Nucl, Grp Coll, Alessandria, Italy. [Ahmad, A.; Ahmad, N.; Azmi, M. D.; Irfan, M.; Kamal, A.; Khan, M. M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Bilandzic, A.; Botje, M.; Krzewicki, M.; Kuijer, P. G.; Snellings, R.; van der Kolk, N.] Natl Inst Nucl & High Energy Phys NIKHEF, Amsterdam, Netherlands. [Belogianni, A.; Fragkiadakis, M.; Ganoti, P.; Petridis, A.; Spyropoulou-Stassinaki, M.; Tagridis, C.; Tsilis, E.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Altini, V.; Barile, F.; Bruno, G. E.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Mastroserio, A.; Minafra, F.; Navach, F.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Altini, V.; Barile, F.; Bruno, G. E.; de Cataldo, G.; D'Erasmo, G.; Di Bari, D.; Di Giglio, C.; Elia, D.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Ghidini, B.; Lenti, V.; Manzari, V.; Mastromarco, M.; Mastroserio, A.; Minafra, F.; Nappi, E.; Navach, F.; Nicassio, M.; Pastore, C.; Paticchio, V.; Perrino, D.; Posa, F.; Romita, R.; Santoro, R.; Sgura, I.; Simonetti, G.; Terrevoli, C.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Hu, S.; Li, X.; Li, Y.; Lu, S.; Wen, Q.; Zhou, S.] China Inst Atom Energy, Beijing, Peoples R China. [Alme, J.; Bablok, S.; Djuvsland, O.; Fehlker, D.; Haaland, O.; Huang, M.; Kanaki, K.; Klovning, A.; Larsen, D. T.; Liu, L.; Nystrand, J.; Ovrebekk, G.; Pommeresch, B.; Richter, M.; Skjerdal, K.; Ullaland, K.; Wagner, B.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Helstrup, H.; Hetland, K. F.; Kileng, B.; Roed, K.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Fenton-Olsen, B.; Jacobs, P.; Odyniec, G.; Salur, S.; Symons, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dash, A.; Dash, S.; Jena, C.; Mahapatra, D. P.; Rath, S.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Barnby, L.; Evans, D.; Jones, G. T.; Jones, P. G.; Jovanovic, P.; Jusko, A.; Kour, R.; Krivda, M.; Lazzeroni, C.; Lietava, R.; Matthews, Z. L.; Navin, S.; Palaha, A.; Petrov, P.; Platt, R.; Snow, H.; Baillie, O. Villalobos; Zichichi, A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Alici, A.; Antinori, S.; Arcelli, S.; Basile, M.; Cifarelli, L.; Falchieri, D.; Guerzoni, B.; Masetti, M.; Preghenella, R.; Scioli, G.; Silenzi, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alici, A.; Antinori, S.; Arcelli, S.; Basile, M.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Falchieri, D.; Guerzoni, B.; Hatzifotiadou, D.; Herghelegiu, A.; Laurenti, G.; Margotti, A.; Masetti, M.; Nania, R.; Noferini, F.; Pesci, A.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Silenzi, A.; Williams, M. C. S.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Fekete, V.; Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Danu, A.; Felea, D.; Haiduc, M.; Hasegan, D.; Mitu, C.; Sevcenco, A.; Stan, E.; Zgura, I.] ISS, Bucharest, Romania. [Andrei, C.; Berceanu, I.; Catanescu, V.; Petris, M.; Petrovici, M.; Pop, A.; Schiaua, C.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Agocs, A. G.; Barnafoeldi, G. G.; Boldizsar, L.; Denes, E.; Floris, M.; Fodor, Z.; Hamar, G.; Levai, P.; Molnar, L.; Pochybova, S.; Tolyhy, T.] Hungarian Acad Sci, KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [De Falco, A.; Puddu, G.; Serci, S.; Uras, A.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Becker, B.; Cicalo, C.; De Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Siddi, E.; Szostak, A.; Uras, A.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Chinellato, D. D.; Cosentino, M. R.; Takahashi, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Buthelezi, Z.; Cleymans, J.; de Vaux, G.; Fearick, R.; Foertsch, S.; Steyn, G.; Vilakazi, Z.] Univ Cape Town, Dept Phys, iThemba Labs, ZA-7925 Cape Town, South Africa. [Barbera, R.; Blanco, F.; Rocca, P. La; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; Blanco, F.; Rocca, P. La; Palmeri, A.; Pappalardo, G. S.; Petta, C.; Pulvirenti, A.; Riggi, F.; Vernet, R.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Kumar, N.; Sharma, N.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Baldit, A.; Barret, V.; Bastid, N.; Blanc, A.; Crochet, P.; Devaux, A.; Dupieux, P.; Lopez, X.; Manceau, L.; Manso, F.; Rosnet, P.; Saturnini, P.; Vulpescu, B.] Univ Blaise Pascal, CNRS, IN2P3, LPC,Clermont Univ, Clermont Ferrand, France. [Anson, C.; Bock, N.; Humanic, T. J.; Kisiel, A.; Lisa, M. A.; Truesdale, D.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Bearden, I. G.; Boggild, H.; Christensen, C. H.; Dalsgaard, H. H.; Fenton-Olsen, B.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Nygaard, C.; Sogaard, C.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Bartke, J.; Gladysz-Dziadus, E.; Kornas, E.; Kowalski, M.; Matyja, A.; Rybicki, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Jimenez, R. Gomez; Monzon, I. Leon; Lerma, P. L. M. Podesta] Univ Autonoma Sinaloa, Culiacan, Mexico. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Castillo Hernandez, J. F.; Donigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Mager, M.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Altinpinar, S.; Andronic, A.; Averbeck, R.; Bailhache, R.; Bercuci, A.; Berdermann, E.; Braun-Munzinger, P.; Castillo Hernandez, J. F.; Donigus, B.; Fasel, M.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gutbrod, H.; Hernandez, C.; Huber, S.; Ivanov, M.; Mager, M.; Malzacher, P.; Marin, A.; Masciocchi, S.; Miskowiec, D.; Otwinowski, J.; Park, W. J.; Schmidt, C.; Schmidt, H. R.; Schwarz, K.; Soyk, D.; Vranic, D.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Braun-Munzinger, P.; Kalweit, A.; Kraus, I.; Oeschler, H.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany. [Bellwied, R.; Castillo Hernandez, J. F.; Cormier, T. M.; Mlynarz, J.; Pavlinov, A.; Pruneau, C. A.; Voloshin, S.] Wayne State Univ, Detroit, MI USA. [Batyunya, B.; Fateev, O.; Fedunov, A.; Grigoryan, S.; Janurova, L.; Kutouski, M.; Nomokonov, P.; Pocheptsov, T.; Shabratova, G.; Vala, M.; Vodopianov, A.; Yurevich, V.; Zanevsky, Yu.; Zaporozhets, S.; Zinchenko, A.] Joint Inst Nucl Res, Dubna, Russia. [Bach, M.; Hutter, D.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Antipin, K.; Antonczyk, D.; Appelshaeuser, H.; Arend, A.; Blume, C.; Buesching, H.; Hartig, M.; Kliemant, M.; Kniege, S.; Kramer, F.; Lehnert, J.; Vargas, H. Leon; Pitz, N.; Renfordt, R.; Schuchmann, S.; Sommer, W.; Stock, R.; Ulery, J.] Goethe Univ Frankfurt, Inst Kernphys, D-6000 Frankfurt, Germany. [Bianchi, N.; Capitani, G. P.; Casanova Diaz, A.; Conesa Balbastre, G.; Cunqueiro, L.; Di Nezza, P.; Fantoni, A.; Hasch, D.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Miftakhov, N.; Nikulin, V.; Polyakov, V.; Samsonov, V.; Zalite, A.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Rinella, G. Aglieri; Anelli, G.; Antinori, F.; Augustinus, A.; Betev, L.; Boccioli, M.; Bruckner, G.; Brun, R.; Buncic, P.; Campbell, M.; Canoa Roman, V.; Carena, F.; Carena, W.; Carminati, F.; Caselle, M.; Cavicchioli, C.; Chapeland, S.; Cheshkov, C.; Chibante Barroso, V.; Chochula, P.; Colla, A.; Costa, F.; de Groot, J.; Di Mauro, A.; Divia, R.; Dubuisson, J.; Evrard, S.; Fabjan, C. W.; Ferretti, R.; Formenti, F.; Fuchs, U.; Furano, F.; Gheata, A.; Gheata, M.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hristov, P.; Innocenti, P. G.; Jachokowski, A.; Jirden, L.; Kapusta, S.; Kirsch, S.; Klein-Bosing, C.; Kluge, A.; Lackner, F.; Leistam, L.; Lippmann, C.; Lohn, S.; Makhlyueva, I.; Martinengo, P.; Lorenzo, P. Mendez; Meoni, M.; Morsch, A.; Muller, H.; Musa, L.; Oldenburg, M.; Osmic, F.; Perini, D.; Peters, A. J.; Piuz, F.; Quercigh, E.; Rademakers, A.; Revol, J.-P.; Riedler, P.; Riegler, W.; Rohrich, D.; Rosinsky, P.; Rossegger, S.; Roukoutakis, F.; Safarik, K.; Saiz, P.; da Silva, R. Salgueiro Domingues; Schindler, H.; Schossmaier, K.; Schreiner, S.; Schukraft, J.; Shahoyan, R.; Sicking, E.; Soos, C.; Stefanini, G.; Swoboda, D.; Tadel, M.; Taureg, H.; Tauro, A.; Tavlet, M.; Telesca, A.; Toia, A.; de Matos, C. Torcato; Tydesjo, H.; Vyvre, P. Vande; von Haller, B.; Wallet, L.; Zampolli, C.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Faivre, J.; Furget, C.; Gadrat, S.; Guernane, R.; Kox, S.; Real, J. S.] Univ Grenoble 1, CNRS, IN2P3, Inst Polytech Grenoble,LPSC, Grenoble, France. [Quintana, A. Abrahantes; Torres, E. Lopez; Shtejer, K.] CEADEN, Havana, Cuba. [Abel, N.; Alt, T.; Angelov, V.; Bottger, S.; Breitner, T.; de Cuveland, J.; Gebelein, J.; Gorbunov, S.; Kalcher, S.; Kebschull, U.; Kisel, I.; Lara, C.; Lindenstruth, V.; Painke, F.; Panse, R.; Peschek, J.; Rettig, F.; Steinbeck, T.; Thader, J.; Torralba, G.; Troger, G.; Vassiliev, I.; Zelnicek, P.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Busch, O.; Constantin, P.; De Gaspari, M.; Emschermann, D.; Glassel, P.; Grajcarek, R.; Herrmann, N.; Klein, J.; Koch, K.; Krumbhorn, D.; Kweon, M. J.; Perez, J. Mercado; Oyama, K.; Pachmayer, Y.; Radomski, S.; Rusanov, I.; Schicker, R.; Schweda, K.; Soltveit, H. K.; Stachel, J.; Tsiledakis, G.; Vallero, S.; Wang, Y.; Wiechula, J.; Windelband, B.; Yang, H.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Chuman, F.; Hiei, A.; Horaguchi, T.; Iwasaki, T.; Maruyama, Y.; Mizoguchi, K.; Okada, Y.; Shigaki, K.; Sugitate, T.; Torii, H.] Hiroshima Univ, Hiroshima, Japan. [Don, D. M. M.; Madagodahettige-Don, D. M.; Pinsky, L.] Univ Houston, Houston, TX USA. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Bhasin, A.; Gupta, A.; Gupta, R.; Lal, C.; Mangotra, L.; Potukuchi, B.; Sambyal, S.; Sharma, S.; Singh, R.] Univ Jammu, Dept Phys, Jammu 180004, India. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] HIP, Jyvaskyla, Finland. [Aysto, J.; Bondila, M.; Diaz, R.; Kalliokoski, T.; Kim, D. J.; Malkiewicz, T.; Novitzky, N.; Oinonen, M.; Raiha, T. S.; Rak, J.; Rasanen, S. S.; Sarkamo, J.; Trzaska, W. H.] Univ Jyvaskyla, Jyvaskyla, Finland. [Ahn, S. U.; Baek, Y. W.; Jung, H.; Jung, W.; Kang, E.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, M.; Kim, S. H.; Lee, K. S.; Lee, S. C.; Seo, J.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Borshchov, V.; Listratenko, O.] Sci Res Technol Inst Instrument Engn, Kharkov, Ukraine. [Borisov, A.; Grinyov, B.; Zinovjev, G.; Zynovyev, M.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Hamblen, J.; Martashvili, I.; Read, K. F.] Univ Tennessee, Knoxville, TN USA. [Bose, S.; Chattopadhyay, S.; Das, I.; Das, S.; Majumdar, A. K. Dutta; Pal, S.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Ahammed, Z.; Chattopadhyay, S.; Dubey, A. K.; Majumdar, M. R. Dutta; Ganti, M. S.; Ghosh, P.; Khan, S. A.; Mohanty, B.; Mondal, M. M.; Muhuri, S.; Nayak, T. K.; Pal, S. K.; Prasad, S. K.; Saini, J.; Samanta, T.; Singaraju, R.; Singhal, V.; Sinha, B. C.; Tribedy, P.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Krawutschke, T.] Fachhsch Koln, Cologne, Germany. [Bombara, M.; Kravakova, A.; Putis, M.; Urban, J.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Ban, J.; Kalinak, P.; Kralik, I.; Pastirak, B.; Sandor, L.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Ricci, R. A.; Vannucci, L.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Gago, A.; Perez, C.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Fenton-Olsen, B.; Glenn, A.; Newby, J.; Soltz, R.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Christiansen, P.; Dobrin, A.; Gros, P.; Gustafsson, H. -A.; Oskarsson, A.; Osterman, L.; Otterlund, I.; Stenlund, E.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Massacrier, L.; Nendaz, F.; Tieulent, R.; Zoccarato, Y.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69365 Lyon, France. [Blanco, F.; Cotallo, M. E.; Gonzalez-Zamora, P.; Ladron de Guevara, P.; Montes, E.; Rubio-Montero, A. J.; Serradilla, E.] CIEMAT, Madrid, Spain. [Cuautle, E.; Diaz, L.; Dominguez, I.; Maldonado Cervantes, I.; Mayani, D.; Velasquez, A. Ortiz; Paic, G.; Peskov, V.; Serkin, L.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Salazar, S. Aguilar; Molina, R. Alfaro; Almaraz Avina, E.; Anzo, A.; Arceo, R.; Belmont-Moreno, E.; Gonzalez-Trueba, L. H.; Grabski, V.; Leon, H.; Davalos, A. Martinez; Menchaca-Rocha, A.; Sandoval, A.; Palomo, L. Valencia] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000, DF, Mexico. [Camacho, E.; Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montao Zetina, L.; Ramirez Reyes, A.; Zepeda, A.] CINVESTAV, Mexico City 14000, DF, Mexico. [Camacho, E.; Contreras, J. G.; Crescio, E.; Herrera Corral, G.; Montao Zetina, L.; Ramirez Reyes, A.; Zepeda, A.] CINVESTAV, Merida, Mexico. [Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskih, A.; Kurepin, A.; Kurepin, A. N.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Akindinov, A.; Kaidalov, A. B.; Kiselev, S.; Mal'Kevich, D.; Nedosekin, A.; Polozov, P.; Sharkov, G.; Vetlitskiy, I.; Voloshin, K.; Zagreev, B.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bogdanov, A.; Grigoriev, V.; Kaplin, V.; Kondratyeva, N.; Loginov, V.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Aleksandrov, D.; Blau, D.; Dobretsov, V.; Fokin, S.; Ippolitov, M.; Kazantsev, A.; Kozlov, K.; Kucheriaev, Y.; Manko, V.; Moukhanova, T.; Nianine, A.; Nikolaev, S.; Nikulin, S.; Peressounko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yasnopolskiy, S.; Yushmanov, I.] Russian Res Ctr, Kurchatov Inst, Moscow, Russia. [Jena, S.; Nandi, B. K.; Nyatha, A.; Pujahari, P.; Varma, R.] Indian Inst Technol, Mumbai 400076, Maharashtra, India. [Bathen, B.; Baumann, C.; Dietel, T.; Glasow, R.; Gottschlag, H.; Heide, M.; Kalisky, M.; Rammler, M.; Reygers, K.; Santo, R.; Wessels, J.; Westerhoff, U.; Wilk, A.] Univ Munster, Inst Kernphys, D-4400 Munster, Germany. [Aphecetche, L.; Batigne, G.; Benhabib, L.; Bourdaud, G.; Conesa del Valle, Z.; Cussonneau, J.; Delagrange, H.; Dialinas, M.; Estienne, M.; Germain, M.; Ichou, R.; Bris, N. Le; Lefevre, F.; Lenhardt, M.; Luquin, L.; Garcia, G. Martinez; Pillot, P.; Roy, C.; Schutz, Y.; Tournaire, A.; Yermia, F.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Aronsson, T.; Bruna, E.; Caines, H.; Harris, J. W.; Heinz, M.; Hicks, B.; Ma, R.; Putschke, J.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Frolov, A.; Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Awes, T. C.; Enokizono, A.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Abeysekara, U.; Cherney, M.; Gorbunov, Y.; Malagalage, K. J.; Nilsen, B. S.; Turvey, A.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Bimbot, L.; Boyer, B.; Chambert, V.; Charpy, A.; Espagnon, B.; Hadjidakis, C.; Hrivnacova, I.; Lafage, V.; Bornec, Y. Le; Noriega, M. Lopez; Malek, M.; Peyre, J.; Pouthas, J.; Rousseau, S.; Suire, C.; Takaki, D. J. Tapia; Willis, N.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bianchin, C.; Bombonati, C.; Bortolin, C.; Caffarri, D.; Lunardon, M.; Morando, M.; Moretto, S.; Sahoo, R.; Scarlassara, F.; Segato, G.; Soramel, F.; Viesti, G.] Univ Padua, Dipartimento Fis, Padua, Italy. [Dainese, A.; Fabris, D.; Grosso, R.; Pepato, A.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [Bielik, J.; Kral, J.; Krus, M.; Pachr, M.; Petracek, V.; Pospiil, V.; Smakal, R.; Tlusty, D.; Wagner, V.; Zychacek, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Mare, J.; Polak, K.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Bogolyubsky, M.; Kharlov, Y.; Kim, J.; Polichtchouk, B.; Sadovsky, S.; Soloviev, A.; Stolpovsky, P.; Zenin, A.] Inst High Energy Phys, Protvino, Russia. [Maldonado, I. Cortes; Tellez, A. Fernandez; Santos, H. Gonzalez; Lopez-Ramirez, R.; Hernandez, M. I. Martinez; Munoz, J.; Cahuantzi, M. Rodriguez; Lopez, S. Roman; Tejeda Munoz, G.; Vargas, A.; Vergara, S.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Choi, K.; Lee, H.; Son, C. W.; Yi, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Adamova, D.; Bielikova, J.; Kapitan, J.; Kushpil, S.; Kushpil, V.; Umbera, M.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Liberto, S.; Mazzoni, M. A.; Meddi, F.; Urciuoli, G. M.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Baldisseri, A.; Borel, H.; Castillo Castellanos, J.; Charvet, J. L.; Orsini, F.; Pereira, H.; Rakotozafindrabe, A.; Staley, F.] Comis Nacl Energia Atom, IRFU, Saclay, France. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Pagano, P.; Russo, G.; Virgili, T.] Sezione Ist Nazl Fis Nucl, Salerno, Italy. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Armesto, N.; Ferreiro, E. G.; Pajares, C.; Salgado, C. A.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [de Barros, G. O. V.; Deppman, A.; Figueredo, M. A. S.; Feijo Soares, A. Lozea; Munhoz, M. G.; Suaide, A. A. P.; de Toledo, A. Szanto] Univ Sao Paulo, Sao Paulo, Brazil. [Basmanov, V.; Budnikov, D.; Demanov, V.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Nazarov, G.; Punin, A.; Punin, V.; Tumkin, A.; Vikhlyantsev, O.; Vinogradov, Y.] Russian Fed Nucl Ctr VIIEF, Sarov, Russia. [Han, B. H.; Hwang, D. S.; Kim, J. H.; Kim, S.; Son, H.] Sejong Univ, Dept Phys, Seoul, South Korea. [Bohm, J.; Chang, B.; Kang, J. H.; Kim, M.; Kim, Y.; Kwon, Y.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Asryan, A.; Braun, M.; Derkach, D.; Feofilov, G.; Ivanov, A.; Kolojvari, A.; Kondratiev, V.; Ochirov, A.; Semenov, D.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Belikov, I.; Coffin, J.-P.; Hippolyte, B.; Jangal, S.; Kuhn, C.; Lutz, J.-R.; Maire, A.; Michalon, A.; Ricaud, H.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Akimoto, R.; Deloff, A.; Gunji, T.; Hamagaki, H.; Hori, Y.; Okada, K.; Ozawa, K.; Sano, S.; Takahara, A.; Tsuji, T.] Univ Tokyo, Tokyo, Japan. [Bosisio, L.; Bregant, M.; Camerini, P.; Cattaruzza, E.; Contin, G.; Margagliotti, G. V.; Rossi, A.; Rui, R.; Venaruzzo, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Fragiacomo, E.; Grion, N.; Piano, S.; Rachevski, A.; Rashevskaya, I.; Vacchi, A.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Sakata, D.; Sano, M.; Shimomura, M.; Tanabe, R.; Watanabe, K.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Chiavassa, E.; Cobanoglu, O.; Corrales Morales, Y.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Garcia Trapaga, C.; Luparello, G.; Chiesa, A. Marzari; Masera, M.; Ortona, G.; Padilla, F.; Poggio, F.; Poghosyan, M. G.; Siciliano, M.; Stocco, D.; Vasquez, M. A. Subieta; Vercellin, E.] Univ Turin, Dipartimento Fis Sperimentale, Turin, Italy. [Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Bala, R.; Beole, S.; Bianchi, L.; Biolcati, E.; Bossu, F.; Cerello, P.; Chiavassa, E.; Cobanoglu, O.; Coli, S.; Corrales Morales, Y.; De Marco, N.; De Remigis, R.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Garcia Trapaga, C.; Giraudo, G.; Giubellino, P.; Luparello, G.; Chiesa, A. Marzari; Masera, M.; Mazza, G.; Mereu, P.; Monteno, M.; Musso, A.; Oppedisano, C.; Ortona, G.; Padilla, F.; Piccotti, A.; Poggio, F.; Poghosyan, M. G.; Prino, F.; Riccati, L.; Rivetti, A.; Scomparin, E.; Siciliano, M.; Stocco, D.; Vasquez, M. A. Subieta; Toscano, L.; Tosello, F.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Chojnacki, M.; Christakoglou, P.; de Rooij, R.; Grelli, A.; Ivan, C.; Kamermans, R.; Mischke, A.; Nooren, G.; Peitzmann, T.; Simili, E.; van Leeuwen, M.; Verweij, M.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Deloff, A.; Dobrowolski, T.; Ilkiv, I.; Kurashvili, P.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Kikola, D.; Kupczak, R.; Oleniacz, J.; Ostrowski, P.; Pawlak, T.; Peryt, W.; Pluta, J.; Szuba, M.; Traczyk, T.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Scharenberg, R. P.; Srivastava, B. K.] Purdue Univ, W Lafayette, IN 47907 USA. [Conner, E. S.; Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Cai, X.; Ma, K.; Mao, Y.; Wan, R.; Wang, D.; Xu, C.; Yang, C.; Yin, Z.; Yuan, X.; Zhang, X.; Zhou, D.; Zhu, J.] Huazhong Normal Univ, Wuhan, Peoples R China. [Abramyan, A.; Grigoryan, A.; Gulkanyan, H.; Harutyunyan, A.; Hayrapetyan, A.; Papikyan, V.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Anticic, T.; Nikolic, V.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Rocca, P. La; Preghenella, R.; Zichichi, A.] Ctr Fermi, Ctr Studi & Ric, Rome, Italy. [Rocca, P. La; Preghenella, R.; Zichichi, A.] Museo Stor Fis Enrico Fermi, Rome, Italy. Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Yuan, X.] Univ Wroclaw, PL-50138 Wroclaw, Poland. RP Aamodt, K (reprint author), Univ Oslo, Dept Phys, Oslo, Norway. EM Jurgen.Schukraft@cern.ch RI Christensen, Christian Holm/A-4901-2010; Sevcenco, Adrian/C-1832-2012; de Cuveland, Jan/H-6454-2016; Jena, Satyajit/P-2409-2015; Ferretti, Alessandro/F-4856-2013; Graciani Diaz, Ricardo/I-5152-2016; Mitu, Ciprian/E-6733-2011; Yang, Hongyan/J-9826-2014; Barnafoldi, Gergely Gabor/L-3486-2013; Kharlov, Yuri/D-2700-2015; Fernandez Tellez, Arturo/E-9700-2017; Haiduc, Maria /C-5003-2011; Felea, Daniel/C-1885-2012; van der Kolk, Naomi/M-9423-2016; Bagnasco, Stefano/J-4324-2012; Bearden, Ian/M-4504-2014; SCAPPARONE, EUGENIO/H-1805-2012; Mischke, Andre/D-3614-2011; Cortese, Pietro/G-6754-2012; Ferreiro, Elena/C-3797-2017; Armesto, Nestor/C-4341-2017; Martinez Hernandez, Mario Ivan/F-4083-2010; Petta, Catia/A-7023-2012; Akindinov, Alexander/J-2674-2016; Usai, Gianluca/E-9604-2015; Colla, Alberto/J-4694-2012; Suaide, Alexandre/L-6239-2016; De Pasquale, Salvatore/B-9165-2008; Becker, Bruce/I-5632-2013; Christensen, Christian/D-6461-2012; Blau, Dmitry/H-4523-2012; Zarochentsev, Andrey/J-6253-2013; Deppman, Airton/F-6332-2010; Deppman, Airton/J-5787-2014; Adamova, Dagmar/G-9789-2014; Masera, Massimo/J-4313-2012; Ramello, Luciano/F-9357-2013; HAMAGAKI, HIDEKI/G-4899-2014; Vacchi, Andrea/C-1291-2010; Castillo Castellanos, Javier/G-8915-2013; Inst. of Physics, Gleb Wataghin/A-9780-2017; Chinellato, David/D-3092-2012; Cosentino, Mauro/L-2418-2014; Bregant, Marco/I-7663-2012; Takahashi, Jun/B-2946-2012; Vechernin, Vladimir/J-5832-2013; Peitzmann, Thomas/K-2206-2012; Salgado, Carlos A./G-2168-2015; Levai, Peter/A-1544-2014; Voloshin, Sergei/I-4122-2013; Turrisi, Rosario/H-4933-2012; feofilov, grigory/A-2549-2013; Kondratiev, Valery/J-8574-2013; Guber, Fedor/I-4271-2013; Barbera, Roberto/G-5805-2012; Kurepin, Alexey/H-4852-2013; Aglieri Rinella, Gianluca/I-8010-2012; beole', stefania/G-9353-2012; Pshenichnov, Igor/A-4063-2008; Barnby, Lee/G-2135-2010; Gagliardi, Martino/J-4787-2012; Traczyk, Tomasz/C-1310-2013; Zagreev, Boris/R-6460-2016; Kutouski, Mikalai/I-1555-2016; Vickovic, Linda/F-3517-2017; Vinogradov, Leonid/K-3047-2013; braun, mikhail/I-6826-2013; OI Christensen, Christian Holm/0000-0002-1850-0121; Sevcenco, Adrian/0000-0002-4151-1056; de Cuveland, Jan/0000-0003-0455-1398; Jena, Satyajit/0000-0002-6220-6982; Ferretti, Alessandro/0000-0001-9084-5784; Graciani Diaz, Ricardo/0000-0001-7166-5198; Fernandez Tellez, Arturo/0000-0003-0152-4220; Felea, Daniel/0000-0002-3734-9439; van der Kolk, Naomi/0000-0002-8670-0408; Bearden, Ian/0000-0003-2784-3094; Ferreiro, Elena/0000-0002-4449-2356; Armesto, Nestor/0000-0003-0940-0783; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Akindinov, Alexander/0000-0002-7388-3022; Usai, Gianluca/0000-0002-8659-8378; Suaide, Alexandre/0000-0003-2847-6556; De Pasquale, Salvatore/0000-0001-9236-0748; Becker, Bruce/0000-0002-6607-7145; Christensen, Christian/0000-0002-1850-0121; Zarochentsev, Andrey/0000-0002-3502-8084; Deppman, Airton/0000-0001-9179-6363; Deppman, Airton/0000-0001-9179-6363; Vacchi, Andrea/0000-0003-3855-5856; Castillo Castellanos, Javier/0000-0002-5187-2779; Chinellato, David/0000-0002-9982-9577; Cosentino, Mauro/0000-0002-7880-8611; Takahashi, Jun/0000-0002-4091-1779; Vechernin, Vladimir/0000-0003-1458-8055; Peitzmann, Thomas/0000-0002-7116-899X; Salgado, Carlos A./0000-0003-4586-2758; feofilov, grigory/0000-0003-3700-8623; Kondratiev, Valery/0000-0002-0031-0741; Guber, Fedor/0000-0001-8790-3218; Barbera, Roberto/0000-0001-5971-6415; Kurepin, Alexey/0000-0002-1851-4136; Aglieri Rinella, Gianluca/0000-0002-9611-3696; Pshenichnov, Igor/0000-0003-1752-4524; Barnby, Lee/0000-0001-7357-9904; Traczyk, Tomasz/0000-0002-6602-4094; Kutouski, Mikalai/0000-0002-2920-8775; Vickovic, Linda/0000-0002-9820-7960; Tosello, Flavio/0000-0003-4602-1985; Turrisi, Rosario/0000-0002-5272-337X; Beole', Stefania/0000-0003-4673-8038; Dainese, Andrea/0000-0002-2166-1874; Bhasin, Anju/0000-0002-3687-8179; Vinogradov, Leonid/0000-0001-9247-6230; Gago Medina, Alberto Martin/0000-0002-0019-9692; D'Erasmo, Ginevra/0000-0003-3407-6962; braun, mikhail/0000-0001-7398-7801; SANTORO, ROMUALDO/0000-0002-4360-4600; Mohanty, Bedangadas/0000-0001-9610-2914; Monteno, Marco/0000-0002-3521-6333; Paticchio, Vincenzo/0000-0002-2916-1671; Riggi, Francesco/0000-0002-0030-8377; Scarlassara, Fernando/0000-0002-4663-8216 FU Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3; 'Region Pays de Loire'; 'Region Alsace'; 'Region Auvergne'; CEA, France; German BMBF; Helmholtz Association; Hungarian OTKA; National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) of Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; Korea Foundation for International Cooperation of Science and Technology (KICOS); CONACYT; DGAPA, Mexico; ALFA-EC; HELEN Program (High-Energy physics Latin-American-European Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Polish Ministry of Science and Higher Education; National Authority for Scientific Research-NASR (Autontatea Nationala pentru Cercetare Stiintifica-ANCS); Federal Agency of Science of the Ministry of Education and Science of Russian Federation; International Science and Technology Center; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; CERN-INTAS; Ministry of Education of Slovakia; CIEMAT; EELA; Ministerio de Educacion y Ciencia of Spain; Xunta de Galicia (Conselleria de Educacion); CEADEN; Cubaenergia; Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector:; Calouste Gulbenkian Foundation from Lisbon and Swiss Fonds Kidagan, Armenia;; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC);; Ministry of Education and Youth of the Czech Republic;; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation;; The European Research Council under the European Community's Seventh Framework Programme;; Helsinki Institute of Physics and the Academy of Finland; - French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France;; German BMBF and the Helmholtz Association;; Hungarian OTKA and National Office for Research and Technology (NKTH);; Department of Atomic Energy and Department of Science and Technology of the Government of India;; Istituto Nazionale di Fisica Nucleare (INFN) of Italy;; MEXT Grant-in-Aid for Specially Promoted Research, Japan;; Joint Institute for Nuclear Research, Dubna;; Korea Foundation for International Cooperation of Science and Technology (KICOS);; CONACYT, DGAPA, Mexico, ALFA-EC and the HELEN Program (High-Energy physics Latin-American-European Network);; Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands;; Research Council of Norway (NFR);; Polish Ministry of Science and Higher Education;; National Authority for Scientific Research-NASR (Autontatea Nationala pentru Cercetare Stiintifica-ANCS);; Federal Agency of Science of the Ministry of Education and Science of Russian Federation, International Science and Technology Center, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and CERN-INTAS;; Ministry of Education of Slovakia;; CIEMAT, EELA, Ministerio de Educacion y Ciencia of Spain, Xunta de Galicia (Conselleria de Educacion), CEADEN, Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency);; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW);; Ukraine Ministry of Education and Science;; United Kingdom Science and Technology Facilities Council (STFC);; The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio. NR 48 TC 168 Z9 169 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2010 VL 68 IS 1-2 BP 89 EP 108 DI 10.1140/epjc/s10052-010-1339-x PG 20 WC Physics, Particles & Fields SC Physics GA 624TF UT WOS:000279843400003 ER PT J AU Aaltonen, T Adelman, J Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Azzurri, P Badgett, W Barnett, BA Bartsch, V Beecher, D Behari, S Bellettini, G Benjamin, D Bisello, D Bizjak, I Blocker, C Blumenfeld, B Bocci, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Byrum, KL Cabrera, S Calancha, C Campanelli, M Canelli, F Carls, B Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Chou, JP Chung, K Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P Dell'Orso, M Demortier, L Deng, J Deninno, M di Giovanni, GP Di Ruzza, B Dittmann, JR Donati, S Donini, J Dorigo, T Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fedorko, WT Fernandez, JP Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Goldschmidt, N Golossanov, A Gomez, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Guimaraes da Costa, J Gunay-Unalan, Z Hahn, K Hahn, SR Han, BY Han, JY Happacher, F Hare, M Harris, RM Hartz, M Hatakeyama, K Hewamanage, S Hidas, D Hill, CS Hocker, A Hou, S Hughes, RE Huston, J Incandela, J Ivanov, A Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Kar, D Kato, Y Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, YK Kirsch, L Klimenko, S Knuteson, B Ko, BR Kong, DJ Konigsberg, J Korytov, A Krop, D Krumnack, N Kruse, M Krutelyov, V Kulkarni, NP Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lander, RL Lannon, K Latino, G Lazzizzera, I Lee, HS Leone, S Lindgren, M Lister, A Litvintsev, DO Loreti, M Lovas, L Lucchesi, D Lukens, P Lungu, G Lysak, R Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Manousakis-Katsikakis, A Margaroli, F Marino, CP Martin, V Martinez-Ballarin, R Mathis, M Mazzanti, P Mehtala, P Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Mitra, A Mitselmakher, G Moggi, N Moon, CS Moore, R Mukherjee, A Mumford, R Mussini, M Nachtman, J Nakano, I Napier, A Necula, V Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Pagan Griso, S Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pauletta, G Paulini, M Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pinera, L Pitts, K Poukhov, O Prakoshyn, F Pronko, A Ptohos, F Pueschel, E Rahaman, A Ranjan, N Redondo, I Rekovic, V Rimondi, F Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Sakumoto, WK Santi, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MA Schmitt, M Schwarz, T Scodellaro, L Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shiraishi, S Shochet, M Sidoti, A Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Soha, A Sorin, V Squillacioti, P St Denis, R Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Takashima, R Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Ttito-Guzman, P Tokar, S Tollefson, K Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volpi, G Wagner, RG Wagner, RL Wakisaka, T Wang, SM Whitehouse, B Wicklund, E Wilbur, S Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Yamamoto, K Yang, UK Yang, YC Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zhang, X Zucchelli, S AF Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Azzurri, P. Badgett, W. Barnett, B. A. Bartsch, V. Beecher, D. Behari, S. Bellettini, G. Benjamin, D. Bisello, D. Bizjak, I. Blocker, C. Blumenfeld, B. Bocci, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Canelli, F. Carls, B. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. Donati, S. Donini, J. Dorigo, T. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fedorko, W. T. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Goldschmidt, N. Golossanov, A. Gomez, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Guimaraes da Costa, J. Gunay-Unalan, Z. Hahn, K. Hahn, S. R. Han, B. -Y. Han, J. Y. Happacher, F. Hare, M. Harris, R. M. Hartz, M. Hatakeyama, K. Hewamanage, S. Hidas, D. Hill, C. S. Hocker, A. Hou, S. Hughes, R. E. Huston, J. Incandela, J. Ivanov, A. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Kar, D. Kato, Y. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, Y. K. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kong, D. J. Konigsberg, J. Korytov, A. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lander, R. L. Lannon, K. Latino, G. Lazzizzera, I. Lee, H. S. Leone, S. Lindgren, M. Lister, A. Litvintsev, D. O. Loreti, M. Lovas, L. Lucchesi, D. Lukens, P. Lungu, G. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. P. Martin, V. Martinez-Ballarin, R. Mathis, M. Mazzanti, P. Mehtala, P. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Mitra, A. Mitselmakher, G. Moggi, N. Moon, C. S. Moore, R. Mukherjee, A. Mumford, R. Mussini, M. Nachtman, J. Nakano, I. Napier, A. Necula, V. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Pagan Griso, S. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pauletta, G. Paulini, M. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pinera, L. Pitts, K. Poukhov, O. Prakoshyn, F. Pronko, A. Ptohos, F. Pueschel, E. Rahaman, A. Ranjan, N. Redondo, I. Rekovic, V. Rimondi, F. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Santi, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmitt, M. Schwarz, T. Scodellaro, L. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shiraishi, S. Shochet, M. Sidoti, A. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Soha, A. Sorin, V. Squillacioti, P. St. Denis, R. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Takashima, R. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Ttito-Guzman, P. Tokar, S. Tollefson, K. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volpi, G. Wagner, R. G. Wagner, R. L. Wakisaka, T. Wang, S. M. Whitehouse, B. Wicklund, E. Wilbur, S. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Yamamoto, K. Yang, U. K. Yang, Y. C. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zhang, X. Zucchelli, S. TI Study of multi-muon events produced in p (p)over-bar interactions at root s=1.96 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID B(B)OVER-BAR PRODUCTION; P(P)OVER-BAR COLLISIONS; FERMILAB-TEVATRON; DETECTOR AB We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction. C1 [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Byrum, K. L.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bartsch, V.; Beecher, D.; Bizjak, I.; Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Nurse, E.; Vellidis, C.; Vine, T.] Univ Athens, Athens 15771, Greece. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.] Ist Nazl Fis Nucleare Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucleare Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif, Davis, CA 95616 USA. [Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Inst Fis Cantabria, CSIC Univ Cantabria, Santander 39005, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Lovas, L.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lysak, R.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, Dubna 141980, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Ko, B. R.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Convery, M. E.; Dagenhart, D.; Datta, M.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Harris, R. M.; Hocker, A.; Jindariani, S.; Kilminster, B.; Lindgren, M.; Litvintsev, D. O.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Thom, J.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wicklund, E.; Wittich, P.; Wolbers, S.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Laboratori Nazionali Frascati, Ist Nazl Fis Nucleare, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Gorelov, I.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki & Helsinki Inst Phys, Div High Energy Phys, Dept Phys, Helsinki 00014, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Marino, C. P.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Centro Investigaciones Energet Medioambient Tecno, Madrid 28040, Spain. [Goncharov, M.; Hahn, K.; Knuteson, B.; Makhoul, K.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] NW Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Brigliadori, L.; Compostella, G.; Donini, J.; Dorigo, T.] Sezione Padova Trento, Ist Nazl Fis Nucleare, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, Ist Nazl Fis Nucleare, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Carosi, R.; Chiarelli, G.; Giannetti, P.; Lami, S.; Leone, S.; Piacentino, G.; Sforza, F.; Sidoti, A.; Trovato, M.] Ist Nazl Fis Nucleare Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucleare Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Squillacioti, P.] Ist Nazl Fis Nucleare Pisa, Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Vataga, E.] Ist Nazl Fis Nucleare Pisa, Scuola Normale Superiore, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucleare Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Kulkarni, N. P.; Shalhout, S. Z.] Wayne State Univ, Detroit, MA 48201 USA. RP Ptohos, F (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM ptohos@fnal.gov RI unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Chiarelli, Giorgio/E-8953-2012; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; St.Denis, Richard/C-8997-2012; Zanetti, Anna/I-3893-2012; Amerio, Silvia/J-4605-2012; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014 OI unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Korean Science and Engineering Foundation; Korean Research Foundation; Particle Physics and Astronomy Research Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; European Community; Slovak RD Agency; Academy of Finland FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Particle Physics and Astronomy Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, Spain; the European Community's Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland. NR 17 TC 4 Z9 4 U1 1 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2010 VL 68 IS 1-2 BP 109 EP 118 DI 10.1140/epjc/s10052-010-1336-0 PG 10 WC Physics, Particles & Fields SC Physics GA 624TF UT WOS:000279843400004 ER PT J AU Bethke, S Aaltonen, T Adelman, J Alvarez Gonzalez, B Amerio, S Amidei, D Anastassov, A Antos, J Apollinari, G Apresyan, A Arisawa, T Artikov, A Ashmanskas, W Azzurri, P Badgett, W Barnett, BA Bartsch, V Beecher, D Behari, S Bellettini, G Benjamin, D Bisello, D Bizjak, I Blocker, C Blumenfeld, B Bocci, A Boisvert, V Bolla, G Bortoletto, D Boudreau, J Bridgeman, A Brigliadori, L Bromberg, C Brubaker, E Budagov, J Budd, HS Budd, S Burke, S Burkett, K Busetto, G Bussey, P Byrum, K Cabrera, S Calancha, C Campanelli, M Canelli, F Carls, B Carosi, R Carrillo, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Chang, SH Chen, YC Chertok, M Chiarelli, G Chlachidze, G Cho, K Chokheli, D Chou, JP Chung, K Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clark, D Compostella, G Convery, ME Conway, J Cordelli, M Cortiana, G Cox, CA Cox, DJ Crescioli, F Cuenca Almenar, C Cuevas, J Cully, JC Dagenhart, D Datta, M Davies, T de Barbaro, P Dell'Orso, M Demortier, L Deng, J Deninno, M di Giovanni, G Di Ruzza, B Dittmann, JR Donati, S Donini, J Dorigo, T Efron, J Erbacher, R Errede, D Errede, S Eusebi, R Fedorko, WT Fernandez, JP Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Furic, I Gallinaro, M Galyardt, J Garberson, F Garcia, JE Garfinkel, AF Genser, K Gerberich, H Gerdes, D Giakoumopoulou, V Giannetti, P Gibson, K Gimmell, JL Ginsburg, CM Giokaris, N Giordani, M Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Goldschmidt, N Golossanov, A Gomez, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Guimaraes da Costa, J Gunay-Unalan, Z Hahn, K Hahn, SR Han, BY Han, JY Happacher, F Hare, M Harris, RM Hartz, M Hatakeyama, K Hewamanage, S Hidas, D Hill, CS Hocker, A Hou, S Hughes, RE Huston, J Incandela, J Ivanov, A Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Jung, JE Kar, D Kato, Y Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, YK Kirsch, L Klimenko, S Knuteson, B Ko, BR Kong, DJ Konigsberg, J Korytov, A Krop, D Krumnack, N Kruse, M Krutelyov, V Kulkarni, N Kusakabe, Y Kwang, S Laasanen, AT Lami, S Lander, RL Lannon, K Latino, G Lazzizzera, I Lee, HS Leone, S Lindgren, M Lister, A Litvintsev, DO Loreti, M Lovas, L Lucchesi, D Lukens, P Lungu, G Lysak, R Madrak, R Maeshima, K Makhoul, K Maki, T Maksimovic, P Manousakis-Katsikakis, A Margaroli, F Marino, CP Martin, V Martinez-Ballarin, R Mathis, M Mazzanti, P Mehtala, P Merkel, P Mesropian, C Miao, T Miladinovic, N Miller, R Mills, C Mitra, A Mitselmakher, G Moggi, N Moon, CS Moore, R Mukherjee, A Mumford, R Mussini, M Nachtman, J Nakano, I Napier, A Necula, V Norniella, O Nurse, E Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Pagan Griso, S Palencia, E Papadimitriou, V Paramonov, AA Parks, B Pauletta, G Paulini, M Pellett, D Penzo, A Phillips, TJ Piacentino, G Pinera, L Pitts, K Poukhov, O Prakoshyn, F Pronko, A Ptohos, F Pueschel, E Rahaman, A Ranjan, N Redondo, I Rekovic, V Rimondi, F Robson, A Rodrigo, T Rogers, E Rolli, S Roser, R Rossi, M Rossin, R Ruiz, A Russ, J Rusu, V Sakumoto, WK Santi, L Sato, K Savoy-Navarro, A Schlabach, P Schmidt, EE Schmidt, MA Schmitt, M Schwarz, T Scodellaro, L Sedov, A Seidel, S Seiya, Y Semenov, A Sexton-Kennedy, L Sforza, F Sfyrla, A Shalhout, SZ Shiraishi, S Shochet, M Sidoti, A Sisakyan, A Slaughter, AJ Slaunwhite, J Sliwa, K Smith, JR Soha, A Sorin, V Squillacioti, P St Denis, R Stentz, D Strologas, J Strycker, GL Suh, JS Sukhanov, A Suslov, I Takashima, R Tanaka, R Tecchio, M Teng, PK Terashi, K Thom, J Thompson, AS Thompson, GA Ttito-Guzman, P Tokar, S Tollefson, K Torre, S Torretta, D Totaro, P Tourneur, S Trovato, M Tsai, SY Vallecorsa, S van Remortel, N Varganov, A Vataga, E Vazquez, F Velev, G Vellidis, C Veszpremi, V Vidal, M Vidal, R Vila, I Vilar, R Vine, T Vogel, M Volpi, G Wagner, RG Wagner, RL Wakisaka, T Wang, SM Whitehouse, B Wicklund, E Wilbur, S Wittich, P Wolbers, S Wolfe, C Wright, T Wu, X Yamamoto, K Yang, UK Yang, YC Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, J Zanetti, A Zhang, X Zucchelli, S AF Bethke, Siegfried Aaltonen, T. Adelman, J. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Antos, J. Apollinari, G. Apresyan, A. Arisawa, T. Artikov, A. Ashmanskas, W. Azzurri, P. Badgett, W. Barnett, B. A. Bartsch, V. Beecher, D. Behari, S. Bellettini, G. Benjamin, D. Bisello, D. Bizjak, I. Blocker, C. Blumenfeld, B. Bocci, A. Boisvert, V. Bolla, G. Bortoletto, D. Boudreau, J. Bridgeman, A. Brigliadori, L. Bromberg, C. Brubaker, E. Budagov, J. Budd, H. S. Budd, S. Burke, S. Burkett, K. Busetto, G. Bussey, P. Byrum, K. L. Cabrera, S. Calancha, C. Campanelli, M. Canelli, F. Carls, B. Carosi, R. Carrillo, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Chang, S. H. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Cho, K. Chokheli, D. Chou, J. P. Chung, K. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clark, D. Compostella, G. Convery, M. E. Conway, J. Cordelli, M. Cortiana, G. Cox, C. A. Cox, D. J. Crescioli, F. Cuenca Almenar, C. Cuevas, J. Cully, J. C. Dagenhart, D. Datta, M. Davies, T. de Barbaro, P. Dell'Orso, M. Demortier, L. Deng, J. Deninno, M. di Giovanni, G. P. Di Ruzza, B. Dittmann, J. R. Donati, S. Donini, J. Dorigo, T. Efron, J. Erbacher, R. Errede, D. Errede, S. Eusebi, R. Fedorko, W. T. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Furic, I. Gallinaro, M. Galyardt, J. Garberson, F. Garcia, J. E. Garfinkel, A. F. Genser, K. Gerberich, H. Gerdes, D. Giakoumopoulou, V. Giannetti, P. Gibson, K. Gimmell, J. L. Ginsburg, C. M. Giokaris, N. Giordani, M. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Goldschmidt, N. Golossanov, A. Gomez, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Guimaraes da Costa, J. Gunay-Unalan, Z. Hahn, K. Hahn, S. R. Han, B. -Y. Han, J. Y. Happacher, F. Hare, M. Harris, R. M. Hartz, M. Hatakeyama, K. Hewamanage, S. Hidas, D. Hill, C. S. Hocker, A. Hou, S. Hughes, R. E. Huston, J. Incandela, J. Ivanov, A. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Jung, J. E. Kar, D. Kato, Y. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, Y. K. Kirsch, L. Klimenko, S. Knuteson, B. Ko, B. R. Kong, D. J. Konigsberg, J. Korytov, A. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kulkarni, N. P. Kusakabe, Y. Kwang, S. Laasanen, A. T. Lami, S. Lander, R. L. Lannon, K. Latino, G. Lazzizzera, I. Lee, H. S. Leone, S. Lindgren, M. Lister, A. Litvintsev, D. O. Loreti, M. Lovas, L. Lucchesi, D. Lukens, P. Lungu, G. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maki, T. Maksimovic, P. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. P. Martin, V. Martinez-Ballarin, R. Mathis, M. Mazzanti, P. Mehtala, P. Merkel, P. Mesropian, C. Miao, T. Miladinovic, N. Miller, R. Mills, C. Mitra, A. Mitselmakher, G. Moggi, N. Moon, C. S. Moore, R. Mukherjee, A. Mumford, R. Mussini, M. Nachtman, J. Nakano, I. Napier, A. Necula, V. Norniella, O. Nurse, E. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Pagan Griso, S. Palencia, E. Papadimitriou, V. Paramonov, A. A. Parks, B. Pauletta, G. Paulini, M. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pinera, L. Pitts, K. Poukhov, O. Prakoshyn, F. Pronko, A. Ptohos, F. Pueschel, E. Rahaman, A. Ranjan, N. Redondo, I. Rekovic, V. Rimondi, F. Robson, A. Rodrigo, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rossin, R. Ruiz, A. Russ, J. Rusu, V. Sakumoto, W. K. Santi, L. Sato, K. Savoy-Navarro, A. Schlabach, P. Schmidt, E. E. Schmidt, M. A. Schmitt, M. Schwarz, T. Scodellaro, L. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sexton-Kennedy, L. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shiraishi, S. Shochet, M. Sidoti, A. Sisakyan, A. Slaughter, A. J. Slaunwhite, J. Sliwa, K. Smith, J. R. Soha, A. Sorin, V. Squillacioti, P. St. Denis, R. Stentz, D. Strologas, J. Strycker, G. L. Suh, J. S. Sukhanov, A. Suslov, I. Takashima, R. Tanaka, R. Tecchio, M. Teng, P. K. Terashi, K. Thom, J. Thompson, A. S. Thompson, G. A. Ttito-Guzman, P. Tokar, S. Tollefson, K. Torre, S. Torretta, D. Totaro, P. Tourneur, S. Trovato, M. Tsai, S. -Y. Vallecorsa, S. van Remortel, N. Varganov, A. Vataga, E. Vazquez, F. Velev, G. Vellidis, C. Veszpremi, V. Vidal, M. Vidal, R. Vila, I. Vilar, R. Vine, T. Vogel, M. Volpi, G. Wagner, R. G. Wagner, R. L. Wakisaka, T. Wang, S. M. Whitehouse, B. Wicklund, E. Wilbur, S. Wittich, P. Wolbers, S. Wolfe, C. Wright, T. Wu, X. Yamamoto, K. Yang, U. K. Yang, Y. C. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zhang, X. Zucchelli, S. TI Comments and Reply on: "Study of multi-muon events produced in p (p)over-bar interactions at root s=1.96 TeV"; T. Aaltonen et al. (The CDF Collaboration) SO EUROPEAN PHYSICAL JOURNAL C LA English DT Editorial Material AB The European Physical Journal C-Particles and Fields-publishes scientific manuscripts of relevance to the scientific community following careful and strict peer reviewing and, whenever appropriate and necessary, through discussion with the authors, so as to optimise scientific content and style of presentation prior to publication. In some cases significant disagreement between authors and referees (and/or editors) of the journal cannot be resolved despite all efforts and best of intentions. While the journal-not with standing any appeals-retains the right to reject such manuscripts, the editors of this journal may decide, in cases deemed of exceptional interest and potential significance for the field, to accept the manuscript for publication, to amend it by "comments" of the editor(s) in charge and, if appropriate, by a "reply" of the authors of the commented manuscript. The present comment is on "Study of multi-muon events produced in p (p) over bar interactions at root s = 1.96 TeV" by T. Aaltonen et al. (the CDF Collaboration, Eur. Phys. J. C, 2010, doi: 10.1140/epjc/s10052-010-1336-0). C1 [Bethke, Siegfried] MPI Physik, Fohringer Ring 6, D-80805 Munich, Germany. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Tsai, S. -Y.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Bartsch, V.; Beecher, D.; Bizjak, I.; Byrum, K. L.; Nurse, E.; Vine, T.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, Athens 15771, Greece. [Dittmann, J. R.; Frank, M. J.; Hewamanage, S.; Krumnack, N.] Baylor Univ, Waco, TX 76798 USA. [Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.] Ist Nazl Fis Nucleare Bologna, I-40127 Bologna, Italy. [Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, Ist Nazl Fis Nucleare Bologna, I-40127 Bologna, Italy. [Blocker, C.; Clark, D.; Kirsch, L.; Miladinovic, N.] Brandeis Univ, Waltham, MA 02254 USA. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Cuenca Almenar, C.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Lister, A.; Pellett, D. E.; Schwarz, T.; Smith, J. R.; Soha, A.] Univ Calif, Davis, CA 95616 USA. [Garberson, F.; Hill, C. S.; Incandela, J.; Krutelyov, V.; Rossin, R.] Univ Calif, Santa Barbara, CA 93106 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.] Inst Fis Cantabria, CSIC Univ Cantabria, Santander 39005, Spain. [Chung, K.; Galyardt, J.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Adelman, J.; Brubaker, E.; Fedorko, W. T.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.; Wilbur, S.; Wolfe, C.; Yang, U. K.; Yorita, K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Lovas, L.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prakoshyn, F.; Semenov, A.; Sisakyan, A.; Suslov, I.] Joint Inst Nucl Res, Dubna 141980, Russia. [Benjamin, D.; Bocci, A.; Cabrera, S.; Deng, J.; Goshaw, A. T.; Hidas, D.; Ko, B. R.; Kruse, M.; Necula, V.; Oh, S. H.; Phillips, T. J.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Ashmanskas, W.; Badgett, W.; Burke, S.; Burkett, K.; Canelli, F.; Casarsa, M.; Chlachidze, G.; Convery, M. E.; Dagenhart, D.; Datta, M.; Eusebi, R.; Freeman, J. C.; Genser, K.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Harris, R. M.; Hocker, A.; Jindariani, S.; Kilminster, B.; Lindgren, M.; Litvintsev, D. O.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Moore, R.; Mukherjee, A.; Nachtman, J.; Palencia, E.; Papadimitriou, V.; Pronko, A.; Ptohos, F.; Roser, R.; Rusu, V.; Sato, K.; Schlabach, P.; Schmidt, E. E.; Sexton-Kennedy, L.; Slaughter, A. J.; Thom, J.; Torretta, D.; Velev, G.; Vidal, R.; Wagner, R. L.; Wicklund, E.; Wittich, P.; Wolbers, S.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Kar, D.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Mitselmakher, G.; Oksuzian, I.; Pinera, L.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Torre, S.] Laboratori Nazionali Frascati, Ist Nazl Fis Nucleare, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Vallecorsa, S.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Davies, T.; Martin, V.; Robson, A.; St. Denis, R.; Thompson, A. S.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; Gorelov, I.; Grinstein, S.; Guimaraes da Costa, J.; Mills, C.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; van Remortel, N.] Univ Helsinki & Helsinki Inst Phys, Div High Energy Phys, Dept Phys, 00014 Helsinki, Finland. [Bridgeman, A.; Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Marino, C. P.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.; Zhang, X.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.; Mumford, R.] Johns Hopkins Univ, Baltimore, MD 21218 USA. Seoul Natl Univ, Seoul 151742, South Korea. Sungkyunkwan Univ, Suwon 440746, South Korea. Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Centro Investigaciones Energet Medioambient Tecno, Madrid 28040, Spain. [Goncharov, M.; Hahn, K.; Knuteson, B.; Makhoul, K.] MIT, Cambridge, MA 02139 USA. [Amidei, D.; Cully, J. C.; Gerdes, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Huston, J.; Miller, R.; Sorin, V.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Rekovic, V.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] NW Univ, Evanston, IL 60208 USA. [Efron, J.; Hughes, R. E.; Lannon, K.; Parks, B.; Slaunwhite, J.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.; Takashima, R.; Tanaka, R.] Okayama Univ, Okayama 7008530, Japan. [Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Brigliadori, L.; Compostella, G.; Donini, J.; Dorigo, T.] Sezione Padova Trento, Ist Nazl Fis Nucleare, I-35131 Padua, Italy. [Amerio, S.; Bisello, D.; Busetto, G.; Cortiana, G.; Gresele, A.; Lazzizzera, I.; Loreti, M.; Lucchesi, D.; Pagan Griso, S.] Univ Padua, Ist Nazl Fis Nucleare, I-35131 Padua, Italy. [Ciobanu, C. I.; di Giovanni, G. P.; Savoy-Navarro, A.; Tourneur, S.] Univ Pierre & Marie Curie IN2P3 CNRS, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Carosi, R.; Chiarelli, G.; Giannetti, P.; Lami, S.; Leone, S.; Piacentino, G.; Sforza, F.; Sidoti, A.; Trovato, M.] Ist Nazl Fis Nucleare Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Donati, S.; Volpi, G.] Univ Pisa, Ist Nazl Fis Nucleare Pisa, I-56127 Pisa, Italy. [Catastini, P.; Cavaliere, V.; Ciocci, M. A.; Latino, G.; Squillacioti, P.] Ist Nazl Fis Nucleare Pisa, Univ Siena, I-56127 Pisa, Italy. [Azzurri, P.; Vataga, E.] Ist Nazl Fis Nucleare Pisa, Scuola Normale Superiore, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Hartz, M.; Rahaman, A.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Bolla, G.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Margaroli, F.; Merkel, P.; Ranjan, N.; Sedov, A.; Veszpremi, V.] Purdue Univ, W Lafayette, IN 47907 USA. [Boisvert, V.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Gimmell, J. L.; Han, B. -Y.; Han, J. Y.; Sakumoto, W. K.; Yu, G. B.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.; Gallinaro, M.; Goulianos, K.; Hatakeyama, K.; Lungu, G.; Mesropian, C.; Terashi, K.] Rockefeller Univ, New York, NY 10021 USA. [Penzo, A.; Rossi, M.; Zanetti, A.] Ist Nazl Fis Nucleare Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Di Ruzza, B.; Giordani, M.; Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Kusakabe, Y.] Waseda Univ, Tokyo 169, Japan. [Kulkarni, N. P.; Shalhout, S. Z.] Wayne State Univ, Detroit, MI 48201 USA. RP Bethke, S (reprint author), Comenius Univ, Bratislava 84248, Slovakia. EM bethke@mppmu.mpg.de; ptohos@fnal.gov RI Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Lazzizzera, Ignazio/E-9678-2015; St.Denis, Richard/C-8997-2012; Amerio, Silvia/J-4605-2012; Ivanov, Andrew/A-7982-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015 OI Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Lazzizzera, Ignazio/0000-0001-5092-7531; Ivanov, Andrew/0000-0002-9270-5643; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611 NR 1 TC 0 Z9 0 U1 1 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD JUL PY 2010 VL 68 IS 1-2 BP 119 EP 123 DI 10.1140/epjc/s10052-010-1337-z PG 5 WC Physics, Particles & Fields SC Physics GA 624TF UT WOS:000279843400005 ER PT J AU Feng, C Tannenbaum, JM Kang, BS Alvin, MA AF Feng, C. Tannenbaum, J. M. Kang, B. S. Alvin, M. A. TI A Load-Based Multiple-Partial Unloading Micro-Indentation Technique for Mechanical Property Evaluation SO EXPERIMENTAL MECHANICS LA English DT Article DE Load-depth sensing indentation; Multiple-partial unloading; Micro-indentation; Young's modulus ID ELASTIC-MODULUS AB A load-based multiple-partial unloading micro-indentation technique has been developed for evaluating mechanical properties of materials. Comparing to the current prevailing nano/micro-indentation methods, which require precise measurements of the indentation depth and load, the proposed technique only measures indentation load and the overall indentation displacement (i.e. including displacement of the loading apparatus). Coupled with a multiple-partial unloading procedure during the indentation process, this technique results in a load-depth sensing indentation system capable of determining Young's modulus of metallic alloys with flat, tubular, or curved architectures. Test results show consistent and correct elastic modulus values when performing indentation tests on standard alloys such as steel, aluminum, bronze, and single crystal superalloys. The proposed micro-indentation technique has led to the development of a portable load-depth sensing indentation system capable of on-site, in-situ material property measurement. C1 [Feng, C.; Tannenbaum, J. M.; Kang, B. S.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Alvin, M. A.] Natl Energy Technol Lab, Pittsburgh, PA USA. RP Kang, BS (reprint author), W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. EM bruce.kang@mail.wvu.edu FU DOE/NETL UCR [DE-FG26-05NT42526]; Office of Fossil Energy; Advanced Research Materials (ARM); U.S. Department of Energy [DE-AC05-00OR22725]; National Energy Technology Laboratory [DE-C26-04NT41817.606.01.01] FX This research was conducted for the National Energy Technology Laboratory under Contract DE-C26-04NT41817.606.01.01. This research is also partially supported by DOE/NETL UCR Program under contract DE-FG26-05NT42526, and the Office of Fossil Energy, Advanced Research Materials (ARM) Program, U.S. Department of Energy, under contract DE-AC05-00OR22725. NR 19 TC 3 Z9 3 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD JUL PY 2010 VL 50 IS 6 BP 737 EP 743 DI 10.1007/s11340-009-9271-4 PG 7 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 612LS UT WOS:000278900500007 ER PT J AU Murphy, MJ Adrian, RJ AF Murphy, Michael J. Adrian, Ronald J. TI PIV space-time resolution of flow behind blast waves SO EXPERIMENTS IN FLUIDS LA English DT Article ID LASER; BREAKDOWN; ARGON AB An ultra-high speed, time-resolved particle image velocimetry (PIV) system is developed to measure velocity fields created by explosive detonators. When initiated into a gas, the detonators generate blast waves that propagate outwards from the origin of initiation at supersonic speeds. The PIV system consists of a custom eight-pulse Nd:YAG laser system and an ultra-high speed camera system comprising four dual-frame CCD cameras optically combined to share a single optic axis. The system is capable of sampling the flow field four times at up to 333 MHz or eight times at up to 8 MHz. System development is discussed, and preliminary application to the complex flow behind the blast wave from an exploding bridge wire detonator is demonstrated. C1 [Murphy, Michael J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Adrian, Ronald J.] Arizona State Univ, Lab Energet Flow & Turbulence, Dept Mech & Aerosp Engn, Tempe, AZ 85287 USA. RP Murphy, MJ (reprint author), Los Alamos Natl Lab, W-6 Detonator Technol,MS P950, Los Alamos, NM 87545 USA. EM mjmurphy@lanl.gov FU U.S. Department of Energy [DE-AC52-06NA25396] FX Funding was provided by the Joint DOD/DOE Munitions Program. Los Alamos National Lab is operated by Los Alamos National Security, LLC, under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The authors wish to thank Jon Baltzer for his technical assistance during data analysis. NR 24 TC 9 Z9 9 U1 2 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 J9 EXP FLUIDS JI Exp. Fluids PD JUL PY 2010 VL 49 IS 1 SI SI BP 193 EP 202 DI 10.1007/s00348-010-0843-y PG 10 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 612SQ UT WOS:000278923400016 ER PT J AU Deli, A Koutsioulis, D Fadouloglou, VE Spiliotopoulou, P Balomenou, S Arnaouteli, S Tzanodaskalaki, M Mavromatis, K Kokkinidis, M Bouriotis, V AF Deli, Alexandra Koutsioulis, Dimitrios Fadouloglou, Vasiliki E. Spiliotopoulou, Panagiota Balomenou, Stavroula Arnaouteli, Sofia Tzanodaskalaki, Maria Mavromatis, Konstantinos Kokkinidis, Michalis Bouriotis, Vassilis TI LmbE proteins from Bacillus cereus are de-N-acetylases with broad substrate specificity and are highly similar to proteins in Bacillus anthracis SO FEBS JOURNAL LA English DT Article DE Bacillus anthracis; de-N-acetylase; glucosamine; LmbE; mutational analysis ID CRYSTAL-STRUCTURE; AUTOMATED DOCKING; GLYCOSYLPHOSPHATIDYLINOSITOL BIOSYNTHESIS; DEACETYLASE MSHB; GENOME SEQUENCE; PIG-L; PEPTIDOGLYCAN; CHITIN; ACETYLGLUCOSAMINE; GLUCOSAMINE AB The genomes of Bacillus cereus and its closest relative Bacillus anthracis each contain two LmbE protein family homologs: BC1534 (BA1557) and BC3461 (BA3524). Only a few members of this family have been biochemically characterized including N-acetylglucosaminylphosphatidyl inositol (GlcNAc-PI), 1-d-myo-inosityl-2-acetamido-2-deoxy-alpha-d-glucopyranoside (GlcNAc-Ins), N,N'-diacetylchitobiose (GlcNAc(2)) and lipoglycopeptide antibiotic de-N-acetylases. All these enzymes share a common feature in that they de-N-acetylate the N-acetyl-d-glucosamine (GlcNAc) moiety of their substrates. The bc1534 gene has previously been cloned and expressed in Escherichia coli. The recombinant enzyme was purified and its 3D structure determined. In this study, the bc3461 gene from B. cereus ATCC14579 was cloned and expressed in E. coli. The recombinant enzymes BC1534 (EC 3.5.1.-) and BC3461 were biochemically characterized. The enzymes have different molecular masses, pH and temperature optima and broad substrate specificity, de-N-acetylating GlcNAc and N-acetylchito-oligomers (GlcNAc(2), GlcNAc(3) and GlcNAc(4)), as well as GlcNAc-1P, N-acetyl-d-glucosamine-1 phosphate; GlcNAc-6P, N-acetyl-d-glucosamine-6 phosphate; GalNAc, N-acetyl-d-galactosamine; ManNAc, N-acetyl-d-mannosamine; UDP-GlcNAc, uridine 5'-diphosphate N-acetyl-d-glucosamine. However, the enzymes were not active on radiolabeled glycol chitin, peptidoglycan from B. cereus, N-acetyl-d-glucosaminyl-(beta-1,4)-N-acetylmuramyl-l-alanyl-d-isoglutamine (GMDP) or N-acetyl-d-GlcN-N alpha 1-6-d-myo-inositol-1-HPO(4)-octadecyl (GlcNAc-I-P-C(18)). Kinetic analysis of the activity of BC1534 and BC3461 on GlcNAc and GlcNAc(2) revealed that GlcNAc(2) is the favored substrate for both native enzymes. Based on the recently determined crystal structure of BC1534, a mutational analysis identified functional key residues, highlighting their importance for the catalytic mechanism and the substrate specificity of the enzyme. The catalytic efficiencies of BC1534 variants were significantly decreased compared to the native enzyme. An alignment-based tree places both de-N-acetylases in functional categories that are different from those of other LmbE proteins. C1 [Deli, Alexandra; Spiliotopoulou, Panagiota; Balomenou, Stavroula; Arnaouteli, Sofia; Kokkinidis, Michalis; Bouriotis, Vassilis] Univ Crete, Dept Biol, Enzyme Biotechnol Grp, Iraklion 71409, Crete, Greece. [Koutsioulis, Dimitrios; Fadouloglou, Vasiliki E.; Tzanodaskalaki, Maria; Kokkinidis, Michalis; Bouriotis, Vassilis] Inst Mol Biol & Biotechnol, Iraklion, Crete, Greece. [Mavromatis, Konstantinos] Joint Genome Inst, Dept Energy, Genome Biol Program, Walnut Creek, CA USA. RP Bouriotis, V (reprint author), Univ Crete, Dept Biol, Enzyme Biotechnol Grp, POB 2208, Iraklion 71409, Crete, Greece. EM bouriotis@imbb.forth.gr FU General Secretariat for Research and Technology of Greece [PENED 2003 03EDelta737] FX We thank Michael D. Urbaniak (Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK) for testing BC1534 enzyme on GlcNAc-I-P-C18 and Georges Feller (Laboratory of Biochemistry, Center for Protein Engineering, University of Liege, Liege, Belgium) for the N-terminal analysis of selected protein samples. This work was supported by research grant PENED 2003 03 Epsilon Delta 737 from the General Secretariat for Research and Technology of Greece. NR 47 TC 13 Z9 13 U1 1 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1742-464X J9 FEBS J JI FEBS J. PD JUL PY 2010 VL 277 IS 13 BP 2740 EP 2753 DI 10.1111/j.1742-4658.2010.07691.x PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 609HJ UT WOS:000278646400002 PM 20491912 ER PT J AU Davis, WM Patel, RI Boeglin, WU Roquemore, AL Maqueda, RJ Zweben, SJ AF Davis, W. M. Patel, R. I. Boeglin, W. U. Roquemore, A. L. Maqueda, R. J. Zweben, S. J. TI Advances in fast 2D camera data handling and analysis on NSTXd SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research CY MAY 15-JUN 19, 2009 CL Aix-en-Provence, FRANCE SP IAEA, French Commissariat Energie Atom, Inst Res Magnet Fusion DE NSTX; Fast cameras; MDSplus ID SPHERICAL TORUS EXPERIMENT AB The use of fast 2D cameras on NSTX continues to grow. There are 6 cameras with the capability of taking up to 1-2 gigabytes (CBs) of data apiece during each plasma shot on the National Spherical Torus Experiment (NSTX). Efficient storage and retrieval of this data remains a challenge. Performance comparisons are presented for reading data stored in MDSplus, using both compressed data and segmented records, and direct access I/O with different read sizes. Encouragingly, fast 2D camera data provides considerable insight into plasma complexities, such as small-scale turbulence and particle transport. The last part of this paper is an example of more recent uses: dual cameras looking at the same region of the plasma from different angles, which can provide trajectories of incandescent particles in 3D. A laboratory simulation of the 3D trajectories is presented, as well as corresponding data from NSTX plasma where glowing dust particles can be followed. (C) 2010 Elsevier B.V. All rights reserved. C1 [Davis, W. M.; Roquemore, A. L.; Zweben, S. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Patel, R. I.; Boeglin, W. U.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Maqueda, R. J.] Nova Photon, Princeton, NJ 08543 USA. RP Davis, WM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bdavis@pppl.gov OI Davis, William/0000-0003-0666-7247 NR 12 TC 3 Z9 3 U1 0 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUL PY 2010 VL 85 IS 3-4 BP 325 EP 327 DI 10.1016/gusengdes.2010.02.005 PG 3 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 642FP UT WOS:000281190000011 ER PT J AU Walker, ML Ferron, JR Humphreys, DA Hyatt, AW Johnson, RD Leuer, JA Penaflor, BG Piglowski, DA Sammuli, BS Welander, AS Bongard, MW Gates, D Hahn, SH McArdle, GJ Squitieri, AA Xiao, B AF Walker, M. L. Ferron, J. R. Humphreys, D. A. Hyatt, A. W. Johnson, R. D. Leuer, J. A. Penaflor, B. G. Piglowski, D. A. Sammuli, B. S. Welander, A. S. Bongard, M. W. Gates, D. Hahn, S. H. McArdle, G. J. Squitieri, A. A. Xiao, B. TI Implications for ITER CODAC from DIII-D experience SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research CY MAY 15-JUN 19, 2009 CL Aix-en-Provence, FRANCE SP IAEA, French Commissariat Energie Atom, Inst Res Magnet Fusion DE Plasma control; Fusion engineering; DIII-D tokamak AB The DIII-D digital plasma control system (D3PCS) has been in use since 1993 controlling DIII-D plasmas. Control research and D3PCS development at DIII-D has revealed aspects of advanced tokamak control which can help inform the ITER design. The D3PCS has also been adapted for use at several fusion devices worldwide, which has allowed the DIII-D team to obtain a significant understanding of common requirements for plasma control on multiple fusion devices, along with substantial experience in the alternative computing, data acquisition, and networking technologies presently available. We describe some of what has been learned and highlight the relevance of these lessons for ITER Control, Data Access and Communication (CODAC). Several capabilities of the D3PCS are described in the context of ITER requirements. This description touches on multiple subsystems described in the CODAC conceptual design. We also discuss features of D3PCS architecture that are appropriate for today's experimental devices but may not be appropriate for ITER, which requires a much more comprehensive system for ensuring device safety. Even for these applications, the knowledge gained in implementing methods to aid in ensuring device safety on present devices provides useful guidance for an eventual ITER solution. (C) 2010 Elsevier B.V.. All rights reserved. C1 [Walker, M. L.; Ferron, J. R.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; Leuer, J. A.; Penaflor, B. G.; Piglowski, D. A.; Sammuli, B. S.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA. [Bongard, M. W.; Squitieri, A. A.] Univ Wisconsin, Madison, WI USA. [Gates, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Hahn, S. H.] Natl Fus Res Inst, Taejon, South Korea. [McArdle, G. J.] Culham Sci Ctr, Abingdon, Oxon, England. [Xiao, B.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Peoples R China. RP Walker, ML (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM walker@fusion.gat.com OI Walker, Michael/0000-0002-4341-994X NR 9 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUL PY 2010 VL 85 IS 3-4 BP 433 EP 437 DI 10.1016/j.fusengdes.2010.01.013 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 642FP UT WOS:000281190000035 ER PT J AU Mastrovito, D Gates, D Gerhard, S Lawson, J Ludescher-Furth, C Marsala, R AF Mastrovito, D. Gates, D. Gerhard, S. Lawson, J. Ludescher-Furth, C. Marsala, R. TI Plasma control system upgrade and increased plasma stability in NSTX SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research CY MAY 15-JUN 19, 2009 CL Aix-en-Provence, FRANCE SP IAEA, French Commissariat Energie Atom, Inst Res Magnet Fusion DE Real-time control; NSTX; PCS ID SPHERICAL TORUS EXPERIMENT; PHYSICS AB Plasma control on the National Spherical Torus Experiment (NSTX) was previously accomplished using eight 333 MHz G4 processors built by Sky computers. Several planned improvements and additional control algorithms required significant upgrades to our real-time control computers and real-time data acquisition infrastructure. Several in-house modules have been designed and implemented including: the digital time stamp module (DITS) and for digital/analog front panel data port (FPDP) output, the FPDP output module digital/analog (FOMD/A). Standard Linux based Intel computers perform the real-time control tasks and InfiniBand as been employed for communication between a user-accessible "host" server and the real-time computer. In addition to several independent real-time processes the General Atomics developed PCS (Bell (2006) [1]) system infrastructure continues to be used on NSTX. While maintaining previous functionality, improvements in the control system software include: an RWM feedback algorithm, beta feedback NBI control, more comprehensive error logging and trapping, more user-friendly interface, more complete archiving and restoring functionality, and better status reporting and diagnostic tools. Once completed, we succeeded in increasing overall plasma stability and decreasing control system latency by several times. (C) 2010 Elsevier B.V. All rights reserved. C1 [Mastrovito, D.; Gates, D.; Gerhard, S.; Lawson, J.; Ludescher-Furth, C.; Marsala, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Mastrovito, D (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dmastrovito@pppl.gov NR 9 TC 7 Z9 7 U1 0 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUL PY 2010 VL 85 IS 3-4 BP 447 EP 450 DI 10.1016/j.fusengdes.2010.01.005 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 642FP UT WOS:000281190000038 ER PT J AU Piglowski, DA Humphreys, DA Walker, ML Ferron, JR Penaflor, BG Johnson, RD Sammuli, B Xiao, B Hahn, SH Mastrovito, DM AF Piglowski, D. A. Humphreys, D. A. Walker, M. L. Ferron, J. R. Penaflor, B. G. Johnson, R. D. Sammuli, B. Xiao, B. Hahn, S. H. Mastrovito, D. M. TI Accumulated experiences from implementations of the DIII-D plasma control system worldwide SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research CY MAY 15-JUN 19, 2009 CL Aix-en-Provence, FRANCE SP IAEA, French Commissariat Energie Atom, Inst Res Magnet Fusion DE Plasma control AB The current DIII-D plasma control system (PCS) has evolved through several iterations into a robust platform that has been adopted at several fusion devices around the world. Each installation, as well as each new upgrade at DIII-D, has presented new challenges. Each of these challenges has provided an additional opportunity to expand our understanding of the requirements, alternative operational methods, and differing real-time implementations for Tokamak plasma control. This paper presents a brief historical overview of PCS hardware evolutions and describes some of the design, structure, and techniques that have allowed the PCS to be a productive component at many fusion facilities. It will also discuss some of the major differences between the individual PCS installations and bring to light some of the major challenges that were overcome during integration. The lessons learned from these experiences provide general solutions and can inform control system designs for other next-generation devices. We also describe some limitations of the PCS relative to identified present and future needs at DIII-D and other devices, and discuss planned upgrades to the PCS to address these needs. (C) 2010 Elsevier B.V. All rights reserved. C1 [Piglowski, D. A.; Humphreys, D. A.; Walker, M. L.; Ferron, J. R.; Penaflor, B. G.; Johnson, R. D.; Sammuli, B.] Gen Atom Co, San Diego, CA 92186 USA. [Xiao, B.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Peoples R China. [Hahn, S. H.] Natl Fus Res Inst, Taejon, South Korea. [Mastrovito, D. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Piglowski, DA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM piglowski@fusion.gat.com OI Walker, Michael/0000-0002-4341-994X NR 11 TC 2 Z9 2 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUL PY 2010 VL 85 IS 3-4 BP 451 EP 455 DI 10.1016/j.fusengdes.2010.04.040 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 642FP UT WOS:000281190000039 ER PT J AU Schissel, DP Abla, G Fredian, T Greenwald, M Penaflor, BG Stillerman, J Walker, ML Ciarlette, DJ AF Schissel, D. P. Abla, G. Fredian, T. Greenwald, M. Penaflor, B. G. Stillerman, J. Walker, M. L. Ciarlette, D. J. TI An investigation of secure remote instrument control SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th IAEA Technical Meeting on Control, Data Acquisition and Remote Participation for Fusion Research CY MAY 15-JUN 19, 2009 CL Aix-en-Provence, FRANCE SP IAEA, French Commissariat Energie Atom, Inst Res Magnet Fusion DE Control; Safety; Security; Collaboration AB This paper examines the computer science issues associated with secure remote instrumentation control for magnetic fusion experiments. Computer science research into enhancing the ability to scientifically participate in a fusion experiment remotely has been growing in size in an attempt to better address the needs of fusion scientists worldwide. The natural progression of this research is to examine how to move from remote scientific participation to remote hardware control. The vision is to define a gatekeeper software system that will be the only channel of interaction for incoming requests to the secured area of the experimental site. The role of the gatekeeper is to validate the identification and access privilege of the requestor and to insure the general validity of the proposed request. The vision for the gatekeeper is that it be a modular system that is simple in design and defined in a way that makes its implementation and operation transparent and obvious. The architecture of the module interface is flexible enough that it can easily allow the future addition of new modules. At the same time, it should be transparent to end-users and allow a high volume of activity so as to not provide a work bottleneck. The results of the gatekeeper design and initial implementation are presented as well as a discussion on the implication of this research on the operation of fusion experimental machines such as ITER (C) 2010 Elsevier B.V. All rights reserved. C1 [Schissel, D. P.; Abla, G.; Penaflor, B. G.; Walker, M. L.] Gen Atom Co, San Diego, CA 92186 USA. [Fredian, T.; Greenwald, M.; Stillerman, J.] MIT, Cambridge, MA 02139 USA. [Ciarlette, D. J.] US ITER Project Off, Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Schissel, DP (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM schissel@fusion.gat.com OI Walker, Michael/0000-0002-4341-994X; Stillerman, Joshua/0000-0003-0901-0806; Greenwald, Martin/0000-0002-4438-729X NR 16 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 J9 FUSION ENG DES JI Fusion Eng. Des. PD JUL PY 2010 VL 85 IS 3-4 BP 608 EP 613 DI 10.1016/j.fusengdes.2010.03.019 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 642FP UT WOS:000281190000073 ER PT J AU Toi, K Isobe, M Osakabe, M Watanabe, F Ogawa, K Yamamoto, S Nakajima, N Spong, DA Ida, K Ido, T Ito, T Morita, S Nagaoka, K Narihara, K Nishiura, M Ohdachi, S Sakakibara, S Shimizu, A Tanaka, K Todo, Y Tokuzawa, T Weller, A AF Toi, K. Isobe, M. Osakabe, M. Watanabe, F. Ogawa, K. Yamamoto, S. Nakajima, N. Spong, D. A. Ida, K. Ido, T. Ito, T. Morita, S. Nagaoka, K. Narihara, K. Nishiura, M. Ohdachi, S. Sakakibara, S. Shimizu, A. Tanaka, K. Todo, Y. Tokuzawa, T. Weller, A. CA LHD Expt Grp TI MHD MODES DESTABILIZED BY ENERGETIC IONS ON LHD SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Alfven eigenmodes; energetic alpha particles; stellarators / helicals ID LARGE-HELICAL-DEVICE; INDUCED ALFVEN EIGENMODES; N=0 CHIRPING MODE; MAGNETOHYDRODYNAMIC INSTABILITIES; PLASMAS; STELLARATOR; EXPLANATION; TRANSPORT; SPECTRA; SYSTEMS AB Energetic ion driven magnetohydrodynamic instabilities such as Alfven eigenmodes (AEs), energetic particle modes (EPMs), and their impacts on energetic ion confinement are being studied on the Large Helical Device (LHD). The magnetic configuration of this device is three dimensional and has negative magnetic shear over a whole radial region in the low-beta regime. Two types of toroidicity-induced Alfven eigenmodes (TAEs) are typically observed in LHD plasmas that are heated by tangential neutral beam injection: One is localized in the plasma core region near a central TAE gap and the other is a global TAE having a radially extended eigenfunction. Core-localized TAEs with even and odd radial mode parities are often observed. The global TAE is usually observed in medium- to high-beta plasmas where broad regions with low magnetic shear are present. Helicity-induced Alfven eigenmodes (HAEs), which exist in gaps unique to three-dimensional plasmas that have both toroidal and poloidal mode couplings, were detected for the first time. Recently, reversed magnetic shear Alfven eigenmodes (RSAEs) having characteristic frequency sweeping were discovered in reversed magnetic shear (RS) plasmas produced by intense counter-neutral beam current drive. In the RS plasma, the geodesic acoustic mode (GAM) excited by energetic ions, which is a global-type mode different from localized GAM excited by drift waves, was also detected for the first time in a helical plasma. Nonlinear couplings between RSAE and GAM modes and also between two TAEs were observed. Bursts of TAEs and EPMs often enhance radial transport and loss of energetic ions at low toroidal magnetic field (<0.75 T). C1 [Toi, K.; Isobe, M.; Osakabe, M.; Nakajima, N.; Ida, K.; Ido, T.; Morita, S.; Nagaoka, K.; Narihara, K.; Nishiura, M.; Ohdachi, S.; Sakakibara, S.; Shimizu, A.; Tanaka, K.; Todo, Y.; Tokuzawa, T.; LHD Expt Grp] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Watanabe, F.; Ogawa, K.; Ito, T.] Nagoya Univ, Dept Energy Engn & Sci, Nagoya, Aichi 4648601, Japan. [Yamamoto, S.] Kyoto Univ, Inst Adv Energy, Uji, Japan. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Weller, A.] Max Planck Inst Plasma Phys, Greifswald, Germany. RP Toi, K (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM toi@lhd.nifs.ac.jp RI Spong, Donald/C-6887-2012; OGAWA, Kunihiro/E-7516-2013; Todo, Yasushi/E-7525-2013; Sakakibara, Satoru/E-7542-2013; Ida, Katsumi/E-4731-2016 OI Spong, Donald/0000-0003-2370-1873; OGAWA, Kunihiro/0000-0003-4555-1837; Todo, Yasushi/0000-0001-9323-8285; Sakakibara, Satoru/0000-0002-3306-0531; Ida, Katsumi/0000-0002-0585-4561 FU LHD project [NIFS08ULHH508]; MEXT [16082209]; JSPS [16656287, 21360457]; JSPS-CAS FX The authors thank the LHD technical teams for their support. This work is partly supported by LHD project budget (NIFS08ULHH508) and the Grant-in-Aid for Scientific Research from MEXT, 16082209, and from JSPS, 16656287 and 21360457. This research is also supported by the JSPS-CAS Core University Program in the field of Plasma and Nuclear Fusion. NR 33 TC 3 Z9 3 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL-AUG PY 2010 VL 58 IS 1 SI SI BP 186 EP 193 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 643VC UT WOS:000281326500020 ER PT J AU Todo, Y Murakami, S Yamamoto, T Fukuyama, A Spong, DA Yamamoto, S Osakabe, M Nakajima, N AF Todo, Y. Murakami, S. Yamamoto, T. Fukuyama, A. Spong, D. A. Yamamoto, S. Osakabe, M. Nakajima, N. TI NUMERICAL ANALYSES OF ENERGETIC PARTICLES IN LHD SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE LHD; NBI heating; ICRF heating; Alfven eigenmode ID NEOCLASSICAL TRANSPORT OPTIMIZATION; ALFVEN EIGENMODES; SIMULATION; CONFINEMENT; EQUILIBRIA; PLASMAS; ICRF AB The confinement of energetic ions generated by neutral beam injection (NBI) and ion cyclotron resonance frequency heating is studied using GNET simulation code, in which the drift kinetic equation is solved in five-dimensional phase-space. The steady-state distributions of the energetic ions are obtained, and characteristics of the energetic-ion distribution depending on the plasma heating method are shown. The magnetic configuration effect on the energetic-ion confinement is also investigated, and it is found that the energetic-ion confinement is improved by a strong inward shift of the magnetic axis position in the major radius direction. The interaction between energetic particles and Alfven eigenmodes are investigated using the MEGA code and the AE3D code. A reduced version of the MEGA code has been developed to simulate the Alfven eigenmode (AE) evolution in the Large Helical Device (LHD) plasma with NBI and collisions taken into account. The spatial profile and frequency of the AE modes in the LHD plasma are analyzed with the AE3D code. The evolution of energetic particles and AE mode amplitude and phase are followed in a self-consistent way, while the AE spatial profiles are assumed to be constant. It is demonstrated that the AE bursts can be simulated with the new code. C1 [Todo, Y.; Osakabe, M.; Nakajima, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Murakami, S.; Yamamoto, T.; Fukuyama, A.] Kyoto Univ, Dept Nucl Engn, Kyoto 6068501, Japan. [Spong, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Yamamoto, S.] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. RP Todo, Y (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshicho, Toki, Gifu 5095292, Japan. EM todo@nifs.ac.jp RI Spong, Donald/C-6887-2012; Todo, Yasushi/E-7525-2013; Murakami, Sadayoshi/A-2191-2016 OI Spong, Donald/0000-0003-2370-1873; Todo, Yasushi/0000-0001-9323-8285; Murakami, Sadayoshi/0000-0002-2526-7137 FU NIFS [NIFS09KDAL006]; Japan Society for the Promotion of Science [20340165] FX Numerical computations of the AE mode bursts were performed at the Plasma Simulator (HITACHI SR16000) of National Institute for Fusion Science. This work was supported by the NIFS Collaborative Research Program (NIFS09KDAL006) and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (20340165). NR 23 TC 2 Z9 2 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD JUL-AUG PY 2010 VL 58 IS 1 SI SI BP 277 EP 288 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 643VC UT WOS:000281326500029 ER PT J AU Landolin, JM Johnson, DS Trinklein, ND Aldred, SF Medina, C Shulha, H Weng, ZP Myers, RM AF Landolin, Jane M. Johnson, David S. Trinklein, Nathan D. Aldred, Shelly F. Medina, Catherine Shulha, Hennady Weng, Zhiping Myers, Richard M. TI Sequence features that drive human promoter function and tissue specificity SO GENOME RESEARCH LA English DT Article ID TRANSCRIPTION-FACTOR-BINDING; HUMAN GENOME; REGULATORY MOTIFS; DNA MOTIFS; IDENTIFICATION; SITES; SELECTION; EXPRESSION; DISCOVERY; ELEMENTS AB Promoters are important regulatory elements that contain the necessary sequence features for cells to initiate transcription. To functionally characterize a large set of human promoters, we measured the transcriptional activities of 4575 putative promoters across eight cell lines using transient transfection reporter assays. In parallel, we measured gene expression in the same cell lines and observed a significant correlation between promoter activity and endogenous gene expression (r = 0.43). As transient transfection assays directly measure the promoting effect of a defined fragment of DNA sequence, decoupled from epigenetic, chromatin, or long-range regulatory effects, we sought to predict whether a promoter was active using sequence features alone. CG dinucleotide content was highly predictive of ubiquitous promoter activity, necessitating the separation of promoters into two groups: high CG promoters, mostly ubiquitously active, and low CG promoters, mostly cell line-specific. Computational models trained on the binding potential of transcriptional factor (TF) binding motifs could predict promoter activities in both high and low CG groups: average area under the receiver operating characteristic curve (AUC) of the models was 91% and exceeded the AUC of CG content by an average of 23%. Known relationships, for example, between HNF4A and hepatocytes, were recapitulated in the corresponding cell lines, in this case the liver-derived cell line HepG2. Half of the associations between tissue-specific TFs and cell line-specific promoters were new. Our study underscores the importance of collecting functional information from complementary assays and conditions to understand biology in a systematic framework. C1 [Shulha, Hennady; Weng, Zhiping] Univ Massachusetts, Program Bioinformat & Integrat Biol, Dept Biochem & Mol Pharmacol, Worcester, MA 01655 USA. [Landolin, Jane M.] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Johnson, David S.; Medina, Catherine; Myers, Richard M.] Stanford Univ, Dept Genet, Stanford, CA 94305 USA. [Trinklein, Nathan D.; Aldred, Shelly F.; Myers, Richard M.] SwitchGear Gen, Menlo Pk, CA 94025 USA. RP Weng, ZP (reprint author), Univ Massachusetts, Program Bioinformat & Integrat Biol, Dept Biochem & Mol Pharmacol, Worcester, MA 01655 USA. EM Zhiping.Weng@umassmed.edu; rmyers@hudsonalpha.org NR 39 TC 43 Z9 43 U1 0 U2 4 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI WOODBURY PA 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2924 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD JUL PY 2010 VL 20 IS 7 BP 890 EP 898 DI 10.1101/gr.100370.109 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 619BX UT WOS:000279404700003 PM 20501695 ER PT J AU Peretyazhko, TS Zachara, JM Kennedy, DW Fredrickson, JK Arey, BW McKinley, JP Wang, CM Dohnalkova, AC Xia, Y AF Peretyazhko, T. S. Zachara, J. M. Kennedy, D. W. Fredrickson, J. K. Arey, B. W. McKinley, J. P. Wang, C. M. Dohnalkova, A. C. Xia, Y. TI Ferrous phosphate surface precipitates resulting from the reduction of intragrain 6-line ferrihydrite by Shewanella oneidensis MR-1 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EXTRACELLULAR ELECTRON-TRANSFER; FE(III) OXIDE REDUCTION; HYDROUS FERRIC-OXIDE; MICROBIAL REDUCTION; HUMIC SUBSTANCES; DISSIMILATORY REDUCTION; MINERALIZATION PATHWAYS; CHEMICAL-REDUCTION; METAL REDUCTION; IRON REDUCTION AB The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L-1 Fe(III)(T)]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 mu m size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center. Published by Elsevier Ltd. C1 [Peretyazhko, T. S.; Zachara, J. M.; Kennedy, D. W.; Fredrickson, J. K.; Arey, B. W.; McKinley, J. P.; Wang, C. M.; Dohnalkova, A. C.; Xia, Y.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Peretyazhko, TS (reprint author), Pacific NW Natl Lab, POB 999,MS K8-96, Richland, WA 99354 USA. EM tetyana.peretyazhko@pnl.gov OI Kennedy, David/0000-0003-0763-501X FU Geosciences division, Office of Basic Energy Science (BES), U.S. Department of Energy (DOE); OBER-ERSD FX We thank Dr. Anthony Addlagatta for help with the microXRD analysis: Paul Gassman and Ravi Kukkadapu for their advice on intragrain ferrihydrite synthesis. This research was supported by Geosciences division, Office of Basic Energy Science (BES), U.S. Department of Energy (DOE). Micro-XRD, SEM and TEM analysis were performed in the Environmental Molecular Sciences Laboratory (EMSL) that is managed and supported by OBER-ERSD. PNNL is operated for the DOE by Battelle. NR 65 TC 8 Z9 8 U1 0 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD JUL 1 PY 2010 VL 74 IS 13 BP 3751 EP 3767 DI 10.1016/j.gca.2010.04.008 PG 17 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 607NH UT WOS:000278510300006 ER PT J AU van Wijk, JW Baldridge, WS van Hunen, J Goes, S Aster, R Coblentz, DD Grand, SP Ni, J AF van Wijk, J. W. Baldridge, W. S. van Hunen, J. Goes, S. Aster, R. Coblentz, D. D. Grand, S. P. Ni, J. TI Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere SO GEOLOGY LA English DT Article ID WESTERN UNITED-STATES; RIO-GRANDE RIFT; BASALTIC VOLCANISM; MANTLE STRUCTURE; THERMAL HISTORY; MODELS; PRESERVATION; CONSTRAINTS; EXTENSION; ARIZONA AB The Colorado Plateau of the southwestern United States is characterized by a bowl-shaped high elevation, late Neogene-Quaternary magmatism at its edge, large gradients in seismic wave velocity across its margins, and relatively low lithospheric seismic wave velocities. We explain these observations by edge-driven convection following rehydration of Colorado Plateau lithosphere. A rapidly emplaced Cenozoic step in lithosphere thickness between the Colorado Plateau and adjacent extended Rio Grande rift and Basin and Range province causes small-scale convection in the asthenosphere. A lithospheric drip below the plateau is removing lithosphere material from the edge that is heated and metasomatized, resulting in magmatism. Edge-driven convection also drives margin uplift, giving the plateau its characteristic bowl shape. The edge-driven convection model shows good consistency with features resolved by seismic tomography. C1 [van Wijk, J. W.] Univ Houston, Dept Earth & Atmospher Sci, Houston, TX 77204 USA. [Baldridge, W. S.; Coblentz, D. D.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [van Hunen, J.] Univ Durham, Dept Earth Sci, Durham DH1 3HP, England. [Goes, S.] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England. [Aster, R.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Aster, R.] New Mexico Inst Min & Technol, Geophys Res Ctr, Socorro, NM 87801 USA. [Grand, S. P.] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA. [Ni, J.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. RP van Wijk, JW (reprint author), Univ Houston, Dept Earth & Atmospher Sci, 312 Sci & Res Bldg 1, Houston, TX 77204 USA. EM jwvanwijk@uh.edu RI Grand, Stephen/B-4238-2011; van Hunen, Jeroen/A-2225-2010 OI van Hunen, Jeroen/0000-0002-3050-6753 FU Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National Laboratory FX We thank the reviewers for their constructive comments. This research was partially supported by the Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National Laboratory. NR 32 TC 61 Z9 61 U1 1 U2 23 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 EI 1943-2682 J9 GEOLOGY JI Geology PD JUL PY 2010 VL 38 IS 7 BP 611 EP 614 DI 10.1130/G31031.1 PG 4 WC Geology SC Geology GA 614WE UT WOS:000279089700009 ER PT J AU Ntarlagiannis, D Doherty, R Williams, KH AF Ntarlagiannis, Dimitrios Doherty, Rory Williams, Kenneth H. TI Spectral induced polarization signatures of abiotic FeS precipitation SO GEOPHYSICS LA English DT Article ID DISORDERED MACKINAWITE; RESISTIVITY; BIOREMEDIATION; SAND AB In recent years, geophysical methods have been shown to be sensitive to microbial-induced mineralization processes. The spectral induced-polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from biomineralization processes. More specifically, the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring and decision-making tool for sustainable remediation of metals in contaminated soils and groundwater. C1 [Ntarlagiannis, Dimitrios] Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. [Doherty, Rory] Queens Univ Belfast, Sch Planning Architecture & Civil Engn, Environm Engn Res Ctr, Belfast, Antrim, North Ireland. [Williams, Kenneth H.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Ntarlagiannis, D (reprint author), Rutgers State Univ, Dept Earth & Environm Sci, Newark, NJ 07102 USA. EM dimntar@andromeda.rutgers.edu; r.doherty@qub.ac.uk; khwilliams@lbl.gov RI Williams, Kenneth/O-5181-2014; Doherty, Rory/I-7025-2015; OI Williams, Kenneth/0000-0002-3568-1155; Doherty, Rory/0000-0001-7583-0592; Ntarlagiannis, Dimitrios/0000-0002-5353-372X FU Office of Biological and Environmental Research, U.S. Department of Energy FX We would like to thank R. Anderson and an anonymous reviewer for valuable comments that helped to improve this manuscript. Funding for K. H. Williams was provided by the Environmental Remediation Science Program, Office of Biological and Environmental Research, U.S. Department of Energy. Andreas Kemna provided the Cole-Cole relaxation modeling algorithm used here. NR 29 TC 10 Z9 12 U1 0 U2 9 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD JUL-AUG PY 2010 VL 75 IS 4 BP F127 EP F133 DI 10.1190/1.3467759 PG 7 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676KN UT WOS:000283910000010 ER PT J AU Johnson, TC Versteeg, RJ Ward, A Day-Lewis, FD Revil, A AF Johnson, Timothy C. Versteeg, Roelof J. Ward, Andy Day-Lewis, Frederick D. Revil, Andre TI Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced-polarization data SO GEOPHYSICS LA English DT Article ID DATA INCORPORATING TOPOGRAPHY AB Electrical geophysical methods have found wide use in the growing discipline of hydrogeophysics for characterizing the electrical properties of the subsurface and for monitoring subsurface processes in terms of the spatiotemporal changes in subsurface conductivity, chargeability, and source currents they govern. Presently, multichannel and multielectrode data collections systems can collect large data sets in relatively short periods of time. Practitioners, however, often are unable to fully utilize these large data sets and the information they contain because of standard desktop-computer processing limitations. These limitations can be addressed by utilizing the storage and processing capabilities of parallel computing environments. We have developed a parallel distributed-memory forward and inverse modeling algorithm for analyzing resistivity and time-domain induced polarization (IP) data. The primary components of the parallel computations include distributed computation of the pole solutions in forward mode, distributed storage and computation of the Jacobian matrix in inverse mode, and parallel execution of the inverse equation solver. We have tested the corresponding parallel code in three efforts: (1) resistivity characterization of the Hanford 300 Area Integrated Field Research Challenge site in Hanford, Washington, U.S.A., (2) resistivity characterization of a volcanic island in the southern Tyrrhenian Sea in Italy, and (3) resistivity and IP monitoring of biostimulation at a Superfund site in Brandywine, Maryland, U.S.A. Inverse analysis of each of these data sets would be limited or impossible in a standard serial computing environment, which underscores the need for parallel high-performance computing to fully utilize the potential of electrical geophysical methods in hydrogeophysical applications. C1 [Johnson, Timothy C.; Versteeg, Roelof J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Ward, Andy] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Day-Lewis, Frederick D.] US Geol Survey, Off Groundwater, Branch Geophys, Storrs, CT USA. [Revil, Andre] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA. [Revil, Andre] Univ Savoie, INSU CNRS LGIT, Le Bourget Du Lac, France. RP Johnson, TC (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM timothy.johnson@inl.gov; roelof.versteeg@inl.gov; andy.ward@pnl.gov; daylewis@usgs.gov; arevil@mines.edu OI Day-Lewis, Frederick/0000-0003-3526-886X FU Office of Biological & Environmental Research (OBER), U. S. Department of Energy (DOE); Environmental Security Technology Certification Program (ESTCP) [ER-0717]; USGS; INSU-CNRS; Laboratoire GeoSciences Reunion in France; Instituto di Metodologie per l'Analisi Ambientale del CNR; Istituto Nazionale di Geofisica e Vulcanologia; Dipartimento per la Protezione Civile in Italy [V3.5]; DOE, Office of Science, under DOE Idaho Operations Office [DE-AC07-051D14517] FX We thank Partha Routh for helpful discussions and advice concerning the serial version of the code presented. We acknowledge and appreciate helpful reviews by Colin Farquharson, Adam Pidlisecky, Rory Henderson, and an anonymous reviewer. This research was supported in part by the Environmental Remediation Sciences Program (ERSP), Office of Biological & Environmental Research (OBER), U. S. Department of Energy (DOE), as part of the Hanford 300 Area Integrated Field Research Challenge Project. Brandywine characterization and monitoring is supported by grant ER-0717 from the Environmental Security Technology Certification Program (ESTCP) and by the USGS Toxic Substances Hydrology Program. Financial support for the work performed at Vulcano Island was provided by INSU-CNRS and the Laboratoire GeoSciences Reunion in France, the Instituto di Metodologie per l'Analisi Ambientale del CNR, the Istituto Nazionale di Geofisica e Vulcanologia, and the Dipartimento per la Protezione Civile in Italy (Project V3.5 Vulcano, 2005-2007). This work is supported by the DOE, Office of Science, under DOE Idaho Operations Office contract DE-AC07-051D14517. NR 28 TC 43 Z9 43 U1 0 U2 9 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD JUL-AUG PY 2010 VL 75 IS 4 BP WA27 EP WA41 DI 10.1190/1.3475513 PG 15 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676KN UT WOS:000283910000038 ER PT J AU Kruschwitz, S Binley, A Lesmes, D Elshenawy, A AF Kruschwitz, Sabine Binley, Andrew Lesmes, David Elshenawy, Ahmed TI Textural controls on low-frequency electrical spectra of porous media SO GEOPHYSICS LA English DT Article ID DOMAIN-INDUCED POLARIZATION; PERMO-TRIASSIC SANDSTONES; COLE-COLE PARAMETERS; PORE-THROAT SIZE; ENVIRONMENTAL APPLICATIONS; HYDRAULIC CONDUCTIVITY; DIELECTRIC DISPERSION; COMPLEX CONDUCTIVITY; ELECTROLYTE SOLUTION; COLLOIDAL PARTICLES AB The results from several laboratory studies of the relationships between electrical polarization and physical properties of porous media have prompted interest in the potential use of low-frequency electrical spectra to qualitatively Of quantitatively map variation in hydrogeologic properties in the field. Compiling several published and unpublished data sets, supported by new measurements, we have examined the low-frequency electrical spectra of a range of natural and artificial porous media to assess the generality of proposed relationships between electrical and physical properties. Our work confirms a significant positive correlation between the magnitude of electrical polarization (quantified as imaginary conductivity at a specific frequency) and the surface-area/pore-volume ratio S(por). Analyzing the parameters of a generalized Cole-Cole resistivity relaxation model fitted to many electrical spectra, we observe two apparent controls on the electrical relaxation. For samples with abundant relatively large pore throats, we observe a distinct increase in the time constant of the model with modal pore-throat size, in accordance with classical electrical relaxation models. However, for media with pore structures dominated by small pore throats, the diffusion-length scales do not appear to be controlled by modal pore-throat size. We conclude that for such media, the microstructure of the network of small pores leads to some connectivity of diffusion paths; thus, these samples exhibit relatively large time constants. There is potential value in addition to limitations when using electrical spectra to estimate physical properties of porous media, and we see the need for more appropriate generalized theories of electrical polarization in hydrogeologic media. C1 [Kruschwitz, Sabine] Fed Inst Mat Res & Testing, Berlin, Germany. [Binley, Andrew; Elshenawy, Ahmed] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England. [Lesmes, David] US DOE, Washington, DC USA. RP Kruschwitz, S (reprint author), Fed Inst Mat Res & Testing, Berlin, Germany. EM s.kruschwitz@gmx.de; a.binley@lancaster.ac.uk; david.lesmes@science.doe.gov; a.elshenawy@lancaster.ac.uk RI Binley, Andrew/C-2487-2013 OI Binley, Andrew/0000-0002-0938-9070 FU Federal Institute for Materials Research and Testing, BAM FX This work would not have been possible without the availability of spectral data, either provided directly or through publications, and we acknowledge the generosity of those who have contributed data to this study. We are particularly grateful to Frank Borner and Katrin Breede for their valuable input. The support of Annett Zimathies and Peter Klobes (Federal Institute for Materials Research and Testing, BAM), who carried out MICP and BET measurements, is greatly acknowledged. We are grateful to Andreas Kemna and Andreas Weller for their reviews of an early version of the manuscript; their insightful comments improved the manuscript significantly. NR 44 TC 39 Z9 39 U1 0 U2 9 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 J9 GEOPHYSICS JI Geophysics PD JUL-AUG PY 2010 VL 75 IS 4 BP WA113 EP WA123 DI 10.1190/1.3479835 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 676KN UT WOS:000283910000046 ER PT J AU Fairley, JP Ingebritsen, SE Podgorney, RK AF Fairley, J. P. Ingebritsen, S. E. Podgorney, R. K. TI Challenges for Numerical Modeling of Enhanced Geothermal Systems SO GROUND WATER LA English DT Article C1 [Fairley, J. P.] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. [Ingebritsen, S. E.] US Geol Survey, Menlo Pk, CA 94025 USA. [Podgorney, R. K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Fairley, JP (reprint author), Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA. EM jfairley@uidaho.edu OI Fairley, Jerry/0000-0002-6486-3003 NR 1 TC 6 Z9 6 U1 1 U2 13 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2010 VL 48 IS 4 BP 482 EP 483 DI 10.1111/j.1745-6584.2010.00716.x PG 2 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 614TL UT WOS:000279082600004 PM 20533951 ER PT J AU Zhou, QL Birkholzer, JT Mehnert, E Lin, YF Zhang, K AF Zhou, Quanlin Birkholzer, Jens T. Mehnert, Edward Lin, Yu-Feng Zhang, Keni TI Modeling Basin- and Plume-Scale Processes of CO2 Storage for Full-Scale Deployment SO GROUND WATER LA English DT Article ID DEEP SALINE AQUIFERS; HYDRAULIC CONDUCTIVITY; FLOW; DISCHARGE; SLEIPNER; PRESSURE; DISPOSAL; AQUITARD; SYSTEMS; ROCKS AB Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO2 storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO2 over 50 years was used. The CO2-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO2 plume consisting of a typical gravity-override subplume in the bottom injection zone of high injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO2 migration as a result of multiple secondary seals, coupled with lateral preferential CO2 viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO2 migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers. C1 [Zhou, Quanlin; Birkholzer, Jens T.; Zhang, Keni] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Mehnert, Edward] Illinois State Geol Survey, Champaign, IL 61820 USA. [Lin, Yu-Feng] Illinois State Water Survey, Champaign, IL 61820 USA. RP Zhou, QL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, MS 90-1116,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM QZhou@lbl.gov RI Zhou, Quanlin/B-2455-2009; Birkholzer, Jens/C-6783-2011; OI Zhou, Quanlin/0000-0001-6780-7536; Birkholzer, Jens/0000-0002-7989-1912; Lin, Yu-Feng/0000-0001-6454-0901 FU Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Hannes Leetaru, Scott Frailey, Robert Finley, David G. Morse, and other colleagues at the Illinois State Geological Survey. Thanks are also due to John McCray and three anonymous reviewers for their constructive suggestions for improving the quality of this article, and to Stefan Finsterle of Lawrence Berkeley National Laboratory for internal review. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory (NETL), of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The project is jointly coordinated by NETL and the U.S. Environmental Protection Agency. NR 63 TC 85 Z9 90 U1 0 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X J9 GROUND WATER JI Ground Water PD JUL-AUG PY 2010 VL 48 IS 4 BP 494 EP 514 DI 10.1111/j.1745-6584.2009.00657.x PG 21 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 614TL UT WOS:000279082600008 PM 20015343 ER PT J AU Schwahn, SO AF Schwahn, Scott O. TI MODERATED Cf-252 SPECTRUM PRESENTED BY CUMMINGS SO HEALTH PHYSICS LA English DT Letter C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Schwahn, SO (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM schwahnso@ornl.gov RI Schwahn, Scott/C-2530-2016 OI Schwahn, Scott/0000-0001-7105-3095 NR 4 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD JUL PY 2010 VL 99 IS 1 BP 88 EP 88 DI 10.1097/HP.0b013e3181d7a317 PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 609EG UT WOS:000278637400008 PM 20539128 ER PT J AU Barnhart, CJ Nimmo, F Travis, BJ AF Barnhart, Charles J. Nimmo, Francis Travis, Bryan J. TI Martian post-impact hydrothermal systems incorporating freezing SO ICARUS LA English DT Article DE Impact processes; Mars; Mars, Interior; Mars, Surface; Geological processes ID CHONDRITE PARENT BODIES; LIQUID WATER; GROUND ICE; EARLY MARS; IMPACT STRUCTURE; KASEI VALLES; EVOLUTION; CRATER; CIRCULATION; DEPOSITS AB We simulate the evolution of post-impact hydrothermal systems within 45 km and 90 km diameter craters on Mars. We focus on the effects of freezing, which alters the permeability structure and fluid flow compared with unfrozen cases. Discharge rates, total discharge and water-rock ratios increase with permeability. Systems with permeabilities of 10(-10) m(2) or higher exhibit convection in the hydrosphere, allowing them to derive heat from greater depths. Surface discharges persist for similar to 10(3)-10(5) years under freezing surface conditions, with higher permeabilities permitting longer lifetimes. Maximum discharge rates and total discharges range from 0.1 to 10 m(3) s(-1) and 10(9) to 10(12) m(3), respectively, for systems with permeabilities between 10(-14) and 10(-12) m(2). Near-surface water-rock ratios range from <1 for low permeability, frozen cases to similar to 10(3) for high permeabilities and/or unfrozen cases. Propagation of the freezing front radially inwards focuses flow towards the center of the crater resulting in a diagnostic increase in water-rock ratios there. This process may explain the phyllosilicate assemblages observed at some crater central peaks. (C) 2010 Elsevier Inc. All rights reserved. C1 [Barnhart, Charles J.; Nimmo, Francis] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. [Travis, Bryan J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Barnhart, CJ (reprint author), Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA. EM barnhart@es.ucsc.edu OI Nimmo, Francis/0000-0003-3573-5915 FU NASA [NNX07AU77G, 8254] FX We thank Don Korycansky and Andy Fisher for their advice and consultation. We acknowledge Keith Harrison, Oleg Abramov and Robert Lowell for their constructive reviews and valuable insight. The NASA Mars Fundamental Research Program Grant NNX07AU77G and the NASA Ames Graduate Student Researcher Program Grant 8254 funded this research. NR 97 TC 37 Z9 37 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD JUL PY 2010 VL 208 IS 1 BP 101 EP 117 DI 10.1016/j.icarus.2010.01.013 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 611RJ UT WOS:000278838200010 ER PT J AU Liu, X Qiao, CM Yu, DT Jiang, T AF Liu, Xin Qiao, Chunming Yu, Dantong Jiang, Tao TI Application-Specific Resource Provisioning for Wide-Area Distributed Computing SO IEEE NETWORK LA English DT Article ID ARCHITECTURES; NETWORKS AB Some modern distributed applications require cooperation among multiple geographically separated computing facilities to perform intensive computing at the end sites and large-scale data transfers in the wide area network. It has been widely recognized that WDM networks are cost-effective means to support data transfers in this type of data-intensive applications. However, neither the traditional approaches to establishing lightpaths between given source destination pairs nor the existing application-level approaches that only consider computing resources but take the underlying connectivity for granted are sufficient. In this article we identify key limitations and issues in existing systems, and focus on joint resource allocation of both computing resources and network resources in federated computing and network systems. A variety of resource allocation schemes that provide modern distributed computing applications with performance and reliability guarantees are presented. C1 [Yu, Dantong] Brookhaven Natl Lab, Grid Comp Grp, Upton, NY 11973 USA. [Qiao, Chunming] SUNY Buffalo, LANDER, Buffalo, NY 14260 USA. [Jiang, Tao] Huazhong Univ Sci & Technol, Dept Elect & Informat Engn, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China. RP Liu, X (reprint author), Brookhaven Natl Lab, Grid Comp Grp, Upton, NY 11973 USA. EM xinliu@bnl.gov RI Qiao, Chunming/E-8892-2011 NR 18 TC 14 Z9 14 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0890-8044 J9 IEEE NETWORK JI IEEE Netw. PD JUL-AUG PY 2010 VL 24 IS 4 BP 25 EP 34 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications SC Computer Science; Engineering; Telecommunications GA 659DB UT WOS:000282546100006 ER PT J AU Venkata, SS Brahma, S Stamp, J Kundur, P AF Venkata, S. S. (Mani) Brahma, Sukumar Stamp, Jason Kundur, Prabha TI Continue Your Learning SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Venkata, S. S. (Mani)] Univ Washington, Seattle, WA 98195 USA. [Brahma, Sukumar] New Mexico State Univ, Las Cruces, NM 88003 USA. [Stamp, Jason] Sandia Natl Labs, Livermore, CA 94550 USA. RP Venkata, SS (reprint author), Univ Washington, Seattle, WA 98195 USA. NR 7 TC 0 Z9 0 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD JUL-AUG PY 2010 VL 8 IS 4 BP 36 EP 43 DI 10.1109/MPE.2010.937128 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA 651LV UT WOS:000281930100005 ER PT J AU Tan, W Fan, YS Zhou, M Tian, Z AF Tan, Wei Fan, Yushun Zhou, MengChu Tian, Zhong TI Data-Driven Service Composition in Enterprise SOA Solutions: A Petri Net Approach SO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING LA English DT Article DE Colored Petri nets; data-driven; service net (SN); web service composition ID WEB SERVICE; SYSTEMS; CONFIGURATION AB Under Service Oriented Architecture (SOA), service composition is used to integrate service components together to meet new business needs. In this paper, we propose a novel data-driven method to provide service composition guidance to implement given requirements. Based on the relations between business domain data and service domain data, we generate additional data mediations according to three composition rules. With these data relations and composition rules, we propose a Petri-net based approach to the composition of services. In our approach, all the in/output messages of the service operations are modeled as colored places, and service operations themselves are modeled as transitions with input/output places. We first generate a Service Net (SN) that contains all operations in a given service portfolio, and then use Petri-net decomposition techniques to derive a subnet of SN, and this subnet meets the need of the business requirement. Our work can be seen as an effort to bridge the gap between business and service domains. Note to Practitioners-Web services composition is an emerging area for business process automation. This work presents a novel framework to compose web services from the perspective of data. It is based on colored Petri nets and a newly proposed concept called Service Net. The proposed method represents both data relations and service composition rules with colored Petri nets. If a business requirement is given with input/output data, we convert the Service Net into a reduced one, and decompose it into subnets that can be candidate composition solutions. A real-life case is used to illustrate the feasibility of the proposed concepts and method. Our method can be readily used in industrial web service composition for business automation. C1 [Tan, Wei] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Tan, Wei] Argonne Natl Lab, Chicago, IL 60637 USA. [Fan, Yushun] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China. [Zhou, MengChu] New Jersey Inst Technol, Dept Elect & Comp Sci, Newark, NJ 07102 USA. [Zhou, MengChu] Xidian Univ, Sch Electromech Engn, Xian 710071, Peoples R China. [Tian, Zhong] China Dev Labs, IBM Software Grp, Beijing 100094, Peoples R China. RP Tan, W (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wtan@mcs.anl.gov; fanyus@tsinghua.edu.cn; zhou@njit.edu; tianz@cn.ibm.com RI Tan, Wei/A-8144-2009 FU IBM; National Science Foundation of China [60674080]; National 863 Program of China [2007AA04Z150, 2008AA04Z109]; Ministry of Education of China; National Basic Research Program of China [2006CB705407] FX This work was supported in part by an IBM Ph.D. Fellowship, in part by the National Science Foundation of China (60674080), in part by the National 863 Program of China under Contract 2007AA04Z150 and Contract 2008AA04Z109, in part by Ministry of Education of China under Changjiang Scholars Program, and in part by the National Basic Research Program of China (2006CB705407). NR 41 TC 50 Z9 53 U1 3 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-5955 J9 IEEE T AUTOM SCI ENG JI IEEE Trans. Autom. Sci. Eng. PD JUL PY 2010 VL 7 IS 3 BP 686 EP 694 DI 10.1109/TASE.2009.2034016 PG 9 WC Automation & Control Systems SC Automation & Control Systems GA 651PB UT WOS:000281938500027 ER PT J AU Bark, K Wheeler, J Shull, P Savall, J Cutkosky, M AF Bark, Karlin Wheeler, Jason Shull, Pete Savall, Joan Cutkosky, Mark TI Rotational Skin Stretch Feedback: A Wearable Haptic Display for Motion SO IEEE TRANSACTIONS ON HAPTICS LA English DT Article DE Skin stretch; skin strain; proprioception; wearable; haptics ID TACTILE DIRECTIONAL SENSIBILITY; HAIRY SKIN; STRAIN SENSITIVITY; MECHANORECEPTORS; DISCRIMINATION; INFORMATION; PERCEPTION; FREQUENCY; AFFERENTS; CONTINUUM AB We present a wearable haptic feedback device that imparts rotational skin stretch to the hairy skin, along with the results of psychophysical tests to determine its resolution and accuracy for motion display. Tracking experiments with visual markers reveal the pattern of skin motion and strain imparted by the device, confirming subjective impressions that the design represents a trade-off between perception at low stimulus levels and comfort at maximum stimulus levels. In an isolated environment, users were able to discriminate between different rotational displacements of stretch within two to five degrees, depending on the reference stimulus. In a more realistic setting, subjects were able to use feedback from the device to control the positioning of a virtual object within six degrees or +/- 6.5 degrees of the total range of motion. When subjects were passive and exposed to arbitrary rotations of the device, the accuracy was poorer, although it improved with training. The results suggest that wearable skin stretch devices can be an effective means of providing feedback about a user's controlled joint or limb motions for motion training and similar applications. C1 [Bark, Karlin; Shull, Pete; Savall, Joan; Cutkosky, Mark] Stanford Univ, Mountain View, CA 94041 USA. [Wheeler, Jason] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bark, K (reprint author), Stanford Univ, 775 S Shoreline Blvd,6, Mountain View, CA 94041 USA. EM kbark80@gmail.com; jwwheel@sandia.gov; pshull@stanford.edu; jsavall@stanford.edu; cutkosky@stanford.edu FU Tekes, a Finnish government research organization; US National Science Foundation (NSF); Sandia National Laboratories; Tekes FX The authors thank Professor Scott Delp and Samuel Hamner of the BioMotion Laboratory at Stanford University, and Dustin Hatfield from Motion Analysis for their assistance in the motion capture setup. K. Bark, was funded by Tekes, a Finnish government research organization and a US National Science Foundation (NSF) fellowship. J. Wheeler was funded by Sandia National Laboratories and P. Shull was funded by Tekes. This paper is updated and expanded from a paper presented at the Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 18-20 March 2009, in Salt Lake City, Utah. NR 35 TC 22 Z9 22 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1939-1412 EI 2329-4051 J9 IEEE T HAPTICS JI IEEE Trans. Haptics PD JUL-SEP PY 2010 VL 3 IS 3 BP 166 EP 176 DI 10.1109/ToH.2010.21 PG 11 WC Computer Science, Cybernetics SC Computer Science GA 749MH UT WOS:000289471100003 PM 27788071 ER PT J AU Tien, I Glaser, SD Bajcsy, R Goodin, DS Aminoff, MJ AF Tien, Iris Glaser, Steven D. Bajcsy, Ruzena Goodin, Douglas S. Aminoff, Michael J. TI Results of Using a Wireless Inertial Measuring System to Quantify Gait Motions in Control Subjects SO IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE LA English DT Article DE Ambulatory measurements; gait analysis; inertial sensing; Parkinson's disease; physical activity monitoring; wireless sensing ID PARKINSONS-DISEASE; MULTIPLE-SCLEROSIS; WALKING; VARIABILITY; DISORDERS; AGE AB Gait analysis is important for the diagnosis of many neurological diseases such as Parkinson's. The discovery and interpretation of minor gait abnormalities can aid in early diagnosis. We have used an inertial measuring system mounted on the subject's foot to provide numerical measures of a subject's gait (3-D displacements and rotations), thereby creating an automated tool intended to facilitate diagnosis and enable quantitative prognostication of various neurological disorders in which gait is disturbed. This paper describes the process used for ensuring that these inertial measurement units yield accurate and reliable displacement and rotation data, and for validating the preciseness and robustness of the gait-deconstruction algorithms. It also presents initial results from control subjects, focusing on understanding the data recorded by the shoe-mounted sensor to quantify relevant gait-related motions. C1 [Tien, Iris; Glaser, Steven D.] Univ Calif Berkeley, CITRIS, Berkeley, CA 94720 USA. [Glaser, Steven D.] Intel Berkeley Lab, Berkeley, CA 94704 USA. [Glaser, Steven D.] Lawrence Berkeley Lab, Energy Resources Dept, Berkeley, CA 94720 USA. [Bajcsy, Ruzena] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Goodin, Douglas S.; Aminoff, Michael J.] Univ Calif San Francisco, Dept Neurol, San Francisco, CA 94143 USA. RP Tien, I (reprint author), Univ Calif Berkeley, CITRIS, Berkeley, CA 94720 USA. EM itien08@berkeley.edu; glaser@berkeley.edu; bajcsy@eecs.berkeley.edu; douglas.goodin@ucsf.edu; aminoffm@neurology.ucsf.edu FU Center for Information Technology Research in the Interest of Society (CITRIS) [22] FX Manuscript received September 8, 2008; revised November 25, 2008: accepted April 14, 2009. Date of publication May 5,2009: date of current version July 9, 2010. This work was supported in part by the Center for Information Technology Research in the Interest of Society (CITRIS) Seed Grant Program under Grant #22. NR 28 TC 15 Z9 15 U1 3 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1089-7771 EI 1558-0032 J9 IEEE T INF TECHNOL B JI IEEE T. Inf. Technol. Biomed. PD JUL PY 2010 VL 14 IS 4 BP 904 EP 915 DI 10.1109/TITB.2009.2021650 PG 12 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Mathematical & Computational Biology; Medical Informatics GA 633DW UT WOS:000280480700003 PM 19423449 ER PT J AU Bernal, J Mesa, F Jackson, DR Langston, WL Williams, JT AF Bernal, Joaquin Mesa, Francisco Jackson, David R. Langston, William L. Williams, Jeffery T. TI High-Frequency Pulse Distortion on a Lossy Microstrip Line With a Top Cover SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Conductor losses; continuous spectrum; dielectric losses; dispersive effects; leaky mode; microstrip; packaging effects; pulse propagation; spurious effects ID PRINTED-CIRCUIT LINES; GAP VOLTAGE-SOURCE; TRANSMISSION-LINES; STRIPLINE STRUCTURES; COPLANAR STRIPLINES; LEAKY MODES; PROPAGATION; EXCITATION; IMPEDANCE; MEDIA AB This paper studies the time-domain propagation and dispersion of a pulse propagating on a microstrip line with a metallic top cover. A gap voltage source is used to model a practical excitation on the line. High-frequency distortion effects are observed that cannot be accounted for by conventional transmission-line theory, since they are due to the simultaneous excitation of the bound mode and a strong leaky mode. The bound-mode and leaky-mode components of the pulse are identified and separately studied to aid in the physical interpretation of the pulse distortion. The excitation of a dominant leaky mode gives rise to an interesting pulse-splitting phenomenon, due to the different velocities of the bound mode and the leaky mode. The influence of dielectric and conductor losses on the pulse shape is also studied. C1 [Bernal, Joaquin] Univ Seville, Dept Appl Phys 3, Seville 41092, Spain. [Mesa, Francisco] Univ Seville, Dept Appl Phys 1, E-41012 Seville, Spain. [Jackson, David R.; Williams, Jeffery T.] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA. [Langston, William L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bernal, J (reprint author), Univ Seville, Dept Appl Phys 3, Seville 41092, Spain. EM jbmendez@us.es; mesa@us.es; djackson@uh.edu; wlangston@ieee.org RI Mesa, Francisco/E-9499-2010; Bernal Mendez, Joaquin/K-2187-2014 OI Mesa, Francisco/0000-0001-8943-9068; Bernal Mendez, Joaquin/0000-0003-0133-4814 FU Spanish Ministerio de Educacion y Ciencia; European Union [TEC2007-65376]; Junta de Andalucia [TIC-253] FX Manuscript received July 15, 2009; accepted February 08, 2010. Date of publication June 14, 2010; date of current version July 14, 2010. This work was supported in part by the Spanish Ministerio de Educacion y Ciencia and European Union FEDER under Project TEC2007-65376, by Junta de Andalucia under Project TIC-253, and under the State of Texas Advanced Technology Program. NR 25 TC 5 Z9 5 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD JUL PY 2010 VL 58 IS 7 BP 1774 EP 1785 DI 10.1109/TMTT.2010.2049920 PN 1 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 652NO UT WOS:000282014000015 ER PT J AU Reyes, S Taylor, N Cortes, P Ciattaglia, S Iseli, M Perevezentsev, A Rosanvallon, S Gulden, W Sharpe, P AF Reyes, Susana Taylor, Neill Cortes, Pierre Ciattaglia, Sergio Iseli, Markus Perevezentsev, A. Rosanvallon, Sandrine Gulden, Werner Sharpe, Phil TI The Role of Operational Feedback and R&D in ITER Safety SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Fusion; ITER; research and development (R&D); safety ID RADIATION-EXPOSURE DATA; COLLECTION; JET; EXPERIENCE; COMPONENT AB This paper presents an overview of the safety-related operating feedback taken into account in the ITER baseline design and of the previously completed and ongoing research and development (R&D) activities in support of ITER safety analyses. Operating feedback relevant to ITER mostly comes from previous and currently existing fusion devices and from the operation of tritium laboratories. Regarding the safety-related R&D, since the early times of the ITER project, an extensive program has been devoted to understanding the issues, gathering data on source terms, modeling underlying phenomena, and developing analytical tools for safety analysis. C1 [Reyes, Susana; Taylor, Neill; Cortes, Pierre; Ciattaglia, Sergio; Iseli, Markus; Perevezentsev, A.; Rosanvallon, Sandrine] ITER Org, F-13067 St Paul Les Durance, France. [Gulden, Werner] Fus Energy, Barcelona 08019, Spain. [Sharpe, Phil] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Reyes, S (reprint author), ITER Org, F-13067 St Paul Les Durance, France. EM susana.reyes@iter.org NR 16 TC 0 Z9 0 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD JUL PY 2010 VL 38 IS 7 BP 1692 EP 1698 DI 10.1109/TPS.2010.2049489 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 651YG UT WOS:000281963100023 ER PT J AU Youchison, DL Ulrickson, MA Bullock, JH AF Youchison, Dennis L. Ulrickson, Michael A. Bullock, James H. TI A Comparison of Two-Phase Computational Fluid Dynamics Codes Applied to the ITER First Wall Hypervapotron SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Boiling; computational fluid dynamics; first wall; hypervapotron; two-phase ID NUMERICAL SIMULATIONS; EXTRAPOLATION; REACTOR; LOSSES; ENERGY; MODEL AB Enhanced radial transport in the plasma and the effect of ELMS may increase the ITER first wall heat loads to as much as 4 to 5 MW/m(2) over localized areas. One proposed heatsink that can handle these higher loads is a CuCrZr hypervapotron. One concept for a first wall panel consists of 20 hypervapotron channels, each measuring 1400 mm long and 48.5mmwide. The nominal cooling conditions anticipated for each channel are 400 g/s of water at 3 MPa and 100 degrees C. This will result in boiling over a portion of the total length. A two-phase thermal-hydraulic analysis is required to predict accurately the thermal performance. Existing heat transfer correlations used for nucleate boiling are not appropriate here because the flow does not reach fully developed conditions in the multi-segmented channels. Our design-by-analysis approach used two commercial codes, Fluent and Star-CCM+, to perform computational fluid dynamics analyses with conjugate heat transfer. Both codes use the Rensselear (RPI) model for wall heat flux partitioning to model nucleate boiling as implemented in user-defined functions. We present a comparison between the two codes for this Eulerian multiphase problem that relies on temperature dependent materials properties. The analyses optimized the hypervapotron geometry, including teeth height and pitch, as well as the depth of the back channel to permit highly effective boiling heat transfer in the grooves between the teeth while ensuring that no boiling could occur at the back channel exit. The analysis used a representative heat flux profile with the peak heat flux of 5 MW/m(2) limited to a 50 mm length. The maximum surface temperature of the heatsink is 415 degrees C. The baseline design uses 2 mm for the teeth height, a 3 mm width and 6 mm pitch, and a back channel depth of 8 mm. The teeth are detached from the sidewall by a 2-mm-wide slot on both sides that aids in sweep-out and quenching of the vapor bubbles. C1 [Youchison, Dennis L.; Ulrickson, Michael A.; Bullock, James H.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Youchison, DL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dlyouch@sandia.gov OI Youchison, Dennis/0000-0002-7366-1710 NR 17 TC 10 Z9 10 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD JUL PY 2010 VL 38 IS 7 BP 1704 EP 1708 DI 10.1109/TPS.2010.2049369 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 651YG UT WOS:000281963100025 ER PT J AU Pakes, MJ Wrighton, KC Thrash, JC Santis, TD Anderson, GL Iliffe, TM Coates, JC Lindberg, DR Caldwell, RL AF Pakes, M. J. Wrighton, K. C. Thrash, J. C. Santis, T. D. Anderson, G. L. Iliffe, T. M. Coates, J. C. Lindberg, D. R. Caldwell, R. L. TI Anchialine Cave Ecology: A Multi-Disciplinary Approach SO INTEGRATIVE AND COMPARATIVE BIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Integrative-and-Comparative-Biology CY JAN 03-07, 2010 CL Seattle, WA SP Soc Integrat & Comparat Biol C1 Univ Calif Berkeley, Berkeley, CA 94720 USA. Texas A&M, Lawrence Berkeley Lab, Galveston, TX USA. EM pakes@berkeley.edu NR 0 TC 0 Z9 0 U1 0 U2 5 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1540-7063 J9 INTEGR COMP BIOL JI Integr. Comp. Biol. PD JUL PY 2010 VL 50 SU 1 BP E132 EP E132 PG 1 WC Zoology SC Zoology GA 630TL UT WOS:000280297000524 ER PT J AU Socha, JJ Cox, L Lee, WK Means, M Tolley, J AF Socha, J. J. Cox, L. Lee, W. K. Means, M. Tolley, J. TI Under pressure: the biomechanical mechanism of rhythmic tracheal compression in carabid beetles SO INTEGRATIVE AND COMPARATIVE BIOLOGY LA English DT Meeting Abstract CT Annual Meeting of the Society-for-Integrative-and-Comparative-Biology CY JAN 03-07, 2010 CL Seattle, WA SP Soc Integrat & Comparat Biol C1 [Socha, J. J.; Cox, L.; Lee, W. K.; Means, M.; Tolley, J.] Bucknell Univ, Argonne Natl Lab, Virginia Tech, Lewisburg, PA 17837 USA. EM jjsocha@vt.edu NR 0 TC 2 Z9 2 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1540-7063 J9 INTEGR COMP BIOL JI Integr. Comp. Biol. PD JUL PY 2010 VL 50 SU 1 BP E164 EP E164 PG 1 WC Zoology SC Zoology GA 630TL UT WOS:000280297000653 ER PT J AU Zhou, RM Huang, LJ Rutledge, JT Fehler, M Daley, TM Majer, EL AF Zhou, Rongmao Huang, Lianjie Rutledge, James T. Fehler, Michael Daley, Thomas M. Majer, Ernest L. TI Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Coda-wave interferometry; Geologic carbon sequestration; Vertical seismic profiling (VSP); Time-lapse VSP monitoring ID SCATTERED ACOUSTIC-WAVES; SEISMIC DATA; VELOCITY; RESERVOIR AB Injection and movement/saturation of carbon dioxide (CO(2)) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO(2)-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO(2) in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO(2) injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO(2) reservoir. Our results from field data suggest that the velocity changes caused by CO(2) injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration. Published by Elsevier Ltd. C1 [Zhou, Rongmao; Huang, Lianjie; Rutledge, James T.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. [Fehler, Michael] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Daley, Thomas M.; Majer, Ernest L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Geophys, Berkeley, CA 94720 USA. RP Zhou, RM (reprint author), Los Alamos Natl Lab, Geophys Grp, MS D443, Los Alamos, NM 87545 USA. EM rongmaozhou@gmail.com; ljh@lanl.gov; jrutledge@lanl.gov; fehler@mit.edu; tmdaley@lbl.gov; elmajer@lbl.gov RI Daley, Thomas/G-3274-2015 OI Daley, Thomas/0000-0001-9445-0843 FU U.S. Department of Energy [DE-AC52-06NA25396, DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy through contract DE-AC52-06NA25396 to Los Alamos National Laboratory. Field VSP data were collected by Lawrence Berkeley National Laboratory for the GEOSEQ project for the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy, under contract No. DE-AC02-05CH11231. NR 24 TC 7 Z9 8 U1 0 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD JUL PY 2010 VL 4 IS 4 BP 679 EP 686 DI 10.1016/j.ijggc.2010.01.010 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 616CM UT WOS:000279185700013 ER PT J AU Hendricks, TJ Krishnan, S Choi, CH Chang, CH Paul, B AF Hendricks, Terry J. Krishnan, Shankar Choi, Changho Chang, Chih-Hung Paul, Brian TI Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Nanoscale heat transfer; Boiling enhancement; Electronic cooling ID CONTINUOUS-FLOW MICROREACTOR; CHEMICAL BATH DEPOSITION; TRANSFER MODEL; PART I; FLUX; MICROCHANNELS; EVAPORATION; NUCLEATION; WATER; CDS AB Enhanced pool-boiling critical heat fluxes (CHF) at reduced wall superheat on nanostructured substrates are reported. Nanostructured surfaces were realized using a low temperature process, microreactor-assisted-nanomaterial-deposition. Using this technique we deposited ZnO nanostructures on Al and Cu substrates. We observed pool-boiling CHF of 82.5 W/cm(2) with water as fluid for ZnO on Al versus a CHF of 23.2 W/cm(2) on bare Al surface with a wall superheat reduction of 25-38 C. These CHF values on ZnO surfaces correspond to a heat transfer coefficient of similar to 23,000 W/m(2) K. We discuss our data and compare the behavior with conventional boiling theory. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Hendricks, Terry J.; Krishnan, Shankar] MicroProd Breakthrough Inst, Battelle Pacific NW Natl Lab, Corvallis, OR 97330 USA. [Choi, Changho; Chang, Chih-Hung] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Paul, Brian] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. RP Hendricks, TJ (reprint author), MicroProd Breakthrough Inst, Battelle Pacific NW Natl Lab, 1000 NE Circle Blvd,Suite 11101, Corvallis, OR 97330 USA. EM terry.hendricks@pnl.gov FU Army Research Laboratory [W911NF-07-2-0083] FX Authors wish to acknowledge and sincerely thank Mr. Don Higgins and Dr. Dan Palo for their invaluable assistance on this project. This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement No. W911NF-07-2-0083. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation heron. NR 33 TC 64 Z9 66 U1 5 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD JUL PY 2010 VL 53 IS 15-16 BP 3357 EP 3365 DI 10.1016/j.ijheatmasstransfer.2010.02.025 PG 9 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 609BE UT WOS:000278629000045 ER PT J AU Shen, SH Guo, LJ Chen, XB Ren, F Mao, SS AF Shen, Shaohua Guo, Liejin Chen, Xiaobo Ren, Feng Mao, Samuel S. TI Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT International Conference on Electrical Engineering, Electronics and Automatics CY NOV 02-03, 2010 CL BEJAIA, ALGERIA HO BEJAIA DE Ag2S/CdS; Photocatalytic; Hydrogen; Solar light ID VISIBLE-LIGHT IRRADIATION; H-2 EVOLUTION; CADMIUM-SULFIDE; NOBLE-METAL; WATER; ENERGY; COCATALYST; CONVERSION; ZNIN2S4; SYSTEM AB Nanostructured Ag2S/CdS were synthesized by a two-step precipitation method, and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and UV-Vis absorption spectra. With Ag2S highly dispersed in the CdS nanostructures, the photoactivity was evaluated by hydrogen evolution from aqueous solution containing Na2S/Na(2)So(3) as a hole scavenger under simulated solar light (AM1.5). When the concentration of Ag2S was 5% by weight, Ag2S/CdS showed the highest photocatalytic activity for hydrogen evolution, with the solar-hydrogen energy conversion efficiency approximately 0.7%. We investigated the effect of highly dispersed Ag2S on the photoactivity. Published by Elsevier Ltd on behalf of Professor T. Nejat Veziroglu. C1 [Shen, Shaohua; Guo, Liejin] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China. [Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Guo, LJ (reprint author), Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China. EM lj-guo@mail.xjtu.edu.cn; ssmao@lbl.gov RI Ren, Feng/F-9778-2014; Shen, Shaohua/E-9507-2011 OI Ren, Feng/0000-0002-9557-5995; NR 36 TC 73 Z9 75 U1 1 U2 75 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2010 VL 35 IS 13 SI SI BP 7110 EP 7115 DI 10.1016/j.ijhydene.2010.02.013 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 634RO UT WOS:000280601600077 ER PT J AU Barcelo, S Mao, SS AF Barcelo, Steven Mao, Samuel S. TI High throughput optical characterization of alloy hydrogenation SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT International Conference on Electrical Engineering, Electronics and Automatics CY NOV 02-03, 2010 CL BEJAIA, Algeria, SLOVENIA HO BEJAIA DE Mg alloys; Metal hydrides; Borohydrides ID SWITCHABLE MIRRORS; KINETICS; FILMS; MAGNESIUM; NICKEL; STORAGE; AL AB Transition from the metallic to the hydride phase is of fundamental importance to achieving hydrogen storage in the solid state. Multi-component metal hydrides belong to one of the promising categories of materials that can potentially offer high hydrogen storage capacity. Despite extensive research on metal hydrides over the past decades, the progress remains limited partly due to the inability of screening a nearly infinite number of possible alloy compositions. High throughput materials fabrication and characterization techniques therefore offer an advantage in studying multi-component alloys and their phase transition to metal hydrides. We fabricated an Mg-Ni-Al and Ca-B-Ti ternary alloy libraries using a continuous combinatorial material synthesis technique, and measured the optical reflectance to examine the formation of metal hydride phase when the alloy library was exposed to hydrogen. The results indicate that mapping the change in reflectance is a viable method to study the kinetics of hydride formation. Monitoring the optical properties provides evidence for the "black state" formed during the transition from alpha-phase to beta-phase. In addition, we found that the fastest reflectance change occurred when the alloy has an Mg to Ni ratio of approximately 2:1, and with low concentration of Al. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Barcelo, Steven; Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mao, SS (reprint author), 1 Cyclotron Rd,Mailstop 70R0108B, Berkeley, CA 94720 USA. EM ssmao@me.berkeley.edu NR 17 TC 6 Z9 6 U1 3 U2 18 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2010 VL 35 IS 13 SI SI BP 7228 EP 7231 DI 10.1016/j.ijhydene.2010.01.152 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 634RO UT WOS:000280601600093 ER PT J AU Barcelo, S Rogers, M Grigoropoulos, CP Mao, SS AF Barcelo, Steven Rogers, Matthew Grigoropoulos, Costas P. Mao, Samuel S. TI Hydrogen storage property of sandwiched magnesium hydride nanoparticle thin film SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article; Proceedings Paper CT International Conference on Electrical Engineering, Electronics and Automatics CY NOV 02-03, 2010 CL BEJAIA, Algeria, SLOVENIA HO BEJAIA DE Hydrogen storage; Magnesium hydride; Thin film ID METAL-HYDRIDES; KINETICS; MG; HYSTERESIS; SYSTEM AB Hydrogen sorption property of magnesium (Mg) in the form of sandwiched Pd/Mg/Pd films is investigated. Pulsed laser deposition method was applied to deposit the samples consisting of films of nanoparticles. The enthalpy of formation of MgH(2) was found to be -68 kJ/mol H(2) for films with nanoparticle size on the order of 50 nm, which is smaller than the value for bulk MgH(2) and may be explained by the concept of excess volume. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved. C1 [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mao, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM ssmao@lbl.gov RI Mahalingam, Arjun/G-8586-2011 NR 16 TC 20 Z9 21 U1 0 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD JUL PY 2010 VL 35 IS 13 SI SI BP 7232 EP 7235 DI 10.1016/j.ijhydene.2010.01.130 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 634RO UT WOS:000280601600094 ER PT J AU Burger, S Essex, RM Mathew, KJ Richter, S Thomas, RB AF Buerger, S. Essex, R. M. Mathew, K. J. Richter, S. Thomas, R. B. TI Implementation of Guide to the expression of Uncertainty in Measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE GUM; Uncertainty in measurement; Multi-collector thermal ionization mass spectrometry; Isotope ratio analysis; Uranium and plutonium metrology ID IONIZATION MASS-SPECTROMETRY; SECONDARY-ELECTRON MULTIPLIERS; AGE-DETERMINATION; ICP-MS; PLUTONIUM; SAMPLES; PRECISION; SERIES; CERTIFICATION; LINEARITY AB The application of the GUM (Guide to the expression of Uncertainty in Measurement) to calculate standard uncertainties for routine uranium isotope mass spectrometry measurements for nuclear safeguards and nuclear metrology is introduced. The benefit of this approach is an improved coherency and transparency of the uncertainty calculation, which should include contributions from all potentially significant sources of uncertainty to the mass spectrometric measurement result. The GUM approach puts the responsibility for quantifying the uncertainty on the analyst who makes the measurements and not with the user of the data. The uncertainty budget also serves to provide a feedback to the analyst. It identifies the dominant components of the measurement uncertainty and allows for better understanding, management, and improvement of the measurement process. Detailed examples of uncertainty calculations are presented for the most common types of uranium isotope measurements by multi-collector thermal ionization mass spectrometry (TIMS), e.g., total evaporation, conventional Faraday cup measurements using internal normalization, and combined measurements using a secondary electron multiplier and Faraday cups. Various sources of uncertainty common to multi-collector TIMS, such as baseline noise, peak-tailing effects, peak flatness, detector inter-calibration, and detector linearity response are discussed with respect to the determination of their uncertainty contribution and their influence on the results. Different approaches are explained with their advantages and disadvantages. (C) 2010 Elsevier By. All rights reserved. C1 [Buerger, S.; Essex, R. M.; Mathew, K. J.; Thomas, R. B.] New Brunswick Lab, Dept Energy, Argonne, IL 60439 USA. [Richter, S.] JRC EU, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. RP Burger, S (reprint author), IAEA, Safeguards Analyt Lab, A-1400 Vienna, Austria. EM s.buerger@iaea.org NR 40 TC 30 Z9 30 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 EI 1873-2798 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD JUL 1 PY 2010 VL 294 IS 2-3 BP 65 EP 76 DI 10.1016/j.ijms.2010.05.003 PG 12 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 632WF UT WOS:000280459100002 ER PT J AU Crandall, D Bromhal, G Karpyn, ZT AF Crandall, Dustin Bromhal, Grant Karpyn, Zuleima T. TI Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures SO INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES LA English DT Article DE Fracture roughness; CT scanning; Navier-Stokes; Rock fractures ID SINGLE FRACTURE; RELATIVE PERMEABILITY; CAPILLARY-PRESSURE; MATHEMATICAL-MODEL; MULTIPHASE-FLOW; NAVIER-STOKES; TOMOGRAPHY; TRANSPORT; DIMENSION; JOINT AB Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, asdetermined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows. Published by Elsevier Ltd. C1 [Crandall, Dustin; Bromhal, Grant] Natl Energy Technol Lab, Geosci Div, Morgantown, WV 26507 USA. [Karpyn, Zuleima T.] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. RP Crandall, D (reprint author), Natl Energy Technol Lab, Geosci Div, Morgantown, WV 26507 USA. EM Dustin.Crandall@pp.netl.doe.gov FU US Department of Energy; National Energy Technology Laboratory in Morgantown FX The authors gratefully acknowledge the support of the US Department of Energy. This research was performed while D. Crandall held a National Research Council Research Associateship Award at the National Energy Technology Laboratory in Morgantown, WV. NR 45 TC 33 Z9 35 U1 2 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1365-1609 J9 INT J ROCK MECH MIN JI Int. J. Rock Mech. Min. Sci. PD JUL PY 2010 VL 47 IS 5 BP 784 EP 796 DI 10.1016/j.ijrmms.2010.03.015 PG 13 WC Engineering, Geological; Mining & Mineral Processing SC Engineering; Mining & Mineral Processing GA 617XB UT WOS:000279314100008 ER PT J AU Eroglu, A AF Eroglu, Abdullah TI Novel Coaxial High Pass Filter Design for RF Applications SO INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE LA English DT Article DE Coaxial Filter; Cavity; High Pass; Resonance; RF; UHF ID ADAPTIVE PROTOTYPE; MICROWAVE FILTERS; TRANSMISSION; UWB AB The complete design of a novel coaxial high pass filter is given analytically and numerically for high power RF applications. The coaxial structure consists of two hollow concentric cylinders with a septum located between them at a single azimuthal angle. This septum provides a good high pass filter characteristics and mechanically holds two hollow cylinders together. The attenuation slope in the stop band with this structure is much sharper than the existing filter configurations. This gives faster transition time from stop band to pass band One end of the coaxial structure is closed and the other end is used as an output port. Excitation port is placed on the side walls of the outside cylinder. The design procedure proposed in this paper has been implemented to obtain a filter configuration at the lower end of the UHF range. The new filter is simulated using 3D electromagnetic simulator, HFSS. It is then constructed and measured. Simulation results are compared with the measured results. Good agreement between simulated and measured results has been observed Copyright (C) 2010 Praise Worthy Prize S.r.l. All rights reserved. C1 [Eroglu, Abdullah] Indiana Univ Purdue Univ Ft Wayne IPFW, Dept Engn, Indianapolis, IN USA. [Eroglu, Abdullah] Oak Ridge Natl Lab, Fus Energy Div, Oak Ridge, TN USA. RP Eroglu, A (reprint author), Indiana Univ Purdue Univ Ft Wayne IPFW, Dept Engn, Indianapolis, IN USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU PRAISE WORTHY PRIZE SRL PI NAPOLI PA PIAZZA G D ANNUNZIO, NAPOLI, 15-I80125, ITALY SN 1827-6660 J9 INT REV ELECTR ENG-I JI Int. Rev. Electr. Eng.-IREE PD JUL-AUG PY 2010 VL 5 IS 4 BP 1833 EP 1837 PN B PG 5 WC Engineering, Electrical & Electronic SC Engineering GA 670DL UT WOS:000283401300030 ER PT J AU Gray, GT AF Gray, George T. Rusty, III TI Alliance of Americas: TMS Looks to the Future with Brazilian and Canadian Societies SO JOM LA English DT Article C1 Los Alamos Natl Lab, Dynam Mat Properties Sect, Los Alamos, NM 87545 USA. RP Los Alamos Natl Lab, Dynam Mat Properties Sect, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD JUL PY 2010 VL 62 IS 7 BP 9 EP 10 PG 2 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 625DW UT WOS:000279875600001 ER PT J AU Taylor-Piliae, RE Newell, KA Cherin, R Lee, MJ King, AC Haskell, WL AF Taylor-Piliae, Ruth E. Newell, Kathryn A. Cherin, Rise Lee, Martin J. King, Abby C. Haskell, William L. TI Effects of Tai Chi and Western Exercise on Physical and Cognitive Functioning in Healthy Community-Dwelling Older Adults SO JOURNAL OF AGING AND PHYSICAL ACTIVITY LA English DT Article DE mind-body therapy; physical activity; executive function; aged adult ID INTENTION-TO-TREAT; ELDERLY SUBJECTS; MAINE-SYRACUSE; BLOOD-PRESSURE; FITNESS TEST; AGE; METAANALYSIS; AMERICAN; CHUAN; INTERVENTIONS AB Objective: To compare the effects of Tai Chi (TC, n = 37) and Western exercise (WE, n = 39) with an attention-control group (C, n = 56) on physical and cognitive functioning in healthy adults age 69 +/- 5.8 yr, in a 2-phase randomized trial. Methods: TC and WE involved combined class and home-based protocols. Physical functioning included balance, strength, flexibility, and cardiorespiratory endurance. Cognitive functioning included semantic fluency and digit-span tests. Data were analyzed using intention-to-treat analysis. Results: At 6 mo, WE had greater improvements in upper body flexibility (F = 4.67, p = .01) than TC and C. TC had greater improvements in balance (F = 3.36, p = .04) and a cognitive-function measure (F = 7.75, p < .001) than WE and C. The differential cognitive-function improvements observed in TC were maintained through 12 mo. Conclusion: The TC and WE interventions resulted in differential improvements in physical functioning among generally healthy older adults. TC led to improvement in an indicator of cognitive functioning that was maintained through 12 mo. C1 [Taylor-Piliae, Ruth E.] Univ Arizona, Coll Nursing, Tucson, AZ 85721 USA. [Newell, Kathryn A.; Cherin, Rise; King, Abby C.; Haskell, William L.] Stanford Univ, Sch Med, Stanford, CA 94305 USA. [Lee, Martin J.] Stanford Univ, Stanford Linear Accelerator Ctr, Stanford, CA USA. RP Taylor-Piliae, RE (reprint author), Univ Arizona, Coll Nursing, Tucson, AZ 85721 USA. FU U.S. Department of Health and Human Services [NIH/NIA AG 16337]; National Heart, Lung and Blood Institute [T32 HL007034-31]; NIH/NIA; NHLBI FX This study was funded by Grant # NIH/NIA AG 16337 (W. Haskell, PI) from the U.S. Department of Health and Human Services. Dr. Taylor-Piliae was supported by Public Health Service Training Grant T32 HL007034-31 from the National Heart, Lung and Blood Institute (S. Fortmann, PI) while working on this study. She is currently employed at the University of Arizona. Ms. Newell and Ms. Cherin have no financial support or interests to report. Dr. Lee is currently funded by the Department of Energy and has an ownership interest in the Tai Chi Cultural Center, Los Altos, CA. Dr. King has research funding from NIH/NIA and NHLBI and is an NIH scientific consultant. Dr. Haskell has research funding from NIH/NIA and NHLBI and is chairman of the Cooper Institute Scientific Advisory Board. NR 62 TC 39 Z9 44 U1 11 U2 26 PU HUMAN KINETICS PUBL INC PI CHAMPAIGN PA 1607 N MARKET ST, PO BOX 5076, CHAMPAIGN, IL 61820-2200 USA SN 1063-8652 J9 J AGING PHYS ACTIV JI J. Aging Phys. Act. PD JUL PY 2010 VL 18 IS 3 BP 261 EP 279 PG 19 WC Geriatrics & Gerontology; Gerontology; Sport Sciences SC Geriatrics & Gerontology; Sport Sciences GA 614JI UT WOS:000279052900002 PM 20651414 ER PT J AU De Sapio, V Park, J AF De Sapio, Vincent Park, Jaeheung TI Multitask Constrained Motion Control Using a Mass-Weighted Orthogonal Decomposition SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE Jacobian matrices; many-body problems; motion control; N-body problems; recursion method AB This paper presents an approach to formulating task-level motion-control for holonomically constrained multibody systems based on a mass-weighted orthogonal decomposition. The basis for this approach involves the formation of a recursive null space for constraints and motion-control tasks onto which subsequent motion-control tasks are projected. The recursive null space arises out of the process of orthogonalizing individual task Jacobian matrices. This orthogonalization process is analogous to the Gram-Schmidt process used for orthogonalizing a vector basis. Based on this mass-weighted orthogonal decomposition, recursive algorithms are developed for formulating the overall motion-control equations. The natural symmetry between task-level dynamics and the dynamics of constrained systems is exploited in this approach. An example is presented to illustrate the practical application of this methodology. C1 [De Sapio, Vincent] Sandia Natl Labs, Dept Scalable Modeling & Anal, Livermore, CA 94550 USA. [Park, Jaeheung] Seoul Natl Univ, Dept Intelligent Convergence Syst, Suwon 443270, South Korea. RP De Sapio, V (reprint author), Sandia Natl Labs, Dept Scalable Modeling & Anal, Livermore, CA 94550 USA. EM vdesap@sandia.gov; park73@snu.ac.kr RI Park, Jaeheung/D-3032-2013 NR 12 TC 0 Z9 0 U1 0 U2 4 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD JUL PY 2010 VL 77 IS 4 AR 041004 DI 10.1115/1.4000907 PG 10 WC Mechanics SC Mechanics GA 585YU UT WOS:000276867700004 ER PT J AU Kim, T Pillai, MR Aziz, MJ Scarpulla, MA Dubon, OD Yu, KM Beeman, JW Ridgway, MC AF Kim, Taeseok Pillai, Manoj R. Aziz, Michael J. Scarpulla, Michael A. Dubon, Oscar D. Yu, Kin M. Beeman, Jeffrey W. Ridgway, Mark C. TI Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID AMORPHOUS-SILICON; THERMAL-CONDUCTIVITY; ALLOY SOLIDIFICATION; THIN-FILMS; GROUP-III; SEMICONDUCTORS; IRRADIATION; INTERFACE; CRYSTALLIZATION; SPINTRONICS AB In order to further understand the pulsed-laser melting (PLM) of Mn and N implanted GaAs, which we have used to synthesize thin films of the ferromagnetic semiconductor Ga1-xMnxAs and the highly mismatched alloy GaNxAs1-x, we have simulated PLM of amorphous (a-) and crystalline (c-) GaAs. We present a numerical solution to the one-dimensional heat equation, accounting for phase-dependent reflectivity, optical skin depth, and latent heat, and a temperature-dependent thermal conductivity and specific heat. By comparing the simulations with experimental time-resolved reflectivity and melt depth versus laser fluence, we identify a set of thermophysical and optical properties for the crystalline, amorphous, and liquid phases of GaAs that give reasonable agreement between experiment and simulation. This work resulted in the estimation of thermal conductivity, melting temperature and latent heat of fusion of a-GaAs of 0.008 W/cm K at 300 K, 1350 K, and 2650 J/cm(3), respectively. These materials properties also allow the prediction of the solidification velocity of crystalline and ion-amorphized GaAs. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457106] C1 [Kim, Taeseok] SunPower Corp, Solar Cell Technol & Dev Grp, San Jose, CA 95134 USA. [Pillai, Manoj R.; Aziz, Michael J.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Scarpulla, Michael A.] Univ Utah, Dept Mat Sci & Engn, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. [Dubon, Oscar D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Ridgway, Mark C.] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia. RP Kim, T (reprint author), SunPower Corp, Solar Cell Technol & Dev Grp, San Jose, CA 95134 USA. EM taeseok.kim@sunpowercorp.com RI Yu, Kin Man/J-1399-2012; OI Yu, Kin Man/0000-0003-1350-9642; Scarpulla, Michael/0000-0002-6084-6839 FU Center for Nanoscale Systems (CNS) at Harvard University; National Science Foundation [ECS-0335765]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231] FX Some of the authors thank for the support of the Center for Nanoscale Systems (CNS) at Harvard University is acknowledged. Harvard-CNS is a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award No. ECS-0335765. K. M. Yu and J. W. Beeman were supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 54 TC 7 Z9 7 U1 2 U2 18 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD JUL PY 2010 VL 108 IS 1 AR 013508 DI 10.1063/1.3457106 PG 7 WC Physics, Applied SC Physics GA 626XB UT WOS:000280000400021 ER PT J AU Li, ZJ Wang, SJ Wang, ZG Zu, XT Gao, F Weber, WJ AF Li, Zhijie Wang, Shenjie Wang, Zhiguo Zu, Xiaotao Gao, Fei Weber, William J. TI Mechanical behavior of twinned SiC nanowires under combined tension-torsion and compression-torsion strain SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SIMULATION; CHEMISTRY; SILICON AB The mechanical behavior of twinned silicon carbide (SiC) nanowires under combined tension-torsion and compression-torsion is investigated using molecular dynamics simulations with an empirical potential. The simulation results show that both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading. The torsion rate has no effect on the elastic properties of the twinned SiC nanowires. The collapse of the twinned nanowires takes place in a twin stacking fault of the nanowires. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3456002] C1 [Li, Zhijie; Wang, Shenjie; Wang, Zhiguo; Zu, Xiaotao] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. [Gao, Fei; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Li, ZJ (reprint author), Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China. EM zgwang@uestc.edu.cn RI Weber, William/A-4177-2008; Gao, Fei/H-3045-2012; Wang, Zhiguo/B-7132-2009 OI Weber, William/0000-0002-9017-7365; FU National Natural Science Foundation of China [10704014]; Young Scientists Foundation of Sihuan [09ZQ026-029]; UESTC [JX0731]; Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-76RL01830] FX Z. Wang was financially supported by the National Natural Science Foundation of China (Grant No. 10704014), the Young Scientists Foundation of Sihuan (Grant No. 09ZQ026-029), and UESTC (Grant No. JX0731). F. Gao and W. J. Weber were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC05-76RL01830. NR 26 TC 5 Z9 5 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL PY 2010 VL 108 IS 1 AR 013504 DI 10.1063/1.3456002 PG 5 WC Physics, Applied SC Physics GA 626XB UT WOS:000280000400017 ER PT J AU Voss, LF Beck, PR Conway, AM Graff, RT Nikolic, RJ Nelson, AJ Payne, SA AF Voss, L. F. Beck, P. R. Conway, A. M. Graff, R. T. Nikolic, R. J. Nelson, A. J. Payne, S. A. TI Surface current reduction in (211) oriented Cd0.46Zn0.04Te.50 crystals by Ar bombardment SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RADIATION DETECTORS; CDTE AB Cd0.46Zn0.04Te.50 crystals have been exposed to high density Ar plasmas in order to modify the surface chemistry and control the surface conductivity. X-ray photoelectron spectroscopy reveals that this bombardment results in a modified surface atomic ratio, with Cd being preferentially removed compared to Te. In addition, the native oxide is removed and suppressed for an extended period of time. Current-voltage data is analyzed in order to determine the effect on surface leakage current after exposure. It is found that surface leakage current can be decreased by approximately 2.5 orders of magnitude following Ar+ bombardment. (C) 2010 American Institute of Physics. [doi:10.1063/1.3459859] C1 [Voss, L. F.; Beck, P. R.; Conway, A. M.; Graff, R. T.; Nikolic, R. J.; Nelson, A. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Voss, LF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM voss5@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 12 TC 4 Z9 4 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD JUL PY 2010 VL 108 IS 1 AR 014510 DI 10.1063/1.3459859 PG 3 WC Physics, Applied SC Physics GA 626XB UT WOS:000280000400100 ER PT J AU Arnay-De-La-Rosa, M Gonzalez-Reimers, E Yanes, Y Velasco-Vazquez, J Romanek, CS Noakes, JE AF Arnay-de-la-Rosa, M. Gonzalez-Reimers, E. Yanes, Y. Velasco-Vazquez, J. Romanek, C. S. Noakes, J. E. TI Paleodietary analysis of the prehistoric population of the Canary Islands inferred from stable isotopes (carbon, nitrogen and hydrogen) in bone collagen SO JOURNAL OF ARCHAEOLOGICAL SCIENCE LA English DT Article DE Bone collagen hydrogen, carbon and nitrogen isotopes; Paleodiet; Tenerife; El Hierro; Gran Canaria; Canary Islands; Guanches ID PRE-HISPANIC POPULATION; GRAN-CANARIA; TROPHIC LEVEL; HUMAN DIET; RATIOS; ANIMALS; MARINE; BIOGEOCHEMISTRY; RECONSTRUCTION; FRACTIONATION AB Nitrogen and carbon isotope compositions were measured in the bone collagen from a total of 86 pre-hispanic samples of the Canary Islands, and hydrogen in 70, all of them with enough amount of bone collagen, and adequate N and C content. These samples belong to prehistoric population of El Hierro (n = 27), Tenerife (n = 18), and Gran Canaria (n = 41). Isotope compositions were also obtained for prehistoric and modern food resources that were likely consumed by these people. Marked differences were observed among the three islands regarding the three isotopes analyzed: the delta(15)N values were highest among the population of Gran Canaria (10.8 parts per thousand +/- 0.9 parts per thousand), who also showed the highest delta D values (7 +/- 8 parts per thousand). The population of El Hierro showed the highest delta(13)C values (-18.6 parts per thousand +/- 0.7 parts per thousand). These data suggest a high consumption of marine products by the population from El Hierro, and also an important consumption of terrestrial meat or marine, piscivore fish, by the population from Gran Canaria, together with domesticated C(3) plants (barley and/or wheat), fruits of Ficus carica and other wild species, and goat products. Additionally, marked differences were observed between men and women, which suggest that women consumed a more vegetal-based diet, a finding which is in agreement with the higher proportion of teeth with carious lesions among women. In our study, a high delta D is associated with a high delta(15)N, suggesting a relation with animal protein (either marine or terrestrial) consumption. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Gonzalez-Reimers, E.] Hosp Univ Canarias, San Cristobal la Laguna, Tenerife Canary, Spain. [Arnay-de-la-Rosa, M.] Dpto Prehist Antropol & Hist Antigua, San Cristobal la Laguna, Tenerife Canary, Spain. [Yanes, Y.; Romanek, C. S.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Velasco-Vazquez, J.] Univ Las Palmas, Dpto Ciencias Hist, Canary Isl, Spain. [Noakes, J. E.] Univ Georgia, Ctr Appl Isotopes Studies, Athens, GA 30602 USA. RP Gonzalez-Reimers, E (reprint author), Hosp Univ Canarias, San Cristobal la Laguna, Tenerife Canary, Spain. EM egonrey@ull.es RI Yanes, Yurena/F-3218-2010 NR 52 TC 13 Z9 13 U1 3 U2 13 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0305-4403 J9 J ARCHAEOL SCI JI J. Archaeol. Sci. PD JUL PY 2010 VL 37 IS 7 BP 1490 EP 1501 DI 10.1016/j.jas.2010.01.009 PG 12 WC Anthropology; Archaeology; Geosciences, Multidisciplinary SC Anthropology; Archaeology; Geology GA 602YZ UT WOS:000278176300012 ER PT J AU Grim, CJ Hasan, NA Taviani, E Haley, B Chun, J Brettin, TS Bruce, DC Detter, JC Han, CS Chertkov, O Challacombe, J Huq, A Nair, GB Colwell, RR AF Grim, Christopher J. Hasan, Nur A. Taviani, Elisa Haley, Bradd Chun, Jongsik Brettin, Thomas S. Bruce, David C. Detter, J. Chris Han, Cliff S. Chertkov, Olga Challacombe, Jean Huq, Anwar Nair, G. Balakrish Colwell, Rita R. TI Genome Sequence of Hybrid Vibrio cholerae O1 MJ-1236, B-33, and CIRS101 and Comparative Genomics with V. cholerae SO JOURNAL OF BACTERIOLOGY LA English DT Article ID EL-TOR STRAINS; BANGLADESH; MOZAMBIQUE; DISEASE; VARIANT; ISLAND; ASIA AB The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTX Phi and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain-and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains. C1 [Grim, Christopher J.; Colwell, Rita R.] Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA. [Hasan, Nur A.; Taviani, Elisa; Haley, Bradd; Huq, Anwar; Colwell, Rita R.] Univ Maryland, Maryland Pathogen Res Inst, College Pk, MD 20742 USA. [Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul 151742, South Korea. [Chun, Jongsik] Seoul Natl Univ, Inst Microbiol, Seoul 151742, South Korea. [Chun, Jongsik] Int Vaccine Inst, Seoul 151818, South Korea. [Brettin, Thomas S.; Bruce, David C.; Detter, J. Chris; Han, Cliff S.; Chertkov, Olga; Challacombe, Jean] Los Alamos Natl Lab, Genome Sci Grp, Biosci Div, Los Alamos, NM 87545 USA. [Nair, G. Balakrish] Natl Inst Cholera & Enter Dis, Kolkata 700010, India. [Colwell, Rita R.] Johns Hopkins Bloomberg Sch Publ Hlth, Baltimore, MD USA. RP Colwell, RR (reprint author), Univ Maryland, Inst Adv Comp Studies, Ctr Bioinformat & Computat Biol, 3103 Biomol Sci Bldg,296, College Pk, MD 20742 USA. EM rcolwell@umiacs.umd.edu FU National Institutes of Health [1RO1A139129-01]; National Oceanic and Atmospheric Administration Oceans and Human Health Initiative [S0660009]; Office of the Chief Scientist (United States) FX This study was supported by the National Institutes of Health (grant no. 1RO1A139129-01 to R. R. C.) and the National Oceanic and Atmospheric Administration Oceans and Human Health Initiative (grant no. S0660009 to R. R. C.). Funding for genome sequencing and support for C.J.G. was provided by the Office of the Chief Scientist (United States). NR 30 TC 49 Z9 51 U1 1 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2010 VL 192 IS 13 BP 3524 EP 3533 DI 10.1128/JB.00040-10 PG 10 WC Microbiology SC Microbiology GA 611HX UT WOS:000278806100032 PM 20348258 ER PT J AU Strnad, H Lapidus, A Paces, J Ulbrich, P Vlcek, C Paces, V Haselkorn, R AF Strnad, Hynek Lapidus, Alla Paces, Jan Ulbrich, Pavel Vlcek, Cestmir Paces, Vaclav Haselkorn, Robert TI Complete Genome Sequence of the Photosynthetic Purple Nonsulfur Bacterium Rhodobacter capsulatus SB 1003 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID TRANSFER-RNA GENES; PROGRAM; IDENTIFICATION; VISUALIZATION; ANNOTATION AB Rhodobacter capsulatus SB 1003 belongs to the group of purple nonsulfur bacteria. Its genome consists of a 3.7-Mb chromosome and a 133-kb plasmid. The genome encodes genes for photosynthesis, nitrogen fixation, utilization of xenobiotic organic substrates, and synthesis of polyhydroxyalkanoates. These features made it a favorite research tool for studying these processes. Here we report its complete genome sequence. C1 [Haselkorn, Robert] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. [Strnad, Hynek; Paces, Jan; Vlcek, Cestmir; Paces, Vaclav] Acad Sci Czech Republic, Inst Mol Genet, Prague 14220, Czech Republic. [Lapidus, Alla] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Ulbrich, Pavel] Inst Chem Technol, Prague 16628, Czech Republic. RP Haselkorn, R (reprint author), Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA. EM rh01@uchicago.edu RI Lapidus, Alla/I-4348-2013; Paces, Jan/C-8851-2009; Vlcek, Cestmir/I-8820-2014; Strnad, Hynek/B-7361-2008 OI Lapidus, Alla/0000-0003-0427-8731; Paces, Jan/0000-0003-3059-6127; Strnad, Hynek/0000-0002-0141-8340 FU Czech grants [1M6837805002, AV0Z50520514]; University of Chicago, Division of Biological Sciences; Integrated Genomics, Inc FX Work in Prague was supported by Czech grants 1M6837805002 and AV0Z50520514. Work in Chicago was supported by The University of Chicago, Division of Biological Sciences, and Integrated Genomics, Inc. NR 15 TC 35 Z9 162 U1 3 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD JUL PY 2010 VL 192 IS 13 BP 3545 EP 3546 DI 10.1128/JB.00366-10 PG 2 WC Microbiology SC Microbiology GA 611HX UT WOS:000278806100038 PM 20418398 ER PT J AU Kainerstorfer, JM Amyot, F Ehler, M Hassan, M Demos, SG Chernomordik, V Hitzenberger, CK Gandjbakhche, AH Riley, JD AF Kainerstorfer, Jana M. Amyot, Franck Ehler, Martin Hassan, Moinuddin Demos, Stavros G. Chernomordik, Victor Hitzenberger, Christoph K. Gandjbakhche, Amir H. Riley, Jason D. TI Direct curvature correction for noncontact imaging modalities applied to multispectral imaging SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE curvature correction; noncontact imaging; multispectral imaging; tissue oxygenation; charge-coupled device camera ID POLARIZED-LIGHT; SKIN; TISSUE; SYSTEM; SPOTS AB Noncontact optical imaging of curved objects can result in strong artifacts due to the object's shape, leading to curvature biased intensity distributions. This artifact can mask variations due to the object's optical properties, and makes reconstruction of optical/physiological properties difficult. In this work we demonstrate a curvature correction method that removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. This method is applicable to many optical imaging modalities that suffer from shape-based intensity biases. By separating the spatially varying data (e.g., physiological changes) from the background signal (dc component), we show that the curvature can be extracted by either averaging or fitting the rows and columns of the images. Numerical simulations show that our method is equivalent to directly removing the curvature, when the object's shape is known, and accurately recovers the underlying data. Experiments on phantoms validate the numerical results and show that for a given image with 16.5% error due to curvature, the method reduces that error to 1.2%. Finally, diffuse multispectral images are acquired on forearms in vivo. We demonstrate the enhancement in image quality on intensity images, and consequently on reconstruction results of blood volume and oxygenation distributions. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3470094] C1 [Kainerstorfer, Jana M.; Hassan, Moinuddin; Chernomordik, Victor; Gandjbakhche, Amir H.; Riley, Jason D.] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Program Pediat Imaging & Tissue Sci, Sect Analyt & Funct Biophoton PPITS SAFB, Bethesda, MD 20892 USA. [Kainerstorfer, Jana M.; Hitzenberger, Christoph K.] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria. [Amyot, Franck] NINDS, NIH, Clin Neurosci Program, Bethesda, MD 20892 USA. [Ehler, Martin] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Program Phys Biol, Lab Integrat & Med Biophys,Sect Med Biophys PPB L, Bethesda, MD 20892 USA. [Demos, Stavros G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kainerstorfer, JM (reprint author), NIH NICHD PPITS SAFB, 9 Mem Dr,Room B1E1, Bethesda, MD 20982 USA. EM kainersj@mail.nih.gov FU Eunice Kennedy Shriver National Institute of Child Health and Human Development FX The research was funded by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The Graduate Partnership Program at the National Institutes of Health and the Department of Physics at the University of Vienna in Austria are also acknowledged. NR 26 TC 16 Z9 16 U1 0 U2 2 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD JUL-AUG PY 2010 VL 15 IS 4 AR 046013 DI 10.1117/1.3470094 PG 14 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 643XZ UT WOS:000281335400048 PM 20799815 ER PT J AU Kainerstorfer, JM Ehler, M Amyot, F Hassan, M Demos, SG Chernomordik, V Hitzenberger, CK Gandjbakhche, AH Riley, JD AF Kainerstorfer, Jana M. Ehler, Martin Amyot, Franck Hassan, Moinuddin Demos, Stavros G. Chernomordik, Victor Hitzenberger, Christoph K. Gandjbakhche, Amir H. Riley, Jason D. TI Principal component model of multispectral data for near real-time skin chromophore mapping SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE multispectral imaging; tissue oxygenation; blood volume; principal component analysis; modeling; biophotonics ID HEMOGLOBIN OXYGENATION; IMAGE; PCA; RECOGNITION; ALGORITHMS; ABSORPTION; PATTERN; LIGHT; VIVO AB Multispectral images of skin contain information on the spatial distribution of biological chromophores, such as blood and melanin. From this, parameters such as blood volume and blood oxygenation can be retrieved using reconstruction algorithms. Most such approaches use some form of pixelwise or volumetric reconstruction code. We explore the use of principal component analysis (PCA) of multispectral images to access blood volume and blood oxygenation in near real time. We present data from healthy volunteers under arterial occlusion of the forearm, experiencing ischemia and reactive hyperemia. Using a two-layered analytical skin model, we show reconstruction results of blood volume and oxygenation and compare it to the results obtained from our new spectral analysis based on PCA. We demonstrate that PCA applied to multispectral images gives near equivalent results for skin chromophore mapping and quantification with the advantage of being three orders of magnitude faster than the reconstruction algorithm. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3463010] C1 [Kainerstorfer, Jana M.; Hassan, Moinuddin; Chernomordik, Victor; Gandjbakhche, Amir H.; Riley, Jason D.] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Program Pediat Imaging & Tissue Sci, Sect Analyt & Funct Biophoton PPITS SAFB, Bethesda, MD 20892 USA. [Kainerstorfer, Jana M.; Hitzenberger, Christoph K.] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria. [Ehler, Martin] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, NIH, Program Phys Biol, Lab Integrat & Med Biophys,Sect Med Biophys PPB L, Bethesda, MD 20892 USA. [Amyot, Franck] NINDS, NIH, Clin Neurosci Program, Bethesda, MD 20892 USA. [Demos, Stavros G.] Lawrence Livermore Natl Lab, CMS, Livermore, CA 94551 USA. RP Kainerstorfer, JM (reprint author), NIH NICHD PPIIS SAFB, 9 Mem Dr,Room B1E11, Bethesda, MD 20982 USA. EM kainersj@mail.nih.gov FU Eunice Kennedy Shriver National Institute of Child Health and Human Development FX The research was funded by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The Graduate Partnership Program at the National Institutes of Health and the Department of Physics at the University of Vienna in Austria are also acknowledged. NR 35 TC 17 Z9 17 U1 1 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD JUL-AUG PY 2010 VL 15 IS 4 AR 046007 DI 10.1117/1.3463010 PG 9 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 643XZ UT WOS:000281335400042 PM 20799809 ER PT J AU Pagba, CV Lane, SM Cho, HS Wachsmann-Hogiu, S AF Pagba, Cynthia V. Lane, Stephen M. Cho, Hansang Wachsmann-Hogiu, Sebastian TI Direct detection of aptamer-thrombin binding via surface-enhanced Raman spectroscopy SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE aptamer; quadruplex; label-free assay; direct detection; thrombin; surface-enhanced Raman Scattering ID DNA APTAMER; COLLOIDAL SILVER; RECOGNITION ELEMENTS; SELECTION-RULES; SCATTERING SERS; NUCLEIC-ACIDS; AMINO-ACIDS; B-DNA; PROTEINS; GOLD AB In this study, we exploit the sensitivity offered by surface-enhanced Raman scattering (SERS) for the direct detection of thrombin using the thrombin-binding aptamer (TBA) as molecular receptor. The technique utilizes immobilized silver nanoparticles that are functionalized with thiolated thrombin-specific binding aptamer, a 15-mer (5'-GGTTGGTGTGGTTGG-3') quadruplex forming oligonucleotide. In addition to the Raman vibrational bands corresponding to the aptamer and blocking agent, new peaks (mainly at 1140, 1540, and 1635 cm(-1)) that are characteristic of the protein are observed upon binding of thrombin. These spectral changes are not observed when the aptamer-nanoparticle assembly is exposed to a nonbinding protein such as bovine serum albumin (BSA). This methodology could be further used for the development of label-free biosensors for direct detection of proteins and other molecules of interest for which aptamers are available. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3465594] C1 [Pagba, Cynthia V.; Lane, Stephen M.; Cho, Hansang; Wachsmann-Hogiu, Sebastian] Univ Calif Davis, Natl Sci Fdn, Ctr Biophoton Sci & Technol, Sacramento, CA 95817 USA. [Lane, Stephen M.; Wachsmann-Hogiu, Sebastian] Univ Calif Davis, Dept Neurol Surg, Sacramento, CA 95817 USA. [Cho, Hansang] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cho, Hansang] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, UCSF UCB Joint Grad Grp Bioengn, Biomol Nanotechnol Ctr,Dept Bioengn, Berkeley, CA 94720 USA. RP Pagba, CV (reprint author), Univ Calif Davis, Natl Sci Fdn, Ctr Biophoton Sci & Technol, 2700 Stockton Blvd,Suite 1400, Sacramento, CA 95817 USA. EM cvpagba@ucdavis.edu; swachsmann@ucdavis.edu FU National Science Foundation (NSF); Lawrence Livermore National Laboratory (LLNL); LLNL-JRNL [LLNL-JRNL-421298-DRAFT] FX This work is supported by funding from the National Science Foundation (NSF) and the Laboratory Directed Research and Development Program of Lawrence Livermore National Laboratory (LLNL). Cho acknowledges (LLNL-JRNL) for a Lawrence Scholar Program predoctoral fellowship (LLNL-JRNL-421298-DRAFT). The Center for Biophotonics Science and Technology is a designated NSF Science and Technology Center, managed by the University of California, Davis, under Cooperative Agreement number PHY 0120999. We would like to thank Rick Moerschell formerly of Biorad Incorporated for useful discussions. NR 68 TC 15 Z9 15 U1 6 U2 48 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 J9 J BIOMED OPT JI J. Biomed. Opt. PD JUL-AUG PY 2010 VL 15 IS 4 AR 047006 DI 10.1117/1.3465594 PG 8 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA 643XZ UT WOS:000281335400070 PM 20799837 ER PT J AU Prince, RN Schreiter, ER Zou, P Wiley, HS Ting, AY Lee, RT Lauffenburger, DA AF Prince, Robin N. Schreiter, Eric R. Zou, Peng Wiley, H. Steven Ting, Alice Y. Lee, Richard T. Lauffenburger, Douglas A. TI The heparin-binding domain of HB-EGF mediates localization to sites of cell-cell contact and prevents HB-EGF proteolytic release SO JOURNAL OF CELL SCIENCE LA English DT Article DE Heparin-binding epidermal-growth-factor-like growth factor (HB-EGF); Heparan-sulfate proteoglycan (HSPG); Heparin binding; Cell-cell contact; Juxtacrine ID GROWTH-FACTOR RECEPTOR; DIPHTHERIA-TOXIN RECEPTOR; CORNEAL EPITHELIAL-CELLS; OVARIAN-CANCER; KERATINOCYTE MIGRATION; TERMINAL FRAGMENT; MAST-CELL; MONOVALENT STREPTAVIDIN; EXTRACELLULAR-MATRIX; MEMBRANE-PROTEIN AB Heparin-binding EGF-like growth factor (HB-EGF) is a ligand for EGF receptor (EGFR) and possesses the ability to signal in juxtacrine, autocrine and/or paracrine mode, with these alternatives being governed by the degree of proteolytic release of the ligand. Although the spatial range of diffusion of released HB-EGF is restricted by binding heparan-sulfate proteoglycans (HSPGs) in the extracellular matrix and/or cellular glycocalyx, ascertaining mechanisms governing non-released HB-EGF localization is also important for understanding its effects. We have employed a new method for independently tracking the localization of the extracellular EGF-like domain of HB-EGF and the cytoplasmic C-terminus. A striking observation was the absence of the HB-EGF transmembrane pro-form from the leading edge of COS-7 cells in a wound-closure assay; instead, this protein localized in regions of cell-cell contact. A battery of detailed experiments found that this localization derives from a trans interaction between extracellular HSPGs and the HB-EGF heparin-binding domain, and that disruption of this interaction leads to increased release of soluble ligand and a switch in cell phenotype from juxtacrine-induced growth inhibition to autocrine-induced proliferation. Our results indicate that extracellular HSPGs serve to sequester the transmembrane pro-form of HB-EGF at the point of cell-cell contact, and that this plays a role in governing the balance between juxtacrine versus autocrine and paracrine signaling. C1 [Prince, Robin N.; Lauffenburger, Douglas A.] MIT, Dept Biol Engn, Cambridge, MA 02139 USA. [Zou, Peng; Ting, Alice Y.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Schreiter, Eric R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00931 USA. [Wiley, H. Steven] Pacific NW Natl Lab, Syst Biol Program, Richland, WA 99354 USA. [Lee, Richard T.] Harvard Univ, Brigham & Womens Hosp, Div Cardiovasc, Dept Med,Med Sch, Boston, MA 02115 USA. RP Lauffenburger, DA (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM lauffen@mit.edu RI Schreiter, Eric/B-2641-2009; OI Wiley, Steven/0000-0003-0232-6867 FU NIBIB [EB003805]; NCI [CA96504]; MIT; National Science Foundation (NSF) FX We wish to thank our funding sources, including NIBIB Grant EB003805, NCI Grant CA96504, MIT Poitras Predoctoral Fellowship and the National Science Foundation (NSF) Graduate Research Fellowship. Additionally, we would like to thank Lee Opresko, Rosalyn Adam, Leslie Mebane, Rachel Miller and Alan Grodzinsky for reagents. For helpful scientific discussion, we are grateful to Matthew Nugent. Deposited in PMC for release after 12 months. NR 76 TC 13 Z9 13 U1 1 U2 7 PU COMPANY OF BIOLOGISTS LTD PI CAMBRIDGE PA BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND SN 0021-9533 J9 J CELL SCI JI J. Cell Sci. PD JUL 1 PY 2010 VL 123 IS 13 BP 2308 EP 2318 DI 10.1242/jcs.058321 PG 11 WC Cell Biology SC Cell Biology GA 611WU UT WOS:000278856400019 PM 20530570 ER PT J AU Revelli, AL Mutelet, F Jaubert, JN Garcia-Martinez, M Sprunger, LM Acree, WE Baker, GA AF Revelli, Anne-Laure Mutelet, Fabrice Jaubert, Jean-Noel Garcia-Martinez, Marina Sprunger, Laura M. Acree, William E., Jr. Baker, Gary A. TI Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography SO JOURNAL OF CHEMICAL AND ENGINEERING DATA LA English DT Article ID FREE-ENERGY RELATIONSHIP; ACTIVITY-COEFFICIENTS; INFINITE DILUTION; ORGANIC-COMPOUNDS; EQUATION COEFFICIENTS; THERMODYNAMIC PROPERTIES; ASYMMETRIC FRAMEWORK; TERNARY-SYSTEMS; SOLUTES; IMIDAZOLIUM AB Activity coefficients of 52 organic compounds in four ionic liquids (ILs), 1,3-dimedioxyimidazolium bis((trifluoromethyl)sullonyl)imide, 1-(methylethylether)-3-methylimidazolium bis((trifluoromethyl)sullonyl)imide, 1-ethano1-3-methylimidazolium bis((trifluoromethyl)-sullonyl)imide, and 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide, were measured using inverse gas chromatography from (312 to 353) K. The retention data were also converted in gas-to-IL partition coefficients and water-to-IL partition coefficients using the corresponding gas-to-water partition coefficients. Both sets of partition coefficients were analyzed using the modified Abraham solvation parameter model. The derived equations correlated the experimental gas-to-IL and water-to-IL partition coefficient data to within (0.09 and 0.14) log units, respectively. C1 [Revelli, Anne-Laure; Mutelet, Fabrice; Jaubert, Jean-Noel; Garcia-Martinez, Marina] Nancy Univ, Lab React & Genie Procedes, CNRS, UPR 3349,ENSIC, F-54001 Nancy, France. [Sprunger, Laura M.; Acree, William E., Jr.] Univ N Texas, Dept Chem, Denton, TX 76203 USA. [Baker, Gary A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Mutelet, F (reprint author), Nancy Univ, Lab React & Genie Procedes, CNRS, UPR 3349,ENSIC, 1 Rue Grandville,BP 20451, F-54001 Nancy, France. EM mutelet@ensic.inpl-nancy.fr RI MUTELET, Fabrice/H-3677-2013; Baker, Gary/H-9444-2016; JAUBERT, Jean-Noel/H-1399-2011 OI Baker, Gary/0000-0002-3052-7730; JAUBERT, Jean-Noel/0000-0001-7831-5684 NR 56 TC 44 Z9 46 U1 0 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9568 J9 J CHEM ENG DATA JI J. Chem. Eng. Data PD JUL PY 2010 VL 55 IS 7 BP 2434 EP 2443 DI 10.1021/je900838a PG 10 WC Thermodynamics; Chemistry, Multidisciplinary; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA 620OB UT WOS:000279508100012 ER PT J AU Zhang, C Raugei, S Eisenberg, B Carloni, P AF Zhang, Chao Raugei, Simone Eisenberg, Bob Carloni, Paolo TI Molecular Dynamics in Physiological Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID FREE-ENERGY CALCULATIONS; JUNCTION POTENTIAL CORRECTIONS; AQUEOUS-SOLUTIONS; COMPUTER-SIMULATIONS; PAIR POTENTIALS; LIQUID WATER; FREE-SURFACE; SELECTIVITY; SOLVATION; CHANNELS AB The monovalent ions Na(+) and K(+) and Cl(-) are present in any living organism. The fundamental thermodynamic properties of solutions containing such ions is given as the excess (electro-)chemical potential differences of single ions at finite ionic strength. This quantity is key for many biological processes, including ion permeation in membrane ion channels and DNA-protein interaction. It is given by a chemical contribution, related to the ion activity, and an electric contribution, related to the Galvani potential of the water/air interface. Here we investigate molecular dynamics based predictions of these quantities by using a variety of ion/water force fields commonly used in biological simulation, namely the AMBER (the newly developed), CHARMM, OPLS, Dang95 with TIP3P, and SPC/E water. Comparison with experiment is made with the corresponding values for salts, for which data are available. The calculations based on the newly developed AMBER force field with TIP3P water agrees well with experiment for both KCl and NaCl electrolytes in water solutions, as previously reported. The simulations based on the CHARMM-TIP3P and Dang95-SPC/E force fields agree well for the KCl and NaCl solutions, respectively. The other models are not as accurate. Single cations excess (electro-)chemical potential differences turn out to be similar for all the force fields considered here. In the case of KCl, the calculated electric contribution is consistent with higher level calculations. Instead, such agreement is not found with NaCl. Finally, we found that the calculated activities for single Cl(-) ions turn out to depend clearly on the type of counterion used, with all the force fields investigated. The implications of these findings for biomolecular systems are discussed. C1 [Carloni, Paolo] SISSA, CNR INFN DEMOCRITOS, I-34014 Trieste, Italy. [Carloni, Paolo] Italian Inst Technol IIT, SISSA Unit, Trieste, Italy. [Raugei, Simone] Pacific NW Natl Lab, Richland, WA 99352 USA. [Eisenberg, Bob] Rush Univ, Med Ctr, Chicago, IL 60612 USA. [Zhang, Chao; Carloni, Paolo] FZ Juelich RWTH Aachen Univ, German Res Sch Simulat Sci, Aachen, Germany. RP Carloni, P (reprint author), FZ Juelich RWTH Aachen Univ, German Res Sch Simulat Sci, Aachen, Germany. EM p.carloni@grs-sim.de RI Zhang, Chao/F-1379-2010; Carloni, Paolo/H-8736-2013 OI Zhang, Chao/0000-0002-7167-0840; NR 100 TC 30 Z9 30 U1 13 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD JUL PY 2010 VL 6 IS 7 BP 2167 EP 2175 DI 10.1021/ct9006579 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 623OK UT WOS:000279751500024 PM 26615943 ER PT J AU Tasora, A Anitescu, M AF Tasora, Alessandro Anitescu, Mihai TI A Convex Complementarity Approach for Simulating Large Granular Flows SO JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS LA English DT Article DE fission reactor fuel; flow simulation; granular flow; mechanical contact ID RIGID-BODY DYNAMICS; MULTIBODY DYNAMICS; FRICTIONAL CONTACT; SILO AB Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted. [DOI: 10.1115/1.4001371] C1 [Tasora, Alessandro] Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. [Anitescu, Mihai] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Tasora, A (reprint author), Univ Parma, Dipartimento Ingn Ind, I-43100 Parma, Italy. EM tasora@ied.unipr.it; anitescu@mcs.anl.gov RI Tasora, Alessandro/G-2592-2010 FU Italian Ministry of University [2007Z7K4ZB]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX Financial support for A. T. is provided in part by the Italian Ministry of University under PRIN Grant No. 2007Z7K4ZB. M. A. was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. NR 41 TC 14 Z9 15 U1 0 U2 8 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 1555-1423 J9 J COMPUT NONLIN DYN JI J. Comput. Nonlinear Dyn. PD JUL PY 2010 VL 5 IS 3 AR 031004 DI 10.1115/1.4001371 PG 10 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA 612OP UT WOS:000278909800005 ER PT J AU James, SC Boriah, V AF James, Scott C. Boriah, Varun TI Modeling Algae Growth in an Open-Channel Raceway SO JOURNAL OF COMPUTATIONAL BIOLOGY LA English DT Article DE CE-QUAL; EFDC; modeling algae growth; raceway ID PHAEODACTYLUM-TRICORNUTUM; THALASSIOSIRA-PSEUDONANA; MICROALGAE; BACILLARIOPHYCEAE; TEMPERATURE; LIMITATION; FIXATION; CARBON AB Cost-effective implementation of microalgae as a solar-to-chemical energy conversion platform requires extensive system optimization; computer modeling can bring this to bear. This work uses modified versions of the U.S. Environmental Protection Agency's (EPA's) Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate hydrodynamics coupled to growth kinetics of algae (Phaeodactylum tricornutum) in open-channel raceways. The model allows the flexibility to manipulate a host of variables associated with raceway-design, algal-growth, water-quality, hydrodynamic, and atmospheric conditions. The model provides realistic results wherein growth rates follow the diurnal fluctuation of solar irradiation and temperature. The greatest benefit that numerical simulation of the flow system offers is the ability to design the raceway before construction, saving considerable cost and time. Moreover, experiment operators can evaluate the impacts of various changes to system conditions (e.g., depth, temperature, flow speeds) without risking the algal biomass under study. C1 [James, Scott C.; Boriah, Varun] Sandia Natl Labs, Livermore, CA 94551 USA. RP James, SC (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. EM scjames@sandia.gov OI James, Scott/0000-0001-7955-0491 FU Enabling & Predictive Simulation Research Institute; Sandia National Laboratories FX We are grateful to the Enabling & Predictive Simulation Research Institute, Sandia National Laboratories, and Bob Carling for financial support. We would also like to thank Ron Pate and Dominick Mendola for helpful comments on the early manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration (under contract DE-AC04-94AL85000). This work was supported in part by the Laboratory Directed Research and Development program at Sandia National Laboratories. NR 30 TC 52 Z9 52 U1 2 U2 41 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1066-5277 J9 J COMPUT BIOL JI J. Comput. Biol. PD JUL PY 2010 VL 17 IS 7 BP 895 EP 906 DI 10.1089/cmb.2009.0078 PG 12 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 626PB UT WOS:000279976800003 PM 20575668 ER PT J AU Lee, SC Rawat, V Lee, JF AF Lee, Seung-Cheol Rawat, Vineet Lee, Jin-Fa TI A hybrid finite/boundary element method for periodic structures on non-periodic meshes using an interior penalty formulation for Maxwell's equations SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Periodic structure; Interior penalty; Finite elements; Boundary elements ID FINITE; ARRAYS AB This paper presents a hybrid finite element/boundary element (FEBE) method for periodic structures. Periodic structures have been efficiently analyzed by solving for a single unit cell utilizing Floquet's theorem. However, most of the previous works require periodic meshes to properly impose the boundary conditions on the outer surfaces of the unit cell. To alleviate this restriction, the interior penalty method is adopted and implemented in this work. Also, the proper treatment of the boundary element part is addressed to account for the non-conformity of the boundary element mesh. Another ingredient of this work is the use of the efficient boundary element computation, accelerated by the Ewald transformation for the calculation of the periodic Green's function. Finally, the method is validated through examples which are discretized without the constraint of a periodic mesh. (c) 2010 Elsevier Inc. All rights reserved. C1 [Lee, Jin-Fa] Ohio State Univ, ECE Dept, ElectroSci Lab, Columbus, OH 43210 USA. [Rawat, Vineet] Stanford Univ, SLAC, Stanford, CA 94305 USA. [Lee, Seung-Cheol] Ansoft Corp, Pittsburgh, PA USA. RP Lee, JF (reprint author), Ohio State Univ, ECE Dept, ElectroSci Lab, Columbus, OH 43210 USA. EM lee.1802@osu.edu; vrawat@slac.stanford.edu; lee.1863@osu.edu FU Northrop Grumman Corporation FX The authors thank the Northrop Grumman Corporation for their interest and support of this study. NR 27 TC 7 Z9 7 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 J9 J COMPUT PHYS JI J. Comput. Phys. PD JUL 1 PY 2010 VL 229 IS 13 BP 4934 EP 4951 DI 10.1016/j.jcp.2010.03.014 PG 18 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 606IE UT WOS:000278415800005 ER PT J AU Rameau, JD Yang, HB Johnson, PD AF Rameau, J. D. Yang, H. -B. Johnson, P. D. TI Application of the Lucy-Richardson deconvolution procedure to high resolution photoemission spectra SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article; Proceedings Paper CT International Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy CY JUL 19-24, 2009 CL Zurich, SWITZERLAND SP Diamond, Paul Scherrer Inst, SOLEIL, MB SCI AB, Ferrovac GMbH, SPECS, MaNEP SWitzerland DE Photoemission; Superconductivity; Lucy-Richardson deconvolution ID SUPERCONDUCTORS; STATE AB Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space. (C) 2010 Elsevier B.V. All rights reserved. C1 [Rameau, J. D.; Yang, H. -B.; Johnson, P. D.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Johnson, PD (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM pdj@bnl.gov NR 16 TC 10 Z9 10 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUL PY 2010 VL 181 IS 1 SI SI BP 35 EP 43 DI 10.1016/j.elspec.2010.05.025 PG 9 WC Spectroscopy SC Spectroscopy GA 640WG UT WOS:000281084100009 ER PT J AU Braun, A Mun, BS Sun, Y Liu, Z Groning, O Mader, R Erat, S Zhang, X Mao, SS Pomjakushina, E Conder, K Graule, T AF Braun, A. Mun, B. S. Sun, Y. Liu, Z. Groening, O. Maeder, R. Erat, S. Zhang, X. Mao, S. S. Pomjakushina, E. Conder, K. Graule, T. TI Correlation of conductivity and angle integrated valence band photoemission characteristics in single crystal iron perovskites for 300 K < T < 800 K: Comparison of surface and bulk sensitive methods SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article; Proceedings Paper CT International Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy CY JUL 19-24, 2009 CL Zurich, SWITZERLAND SP Diamond, Paul Scherrer Inst, SOLEIL, MB SCI AB, Ferrovac GMbH, SPECS, MaNEP SWitzerland DE Perovskite; Metal-insulator transition; Cathode material; Conductivity; High temperature; Photoemission spectroscopy; Valence band ID LA1-XSRXMNO3; TRANSITIONS AB A single crystal monolith of La(0.9)Sr(0.1) FeO(3) and thin pulsed laser deposited film of La(0.8)Sr(0.2)Fe(0.8)Ni(0.2)O(3) were subject to angle integrated valence band photoemission spectroscopy in ultra high vacuum and conductivity experiments in ambient air at temperatures from 300K to 800K. Except for several sputtering and annealing cycles, the specimens were not prepared in situ. Peculiar changes in the temperature dependent, bulk representative conductivity profile as a result of reversible phase transitions, and irreversible chemical changes are semi-quantitatively reflected by the intensity variation in the more surface representative valence band spectra near the Fermi energy. X-ray photoelectron diffraction images reflect the symmetry as expected from bulk iron perovskites. The correlation of spectral details in the valence band photoemission spectra (VB PES) and details of the conductivity during temperature variation suggest that valuable information on electronic structure and transport properties of complex materials may be obtained without in situ preparation. (C) 2010 Elsevier B.V. All rights reserved. C1 [Braun, A.; Groening, O.; Maeder, R.; Erat, S.; Graule, T.] Swiss Fed Labs Mat Sci & Technol, Dept Modern Mat & Surfaces, Empa, CH-8600 Zurich, Switzerland. [Mun, B. S.; Liu, Z.] Ernest Orlando Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mun, B. S.] Hanyang Univ, Dept Phys, Ansan, South Korea. [Sun, Y.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Erat, S.] Swiss Fed Inst Technol, ETH Zurich, Dept Nonmetall Inorgan Mat, CH-8037 Zurich, Switzerland. [Zhang, X.; Mao, S. S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Zhang, X.; Mao, S. S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Pomjakushina, E.; Conder, K.] Paul Scherrer Inst, Lab Dev & Methods, CH-5232 Villigen, Switzerland. [Graule, T.] Tech Univ Bergakad Freiberg, D-09596 Freiberg, Germany. RP Braun, A (reprint author), Swiss Fed Labs Mat Sci & Technol, Dept Modern Mat & Surfaces, Empa, CH-8600 Zurich, Switzerland. EM artur.braun@alumni.ethz.ch RI Groning, Oliver/J-9727-2012; Mun, Bongjin /G-1701-2013; Zhang, Xiaojun/H-8539-2013; Liu, Zhi/B-3642-2009; BRAUN, Artur/A-1154-2009 OI Liu, Zhi/0000-0002-8973-6561; BRAUN, Artur/0000-0002-6992-7774 NR 26 TC 2 Z9 2 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD JUL PY 2010 VL 181 IS 1 SI SI BP 56 EP 62 DI 10.1016/j.elspec.2010.05.024 PG 7 WC Spectroscopy SC Spectroscopy GA 640WG UT WOS:000281084100012 ER PT J AU Bingham, P Arrowood, L AF Bingham, Philip Arrowood, Lloyd TI Projection registration applied to nondestructive testing SO JOURNAL OF ELECTRONIC IMAGING LA English DT Article ID IMAGE REGISTRATION AB Registration of radiographic and computed tomography (CT) data has the potential to allow automated metrology and defect detection. While registration of the three-dimensional reconstructed data is a common task in the medical industry for registration of data sets from multiple detection systems, registration of projection sets has only seen development in the area of tomotherapy. Efforts in projection registration have employed a method named Fourier phase matching (FPM). This work discusses implementation and results for the application of the FPM method to industrial applications for the nondestructive testing (NDT) community. The FPM method has been implemented and modified for industrial application. Testing with simulated and experimental x-ray CT data shows excellent performance with respect to the resolution of the imaging system. (C) 2010 SPIE and IS&T. [DOI: 10.1117/1.3489122] C1 [Bingham, Philip] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Bingham, P (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM binghampr@ornl.gov NR 12 TC 2 Z9 2 U1 0 U2 6 PU IS&T & SPIE PI BELLINGHAM PA 1000 20TH ST, BELLINGHAM, WA 98225 USA SN 1017-9909 J9 J ELECTRON IMAGING JI J. Electron. Imaging PD JUL-SEP PY 2010 VL 19 IS 3 AR 031208 DI 10.1117/1.3489122 PG 8 WC Engineering, Electrical & Electronic; Optics; Imaging Science & Photographic Technology SC Engineering; Optics; Imaging Science & Photographic Technology GA 657YD UT WOS:000282454300009 ER PT J AU Lam, EY Gleason, SS Niel, KS AF Lam, Edmund Y. Gleason, Shaun S. Niel, Kurt S. TI Quality Control by Artificial Vision SO JOURNAL OF ELECTRONIC IMAGING LA English DT Editorial Material C1 [Lam, Edmund Y.] Univ Hong Kong, Dept Elect & Elect Engn, Imaging Syst Lab, Comp Engn Program, Pokfulam, Hong Kong, Peoples R China. [Gleason, Shaun S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Niel, Kurt S.] Upper Austria Univ Appl Sci Engn & Environm Studi, A-4600 Wels, Austria. RP Lam, EY (reprint author), Univ Hong Kong, Dept Elect & Elect Engn, Imaging Syst Lab, Comp Engn Program, Pokfulam, Hong Kong, Peoples R China. NR 0 TC 0 Z9 0 U1 0 U2 4 PU IS&T & SPIE PI BELLINGHAM PA 1000 20TH ST, BELLINGHAM, WA 98225 USA SN 1017-9909 J9 J ELECTRON IMAGING JI J. Electron. Imaging PD JUL-SEP PY 2010 VL 19 IS 3 AR 031201 PG 2 WC Engineering, Electrical & Electronic; Optics; Imaging Science & Photographic Technology SC Engineering; Optics; Imaging Science & Photographic Technology GA 657YD UT WOS:000282454300002 ER PT J AU Kim, KH Carcelen, V Bolotnikov, AE Camarda, GS Gul, R Hossain, A Yang, G Cui, Y James, RB AF Kim, K. H. Carcelen, V. Bolotnikov, A. E. Camarda, G. S. Gul, R. Hossain, A. Yang, G. Cui, Y. James, R. B. TI Effective Surface Passivation of CdMnTe Materials SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 28th United States Workshop on Physics and Chemistry of II-VI Materials CY OCT 06-08, 2009 CL Chicago, IL SP USA CECOM Night Vis & Elect Sensors Directorate, USA Res Lab, USA SMDC, US Navy Electro Opt Ctr, Penn State Appl Res Lab, Off Naval Res, Air Force Res Lab, Minerals, Met & Mat Soc DE CdMnTe; CdMnTe:In; passivation; leakage current; ammonium sulfide; ammonium fluoride; tellurium oxide; surface recombination; charge-collection efficiency ID RAY AB Passivation is an important process that reduces surface leakage current and its attendant noise. We treated detector-grade large-volume CdMnTe:In samples with an (NH(4))-based passivant, and compared the results with untreated samples by measuring current-voltage characteristics, surface recombination velocity, Raman spectroscopy, and charge-collection mapping. The leakage current of the passivated CdMnTe (CMT) detectors decreased five to ten times, and surface recombination declined five to six times, depending on the passivation conditions applied. We satisfactorily explained these improvements in detector performance as resulting from different passivation layers that were generated by distinct chemical reactions, as determined by the pH of the passivant. C1 [Kim, K. H.; Carcelen, V.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Hossain, A.; Yang, G.; Cui, Y.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Carcelen, V.] Univ Autonoma Madrid, E-28049 Madrid, Spain. RP Kim, KH (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM khkim@bnl.gov RI Yang, Ge/G-1354-2011; Carcelen, Veronica /B-3750-2017 NR 9 TC 7 Z9 8 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2010 VL 39 IS 7 BP 1015 EP 1018 DI 10.1007/s11664-010-1090-y PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 620MS UT WOS:000279504600030 ER PT J AU Yang, G Bolotnikov, AE Li, L Camarda, GS Cui, Y Hossain, A Kim, K Carcelen, V Gul, R James, RB AF Yang, G. Bolotnikov, A. E. Li, L. Camarda, G. S. Cui, Y. Hossain, A. Kim, K. Carcelen, V. Gul, R. James, R. B. TI Investigation of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 28th United States Workshop on Physics and Chemistry of II-VI Materials CY OCT 06-08, 2009 CL Chicago, IL SP USA CECOM Night Vis & Elect Sensors Directorate, USA Res Lab, USA SMDC, US Navy Electro Opt Ctr, Penn State Appl Res Lab, Off Naval Res, Air Force Res Lab, Minerals, Met & Mat Soc DE CMT; synchrotron white-beam x-ray topography; photoluminescence spectra; detector response; twins ID X-RAY; TOPOGRAPHY CHARACTERIZATION; SINGLE-CRYSTAL; CDTE; GROWTH; MICROGRAVITY; ZINC AB Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam x-ray topography (SWBXT), current-voltage (I-V) measurement, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors of radiation exposure. The crystal from the stable growth region proved to be superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by one order of magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its (mu tau)(e) value was 2.6 x 10(-3) cm(2)/V, which is acceptable for thin detectors, including their application in medicine. C1 [Yang, G.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Carcelen, V.] Univ Autonoma Madrid, Fac Ciencias, Lab Crecimiento Cristales, Dpto Fis Mat, E-28049 Madrid, Spain. [Li, L.] Yinnel Tech Inc, South Bend, IN USA. [Gul, R.] Idaho State Univ, Pocatello, ID 83209 USA. RP Yang, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM gyang@bnl.gov RI Yang, Ge/G-1354-2011; Carcelen, Veronica /B-3750-2017 NR 15 TC 7 Z9 9 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2010 VL 39 IS 7 BP 1053 EP 1057 DI 10.1007/s11664-009-1050-6 PG 5 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 620MS UT WOS:000279504600036 ER PT J AU Washington, AL Teague, LC Duff, MC Burger, A Groza, M Buliga, V AF Washington, Aaron L., II Teague, Lucile C. Duff, Martine C. Burger, Arnold Groza, Michael Buliga, Vladimir TI Atmospheric Effects on the Performance of CdZnTe Single-Crystal Detectors SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article; Proceedings Paper CT 28th United States Workshop on Physics and Chemistry of II-VI Materials CY OCT 06-08, 2009 CL Chicago, IL SP USA CECOM Night Vis & Elect Sensors Directorate, USA Res Lab, USA SMDC, US Navy Electro Opt Ctr, Penn State Appl Res Lab, Off Naval Res, Air Force Res Lab, Minerals, Met & Mat Soc DE CZT; temperature; humidity; detector performance; electrical probe placement reproducibility ID CZT DETECTORS; BRIDGMAN AB The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented. C1 [Washington, Aaron L., II; Duff, Martine C.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, Arnold; Groza, Michael; Buliga, Vladimir] Fisk Univ, Nashville, TN 37208 USA. RP Washington, AL (reprint author), Savannah River Natl Lab, 773-42A, Aiken, SC 29808 USA. EM aaron.washington@srnl.doe.gov NR 15 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD JUL PY 2010 VL 39 IS 7 BP 1104 EP 1109 DI 10.1007/s11664-010-1193-5 PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 620MS UT WOS:000279504600043 ER PT J AU Cho, K Grover, RO Assanis, D Filipi, Z Szekely, G Najt, P Rask, R AF Cho, Kukwon Grover, Ronald O., Jr. Assanis, Dennis Filipi, Zoran Szekely, Gerald Najt, Paul Rask, Rod TI Combining Instantaneous Temperature Measurements and CFD for Analysis of Fuel Impingement on the DISI Engine Piston Top SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE computational fluid dynamics; heat measurement; thermocouples; neodymium ID HEAT-TRANSFER; COMBUSTION; SURFACE AB A two-pronged experimental and computational study was conducted to explore the formation, transport, and vaporization of a wall film located at the piston surface within a four-valve, pent-roof, direct-injection spark-ignition engine, with the fuel injector located between the two intake valves. Negative temperature swings were observed at three piston locations during early injection, thus confirming the ability of fast-response thermocouples to capture the effects of impingement and heat loss associated with fuel film evaporation. Computational fluid dynamics (CFD) simulation results indicated that the fuel film evaporation process is extremely fast under conditions present during intake. Hence, the heat loss measured on the surface can be directly tied to the heating of the fuel film and its complete evaporation, with the wetted area estimated based on CFD predictions. This finding is critical for estimating the local fuel film thickness from measured heat loss. The simulated fuel film thickness and transport corroborated well temporally and spatially with measurements at thermocouple locations directly in the path of the spray, thus validating the spray and impingement models. Under the strategies tested, up to 23% of fuel injected impinges upon the piston and creates a fuel film with thickness of up to 1.2 mu m. In summary, the study demonstrates the usefulness of heat flux measurements to quantitatively characterize the fuel film on the piston top and allows for validation of the CFD code. (C)2010 American Society of Mechanical Engineers C1 [Cho, Kukwon; Grover, Ronald O., Jr.; Assanis, Dennis; Filipi, Zoran] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Szekely, Gerald; Najt, Paul; Rask, Rod] Gen Motors Res & Dev, Warren, MI 48090 USA. RP Cho, K (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU General Motors/University of Michigan Collaborative Research Laboratory FX This research has been sponsored by the General Motors/University of Michigan Collaborative Research Laboratory for Engine System Research at the University of Michigan. NR 24 TC 1 Z9 1 U1 2 U2 11 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2010 VL 132 IS 7 AR 072805 DI 10.1115/1.4000293 PG 9 WC Engineering, Mechanical SC Engineering GA 588NY UT WOS:000277079800015 ER PT J AU McIntyre, DL Woodruff, SD Ontko, JS AF McIntyre, Dustin L. Woodruff, Steven D. Ontko, John S. TI Lean-Burn Stationary Natural Gas Engine Operation With a Prototype Laser Spark Plug SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE engines; ignition; laser beam applications; neodymium; optical pumping; Q-switching; yttrium compounds AB An end pumped passively Q-switched laser igniter was developed to meet the ignition system needs of large bore lean burn stationary natural gas engines. The laser spark plug used an optical fiber coupled diode pump source to axially pump a passively Q-switched Nd:YAG laser and transmit the laser pulse through a custom designed lens. The optical fiber coupled pump source permits the excitation energy to be transmitted to the spark plug at relatively low optical power, less than 250 W. The Q-switched laser then generates as much as 8 mJ of light in 2.5 ns, which is focused through an asymmetric biconvex lens to create a laser spark from a focused intensity of approximately 225 GW/cm(2). A single cylinder engine fueled with either natural gas only or hydrogen augmented natural gas was operated with the laser spark plug for approximately 10 h in tests spanning 4 days. The tests were conducted with fixed engine speed, fixed boost pressure, no exhaust gas recirculation, and laser spark timing advance set at maximum brake torque timing. Engine operational and emissions data were collected and analyzed. (C)2010 American Society of Mechanical Engineers C1 [McIntyre, Dustin L.; Woodruff, Steven D.; Ontko, John S.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP McIntyre, DL (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. FU West Virginia University Mechanical and Aerospace Engineering FX The authors would like to thank the National Energy Technology Laboratory (NETL), U.S. Department of Energy. They would also like to thank the reciprocating engine program contract support personnel, Doug Horton and Todd Worstell, and West Virginia University Mechanical and Aerospace Engineering graduate students, Sam George and Jacinto Solano. NR 17 TC 3 Z9 3 U1 1 U2 9 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2010 VL 132 IS 7 AR 072804 DI 10.1115/1.4000292 PG 6 WC Engineering, Mechanical SC Engineering GA 588NY UT WOS:000277079800014 ER PT J AU Strakey, PA Eggenspieler, G AF Strakey, Peter A. Eggenspieler, Gilles TI Development and Validation of a Thickened Flame Modeling Approach for Large Eddy Simulation of Premixed Combustion SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE combustion; flames; thermal diffusivity ID TURBULENT COMBUSTION; ASYMPTOTIC STRUCTURE; DYNAMIC FORMULATION; WRINKLING MODEL; LES AB The development of a dynamic thickened flame (TF) turbulence-chemistry interaction model is presented based on a novel approach to determine the subfilter flame wrinkling efficiency. The basic premise of the TF model is to artificially decrease the reaction rates and increase the species and thermal diffusivities by the same amount, which thickens the flame to a scale that can be resolved on the large eddy simulation (LES) grid while still recovering the laminar flame speed. The TF modeling approach adopted here uses local reaction rates and gradients of product species to thicken the flame to a scale large enough to be resolved by the LES grid. The thickening factor, which is a function of the local grid size and laminar flame thickness, is only applied in the flame region and is commonly referred to as dynamic thickening. Spatial filtering of the velocity field is used to determine the efficiency function by accounting for turbulent kinetic energy between the grid-scale and the thickened flame scale. The TF model was implemented into the commercial computational fluid dynamics code FLUENT. Validation in the approach is conducted by comparing model results to experimental data collected in a laboratory-scale burner. The burner is based on an enclosed scaled-down version of the low swirl injector developed at Lawrence Berkeley National Laboratory. A perfectly premixed lean methane-air flame was studied, as well as the cold-flow characteristics of the combustor. Planar laser induced fluorescence of the hydroxyl molecule was collected for the combusting condition, as well as the velocity field data using particle image velocimetry. Thermal imaging of the quartz liner surface temperature was also conducted to validate the thermal wall boundary conditions applied in the LES calculations. C1 [Strakey, Peter A.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Eggenspieler, Gilles] ANSYS Inc, Canonsburg, PA 15317 USA. RP Strakey, PA (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. FU DoE Advanced Research FX The authors would like to acknowledge the DoE Advanced Research Program for financial support of this work. The authors would also like to thank Ludovic Durand and Wolfgang Polifke (TU Munich) for sharing their TF model UDF. Also, the help of NR 20 TC 3 Z9 3 U1 0 U2 14 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2010 VL 132 IS 7 AR 071501 DI 10.1115/1.4000119 PG 9 WC Engineering, Mechanical SC Engineering GA 588NY UT WOS:000277079800001 ER PT J AU Weiland, NT Strakey, PA AF Weiland, Nathan T. Strakey, Peter A. TI NOx Reduction by Air-Side Versus Fuel-Side Dilution in Hydrogen Diffusion Flame Combustors SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE air pollution control; carbon compounds; combined cycle power stations; combustion; diffusion; flames; nitrogen compounds; stratified flow; thermal stability ID GAS-TURBINE; EMISSIONS; ENGINE; NUMBER AB Lean-direct-injection (LDI) combustion is being considered at the National Energy Technology Laboratory as a means to attain low NOx emissions in a high-hydrogen gas turbine combustor. Integrated gasification combined cycle (IGCC) plant designs can create a high-hydrogen fuel using a water-gas shift reactor and subsequent CO2 separation. The IGCC's air separation unit produces a volume of N-2 roughly equivalent to the volume of H-2 in the gasifier product stream, which can be used to help reduce peak flame temperatures and NOx in the diffusion flame combustor. Placement of this diluent in either the air or fuel streams is a matter of practical importance, and it has not been studied to date for LDI combustion. The current work discusses how diluent placement affects diffusion flame temperatures, residence times, and stability limits, and their resulting effects on NOx emissions. From a peak flame temperature perspective, greater NOx reduction should be attainable with fuel dilution rather than air or independent dilution in any diffusion flame combustor with excess combustion air, due to the complete utilization of the diluent as a heat sink at the flame front, although the importance of this mechanism is shown to diminish as flow conditions approach stoichiometric proportions. For simple LDI combustor designs, residence time scaling relationships yield a lower NOx production potential for fuel-side dilution due to its smaller flame size, whereas air dilution yields a larger air entrainment requirement and a subsequently larger flame, with longer residence times and higher thermal NOx generation. For more complex staged-air LDI combustor designs, the dilution of the primary combustion air at fuel-rich conditions can result in the full utilization of the diluent for reducing the peak flame temperature, while also controlling flame volume and residence time for NOx reduction purposes. However, differential diffusion of hydrogen out of a diluted hydrogen/nitrogen fuel jet can create regions of higher hydrogen content in the immediate vicinity of the fuel injection point than can be attained with the dilution of the air stream, leading to increased flame stability. By this mechanism, fuel-side dilution extends the operating envelope to areas with higher velocities in the experimental configurations tested, where faster mixing rates further reduce flame residence times and NOx emissions. Strategies for accurate computational modeling of LDI combustors' stability characteristics are also discussed. C1 [Weiland, Nathan T.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Weiland, Nathan T.] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA. [Strakey, Peter A.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Weiland, NT (reprint author), Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM nathan.weiland@mail.wvu.edu OI Weiland, Nathan/0000-0001-9382-6909 FU National Energy Technology Laboratory [DE-AC26-04NT41817] FX The support from the Turbines Program of the U. S. Department of Energy is gratefully acknowledged, along with the administrative support of the Oak Ridge Institute for Science and Education. A portion of this technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in hydrogen gas turbine combustion under the RDS Contract No. DE-AC26-04NT41817. NR 37 TC 4 Z9 4 U1 0 U2 8 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD JUL PY 2010 VL 132 IS 7 AR 071504 DI 10.1115/1.4000268 PG 9 WC Engineering, Mechanical SC Engineering GA 588NY UT WOS:000277079800004 ER PT J AU Ovchinnikov, YN Kresin, VZ AF Ovchinnikov, Yu. N. Kresin, V. Z. TI Josephson effect between nanoclusters in resonance conditions SO JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS LA English DT Article AB A general expression is derived for the Josephson current between nanoclusters. It is shown that, in the resonance conditions between electron levels of clusters, the expression for the current obtained in the tunnel Hamiltonian model becomes invalid. In the case of degeneracy or close to degeneracy of energy levels in isolated clusters, the critical Josephson current may exceed the value obtained in the model of tunnel Hamiltonian in the large parameter, viz., the ratio of the order parameter |Delta| to the distance between the resonance level and the levels closest to it. C1 [Ovchinnikov, Yu. N.] Russian Acad Sci, Landau Inst Theoret Phys, Moscow 117334, Russia. [Ovchinnikov, Yu. N.] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Kresin, V. Z.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Ovchinnikov, YN (reprint author), Russian Acad Sci, Landau Inst Theoret Phys, Moscow 117334, Russia. EM ovc@itp.ac.ru FU USAFOSR; Russian Foundation for Basic Research; European Office of Aerospace Research and Development (EOARD) [097006] FX The research of V.Z. Kresin was supported financially by USAFOSR; the research of Yu. N. Ovchinnikov was supported by the Russian Foundation for Basic Research and European Office of Aerospace Research and Development (EOARD) (grant no. 097006). NR 10 TC 1 Z9 1 U1 0 U2 2 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7761 J9 J EXP THEOR PHYS+ JI J. Exp. Theor. Phys. PD JUL PY 2010 VL 111 IS 1 BP 82 EP 96 DI 10.1134/S1063776110070083 PG 15 WC Physics, Multidisciplinary SC Physics GA 640DB UT WOS:000281027000008 ER PT J AU Bickford, CP Hanson, DT McDowell, NG AF Bickford, Christopher P. Hanson, David T. McDowell, Nate G. TI Influence of diurnal variation in mesophyll conductance on modelled C-13 discrimination: results from a field study SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Carbon isotope discrimination; Farquhar model; internal conductance; Juniperus; mesophyll conductance; stomatal conductance ID CARBON-ISOTOPE DISCRIMINATION; WATER-USE EFFICIENCY; INTERNAL CONDUCTANCE; ILLUMINATED LEAVES; RESPIRED CO2; IN-VIVO; PHOTOSYNTHETIC CAPACITY; RESPIRATORY METABOLISM; CARBOXYLASE OXYGENASE; TEMPERATURE RESPONSE AB Mesophyll conductance to CO2 (g(m)) limits carbon assimilation and influences carbon isotope discrimination (delta) under most environmental conditions. Current work is elucidating the environmental regulation of g(m), but the influence of g(m) on model predictions of delta remains poorly understood. In this study, field measurements of delta and g(m) were obtained using a tunable diode laser spectroscope coupled to portable photosynthesis systems. These data were used to test the importance of g(m) in predicting delta using the comprehensive Farquhar model of delta (delta(comp)), where g(m) was parameterized using three methods based on: (i) mean g(m); (ii) the relationship between stomatal conductance (g(s)) and g(m); and (iii) the relationship between time of day (TOD) and g(m). Incorporating mean g(m), g(s)-based g(m), and TOD-based g(m) did not consistently improve delta(comp) predictions of field-grown juniper compared with the simple model of delta (delta(simple)) that omits fractionation factors associated with g(m) and decarboxylation. Sensitivity tests suggest that b, the fractionation due to carboxylation, was lower (25 parts per thousand) than the value commonly used in delta(comp) (29 parts per thousand) and delta(simple) (27 parts per thousand). These results demonstrate the limits of all tested models in predicting observed juniper delta, largely due to unexplained offsets between predicted and observed values that were not reconciled in sensitivity tests of variability in g(m), b, or e, the day respiratory fractionation. C1 [Bickford, Christopher P.; Hanson, David T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87544 USA. RP Bickford, CP (reprint author), Landcare Res, POB 40, Lincoln 7640, New Zealand. EM christopher.p.bickford@gmail.com RI Hanson, David/J-8034-2012 FU Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory [95566-001-05]; National Science Foundation [IOS-0719118]; UNM Biology Dept.; UNM Biology Dept. GRAC; UNM SRAC FX We thank H. Powers, K. Brown, and C. Meyer for extensive technical support, and the Institute of Geophysics and Planetary Physics at Los Alamos National Laboratory (project 95566-001-05), the National Science Foundation (IOS-0719118), the UNM Biology Dept. Lynn A. Hertel Graduate Research Award, UNM Biology Dept. GRAC, and UNM SRAC for funding. We also thank E. Erhardt for statistical advice and P. Holland for assistance with R. W. Pockman, B. Helliker and two anonymous reviewers provided helpful comments on the manuscript. NR 66 TC 17 Z9 17 U1 1 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 J9 J EXP BOT JI J. Exp. Bot. PD JUL PY 2010 VL 61 IS 12 BP 3223 EP 3233 DI 10.1093/jxb/erq137 PG 11 WC Plant Sciences SC Plant Sciences GA 627CK UT WOS:000280016200005 PM 20501745 ER PT J AU Kreuzer, HW Wahl, JH Metoyer, CN Colburn, HA Wahl, KL AF Kreuzer, Helen W. Wahl, Jon H. Metoyer, Candace N. Colburn, Heather A. Wahl, Karen L. TI Detection of Acetone Processing of Castor Bean Mash for Forensic Investigation of Ricin Preparation Methods SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; ricin; preparation method; acetone; solid-phase microextraction; headspace analysis; gas chromatography-mass spectrometry ID SOLID-PHASE MICROEXTRACTION; VULGARIS L. AB Samples containing the toxic castor bean protein ricin have been recently seized in connection with biocriminal activity. Analytical methods that enable investigators to determine how the samples were prepared and to match seized samples to potential source materials are needed. One commonly described crude ricin preparation method is acetone extraction of crushed castor beans. Here, we describe the use of solid-phase microextraction and headspace analysis to determine whether castor beans were processed by acetone extraction. We prepared acetone-extracted castor bean mash, along with controls of unextracted mash and mash extracted with nonacetone organic solvents. Samples of acetone-extracted mash and unextracted mash were stored in closed containers for up to 109 days at both room temperature and -20 degrees C, and in open containers at room temperature for up to 94 days. Acetone-extracted bean mash could consistently be statistically distinguished from controls, even after storage in open containers for 94 days. C1 [Kreuzer, Helen W.; Wahl, Jon H.; Metoyer, Candace N.; Colburn, Heather A.; Wahl, Karen L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kreuzer, HW (reprint author), Pacific NW Natl Lab, 999 Battelle Blvd,MSIN P7-50, Richland, WA 99352 USA. EM Helen.Kreuzer@pnl.gov FU Department of Homeland Security Science and Technology Directorate [AGRHSHQDC07X00451] FX Funding provided through contract AGRHSHQDC07X00451 to Pacific Northwest National Laboratory by the Department of Homeland Security Science and Technology Directorate. NR 21 TC 5 Z9 5 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1198 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2010 VL 55 IS 4 BP 908 EP 914 DI 10.1111/j.1556-4029.2010.01334.x PG 7 WC Medicine, Legal SC Legal Medicine GA 619RQ UT WOS:000279448200009 PM 20345778 ER PT J AU Chumbley, LS Morris, MD Kreiser, MJ Fisher, C Craft, J Genalo, LJ Davis, S Faden, D Kidd, J AF Chumbley, L. Scott Morris, Max D. Kreiser, M. James Fisher, Charles Craft, Jeremy Genalo, Lawrence J. Davis, Stephen Faden, David Kidd, Julie TI Validation of Tool Mark Comparisons Obtained Using a Quantitative, Comparative, Statistical Algorithm SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; tool mark comparison; comparison microscope; screwdriver; statistics; striae AB A statistical analysis and computational algorithm for comparing pairs of tool marks via profilometry data is described. Empirical validation of the method is established through experiments based on tool marks made at selected fixed angles from 50 sequentially manufactured screwdriver tips. Results obtained from three different comparison scenarios are presented and are in agreement with experiential knowledge possessed by practicing examiners. Further comparisons between scores produced by the algorithm and visual assessments of the same tool mark pairs by professional tool mark examiners in a blind study in general show good agreement between the algorithm and human experts. In specific instances where the algorithm had difficulty in assessing a particular comparison pair, results obtained during the collaborative study with professional examiners suggest ways in which algorithm performance may be improved. It is concluded that the addition of contextual information when inputting data into the algorithm should result in better performance. C1 [Chumbley, L. Scott] Iowa State Univ, Dept Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Kreiser, M. James] Illinois State Police, Springfield, IL 62712 USA. RP Chumbley, LS (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames Lab, 2220 Hoover, Ames, IA 50011 USA. EM chumbley@iastate.edu FU National Institute of Justice [2004-I-J-R-088]; Iowa State University with the US Department of Energy [W-7405-Eng-82] FX The authors are extremely grateful to Wayne Buttermore of Leica Microsystems and Kevin Boulay and Mike Howell from Leeds Precison Instruments for providing comparison microscopes. Without their assistance much of this study could not have been conducted. We are also grateful to officers and organizers of the 2008 Association of Firearms and Tool Mark Examiners Training Seminar held in Honolulu, especially Jim Hamby, Cindy Saito, and Curtis Kubo, for helping us with the booth and getting volunteers for the study. Finally, we gratefully acknowledge the assistance of all the AFTE members who took the time to participate in our study. This study was supported by the National Institute of Justice under contract 2004-I-J-R-088, and was performed in part at Ames Laboratory, which is operated under contract No. W-7405-Eng-82 by Iowa State University with the US Department of Energy. NR 7 TC 14 Z9 14 U1 3 U2 11 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1198 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2010 VL 55 IS 4 BP 953 EP 961 DI 10.1111/j.1556-4029.2010.01424.x PG 9 WC Medicine, Legal SC Legal Medicine GA 619RQ UT WOS:000279448200013 PM 20487168 ER PT J AU De Paoli, G Lewis, SA Schuette, EL Lewis, LA Connatser, RM Farkas, T AF De Paoli, Giorgia Lewis, Samuel A., Sr. Schuette, Ellyn L. Lewis, Linda A. Connatser, Raynella M. Farkas, Tivadar TI Photo- and Thermal-Degradation Studies of Select Eccrine Fingerprint Constituents SO JOURNAL OF FORENSIC SCIENCES LA English DT Article DE forensic science; latent fingerprint; fingerprint chemistry; artificial eccrine fingerprint; photo-degradation; thermal-degradation; liquid chromatography-electrospray mass spectrometry; atmospheric pressure chemical ionization-mass spectrometry ID AMINO-ACID-METABOLISM; INHERITED DISORDERS; BIOLOGICAL INTEREST; DIAGNOSIS; SPECTROMETRY; TOOL AB Photo- and thermal-degradation studies on eccrine fingerprint components are presented herein. Dilute distinct solutions of urea, lactic acid, and seven amino acids were deposited on steel coupons and Teflon (R) disks, exposed to artificial sunlight or heat, extracted, and analyzed. This aim of this study was to determine whether the investigated eccrine components, previously determined to be Raman active for a parallel study, experienced photo- or thermally induced degradation, and if so, to determine the rate and identify any detectable products. Neither the amino acids nor urea exhibited photo-degradation; however, when heated for a period of three minutes, the onset of thermal-degradation was initiated at 100 degrees C for the amino acids and 100 degrees C for urea. Lactic acid, the major polymerization initiator of superglue fuming, showed photochemical and thermal-degradation. These results could be used for future development of new latent fingerprint visualization methods, especially when lactic acid is degraded. C1 [Lewis, Samuel A., Sr.; Connatser, Raynella M.] Oak Ridge Natl Lab, Knoxville, TN 37932 USA. [De Paoli, Giorgia; Schuette, Ellyn L.; Lewis, Linda A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Farkas, Tivadar] Phenomenex Inc, Torrance, CA 90501 USA. RP Lewis, SA (reprint author), Oak Ridge Natl Lab, NTRC Bldg MS 6159,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM lewissasr@ornl.gov FU National Institute of Justice [NIJ 2005-DD-R-094]; Technical Support Working Group [Task T-2477] FX Supported by grants from the National Institute of Justice (NIJ 2005-DD-R-094) and the Technical Support Working Group (Task T-2477). NR 15 TC 18 Z9 18 U1 6 U2 25 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-1198 J9 J FORENSIC SCI JI J. Forensic Sci. PD JUL PY 2010 VL 55 IS 4 BP 962 EP 969 DI 10.1111/j.1556-4029.2010.01420.x PG 8 WC Medicine, Legal SC Legal Medicine GA 619RQ UT WOS:000279448200014 PM 20487155 ER PT J AU Rubenstein, R Chang, B Gray, P Piltch, M Bulgin, MS Sorensen-Melson, S Miller, MW AF Rubenstein, Richard Chang, Binggong Gray, Perry Piltch, Martin Bulgin, Marie S. Sorensen-Melson, Sharon Miller, Michael W. TI A novel method for preclinical detection of PrPSc in blood SO JOURNAL OF GENERAL VIROLOGY LA English DT Article ID CREUTZFELDT-JAKOB-DISEASE; RESISTANT PRION PROTEIN; CHRONIC WASTING DISEASE; IN-VITRO AMPLIFICATION; TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY; NATURAL SCRAPIE; IMMUNOHISTOCHEMICAL DETECTION; PRESYMPTOMATIC DETECTION; CYCLIC AMPLIFICATION; INFECTIOUS PRIONS AB In this study, we demonstrate that a moderate amount of protein misfolding cyclic amplification (PMCA) coupled to a novel surround optical fibre immunoassay (SOFIA) detection scheme can be used to detect the disease-associated form of the prion protein (PrPSc) in protease-untreated plasma from preclinical and clinical scrapie sheep, and white-tailed deer with chronic wasting disease, following natural and experimental infection. PrPSc, resulting from a conformational change of the normal (cellular) form of prion protein (PrPC), is considered central to neuropathogenesis and serves as the only reliable molecular marker for prion disease diagnosis. While the highest levels of PrPSc are present in the central nervous system, the development of a reasonable diagnostic assay requires the use of body fluids that characteristically contain exceedingly low levels of PrPSc. PrPSc has been detected in the blood of sick animals by means of PMCA technology. However, repeated cycling over several days, which is necessary for PMCA of blood material, has been reported to result in decreased specificity (false positives). To generate an assay for PrPSc in blood that is both highly sensitive and specific, we have utilized limited serial PMCA (sPMCA) with SOFIA. We did not find any enhancement of sPMCA with the addition of polyadenylic acid nor was it necessary to match the genotypes of the PrPC and PrPSc sources for efficient amplification. C1 [Rubenstein, Richard; Chang, Binggong] Suny Downstate Med Ctr, Dept Neurol, Brooklyn, NY 11203 USA. [Rubenstein, Richard; Chang, Binggong] Suny Downstate Med Ctr, Dept Physiol Pharmacol, Brooklyn, NY 11203 USA. [Gray, Perry; Piltch, Martin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bulgin, Marie S.; Sorensen-Melson, Sharon] Univ Idaho, Caine Vet Teaching & Res Ctr, Caldwell, ID 83607 USA. [Miller, Michael W.] Colorado Div Wildlife, Wildlife Res Ctr, Ft Collins, CO 80526 USA. RP Rubenstein, R (reprint author), Suny Downstate Med Ctr, Dept Neurol, 450 Clarkson Ave, Brooklyn, NY 11203 USA. EM richard.rubenstein@downstate.edu RI chang, binggong/F-5043-2014 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; Colorado Division of Wildlife, US Department of Defense [NP020048, NP020152]; Los Alamos National Laboratory FX The authors would like to thank Mary Matlock (Caine Center) for her excellent technical assistance on the third eyelid IHC studies and photograph. We are also grateful to T. Sirochman, M. Sirochman, L. Wolfe and others for deer care, clinical assessments and sampling. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. This work was supported in part by the Colorado Division of Wildlife, grants (NP020048, NP020152) from the US Department of Defense National Prion Research Program and the Los Alamos National Laboratory Technology Maturation programme. NR 49 TC 29 Z9 29 U1 0 U2 8 PU SOC GENERAL MICROBIOLOGY PI READING PA MARLBOROUGH HOUSE, BASINGSTOKE RD, SPENCERS WOODS, READING RG7 1AG, BERKS, ENGLAND SN 0022-1317 J9 J GEN VIROL JI J. Gen. Virol. PD JUL PY 2010 VL 91 BP 1883 EP 1892 DI 10.1099/vir.0.020164-0 PN 7 PG 10 WC Biotechnology & Applied Microbiology; Virology SC Biotechnology & Applied Microbiology; Virology GA 623NH UT WOS:000279747600029 PM 20357038 ER PT J AU Niehof, JT Fritz, TA Friedel, RHW Chen, JS AF Niehof, Jonathan T. Fritz, Theodore A. Friedel, Reinhard H. W. Chen, Jiasheng TI Size and location of cusp diamagnetic cavities observed by Polar SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID HIGH-ALTITUDE CUSP; SOLAR-WIND CONDITIONS; MAGNETIC-FIELD; ENERGETIC IONS; HIGH-LATITUDE; ACCELERATION REGION; BOUNDARY-LAYERS; CLUSTER SURVEY; DIPOLE TILT; HOT PLASMA AB We examine 6 years of cusp crossings by the Polar spacecraft to determine the size and solar wind dependence of cusp diamagnetic cavities (CDCs) and energetic particle events (CEPs). Both are frequently observed ( about 50% of the time spent in the cusp). Neither shows a strong statistical dependence on upstream conditions beyond variations in the cusp itself. CEPs are found throughout the cusp, peaking near the magnetopause. CDCs are primarily found near local noon and close to the magnetopause, forming an extended region against the magnetopause. C1 [Niehof, Jonathan T.; Fritz, Theodore A.; Chen, Jiasheng] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Friedel, Reinhard H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Niehof, JT (reprint author), Boston Univ, Ctr Space Phys, 725 Commonwealth Ave, Boston, MA 02215 USA. EM jniehof@bu.edu RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Niehof, Jonathan/0000-0001-6286-5809 FU NASA [NNG05GD23G] FX We thank the Polar MFE team, the Polar HYDRA team, the Wind SWE team, and the Wind MFI team for the use of data from their instruments. We also thank the OMNI team for their high-resolution solar wind data sets, N. Tsyganenko for his GEOPACK code, and H. Korth for his IDL interface to GEOPACK. The reviewers provided much-appreciated comments on a prior revision of this study. This research was supported by NASA grant NNG05GD23G. NR 40 TC 10 Z9 10 U1 1 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD JUL 1 PY 2010 VL 115 AR A07201 DI 10.1029/2009JA014827 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 620UW UT WOS:000279527000001 ER PT J AU Phinney, LM Serrano, JR Piekos, ES Torczynski, JR Gallis, MA Gorby, AD AF Phinney, Leslie M. Serrano, Justin R. Piekos, Edward S. Torczynski, John R. Gallis, Michael A. Gorby, Allen D. TI Raman Thermometry Measurements and Thermal Simulations for MEMS Bridges at Pressures From 0.05 Torr to 625 Torr SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE Raman thermometry; MEMS; finite element heat conduction simulations; non-continuum gas-phase heat-transfer model; low-pressure effects; suspended microbridge ID PARAMETERS; AMBIENT AB This paper reports on experimental and computational investigations into the thermal performance of microelectromechanical systems (MEMS) as a function of the pressure of the surrounding gas. High spatial resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 mu m wide, 2.25 mu m thick, and either 200 mu m or 400 mu m long in nitrogen atmospheres with pressures ranging from 0.05 Torr to 625 Torr (6.67 Pa-83.3 kPa). Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared with the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The results indicate that gas-phase heat transfer is significant for devices of this size at ambient pressures but becomes minimal as the pressure is reduced below 5 Torr. The model and experimental results are in qualitative agreement, and better quantitative agreement requires increased accuracy in the geometrical and material property values. [DOI: 10.1115/1.4000965] C1 [Phinney, Leslie M.; Serrano, Justin R.; Piekos, Edward S.; Torczynski, John R.; Gallis, Michael A.; Gorby, Allen D.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Phinney, LM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM lmphinn@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Co., for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 20 TC 8 Z9 8 U1 0 U2 3 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD JUL PY 2010 VL 132 IS 7 AR 072402 DI 10.1115/1.4000965 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 592OE UT WOS:000277388100009 ER PT J AU Cheung, C Mardon, J Nomura, Y Thaler, J AF Cheung, Clifford Mardon, Jeremy Nomura, Yasunori Thaler, Jesse TI A definitive signal of multiple supersymmetry breaking SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Supersymmetry Breaking ID GRAVITINO AB If the lightest observable-sector supersymmetric particle (LOSP) is charged and long-lived, then it may be possible to indirectly measure the Planck mass at the LHC and provide a spectacular confirmation of supergravity as a symmetry of nature. Unfortunately, this proposal is only feasible if the gravitino is heavy enough to be measured at colliders, and this condition is in direct conflict with constraints from big bang nucleosynthesis (BBN). In this work, we show that the BBN bound can be naturally evaded in the presence of multiple sectors which independently break supersymmetry, since there is a new decay channel of the LOSP to a goldstino. Certain regions of parameter space allow for a direct measurement of LOSP decays into both the goldstino and the gravitino at the LHC. If the goldstino/gravitino mass ratio is measured to be 2, as suggested by theory, then this would provide dramatic verification of the existence of multiple supersymmetry breaking and sequestering. A variety of consistent cosmological scenarios are obtained within this framework. In particular, if an R symmetry is imposed, then the gauge-gaugino-goldstino interaction vertices can be forbidden. In this case, there is no bound on the reheating temperature from goldstino overproduction, and thermal leptogenesis can be accommodated consistently with gravitino dark matter. C1 [Cheung, Clifford; Mardon, Jeremy; Nomura, Yasunori] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Cheung, Clifford; Mardon, Jeremy; Nomura, Yasunori] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Nomura, Yasunori] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Thaler, Jesse] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Cheung, C (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM clifford.cheung@berkeley.edu; jmardon@berkeley.edu; YNomura@lbl.gov; jthaler@jthaler.net OI Thaler, Jesse/0000-0002-2406-8160; Nomura, Yasunori/0000-0002-1497-1479 FU Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0555661, PHY-0855653]; U.S. Department of Energy [DE-FG0205ER41360] FX The work of C.C., J.M., and Y.N. was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231, and in part by the National Science Foundation under grants PHY-0555661 and PHY-0855653. J.T. is supported by the U.S. Department of Energy under cooperative research agreement DE-FG0205ER41360. NR 26 TC 21 Z9 21 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2010 IS 7 AR 035 DI 10.1007/JHEP07(2010)035 PG 18 WC Physics, Particles & Fields SC Physics GA 645ZK UT WOS:000281504500034 ER PT J AU Kong, K Park, SC Rizzo, TG AF Kong, Kyoungchul Park, Seong Chan Rizzo, Thomas G. TI A vector-like fourth generation with a discrete symmetry from Split-UED SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Phenomenology of Large extra dimensions; Phenomenology of Field Theories in Higher Dimensions ID DARK-MATTER; DIMENSIONS; HIERARCHY AB Split-UED allows for the possibility that the lowest lying KK excitations of the Standard Model fermions can be much lighter than the corresponding gauge or Higgs KK states. This can happen provided the fermion bulk masses are chosen to be large, in units of the inverse compactification radius, 1/R, and negative. In this setup, all of the other KK states would be effectively decoupled from low energy physics. Such a scenario would then lead to an apparent vector-like fourth generation with an associated discrete symmetry that allows us to accommodate a dark matter candidate. In this paper the rather unique phenomenology presented by this picture will be examined. C1 [Kong, Kyoungchul; Rizzo, Thomas G.] SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. [Park, Seong Chan] Univ Tokyo, Inst Phys & Math Universe, Chiba 2778568, Japan. RP Kong, K (reprint author), SLAC, Dept Theoret Phys, Menlo Pk, CA 94025 USA. EM kckong@slac.stanford.edu; seongchan.park@ipmu.jp; rizzo@slac.stanford.edu FU World Premier International Research Center Initiative (WPI initiative), MEXT; JSPS, Japan [21740172]; DOE [DE-AC02-76SF00515] FX S. C. Park is supported by the World Premier International Research Center Initiative (WPI initiative) by MEXT and also supported by the Grant-in-Aid for scientific research (Young Scientists (B) 21740172) from JSPS, Japan. K. Kong and T. G. Rizzo are supported in part by the DOE under contract DE-AC02-76SF00515. NR 31 TC 10 Z9 10 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD JUL PY 2010 IS 7 AR 059 DI 10.1007/JHEP07(2010)059 PG 13 WC Physics, Particles & Fields SC Physics GA 645ZK UT WOS:000281504500058 ER PT J AU Akli, KU Patel, PK Van Maren, R Stephens, RB Key, MH Higginson, DP Westover, B Chen, CD Mackinnon, AJ Bartal, T Beg, FN Chawla, S Fedosejevs, R Freeman, RR Hey, DS Kemp, GE LePape, S Link, A Ma, T MacPhee, AG McLean, HS Ping, Y Tsui, YY Van Woerkom, LD Wei, MS Yabuuchi, T Yuspeh, S AF Akli, K. U. Patel, P. K. Van Maren, R. Stephens, R. B. Key, M. H. Higginson, D. P. Westover, B. Chen, C. D. Mackinnon, A. J. Bartal, T. Beg, F. N. Chawla, S. Fedosejevs, R. Freeman, R. R. Hey, D. S. Kemp, G. E. LePape, S. Link, A. Ma, T. MacPhee, A. G. McLean, H. S. Ping, Y. Tsui, Y. Y. Van Woerkom, L. D. Wei, M. S. Yabuuchi, T. Yuspeh, S. TI A dual channel X-ray spectrometer for fast ignition research SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Nuclear instruments and methods for hot plasma diagnostics; Plasma diagnostics - interferometry, spectroscopy and imaging ID SCATTERING; SERIES AB A new Dual Channel Highly Ordered Pyrolytic Graphite (DC-HOPG) x-ray spectrometer was developed for use in high energy short-pulse laser experiments. The instrument uses a pair of graphite crystals and has the advantage of simultaneously detecting self emission from low-Z materials in first diffraction order and high-Z materials in second order. The emissions from the target are detected using a pair of parallel imaging plates positioned in a such way that the noise from background is minimized and the mosaic focusing is achieved. Initial tests of the diagnostic on the Titan laser (I similar to 10(20) W = cm(2); tau = 0.7 ps) show excellent signal-to-noise ratio (SNR)> 1000 for the low energy channel and SNR > 400 for the high energy channel. C1 [Akli, K. U.; Stephens, R. B.] Gen Atom Co, San Diego, CA 92186 USA. [Patel, P. K.; Van Maren, R.; Key, M. H.; Chen, C. D.; Mackinnon, A. J.; Hey, D. S.; LePape, S.; Ma, T.; MacPhee, A. G.; McLean, H. S.; Ping, Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Higginson, D. P.; Westover, B.; Bartal, T.; Beg, F. N.; Chawla, S.; Wei, M. S.; Yabuuchi, T.; Yuspeh, S.] Univ Calif San Diego, San Diego, CA 92186 USA. [Fedosejevs, R.; Tsui, Y. Y.] Univ Alberta, Edmonton, AB T6G 2V4, Canada. [Freeman, R. R.; Kemp, G. E.; Link, A.; Van Woerkom, L. D.] Ohio State Univ, Columbus, OH 43210 USA. RP Akli, KU (reprint author), Gen Atom Co, San Diego, CA 92186 USA. EM akli1@llnl.gov RI Patel, Pravesh/E-1400-2011; Ma, Tammy/F-3133-2013; MacKinnon, Andrew/P-7239-2014; Higginson, Drew/G-5942-2016; OI Ma, Tammy/0000-0002-6657-9604; MacKinnon, Andrew/0000-0002-4380-2906; Higginson, Drew/0000-0002-7699-3788; Stephens, Richard/0000-0002-7034-6141 FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [W-7405-ENG-48] FX We wish to acknowledge the Titan laser facility staff. Useful discussions with P. Neumayer are acknowledged. This Work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48. NR 21 TC 13 Z9 13 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2010 VL 5 AR P07008 DI 10.1088/1748-0221/5/07/P07008 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 674ZW UT WOS:000283793800001 ER PT J AU Chan, M Cripps, N Everaerts, P Fulcher, J Hahn, K Hall, G Johnson, M Morrissey, Q Nahn, S Noy, M Raymond, M Sung, K Tkaczyk, S AF Chan, M. Cripps, N. Everaerts, P. Fulcher, J. Hahn, K. Hall, G. Johnson, M. Morrissey, Q. Nahn, S. Noy, M. Raymond, M. Sung, K. Tkaczyk, S. TI Studies of the CMS tracker at high trigger rate SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Analogue electronic circuits; Front-end electronics for detector readout; Particle tracking detectors (Solid-state detectors); Large detector systems for particle and astroparticle physics AB During the latter months of 2006 and the first half of 2007, the CMS Tracker was assembled and operated at the Tracker Integration Facility at CERN. During this period the performance of the tracker at trigger rates up to 100 kHz was assessed, and a source of high occupancy events was uncovered, diagnosed, and mitigated. C1 [Chan, M.; Everaerts, P.; Hahn, K.; Nahn, S.; Sung, K.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cripps, N.; Fulcher, J.; Hall, G.; Noy, M.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London, England. [Johnson, M.; Tkaczyk, S.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Morrissey, Q.; Raymond, M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. RP Nahn, S (reprint author), MIT, Nucl Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM nahn@mit.edu FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); BMBF (Germany); GSRT (Greece); OTKA (Hungary); DAE (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST (Russia); MSTDS (Serbia); MICINN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); STFC (United Kingdom); DOE (USA); European Union; Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; NICPB (Estonia); CNRS/IN2P3 (France); DFG (Germany); HGF (Germany); NKTH (Hungary); DST (India); NSF (USA); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MAE (Russia); CPAN (Spain); TAEK (Turkey) FX We thank all our colleagues in the CMS Tracker collaboration for their contributions to the implementation of the system and their support during these studies. In addition, we would like to acknowledge the CMS DAQ team for invaluable help with the installation of the high rate DAQ, in particular Jonatan Piedra, Domenique Gigi, Christoph Schwick, Hannes Sakulin, Frans Meijers, and Sham Sumorok. The studies on the single-rod test bench benefited from the superb technical skills of Evgeny Zverev. We acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie IEF program (European Union); the Leventis Foundation; the A. P. Sloan Foundation; and the Alexander von Humboldt Foundation. NR 12 TC 0 Z9 0 U1 2 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2010 VL 5 AR P07007 DI 10.1088/1748-0221/5/07/P07007 PG 14 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 674ZW UT WOS:000283793800002 ER PT J AU Garcia-Sciveres, M Cepeda, M Gilchriese, M AF Garcia-Sciveres, M. Cepeda, M. Gilchriese, M. TI Development of silicon and carbon foam low mass interposers SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY FEB 03-05, 2010 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab DE Materials for solid-state detectors; Pixelated detectors and associated VLSI electronics; Front-end electronics for detector readout; Particle tracking detectors (Solid-state detectors) AB We propose fabrication methods and present prototyping results for a new wafer integration component called a low mass interposer (LMI). The LMI prototype is an assembly of silicon and carbon foam resulting in a composite 4 inch wafer of 4 mm thickness and average density 10% that of silicon. Rows of vertical copper contacts traverse the bulk on 4mm pitch. Each row can have a dense contact pitch, such that average contact densities can be or order order 25 mm(-2). Actual pitch parameters can be varied by factors of 2 or more within the construction process proposed. The LMI could be used for copper-copper bonding to IC wafers in a 3D integration process. Present prototyping does not match any specific wafer design and was produced to develop a fabrication procedure and quantify the results. No 3D integration tests have been performed at this stage. C1 [Garcia-Sciveres, M.; Cepeda, M.; Gilchriese, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Garcia-Sciveres, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM mgs@lbl.gov NR 3 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2010 VL 5 AR C07008 DI 10.1088/1748-0221/5/07/C07008 PG 6 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 674ZW UT WOS:000283793800014 ER PT J AU Ostroumov, P Kondrashev, S Pardo, R Savard, G Vondrasek, R Alessi, J Beebe, E Pikin, A AF Ostroumov, P. Kondrashev, S. Pardo, R. Savard, G. Vondrasek, R. Alessi, J. Beebe, E. Pikin, A. TI EBIS charge breeder for radioactive ion beams at ATLAS SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT International Symposium on Electron Beam Ion Sources and Traps CY APR 07-10, 2010 CL Stockholm, SWEDEN DE Instrumentation for radioactive beams; fragmentation devices; fragment and isotope, separators incl. ISOL; isobar separators; ion and atom traps; weak-beam diagnostics; radioactivebeam ion sources; Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)) AB The construction of the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne National Laboratory ATLAS facility is completed and its commissioning is being performed. In its full capacity, the CARIBU facility will use fission fragments from a 1 Curie (Ci) (252)Cf source. The ions will be thermalized and collected into a low-energy ion beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred to higher charge states for acceleration in ATLAS. To reach energies E/A 10 MeV/u, one should inject ions with charge-to-mass ratio (q/A) >= 1/7 into the ATLAS linac. In the first stage, the existing Electron Cyclotron Resonance (ECR) ion source will be used as a charge breeder. The maximum intensity of radioactive ion beams at the output of the gas catcher will not exceed 107 ions per second. A charge breeder based on an Electron Beam Ion Source (EBIS) has significant advantages over the ECR option for ion beam intensities up to about 109 ions per second, providing 3-4 times higher efficiency and significantly better purity of highly charged radioactive ion beams for further acceleration. The proposed EBIS project for CARIBU will heavily utilize state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory. This will allow us to reduce both the project cost and timescale, simultaneously insuring reliable technical realization of the cutting-edge technology. Several parameters of the CARIBU EBIS charge breeder (EBIS-CB) will be relaxed with respect to the BNL EBIS in favor of higher reliability and lower cost. Technical performance of the CARIBU charge breeder will not suffer from such a relaxation and will provide high efficiency for a whole range of radioactive ion beams. The goal of this paper is to present the initial design of the EBIS charge breeder for radioactive ion beams at ATLAS. C1 [Ostroumov, P.; Kondrashev, S.; Pardo, R.; Savard, G.; Vondrasek, R.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Alessi, J.; Beebe, E.; Pikin, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Kondrashev, S (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kondrashev@anl.gov NR 12 TC 11 Z9 11 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2010 VL 5 AR C07004 DI 10.1088/1748-0221/5/07/C07004 PG 11 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 674ZW UT WOS:000283793800018 ER PT J AU Underwood, D Salvachua-Ferrando, B Stanek, R Lopez, D Liu, J Michel, J Kimerling, LC AF Underwood, D. Salvachua-Ferrando, B. Stanek, R. Lopez, D. Liu, J. Michel, J. Kimerling, L. C. TI New optical technology for low mass intelligent trigger and readout SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Workshop on Intelligent Trackers CY FEB 03-05, 2010 CL Lawrence Berkeley Natl Lab, Berkeley, CA HO Lawrence Berkeley Natl Lab DE Trigger concepts and systems (hardware and software); Optical detector readout concepts; Front-end electronics for detector readout ID MODULATORS AB New optical devices offer the potential for reductions in mass, power, and cost of data paths for on-board trigger and readout of tracking detectors. We give examples of optical modulators, MEMS beam steering devices, and optical coupling. We also present results on radiation hardness of materials as well as different approaches to using optics in triggering. C1 [Underwood, D.; Salvachua-Ferrando, B.; Stanek, R.] Argonne Natl Lab, Argonne, IL 60439 USA. [Lopez, D.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Liu, J.; Michel, J.; Kimerling, L. C.] MIT, Microphoton Ctr, Cambridge, MA 02139 USA. RP Underwood, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dgu@hep.anl.gov NR 14 TC 6 Z9 6 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JUL PY 2010 VL 5 AR C07011 DI 10.1088/1748-0221/5/07/C07011 PG 7 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 674ZW UT WOS:000283793800011 ER PT J AU Kasel, MCK Schueller, MJ Ferrieri, RA AF Kasel, Mirjam C. K. Schueller, Michael J. Ferrieri, Richard A. TI Optimizing [N-13]N-2 radiochemistry for nitrogen-fixation in root nodules of legumes SO JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS LA English DT Article DE [N-13]N-2; nitrogen fixation; legumes ID VENTILATION; WATER; N-13; SOYBEANS; C-11; GAS AB Here we explored the conditions for synthesizing [N-13]N-2 in a state that is suitable for the administration to plant root nodules enabling studies of nitrogen fixation. [N-13]N-2 was prepared batchwise, starting with [N-13]NO3- from the O-16(p,alpha)N-13 nuclear reaction on a liquid water target. [N-13]NO3- was first reduced to [N-13]NH3 using Devarda's alloy, and then the [N-13]NH3 was oxidized to [N-13]N-2 by hypobromite using carrier-added NH4Cl. The amounts of carrier NH4Cl and hypobromite were varied to determine the effects these parameters had on the radiochemical yield, and on the radiotracer specific activity. As expected, increasing the amount of carrier NH4Cl improved the radiochemical yield. Unexpectedly, increasing the amount of excess hypobromite from 1.6-fold to 6-fold molar equivalents (relative to NH4Cl) improved the radiochemical yield and radiotracer specific activity under all conditions of carrier NH4Cl. As a comparison, we measured [N-13]N-2 specific activity derived from in-target production based on a 50 mu A min irradiation driving the N-14(p,pn)N-13 reaction on a gaseous N-2 target. The 'wet' radiochemistry approach afforded two advantages over the in-target approach with a similar to 600-fold improvement in specific activity, and the ability to collect the tracer in a small volume of gas (similar to 20 mL at STP). C1 [Schueller, Michael J.; Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Kasel, Mirjam C. K.] Johannes Gutenberg Univ Mainz, Fachbereich Chem, D-55099 Mainz, Germany. RP Ferrieri, RA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM rferrieri@bnl.gov FU US Department of Energy, Office of Biological and Enviromental Research [DE-AC02-98CH10886]; Deutscher Akademischer Austauschdienst (DAAD), Bonn FX This research was supported in part by the US Department of Energy, Office of Biological and Enviromental Research under contract DE-AC02-98CH10886, and in part by Deutscher Akademischer Austauschdienst (DAAD), Bonn for a student fellowship (supporting Kasel). NR 20 TC 6 Z9 6 U1 0 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0362-4803 J9 J LABELLED COMPD RAD JI J. Label. Compd. Radiopharm. PD JUL PY 2010 VL 53 IS 9 BP 592 EP 597 DI 10.1002/jlcr.1786 PG 6 WC Biochemical Research Methods; Chemistry, Medicinal; Chemistry, Analytical SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 660TG UT WOS:000282666800005 ER PT J AU Zhang, H Long, Y Cao, Q Mudryk, Y Zou, M Gschneidner, KA Pecharsky, VK AF Zhang, H. Long, Y. Cao, Q. Mudryk, Ya. Zou, M. Gschneidner, K. A., Jr. Pecharsky, V. K. TI Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x=0.5, 1.0) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE NaZn13; Magnetocaloric effect; Wavelength dispersive spectrometry (WDS) ID MAGNETIC ENTROPY CHANGE; ELECTRON METAMAGNETIC TRANSITION; COMPOUND; LAFE11.4SI1.6; TEMPERATURE AB Phase formation, structure, and the magnetocaloric effect (MCE) in as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) compounds have been studied. The Curie temperatures, T-C, are similar to 211 and 230 K for x=0.5 and 1.0, respectively, which are higher than that of annealed LaFe11.5Si1.5 (T-C=183(K)), while the maximum magnetic entropy changes at the respective T-C under a magnetic field change of 0-5 T are 7.8 and 5.8 J/(kg K). Wavelength dispersive spectrometry (WDS) analysis shows that only a small fraction of boron atoms is dissolved in the NaZn13-type structure phase, and that the compositions of the as-cast LaFe11.5Si1.5Bx (x=0.5, 1.0) alloys are much different from the intended nominal compositions. These as-cast alloys exhibit second-order magnetic phase transitions and low MCEs. However, based on the relative cooling power, the as-cast LaFe11.5Si1.5Bx alloys are promising candidates for magnetic refrigerants over a wide temperature range. (C) 2009 Elsevier B.V. All rights reserved. C1 [Zhang, H.; Cao, Q.; Mudryk, Ya.; Zou, M.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Zhang, H.; Long, Y.] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China. [Cao, Q.; Gschneidner, K. A., Jr.; Pecharsky, V. K.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Pecharsky, VK (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM vitkp@ameslab.gov FU US Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science of the US DOE; National Science Foundation of China; National High Technology Research and Development Program of China; National Basic Research Program of China FX The authors thank Mr. Alfred Kracher for carrying out the SEM and WDS experiments. The Ames Laboratory is operated by Iowa State University of Science and Technology for the US Department of Energy under Contract no. DE-AC02-07CH11358. Work at the Ames Laboratory is supported by the Office of Basic Energy Sciences, Materials Sciences Division of the Office of Science of the US DOE. H.Z.'s work at the Ames Laboratory is also supported by the National Science Foundation of China, the National High Technology Research and Development Program of China, and the National Basic Research Program of China. NR 26 TC 14 Z9 16 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD JUL PY 2010 VL 322 IS 13 BP 1710 EP 1714 DI 10.1016/j.jmmm.2009.10.042 PG 5 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 581IB UT WOS:000276514500004 ER PT J AU Zhang, JM Lang, M Ewing, RC Devanathan, R Weber, WJ Toulemonde, M AF Zhang, Jiaming Lang, Maik Ewing, Rodney C. Devanathan, Ram Weber, William J. Toulemonde, Marcel TI Nanoscale phase transitions under extreme conditions within an ion track SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; SWIFT HEAVY-IONS; HIGH-PRESSURE; WASTE FORM; PYROCHLORE; IRRADIATION; PLUTONIUM; IMMOBILIZATION; TEMPERATURE; INSULATORS AB The dynamics of track development due to the passage of relativistic heavy ions through solids is a long-standing issue relevant to nuclear materials, age dating of minerals, space exploration, and nanoscale fabrication of novel devices. We have integrated experimental and simulation approaches to investigate nanoscale phase transitions under the extreme conditions created within single tracks of relativistic ions in Gd(2)O(3)(TiO(2)), and Gd(2)Zr(2-x) Ti(x)O(7). Track size and internal structure depend on energy density deposition, irradiation temperature, and material composition. Based on the inelastic thermal spike model, molecular dynamics simulations follow the time evolution of individual tracks and reveal the phase transition pathways to the concentric track structures observed experimentally. Individual ion tracks have nanoscale core-shell structures that provide a unique record of the phase transition pathways under extreme conditions. C1 [Zhang, Jiaming; Lang, Maik; Ewing, Rodney C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Devanathan, Ram; Weber, William J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Toulemonde, Marcel] ENSICAEN, Ctr Interdisciplinaire Rech Ions Mat & Photon, Commissariat Energie Atom & Energies Alternatives, CNRS, F-14070 Caen, France. [Toulemonde, Marcel] Univ Caen, F-14070 Caen, France. RP Ewing, RC (reprint author), Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. EM rodewing@umich.edu; wjweber@utk.edu RI Weber, William/A-4177-2008; Lang, Maik/F-9939-2012; Zhang, Jiaming/H-5591-2012; Devanathan, Ram/C-7247-2008 OI Weber, William/0000-0002-9017-7365; Devanathan, Ram/0000-0001-8125-4237 FU United States Department of Energy (DOE), Office of Basic Energy Sciences [DE-FG02-97ER45656, DE-AC05-76RL01830]; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; German Science Foundation DFG; DOE's Office of Biological and Environmental Research FX This work was primarily supported by the United States Department of Energy (DOE), Office of Basic Energy Sciences under Grant No. DE-FG02-97ER45656 and Contract No. DE-AC05-76RL01830. J.Z. and M.L. were partially supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001089. M.L. also acknowledges support from the German Science Foundation DFG. The computations were performed using resources at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research. The authors gratefully acknowledge the materials research group at GSI, particularly K. Swartz, for their support during the irradiations and the contribution of C. Dufour (CIMAP Laboratory, Caen, France) to the development of the inelastic thermal spike model. NR 44 TC 37 Z9 37 U1 3 U2 45 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JUL PY 2010 VL 25 IS 7 BP 1344 EP 1351 DI 10.1557/JMR.2010.0180 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 620CB UT WOS:000279475500018 ER PT J AU Floro, JA Michael, JR Brewer, LN Hsu, JWP AF Floro, J. A. Michael, J. R. Brewer, L. N. Hsu, J. W. P. TI Preferred heteroepitaxial orientations of ZnO nanorods on Ag SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID INTERPHASE BOUNDARIES; GRAIN-BOUNDARIES; ATOMIC-STRUCTURE; GROWTH; ENERGY; INTERFACES; METALS; SYSTEM; FILMS AB Wurtzite ZnO nanorods were grown from solution onto coarse-grain bulk polycrystalline Ag substrates to explore the nature of preferred heteroepitaxial orientations. ZnO nanorods grow copiously on grains with < 111 > and < 001 > surface normals. Two epitaxial orientations were observed: {0001} ZnO parallel to {111} Ag with <2<(1)over bar>(1) over bar0> ZnO parallel to <1<(1)over bar>0> Ag and {0001} ZnO parallel to {001} Ag with <2<(1)over bar>(1) over bar0> ZnO parallel to <1<(1)over bar>0> Ag. Both feature ZnO basal plane growth, and the specific in-plane orientation relationships both feature alignment of close-packed directions in the interface. Nanorod growth was strongly suppressed on Ag grains in most other orientations. Although strain energy minimization is often invoked to explain the {0001} ZnO parallel to {111} Ag with <2<(1)over bar>(1) over bar0> ZnO parallel to <1<(1)over bar>0> Ag orientation, associated with an almost ideal near-coincidence site lattice matching, our data suggests that strain may not be the sole, or even the most important, determinant of the preferred orientations during solution-based epitaxial growth in this system. C1 [Floro, J. A.] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. [Michael, J. R.; Brewer, L. N.; Hsu, J. W. P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Floro, JA (reprint author), Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA. EM floro@virginia.edu FU Sandia LDRD; DOE Office of Basic Energy Sciences; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL-85000] FX Our thanks to Jason Guy for the specimen preparation at UVa, Bonnie McKenzie for expert scanning electron microscopy, Michael Rye for TEM and SEM specimen preparation, Anant Mathur and Jonah Erlebacher for the metal leaf (JHU) samples, Tim Herlihy for assistance on the SEM at UVa, and Alice Kilgo for extensive polishing work on Ag. This work was supported by the Sandia LDRD program and the DOE Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94-AL-85000. NR 29 TC 6 Z9 6 U1 0 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JUL PY 2010 VL 25 IS 7 BP 1352 EP 1361 DI 10.1557/JMR.2010.0179 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 620CB UT WOS:000279475500019 ER PT J AU Wixom, RR Tappan, AS Brundage, AL Knepper, R Ritchey, MB Michael, JR Rye, MJ AF Wixom, Ryan R. Tappan, Alexander S. Brundage, Aaron L. Knepper, Robert Ritchey, M. Barry Michael, Joseph R. Rye, Michael J. TI Characterization of pore morphology in molecular crystal explosives by focused ion-beam nanotomography SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID INITIATION; COLLAPSE; SCATTERING AB The initiation and detonation properties of explosives are often empirically correlated to density, surface area, and particle size. Although these correlations are sometimes used successfully to predict the performance of bulk samples, the data are spatially averaged, which unfortunately muddles information critical to understanding fundamental processes. Density and surface area are essentially an indirect measure of porosity, which is arguably a more appropriate metric in many applications. We report the direct characterization of porosity in polycrystalline molecular crystal explosives by focused ion beam nanotomography, a technique that is typically reserved for robust materials such as ceramics and metals. The resulting three-dimensional microstructural data are incredibly rich, promising a substantial advance in our ability to unravel the processes governing initiation and detonation of molecular crystal explosives. In a larger context, this work demonstrates that focused ion beam nanotomography may be successfully extended to the investigation of nanoscale porosity in other molecular crystal or polymer materials. C1 [Wixom, Ryan R.; Tappan, Alexander S.; Brundage, Aaron L.; Knepper, Robert; Ritchey, M. Barry; Michael, Joseph R.; Rye, Michael J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wixom, RR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rrwixom@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia's Laboratory Directed Research and Development Program; Joint Department of Defense/Department of Energy Munitions Technology Development Program FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Sandia's Laboratory Directed Research and Development Program and the Joint Department of Defense/Department of Energy Munitions Technology Development Program supported this work. NR 19 TC 9 Z9 9 U1 1 U2 6 PU MATERIALS RESEARCH SOC PI WARRENDALE PA 506 KEYSTONE DR, WARRENDALE, PA 15086 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD JUL PY 2010 VL 25 IS 7 BP 1362 EP 1370 DI 10.1557/JMR.2010.0167 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 620CB UT WOS:000279475500020 ER PT J AU Lai, B Agarwal, R Nelson, LD Swaminathan, S London, E AF Lai, Bing Agarwal, Rakhi Nelson, Lindsay D. Swaminathan, Subramanyam London, Erwin TI Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration SO JOURNAL OF MEMBRANE BIOLOGY LA English DT Article DE Lipid protein interaction; Membrane; biophysics; Membrane protein; Protein toxin ID DIPHTHERIA-TOXIN; MEMBRANE INSERTION; ANTHRAX TOXIN; NEUROTOXIN-A; HEAVY-CHAIN; TRANSMEMBRANE HAIRPIN; STRUCTURAL-CHANGES; CRYSTAL-STRUCTURE; CHANNEL FORMATION; BINDING ASSAY AB Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration. C1 [Lai, Bing; Nelson, Lindsay D.; London, Erwin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Agarwal, Rakhi; Swaminathan, Subramanyam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP London, E (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM swami@bnl.gov; Erwin.London@stonybrook.edu FU DTRA under DOE with Brookhaven National Laboratory [BO742081, DEAC02-98CH10886]; SBU-BNL FX This research was supported by awards from DTRA BO742081 under DOE prime contract DEAC02-98CH10886 with Brookhaven National Laboratory to S. S. and an SBU-BNL Seed Grant to E. L. NR 42 TC 5 Z9 5 U1 0 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2631 J9 J MEMBRANE BIOL JI J. Membr. Biol. PD JUL PY 2010 VL 236 IS 2 BP 191 EP 201 DI 10.1007/s00232-010-9292-z PG 11 WC Biochemistry & Molecular Biology; Cell Biology; Physiology SC Biochemistry & Molecular Biology; Cell Biology; Physiology GA 642XM UT WOS:000281255200002 PM 20711775 ER PT J AU de Boer, MP Anderson, RC Shul, RJ Clews, PJ Baker, MS AF de Boer, M. P. Anderson, R. C. Shul, R. J. Clews, P. J. Baker, M. S. TI Wafer-level singulation, release and post-processing in surface micromachining SO JOURNAL OF MICROMECHANICS AND MICROENGINEERING LA English DT Article ID MEMS; PRESSURE; TECHNOLOGY; COATINGS; DEVICES AB We propose and demonstrate a microfabrication processing sequence that enables wafer-scale singulation, release and subsequent processing of microelectromechanical devices. This sequence significantly reduces handling of individual dice compared with more conventional post-processing. Other advantages include faster processing and potentially higher yield. The yield after packaging was 100% on 12 microrelay devices that were processed according to the sequence, including a metallization step after release. The reliability was better than typical compared with previous tests for these devices. This processing sequence is also applicable to nanoelectromechanical devices, enables a direct interface to microfluidic devices, and also makes it possible to manufacture chips of arbitrary shape. C1 [de Boer, M. P.; Anderson, R. C.; Shul, R. J.; Clews, P. J.; Baker, M. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP de Boer, MP (reprint author), Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. RI de Boer, Maarten/C-1525-2013 OI de Boer, Maarten/0000-0003-1574-9324 FU United States Department of Energy [DE-AC04-94AL85000] FX The authors wish to thank Steven L Wolfley for Pt metal deposition, Lu Fang for wire bonding, David L Luck and Ted B Parson for assistance in building the test apparatus and the Microelectronics Development Laboratory staff at Sandia National Labs for SUMMiT V device fabrication. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0960-1317 J9 J MICROMECH MICROENG JI J. Micromech. Microeng. PD JUL PY 2010 VL 20 IS 7 AR 075007 DI 10.1088/0960-1317/20/7/075007 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 617DG UT WOS:000279260400007 ER PT J AU Martin, MA Perry, A Masiello, T Schwartz, KD Nibler, JW Weber, A Maki, A Blake, TA AF Martin, M. A. Perry, A. Masiello, T. Schwartz, K. D. Nibler, J. W. Weber, A. Maki, A. Blake, T. A. TI High-resolution infrared spectra of bicyclo[1.1.1]pentane SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Bicyclopentane; High-resolution infrared spectrum; Ground state structure and rotational constants; Ab initio OFT study; Anharmonic frequencies ID ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE AB Infrared spectra of bicyclo[1.1.1]pentane (C(5)H(8)) have been recorded at a resolution (0.0015 cm(-1)) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state constants for this molecule determined from the detailed, analysis of three of the ten infraredallowed bands, v(14)(e') at 540 cm(-1), v(17) (a(2)'') at 1220 cm(-1), v(18)(a) at 832 cm(-1), and a partial analysis of the v(11)(e') band at 1237 cm(-1). The upper states of transitions involving the lowest frequency mode, v(14)(e'), show no evidence of rovibrational perturbations but those for the v(17) and v(18) (a(2)'') modes give clear indication of Coriolis coupling to nearby e' levels. Accordingly, ground state constants were determined by use of the combination-difference method for all three bands. The assigned frequencies provided over 3300 consistent ground state difference values, yielding the following constants for the ground state (in units of cm(-1)): B(0) = 0.2399412(2), D(J) = 6.024(6) x 10(-8), D(JK) = -1.930(21) x 10(-8). For the unperturbed v(14)(e) fundamental, more than 3500 transitions were analyzed and the band origin was found to be at 540.34225(2) cm(-1). The numbers in parentheses are the uncertainties (two standard deviations) in the values of the constants. The results are compared with those obtained previously for [1.1.1]propellane and with those computed at the ab initio anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. (C) 2010 Elsevier Inc. All rights reserved. C1 [Martin, M. A.; Perry, A.; Schwartz, K. D.; Nibler, J. W.] Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. [Masiello, T.] Calif State Univ Hayward, Dept Chem & Biochem, Hayward, CA 94542 USA. [Weber, A.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. [Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nibler, JW (reprint author), Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. EM Niblerj@chem.orst.edu FU Department of Energy's Office of Biological and Environmental Research; United States Department of Energy [DE-AC05-76RLO 1830] FX J. Nibler acknowledges the support of the Camille and Henry Dreyfus Foundation in the form of a Senior Scientist Mentor Award. The research described here was performed, in part, in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under contract DE-AC05-76RLO 1830. We thank Robert Sams of PNNL for helpful advice and assistance in recording the infrared spectra of bicyclopentane in this facility. NR 28 TC 5 Z9 5 U1 2 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUL PY 2010 VL 262 IS 1 BP 42 EP 48 DI 10.1016/j.jms.2010.04.010 PG 7 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 643NK UT WOS:000281303200007 ER PT J AU Craig, NC Leyden, MC Moore, MC Patchen, AK van den Heuvel, T Blake, TA Masiello, T Sams, RL AF Craig, Norman C. Leyden, Matthew C. Moore, Michael C. Patchen, Amie K. van den Heuvel, Titus Blake, Thomas A. Masiello, Tony Sams, Robert L. TI A reevaluation of the assignment of the vibrational fundamentals and the rotational analysis of bands in the high-resolution infrared spectra of trans- and cis-1,3,5-hexatriene SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE cis- and trans-1,3,5-Hexatriene; Quantum chemical predictions of intensities and anharmonic frequencies for vibrational transitions; Assignments of vibrational fundamentals; High-resolution infrared spectra; Analysis of rotational structure; Rotational constants ID CORRELATED MOLECULAR CALCULATIONS; AB-INITIO STRUCTURES; GAUSSIAN-BASIS SETS; ELECTRON DELOCALIZATION; 1,3,5-HEXATRIENE; POLYENES; CONFIGURATION; DERIVATIVES; BUTADIENE AB Assignments of the vibrational fundamentals of cis- and trans-1,3,5-hexatriene are reevaluated with new infrared and Raman spectra and with quantum chemical predictions of intensities and anharmonic frequencies. The rotational structure is analyzed in the high-resolution (0.0013-0.0018 cm(-1)) infrared spectra of three C-type bands of the trans isomer and two C-type bands of the cis isomer. The bands for the trans isomer are at 1010.96 cm(-1) (v(14)), 900.908 cm(-1) (v(16)), and 683.46 cm(-1) (v(17)). Ground state (GS) rotational constants have been fitted to the combined ground state combination differences (GSCDs) for the three bands of the trans isomer. The bands for the cis isomer are at 907.70 cm(-1) (v(33)) and 587.89 cm(-1) (v(35)). GS rotational constants have been fitted to the combined GSCDs for the two bands of the cis isomer and compared with those obtained from microwave spectroscopy. Small inertial defects in the GSs confirm that both molecules are planar. Upper state rotational constants were fitted for all five bands. (C) 2010 Elsevier Inc. All rights reserved. C1 [Craig, Norman C.; Leyden, Matthew C.; Moore, Michael C.; Patchen, Amie K.; van den Heuvel, Titus] Oberlin Coll, Dept Chem & Biochem, Oberlin, OH 44074 USA. [Blake, Thomas A.; Masiello, Tony; Sams, Robert L.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Craig, NC (reprint author), Oberlin Coll, Dept Chem & Biochem, 119 Woodland St, Oberlin, OH 44074 USA. EM Norm.Craig@oberlin.edu RI van den Heuvel, Titus/C-4731-2013 OI van den Heuvel, Titus/0000-0003-2902-8720 FU Department of Energy's Office of Biological and Environmental Research; United States Department of Energy [DE-AC05-76RLO 1830] FX Deacon J. Nemchick assisted with some of the rotational analysis. Dreyfus Senior Scientist Mentor grants supported most of the work at Oberlin College. National Science Foundation Grant 0420717 provided for the purchase and technical support of the Beowulf computer cluster at Oberlin College. The high-resolution spectroscopy was performed at the W.R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the United States Department of Energy by Battelle under contract DE-AC05-76RLO 1830. NR 24 TC 6 Z9 6 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 EI 1096-083X J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD JUL PY 2010 VL 262 IS 1 BP 49 EP 60 DI 10.1016/j.jms.2010.05.002 PG 12 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 643NK UT WOS:000281303200008 ER PT J AU Cambel, V Elias, P Gregusova, D Fedor, J Martaus, J Karapetrov, G Novosad, V Kostic, I AF Cambel, V. Elias, P. Gregusova, D. Fedor, J. Martaus, J. Karapetrov, G. Novosad, V. Kostic, I. TI Novel Magnetic Tips Developed for the Switching Magnetization Magnetic Force Microscopy SO JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY LA English DT Article; Proceedings Paper CT 1st International Workshop on Tip-Based Nanofabrication CY OCT 19-21, 2008 CL Howard Int House, Taipei, TAIWAN HO Howard Int House DE Magnetic Force Microscopy; Micromagnetic Calculations; Switching Field ID ELLIPTIC PERMALLOY ELEMENTS; RESOLUTION AB Using micromagnetic calculations we search for optimal magnetic properties of novel magnetic tips to be used for a Switching Magnetization Magnetic Force Microscopy (SM-MFM), a novel technique based on two-pass scanning with reversed tip magnetization. Within the technique the sum of two scans images local atomic forces and their difference maps the local magnetic forces. The tip magnetization is switched during the scanning by a small magnetic field. The technology of novel low-coercitive magnetic tips is proposed. For best performance the tips must exhibit low magnetic moment, low switching field, and single-domain state at remanence. Such tips are equipped with Permalloy objects of a precise shape that are defined on their tilted sides. We calculate switching fields of such tips by solving the micromagnetic problem to find the optimum shape and dimensions of the Permalloy objects located on the tips. Among them, hexagon was found as the best shape for the tips. C1 [Cambel, V.; Elias, P.; Gregusova, D.; Fedor, J.; Martaus, J.] Slovak Acad Sci, Inst Elect Engn, Bratislava 84104, Slovakia. [Karapetrov, G.; Novosad, V.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Kostic, I.] Slovak Acad Sci, Inst Informat, Bratislava 84507, Slovakia. RP Cambel, V (reprint author), Slovak Acad Sci, Inst Elect Engn, Dubravska Cesta 9, Bratislava 84104, Slovakia. RI Kostic, Ivan/A-3032-2013; Novosad, Valentyn/C-2018-2014; Novosad, V /J-4843-2015; Karapetrov, Goran/C-2840-2008 OI Karapetrov, Goran/0000-0003-1113-0137 NR 11 TC 3 Z9 3 U1 1 U2 7 PU AMER SCIENTIFIC PUBLISHERS PI STEVENSON RANCH PA 25650 NORTH LEWIS WAY, STEVENSON RANCH, CA 91381-1439 USA SN 1533-4880 J9 J NANOSCI NANOTECHNO JI J. Nanosci. Nanotechnol. PD JUL PY 2010 VL 10 IS 7 BP 4477 EP 4481 DI 10.1166/jnn.2010.2366 PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 590BV UT WOS:000277199300055 PM 21128443 ER PT J AU Riedel, O Klotsche, J Spottke, A Deuschl, G Forstl, H Henn, F Heuser, I Oertel, W Reichmann, H Riederer, P Trenkwalder, C Dodel, R Wittchen, HU AF Riedel, Oliver Klotsche, Jens Spottke, Annika Deuschl, Guenther Foerstl, Hans Henn, Fritz Heuser, Isabella Oertel, Wolfgang Reichmann, Heinz Riederer, Peter Trenkwalder, Claudia Dodel, Richard Wittchen, Hans-Ulrich TI Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease SO JOURNAL OF NEUROLOGY LA English DT Article DE Parkinson's disease; Dementia; Depression; Psychotic syndromes; Sleep disturbances ID SLEEP BEHAVIOR DISORDER; COGNITIVE IMPAIRMENT; NONMOTOR SYMPTOMS; PREVALENCE; DIAGNOSIS; EUROPE; STATE; RISK; CARE; AGE AB Neuropsychiatric symptoms (NPS) of Parkinson's disease (PD) are of growing diagnostic and therapeutic importance. Data on their prevalence and characteristics have been primarily derived from highly selective clinical populations. We have conducted a national study in the outpatient care sector to provide a fuller characterization of the frequency of dementia, depression, and other NPS in PD outpatients. We also examined associations with biosocial and neurological variables. A nationwide representative sample of 1,449 PD outpatients was examined with a standardized clinical interview. PD severity was rated with the Hoehn and Yahr (HY) scale and the Unified Parkinson's Disease Rating Scale. Depression was measured with the Montgomery-Asberg Depression Rating Scale. Cognitive impairment and dementia were assessed with the Mini-Mental State Exam and according to diagnostic criteria. Logistic regression analyses were used to investigate associations. At least one NPS occurred in 71% of all patients with PD. The estimated prevalences (ranges) by age group and HY-stage were: depression, 25% (13.2-47.9%), dementia, 29% (12.2-59.4%), and psychotic syndromes, 12.7% (3.1-40.9%). Other frequent complications were sleep disturbances (49%) and anxiety (20%). Depression was associated with gender but not with age. Dementia was associated with age. The rates and comorbidity of depression and dementia were driven by PD severity. NPS were highly prevalent in our comprehensive patient sample, largely representative of management problems occurring in an outpatient setting. PD outpatients are at an increased risk for all neuropsychiatric conditions, increasing with PD severity but not with age or age of onset (except dementia), revealing challenging symptom patterns. C1 [Riedel, Oliver; Klotsche, Jens; Wittchen, Hans-Ulrich] Tech Univ Dresden, Inst Clin Psychol & Psychotherapy, D-01187 Dresden, Germany. [Riedel, Oliver; Klotsche, Jens; Wittchen, Hans-Ulrich] Tech Univ Dresden, Ctr Clin Epidemiol & Longitudinal Studies CELOS, D-01187 Dresden, Germany. [Spottke, Annika] Univ Bonn, Dept Neurol, D-5300 Bonn, Germany. [Oertel, Wolfgang; Dodel, Richard] Univ Marburg, Dept Neurol, Marburg, Germany. [Deuschl, Guenther] Univ Kiel, Dept Neurol, D-2300 Kiel, Germany. [Foerstl, Hans] Tech Univ Munich, Dept Psychiat & Psychotherapy, Munich, Germany. [Henn, Fritz] Brookhaven Natl Lab, Upton, NY 11973 USA. [Heuser, Isabella] Charite, D-13353 Berlin, Germany. [Reichmann, Heinz] Fac Med Carl Gustav Carus Dresden, Dept Neurol, Dresden, Germany. [Riederer, Peter] Univ Wurzburg, Dept Clin Neurochem, Clin Neurochem & NPF Ctr Excellence Labs, Wurzburg, Germany. [Trenkwalder, Claudia] Paracelsus Elena Clin Kassel, Kassel, Germany. RP Wittchen, HU (reprint author), Tech Univ Dresden, Inst Clin Psychol & Psychotherapy, Chemnitzer Str 46, D-01187 Dresden, Germany. EM wittchen@psychologie.tu-dresden.de RI Wittchen, Hans-Ulrich/A-8507-2014; Deuschl, Gunther/A-7986-2010; OI Wittchen, Hans-Ulrich/0000-0002-6311-7711 FU Novartis Pharma GmbH (Nurnberg, Germany); German Ministry of Education and Research (BMBF) [01GI9901/1] FX The GEPAD study was supported by an unrestricted educational grant of Novartis Pharma GmbH (Nurnberg, Germany) and received support from the German Ministry of Education and Research through award number BMBF No. 01GI9901/1 (R.D., W.O., H.R., C.T.). We wish to thank all cooperating physicians and patients for their participation in this study. NR 39 TC 74 Z9 77 U1 4 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0340-5354 J9 J NEUROL JI J. Neurol. PD JUL PY 2010 VL 257 IS 7 BP 1073 EP 1082 DI 10.1007/s00415-010-5465-z PG 10 WC Clinical Neurology SC Neurosciences & Neurology GA 616RG UT WOS:000279225900004 PM 20140443 ER PT J AU Perez, E Yao, B Keiser, DD Sohn, YH AF Perez, E. Yao, B. Keiser, D. D., Jr. Sohn, Y. H. TI Microstructural analysis of as-processed U-10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION FUEL; HIGH-DENSITY; URANIUM; ZIRCONIUM; SYSTEM; INTERDIFFUSION; ALLOYS; PHASE; MOLYBDENUM; ALUMINUM AB For higher U-loading in low-enriched U-10 wt.%Mo fuels, monolithic fuel plate clad in AA6061 is being developed as a part of Reduced Enrichment for Research and Test Reactor (RERTR) program. This paper reports the first characterization results from a monolithic U-10 wt.%Mo fuel plate with a Zr diffusion barrier that was fabricated as part of a plate fabrication campaign for irradiation testing in the Advanced Test Reactor (ATR). Both scanning and transmission electron microscopy (SEM and TEM) were employed for analysis. At the interface between the Zr barrier and U-10 wt.%Mo, going from Zr to U(Mo), UZr(2), gamma-UZr, Zr solid-solution and Mo(2)Zr phases were observed. The interface between AA6061 cladding and Zr barrier plate consisted of four layers, going from Al to Zr, (Al, Si)(2)Zr, (Al, Si)Zr(3) (Al, Si)(3)Zr, and AlSi(4)Zr(5). Irradiation behavior of these intermetallic phases is discussed based on their constituents. Characterization of as-fabricated phase constituents and microstructure would help understand the irradiation behavior of these fuel plates, interpret post-irradiation examination, and optimize the processing parameters of monolithic fuel system. (C) 2010 Elsevier B.V. All rights reserved. C1 [Perez, E.; Yao, B.; Sohn, Y. H.] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Keiser, D. D., Jr.] Idaho Natl Lab, Nucl Fuels & Mat Div, Scoville, ID 83415 USA. RP Sohn, YH (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM ysohn@mail.ucf.edu RI Sohn, Yongho/A-8517-2010; Yao, Bo/C-9927-2011 OI Sohn, Yongho/0000-0003-3723-4743; FU Idaho National Laboratory [00051953]; National Nuclear Security Administration [DE-AC07-05ID14517] FX This work was financially supported by Idaho National Laboratory (Contract No. 00051953) under the operation of US Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. NR 34 TC 28 Z9 28 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 1 PY 2010 VL 402 IS 1 BP 8 EP 14 DI 10.1016/j.jnucmat.2010.04.016 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 621VG UT WOS:000279612500002 ER PT J AU Besmann, TM AF Besmann, Theodore M. TI Modeling the thermochemical behavior of AmO2-x SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CHEMICAL THERMODYNAMIC REPRESENTATION; OXYGEN SYSTEM; AMERICIUM OXIDE; U1-ZPUZOW; CEO2-X; PUO2-X AB A thermochemical representation of the fluorite structure AmO2-x phase was developed using the compound energy formalism approach assuming constituents of (Am4+)(1)(O2-)(2), (Am4+)(1)(Va)(2), (Am3+)(1)(O2-)(2), and (Am3+)(1)(Va)(2). The Gibbs free energies for the constituents and a set of interaction parameters were determined using reported oxygen potential-temperature-composition data. A good fit to the experimental information was obtained which well-reproduces the behavior. The representation is also in a format that will allow incorporation of other dissolved metals and thus will be useful in generating multi-component compound energy formalism representations for complex oxide nuclear fuel and waste systems. A full assessment relating the fluorite structure phase to the phase equilibria for Am-O, however, must await adequate data for the remainder of the system. (C) 2010 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Besmann, TM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM besmanntm@ornl.gov FU US Department of Energy, Office of Nuclear Energy; US Department of Energy [DE-AC05-00OR22725] FX The authors are grateful to C. Thiriet for providing the tabulated data of Chikalla and Eyring and to Otobe for similarly providing their data in tabular form. Thanks also for the useful reviews by G.L. Bell, S.L. Voit, and P.C. Schuck. The research was supported by the US Department of Energy, Office of Nuclear Energy under the Fuel Cycle Research and Development and Nuclear Energy Advanced Modeling and Simulation programs.; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 25 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD JUL 1 PY 2010 VL 402 IS 1 BP 25 EP 29 DI 10.1016/j.jnucmat.2010.04.019 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 621VG UT WOS:000279612500004 ER PT J AU Koh, J Yoon, D Oh, CH AF Koh, JaeHwa Yoon, DuckJoo Oh, Chang H. TI Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell SO JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY LA English DT Article DE high-temperature electrolysis system (HTES); solid oxide electrolysis cell (SOEC); hydrogen production; nuclear hydrogen; electrolyzer; very high temperature reactor (VHTR) AB An electrolyzer model for the analysis of a hydrogen production system using a solid oxide electrolysis cell has been developed, and the effects of principal parameters have been estimated via sensitivity studies based on the developed model. The main parameters considered were current density, area-specific resistance, temperature, pressure, molar fraction, and flow rates in the inlet and outlet. A simple model is also estimated for a high-temperature hydrogen production system that integrates the solid oxide electrolysis cell with a very high temperature reactor. C1 [Koh, JaeHwa; Yoon, DuckJoo] KEPCO Res Inst, Taejon 305760, South Korea. [Oh, Chang H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Koh, J (reprint author), KEPCO Res Inst, 65 Munji Ro, Taejon 305760, South Korea. EM euron@kepri.re.kr FU Korea Hydraulic & Nuclear Power Company, Korea FX The work described in this paper was supported by the Korea Hydraulic & Nuclear Power Company, Korea. NR 16 TC 6 Z9 6 U1 3 U2 13 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0022-3131 EI 1881-1248 J9 J NUCL SCI TECHNOL JI J. Nucl. Sci. Technol. PD JUL PY 2010 VL 47 IS 7 BP 599 EP 607 DI 10.1080/18811248.2010.9720957 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 638WS UT WOS:000280929600004 ER PT J AU Arora, P Slipchenko, LV Webb, SP DeFusco, A Gordon, MS AF Arora, Pooja Slipchenko, Lyudmila V. Webb, Simon P. DeFusco, Albert Gordon, Mark S. TI Solvent-Induced Frequency Shifts: Configuration Interaction Singles Combined with the Effective Fragment Potential Method SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIPOLE-MOMENT DERIVATIVES; HARTREE-FOCK CALCULATIONS; SOLVATION DYNAMICS; EXCITED-STATES; EXCITATION-ENERGIES; COUPLED-CLUSTER; AB-INITIO; ELECTRONIC-TRANSITION; MOLECULAR-DYNAMICS; AQUEOUS-SOLUTION AB The simplest variational method for treating electronic excited states, configuration interaction with single excitations (CIS), has been interfaced with the effective fragment potential (EFP) method to provide an effective and computationally efficient approach for studying the qualitative effects of solvents on the electronic spectra of molecules. Three different approaches for interfacing a non-self-consistent field (SCF) excited-state quantum mechanics (QM) method and the EFP method are discussed. The most sophisticated and complex approach (termed fully self consistent) calculates the excited-state electron density with fully self-consistent accounting for the polarization (induction) energy of effective fragments. The simplest approach (method I) includes a strategy that indirectly adds the EFP perturbation to the CIS wave function and energy via modified Hartree-Fock molecular orbitals, so that there is no direct EFP interaction with the excited-state density. An intermediate approach (method 2) accomplishes the latter in a noniterative perturbative manner. Theoretical descriptions of the three approaches are presented, and test results of solvent-induced shifts using methods 1 and 2 are compared with fully ab initio values. These comparisons illustrate that, at least for the test cases examined here, modification of the ground-state Hartree-Fock orbitals is the largest and most important factor in the calculated solvent-induced shifts. Method 1 is then employed to study the aqueous solvation of coumarin 151 and compared with experimental measurements. C1 [Arora, Pooja; DeFusco, Albert; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Arora, Pooja; DeFusco, Albert; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Slipchenko, Lyudmila V.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. [Webb, Simon P.] VeraChem LLC, Germantown, MD 20875 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RI Slipchenko, Lyudmila/G-5182-2012 FU U.S. Department Of Energy, Office of Science, Basic Energy Sciences; Purdue University; Petroleum Research Fund [49271-DN16]; National Science Foundation [CHE-0955419] FX This research was supported by a grant (to M.S.G.) from the U.S. Department Of Energy, Office of Science, Basic Energy Sciences, administered by the Ames Laboratory, Iowa State University, and by support (to L.V.S.) from Purdue University, the Petroleum Research Fund (49271-DN16) and the National Science Foundation (CHE-0955419). The authors gratefully acknowledge helpful discussions with Drs. Michael W. Schmidt and Paul N. Day. NR 78 TC 44 Z9 44 U1 3 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 1 PY 2010 VL 114 IS 25 BP 6742 EP 6750 DI 10.1021/jp101780r PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 613LX UT WOS:000278981900002 PM 20527868 ER PT J AU Idupulapati, N Devanathan, R Dupuis, M AF Idupulapati, Nagesh Devanathan, Ram Dupuis, Michel TI Ab Initio Study of Hydration and Proton Dissociation in Ionomer Membranes SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID METHANOL FUEL-CELLS; EXCHANGE MEMBRANES; COMPOSITE MEMBRANES; CONDUCTING POLYMERS; NAFION; ACID; WATER; ENERGIES; DENSITY; STATE AB We present a comparative study of proton dissociation in various functional acidic units that are promising candidates as building blocks for polymeric electrolyte membranes. Minimum energy structures for four acidic moieties with clusters of I 6 water molecules were determined using density functional theory at the B3LYP/6-311G** level starting from chemically rational initial configurations. The perfluoro sulfonyl imide acid group (CF3CF2SO2NHSO2CF3) was observed to be the strongest acid, due to the substantial electron withdrawing effect of both fluorocarbon groups. The hydrophilic functional group (CH3OC6OCH3C6H4SO3H) of sulfonated polyetherether ketone (SPEEK) membrane was found to be the strongest base, with the acidic proton dissociation requiring the addition of six water molecules and the hydrated proton being more tightly bound to the conjugate base. Even though both perfluoro sulfonyl imides and sulfonic acids (hydrophilic functional groups for sulfonyl imide and Nafion ionomers, respectively) required only three water molecules to exhibit spontaneous proton dissociation, the largest possible solvent-separated hydronium ion was attained only for the sulfonyl imide moiety. These results provide a rationale for the enhanced conductivity of perfluorinated sulfonyl imide-based membranes relative to that of the widely used Nafion membrane. C1 [Idupulapati, Nagesh; Devanathan, Ram; Dupuis, Michel] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. RP Idupulapati, N (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. EM nagesh.idupulapati@pnl.gov RI Devanathan, Ram/C-7247-2008 OI Devanathan, Ram/0000-0001-8125-4237 NR 52 TC 18 Z9 18 U1 2 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JUL 1 PY 2010 VL 114 IS 25 BP 6904 EP 6912 DI 10.1021/jp1027178 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 613LX UT WOS:000278981900022 PM 20524678 ER PT J AU Vaknin, D Bu, W AF Vaknin, David Bu, Wei TI Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID X-RAY-FLUORESCENCE; ARACHIDIC ACID MONOLAYERS; AIR-WATER-INTERFACE; REFLECTION; SURFACE; ADSORPTION; SPECTROSCOPY; DIFFRACTION; CATIONS; IONS AB Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in small domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes. C1 [Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Vaknin, D (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM vaknin@ameslab.gov RI Vaknin, David/B-3302-2009; Bu, Wei/Q-1390-2016 OI Vaknin, David/0000-0002-0899-9248; Bu, Wei/0000-0002-9996-3733 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank A. Travesset for illuminating discussions regarding ions near charged interfaces and D. S. Robinson for technical support at the 6-1D beamline. Ames Laboratory is supported by the U.S. Department of Energy. Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 24 TC 11 Z9 11 U1 2 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 1 PY 2010 VL 1 IS 13 BP 1936 EP 1940 DI 10.1021/jz1005434 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 620OC UT WOS:000279508200007 ER PT J AU Sushko, ML Rosso, KM Liu, J AF Sushko, Maria L. Rosso, Kevin M. Liu, Jun TI Size Effects on Li+/Electron Conductivity in TiO2 Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DEPENDENT ELECTRICAL-CONDUCTIVITY; NANOSTRUCTURED ELECTRODE; LITHIUM BATTERIES; ION-TRANSPORT; LI; NANOIONICS; DIFFUSION; INSERTION; RUTILE; SURFACES AB TiO2 nanoparticles are the important components of nanostructured electrodes for Li-ion batteries. High Li-ion conductivity of the nanoparticles is the key design requirement for these materials. Using multiscale theoretical modeling, we study the influence of nanoparticle size on its Li+ conductivity and reveal the fundamental mechanism for the dramatic increase in conductivity with the decrease in the size of the nanoparticles. We show that the competition between Li+ and electron accumulation at the nanoparticle boundaries competes with the steady ion and electron fluxes. For nanoparticles smaller that 20 nm, the balance is shifted toward the steady charge transport, hence high conductivity, while for larger nanoparticles charge separation prevails. Size effects are also manifested in the change in the nature of charge transport from dual ionic/electronic for small nanoparticles to predominately ionic for larger ones. C1 [Sushko, Maria L.; Rosso, Kevin M.; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sushko, ML (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM maria.sushko@pnl.gov RI Sushko, Maria/C-8285-2014 OI Sushko, Maria/0000-0002-7229-7072 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; DOE [DE-AC05-76RL01830] FX The development of the PNP-cDFT software is supported by the Laboratory-Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) under the Transformational Materials Science Initiative. The study of charge transport in TiO2 nanoparticles is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152. PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract DE-AC05-76RL01830. NR 27 TC 19 Z9 19 U1 1 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 1 PY 2010 VL 1 IS 13 BP 1967 EP 1972 DI 10.1021/jz100520c PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 620OC UT WOS:000279508200013 ER PT J AU Garsany, Y Epshteyn, A Purdy, AP More, KL Swider-Lyons, KE AF Garsany, Yannick Epshteyn, Albert Purdy, Andrew P. More, Karren L. Swider-Lyons, Karen E. TI High-Activity, Durable Oxygen Reduction Electrocatalyst: Nanoscale Composite of Platinum-Tantalum Oxyphosphate on Vulcan Carbon SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FUEL-CELLS; CATALYSTS; PEMFCS; ALLOY; PT/C; STABILITY; MOOX AB A new oxygen reduction electrocatalyst for proton-exchange membrane fuel cells (PEMFCs) is synthesized by dispersing nanoscale Pt on a nanoscale tantalum oxyphosphate phase on a Vulcan carbon support, designated as Pt/[TaOPO4/VC]. Electrocatalytic activity is measured by the thin-film rotating disk electrode methodology in 0.1 M HClO4 electrolyte. The Pd[TaOPO4/VC] electrocatalyst has a high mass-specific activity of 0.46 A mg(Pt)(-1) compared to 0.20 A mg(Pt)(-1) for a Pt/Vulcan carbon standard and has met the 2015 DOE goal of 0.44 A mg(Pt)(-1). This tantalum-containing electrocatalyst is twice as durable as the standard Pt/carbon in terms of its loss of Pt electrochemical surface area after aggressive electrochemical cycling. C1 [Garsany, Yannick; Epshteyn, Albert; Purdy, Andrew P.; Swider-Lyons, Karen E.] USN, Res Lab, Div Chem, Washington, DC 20375 USA. [Garsany, Yannick] EXCET INC, Springfield, VA 22151 USA. [More, Karren L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Garsany, Y (reprint author), USN, Res Lab, Div Chem, 4555 Overlook Ave SW, Washington, DC 20375 USA. EM yannick.garsany@nrl.navy.mil RI More, Karren/A-8097-2016 OI More, Karren/0000-0001-5223-9097 FU Office of Naval Research; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Dept. of Energy FX The authors thank the Office of Naval Research for financial support. The authors also acknowledge Dr. Stephen Campbell (AFFC) for technical discussions. Microscopy conducted in ORNL's Share User Facility, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Dept. of Energy. NR 27 TC 21 Z9 21 U1 0 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 1 PY 2010 VL 1 IS 13 BP 1977 EP 1981 DI 10.1021/jz100681g PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 620OC UT WOS:000279508200015 ER PT J AU Liu, Y Chen, CY Chen, HL Hong, KL Shew, CY Li, X Liu, L Melnichenko, YB Smith, GS Herwig, KW Porcar, L Chen, WR AF Liu, Yun Chen, Chun-Yu Chen, Hsin-Lung Hong, Kunlun Shew, Chwen-Yang Li, Xin Liu, Li Melnichenko, Yuri B. Smith, Gregory S. Herwig, Kenneth W. Porcar, Lionel Chen, Wei-Ren TI Electrostatic Swelling and Conformational Variation Observed in High-Generation Polyelectrolyte Dendrimers SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID ANGLE NEUTRON-SCATTERING; PAMAM DENDRIMERS; AQUEOUS-SOLUTIONS; MOLECULAR-DYNAMICS; SIMULATIONS AB A combined small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS)study was conducted to investigate the structural characteristics of aqueous (D(2)O) solution of generation 7 and 8 (G7 & G8) polyamidoamine (PAMAM) dendrimer as a function of molecular protonation. A consequent change in the intramolecular dendrimer conformation was clearly quantified by a detailed data analysis separating intermolecular correlations from the intramolecular contribution. Our results unambiguously reveal both an increase in the molecular size and a continuous variation of the intramolecular density profile upon increasing molecular protonation. This observation is contrary to current understanding of high-generation polyelectrolyte dendrimers where steric crowding is supposed to stiffen the local motion of dendrimer segments hindering exploration of available intradendrimer free volume and thereby inhibiting electrostatic swelling. Our observation is relevant to the elucidation of the general microscopic picture of polyelectrolyte dendrimer structure, as well as the development of dendrimer-based packages based on the stimuli-responsive principle. C1 [Li, Xin; Melnichenko, Yuri B.; Smith, Gregory S.; Herwig, Kenneth W.; Chen, Wei-Ren] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. [Liu, Yun] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Chen, Chun-Yu; Chen, Hsin-Lung] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Shew, Chwen-Yang] CUNY Coll Staten Isl, Dept Chem, Staten Isl, NY 10314 USA. [Li, Xin; Liu, Li] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. [Porcar, Lionel] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Chen, Wei-Ren] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Chen, Wei-Ren] Oak Ridge Natl Lab, Joint Inst Neutron Sci, Oak Ridge, TN 37831 USA. RP Chen, WR (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM hichen@che.nthu.edu.tw; porcar@ill.fr; chenw@ornl.gov RI Chen, Chun-Yu/B-3843-2009; Herwig, Kenneth/F-4787-2011; Liu, Yun/F-6516-2012; Smith, Gregory/D-1659-2016; Hong, Kunlun/E-9787-2015 OI Liu, Yun/0000-0002-0944-3153; Smith, Gregory/0000-0001-5659-1805; Hong, Kunlun/0000-0002-2852-5111 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Division of Scientific User Facilities, U.S. Department of Energy; CUNY FX We gratefully acknowledge the support of NCNR NIST in providing the neutron research facilities. The research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Sample preparation was conducted at CNMS, which is sponsored at ORNL by the Division of Scientific User Facilities, U.S. Department of Energy. C.Y.S. acknowledges the support from the CUNY PSC grants. We also acknowledge the SAXS beam time provided by NSRRC. NR 24 TC 42 Z9 42 U1 0 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD JUL 1 PY 2010 VL 1 IS 13 BP 2020 EP 2024 DI 10.1021/jz1006143 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 620OC UT WOS:000279508200022 ER PT J AU Nakamura, K Hagiwara, K Hikasa, K Murayama, H Tanabashi, M Watari, T Amsler, C Antonelli, M Asner, DM Baer, H Band, HR Barnett, RM Basaglia, T Bergren, E Beringer, J Bernardi, G Bertl, W Bichsel, H Biebel, O Blucher, E Blusk, S Cahn, RN Carena, M Ceccucci, A Chakraborty, D Chen, MC Chivukula, RS Cowan, G Dahl, O D'Ambrosio, G Damour, T de Florian, D de Gouvea, A DeGrand, T Dissertori, G Dobrescu, B Doser, M Drees, M Edwards, DA Eidelman, S Erler, J Ezhela, VV Fetscher, W Fields, BD Foster, B Gaisser, TK Garren, L Gerber, HJ Gerbier, G Gherghetta, T Giudice, CF Golwala, S Goodman, M Grab, C Gritsan, AV Grivaz, JF Groom, DE Grunewald, M Gurtu, A Gutsche, T Haber, HE Hagmann, C Hayes, KG Heffner, M Heltsley, B Hernandez-Rey, JJ Hocker, A Holder, J Huston, J Jackson, JD Johnson, KF Junk, T Karle, A Karlen, D Kayser, B Kirkby, D Klein, SR Kolda, C Kowalewski, RV Krusche, B Kuyanov, YV Kwon, Y Lahav, O Langacker, P Liddle, A Ligeti, Z Lin, CJ Liss, TM Littenberg, L Lugovsky, KS Lugovsky, SB Lys, J Mahlke, H Mannel, T Manohar, AV Marciano, WJ Martin, AD Masoni, A Milstead, D Miquel, R Monig, K Narain, M Nason, P Navas, S Nevski, P Nir, Y Olive, KA Pape, L Patrignani, C Peacock, JA Petcov, ST Piepke, A Punzi, G Quadt, A Raby, S Raffelt, G Ratcliff, BN Richardson, P Roesler, S Rolli, S Romaniouk, A Rosenberg, LJ Rosner, JL Sachrajda, CT Sakai, Y Salam, GP Sarkar, S Sauli, F Schneider, O Scholberg, K Scott, D Seligman, WG Shaevitz, MH Silari, M Sjostrand, T Smith, JG Smoot, GF Spanier, S Spieler, H Stahl, A Stanev, T Stone, SL Sumiyoshi, T Syphers, MJ Terning, J Titov, M Tkachenko, NP Tornqvist, NA Tovey, D Trippe, TG Valencia, G van Bibber, K Venanzoni, G Vincter, MG Vogel, P Vogt, A Walkowiak, W Walter, CW Ward, DR Webber, BR Weiglein, G Weinberg, EJ Wells, JD Wheeler, A Wiencke, LR Wohl, CG Wolfenstein, L Womersley, J Woody, CL Workman, RL Yamamoto, A Yao, WM Zenin, OV Zhang, J Zhu, RY Zyla, PA Harper, G Lugovsky, VS Schaffner, P AF Nakamura, K. Hagiwara, K. Hikasa, K. Murayama, H. Tanabashi, M. Watari, T. Amsler, C. Antonelli, M. Asner, D. M. Baer, H. Band, H. R. Barnett, R. M. Basaglia, T. Bergren, E. Beringer, J. Bernardi, G. Bertl, W. Bichsel, H. Biebel, O. Blucher, E. Blusk, S. Cahn, R. N. Carena, M. Ceccucci, A. Chakraborty, D. Chen, M. -C. Chivukula, R. S. Cowan, G. Dahl, O. D'Ambrosio, G. Damour, T. de Florian, D. de Gouvea, A. DeGrand, T. Dissertori, G. Dobrescu, B. Doser, M. Drees, M. Edwards, D. A. Eidelman, S. Erler, J. Ezhela, V. V. Fetscher, W. Fields, B. D. Foster, B. Gaisser, T. K. Garren, L. Gerber, H. -J. Gerbier, G. Gherghetta, T. Giudice, C. F. Golwala, S. Goodman, M. Grab, C. Gritsan, A. V. Grivaz, J. -F. Groom, D. E. Grunewald, M. Gurtu, A. Gutsche, T. Haber, H. E. Hagmann, C. Hayes, K. G. Heffner, M. Heltsley, B. Hernandez-Rey, J. J. Hoecker, A. Holder, J. Huston, J. Jackson, J. D. Johnson, K. F. Junk, T. Karle, A. Karlen, D. Kayser, B. Kirkby, D. Klein, S. R. Kolda, C. Kowalewski, R. V. Krusche, B. Kuyanov, Yu. V. Kwon, Y. Lahav, O. Langacker, P. Liddle, A. Ligeti, Z. Lin, C. -J. Liss, T. M. Littenberg, L. Lugovsky, K. S. Lugovsky, S. B. Lys, J. Mahlke, H. Mannel, T. Manohar, A. V. Marciano, W. J. Martin, A. D. Masoni, A. Milstead, D. Miquel, R. Moenig, K. Narain, M. Nason, P. Navas, S. Nevski, P. Nir, Y. Olive, K. A. Pape, L. Patrignani, C. Peacock, J. A. Petcov, S. T. Piepke, A. Punzi, G. Quadt, A. Raby, S. Raffelt, G. Ratcliff, B. N. Richardson, P. Roesler, S. Rolli, S. Romaniouk, A. Rosenberg, L. J. Rosner, J. L. Sachrajda, C. T. Sakai, Y. Salam, G. P. Sarkar, S. Sauli, F. Schneider, O. Scholberg, K. Scott, D. Seligman, W. G. Shaevitz, M. H. Silari, M. Sjostrand, T. Smith, J. G. Smoot, G. F. Spanier, S. Spieler, H. Stahl, A. Stanev, T. Stone, S. L. Sumiyoshi, T. Syphers, M. J. Terning, J. Titov, M. Tkachenko, N. P. Tornqvist, N. A. Tovey, D. Trippe, T. G. Valencia, G. van Bibber, K. Venanzoni, G. Vincter, M. G. Vogel, P. Vogt, A. Walkowiak, W. Walter, C. W. Ward, D. R. Webber, B. R. Weiglein, G. Weinberg, E. J. Wells, J. D. Wheeler, A. Wiencke, L. R. . Wohl, C. G. Wolfenstein, L. Womersley, J. Woody, C. L. Workman, R. L. Yamamoto, A. Yao, W. -M. Zenin, O. V. Zhang, J. Zhu, R. -Y. Zyla, P. A. Harper, G. Lugovsky, V. S. Schaffner, P. CA Particle Data Grp TI REVIEW OF PARTICLE PHYSICS SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID SUPERSYMMETRIC STANDARD MODEL; DEEP-INELASTIC-SCATTERING; DOUBLE-BETA-DECAY; GRAND UNIFIED THEORIES; HIGGS-BOSON-MASS; TO-LEADING-ORDER; ELECTROWEAK SYMMETRY-BREAKING; MICROWAVE-ANISOTROPY-PROBE; ANOMALOUS MAGNETIC-MOMENT; UB-VERTICAL-BAR AB This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2158 new measurements from 551 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on neutrino mass, mixing, and oscillations, QCD, top quark, CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, fragmentation functions, particle detectors for accelerator and non-accelerator physics, magnetic monopoles, cosmological parameters, and big bang cosmology. A booklet is available containing the Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also available on the Particle Data Group website: http://pdg.1b1.gov. C1 [Nakamura, K.; Murayama, H.; Watari, T.] Univ Tokyo, IPMU, Kashiwa, Chiba 2778583, Japan. [Nakamura, K.; Hagiwara, K.; Yamamoto, A.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki 3050801, Japan. [Hikasa, K.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Murayama, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, H.; Barnett, R. M.; Bergren, E.; Beringer, J.; Cahn, R. N.; Dahl, O.; Groom, D. E.; Jackson, J. D.; Ligeti, Z.; Lin, C. -J.; Lys, J.; Smoot, G. F.; Spieler, H.; Trippe, T. G.; Wohl, C. G.; Yao, W. -M.; Zyla, P. A.; Harper, G.; Schaffner, P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Phys, Berkeley, CA 94720 USA. [Tanabashi, M.] Nagoya Univ, Dept Phys, Chikusa Ku, Nagoya, Aichi 4648602, Japan. [Amsler, C.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Antonelli, M.; Venanzoni, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Asner, D. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Baer, H.; Johnson, K. F.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Band, H. R.; Karle, A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Basaglia, T.; Ceccucci, A.; Doser, M.; Giudice, C. F.; Gurtu, A.; Hoecker, A.; Roesler, S.; Sauli, F.; Silari, M.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bernardi, G.] CNRS, IN2P3, LPNHE, F-75252 Paris, France. [Bernardi, G.] Univ Paris 06, F-75252 Paris, France. [Bernardi, G.] Univ Paris 07, F-75252 Paris, France. [Bertl, W.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Bichsel, H.; Rosenberg, L. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Biebel, O.] Univ Munich, Fac Phys, D-80799 Munich, Germany. [Blucher, E.; Carena, M.; Rosner, J. L.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Blucher, E.; Carena, M.; Rosner, J. L.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Blusk, S.; Stone, S. L.] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA. [Carena, M.; Dobrescu, B.; Garren, L.; Junk, T.; Kayser, B.; Syphers, M. J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Chakraborty, D.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chen, M. -C.; Kirkby, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Chivukula, R. S.; Huston, J.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cowan, G.] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England. [D'Ambrosio, G.] Univ Monte St Angelo, Sez Napoli Complesso, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Damour, T.] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France. [de Florian, D.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina. [de Gouvea, A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [DeGrand, T.; Smith, J. G.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Dissertori, G.; Fetscher, W.; Gerber, H. -J.; Grab, C.; Pape, L.] ETH, Inst Particle Phys, CH-8093 Zurich, Switzerland. [Drees, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Edwards, D. A.; Weiglein, G.] DESY, D-22603 Hamburg, Germany. [Eidelman, S.] Budker Inst Nucl Phys, RU-630090 Novosibirsk, Russia. [Erler, J.] Univ Nacl Autonoma Mexico, Inst Fis, Dept Fis Teor, Mexico City 04510, DF, Mexico. [Ezhela, V. V.; Kuyanov, Yu. V.; Lugovsky, K. S.; Lugovsky, S. B.; Tkachenko, N. P.; Zenin, O. V.; Lugovsky, V. S.] Inst High Energy Phys, COMPAS Grp, RU-142284 Protvino, Russia. [Fields, B. D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Foster, B.] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Gaisser, T. K.; Holder, J.; Stanev, T.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Gherghetta, T.] Univ Melbourne, Sch Phys, Victoria 3010, Australia. [Golwala, S.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Goodman, M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Grivaz, J. -F.] CNRS, IN2P3, LAL, F-91898 Orsay, France. [Grivaz, J. -F.] Univ Paris 11, F-91898 Orsay, France. [Grunewald, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Gurtu, A.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Gutsche, T.] Univ Tubingen, Inst Theoret Phys, D-72076 Tubingen, Germany. [Haber, H. E.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Hagmann, C.; Heffner, M.; van Bibber, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hayes, K. G.] Hillsdale Coll, Dept Phys, Hillsdale, MI 49242 USA. [Heltsley, B.; Mahlke, H.] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Hernandez-Rey, J. J.] Univ Politecn Valencia, Inst Fis Corpuscular, IFIC, E-46071 Valencia, Spain. [Karlen, D.; Kowalewski, R. V.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Klein, S. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Kolda, C.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Krusche, B.] Univ Basel, Inst Phys, CH-4056 Basel, Switzerland. [Kwon, Y.] Yonsei Univ, Dept Phys, Seoul 120749, South Korea. [Lahav, O.] Univ London Univ Coll, Dept Phys & Astron, London WC1E 6BT, England. [Langacker, P.] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Liddle, A.] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Liss, T. M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Littenberg, L.; Marciano, W. J.; Nevski, P.; Woody, C. L.] Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. [Mannel, T.; Walkowiak, W.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Manohar, A. V.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Martin, A. D.; Richardson, P.] Univ Durham, Dept Phys, Inst Particle Phys Phenomenol, Durham DH1 3LE, England. [Masoni, A.] Cittadella Univ Monserrato, INFN Sez Cagliari, I-09042 Monserrato, CA, Italy. [Milstead, D.] Stockholm Univ, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden. [Miquel, R.] Inst Fis Altes Energies, Inst Catalano Recerca Estudis Avancats, E-08193 Barcelona, Spain. [Moenig, K.] DESY Zeuthen, D-15735 Zeuthen, Germany. [Narain, M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. [Nason, P.] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20126 Milan, Italy. [Navas, S.] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain. [Navas, S.] Univ Granada, CAFPE, E-18071 Granada, Spain. [Nir, Y.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Olive, K. A.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Patrignani, C.] Univ Genoa, Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Peacock, J. A.] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3JZ, Midlothian, Scotland. [Petcov, S. T.] SISSA INFN, I-34136 Trieste, TS, Italy. [Petcov, S. T.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria. [Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Punzi, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Punzi, G.] Univ Pisa, Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Quadt, A.] Univ Gottingen, Inst Phys 2, D-37077 Gottingen, Germany. [Raby, S.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Raffelt, G.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Ratcliff, B. N.; Wheeler, A.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Rolli, S.] Tufts Univ, Medford, MA 02155 USA. [Romaniouk, A.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Sachrajda, C. T.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England. [Salam, G. P.] Univ Paris 06, LPTHE, CNRS, UMR 7589, Paris, France. [Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Scholberg, K.; Walter, C. W.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Seligman, W. G.] Columbia Univ, Nevis Labs, Irvington, NY 10533 USA. [Shaevitz, M. H.; Weinberg, E. J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Sjostrand, T.] Lund Univ, Dept Theoret Phys, S-22362 Lund, Sweden. [Spanier, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Stahl, A.] Rhein Westfal TH Aachen, Phys Zentrum, Inst Phys 3, D-52056 Aachen, Germany. [Sumiyoshi, T.] Tokyo Metropolitan Univ, High Energy Phys Lab, Tokyo 1920397, Japan. [Terning, J.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Titov, M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Tornqvist, N. A.] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland. [Tovey, D.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Valencia, G.] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. [Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Vogel, P.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Vogt, A.] Univ Liverpool, Dept Math Sci, Div Theoret Phys, Liverpool L69 3BX, Merseyside, England. [Ward, D. R.; Webber, B. R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Wells, J. D.] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. [Wiencke, L. R. .] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Wolfenstein, L.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Womersley, J.] STFC Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Workman, R. L.] George Washington Univ, Dept Phys, Ashburn, VA 20147 USA. [Zhang, J.] Chinese Acad Sci, IHEP, Beijing 100049, Peoples R China. [Zhu, R. -Y.] CALTECH, Pasadena, CA 91125 USA. RP Nakamura, K (reprint author), Univ Tokyo, IPMU, Kashiwa, Chiba 2778583, Japan. RI Stahl, Achim/E-8846-2011; Nakamura, Kenzo/F-7174-2010; Chivukula, R. Sekhar/C-3367-2012; Punzi, Giovanni/J-4947-2012; de Florian, Daniel/B-6902-2011; Murayama, Hitoshi/A-4286-2011; Patrignani, Claudia/C-5223-2009; Hernandez-Rey, Juan Jose/N-5955-2014; Sarkar, Subir/G-5978-2011; Navas, Sergio/N-4649-2014; OI Stahl, Achim/0000-0002-8369-7506; Chivukula, R. Sekhar/0000-0002-4142-1077; Punzi, Giovanni/0000-0002-8346-9052; de Florian, Daniel/0000-0002-3724-0695; Patrignani, Claudia/0000-0002-5882-1747; Hernandez-Rey, Juan Jose/0000-0002-1527-7200; Sarkar, Subir/0000-0002-3542-858X; Navas, Sergio/0000-0003-1688-5758; Nason, Paolo/0000-0001-9250-246X; Olive, Keith/0000-0001-7201-5998; Webber, Bryan/0000-0001-7474-0990; Salam, Gavin/0000-0002-2655-4373; Sjostrand, Torbjorn/0000-0002-7630-8605; Watari, Taizan/0000-0002-8879-1008; Miquel, Ramon/0000-0002-6610-4836 NR 5359 TC 4128 Z9 4147 U1 85 U2 631 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2010 VL 37 IS 7A BP 1 EP 5 AR 075021 DI 10.1088/0954-3899/37/7A/075021 PG 5 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 653EW UT WOS:000282072100001 ER PT J AU Dobaczewski, J Carlsson, BG Kortelainen, M AF Dobaczewski, J. Carlsson, B. G. Kortelainen, M. TI The Negele-Vautherin density-matrix expansion applied to the Gogny force SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID MEAN-FIELD; APPROXIMATION AB We use the Negele-Vautherin density-matrix expansion to derive a quasi-local density functional for the description of systems of fermions interacting with short-range interactions composed of arbitrary finite-range central, spin-orbit and tensor components. Terms that are absent in the original Negele-Vautherin approach owing to the angle averaging of the density matrix are fixed by employing a gauge invariance condition. We obtain the Kohn-Sham interaction energies in all spin-isospin channels, including the exchange terms, expressed as functions of the local densities and their derivatives up to second (next to leading) order. We illustrate the method by determining the coupling constants of the Skyrme functional or Skyrme force that correspond to the finite-range Gogny central force. The resulting self-consistent solutions reproduce the Gogny-force binding energies and radii within the precision of 1-2%. C1 [Dobaczewski, J.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Dobaczewski, J.; Carlsson, B. G.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Kortelainen, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kortelainen, M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Dobaczewski, J (reprint author), Univ Warsaw, Inst Theoret Phys, Hoza 69, PL-00681 Warsaw, Poland. EM Jacek.Dobaczewski@fuw.edu.pl NR 32 TC 14 Z9 14 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2010 VL 37 IS 7 AR 075106 DI 10.1088/0954-3899/37/7/075106 PG 20 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 604NJ UT WOS:000278285400027 ER PT J AU Liu, YP Qu, Z Xu, N Zhuang, PF AF Liu, Yunpeng Qu, Zhen Xu, Nu Zhuang, Pengfei TI Rapidity dependence of J/psi production at the RHIC and LHC SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID TRANSVERSE-MOMENTUM DEPENDENCE; HEAVY-ION COLLISIONS; NUCLEAR COLLISIONS; SUPPRESSION; SPECTRA AB The motion of charmonium at finite temperature is described by a three-dimensional transport equation with initial production and continuous regeneration in a hot medium created in high-energy nuclear collisions. The observation of apparently stronger J/psi suppression at forward rapidity compared to that at midrapidity, the so-called J/psi puzzle at the Relativistic Heavy Ion Collider (RHIC), can be well explained by a competition between the two production mechanisms. At the Large Hadron Collider (LHC), however, the rapidity dependence of the J/psi production is dominated by the regeneration process. C1 [Liu, Yunpeng; Qu, Zhen; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Xu, Nu] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Liu, YP (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM liuyp06@mails.tsinghua.edu.cn FU NSFC [10735040, 10975084]; 973-project [2006CB921404, 2007CB815000]; US Department of Energy [DE-AC03-76SF00098] FX The work was supported by the NSFC grants 10735040 and 10975084, the 973-project 2006CB921404 and 2007CB815000, and the US Department of Energy under contract no DE-AC03-76SF00098. NR 31 TC 14 Z9 15 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2010 VL 37 IS 7 AR 075110 DI 10.1088/0954-3899/37/7/075110 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 604NJ UT WOS:000278285400031 ER PT J AU Rudolph, D Ragnarsson, I Reviol, W Andreoiu, C Bentley, MA Carpenter, MP Charity, RJ Clark, RM Cromaz, M Ekman, J Fahlander, C Fallon, P Ideguchi, E Macchiavelli, AO Mineva, MN Sarantites, DG Seweryniak, D Williams, SJ AF Rudolph, D. Ragnarsson, I. Reviol, W. Andreoiu, C. Bentley, M. A. Carpenter, M. P. Charity, R. J. Clark, R. M. Cromaz, M. Ekman, J. Fahlander, C. Fallon, P. Ideguchi, E. Macchiavelli, A. O. Mineva, M. N. Sarantites, D. G. Seweryniak, D. Williams, S. J. TI Rotational bands in the semi-magic nucleus Ni-57(28)29 SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID GAMMA-RAY SPECTROSCOPY; HIGH-SPIN; NI-56; SHELL; DECAY; GAMMASPHERE; COINCIDENCE AB Two rotational bands have been identified and characterized in the proton-magic N = Z + 1 nucleus Ni-57. These bands complete the systematics of well-and superdeformed rotational bands in the light nickel isotopes starting from doubly magic Ni-56 to Ni-60. High-spin states in Ni-57 have been produced in the fusion-evaporation reaction Si-28(S-32, 2p1n)Ni-57 and studied with the gamma-ray detection array GAMMASPHERE operated in conjunction with detectors for evaporated light charged particles and neutrons. The features of the rotational bands in Ni-57 are compared to those of neighbouring isotopes and interpreted by means of configuration-dependent cranked Nilsson-Strutinsky calculations. The two observed high-spin bands are considered signature partners and assigned to configurations with one 1g(9/2) proton and one 1g(9/2) neutron, resulting in an unambiguous understanding of the energetically favoured signature alpha = -1/2 band but a somewhat less satisfactory description of the signature alpha = +1/2 band. C1 [Rudolph, D.; Andreoiu, C.; Ekman, J.; Fahlander, C.; Mineva, M. N.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. [Reviol, W.; Charity, R. J.; Ideguchi, E.; Sarantites, D. G.] Washington Univ, Dept Chem, St Louis, MO 63130 USA. [Bentley, M. A.; Williams, S. J.] Univ Keele, Sch Chem & Phys, Keele ST5 5BG, Staffs, England. [Carpenter, M. P.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Clark, R. M.; Cromaz, M.; Fallon, P.; Macchiavelli, A. O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Rudolph, D (reprint author), Lund Univ, Dept Phys, S-22100 Lund, Sweden. EM Dirk.Rudolph@nuclear.lu.se RI Rudolph, Dirk/D-4259-2009; Ekman, Jorgen/C-1385-2013; Carpenter, Michael/E-4287-2015; Mineva, Milena/L-4894-2016 OI Rudolph, Dirk/0000-0003-1199-3055; Carpenter, Michael/0000-0002-3237-5734; FU Swedish Research Council; US Department of Energy [DE-AC03-76SF00098, DE-FG05-88ER-40406, W-31-109-ENG38] FX First of all, we would like to thank the accelerator crews and the GAMMASPHERE support staff at Argonne and Berkeley for their supreme efforts. The target maker, Jette Agnete Sorensen, at the Niels Bohr Institute, Copenhagen, Denmark, is also warmly thanked. This work is supported in part by the Swedish Research Council and the US Department of Energy under grant nos DE-AC03-76SF00098 (LBNL), DE-FG05-88ER-40406 (WU) and W-31-109-ENG38 (ANL). NR 43 TC 5 Z9 5 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD JUL PY 2010 VL 37 IS 7 AR 075105 DI 10.1088/0954-3899/37/7/075105 PG 13 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 604NJ UT WOS:000278285400026 ER PT J AU Quan, XK Wang, CK Zhang, QZ Wang, XC Luo, YQ Bond-Lamberty, B AF Quan, Xiankuai Wang, Chuankuan Zhang, Quanzhi Wang, Xingchang Luo, Yiqi Bond-Lamberty, Ben TI Dynamics of fine roots in five Chinese temperate forests SO JOURNAL OF PLANT RESEARCH LA English DT Article DE Minirhizotron; Root biomass; Root mortality; Root production; Seasonality ID NORTHERN HARDWOOD FORESTS; NET PRIMARY PRODUCTION; BLACK SPRUCE FORESTS; DEPTH DISTRIBUTION; CARBON ALLOCATION; SOIL RESPIRATION; PRUNUS-AVIUM; ECOSYSTEMS; TURNOVER; PATTERNS AB We used a minirhizotron method to investigate spatial and temporal dynamics of fine roots (diameter a parts per thousand currency sign2 mm) in five Chinese temperate forests: Mongolian oak forest, aspen-birch forest, hardwood forest, Korean pine plantation and Dahurian larch plantation. Fine root dynamics were significantly influenced by forest type, soil layer, and sampling time. The grand mean values varied from 1.99 to 3.21 mm cm(-2) (root length per minirhizotron viewing area) for the fine root standing crop; from 6.7 to 11.6 mu m cm(-2) day(-1) for the production; and from 3.2 to 6.1 mu m cm(-2) day(-1) for the mortality. All forests had a similar seasonal "sinusoidal" pattern of standing crop, and a "unimodal" pattern of production. However, the seasonal dynamics of the mortality were largely unsynchronized with those of the production. The minimum values of standing crop, production and mortality occurred in March for all forests, whereas the maximum values and occurrence time differed among forest types. The standing crop, production and mortality tended to decrease with soil depth. The different spatiotemporal patterns of fine roots among the forests highlight the need for forest-specific measurements and modeling of fine root dynamics and forest carbon allocation. C1 [Quan, Xiankuai; Wang, Chuankuan; Zhang, Quanzhi; Wang, Xingchang] NE Forestry Univ, Coll Forestry, Harbin 150040, Peoples R China. [Luo, Yiqi] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Bond-Lamberty, Ben] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. RP Wang, CK (reprint author), NE Forestry Univ, Coll Forestry, 26 Hexing Rd, Harbin 150040, Peoples R China. EM wangck-cf@nefu.edu.cn RI Bond-Lamberty, Ben/C-6058-2008; Zhang, Quanzhi/A-2693-2014 OI Bond-Lamberty, Ben/0000-0001-9525-4633; Zhang, Quanzhi/0000-0001-5139-8870 FU National Natural Science Foundation of China [30625010]; Special Foundation for Common Benefits in Forestry [200804001]; Ministry of Science and Technology of China [2006BAD03A0703] FX This research was supported by grants from the National Natural Science Foundation of China (No. 30625010), the Special Foundation for Common Benefits in Forestry (No. 200804001), and the Ministry of Science and Technology of China (No. 2006BAD03A0703). We thank the two anonymous reviewers for their valuable comments. NR 54 TC 10 Z9 15 U1 3 U2 33 PU SPRINGER TOKYO PI TOKYO PA 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 0918-9440 J9 J PLANT RES JI J. Plant Res. PD JUL PY 2010 VL 123 IS 4 BP 497 EP 507 DI 10.1007/s10265-010-0322-9 PG 11 WC Plant Sciences SC Plant Sciences GA 612XU UT WOS:000278939900012 PM 20217175 ER PT J AU Elezovic, NR Babic, BM Gajic-Krstajic, L Radmilovic, V Krstajic, NV Vracar, LJ AF Elezovic, N. R. Babic, B. M. Gajic-Krstajic, Lj. Radmilovic, V. Krstajic, N. V. Vracar, L. J. TI Synthesis, characterization and electrocatalytical behavior of Nb-TiO2/Pt nanocatalyst for oxygen reduction reaction SO JOURNAL OF POWER SOURCES LA English DT Article DE Nb-TiO2 support; Nb-TiO2/Pt catalyst; Oxygen reduction reaction; Methanol ID PARTICLE-SIZE; FUEL-CELLS; SURFACE-AREA; TEMPERATURE-DEPENDENCE; ALLOY ELECTROCATALYSTS; METHANOL OXIDATION; CARBON CRYOGEL; PLATINUM; CATALYSTS; ELECTRODES AB In order to point out the effect of the support to the catalyst for oxygen reduction reaction nano-crystalline Nb-doped TiO2 was synthesized through a modified sol-gel route procedure. The specific surface area of the support, S-BET, and pore size distribution, were calculated from the adsorption isotherms using the gravimetric McBain method. The support was characterized by X-ray diffraction (XRD) technique. The borohydride reduction method was used to prepare Nb-TiO2 supported Pt (20 wt.%) catalyst. The synthesized catalyst was analyzed by TEM technique. Finally, the catalytic activity of this new catalyst for oxygen reduction reaction was investigated in acid solution, in the absence and the presence of methanol, and its activity was compared towards the results on C/Pt catalysts. Kinetic analysis reveals that the oxygen reduction reaction on Nb-TiO2/Pt catalyst follows four-electron process leading to water, as in the case of C/Pt electrode, but the Tafel plots normalized to the electrochemically active surface area show very remarkable enhancement in activity of Nb-TiO2/Pt expressed through the value of the current density at the constant potential. Moreover, Nb-TiO2/Pt catalyst exhibits higher methanol tolerance during the oxygen reduction reaction than the C/Pt catalyst. The enhancement in the activity of Nb-TiO2/Pt is consequence of both: the interactions of Pt nanoparticles with the support and the energy shift of the surface d-states with respect to the Fermi level what changes the surface reactivity. (C) 2010 Elsevier B.V. All rights reserved. C1 [Krstajic, N. V.; Vracar, L. J.] Univ Belgrade, Fac Technol & Met, Belgrade 11000, Serbia. [Elezovic, N. R.] Inst Multidisciplinary Res, Belgrade, Serbia. [Babic, B. M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Gajic-Krstajic, Lj.] Inst Tech Sci SASA, Belgrade, Serbia. [Radmilovic, V.] LBLN Univ Calif, Natl Ctr Electron Microscopy, Berkeley, CA USA. RP Vracar, LJ (reprint author), Univ Belgrade, Fac Technol & Met, Karnegijeva 4, Belgrade 11000, Serbia. EM ljvracar@tmf.bg.ac.rs RI Gajic-Krstajic, Ljiljana/F-9983-2010 OI Gajic-Krstajic, Ljiljana/0000-0001-8996-7477 FU Ministry of Science and Technological Development, Republic of Serbia [142038]; US Department of Energy [DE-AC02-05CH11231] FX This work is financially supported by the Ministry of Science and Technological Development, Republic of Serbia, under Contact No. 142038. V. Radmilovie acknowledges support by the US Department of Energy under Contract #DE-AC02-05CH11231. NR 46 TC 43 Z9 44 U1 5 U2 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2010 VL 195 IS 13 SI SI BP 3961 EP 3968 DI 10.1016/j.jpowsour.2010.01.035 PG 8 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 584PL UT WOS:000276764600001 ER PT J AU Ominde, N Bartlett, N Yang, XQ Qu, DY AF Ominde, Narah Bartlett, Nick Yang, Xiao-Qing Qu, Deyang TI Investigation of the oxygen reduction reaction on the carbon electrodes loaded with MnO2 catalyst SO JOURNAL OF POWER SOURCES LA English DT Article DE Oxygen reduction; Gas diffusion electrode; Manganese dioxide catalyst; Pore distribution ID ZINC-AIR BATTERIES; MANGANESE OXIDES; ALKALINE-SOLUTION; ELECTROCATALYTIC ACTIVITY; MECHANISM; NANOTUBE; CELLS AB The oxygen reduction reaction has been studied on gas diffusion electrodes made with various activated carbon materials and on the edge/basal orientations of pyrolitic graphite. A MnO2 catalyst was loaded on all carbon surfaces. The MnO2 catalyst demonstrated significant catalytic activity for the oxygen reduction reaction. The specific catalytic activity was found to relate to the concentration of the edge orientation of carbon materials loaded with MnO2 catalyst. The higher the percentage of edge orientations, the higher the specific catalytic activity would be. MnO2 may not participate in the reduction of O-2, but catalyze the disproportionation of HO2-. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ominde, Narah; Bartlett, Nick; Qu, Deyang] Univ Massachusetts, Dept Chem, Boston, MA 02125 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Qu, DY (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. EM deyang.qu@umb.edu FU U.S. Department of Energy [DEAC02-98CH10886] FX The work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program "Hybrid and Electric Systems," of the U.S. Department of Energy under Contract Number DEAC02-98CH10886. NR 29 TC 22 Z9 22 U1 6 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2010 VL 195 IS 13 SI SI BP 3984 EP 3989 DI 10.1016/j.jpowsour.2009.12.128 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 584PL UT WOS:000276764600004 ER PT J AU Sun, XG Dai, S AF Sun, Xiao-Guang Dai, Sheng TI Electrochemical and impedance investigation of the effect of lithium malonate on the performance of natural graphite electrodes in lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium malonate; Additive; Surface coating; Lithium-ion battery; Coulomb efficiency ID INITIAL IRREVERSIBLE CAPACITY; THERMAL-STABILITY; SURFACE MODIFICATION; NEGATIVE ELECTRODE; ANODE MATERIALS; LI; INTERCALATION; SYSTEMS; ALKALI; LI2CO3 AB Lithium malonate (LM) was coated on the surface of a natural graphite (NG) electrode, which was then tested as the negative electrode in the electrolytes of 0.9 M LiPF(6)/EC-PC-DMC (1/1/3, w/w/w) and 1.0 M LiBF(4)/EC-PC-DMC (1/1/3, w/w/w) under a current density of 0.075 mA cm(-2). LM was also used as an additive to the electrolyte of 1.0 M LiPF(6)/EC-DMC-DEC (1/1/1, v/v/v) and tested on a bare graphite electrode. It was found that both the surface coating and the additive approach were effective in improving first charge-discharge capacity and coulomb efficiency. Electrochemical impedance spectra showed that the decreased interfacial impedance was coupled with improved coulomb efficiency of the cells using coated graphite electrodes. Cyclic voltammograms (CVs) on fresh bare and coated natural graphite electrodes confirmed that all the improvement in the half-cell performance was due to the suppression of the solvent decomposition through the surface modification with LM. The CV data also showed that the carbonate electrolyte with LM as the additive was not stable against oxidation, which resulted in lower capacity of the full cell with commercial graphite and LiCoO(2) electrodes. (C) 2010 Elsevier B.V. All rights reserved. C1 [Sun, Xiao-Guang; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sun, XG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sunx@ornl.gov RI Dai, Sheng/K-8411-2015 OI Dai, Sheng/0000-0002-8046-3931 FU ORNL [D10-036, DE-AC05-00OR22725] FX This work was conducted at the Oak Ridge National Laboratory and supported by the ORNL laboratory-directed research and development (LDRD) grants of D10-036. This work was also partly supported by the ORNL LDRD program under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. X.G.S thanks Dr. Chao Hui for taking the SEM images. NR 31 TC 14 Z9 16 U1 4 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2010 VL 195 IS 13 SI SI BP 4266 EP 4271 DI 10.1016/j.jpowsour.2010.01.024 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 584PL UT WOS:000276764600042 ER PT J AU Zhang, JG Wang, DY Xu, W Xiao, J Williford, RE AF Zhang, Ji-Guang Wang, Deyu Xu, Wu Xiao, Jie Williford, R. E. TI Ambient operation of Li/Air batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Li/air battery; Li/oxygen battery; Air electrode; Membrane; Energy storage; Metal/air battery ID ORGANIC ELECTROLYTE BATTERY; LI-AIR BATTERIES; LITHIUM/OXYGEN BATTERY; ENERGY AB In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of similar to 20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg(-1), based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (similar to 70%). Lithium metal anodes and KB-carbon account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only similar to 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Ji-Guang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, R. E.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA USA. RP Zhang, JG (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd,Mail Stop K3-59, Richland, WA USA. EM jiguang.zhang@pnl.gov RI Deyu, Wang/J-9496-2014; OI Xu, Wu/0000-0002-2685-8684 FU Defense Advanced Research Projects Agency; Laboratory Directed Research and Development Program of Pacific Northwest National Laboratory FX This work was supported by the Defense Advanced Research Projects Agency and the Laboratory Directed Research and Development Program of Pacific Northwest National Laboratory. This paper has been approved for public release with unlimited distribution. The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Department of Defense. NR 20 TC 108 Z9 112 U1 22 U2 137 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2010 VL 195 IS 13 SI SI BP 4332 EP 4337 DI 10.1016/j.jpowsour.2010.01.022 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 584PL UT WOS:000276764600054 ER PT J AU Shao, YY Wang, XQ Engelhard, M Wang, CM Dai, S Liu, J Yang, ZG Lin, YH AF Shao, Yuyan Wang, Xiqing Engelhard, Mark Wang, Chongmin Dai, Sheng Liu, Jun Yang, Zhenguo Lin, Yuehe TI Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Vanadium redox flow battery; Renewable energy storage; Nitrogen-doped mesoporous carbon; Electron transfer; Reversibility; Energy efficiency ID OXYGEN REDUCTION REACTION; ELECTROCATALYTIC ACTIVITY; COMPOSITE ELECTRODES; METHANOL ELECTROOXIDATION; ELECTROCHEMICAL REDUCTION; PHOTOVOLTAIC SYSTEMS; FUNCTIONAL-GROUPS; NANOTUBES; GRAPHITE; SURFACE AB We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH(3). N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO](2+)/[VO(2)](+) is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO](2+)/[VO(2)](+) is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO](2+)/[VO(2)](+) is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energy storage efficiency of redox flow batteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redox flow batteries. This also opens up new and wider applications of nitrogen-doped carbon. (C) 2010 Elsevier B.V. All rights reserved. C1 [Shao, Yuyan; Engelhard, Mark; Wang, Chongmin; Liu, Jun; Yang, Zhenguo; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wang, Xiqing; Dai, Sheng] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Shao, YY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yuyan.shao@gmail.com; yuehe.lin@pnl.gov RI Engelhard, Mark/F-1317-2010; Wang, Xiqing/E-3062-2010; Shao, Yuyan/A-9911-2008; Lin, Yuehe/D-9762-2011; Dai, Sheng/K-8411-2015; OI Wang, Xiqing/0000-0002-1843-008X; Shao, Yuyan/0000-0001-5735-2670; Lin, Yuehe/0000-0003-3791-7587; Dai, Sheng/0000-0002-8046-3931; Engelhard, Mark/0000-0002-5543-0812 FU Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's (DOE's) [DE-AC05-76RL01830]; Office of Electricity Delivery&Energy Reliability's Storage Program FX This work is partially supported by a Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). Part of the research described in this paper was performed at the Environmental Molecular Sciences Laboratory, a national scientific-user facility sponsored by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research and located at PNNL. PNNL is operated for U.S. DOE by Battelle under Contract DE-AC05-76RL01830. J. Liu and Z. G. Yang acknowledge the support from Office of Electricity Delivery&Energy Reliability's Storage Program. NR 52 TC 150 Z9 160 U1 20 U2 162 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 J9 J POWER SOURCES JI J. Power Sources PD JUL 1 PY 2010 VL 195 IS 13 SI SI BP 4375 EP 4379 DI 10.1016/j.jpowsour.2010.01.015 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA 584PL UT WOS:000276764600061 ER PT J AU Yarrington, CD Son, SF Foley, TJ AF Yarrington, Cole D. Son, Steven F. Foley, Timothy J. TI Combustion of Silicon/Teflon/Viton and Aluminum/Teflon/Viton Energetic Composites SO JOURNAL OF PROPULSION AND POWER LA English DT Article; Proceedings Paper CT AIAA 47th Aerospace Sciences Meeting and Exhibit CY JAN 05-08, 2009 CL Orlando, FL SP Amer Inst Aeronaut & Astronaut ID METAL-FLUOROCARBON-PYROLANTS; OXIDANT PYROTECHNIC SYSTEMS; MAGNESIUM/TEFLON/VITON MTV; POROUS SILICON; BINARY-SYSTEMS; ALUMINUM; PROPAGATION; SPECTROSCOPY; BEHAVIOR; TEFLON AB The combustion of Si- and Al-based systems using polytetrafluoroethylene (PTFE) as the oxidizer and Fluorel FC 2175 (a copolymer of hexafluoropropylene and vinylidene fluoride) as a binder has been studied. Experimental data were obtained using two methods: 1) instrumented tube burns and 2) pressed pellets inside a windowed pressure vessel. Loose-powder burning rates were seen to optimize at slightly-fuel-rich mixture ratios for Si/PTFE/FC-2175 (SiTv). Al/PTFE/FC-2175 (AlTV) burning rates optimized near a stoichiometric ratio. Pressures calculated by assuming constant-volume combustion equilibrium were seen to match experimental values from burn-tube experiments when burning rates were at or near peak values. The pressure dependence of SiTV and AlTV pellet burning rates was also characterized and compared with reported Mg/PTFE/Viton (MTV) results. SiTV showed power-law dependence with a constant-pressure exponent over the experimental range of pressures. AlTV was shown to exhibit nonconstant-pressure exponent behavior. SiTV burning rates optimized at mixture ratios similar to that of the tube burns. AlTV burning rates increased well past a stoichiometric ratio and decreased at a fuel-rich ratio, which is a similar trend to MTV burning rates. C1 [Yarrington, Cole D.; Son, Steven F.] Purdue Univ, W Lafayette, IN 47906 USA. [Foley, Timothy J.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Yarrington, CD (reprint author), Purdue Univ, W Lafayette, IN 47906 USA. EM cyarring@purdue.edu; sson@purdue.edu; tfoley@lanl.gov OI Son, Steven/0000-0001-7498-2922 NR 33 TC 26 Z9 27 U1 2 U2 20 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2010 VL 26 IS 4 BP 734 EP 743 DI 10.2514/1.46182 PG 10 WC Engineering, Aerospace SC Engineering GA 630EK UT WOS:000280255300012 ER PT J AU Trebs, A Foley, TJ AF Trebs, Adam Foley, Timothy J. TI Semi-Empirical Model for Reaction Progress in Nanothermite SO JOURNAL OF PROPULSION AND POWER LA English DT Article ID PROPAGATION; AL/CUO AB Calculations of thermite reaction progress were made using the Cheetah thermochemistry package. Progress was modeled by fractionally substituting reactants with an inert species with identical thermodynamic properties. The results of this model have been used to create a semi-empirical model of regression rate. The acceptability of the D(2) particle regression law for nanothermite systems of a scale on the order of 10 nm has been demonstrated. Additionally a strong sensitivity to composition is demonstrated. C1 [Trebs, Adam; Foley, Timothy J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 9 TC 1 Z9 1 U1 1 U2 7 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0748-4658 J9 J PROPUL POWER JI J. Propul. Power PD JUL-AUG PY 2010 VL 26 IS 4 BP 772 EP 775 DI 10.2514/1.46607 PG 4 WC Engineering, Aerospace SC Engineering GA 630EK UT WOS:000280255300016 ER PT J AU Lee, RW AF Lee, Richard W. TI The development of a user-oriented plasma spectroscopy application SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Editorial Material DE Collisional-radiative modeling; Hydrogenic model; Non-LTE kinetics; Plasma spectroscopy ID MODEL AB This note provides a short historical perspective on our paper "SPECTRA-a model for K-shell spectroscopy" [1] (JQSRT 1984:32:91-101). (C) 2010 Elsevier Ltd. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Lee, RW (reprint author), Lawrence Livermore Natl Lab, L-251,POB 808, Livermore, CA 94551 USA. EM rwlee@Berkeley.edu NR 3 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2010 VL 111 IS 11 SI SI BP 1553 EP 1553 DI 10.1016/j.jqsrt.2010.01.018 PG 1 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 617FG UT WOS:000279265700009 ER PT J AU Lee, RW Whitten, BL Strout, RE AF Lee, R. W. Whitten, B. L. Strout, R. E., II TI SPECTRA-A MODEL FOR K-SHELL SPECTROSCOPY (Reprint from J Quant Spectrosc Radiat Transfer, vol 32, pg 91-101, 1984) SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Reprint ID DIELECTRONIC SATELLITE SPECTRA; ELECTRIC MICROFIELD DISTRIBUTIONS; HELIUM-LIKE IONS; COLLISION STRENGTHS; IMPACT EXCITATION; HYDROGENIC IONS; PLASMAS AB X-ray spectroscopy is a powerful tool for understanding the kinetics of highly ionized plasmas. Its usefulness depends on the accuracy of the model used in analyzing spectra. We have developed a computer code for modeling and analyzing plasmas which is highly accurate as well as fast and easy to use. It produces synthetic spectra for hydrogen-like and helium-like ions at arbitrary density and temperature. Populations are calculated from rate equations including all relevant collisional and radiative process. The level populations of the hydrogen, helium and lithium-like ionization stages are calculated explicitly; those of all other ionization stages are lumped into one level. The microfield distribution and the shape of the line profiles are determined using detailed calculations. The code includes graphics to plot line ratios and synthetic spectra, and to do on-line analysis of experiments. The usefulness of this technique is demonstrated by analyzing the spectra from three different experiments: a laser irradiated aluminum disk; a neon gas puff pinch; and a laser imploded gas microballon. C1 [Lee, R. W.; Whitten, B. L.; Strout, R. E., II] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Lee, RW (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 36 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD JUL PY 2010 VL 111 IS 11 SI SI BP 1554 EP 1564 PG 11 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 617FG UT WOS:000279265700010 ER PT J AU Naidu, MD Mason, JM Pica, RV Fung, H Pena, LA AF Naidu, Mamta D. Mason, James M. Pica, Raymond V. Fung, Hua Pena, Louis A. TI Radiation Resistance in Glioma Cells Determined by DNA Damage Repair Activity of Ape1/Ref-1 SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE Glioma; Lucanthone; Radiation tolerance; DNA Repair; DNA- (Apurinic or Apyrimidinic Site) lyase; Ape1/Ref-1/APEX; HAP1 ID BASE EXCISION-REPAIR; APURINIC/APYRIMIDINIC ENDONUCLEASE ACTIVITY; HUMAN APURINIC ENDONUCLEASE; AP-ENDONUCLEASE; IONIZING-RADIATION; ALKYLATING-AGENTS; BIOLOGICAL BASIS; GENE-EXPRESSION; ENZYME HAP1; IN-VITRO AB Since radiation therapy remains a primary treatment modality for gliomas, the radioresistance of elioma cells and targets to modify their radiation tolerance are of significant interest. Human apurinic endonuclease I (Apel, Ref-1, APEX, HAP1, AP endo) is a multifunctional protein involved in base excision repair of DNA and a redox-dependent transcriptional co-activator. This study investigated whether there is a direct relationship between Ape I and radioresistance in glioma cells, employing the human U87 and U251 cell lines. U87 is intrinsically more radioresistant than U251, which is partly attributable to more cycling U25I cells found in G2/M, the most radiosensitive cell stage, while more U87 cells are found in S and GI, the more radioresistant cell stages. But observed radioresistance is also related to Apel activity. U87 has higher levels of Apel than does U251, as assessed by Western blot and enzyme activity assays (-1.5-2 fold higher in cycling cells, and -10 fold higher at G2/M). A direct relationship was seen in cells transfected with CMV-Apel constructs; there was a dose-dependent relationship between increasing Ape I overexpression and increasing radioresistance. Conversely, knock down by siRNA or by pharmacological down regulation of Apel resulted in decreased radioresistance. The inhibitors lucanthone and CRT004876 were employed, the former a thioxanthene previously under clinical evaluation as a radiosensitizer for brain tumors and the latter a more specific Apel inhibitor. These data suggest that Ape I may be a useful target for modifying radiation tolerance. C1 [Pena, Louis A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Naidu, Mamta D.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Mason, James M.; Pica, Raymond V.] NS LIJ Feinstein Inst Med Res, Manhasset, NY USA. [Fung, Hua] Dana Farber Canc Res Inst, Dept Genet & Complex Dis, Boston, MA USA. RP Pena, LA (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM lpena@bnl.gov OI Naidu, Mamta/0000-0002-2754-2470 FU DOE [KP-1401020/M0-079]; NIH [R01-CA86897] FX This work was supported in part by DOE grant KP-1401020/M0-079 to L.A. Pena and NIH grants R01-CA86897 to B.M. Sutherland. We thank Drs. Betsy Sutherland and Fritz Henn for their support to MN. We thank Dr. Carl Anderson and John Dunn (BNL), Bruce Demple (Harvard University), Michael Waring (Cambridge University), and Mark Kelley (Indiana University) for valuable suggestions. We thank statistician Keith Thompson for the two components fit calculations. BNL is managed by Brookhaven Science Associates. L.L.C. for the U.S. Department of Energy under Contract DE-ACO2-98CH10886. NR 60 TC 32 Z9 34 U1 0 U2 3 PU JAPAN RADIATION RESEARCH SOC PI CHIBA PA C/O NAT INST RADIOLOGICAL SCI 9-1 ANAGAWA-4-CHOME INAGE-KU, CHIBA, 263, JAPAN SN 0449-3060 J9 J RADIAT RES JI J. Radiat. Res. PD JUL PY 2010 VL 51 IS 4 BP 393 EP 404 DI 10.1269/jrr.09077 PG 12 WC Biology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Radiology, Nuclear Medicine & Medical Imaging GA 637MX UT WOS:000280823300004 PM 20679741 ER PT J AU Rowland, JC Hilley, GE Fildani, A AF Rowland, Joel C. Hilley, George E. Fildani, Andrea TI A TEST OF INITIATION OF SUBMARINE LEVEED CHANNELS BY DEPOSITION ALONE SO JOURNAL OF SEDIMENTARY RESEARCH LA English DT Article ID CANYON-FAN TRANSITION; TURBIDITY CURRENTS; HYDRAULIC JUMPS; SEISMIC GEOMORPHOLOGY; CALIFORNIA BORDERLAND; EVOLUTION; SEDIMENT; HYDRODYNAMICS; SEA; CHANNELIZATION AB Leveed submarine channels play a critical role in the transfer of sediment from the upper continental slopes to intraslope basins and ultimately deeper marine settings. Despite a reasonable understanding of how these channels grow once established, how such channels are initiated on previously unchannelized portions of the seafloor remains poorly understood. We conducted a series of experiments to test whether leveed channels can start by deposition on a planar rigid bed. We systematically varied the current density and outlet velocity to explore the relative influence of inertia and excess density on the depositional dynamics of currents entering a basin and undergoing abrupt unconfinement. Under flow conditions ranging from supercritical to subcritical (bulk Richardson numbers of 0.02 to 1.2) our experiments failed to produce deposits resembling or exhibiting the potential to evolve into levees needed to create a self-formed channel. In the absence of excess density, a submerged sediment-laden flow produced sharp-crested lateral deposits bounding the margins of the flow for approximately a distance of two outlet widths down-basin. These lateral deposits terminated in a centerline deposit that greatly exceeded marginal deposits in thickness. As excess density increased relative to the outlet velocity, the rate of lateral spreading of the flow increased relative to the downstream propagation of the density current, transitioning from a narrow flow aligned with the channel outlet to a broad radially expanding flow. Coincident with these changes in flow dynamics, the bounding lateral deposits extended for shorter distances, had lower, more poorly defined crests that were increasingly wider in separation than the initial outlet, and progressively became more oblong rather than linear. Based on our results and a review of previous experimental and numerical models, we suggest that initiation of leveed channels from sediment-laden density currents traversing non-erodible beds is unlikely. Partial confinement of these currents appears to be necessary to establish the hydrodynamic conditions needed for sediment deposition along the margins of a density current that ultimately may create confining levees. We suggest that erosion into a previously unchannelized substrate is the most likely source of this partial confinement. C1 [Rowland, Joel C.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Hilley, George E.] Stanford Univ, Dept Geol & Environm Sci, Stanford, CA 94305 USA. [Fildani, Andrea] Chevron Energy Technol Co, San Ramon, CA 94583 USA. RP Rowland, JC (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS-D401, Los Alamos, NM 87545 USA. EM jrowland@lanl.gov RI Fildani, Andrea/E-5956-2011 FU Chevron Energy Technology Company; Terman Fellowship FX Clair Le Gall provided critical assistance in the execution of these experiments and analysis of experimental videos. Support for this research was provided by Chevron Energy Technology Company, and the Terman Fellowship to GEH. Discussions with Tim McHargue, Jake Covault, and other members of the Clastic Stratigraphy Team at Chevron helped the early phases of this project. We thank Federico Falcini for comments and suggestions that greatly improved the manuscript. We also thank Steven Reneau for his review of the manuscript. Experiments were conducted at the UC Berkeley Richmond Field Station; support for these facilities and experimental supplies were provided by the American Chemical Society Petroleum Research Fund and the National Center for Earth Surface Dynamics (NCED). Reviews by Michael Lamb, John Grotzinger, Ian Kane, Kyle Straub, Morgan Sullivan, David Piper, John Southard, and two anonymous reviewers resulted in major improvements to this manuscript. NR 63 TC 16 Z9 16 U1 0 U2 7 PU SEPM-SOC SEDIMENTARY GEOLOGY PI TULSA PA 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA SN 1527-1404 J9 J SEDIMENT RES JI J. Sediment. Res. PD JUL-AUG PY 2010 VL 80 IS 7-8 BP 710 EP 727 DI 10.2110/jsr.2010.067 PG 18 WC Geology SC Geology GA 636IR UT WOS:000280725900008 ER PT J AU Varga, T Mitchell, JF Wang, J Arnold, LG Toby, BH Malliakas, CD AF Varga, Tamas Mitchell, J. F. Wang, Jun Arnold, Lindsay G. Toby, Brian H. Malliakas, Christos D. TI High-pressure synthesis, crystal and electronic structures of a new scandium tungstate, Sc0.67WO4 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE High-pressure synthesis; Inorganic oxides; Semiconductor; Phase transitions ID NEGATIVE THERMAL-EXPANSION; ELECTRICAL-TRANSPORT-PROPERTIES; BISMUTH IRON MOLYBDATE; X-RAY-DIFFRACTION; INDUCED AMORPHIZATION; PHYSICAL-PROPERTIES; POWDER DIFFRACTION; PHASE-TRANSITIONS; SCHEELITE-TYPE; AL-2(WO4)(3) AB Negative thermal expansion (NTE) materials possess a low-density, open structure that can respond to high pressure conditions, leading to new compounds and/or different physical properties. Here we report that one such NTE material - white, insulating, orthorhombic Sc2W3O12 - transforms into a black compound when treated at 4 GPa and 1400 degrees C. The high pressure phase, Sc0.67WO4, crystallizes in a defect-rich wolframite-type structure, a dense, monoclinic structure (space group P2/c) containing 1-D chains of edge-sharing WO6 octahedra. The chemical bonding of Sc0.67WO4 vis-a-vis the ambient pressure Sc2W3O12 phase can be understood on the basis of the Sc defect structure. Magnetic susceptibility, resistivity, thermoelectric power and IR spectroscopic measurements suggest that the Sc0.67WO4 sample is a paramagnet whose conductivity is that of a metal in the presence of weak localization and electron-electron interactions. Oxygen vacancies are suggested as a potential mechanism for generating the carriers in this defective wolframite material. Published by Elsevier Inc. C1 [Varga, Tamas] Environm & Mol Sci Lab, Richland, WA 99352 USA. [Mitchell, J. F.; Malliakas, Christos D.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Wang, Jun; Arnold, Lindsay G.; Toby, Brian H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Malliakas, Christos D.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Varga, T (reprint author), Environm & Mol Sci Lab, Richland, WA 99352 USA. EM tamas.varga@pnl.gov RI Toby, Brian/F-3176-2013 OI Toby, Brian/0000-0001-8793-8285 FU U.S. DOE Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX The work at Argonne National Laboratory, including the use of the Advanced Photon Source, was supported by the U.S. DOE Office of Science, Basic Energy Sciences, under Contract no. DE-AC02-06CH11357. Assistance by John Schlueter and Kylee Funk, and Maria Chondroudi (Materials Science Division, Argonne National Laboratory) with SQUID magnetic measurements is acknowledged. We also thank Prof. Mercouri G. Kanatzidis for providing access to the MMR (measurement of thermoelectric power) and FT-IR instruments. T.V. and J. F. M. thank Mark Bailey (Wildcat Discovery Technologies) for discussion of band structure calculations, and Qing'an Li and Kenneth Gray for measurement of and Konstantin Matveev and Chris Leighton (Univ. of Minnesota) for discussions of electrical conductivity data. NR 67 TC 2 Z9 2 U1 2 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD JUL PY 2010 VL 183 IS 7 BP 1567 EP 1573 DI 10.1016/j.jssc.2010.04.039 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 623BG UT WOS:000279711200014 ER PT J AU Rai, D Yui, M Schaef, HT Kitamura, A AF Rai, Dhanpat Yui, Mikazu Schaef, H. Todd Kitamura, Akira TI Thermodynamic Model for BiPO4(cr) and Bi(OH)(3)(am) Solubility in the Aqueous Na+-H+-H2PO4--HPO42--PO43--OH--Cl--H2O System SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Solubility; Thermodynamic data; Bismuth phosphate; Bismuth hydroxide; Hydrolyses constants of bismuth; Chloro-complexes of bismuth; Bi ID EQUILIBRIUM-CONSTANTS; COMPLEX-FORMATION; BISMUTH; HYDROLYSIS; CHLORIDE; IONS; STABILITY; NITRATE AB Prior to this study no data for the solubility product of BiPO4(cr) or the complexation constants of Bi with phosphate were available. The solubility of BiPO4(cr) was studied at 23 +/- 2 degrees C from both the over-and under-saturation directions as functions of a wide range in time (6-309 days), pH values (0-15), and phosphate concentrations (reaching as high as 1.0 mol.kg(-1)). HCl or NaOH were used to obtain a range in pH values. Steady state concentrations and equilibrium were reached in <6 days. The data were interpreted using the SIT model. These extensive data provided a solubility product value for BiPO4(cr) and an upper limit value for the formation of BiPO4(aq). Because the aqueous system in this study involved relatively high concentrations of chloride, reliable values for the complexation constants of Bi with chloride were required to accurately interpret the solubility data. Therefore as a part of this investigation, existing Bi-Cl data were critically reviewed and used to obtain values of equilibrium constants for various Bi-Cl complexes at zero ionic strength along with the values for various SIT ion interaction parameters. Predictions based on these thermodynamic quantities agreed closely with our experimental data, the chloride concentrations of which ranged as high as 0.7 mol.kg(-1). The study showed that BiPO4(cr) is stable at pH values <9.0. At pH values >9.0, Bi(OH)(3)(am) is the solubility controlling phase. Reliable values for the Bi(OH)(3)(am) solubility reactions involving Bi(OH)(3)(aq) and Bi(OH)(4)(-) and the formation constants of these aqueous species are also reported. C1 [Rai, Dhanpat] Rai Enviro Chem LLC, Yachats, OR 97498 USA. [Yui, Mikazu; Kitamura, Akira] Japan Atom Energy Agcy, Tokai Works, Tokai, Ibaraki, Japan. [Schaef, H. Todd] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rai, D (reprint author), Rai Enviro Chem LLC, POB 784, Yachats, OR 97498 USA. EM dhan.rai@raienvirochem.com FU U.S. Department of Energy; Japan Atomic Energy Agency (JAEA) FX The experimental study was conducted at the Pacific Northwest National Laboratory and funded by the U.S. Department of Energy. Data interpretation and manuscript preparation were supported by Japan Atomic Energy Agency (JAEA), under a collaborative agreement between JAEA and Rai Enviro-Chem, LLC. NR 30 TC 4 Z9 4 U1 2 U2 21 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD JUL PY 2010 VL 39 IS 7 BP 999 EP 1019 DI 10.1007/s10953-010-9561-6 PG 21 WC Chemistry, Physical SC Chemistry GA 637FZ UT WOS:000280803000007 ER PT J AU Antal, T Ben-Naim, E Krapivsky, PL AF Antal, Tibor Ben-Naim, E. Krapivsky, P. L. TI First-passage properties of the Polya urn process SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE exact results; persistence (theory); stochastic particle dynamics (theory); diffusion ID MODEL AB We study first-passage statistics of the Polya urn model. In this random process, the urn contains balls of two types. In each step, one ball is drawn randomly from the urn, and subsequently placed back into the urn together with an additional ball of the same type. We derive the probability G(n) that the balls of the two types become equal in number, for the first time, when there are a total of 2n balls. This first-passage probability decays algebraically, G(n) similar to n(-2), when n is large. We also derive the probability that a tie ever happens. This probability is between zero and one, so a tie may occur in some realizations but not in others. The likelihood of a tie is appreciable only if the initial difference in the number of balls is of the order of the square root of the total number of balls. C1 [Antal, Tibor] Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Antal, T (reprint author), Harvard Univ, Program Evolutionary Dynam, Cambridge, MA 02138 USA. EM Tibor_Antal@Harvard.edu; ebn@lanl.gov; paulk@bu.edu RI Antal, Tibor/A-4512-2008; Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU John Templeton Foundation; NSF/NIH [R01GM078986]; DOE [DE-AC52-06NA25396]; NSF [CCF-0829541] FX We thank A Gabel, S Redner, and V Sood for useful discussions. We also thank an anonymous referee for constructive criticism. We gratefully acknowledge support from the John Templeton Foundation, NSF/NIH grant R01GM078986, DOE grant DE-AC52-06NA25396, and NSF grant CCF-0829541. NR 35 TC 8 Z9 8 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD JUL PY 2010 AR P07009 DI 10.1088/1742-5468/2010/07/P07009 PG 11 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 649CJ UT WOS:000281744400025 ER PT J AU Brandino, GP Konik, RM Mussardo, G AF Brandino, G. P. Konik, R. M. Mussardo, G. TI Energy level distribution of perturbed conformal field theories SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE integrable quantum field theory; symmetries of integrable models; conformal field theory (theory); connections between chaos and statistical physics ID QUANTUM RENORMALIZATION-GROUPS; LEE-YANG MODEL; MAGNETIC-FIELD; INTEGRABLE MODELS; 2 DIMENSIONS; MATRIX; STATISTICS; SYMMETRY; SPECTRUM; PARTICLES AB We study the energy level spacing of perturbed conformal minimal models in finite volume, considering perturbations of such models that are massive but not necessarily integrable. We compute their spectrum using a renormalization group improved truncated conformal spectrum approach. With this method we are able to study systems where more than 40 000 states are kept and where we determine the energies of the lowest several thousand eigenstates with high accuracy. We find, as expected, that the level spacing statistics of integrable perturbed minimal models are Poissonian while the statistics of non-integrable perturbations are GOE-like. However, by varying the system size (and so controlling the positioning of the theory between its IR and UV limits) one can induce crossovers between the two statistical distributions. C1 [Brandino, G. P.; Mussardo, G.] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy. [Brandino, G. P.; Mussardo, G.] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. [Konik, R. M.] Brookhaven Natl Lab, Condensed Matter & Mat Sci Dept, Upton, NY 11973 USA. [Mussardo, G.] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. RP Brandino, GP (reprint author), Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy. EM brandino@sissa.it; rmk@bnl.gov; mussardo@sissa.it RI Konik, Robert/L-8076-2016; OI Konik, Robert/0000-0003-1209-6890; mussardo, giuseppe/0000-0001-5730-9963 FU ESF; MIUR [2007JHLPEZ]; US DOE [DE-AC02-98 CH 10886] FX GB and GM acknowledge the grants INSTANS (from the ESF) and 2007JHLPEZ (from MIUR). RMK acknowledges support by the US DOE under contract no. DE-AC02-98 CH 10886. NR 55 TC 9 Z9 9 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD JUL PY 2010 AR P07013 DI 10.1088/1742-5468/2010/07/P07013 PG 20 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 649CJ UT WOS:000281744400021 ER PT J AU Chernyak, VY Sinitsyn, NA AF Chernyak, Vladimir Y. Sinitsyn, N. A. TI Discrete changes of current statistics in periodically driven stochastic systems SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE driven diffusive systems (theory); current fluctuations; large deviations in non-equilibrium systems ID FREE-ENERGY DIFFERENCES; TRANSPORT; PUMP AB We demonstrate that the counting statistics of currents in periodically driven ergodic stochastic systems can show sharp changes of some of its properties in response to continuous changes of the driving protocol. To describe this effect, we introduce a new topological phase factor in the evolution of the moment generating function which is akin to the topological geometric phase in the evolution of a periodically driven quantum mechanical system with time-reversal symmetry. This phase leads to the prediction of a sign change for the difference of the probabilities to find even and odd numbers of particles transferred in a stochastic system in response to cyclic evolution of control parameters. The driving protocols that lead to this sign change should enclose specific degeneracy points in the space of control parameters. The relation between the topology of the paths in the control parameter space and the sign changes can be described in terms of the first Stiefel-Whitney class of topological invariants. C1 [Chernyak, Vladimir Y.] Wayne State Univ, Dept Chem, Detroit, MI 48202 USA. [Chernyak, Vladimir Y.; Sinitsyn, N. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Sinitsyn, N. A.] New Mexico Consortium, Los Alamos, NM 87545 USA. RP Chernyak, VY (reprint author), Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA. EM chernyak@chem.wayne.edu; nsinitsyn@lanl.gov RI Sinitsyn, nikolai/B-5617-2009; Chernyak, Vladimir/F-5842-2016 OI Chernyak, Vladimir/0000-0003-4389-4238 FU NSF [CHE-0808910, ECCS-0925365]; DOE [DE-AC52-06NA25396] FX We are grateful to John R Klein for useful discussions and comments. This material is based upon work supported by NSF under grant nos. CHE-0808910 and ECCS-0925365, and in part by DOE under contract no. DE-AC52-06NA25396. NR 18 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD JUL PY 2010 AR L07001 DI 10.1088/1742-5468/2010/07/L07001 PG 9 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 649CJ UT WOS:000281744400001 ER PT J AU Langille, JM Jessup, MJ Cottle, JM Newell, D Seward, G AF Langille, Jackie M. Jessup, Micah J. Cottle, John M. Newell, Dennis Seward, Gareth TI Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibet-Nepal SO JOURNAL OF STRUCTURAL GEOLOGY LA English DT Article DE Himalaya; Microstructures; Vorticity techniques; Quartz fabrics; Two-feldspar geothermometry; Detachment dynamics ID STEADY-STATE DEFORMATIONS; MINIMUM STRAIN PATH; MAIN CENTRAL THRUST; GREATER HIMALAYAN SEQUENCE; NATURALLY DEFORMED QUARTZ; METAMORPHIC CORE COMPLEX; PAPOOSE FLAT PLUTON; SOUTHERN TIBET; EASTERN NEPAL; VORTICITY ANALYSIS AB The Ama Drime Massif is a north-south trending antiformal structure located on the southern margin of the Tibetan Plateau that is bound by the Ama Drime and Nyonno Ri detachments on the western and eastern sides, respectively. Detailed kinematic and vorticity analyses were combined with deformation temperature estimates on rocks from the Ama Drime detachment to document spatial and temporal patterns of deformation. Deformation temperatures estimated from quartz and feldspar microstructures, quartz [c] axis fabrics, and two-feldspar geothermometry of asymmetric strain-induced myrmekite range between similar to 400 and 650 degrees C. Micro- and macro-kinematic indicators suggest west-directed displacement dominated over this temperature range. Mean kinematic vorticity estimates record early pure shear dominated flow (49-66% pure shear) overprinted by later simple shear (1-57% pure shear), high-strain (36-50% shortening and 57-99% down-dip extension) dominated flow during the later increments of ductile deformation. Exhumation of the massif was accommodated by at least similar to 21-42 km of displacement on the Ama Drime detachment. Samples from the Nyonno Ri detachment were exhumed from similar depths. We propose that exhumation on the Nyonno Ri detachment during initiation of orogen-parallel extension (11-13 Ma) resulted in a west-dipping structural weakness in the footwall that reactivated as the Ama Drime detachment. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Langille, Jackie M.; Jessup, Micah J.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Cottle, John M.; Seward, Gareth] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Newell, Dennis] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Langille, JM (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. EM jlangill@utk.edu RI Cottle, John/F-2799-2011; Jessup, Micah/D-6214-2012 OI Cottle, John/0000-0002-3966-6315; Jessup, Micah/0000-0002-0406-7873 FU American Alpine Club; Sigma Xi; Virginia Tech; National Geographic Society [NG-CRE-8494-08]; National Science Foundation [EAR-0911561] FX We thank C. Passchier, P. Xypolias, and J. Lee whose detailed reviews strengthened a previous version of this manuscript. L Duncan and D. Breecker provided field assistance. We thank A. Patchen at the University of Tennessee for assistance with the microprobe. We thank Sonam Wangdu for logistics in Tibet during four expeditions to the Ama Drime and Kharta valley. M. Smith made initial microstructural analyses as part of her undergraduate project. Funding was provided by grants to M. Jessup from the American Alpine Club, Sigma Xi, and a 2010 Fellowship from Virginia Tech which provided funding for the initial portions of the project. Funding was also provided by the Research and Exploration grant (NG-CRE-8494-08) from the National Geographic Society to M. Jessup and the National Science Foundation grant (EAR-0911561) to M. Jessup and J. Cottle. NR 118 TC 22 Z9 26 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0191-8141 J9 J STRUCT GEOL JI J. Struct. Geol. PD JUL PY 2010 VL 32 IS 7 BP 900 EP + DI 10.1016/j.jsg.2010.04.005 PG 18 WC Geosciences, Multidisciplinary SC Geology GA 673TZ UT WOS:000283687500004 ER PT J AU Yang, HB Rameau, JD Johnson, PD Gu, GD AF Yang, H. -B. Rameau, J. D. Johnson, P. D. Gu, G. D. TI Particle-Hole Asymmetry and the Pseudogap Phase of the High-T-C Superconductors SO JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM LA English DT Article; Proceedings Paper CT 7th International Conference on New Theories, Discoveries, and Applications of Superconductors and Related Materials (New3SC-7) CY MAY 13-16, 2009 CL Beijing, PEOPLES R CHINA DE High-Tc superconductor; Angle-resolved photoemission spectroscopy; Pseudogap phase; Particle-hole asymmetry; Fermi surface ID CUPRATE SUPERCONDUCTORS; FERMI-SURFACE; STATE AB In the pseudogap phase of the copper oxide superconductors, a significant portion of the Fermi surface is still gapped at temperatures above the superconducting transition temperature T. Instead of a closed Fermi surface, the low-energy electronic excitations appear to form unconnected Fermi arcs separated by gapped regions. It is generally believed that the spectral function is particle hole symmetric (at low energies) in both regions with a peak at the Fermi level on the Fermi arcs and a local minimum at the Fermi level in the gapped regions. Here, using high resolution angle-resolved photoemission and new techniques of analysis, we show that on a sizable portion of the Fermi surface, the electronic structure in the immediate vicinity of the Fermi level is not particle hole symmetric in the pseudogap phase. This is clear evidence that an alternative ground state competes with the superconductivity. The observations are also consistent with the possibility that the Fermi arcs are, in fact, the inner surface of the predicted Fermi pockets. C1 [Yang, H. -B.; Rameau, J. D.; Johnson, P. D.; Gu, G. D.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Yang, HB (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, 20 Penn St,Bldg 510B, Upton, NY 11973 USA. EM joshuya@bnl.gov RI Gu, Genda/D-5410-2013 OI Gu, Genda/0000-0002-9886-3255 FU Dept. of Energy [DE-AC02-98CH10886] FX We thank Sudip Chakravarty, Mike Norman. Maurice Rice. Doug Scalapino and John Tranquada, for useful discussions. This work was supported by the Dept. of Energy under contract number DE-AC02-98CH10886. NR 13 TC 0 Z9 0 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-1939 EI 1557-1947 J9 J SUPERCOND NOV MAGN JI J. Supercond. Nov. Magn PD JUL PY 2010 VL 23 IS 5 BP 803 EP 806 DI 10.1007/s10948-010-0647-6 PG 4 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 607ZU UT WOS:000278546800048 ER PT J AU Dauter, Z Jaskolski, M Wlodawer, A AF Dauter, Zbigniew Jaskolski, Mariusz Wlodawer, Alexander TI Impact of synchrotron radiation on macromolecular crystallography: a personal view SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; structural biology; science history ID X-RAY-DIFFRACTION; MULTIWAVELENGTH ANOMALOUS DIFFRACTION; 3-DIMENSIONAL FOURIER SYNTHESIS; CRYSTAL-STRUCTURE; PROTEIN CRYSTALLOGRAPHY; ANGSTROM RESOLUTION; RIBOSOMAL-SUBUNIT; STRUCTURAL GENOMICS; PHASE DETERMINATION; LAUE DIFFRACTION AB The introduction of synchrotron radiation sources almost four decades ago has led to a revolutionary change in the way that diffraction data from macromolecular crystals are being collected. Here a brief history of the development of methodologies that took advantage of the availability of synchrotron sources are presented, and some personal experiences with the utilization of synchrotrons in the early days are recalled. C1 [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. [Wlodawer, Alexander] NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. RP Dauter, Z (reprint author), NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Argonne, IL 60439 USA. EM zdauter@anl.gov; mariuszj@amu.edu.pl; wlodawer@nih.gov FU NIH, National Cancer Institute, Center for Cancer Research FX We are grateful to our colleagues who shared with us their stories and early experience as synchrotron radiation users and provided invaluable comments on the draft manuscript, in particular Keith Hodgson, Andrew Leslie, Wladek Minor, Gerd Rosenbaum and Herman Winick. This project has been funded in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. NR 75 TC 19 Z9 19 U1 1 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2010 VL 17 BP 433 EP 444 DI 10.1107/S0909049510011611 PN 4 PG 12 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 612GT UT WOS:000278885500001 PM 20567074 ER PT J AU Isakovic, AF Stein, A Warren, JB Sandy, AR Narayanan, S Sprung, M Ablett, M Siddons, DP Metzler, M Evans-Lutterodt, K AF Isakovic, A. F. Stein, A. Warren, J. B. Sandy, A. R. Narayanan, S. Sprung, M. Ablett, M. Siddons, D. P. Metzler, M. Evans-Lutterodt, K. TI A bi-prism interferometer for hard X-ray photons SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE interferometers; prisms; coherence ID REFRACTION; ELECTRON AB Micro-fabricated bi-prisms have been used to create an interference pattern from an incident hard X-ray beam, and the intensity of the pattern probed with fluorescence from a 30 nm-thick metal film. Maximum fringe visibility exceeded 0.9 owing to the nano-sized probe and the choice of single-crystal prism material. A full near-field analysis is necessary to describe the fringe field intensities, and the transverse coherence lengths were extracted at APS beamline 8-ID-I. It is also shown that the maximum number of fringes is dependent only on the complex refractive index of the prism material. C1 [Isakovic, A. F.; Stein, A.; Warren, J. B.; Ablett, M.; Siddons, D. P.; Evans-Lutterodt, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Sandy, A. R.; Narayanan, S.; Sprung, M.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Metzler, M.] Cornell NanoScale Sci & Technol Facil, Ithaca, NY 14850 USA. [Isakovic, A. F.] Khalifa Univ Sci Technol & Res, Abu Dhabi, U Arab Emirates. RP Evans-Lutterodt, K (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM kenne@bnl.gov RI Isakovic, Abdel/A-7430-2009 OI Isakovic, Abdel/0000-0003-1779-4209 FU US DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DOE [DE-AC02-06CH11357]; NSF; BNL [LDRD 06-046] FX Use of the NSLS, the CFN and the NSLS-II project at BNL was supported by the US DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886, and the use of ANL-APS is supported through the DOE contract DE-AC02-06CH11357. This work was performed in part at the Cornell CNF, a member of NNIN, which is supported by the NSF. AFI and KEL acknowledge early support through BNL LDRD 06-046, P. Takacs (BNL) for early suggestions about the manuscript, and C. C. Kao (BNL) for support. We thank G. Bordonaro and R. Ilic of CNF for timely technical assistance. NR 18 TC 6 Z9 6 U1 2 U2 5 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2010 VL 17 BP 451 EP 455 DI 10.1107/S0909049510012823 PN 4 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 612GT UT WOS:000278885500003 PM 20567076 ER PT J AU Nunez-Milland, DR Baines, SB Vogt, S Twining, BS AF Nunez-Milland, Daliangelis R. Baines, Stephen B. Vogt, Stefan Twining, Benjamin S. TI Quantification of phosphorus in single cells using synchrotron X-ray fluorescence SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE phytoplankton; diatom; TEM grid; single-cell analysis; Thalassiosira pseudonana ID MARINE-PHYTOPLANKTON; ELEMENTAL ANALYSIS; IRON; LIMITATION; MICROPROBE; GROWTH; EVOLUTION; DISEASE AB Phosphorus is required for numerous cellular compounds and as a result can serve as a useful proxy for total cell biomass in studies of cell elemental composition. Single-cell analysis by synchrotron X-ray fluorescence (SXRF) enables quantitative and qualitative analyses of cell elemental composition with high elemental sensitivity. Element standards are required to convert measured X-ray fluorescence intensities into element concentrations, but few appropriate standards are available, particularly for the biologically important element P. Empirical P conversion factors derived from other elements contained in certified thin-film standards were used to quantify P in the model diatom Thalassiosira pseudonana, and the measured cell quotas were compared with those measured in bulk by spectrophotometry. The mean cellular P quotas quantified with SXRF for cells on Au, Ni and nylon grids using this approach were not significantly different from each other or from those measured spectrophotometrically. Inter-cell variability typical of cell populations was observed. Additionally, the grid substrates were compared for their suitability to P quantification based on the potential for spectral interferences with P. Nylon grids were found to have the lowest background concentrations and limits of detection for P, while background concentrations in Ni and Au grids were 1.8-and 6.3-fold higher. The advantages and disadvantages of each grid type for elemental analysis of individual phytoplankton cells are discussed. C1 [Nunez-Milland, Daliangelis R.; Twining, Benjamin S.] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Baines, Stephen B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11755 USA. [Vogt, Stefan] Argonne Natl Lab, Adv Photon Source, Expt Facil Div, Argonne, IL 60439 USA. RP Twining, BS (reprint author), Bigelow Lab Ocean Sci, 180 McKown Point, W Boothbay Harbor, ME 04575 USA. EM btwining@bigelow.org RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013; OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513; Twining, Benjamin/0000-0002-1365-9192 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [OCE-0527062, CBET-0730061] FX We thank Renee Styles for her assistance with the spectrophotometric measurements of particulate phosphorus. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research was supported by grants OCE-0527062 and CBET-0730061 from the National Science Foundation to BST. NR 29 TC 21 Z9 22 U1 0 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD JUL PY 2010 VL 17 BP 560 EP 566 DI 10.1107/S0909049510014020 PN 4 PG 7 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 612GT UT WOS:000278885500016 PM 20567089 ER PT J AU Zhang, GN Roy, BK Allard, LF Cho, J AF Zhang, Guangneng Roy, Biplab K. Allard, Lawrence F. Cho, Junghyun TI Titanium Oxide Nanoparticles Precipitated from Low-Temperature Aqueous Solutions: II. Thin-Film Formation and Microstructure Developments SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; PHOTOVOLTAIC DEVICES; DEPOSITION MECHANISM; GROWTH MECHANISMS; IRON OXYHYDROXIDE; TIO2; PHOTODEGRADATION; NANOSTRUCTURES; NUCLEATION; BEHAVIOR AB We explored effects of the degree of supersaturation, which depends on solution concentration, pH, and temperature, on the development of microstructures of the TiO(2) thin films deposited from the controlled hydrolysis of TiCl(4) aqueous solutions. It was shown that, with precursor (TiCl(4)) solution of low degree of supersaturation, a porous flower-like dendritic structure was synthesized, while a densely packed particulate nanostructure was obtained with that of high degree of supersaturation. The former morphology was attributed to the directional growth of TiO(2) crystals from the already-deposited films, whereas the latter to the bulk precipitated TiO(2) nanoparticles nucleated in the solution, followed by their attachment and self organization. By establishing the processing-microstructure relations, this study provided a means of generating a wide spectrum of reproducible TiO(2) microstructures using the low-temperature aqueous solution processing. C1 [Zhang, Guangneng; Roy, Biplab K.; Cho, Junghyun] SUNY Binghamton, Dept Mech Engn & Mat Sci, Binghamton, NY 13902 USA. [Zhang, Guangneng; Roy, Biplab K.; Cho, Junghyun] SUNY Binghamton, Engn Program, Binghamton, NY 13902 USA. [Allard, Lawrence F.] Oak Ridge Natl Lab, High Temp Mat Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Cho, J (reprint author), SUNY Binghamton, Dept Mech Engn & Mat Sci, Binghamton, NY 13902 USA. EM jcho@binghamton.edu FU New York State Office of Science, Technology and Academic Research (NYSTAR) [C050052]; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was financially supported by the New York State Office of Science, Technology and Academic Research (NYSTAR) under Contract Number C050052.; We would like to acknowledge the Analytical and Diagnostic Lab (ADL) at the S3IP Center of State University of New York (SUNY) at Binghamton for the high-resolution SEM work. The TEM work in this research was sponsored by the Assistant Secretary for Energy Efficiency and Renewal Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High-Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. NR 37 TC 9 Z9 9 U1 2 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2010 VL 93 IS 7 BP 1909 EP 1915 DI 10.1111/j.1551-2916.2010.03678.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 612PY UT WOS:000278914500019 ER PT J AU Winter, MR DiAntonio, CB Yang, P Rodriguez, MA Michael, JR Chavez, TP McKenzie, BB AF Winter, Michael R. DiAntonio, Christopher B. Yang, Pin Rodriguez, Mark A. Michael, Joseph R. Chavez, Tom P. McKenzie, Bonnie B. TI Screen Printing to Achieve Highly Textured Bi4Ti3O12 SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID BISMUTH TITANATE CERAMICS; TEMPLATED GRAIN-GROWTH; ELECTRICAL-PROPERTIES; PREFERRED ORIENTATION; FABRICATION; PIEZOCERAMICS AB The focus of this paper is to explore the efficacy of screen printing to generate crystalline texture in bismuth titanate through the orientation of highly anisotropic seed crystals. Seed crystals were grown through a molten salt flux technique with aspect ratios of similar to 100:1, mixed with equiaxed powder of the same composition and oriented using screen printing, a high shear process. By printing on a flexible polymer substrate and using multiple print/dry cycles, it was possible to create pads with a thickness of several hundred micrometers and to remove the dried pads, creating free-standing samples. Upon sintering, the seed crystals grew at the expense of the matrix powder, a process known as templated grain growth. The degree of texture was analyzed using a variety of techniques including scanning electron microscopy, X-ray diffraction and electron backscatter diffraction. C1 [Winter, Michael R.; DiAntonio, Christopher B.; Yang, Pin; Rodriguez, Mark A.; Michael, Joseph R.; Chavez, Tom P.; McKenzie, Bonnie B.] Sandia Natl Labs, Albuquerque, NM 87111 USA. RP Winter, MR (reprint author), Sandia Natl Labs, Albuquerque, NM 87111 USA. EM mrwinte@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 27 TC 7 Z9 8 U1 5 U2 22 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2010 VL 93 IS 7 BP 1922 EP 1926 DI 10.1111/j.1551-2916.2010.03694.x PG 5 WC Materials Science, Ceramics SC Materials Science GA 612PY UT WOS:000278914500021 ER PT J AU Zapata-Solvas, E Gomez-Garcia, D Poyato, R Lee, Z Castillo-Rodriguez, M Dominguez-Rodriguez, A Radmilovic, V Padture, NP AF Zapata-Solvas, Eugenio Gomez-Garcia, Diego Poyato, Rosalia Lee, Zonghoon Castillo-Rodriguez, Miguel Dominguez-Rodriguez, Arturo Radmilovic, Velimir Padture, Nitin P. TI Microstructural Effects on the Creep Deformation of Alumina/Single-Wall Carbon Nanotubes Composites SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID FINE-GRAINED ALUMINA; COMPRESSIVE CREEP; CERAMICS; TEMPERATURE; BOUNDARIES; AL2O3 AB The enhanced high-temperature creep resistance in alumina/single-wall carbon nanotubes (SWNTs) composites has been attributed to the unprecedented grain-boundary structure of these composites, where the SWNTs bundles segregated at the alumina grain boundaries partially impede grain-boundary sliding. In this study, the effect of SWNTs distributions at alumina grain boundaries on the creep behavior of alumina/ SWNTs composites has been investigated. Microstructures of two different alumina/10 vol% SWNTs composites, one with heterogeneous and the other with homogenous distributions of SWNTs at grain boundaries, have been characterized quantitatively. The steady-state creep rate (uniaxial compression) in the heterogeneous composite has been found to be over three times higher than that in the homogeneous composite at 1300 degrees and 1350 degrees C (argon atmosphere). It is argued that the less uniform distribution of SWNTs at the alumina grain boundaries in the heterogeneous composite results in less effective obstruction of grain-boundary sliding, and attendant higher creep rate. This also results in more efficient recovery in that composite. C1 [Padture, Nitin P.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Zapata-Solvas, Eugenio; Gomez-Garcia, Diego; Poyato, Rosalia; Dominguez-Rodriguez, Arturo] Univ Seville, CSIC, ICMSE, Seville, Spain. [Lee, Zonghoon; Radmilovic, Velimir] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Castillo-Rodriguez, Miguel] Max Planck Inst Met Res, StEM, D-70569 Stuttgart, Germany. RP Padture, NP (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA. EM padture.1@osu.edu RI Padture, Nitin/A-9746-2009; Lee, Zonghoon/G-1474-2011; Zapata-Solvas, Eugenio/O-9151-2014; Castillo-Rodriguez, Miguel/O-9864-2014; Gomez Garcia, Diego/H-3993-2015; Poyato, Rosalia/H-4206-2015; OI Padture, Nitin/0000-0001-6622-8559; Lee, Zonghoon/0000-0003-3246-4072; Zapata-Solvas, Eugenio/0000-0002-6162-8788; Castillo-Rodriguez, Miguel/0000-0002-5592-0010; Gomez Garcia, Diego/0000-0002-5639-4796; Poyato, Rosalia/0000-0003-4376-6615; Dominguez-Rodriguez, Arturo/0000-0003-1598-5669 FU Spanish Ministerio de Ciencia e Innovacion [MAT2006-10249-C02-02]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank the Spanish Ministerio de Ciencia e Innovacion for a grant (No. MAT2006-10249-C02-02) that provided financial support for this research. This work was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 8 Z9 8 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD JUL PY 2010 VL 93 IS 7 BP 2042 EP 2047 DI 10.1111/j.1551-2916.2010.03681.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 612PY UT WOS:000278914500040 ER PT J AU Zhao, Q Schieffer, GM Soyk, MW Anderson, TJ Houk, RS Badman, ER AF Zhao, Qin Schieffer, Gregg M. Soyk, Matthew W. Anderson, Timothy J. Houk, R. S. Badman, Ethan R. TI Effects of Ion/Ion Proton Transfer Reactions on Conformation of Gas-Phase Cytochrome c Ions SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article ID ELECTRON-CAPTURE DISSOCIATION; ELECTROSPRAYED UBIQUITIN IONS; IONIZATION-MASS-SPECTROMETRY; NONCOVALENT INTERACTIONS; MOBILITY MEASUREMENTS; ATMOSPHERIC-PRESSURE; ALKALINE TRANSITION; IN-VACUO; TRAP; PROTEINS AB Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of similar to 1110 to 1180 angstrom(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers. (J Am Soc Mass Spectrom 2010, 21, 1208-1217) (C) 2010 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry C1 [Zhao, Qin; Schieffer, Gregg M.; Soyk, Matthew W.; Anderson, Timothy J.; Houk, R. S.; Badman, Ethan R.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Houk, R. S.; Badman, Ethan R.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. RP Houk, RS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM rshouk@iastate.edu; ethan.badman@roche.com RI Guo, Henry/E-9618-2011 FU Iowa State University; Conoco-Phillips Fellowship FX The authors acknowledge funding for this work by a grant from the Vice Provost for Research, Iowa State University. Q.Z. and M.W.S. acknowledge the Conoco-Phillips Fellowship (Iowa State University, 2006-2007 and 2007-2008) for financial support. M.S. also acknowledges the GAANN Fellowship (Iowa State University, 2008) and the Velmer A. and Mary K. Fassel Fellowship (Iowa State University, 2006-2007). The authors thank Kathrin Breaker for suggesting one mechanism to explain the observed expansion of the ions at very low charge states. They also thank the three reviewers for helpful comments. NR 56 TC 11 Z9 11 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 EI 1879-1123 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD JUL PY 2010 VL 21 IS 7 BP 1208 EP 1217 DI 10.1016/j.jasms.2010.03.032 PG 10 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 623KA UT WOS:000279737200016 PM 20430642 ER PT J AU Hagos, S AF Hagos, Samson TI Building Blocks of Tropical Diabatic Heating SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID MOISTURE BUDGETS; CLOUD CLUSTERS; BASIC MODES; TOGA-COARE; CONVECTION; RETRIEVAL; PROFILES; OCEAN AB Rotated EOF analyses are used to study the composition and variability of large-scale tropical diabatic heating profiles estimated from eight field campaigns. The results show that the profiles are composed of a pair of building blocks. These are the stratiform heating with peak heating near 400 hPa and a cooling peak near 700 hPa and the convective heating with a heating maximum near 700 hPa. Variations in the contributions of these building blocks account for the evolution of the large-scale heating profile. Instantaneous top-heavy (bottom-heavy) large-scale heating profiles associated with excess of stratiform (convective) heating evolve toward a stationary mean profile due to exponential decay of the excess stratiform (convective) heating. C1 [Hagos, Samson] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Miami, FL 33149 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, POB 999,MSIN K9-24, Richland, WA 99354 USA. EM samson.hagos@pnl.gov RI hagos, samson /K-5556-2012 FU NASA [NNX07AD41G] FX This work is an outcome of long and lively discussions with Dr. Chidong Zhang and Dr. Brian Mapes, whose thorough review has also greatly improved the manuscript. The author also wishes to thank all the researchers who provided their sounding datasets for the study. This research was supported by a NASA TRMM/GPM project through Award NNX07AD41G. NR 20 TC 3 Z9 3 U1 1 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD JUL PY 2010 VL 67 IS 7 BP 2341 EP 2354 DI 10.1175/2010JAS3252.1 PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 631JK UT WOS:000280342500015 ER PT J AU Weinberger, CR Cai, W AF Weinberger, Christopher R. Cai, Wei TI Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Microstructures; Dislocations; Grain boundaries ID STRAIN-GRADIENT PLASTICITY; CRYSTAL PLASTICITY; SCALE; NANOWIRES; STRENGTH; TWIST AB The orientation dependent plasticity in metal nanowires is investigated using molecular dynamics and dislocation dynamics simulations. Molecular dynamics simulations show that the orientation of single crystal metal wires controls the mechanisms of plastic deformation. For wires oriented along < 110 >, dislocations nucleate along the axis of the wire, making the deformation homogeneous. These wires also maintain most of their strength after yield. In contrast, wires oriented along < 111 > and < 100 > directions deform through the formation of twist boundaries and tend not to recover when high angle twist boundaries are formed. The stability of the dislocation structures observed in molecular dynamics simulations are investigated using analytical and dislocation dynamics models. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Weinberger, Christopher R.; Cai, Wei] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov; caiwei@stanford.edu RI Weinberger, Christopher/E-2602-2011; OI Weinberger, Christopher/0000-0001-9550-6992; Cai, Wei/0000-0001-5919-8734 FU National Science Foundation [CMS-0547681]; Army High Performance Computing Research Center at Stanford; Benchmark Stanford Graduate Fellowship; Air Force office of Scientific Research FX The work is supported by National Science Foundation Career Grant CMS-0547681, and Air Force office of Scientific Research/Young Investigator Program grant, the Army High Performance Computing Research Center at Stanford, and a Benchmark Stanford Graduate Fellowship (to C.R.W.). NR 26 TC 28 Z9 28 U1 0 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD JUL PY 2010 VL 58 IS 7 BP 1011 EP 1025 DI 10.1016/j.jmps.2010.04.010 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 619PI UT WOS:000279441700005 ER PT J AU Freelon, B Liu, YS Rotundu, CR Wilson, SD Guo, JH Chen, JL Yang, WL Chang, CL Glans, PA Shirage, P Iyo, A Birgeneau, RJ AF Freelon, Byron Liu, Yi-sheng Rotundu, Costel R. Wilson, Stephen D. Guo, Jinghua Chen, Jeng-Lung Yang, Wanli Chang, Chunli Glans, Per Anders Shirage, Parasharam Iyo, Akira Birgeneau, Robert J. TI X-ray Absorption and Emission Spectroscopy Study of the Effect of Doping on the Low Energy Electronic Structure of PrFeAsO1-delta SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE electron correlations; electronic density of states; high-temperature superconductors; iron arsenide compounds; lanthanide compounds; x-ray emission spectra; x-ray absorption spectra; superconducting transitions; valence bands ID TRANSITION-METAL COMPOUNDS; SUPERCONDUCTIVITY; OXIDES; OXYPNICTIDES; SPECTRA AB We report electronic density of states measurements of oxygen vacated PrFeAsO using soft X-ray absorption and emission spectroscopy. The electronic density of states is observed to undergo doping dependent shifts. Oxygen X-ray absorption and emission show long-range intermixing of oxygen p states. Mean field theory and local density approximations give a good description of the measured oxygen and iron spectra. The near Fermi-level iron spectral weight shows a systematic doping dependence. Concomitant changes in the unoccupied iron-arsenic hybridized spectral features reveal that Fe-As bonding is involved in the process of electron addition near the Fermi-level. By combining x-ray emission and absorption spectra, we observe an increase in the Fe density of states at the Fermi-level as the doping decreases. This doping dependent electronic behavior indicates the possibility of a magnetic instability in the undoped compound. Our data overall imply that PrFeAsO1-delta has weak to intermediate electron correlations. C1 [Freelon, Byron; Birgeneau, Robert J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Yi-sheng; Chen, Jeng-Lung; Chang, Chunli] Tamkang Univ, Dept Phys, Tamsui 250, Taiwan. [Rotundu, Costel R.; Wilson, Stephen D.; Birgeneau, Robert J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Guo, Jinghua; Chen, Jeng-Lung; Yang, Wanli; Glans, Per Anders] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Shirage, Parasharam; Iyo, Akira] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan. RP Freelon, B (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Yang, Wanli/D-7183-2011; Glans, Per-Anders/G-8674-2016 OI Rotundu, Costel/0000-0002-1571-8352; Yang, Wanli/0000-0003-0666-8063; FU U.S. Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences U.S. DOE [DE-AC03-76SF008]; Japan Society for the Promotion of Science FX The authors would like to acknowledge important communications with G. Sawatzky and I. S. Elfimov. This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231 and Office of Basic Energy Sciences U.S. DOE under Contract No. DE-AC03-76SF008. P. M. S. is grateful to the Japan Society for the Promotion of Science for the JSPS postdoctoral fellowship. NR 42 TC 5 Z9 5 U1 0 U2 9 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JUL PY 2010 VL 79 IS 7 AR 074716 DI 10.1143/JPSJ.79.074716 PG 7 WC Physics, Multidisciplinary SC Physics GA 628EJ UT WOS:000280096900047 ER PT J AU Ohnishi, T Kubo, T Kusaka, K Yoshida, A Yoshida, K Ohtake, M Fukuda, N Takeda, H Kameda, D Tanaka, K Inabe, N Yanagisawa, Y Gono, Y Watanabe, H Otsu, H Baba, H Ichihara, T Yamaguchi, Y Takechi, M Nishimura, S Ueno, H Yoshimi, A Sakurai, H Motobayashi, T Nakao, T Mizoi, Y Matsushita, M Ieki, K Kobayashi, N Tanaka, K Kawada, Y Tanaka, N Deguchi, S Satou, Y Kondo, Y Nakamura, T Yoshinaga, K Ishii, C Yoshii, H Miyashita, Y Uematsu, N Shiraki, Y Sumikama, T Chiba, J Ideguchi, E Saito, A Yamaguchi, T Hachiuma, I Suzuki, T Moriguchi, T Ozawa, A Ohtsubo, T Famiano, MA Geissel, H Nettleton, AS Tarasov, OB Bazin, DP Sherrill, BM Manikonda, SL Nolen, JA AF Ohnishi, Tetsuya Kubo, Toshiyuki Kusaka, Kensuke Yoshida, Atsushi Yoshida, Koichi Ohtake, Masao Fukuda, Naoki Takeda, Hiroyuki Kameda, Daisuke Tanaka, Kanenobu Inabe, Naohito Yanagisawa, Yoshiyuki Gono, Yasuyuki Watanabe, Hiroshi Otsu, Hideaki Baba, Hidetada Ichihara, Takashi Yamaguchi, Yoshitaka Takechi, Maya Nishimura, Shunji Ueno, Hideki Yoshimi, Akihiro Sakurai, Hiroyoshi Motobayashi, Tohru Nakao, Taro Mizoi, Yutaka Matsushita, Masafumi Ieki, Kazuo Kobayashi, Nobuyuki Tanaka, Kana Kawada, Yosuke Tanaka, Naoki Deguchi, Shigeki Satou, Yoshiteru Kondo, Yosuke Nakamura, Takashi Yoshinaga, Kenta Ishii, Chihiro Yoshii, Hideakira Miyashita, Yuki Uematsu, Nobuya Shiraki, Yasutsugu Sumikama, Toshiyuki Chiba, Junsei Ideguchi, Eiji Saito, Akito Yamaguchi, Takayuki Hachiuma, Isao Suzuki, Takeshi Moriguchi, Tetsuaki Ozawa, Akira Ohtsubo, Takashi Famiano, Michael A. Geissel, Hans Nettleton, Anthony S. Tarasov, Oleg B. Bazin, Daniel P. Sherrill, Bradley M. Manikonda, Shashikant L. Nolen, Jerry A. TI Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a U-238 Beam at 345 MeV/nucleon SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE nuclear reactions Be(U-238, x) and Pb(U-238, x) E=345 MeV/nucleon; In-flight fission; New isotopes; RI beam separator ID RIKEN AB A search for new isotopes using in-flight fission of a 345 MeV/nucleon U-238 beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: Mn-71, Fe-73,Fe-74, Co-76, Ni-79, Cu-81,Cu-82, Zn-84,Zn-85, Ga-87, Ge-90, Se-95, Br-98, Kr-101, Rb-103, Sr-106,Sr-107, Y-108,Y-109, Zr-111,Zr-112, Nb-114,Nb-115, Mo-115,Mo-116,Mo-117, Tc-119,Tc-120, (121,122,123),Ru-124, Rh-123,Rh-124,Rh-125,Rh-126, Pd-127,Pd-128, Cd-133, Sn-138, Sb-140, Te-143, I-145, Xe-148, and Ba-152. C1 [Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; Yoshida, Atsushi; Yoshida, Koichi; Ohtake, Masao; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Tanaka, Kanenobu; Inabe, Naohito; Yanagisawa, Yoshiyuki; Gono, Yasuyuki; Watanabe, Hiroshi; Otsu, Hideaki; Baba, Hidetada; Ichihara, Takashi; Yamaguchi, Yoshitaka; Takechi, Maya; Nishimura, Shunji; Ueno, Hideki; Yoshimi, Akihiro; Sakurai, Hiroyoshi; Motobayashi, Tohru] RIKEN, Nishina Ctr, Wako, Saitama 3510198, Japan. [Nakao, Taro] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Mizoi, Yutaka] Osaka Electrocommun Univ, Dept Engn Sci, Osaka 5728530, Japan. [Matsushita, Masafumi; Ieki, Kazuo] Rikkyo Univ, Dept Phys, Toshima Ku, Tokyo 1718501, Japan. [Kobayashi, Nobuyuki; Tanaka, Kana; Kawada, Yosuke; Tanaka, Naoki; Deguchi, Shigeki; Satou, Yoshiteru; Kondo, Yosuke; Nakamura, Takashi] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Yoshinaga, Kenta; Ishii, Chihiro; Yoshii, Hideakira; Miyashita, Yuki; Uematsu, Nobuya; Shiraki, Yasutsugu; Sumikama, Toshiyuki; Chiba, Junsei] Tokyo Univ Sci, Fac Sci & Technol, Chiba 2788510, Japan. [Ideguchi, Eiji; Saito, Akito] Univ Tokyo, Ctr Nucl Study, Wako, Saitama 3510198, Japan. [Yamaguchi, Takayuki; Hachiuma, Isao; Suzuki, Takeshi] Saitama Univ, Dept Phys, Sakura Ku, Saitama 3388570, Japan. [Moriguchi, Tetsuaki; Ozawa, Akira] Univ Tsukuba, Inst Phys, Tsukuba, Ibaraki 3058571, Japan. [Ohtsubo, Takashi] Niigata Univ, Inst Phys, Nishi Ku, Niigata 9502181, Japan. [Famiano, Michael A.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Geissel, Hans] Gesell Schwerionenforshung GSI mbH, D-64291 Darmstadt, Germany. [Nettleton, Anthony S.; Tarasov, Oleg B.; Bazin, Daniel P.; Sherrill, Bradley M.] Michigan State Univ, NSCL, E Lansing, MI 48824 USA. [Manikonda, Shashikant L.; Nolen, Jerry A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ohnishi, T (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM kubo@ribf.riken.jp RI Manikonda, Shashikant/D-6936-2011; Sherrill, Bradley/B-3378-2011; Satou, Yoshiteru/N-2632-2014; SAKURAI, HIROYOSHI/G-5085-2014; Mizoi, Yutaka/B-2112-2014; Yoshimi, Akihiro/C-8539-2015; Nakamura, Takashi/N-5390-2015; Ueno, Hideki/A-7472-2015 OI Satou, Yoshiteru/0000-0003-3627-0435; Mizoi, Yutaka/0000-0002-4749-0815; Nakamura, Takashi/0000-0002-1838-9363; Ueno, Hideki/0000-0003-4150-9500 FU U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-03ER41265]; National Science Foundation [PHY-0606007, PHY-0855013, PHY-0735989] FX This experiment was carried out under Program Number NP0702-RIBF20 at the RIBF operated by RIKEN Nishina Center, RIKEN and CNS, University of Tokyo. The authors would like to thank the RIBF accelerator crew. The authors SM, JN were supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The authors AN, OT, DB, BS were supported by the National Science Foundation under Grant No. PHY-0606007 and by the U.S. Department of Energy, Office of Nuclear Physics, under Grant No. DE-FG02-03ER41265. The author MF was supported by the National Science Foundation under Grants No. PHY-0855013 and PHY-0735989. NR 18 TC 92 Z9 92 U1 0 U2 13 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD JUL PY 2010 VL 79 IS 7 AR 073201 DI 10.1143/JPSJ.79.073201 PG 5 WC Physics, Multidisciplinary SC Physics GA 628EJ UT WOS:000280096900004 ER PT J AU Sun, K Zhang, ZH Suzuki, T Wenk, JF Stander, N Einstein, DR Saloner, DA Wallace, AW Guccione, JM Ratcliffe, MB AF Sun, Kay Zhang, Zhihong Suzuki, Takamaro Wenk, Jonathan F. Stander, Nielen Einstein, Daniel R. Saloner, David A. Wallace, Arthur W. Guccione, Julius M. Ratcliffe, Mark B. TI Dor procedure for dyskinetic anteroapical myocardial infarction fails to improve contractility in the border zone SO JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY LA English DT Article ID LEFT-VENTRICULAR ANEURYSM; FINITE-ELEMENT MODEL; ENDOVENTRICULAR PATCH PLASTY; CANINE LEFT-VENTRICLE; MATRIX METALLOPROTEINASE-2; MECHANICAL DYSFUNCTION; ACTIVE CONTRACTION; CARDIAC-MUSCLE; RECONSTRUCTION; STRESS AB Background: Endoventricular patch plasty (Dor) is used to reduce left ventricular volume after myocardial infarction and subsequent left ventricular remodeling. Methods and Results: End-diastolic and end-systolic pressure-volume and Starling relationships were measured, and magnetic resonance images with noninvasive tags were used to calculate 3-dimensional myocardial strain in 6 sheep 2 weeks before and 2 and 6 weeks after the Dor procedure. These experimental results were previously reported. The imaging data from 1 sheep were incomplete. Animal specific finite element models were created from the remaining 5 animals using magnetic resonance images and left ventricular pressure obtained at early diastolic filling. Finite element models were optimized with 3-dimensional strain and used to determine systolic material properties, T(max,skinned-fiber), and diastolic and systolic stress in remote myocardium and border zone. Six weeks after the Dor procedure, end-diastolic and end-systolic stress in the border zone were substantially reduced. However, although there was a slight increase in Tmax, skinned-fiber in the border zone near the myocardial infarction at 6 weeks, the change was not significant. Conclusions: The Dor procedure decreases end-diastolic and end-systolic stress but fails to improve contractility in the infarct border zone. Future work should focus on measures that will enhance border zone function alone or in combination with surgical remodeling. (J Thorac Cardiovasc Surg 2010; 140: 233-9) C1 [Sun, Kay; Zhang, Zhihong; Suzuki, Takamaro; Wenk, Jonathan F.; Guccione, Julius M.; Ratcliffe, Mark B.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA. [Guccione, Julius M.; Ratcliffe, Mark B.] Univ Calif San Francisco, Dept Bioengn, San Francisco, CA 94143 USA. [Wallace, Arthur W.] Univ Calif San Francisco, Dept Anesthesia, San Francisco, CA 94143 USA. [Saloner, David A.] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA. [Sun, Kay; Zhang, Zhihong; Suzuki, Takamaro; Wenk, Jonathan F.; Saloner, David A.; Wallace, Arthur W.; Guccione, Julius M.; Ratcliffe, Mark B.] Vet Affairs Med Ctr, San Francisco, CA 94121 USA. [Stander, Nielen] Livermore Software Technol Corp, Livermore, CA USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Olympia, WA USA. RP Ratcliffe, MB (reprint author), San Francisco VA Med Ctr, Surg Serv 112, 4150 Clement St, San Francisco, CA 94121 USA. EM mark.ratcliffe@med.va.gov FU National Institutes of Health [R01-HL-77921, R01-HL-63348] FX This study was supported by National Institutes of Health grant R01-HL-77921 (to Dr Guccione), VA Merit Review (to Dr Wallace), and R01-HL-63348 (to Dr Ratcliffe). NR 38 TC 15 Z9 15 U1 0 U2 2 PU MOSBY-ELSEVIER PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010-1710 USA SN 0022-5223 J9 J THORAC CARDIOV SUR JI J. Thorac. Cardiovasc. Surg. PD JUL PY 2010 VL 140 IS 1 BP 233 EP U269 DI 10.1016/j.jtcvs.2009.11.055 PG 11 WC Cardiac & Cardiovascular Systems; Respiratory System; Surgery SC Cardiovascular System & Cardiology; Respiratory System; Surgery GA 612QG UT WOS:000278915600038 PM 20299030 ER PT J AU Woodall, S Pines, E Valles-Rosales, D AF Woodall, Steven Pines, Edward Valles-Rosales, Delia TI Effectiveness of passivation techniques on hydrogen desorption in a tritium environment SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID STAINLESS-STEEL; SURFACE TREATMENTS; PERMEATION AB Tritium is a radioactive isotope of hydrogen. It is used as a fuel in fusion reactors, a booster material in nuclear weapons, and as a light source in commercial applications. When tritium is used in fusion reactors, and especially when used in the manufacture of nuclear weapons, purity is critical. For U.S. Department of Energy use, tritium is recycled by the Savannah River Site in South Carolina and is processed to a minimum purity of 99.5%. For use elsewhere in the country, it must be shipped and stored, while maintaining the highest purity possible. As an isotope of hydrogen, it exchanges easily with the most common isotope of hydrogen, protium. Stainless steel bottles are used to transport and store tritium. Protium, present in air, becomes associated in and on the surface of stainless steel during and after the manufacture of the steel. When filled, the tritium within the bottle exchanges with the protium in and on the surface of the stainless steel, slowly contaminating the pure tritium with protium. The stainless steel is therefore passivated to minimize the protium outgrowth of the bottles into the pure tritium. This research is to determine how effective different passivation techniques are in minimizing the contamination of tritium with protium. Additionally, this research will attempt to determine a relationship between surface chemistry of passivated steels and protium contamination of tritium. The conclusions of this research found that passivated bottles by two companies, which routinely provide passivated materials to the U.S. Department of Energy, provide low levels of protium outgrowth into pure tritium. A bottle passivated with a material to prevent excessive corrosion in a highly corrosive environment, and a clean and polished bottle provided outgrowth rates roughly twice those of the passivated bottles above. Beyond generally high levels of chromium, oxygen, iron, and nickel in the passivated bottles, there did not appear to be a strong correlation between surface chemistry in the surface of the bottles and protium outgrowth rates. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3453701] C1 [Woodall, Steven] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pines, Edward; Valles-Rosales, Delia] New Mexico State Univ, Las Cruces, NM 88003 USA. RP Woodall, S (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM smwooda@sandia.gov NR 12 TC 0 Z9 0 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 652 EP 657 DI 10.1116/1.3453701 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700029 ER PT J AU Johnston, S Unold, T Repins, I Sundaramoorthy, R Jones, KM To, B Call, N Ahrenkiel, R AF Johnston, Steve Unold, Thomas Repins, Ingrid Sundaramoorthy, Rajalakshmi Jones, Kim M. To, Bobby Call, Nathan Ahrenkiel, Richard TI Imaging characterization techniques applied to Cu(In,Ga)Se-2 solar cells SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID LOCK-IN THERMOGRAPHY; MULTICRYSTALLINE SILICON; WAFERS; SHUNTS AB The authors present examples of imaging characterization on Cu(In,Ga)Se-2 (CIGS) solar cell devices. These imaging techniques include photoluminescence imaging, electroluminescence imaging, illuminated lock-in thermography, and forward- and reverse-bias dark lock-in thermographies. Images were collected on CIGS devices deposited at the National Renewable Energy Laboratory with intentional spatial inhomogeneities of the material parameters. Photoluminescence imaging shows brightness variations, which correlate to the device open-circuit voltage. Photoluminescence and electroluminescence imaging on CIGS solar cells show dark spots that correspond to bright spots on images from illuminated and forward-bias lock-in thermography. These image-detected defect areas are weak diodes that conduct current under solar cell operating conditions. Shunt defects are imaged using reverse-bias lock-in thermography. The authors show how imaging can be used to detect structural defects detrimental to solar cell performance. The images provide defect locations that are analyzed in more detail by scanning electron microscopy techniques using top view and cross section imaging. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3358303] C1 [Johnston, Steve; Repins, Ingrid; Sundaramoorthy, Rajalakshmi; Jones, Kim M.; To, Bobby; Call, Nathan; Ahrenkiel, Richard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Unold, Thomas] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. [Call, Nathan; Ahrenkiel, Richard] Colorado Sch Mines, Golden, CO 80401 USA. RP Johnston, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM steve.johnston@nrel.gov OI Unold, Thomas/0000-0002-5750-0693 NR 17 TC 15 Z9 15 U1 1 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 665 EP 670 DI 10.1116/1.3358303 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700032 ER PT J AU Xiao, Z Hedgemen, K Harris, M DiMasi, E AF Xiao, Z. Hedgemen, K. Harris, M. DiMasi, E. TI Fabrication of Bi2Te3/Sb2Te3 and Bi2Te3/Bi2Te2Se multilayered thin film-based integrated cooling devices SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID THERMOELECTRIC-MATERIALS; HEAT-TRANSFER; POWER; MERIT; NANOSTRUCTURES; SUPERLATTICES; RESOLUTION; TRANSPORT; SB2TE3; FIGURE AB In this article, the authors report on the development of solid-state integrated cooling devices using Bi2Te3/Sb2Te3 and Bi2Te3/Bi2Te2Se thermoelectric thin films fabricated using sputtering deposition. The multilayer thin films have a periodic structure consisting of alternating Bi2Te3 and Sb2Te3 layers or Bi2Te3 and Bi2Te2Se layers, where each layer is about 10 nm thick. The deposited Bi2Te3/Sb2Te3 multilayer thin film has a p-type conductivity and the deposited Bi2Te3/Bi2Te2Se multilayer thin film has an n-type conductivity. The multilayer structure of films and the interface of layers were analyzed by x-ray diffraction and reflectivity. Bi2Te3/Sb2Te3 and Bi2Te3/Bi2Te2Se multilayer thin film-based integrated cooling devices were fabricated using standard integrated circuit fabrication process. The temperature difference was measured from the fabricated cooling devices. The devices could be good candidates for the application of high-efficiency solid-state microcooling. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3292600] C1 [Xiao, Z.; Hedgemen, K.; Harris, M.] Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. [DiMasi, E.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Xiao, Z (reprint author), Alabama A&M Univ, Dept Elect Engn, Normal, AL 35762 USA. EM zhigang.xiao@aamu.edu NR 26 TC 6 Z9 6 U1 2 U2 28 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 679 EP 683 DI 10.1116/1.3292600 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700035 ER PT J AU Tobin, JG Yu, SW Butterfield, MT Komesu, T Waddill, GD AF Tobin, J. G. Yu, S. -W. Butterfield, M. T. Komesu, Takashi Waddill, G. D. TI Investigations of magnetic overlayers at the Advanced Photon Source SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID POLARIZED X-RAY; CIRCULAR-DICHROISM; FILMS; SPECTROSCOPY; DIFFRACTION; FE/CU(001) AB Magnetic overlayers of Fe and Co have been investigated with x-ray magnetic circular dichroism in x-ray absorption spectroscopy and photoelectron spectroscopy, including spin-resolved photoelectron spectroscopy, at Beamline 4 at the Advanced Photon Source. Particular emphasis was placed upon the interrogation of the 2p levels of the Fe. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3271153] C1 [Tobin, J. G.; Yu, S. -W.; Butterfield, M. T.] Lawrence Livermore Natl Lab, LLNS LLC, Livermore, CA 94550 USA. [Komesu, Takashi; Waddill, G. D.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Tobin, JG (reprint author), Lawrence Livermore Natl Lab, LLNS LLC, Livermore, CA 94550 USA. EM tobin1@llnl.gov RI Tobin, James/O-6953-2015 NR 14 TC 2 Z9 2 U1 1 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 697 EP 701 DI 10.1116/1.3271153 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700039 ER PT J AU Kamto, A Divan, R Sumant, AV Burkett, SL AF Kamto, A. Divan, R. Sumant, A. V. Burkett, S. L. TI Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID HIGH-DENSITY PLASMAS; 3-DIMENSIONAL INTEGRATION; PROFILE CONTROL; THIN-FILMS; DEEP HOLES; TEMPERATURE; SI; SF6/O-2; MECHANISMS; TRENCHES AB Vertical interconnects pose an interesting method for heterogeneous integration of electronic technologies allowing three-dimensional (3D) stacking of microelectromechanical systems devices and integrated circuit components. The vertical interconnects, referred to as through-silicon vias, begin with the formation of blind vias in silicon that are eventually exposed by mechanically lapping and polishing the wafer back side. Inductively coupled plasma (ICP) etching using SF(6)/O(2) gas chemistry at cryogenic temperatures has been investigated as a way to form vias with a tapered sidewall. The point in creating a controlled taper is so that subsequent thin films can be deposited along the sloped sidewall that line the via with insulation, barrier, and seed films. This tapering is necessary if the via lining processes do not provide adequate conformal coverage, a common problem for conventional low temperature deposition processes. In our process for lining the via sidewall, plasma enhanced chemical vapor deposited silicon dioxide is used to insulate vias from the surrounding silicon. Both Ti and Cu are sputter deposited and provide protection from copper migration and a seed film for Cu electrodeposition, respectively. After etching and lining, the vias are filled by reverse pulse plating of Cu. Vias are 20-25 mu m in diameter and etched using different masking materials. The effect of changing gas flow rates, chamber pressure, ICP power, and substrate temperature on etch rate, via profile, and sidewall morphology will be presented. These parameters are critical in the optimization of an etch process for vias of specific dimensions to be used in 3D integration. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3281005] C1 [Kamto, A.; Burkett, S. L.] Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA. [Divan, R.; Sumant, A. V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Kamto, A (reprint author), Univ Alabama, Dept Elect & Comp Engn, Tuscaloosa, AL 35487 USA. EM sburkett@eng.ua.edu NR 35 TC 12 Z9 12 U1 4 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 719 EP 725 DI 10.1116/1.3281005 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700043 ER PT J AU Anders, A AF Anders, Andre TI Deposition rates of high power impulse magnetron sputtering: Physics and economics SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID DISCHARGE; FILMS; TEMPERATURE; TECHNOLOGY; GROWTH; YIELD; AG AB Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower,deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3299267] C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Anders, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aanders@lbl.gov RI Anders, Andre/B-8580-2009 OI Anders, Andre/0000-0002-5313-6505 NR 54 TC 57 Z9 59 U1 2 U2 39 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 783 EP 790 DI 10.1116/1.3299267 PG 8 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700055 ER PT J AU Teixeira, FS Salvadori, MC Cattani, M Brown, IG AF Teixeira, F. S. Salvadori, M. C. Cattani, M. Brown, I. G. TI Electrical, optical, and structural studies of shallow-buried Au-polymethylmethacrylate composite films formed by very low energy ion implantation SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID DYNAMIC COMPOSITION CHANGES; SURFACE-PLASMON RESONANCE; SIMULATION; NANOPARTICLES; DEPOSITION; TRIDYN; GOLD AB The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287] C1 [Teixeira, F. S.] Univ Sao Paulo, Polytech Sch, BR-05508900 Sao Paulo, Brazil. [Salvadori, M. C.; Cattani, M.] Univ Sao Paulo, Inst Phys, BR-05315970 Sao Paulo, Brazil. [Brown, I. G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Teixeira, FS (reprint author), Univ Sao Paulo, Polytech Sch, Ave Prof Luciano Gualberto,Travessa R-158, BR-05508900 Sao Paulo, Brazil. EM nandast@if.usp.br RI Salvadori, Maria Cecilia/A-9379-2013; Teixeira, Fernanda/A-9395-2013; Cattani, Mauro/N-9749-2013 NR 27 TC 10 Z9 10 U1 1 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 818 EP 823 DI 10.1116/1.3357287 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700061 ER PT J AU McClure, A Arenholz, E Idzerda, YU AF McClure, Adam Arenholz, E. Idzerda, Y. U. TI Ferrimagnetic ordering of single crystal Fe1-xGax thin films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID MAGNETIC CIRCULAR-DICHROISM; FE-GA; ALLOYS; MAGNETOSTRICTION; BEHAVIOR; IRON AB Molecular beam epitaxy was used to deposit body centered cubic single crystal Fe1-xGax thin films on MgO(001) and ZnSe/GaAs(001) substrates well beyond the bulk stability concentration of about 28%. The crystal quality of the substrate surface and each deposited layer was monitored in situ by reflection high energy electron diffraction. The magnetization of the samples as a function of Ga is found to decrease more rapidly than a simple dilution effect, and element-specific x-ray magnetic circular dichroism ascribes this trend to a decrease in the Fe moment and an induced moment in the Ga that is antialigned to the Fe moment. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3447233] C1 [McClure, Adam; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP McClure, A (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. EM mcclure@physics.montana.edu NR 17 TC 8 Z9 8 U1 0 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 969 EP 972 DI 10.1116/1.3447233 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700089 ER PT J AU Ramanathan, M Darling, SB Sumant, AV Auciello, O AF Ramanathan, Muruganathan Darling, Seth B. Sumant, Anirudha V. Auciello, Orlando TI Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article; Proceedings Paper CT 56th Annual Meeting of the American-Vacuum-Society CY NOV 08-13, 2009 CL San Jose, CA SP Amer Vacuum Soc ID NANOCRYSTALLINE DIAMOND; SURFACE; MICROSTRUCTURES; FABRICATION; PLASMA; GROWTH; ARRAYS; MEMS; CVD; NUCLEATION AB Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as in etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays. of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3299260] C1 [Ramanathan, Muruganathan; Darling, Seth B.; Sumant, Anirudha V.; Auciello, Orlando] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Auciello, Orlando] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Ramanathan, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nathan@anl.gov RI Ramanathan, Muruganathan/B-6890-2011; Ramanathan, Muruganathan/A-3641-2013 OI Ramanathan, Muruganathan/0000-0001-7008-1131 NR 50 TC 8 Z9 8 U1 2 U2 10 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD JUL-AUG PY 2010 VL 28 IS 4 BP 979 EP 983 DI 10.1116/1.3299260 PG 5 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 633DM UT WOS:000280479700091 ER PT J AU George, S Naulleau, P Okoroanyanwu, U Dittmar, K Holfeld, C Wuest, A AF George, Simi Naulleau, Patrick Okoroanyanwu, Uzodinma Dittmar, Kornelia Holfeld, Christian Wueest, Andrea TI Lithographic performance evaluation of a contaminated extreme ultraviolet mask after cleaning SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article AB The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of an extreme ultraviolet (EUV) mask is investigated. SEMATECH's Berkeley microfield exposure tool printed 40 and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have different absorber architectures, optical imaging models and aerial image calculations were performed to determine any expected differences in performance. The measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences between the two masks are shown to be well within the expected process variation of 10%, indicating that the cleaning process did not appreciably affect the mask performance. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3466999] C1 [George, Simi; Naulleau, Patrick] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Okoroanyanwu, Uzodinma] GlobalFoundries, Albany, NY 12203 USA. [Dittmar, Kornelia] GlobalFoundries, D-01109 Dresden, Germany. [Holfeld, Christian] Adv Mask Technol Ctr GmbH & Co KG, D-01109 Dresden, Germany. [Wueest, Andrea] SEMATECH, Albany, NY 12203 USA. RP George, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM sageorge@lbl.gov FU SEMATECH; DOE, Office of Science; Basic Energy Sciences FX The authors wish to acknowledge the expert support provided by Paul Denham, Brian Hoef, Gideon Jones, and Jerrin Chiu of the Center for X-Ray Optics at Lawrence Berkeley National Laboratory with the exposure tool as well as the entire CXRO engineering team for building and maintaining the EUV exposure tool. They acknowledge SEMATECH for the support of the SEMATECH Berkeley MET and, in particular, the programmatic support from Warren Montgomery, Bryan Rice, and Stefan Wurm. This work was supported in part by SEMATECH and carried out at Lawrence Berkeley National Laboratory's Advanced Light Source, which is supported by the DOE, Office of Science, and the Basic Energy Sciences. NR 16 TC 2 Z9 2 U1 1 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2010 VL 28 IS 4 BP 841 EP 848 DI 10.1116/1.3466999 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 640AP UT WOS:000281019500033 ER PT J AU Chien, TY Guisinger, NP Freeland, JW AF Chien, TeYu Guisinger, Nathan P. Freeland, John W. TI Survey of fractured SrTiO3 surfaces: From the micrometer to nanometer scale SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 37th Conference of Physics and Chemistry of Surfaces and Interfaces CY JAN 10-14, 2010 CL Santa Fe, NM SP AVS, Army Res Off, Off Naval Res ID INTERFACE; OXIDES AB Cross-sectional scanning tunneling microscopy was utilized to study fractured perovskite oxide surfaces. It was found that for the non-cleavable perovskite oxide, SrTiO3, atomically flat terraces could be routinely created with a controlled fracturing procedure. Optical, scanning electron and scanning tunneling microscopies, and a profilometer were used to obtain information from submillimeter to submicrometer scales of the fractured surface topography. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3420395] C1 [Chien, TeYu; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Chien, TY (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM tchien@anl.gov NR 13 TC 5 Z9 5 U1 2 U2 11 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2010 VL 28 IS 4 BP C5A11 EP C5A13 DI 10.1116/1.3420395 PG 3 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 640AP UT WOS:000281019500043 ER PT J AU Segal, Y Reiner, JW Zhang, Z Ahn, CH Walker, FJ AF Segal, Y. Reiner, J. W. Zhang, Z. Ahn, C. H. Walker, F. J. TI Morphology of epitaxial SrTiO3/Si (001) determined using three-dimensional diffraction profile analysis SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article; Proceedings Paper CT 37th Conference of Physics and Chemistry of Surfaces and Interfaces CY JAN 10-14, 2010 CL Santa Fe, NM SP AVS, Army Res Off, Off Naval Res ID VICINAL SI(001); SURFACES; SILICON; GROWTH AB Large scale features of epitaxial films, such as terrace structure, strain distribution, and grain shape, can have a substantial effect on device properties. The diffraction spot shape captures the average large scale structure. In epitaxial SrTiO3/Si (001), the spot shows a L-dependent splitting along two axes. Analysis of this feature traces its origin to a jagged step edge formation, and determines the length scale of terrace length and step meandering. Such a structure was previously observed in dimerized Si (001) using real-space imaging. Si diffusion that occurs during the first stages of growth gives rise to this morphology. This morphology may play a key role in explaining the small critical thickness for relaxation in these films. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3420394] C1 [Segal, Y.; Reiner, J. W.; Ahn, C. H.; Walker, F. J.] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. [Segal, Y.; Reiner, J. W.; Ahn, C. H.; Walker, F. J.] Yale Univ, Ctr Interface Struct & Phenomena, New Haven, CT 06520 USA. [Zhang, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ahn, C. H.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Segal, Y (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA. EM yaron.segal@yale.edu OI Walker, Frederick/0000-0002-8094-249X NR 18 TC 1 Z9 1 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD JUL PY 2010 VL 28 IS 4 BP C5B1 EP C5B4 DI 10.1116/1.3420394 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 640AP UT WOS:000281019500047 ER PT J AU Miao, HY Hollenbaugh, JA Zand, MS Holden-Wiltse, J Mosmann, TR Perelson, AS Wu, HL Topham, DJ AF Miao, Hongyu Hollenbaugh, Joseph A. Zand, Martin S. Holden-Wiltse, Jeanne Mosmann, Tim R. Perelson, Alan S. Wu, Hulin Topham, David J. TI Quantifying the Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus SO JOURNAL OF VIROLOGY LA English DT Article ID DYNAMICS IN-VIVO; CELL LIFE-SPAN; CD8+ T-CELLS; B-CELLS; PARAMETER-ESTIMATION; MATHEMATICAL-MODEL; DEFICIENT MICE; SENDAI-VIRUS; CLEARANCE; ANTIBODY AB Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is similar to 1.2 days, and the half-life of free infectious IAV is similar to 4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is similar to 0.5 days, and the average half-life of free infectious virus is similar to 1.8 min. During the adaptive phase, model fitting confirms that CD8(+) CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity. C1 [Miao, Hongyu; Holden-Wiltse, Jeanne; Wu, Hulin] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Hollenbaugh, Joseph A.; Mosmann, Tim R.; Topham, David J.] Univ Rochester, Dept Microbiol & Immunol, David H Smith Ctr Vaccine Biol & Immunol, Rochester, NY 14642 USA. [Zand, Martin S.] Univ Rochester, Div Nephrol, Dept Med, Rochester, NY 14642 USA. [Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Topham, DJ (reprint author), 601 Elmwood Ave,Box 609, Rochester, NY 14642 USA. EM david_topham@urmc.rochester.edu; hwu@bst.rochester.edu RI Zand, Martin/A-8612-2015 FU National Institute of Allergy and Infectious Diseases [N01-AI-50020, R01 AI069351]; U.S. Department of Energy [DE-AC52-679 06NA25396] FX This work was funded by the National Institute of Allergy and Infectious Diseases contracts N01-AI-50020 and R01 AI069351 (to M.S.Z.). Portions of this work were done under the auspices of the U.S. Department of Energy under contract DE-AC52-679 06NA25396 (to A. S. P.). NR 61 TC 76 Z9 76 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUL PY 2010 VL 84 IS 13 BP 6687 EP 6698 DI 10.1128/JVI.00266-10 PG 12 WC Virology SC Virology GA 608AN UT WOS:000278551900041 PM 20410284 ER PT J AU Skar, H Borrego, P Wallstrom, TC Mild, M Marcelino, JM Barroso, H Taveira, N Leitner, T Albert, J AF Skar, Helena Borrego, Pedro Wallstrom, Timothy C. Mild, Mattias Marcelino, Jose Maria Barroso, Helena Taveira, Nuno Leitner, Thomas Albert, Jan TI HIV-2 Genetic Evolution in Patients with Advanced Disease Is Faster than That in Matched HIV-1 Patients SO JOURNAL OF VIROLOGY LA English DT Article ID PLASMA VIRAL LOAD; T-CELL RESPONSES; IMMUNE ACTIVATION; MOLECULAR EVOLUTION; ENVELOPE PROTEIN; VIRUS; INFECTION; TYPE-1; PROGRESSION; NEUTRALIZATION AB The objective of this study was to estimate and compare the evolutionary rates of HIV-2 and HIV-1. Two HIV-2 data sets from patients with advanced disease were compared to matched HIV-1 data sets. The estimated mean evolutionary rate of HIV-2 was significantly higher than the estimated rate of HIV-1, both in the gp125 and in the V3 region of the env gene. In addition, the rate of synonymous substitutions in gp125 was significantly higher for HIV-2 than for HIV-1, possibly indicating a shorter generation time or higher mutation rate of HIV-2. Thus, the lower virulence of HIV-2 does not appear to translate into a lower rate of evolution. C1 [Skar, Helena; Mild, Mattias; Albert, Jan] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, S-17177 Stockholm, Sweden. [Skar, Helena; Mild, Mattias; Albert, Jan] Swedish Inst Infect Dis Control, Dept Virol, Solna, Sweden. [Wallstrom, Timothy C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Borrego, Pedro; Barroso, Helena; Taveira, Nuno] Fac Farm Lisboa, Ctr Patogenese Mol, Unidade Retrovirus & Infeccoes Associadas, Lisbon, Portugal. [Marcelino, Jose Maria] Univ Nova Lisboa, Inst Higiene & Med Trop, Unidade Tecnol Prot & Anticorpos Monoclonais, P-1200 Lisbon, Portugal. [Barroso, Helena; Taveira, Nuno] Inst Super Ciencias Saude Egas Moniz, CiiEM, Caparica, Portugal. RP Skar, H (reprint author), Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Nobels Vag 16, S-17177 Stockholm, Sweden. EM helena.skar@smi.se RI Marcelino, Jose/B-3374-2008; Borrego, Pedro/H-6968-2013; Taveira, Nuno/A-6252-2014; iMed.ULisboa, iMed.ULisboa/C-6292-2014; iMed.ULisboa, EEPHIV /B-4222-2014; OI Marcelino, Jose/0000-0002-4597-1535; Borrego, Pedro/0000-0002-1949-9484; Taveira, Nuno/0000-0003-0176-5585; Barroso, Helena/0000-0003-4098-5433; Wallstrom, Timothy/0000-0002-9295-2441 FU The Swedish Research Council; Swedish International Development Cooperation Agency (SIDA); NIH/ DOE [Y1-AI-8309]; Fundacao para a Ciencia e Tecnologia, Portugal [PTDC/SAU-FCF/67673/2006]; Fundacao para a Ciencia e Tecnologia, Portugal FX This study was funded by The Swedish Research Council, the Swedish International Development Cooperation Agency (SIDA), an NIH/ DOE interagency agreement (Y1-AI-8309), and by grant PTDC/SAU-FCF/67673/2006 from Fundacao para a Ciencia e Tecnologia, Portugal. Pedro Borrego is supported by a Ph.D. scholarship from Fundacao para a Ciencia e Tecnologia, Portugal. NR 36 TC 16 Z9 16 U1 2 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD JUL PY 2010 VL 84 IS 14 BP 7412 EP 7415 DI 10.1128/JVI.02548-09 PG 4 WC Virology SC Virology GA 612WF UT WOS:000278935700049 PM 20463072 ER PT J AU Rubinstein, F Enscoe, A AF Rubinstein, Francis Enscoe, Abby TI Saving Energy with Highly-Controlled Lighting in an Open-Plan Office SO LEUKOS LA English DT Article AB An installation in a Federal building tested the efficacy of a highly-controlled, workstation-specific lighting retrofit. The study took place in 86 cubicles in an open office with low levels of daylight. A direct/indirect pendant luminaire with three 32 watt lamps, two DALI ballasts, and an occupancy sensor provided both task and ambient light for each cubicle. All three lamps turned on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several months demonstrated 40 percent lighting energy savings compared to a baseline that represents a typical Federal building retrofit; the baseline has a lighting power density of 8.9W/m(2) (0.83W/ft(2)) and no advanced controls. A photometric analysis found that the installation provided higher desktop light levels than the baseline did, while an occupant survey suggested that occupants preferred the lighting system to the baseline. C1 [Rubinstein, Francis; Enscoe, Abby] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Enscoe, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM aienscoe@lbl.gov FU US General Services Administration; U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission's Demand Response Research Center FX This work was supported by the US General Services Administration (Region 9), the Assistant Secretary for Energy Efficiency and Renewable Energy's Federal Energy Management Program of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, and the California Energy Commission's Demand Response Research Center. We would like to thank Pacific Northwest National Laboratory for their work creating the occupant survey. NR 9 TC 5 Z9 5 U1 1 U2 5 PU ILLUMINAT ENG SOC NORTH AMER PI NEW YORK PA 120 WALL ST, 17TH FL, NEW YORK, NY 10005-4001 USA SN 1550-2724 J9 LEUKOS JI Leukos PD JUL PY 2010 VL 7 IS 1 BP 21 EP 36 DI 10.1582/LEUKOS.2010.07.01002 PG 16 WC Construction & Building Technology; Optics SC Construction & Building Technology; Optics GA V22DL UT WOS:000208255800004 ER PT J AU Varadharajan, C Hermosillo, R Hemond, HF AF Varadharajan, Charuleka Hermosillo, Richard Hemond, Harold F. TI A low-cost automated trap to measure bubbling gas fluxes SO LIMNOLOGY AND OCEANOGRAPHY-METHODS LA English DT Article ID MARINE HYDROCARBON SEEPS; COAL OIL POINT; AMAZONIAN FLOODPLAIN; NORTHERN PEATLAND; CARBON-DIOXIDE; METHANE FLUXES; LAKE; EBULLITION; TRANSPORT; WATER AB We describe a trap that can be used for automated, high temporal resolution measurement of ebullition fluxes in aquatic environments. The trap comprises a submerged cone connected to a transparent PVC pipe that serves as a collection chamber. A differential pressure sensor at the top of the pipe measures the pressure caused by gas accumulation in the chamber. The sensor circuit consists of low-power electronics and can function for longer than 6 months on two high-capacity AA lithium batteries. The circuit, batteries, and a commercial data logger that records the measurements are enclosed in a custom-made, 10-cm diameter waterproof housing. The trap is designed to be fabricated economically and easily so that many units can be deployed for greater spatial coverage. We have used several of these automated traps to measure bubbling fluxes at a lake, and have collected data continuously at a resolution of 5 or 10 min over 6 months. C1 [Varadharajan, Charuleka; Hermosillo, Richard; Hemond, Harold F.] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA. RP Varadharajan, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RI Varadharajan, Charuleka/G-3741-2015 OI Varadharajan, Charuleka/0000-0002-4142-3224 FU NSF [0726806, EAR 0330272]; GSA; MIT Martin, Linden and Ippen fellowships; MIT; Martin UROP FX This work was supported by NSF Doctoral Dissertation Research Grant 0726806, NSF EAR 0330272, a GSA Graduate Student Research Grant and MIT Martin, Linden and Ippen fellowships. Emanuel Borja and Alexandra Patricia Tcaciuc were funded by the MIT and Martin UROP programs and assisted with the fabrication and testing of equipment and with collection of field data. The authors thank the personnel at the MIT Edgerton and Chemistry machine shops for invaluable help with trap design and fabrication, Amy Mueller for assistance with circuit design and troubleshooting, as well as Phil Gschwend and the anonymous reviewers for comments on the manuscript. NR 35 TC 7 Z9 7 U1 2 U2 16 PU AMER SOC LIMNOLOGY OCEANOGRAPHY PI WACO PA 5400 BOSQUE BLVD, STE 680, WACO, TX 76710-4446 USA SN 1541-5856 J9 LIMNOL OCEANOGR-METH JI Limnol. Oceanogr. Meth. PD JUL PY 2010 VL 8 BP 363 EP 375 DI 10.4319/lom.2010.8.363 PG 13 WC Limnology; Oceanography SC Marine & Freshwater Biology; Oceanography GA 678UG UT WOS:000284106200005 ER PT J AU Hush, D Porter, R AF Hush, Don Porter, Reid TI Algorithms for optimal dyadic decision trees SO MACHINE LEARNING LA English DT Article DE Decision tree; Classification; Learning algorithm ID MINIMAX-OPTIMAL CLASSIFICATION; OPTIMAL COMPUTER PROGRAMS; CONVERSION; TABLES AB A dynamic programming algorithm for constructing optimal dyadic decision trees was recently introduced, analyzed, and shown to be very effective for low dimensional data sets. This paper enhances and extends this algorithm by: introducing an adaptive grid search for the regularization parameter that guarantees optimal solutions for all relevant trees sizes, replacing the dynamic programming algorithm with a memoized recursive algorithm whose run time is substantially smaller for most regularization parameter values on the grid, and incorporating new data structures and data pre-processing steps that provide significant run time enhancement in practice. C1 [Hush, Don; Porter, Reid] Los Alamos Natl Lab, Grp ISR 2, Los Alamos, NM 87545 USA. RP Hush, D (reprint author), Los Alamos Natl Lab, Grp ISR 2, MS B265, Los Alamos, NM 87545 USA. EM dhush@lanl.gov FU Laboratory Directed Research and Development (LDRD) office at Los Alamos National Laboratory FX The work was supported by the Laboratory Directed Research and Development (LDRD) office at Los Alamos National Laboratory. NR 23 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0885-6125 J9 MACH LEARN JI Mach. Learn. PD JUL PY 2010 VL 80 IS 1 BP 85 EP 107 DI 10.1007/s10994-010-5167-x PG 23 WC Computer Science, Artificial Intelligence SC Computer Science GA 602RM UT WOS:000278156500004 ER PT J AU Han, Y Unal, B Jing, DP Thiel, PA Evans, JW Liu, DJ AF Han, Yong Uenal, Baris Jing, Dapeng Thiel, Patricia A. Evans, James W. Liu, Da-Jiang TI Nanoscale "Quantum" Islands on Metal Substrates: Microscopy Studies and Electronic Structure Analyses SO MATERIALS LA English DT Review DE quantum size effect; metal nanofilms; quantum islands; DFT calculations; STM; Ag/Fe; Cu/Fe/Cu; Pb/Cu; Ag/NiAl; films on quasicrystals ID THIN LEAD FILMS; EPITAXIAL-GROWTH; LOW-TEMPERATURE; JELLIUM MODEL; SIZE; CLUSTERS; PHYSICS; NANOSTRUCTURES; SURFACE; MORPHOLOGY AB Confinement of electrons can occur in metal islands or in continuous films grown heteroepitaxially upon a substrate of a different metal or on a metallic alloy. Associated quantum size effects (QSE) can produce a significant height-dependence of the surface free energy for nanoscale thicknesses of up to 10-20 layers. This may suffice to induce height selection during film growth. Scanning STM analysis has revealed remarkable flat-topped or mesa-like island and film morphologies in various systems. We discuss in detail observations of QSE and associated film growth behavior for Pb/Cu(111), Ag/Fe(100), and Cu/fcc-Fe/Cu(100) [A/B or A/B/A], and for Ag/NiAl(110) with brief comments offered for Fe/Cu3Au(001) [A/BC binary alloys]. We also describe these issues for Ag/5-fold i-Al-Pd-Mn and Bi/5-fold i-Al-Cu-Fe [A/BCD ternary icosohedral quasicrystals]. Electronic structure theory analysis, either at the level of simple free electron gas models or more sophisticated Density Functional Theory calculations, can provide insight into the QSE-mediated thermodynamic driving force underlying height selection. C1 [Han, Yong] Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. [Uenal, Baris; Jing, Dapeng; Thiel, Patricia A.] Iowa State Univ, Ames Lab, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Uenal, Baris; Jing, Dapeng; Thiel, Patricia A.] Iowa State Univ, Ames Lab, Dept Chem, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Ames Lab, Dept Phys & Astron, Ames, IA 50011 USA. [Evans, James W.] Iowa State Univ, Ames Lab, Dept Math, Ames, IA 50011 USA. RP Han, Y (reprint author), Iowa State Univ, Inst Phys Res & Technol, Ames, IA 50011 USA. EM octavian2009@gmail.com; barisunaltr@gmail.com; dpjing@iastate.edu; thiel@ameslab.gov; dajiang@fi.ameslab.gov RI Han, Yong/F-5701-2012; Jing, Dapeng/M-3455-2014 OI Han, Yong/0000-0001-5404-0911; Jing, Dapeng/0000-0001-7600-7071 FU NSF [CHE-0809472]; Division of Chemical Sciences, Office of Science of the U. S. Department of Energy (USDOE); Division of Materials Science, Office of Science of the USDOE; Iowa State University [DE-AC02-07CH11358] FX YH thanks T.C. Chiang and M.Y. Chou for providing data and for valuable communications on the Ag/Fe(100) system. We acknowledge NERSC and TeraGrid for computing resources. YH, DJ, and JE were supported by NSF Grant CHE-0809472 for this work on all the systems described in this contribution. DJ was supported for EGM and DFT studies by the Division of Chemical Sciences, Office of Science of the U. S. Department of Energy (USDOE). BU and PT were supported by the Division of Materials Science, Office of Science of the USDOE for experimental work on Ag/NiAl(110), Ag/Al-Pd-Mn, and Bi/Al-Cu-Fe. Work was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 93 TC 9 Z9 9 U1 6 U2 38 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD JUL PY 2010 VL 3 IS 7 BP 3965 EP 3993 DI 10.3390/ma3073965 PG 29 WC Materials Science, Multidisciplinary SC Materials Science GA 864LS UT WOS:000298242200008 ER PT J AU Anderson, IE Byrd, D Meyer, J AF Anderson, I. E. Byrd, D. Meyer, J. TI Highly tuned gas atomization for controlled preparation of coarse powder SO MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK LA English DT Article DE gas atomization; powder size control; gas velocity; Al powder; close-coupled atomization ID BREAK-UP AB While close-coupled gas atomization has been demonstrated for highly controlled production of fine powders in many alloy systems, defense applications for Mg powder demand that such an atomization system also be capable of producing a narrow standard deviation for coarse Mg powders. To develop this capability, a series of 5 gas atomization experiments were conducted with Al, as a less hazardous surrogate for Mg, over a range of a very low atomization gas pressures. The optimum result produced an average particle diameter of about 460 gm with a standard deviation of 1.53 using Ar atomization gas, sufficiently close to the 500 gm target size. These experiments achieved the process uniformity needed for this narrow standard deviation by stabilizing melt filming with an expanded discrete jet, close-coupled atomization nozzle and a slotted trumpet bell pour tube. Initial analysis of the size results indicated that decreased atomization gas velocity, acting within the acceleration wave model, was the key controlling variable in this low-pressure regime. No consistent influence of gas/melt mass flow ratio was detected in the data. Experimental observation of the atomization spray images also indicated that a practical lower limit to atomization gas pressure is about 69 kPa for achieving atomization process uniformity with the method of this study. C1 [Anderson, I. E.] US DOE, Div Engn & Mat Sci, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Anderson, IE (reprint author), US DOE, Div Engn & Mat Sci, Ames Lab, 222 Met Dev Bldg, Ames, IA 50011 USA. EM andersoni@ameslab.gov FU US Army Research and Development Command (ARDEC) [DE-AC02-07CH11358] FX The authors are grateful for the assistance of Ross Anderson, Hal Sailsbury, Arne Swanson, and Scott Long on the gas atomization experiments and powder characterization. Support from the US Army Research and Development Command (ARDEC) through Ames lab contract no. DE-AC02-07CH11358 is gratefully acknowledged. NR 17 TC 3 Z9 3 U1 2 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY SN 0933-5137 J9 MATERIALWISS WERKST JI Materialwiss. Werkstofftech. PD JUL PY 2010 VL 41 IS 7 BP 504 EP 512 DI 10.1002/mawe.201000636 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 638QA UT WOS:000280908500003 ER PT J AU Miller, A Siffel, C Correa, A AF Miller, Assia Siffel, Csaba Correa, Adolfo TI Residential Mobility During Pregnancy: Patterns and Correlates SO MATERNAL AND CHILD HEALTH JOURNAL LA English DT Article DE Residential mobility; Pregnancy; Birth defects; Surveillance; Geographic information systems (GIS); Misclassification; Exposure ID CONGENITAL CARDIAC ANOMALIES; HAZARDOUS-WASTE SITES; BIRTH-DEFECTS; EXPOSURE MISCLASSIFICATION; MATERNAL SMOKING; RISK; SURVEILLANCE; WOMEN AB Information on patterns and correlates of residential mobility can be important in studies of environmental factors and birth outcomes. The objective of this study was to describe residential mobility patterns and possible sociodemographic correlates of residential mobility among pregnant women. We obtained information on 656 mothers of infants with birth defects (cases) and 335 mothers of infants without birth defects (controls) from the geocoded dataset of the Birth Defects Risk Factor Surveillance Study, a case-control study conducted in Atlanta, Georgia, from 1993 through 1997. Using geographic information techniques, we measured distances mothers moved between residential addresses, and evaluated the proportion of moves and movement patterns by trimester. We used multivariate logistic regression to evaluate possible correlates of residential mobility for case and control mothers, including race, age, education, occupation, socioeconomic status, smoking, parity, and pregnancy planning. About 22% of women moved during pregnancy and most of them moved during the second trimester (11.9%), with no variation by case-control status. Among mothers who moved 51% moved within the same county. Pregnant women were more likely to move if they were younger (20-24 years, adjusted odds ratio (aOR) 3.39, 95% confidence interval (CI) 2.12-5.42; a parts per thousand yen30 years: reference), did not plan their pregnancy (aOR 1.66, 95% CI 1.18-2.34), and smoked (aOR 1.46, 95% CI 1.01-2.12). For these associations with mother's residential mobility, there were no appreciable confounding or effect modification effects by case-control status. In studies of pregnancy outcomes and potential environmental exposures based on residence at the time of delivery, residential mobility during pregnancy may not vary by case-control status, but it still needs to be considered as a possible source of exposure misclassification. Accounting for potential case-control differences in correlates of residential mobility could be useful in minimizing potential non-differential misclassification. C1 [Miller, Assia; Siffel, Csaba; Correa, Adolfo] Ctr Dis Control & Prevent, Div Birth Defects & Dev Disabil, Natl Ctr Birth Defects & Dev Disabil, Atlanta, GA 30329 USA. [Miller, Assia] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Siffel, Csaba] Comp Sci Corp, Atlanta, GA USA. RP Miller, A (reprint author), Ctr Dis Control & Prevent, Div Birth Defects & Dev Disabil, Natl Ctr Birth Defects & Dev Disabil, Mailstop E-86,1600 Clifton Rd, Atlanta, GA 30329 USA. EM amiller@cdc.gov NR 29 TC 26 Z9 26 U1 0 U2 3 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1092-7875 J9 MATERN CHILD HLTH J JI Matern. Child Health J. PD JUL PY 2010 VL 14 IS 4 BP 625 EP 634 DI 10.1007/s10995-009-0492-z PG 10 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 620CU UT WOS:000279477400016 PM 19568920 ER PT J AU Kirkizlar, E Faissol, DM Griffin, PM Swann, JL AF Kirkizlar, Eser Faissol, Daniel M. Griffin, Paul M. Swann, Julie L. TI Timing of testing and treatment for asymptomatic disease SO MATHEMATICAL BIOSCIENCES LA English DT Article DE Disease modeling; Markov decision processes; Asymptomatic diseases; Disease screening and intervention; Hepatitis C ID HEPATITIS-C VIRUS; COST-EFFECTIVENESS ANALYSIS; SEMI-MARKOVIAN DETERIORATION; OPTIMAL INSPECTION; BREAST-CANCER; HEPATOCELLULAR-CARCINOMA; MEDICAL EXAMINATIONS; INTERFERON-ALPHA; UTILITY ANALYSIS; PLUS RIBAVIRIN AB Many papers in the medical literature analyze the cost-effectiveness of screening for diseases by comparing a limited number of a priori testing policies under estimated problem parameters. However, this may be insufficient to determine the best timing of the tests or incorporate changes over time. In this paper, we develop and solve a Markov Decision Process (MDP) model for a simple class of asymptomatic diseases in order to provide the building blocks for analysis of a more general class of diseases. We provide a computationally efficient method for determining a cost-effective dynamic intervention strategy that takes into account (i) the results of the previous test for each individual and (ii) the change in the individual's behavior based on awareness of the disease. We demonstrate the usefulness of the approach by applying the results to screening decisions for Hepatitis C (HCV) using medical data, and compare our findings to current HCV screening recommendations. (C) 2010 Elsevier Inc. All rights reserved. C1 [Kirkizlar, Eser] SUNY Binghamton, Sch Management, Binghamton, NY 13902 USA. [Faissol, Daniel M.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Griffin, Paul M.] Penn State Univ, University Pk, PA 16802 USA. [Swann, Julie L.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Kirkizlar, E (reprint author), SUNY Binghamton, Sch Management, POB 6000, Binghamton, NY 13902 USA. EM eser@binghamton.edu; dfaissol@llnl.gov; pmg14@psu.edu; jswann@gatech.edu FU ATT Labs; NASA; NSF; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX Research supported in part by the AT&T Labs Fellowship Program, NASA Harriet G. Jenkins Predoctoral Fellowship, and an NSF grant. The findings and conclusions in this manuscript are those of the authors and do not necessarily represent the views of the National Science Foundation or other sponsors.; LLNL-JRNL-418038. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 64 TC 2 Z9 2 U1 1 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0025-5564 J9 MATH BIOSCI JI Math. Biosci. PD JUL PY 2010 VL 226 IS 1 BP 28 EP 37 DI 10.1016/j.mbs.2010.03.007 PG 10 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 615JY UT WOS:000279132500003 PM 20361985 ER PT J AU Bailey, DH Borwein, JM Crandall, RE AF Bailey, D. H. Borwein, J. M. Crandall, R. E. TI ADVANCES IN THE THEORY OF BOX INTEGRALS SO MATHEMATICS OF COMPUTATION LA English DT Article AB Box integrals expectations or over the unit ncube have over three decades been occasionally given closed forms for isolated n, s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for each of n = 1,2,3,4 dimensions the box integrals are for any integer s hypergeometrically closed ("hyperclosed") in an explicit sense we clarify herein. For n = 5 dimensions, such a complete hyperclosure proof is blocked by a single, unresolved integral we call kappa(5); although we do prove that all but a finite set of (n = 5) cases enjoy hyperclosure. We supply a compendium of exemplary closed forms that arise naturally from the theory. C1 [Bailey, D. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Borwein, J. M.] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia. [Borwein, J. M.] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 2W5, Canada. [Crandall, R. E.] Reed Coll, Ctr Adv Computat, Portland, OR 97202 USA. RP Bailey, DH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dhbailey@lbl.gov; jonathan.borwein@newcastle.edu.au; crandall@reed.edu RI Borwein, Jonathan/A-6082-2009; OI Borwein, Jonathan/0000-0002-1263-0646 FU Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; ARC; NSERC; Canada Research Chair Programme FX The first author was supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.; The second author was supported in part by ARC, NSERC and the Canada Research Chair Programme. NR 29 TC 7 Z9 7 U1 0 U2 1 PU AMER MATHEMATICAL SOC PI PROVIDENCE PA 201 CHARLES ST, PROVIDENCE, RI 02940-2213 USA SN 0025-5718 J9 MATH COMPUT JI Math. Comput. PD JUL PY 2010 VL 79 IS 271 BP 1839 EP 1866 PG 28 WC Mathematics, Applied SC Mathematics GA 623WJ UT WOS:000279776900026 ER PT J AU Lemon, KP Klepac-Ceraj, V Schiffer, HK Brodie, EL Lynch, SV Kolter, R AF Lemon, Katherine P. Klepac-Ceraj, Vanja Schiffer, Hilary K. Brodie, Eoin L. Lynch, Susan V. Kolter, Roberto TI Comparative Analyses of the Bacterial Microbiota of the Human Nostril and Oropharynx SO MBIO LA English DT Article ID HUMAN SKIN MICROBIOTA; HUMAN NASAL CAVITY; STAPHYLOCOCCUS-AUREUS; MOLECULAR ANALYSIS; PSEUDOMONAS-AERUGINOSA; CROHNS-DISEASE; DIVERSITY; COMMUNITIES; MICROARRAY; IDENTIFICATION AB The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups. IMPORTANCE The human nose and throat, though connected, contain distinct niches that are important sites of colonization by pathogenic bacteria. For many of these pathogens, colonization increases the risk of infection. Most research on the microbiota of nose and throat habitats has focused on carriage of one or a few pathogens. We hypothesized that increased knowledge of the composition of the complex bacterial communities in which these pathogens reside would provide new insights into why some individuals become colonized with pathogens, while others do not. Indeed, in the nostril microbiota of participants, there was an inverse correlation between the prevalences of the Staphylococcaceae family (Firmicutes), whose members include important pathogens, and the Corynebacteriaceae and Propionibacteriaceae families (both Actinobacteria), whose members are more commonly benign commensals. An improved understanding of competitive bacterial colonization will increase our ability to define predispositions to pathogen carriage at these sites and the subsequent risk of infection. C1 [Lemon, Katherine P.] Harvard Univ, Childrens Hosp, Sch Med, Div Infect Dis, Boston, MA 02115 USA. [Klepac-Ceraj, Vanja; Schiffer, Hilary K.; Kolter, Roberto] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA. [Brodie, Eoin L.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA USA. [Lynch, Susan V.] Univ Calif San Francisco, Dept Med, Colitis & Crohns Dis Ctr, San Francisco, CA USA. RP Lemon, KP (reprint author), Harvard Univ, Childrens Hosp, Sch Med, Div Infect Dis, Boston, MA 02115 USA. EM katherine.lemon@childrens.harvard.edu RI Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Klepac-Ceraj, Vanja/0000-0001-5387-5706 FU National Science Foundation [DBI-0552060]; Rainin Foundation; Department of Energy [de-AC02-05CH11231]; [GM58213]; [GM082137] FX H. K. S. was supported in part by REU site grant DBI-0552060 from the National Science Foundation. S. V. L. is supported in part by the Rainin Foundation. Part of this work was performed at Lawrence Berkeley National Laboratory under the Department of Energy Contract no. de-AC02-05CH11231. This work was supported in part by grants GM58213 and GM082137 to R. K. NR 54 TC 77 Z9 79 U1 1 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD JUL-AUG PY 2010 VL 1 IS 3 AR e00129-10 DI 10.1128/mBio.00129-10 PG 9 WC Microbiology SC Microbiology GA 686TB UT WOS:000284717500002 ER PT J AU Carne, TG James, GH AF Carne, Thomas G. James, George H., III TI The inception of OMA in the development of modal testing technology for wind turbines SO MECHANICAL SYSTEMS AND SIGNAL PROCESSING LA English DT Article DE OMA; Modal analysis; NExT; Wind turbines; Wind excitation AB Wind turbines are immense, flexible structures with aerodynamic forces acting on the rotating blades at harmonics of the turbine rotational frequency. These harmonics are comparable to the modal frequencies of the structure. Predicting and experimentally measuring the modal frequencies of wind turbines have been important to their successful design and operation. Performing modal tests on wind turbine structures over 100 m tall is a substantial challenge, which has inspired innovative developments in modal test technology. For wind turbines, a further complication is that the modal frequencies are dependent on the turbine rotation speed. The history and development of a new technique for acquiring the modal parameters using output-only response data, called the Natural Excitation Technique (NExT), will be reviewed, showing historical tests and techniques. The initial attempts at output-only modal testing began in the late 1980s with the development of NExT in the 1990s. NExT was a predecessor to Operational Modal Analysis (OMA), developed to overcome these challenges of testing immense structures excited with natural environmental inputs. We will trace the difficulties and successes of wind turbine modal testing from 1982 to the present. (C) 2010 Elsevier Ltd. All rights reserved. C1 [Carne, Thomas G.] Sandia Natl Labs, Livermore, CA 94550 USA. [James, George H., III] NASA JSC ES6, Houston, TX USA. RP Carne, TG (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM tgcarne@bresnan.net; george.h.james@NASA.gov FU Wind Energy Technology Department at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the contributions from many colleagues who assisted and inspired much of this work. In particular, we acknowledge James Lauffer, who participated in many of the early tests and initiated the development of our approach to OMA. Anthony Gomez was essential in preparation, execution, and performance of many tests described here. The Wind Energy Technology Department at Sandia National Laboratories provided most of the funding for these developments. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 20 TC 22 Z9 26 U1 0 U2 15 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0888-3270 J9 MECH SYST SIGNAL PR JI Mech. Syst. Signal Proc. PD JUL PY 2010 VL 24 IS 5 SI SI BP 1213 EP 1226 DI 10.1016/j.ymssp.2010.03.006 PG 14 WC Engineering, Mechanical SC Engineering GA 615JM UT WOS:000279131000002 ER PT J AU Egami, T Levashov, VA Morris, JR Haruyama, O AF Egami, T. Levashov, V. A. Morris, J. R. Haruyama, O. TI Statistical Mechanics of Metallic Glasses and Liquids SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT International Conference on Bulk Metallic Glasses held at the 2009 TMS Annual Meeting CY 2009 CL San Francisco, CA SP Minerals, Met & Mat Soc ID FREE-VOLUME MODEL; STRUCTURAL RELAXATION; SUPERCOOLED LIQUIDS; AMORPHOUS SOLIDS; TRANSITION; DIFFUSION; FLUCTUATIONS AB It is difficult to formulate the statistical mechanical theory of liquids and glasses, because phonons, which are the basis for the statistical mechanics of lattice dynamics in crystals, are strongly scattered and have a very short lifetime in liquids and glasses. Instead computer simulation and the "free-volume" theory are most frequently used in explaining experimental results on metallic glasses. However, both of them suffer from serious problems, as discussed in this article. We propose an alternative approach based upon the dynamics of the atomic level stresses. We review recent progress with this approach and show that it is possible to calculate thermodynamic quantities, including the glass transition temperature and the kinetics of structural relaxation, by this approach. C1 [Egami, T.; Morris, J. R.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, T.; Levashov, V. A.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.; Morris, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Haruyama, O.] Tokyo Univ Sci, Fac Sci & Technol, Dept Phys, Noda, Chiba 2788510, Japan. RP Egami, T (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM egami@utk.edu RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 NR 38 TC 14 Z9 14 U1 0 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2010 VL 41A IS 7 BP 1628 EP 1633 DI 10.1007/s11661-010-0180-z PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 600BQ UT WOS:000277958700006 ER PT J AU Bei, H Lu, ZP Shim, S Chen, G George, EP AF Bei, H. Lu, Z. P. Shim, S. Chen, G. George, E. P. TI Specimen Size Effects on Zr-Based Bulk Metallic Glasses Investigated by Uniaxial Compression and Spherical Nanoindentation SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article; Proceedings Paper CT International Conference on Bulk Metallic Glasses held at the 2009 TMS Annual Meeting CY 2009 CL San Francisco, CA SP Minerals, Met & Mat Soc ID STRAIN GRADIENT PLASTICITY; CRYSTAL PLASTICITY; MICRO-PILLARS; DEFORMATION; STRENGTH; SCALE; FLOW; CU AB Specimen size effects on the mechanical behavior of Zr-based bulk metallic glasses (BMGs) were investigated by compression and nanoindentation tests. In compression, even at the 1- to 10-mm scale, stable shear band propagation and extensive plastic deformation can be achieved in small (2 mm) specimens, in contrast to large (6.5 mm) specimens, which fail catastrophically after limited plastic deformation. The yield strength is independent of specimen size in this range, and plastic deformation remains highly localized in a few shear bands even in those specimens that exhibit stable shear sliding. The fracture surfaces of small specimens are smooth, without the vein patterns normally observed as characteristic features on the fracture surfaces of BMGs. During spherical nanoindentation, it is found that the upper bound of the maximum shear stress to initiate plasticity (yielding) in a Zr-based BMG is almost constant for indenter radii smaller than similar to 90 A mu m. However, the lower bound of this maximum shear stress decreases with increasing indenter radius, probably due to the increased probability of finding defects underneath larger indenters. C1 [Bei, H.; George, E. P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Lu, Z. P.] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. [Shim, S.] Res Inst Ind Sci & Technol, Steel Struct Res Div, Gyunggi 445813, South Korea. [Chen, G.] Nanjing Univ Sci & Technol, Minist Educ, Engn Res Ctr Mat Behav & Design, Nanjing 210094, Peoples R China. [George, E. P.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Bei, H (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM beih@ornl.gov RI Lu, Zhao-Ping/A-2718-2009; George, Easo/L-5434-2014; OI Bei, Hongbin/0000-0003-0283-7990 NR 33 TC 22 Z9 25 U1 3 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD JUL PY 2010 VL 41A IS 7 BP 1735 EP 1742 DI 10.1007/s11661-009-9994-y PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 600BQ UT WOS:000277958700021 ER PT J AU Brennecka, GA Borg, LE Wadhwa, M AF Brennecka, G. A. Borg, L. E. Wadhwa, M. TI BARIUM ISOTOPE COMPOSITIONS OF ALLENDE REFRACTORY INCLUSIONS: r-PROCESS EXCESSES AND EVIDENCE FOR La-138 DECAY SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc ID EARLY SOLAR-SYSTEM; METEORITES C1 [Brennecka, G. A.; Wadhwa, M.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Borg, L. E.] Lawrence Livermore Natl Lab, Livermore, CA USA. EM brennecka@asu.edu NR 9 TC 0 Z9 0 U1 2 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A22 EP A22 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700036 ER PT J AU Chakraborty, S Davis, R Ahmed, M Jackson, TL Thiemens, MH AF Chakraborty, S. Davis, R. Ahmed, M. Jackson, T. L. Thiemens, M. H. TI OXYGEN ISOTOPE EFFECT DOMINATED BY VUV PHOTODISSOCIATION DYNAMICS OF CO: IMPLICATIONS FOR NEBULAR CO PHOTOLYSIS SO METEORITICS & PLANETARY SCIENCE LA English DT Meeting Abstract CT 73rd Annual Meeting of the Meteoritical-Society CY JUL 26-30, 2010 CL New York, NY SP Meteorit Soc ID SOLAR NEBULA C1 [Chakraborty, S.; Davis, R.; Jackson, T. L.; Thiemens, M. H.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Ahmed, M.] Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM subrata@ucsd.edu NR 8 TC 0 Z9 0 U1 3 U2 6 PU WILEY-BLACKWELL PUBLISHING, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD JUL PY 2010 VL 45 SU S BP A31 EP A31 PG 1 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 633DC UT WOS:000280478700053 ER EF